
Build and release management
White paper
February 2008

Implementing build and release
best practices with Rational Build
Forge software.
Rob Cuddy, worldwide enablement engineer, Rational software,
IBM Software Group

Hadley W. Paul, business analyst, Rational software,
IBM Software Group

Contents
Introduction

What if your software development organization could vastly accelerate the
build and release process? Enable you to manage your development system from
virtually anywhere? Free your developers from the most repetitive, mundane
tasks? What if you could do all this while leveraging your existing investments?
That’s what a good process automation framework, such as IBM Rational® Build
Forge® software, can help your business do for your development organization.
With process automation, you can centralize, automate and accelerate software
development using the tools you already have. You can connect multiple appli-
cations and hardware platforms to enable global reporting, centralized tracking
and distributed access to hardware resources.

Process automation is most effective when a series of best practices is applied to it.
Why invest time in best practices? Because they enable you to efficiently develop
and deliver higher-quality software. Best practices also help your organization
improve your development team productivity, product quality and regulatory
compliance. The 10 best practices included in this paper are the result of years of
working with software development organizations in a variety of build processes,
environments and applications.

Some of these concepts are simple, and some are more complex. Some involve
a one-time change in the project setup, architecture or design, while others
need to be implemented in iterations, over time. You will need to implement
some practices before others can be addressed. But following these practices
can help you create a streamlined, centralized system for consistently devel-
oping quality software.

Rational Build Forge is one such automation framework that can help streamline
and organize the software delivery process. The best practices discussed in this
paper have been developed in partnership with Rational Build Forge custom-
ers over the course of many years, and have proved effective in a wide variety of
projects, environments and applications. Useful whether your development team
has 10 people or 10,000 people, these practices can improve efficiency, build reli-
ability and enhance product quality—even if your group is in the same office or
located in multiple offices around the world. Keep in mind that these practices
do not have to be adopted in the order presented. In fact, you should consider
first implementing those practices that will make the biggest impact on your
unique environment.

Implementing build and release best practices
with Rational Build Forge software.
Page �

2	 Introduction

3	 Practice one: develop a build

management strategy

5	 Practice two: establish com-

plete reproducibility

7	 Practice three: automate

processes and integrate

essential systems

8	 Practice four: institute central-

ized access and collaboration

for all stakeholders

9	 Practice five: link build proceses

to deployment environments

12	 Practice six: use metrics

to evaluate progress and

performance

14	 Practice seven: apply build

acceleration techniques

16	 Practice eight: abstract

processes and metadata from

physical resources

17	 Practice nine: optimize

processes and supporting

architecture design

18	 Practice 10: build early and often

20	 Why Rational Build Forge 	

and IBM?

Implementing build and release best practices
with Rational Build Forge software.
Page �

Practice one: develop a build management strategy

Before you build, you must plan. Build management is more than just code com-
pile. True build management also includes establishing effective and consistent
methods for builds and their execution. It includes not only the execution of
complex build and release tasks but also the centralized control and manage-
ment of the multiplatform configurations on which the builds are performed.
Build management also ensures that, once established, builds and system
configurations themselves can be reproduced. An effective build management
strategy is critical to developing a solid build and release process.

A well-defined build process helps businesses meet today’s common software
development challenges, including:

Globalization and distributed development.

Quality and time to market.

Regulatory compliance management and governance.

Whether you are implementing a new build process or refining an existing one,
it’s important to keep a few things in mind.

Consider your whole build and release process

A common mistake that teams make when defining and documenting a build
management strategy is to focus only on the technical aspects of the build process.
There are also nontechnical factors that impact your level of build and release
effectiveness. For example, how the team is structured and how it performs differ-
ent development tasks are crucial considerations, as they may show where process
gaps or inefficiencies exist, and these vulnerabilities can affect the build process.
You may also want to understand how process metrics and data are gathered so
the team can consistently and accurately measure its progress over time. What’s
important is to design your build and release process with the big-picture goal
in mind. This goal could be maximizing team productivity, accelerating product
delivery cycles or reducing downtime for business-critical applications. This mind-
set will help you attain the greatest return on investment for your team.

By keeping both the technical and the business goals in mind, you will be more
successful in creating a living build and release management strategy that helps
you meet the business needs of the company.

•
•
•

Implementing build and release best practices
with Rational Build Forge software.
Page �

Continually assess and refine your process

Developing a build management strategy isn’t a finite task. It is an organic process.
As you would with any other software development artifact, you need to continu-
ally assess your process and make changes as necessary. Start with the build
process as it exists today, and then expand the strategy to include every facet of
the software delivery lifecycle. Include input from other team members, such as
deployment and testing personnel. Your business changes over time, and so will
your build management strategy.

Include three key elements

While a build management strategy can be implemented in a variety of ways,
there are three essential elements needed for a successful build process.

Repeatability and reliability. Do the same thing over and over again,

with the same accuracy and results each time. Because a developer may

need to rebuild later, a build process should snapshot everything at the

moment it is created, including source file versions, compiler settings and the

operating system environment itself. This information is critical if a devel-

oper needs to reproduce an environment to fix defects after a product has

been released.

Agility and speed. Be able to integrate changes quickly, when needed. You

can meet the needs of users more effectively with a build process that is easy

to set up and execute. The process should also be capable of being executed

continually—maybe many times a day. This makes it possible to deliver hot

fixes quickly, and it also facilitates projects practicing continuous integration,

where developers are working on small incremental changes and committing

them frequently.

Traceability and completeness. Know why you’re doing what you’re

doing throughout the complete development lifecycle. A build process should

automatically capture and report on new features, defects and other changes

that have gone into a build. This information is critical to quality assurance

(QA) teams because they need to know which of the defects they raised have

been included in the build. Implementing a solid strategy also helps provide

accountability that’s necessary in order to address regulatory compliance

initiatives such as Sarbanes-Oxley.

•

•

•

Implementing build and release best practices
with Rational Build Forge software.
Page �

Practice two: establish complete reproducibility

After establishing a build management strategy, you need to establish that your
whole build process can be reproduced. This is an important step because several
situations in the development process require that you be able to go back in time
to accurately generate an artifact in the same manner in which it was originally
created. When you have complete reproducibility, you can use the exact same
steps, exact same source code, tools, environments and servers that you used to
produce a deliverable—whether you produced it an hour ago or a year ago. By
reproducing an artifact, you can help:

Identify defects or successful processes for future builds.

Satisfy audit requests.

Provide a baseline for reuse and other development work.

How do you help ensure that you can reproduce an artifact exactly? First, ensure
that project and application builds are performed in a standard structure. This
structure should include such aspects of the build process as the locations of
source components, test components and generated build outputs, as well as
the naming conventions for build scripts. Whenever possible, builds should
be performed in a clean and controlled environment. And if you’re releasing a
build, such an environment is mandatory.

While reproducibility is affected by several entities outside of Rational Build
Forge (such as a repository from which to access old source code), once you
have a consistent structure and process in place, two actions are essential for
reproducibility: establish and maintain a high level of security, and identify
and account for all dependencies.

Establish and maintain a high level of security

It is impossible to reproduce exactly something that continually changes
or something that is not tightly controlled. Limit access and permission to
implement build, process and artifact changes. To enable high security, one
recommended option is to implement a role-based security model. For example
Rational Build Forge implements this model using access groups to control user
permission. You gain more control over security when you can develop access
groups within Rational Build Forge that map to roles within the organization.

•
•
•

Implementing build and release best practices
with Rational Build Forge software.
Page �

You can then assign appropriate permissions for each group, and you can add
users to the appropriate group or to multiple groups. In Rational Build Forge,
security access is determined by group membership so that information can be
displayed in an appropriate manner. If you use Lightweight Directory Access
Protocol (LDAP), you can map existing groups in the domain to access groups in
Rational Build Forge.

In Rational Build Forge, objects also have permission settings with attributes that
can be set. For example, maybe you need to hide sensitive information, such as a
password setting. You may only want users who oversee password maintenance to
have access to this information. Figure 1 shows how you can set an environment
group in Rational Build Forge that includes a variable that will not be visible to
general users. Attributes of the restricted variable are set to Assign/Hidden and
Suppress Display. With Assign/Hidden, the value of the variable is displayed as a
series of asterisks. With Suppress Display, the variable does not appear in the list
of project environment variables when the project is run manually.

Figure 1: Sample screenshot showing environment variable behavior

Implementing build and release best practices
with Rational Build Forge software.
Page �

Identify and account for all dependencies

A second key action in establishing complete reproducibility is to identify and
account for all dependencies used to build a release. To account for dependen-
cies, you need to capture all the information that is pertinent to the build process,
including environment variables, system settings and build machine configura-
tion. Identifying and storing this information enables you to successfully rebuild
an artifact in a repeatable fashion. Rational Build Forge captures this information
during a build process run, and with environment groups, you can define vari-
ables to capture their values. In addition, you can write custom information to a
bill of materials to obtain a complete representation of the run-time environment.

Practice three: automate processes and integrate essential systems

Once a stable and secure environment and a basic build management strategy
are in place, the next objective is to automate individual processes and integrate
essential systems. The goal should be to remove as much manual intervention as
possible and, ideally, automate each process entirely. Fully automated processes
depend on integration with key systems as a prerequisite. There are a few impor-
tant elements in this system integration.

Map out process workflows

Because Rational Build Forge allows for a great deal of flexibility in managing
process workflows, it’s possible, and recommended, to map out different process
workflows before connecting systems. Process workflow mapping can identify
any dependencies in steps. Rational Build Forge can accommodate different
workflow paths by using exit codes, filters and pass/fail chains for process deci-
sions. Don’t simply focus on the build portion of the workflow. Consider items
that influence the build as well as items influenced by the build, including:

Source code repositories.

Deployment locations.

Unit and/or smoke tests.

•
•
•

Implementing build and release best practices
with Rational Build Forge software.
Page �

Identify relationships between processes

Another important element in connecting essential systems is to understand
the relationship between the different steps in the process workflow. Rational
Build Forge allows you to make process decisions at the end of each step. The
process workflows should be constructed so that these decisions can happen in
an automated fashion. With Rational Build Forge, you can consider what you
would want to happen for each possible outcome of the steps in your process
to keep work moving.

For example, consider what you would want to happen should the deployment
step of your process fail. You could configure Rational Build Forge to notify
appropriate access groups concerning the failure. But you also might want to
perform cleanup actions or launch other processes in addition to just provid-
ing notification. Rational Build Forge can help you set decisions for multiple
actions and multiple scenarios.

Once you have mapped out your processes and understand the relationships,
you can use Rational Build Forge to:

Automate the setting of a specific environment using environment groups.

Build large systems through builds of the subsystems.

Create a “super” or “master” project where steps are really calls to smaller

build processes. These steps are connected to smaller processes using inline

and chain configurations in Rational Build Forge.

Implement different workflows with different projects.

Include the complete set of processes required—not just the master build process:

Developer incremental builds

QA integration builds

Master builds

Patch/service pack releases

Practice four: institute centralized access and collaboration for all stakeholders

Centralized collaboration allows team members to access and utilize all build
process resources. It is essential for team-oriented projects, especially ones with
remote teams. Centralized collaboration facilitates clearer understanding of the
process, consistent information concerning project builds, greater communication

•
•

–

•
•

–
–
–
–

Implementing build and release best practices
with Rational Build Forge software.
Page �

between team members and increased visibility of anything and everything con-
nected to the process. Rational Build Forge enables you to define users and user
groups within the centralized framework, which can help enforce policies and
ensure that users see information that is pertinent to their role.

As a result, you get communication without chaos. Reporting, resources, process
steps and configurations are stored and centralized. All users see the same infor-
mation for the same builds, which eliminates the confusion that can occur when
there are multiple builds and artifacts. There are several features of Rational
Build Forge that help facilitate centralized information and communication.

The bill of materials

The bill of materials (BOM) is a central aspect of Rational Build Forge collab-
oration. Produced each time a process is run, it contains all of the results and
configuration information concerning the run. The BOM can be customized
to include source code changes, defect IDs, test results and more specialized
information. By consolidating this information into a single location, users can
more quickly and easily address and resolve issues.

Targeting notifications

To improve collaboration, you can also use targeting notifications within Rational
Build Forge. Target notifications help ensure that the right people receive the
right information at the right time. You can set notifications for a variety of
parameters. For example, instead of having to e-mail the entire organization when
a build fails, you can simply send a notification to the appropriate development
team. Notifications can also be customized with specific information, such as a
link to the build results.

Practice five: link build processes to deployment environments

Too often, software organizations fail to tie together the transition between gener-
ating deliverables and then packaging and deploying them. Instead, they handle
internal deployment in an “over the wall” fashion. To realize a successful build
and release framework, you must automate and streamline these transitions as
much as possible. Automating the movement of files from one group to the next in
a development process saves significant time. Target deployment environments

Implementing build and release best practices
with Rational Build Forge software.
Page 10

can be final destinations or intermediate drop zones for another application to
pick up and do final packaging and deployment. Users and groups have files
already waiting for them, instead of requiring those users and groups to migrate
files manually after receiving an e-mail.

Typically the deliverable deployment process consists of the same basic steps
across many projects. Rational Build Forge allows users to modularize these
reusable steps into libraries and connect them to process runs. As a result,
deployments can happen in a controlled and consistent manner.

You can also configure process workflows where some steps can only be
run by certain users. For example, maybe only a team lead may deploy to
a QA environment.

With Rational Build Forge, you can configure workflow so that the deployment
step runs only when a team lead performs the process run. Figure 2 below shows
how roles can be specialized in a process run.

Figure 2: Sample screenshot showing steps configured for different groups

Implementing build and release best practices
with Rational Build Forge software.
Page 11

You can also perform operations on process runs that have already occurred. For
example, say you are performing a build and sending it to a QA team. After some
time, the build is approved and moved to the next level of testing. In Rational
Build Forge, a process run is associated with an entity called a class. Approved
users can change the class of a given process run and configure Rational Build
Forge to perform appropriate steps when a class changes. This is accomplished
by connecting the class to libraries containing the steps to perform. Steps can be
run when changing to a class, from a class or both. Figure 3 highlights where an
existing run class can be changed. Figure 4 illustrates where the class attributes
are set. The Start on Entry attribute defines the steps to run when a process
run is changed to this class. Start on Exit defines the steps to run when a
process run is changed from a class.

Figure 3: Sample screen shot showing where the class property can be changed for a run

Figure 4: Sample screenshot showing class attribute locations

Implementing build and release best practices
with Rational Build Forge software.
Page 12

Practice six: use metrics to evaluate progress and performance

Your business needs accurate information in order to make informed business
decisions. In terms of software development, it’s impossible to improve what
cannot be measured. Reporting improves visibility and provides reliable data
that can help you understand and manage various project metrics— including
the build process itself. Rational Build Forge includes reporting features that
can provide this valuable information.

It’s important to analyze these metrics in the context of your business. For
example, a lengthy build process may not be just an inconvenience, it may be a
roadblock that delays product delivery—a potentially costly situation. A lengthy
build process may also be an indication that hardware resources aren’t being
used efficiently, which can add needless costs to a project. It’s possible that a
build error isn’t just affecting the development team—it may also be affecting
key stakeholders, such as internal employees, partners or end users. By linking
process metrics to the business impact, you will be better able to quantify the
value of making build and release process improvements for the organization.

Figure 5: Sample report showing build duration time on a per-build basis

Implementing build and release best practices
with Rational Build Forge software.
Page 13

•
•
•
•
•

Figure 6: Sample report showing step duration time on a per-step basis

Many development teams use the build process as the primary mechanism for
capturing project metrics, but often developers don’t capture metrics about the
process itself. For example, when executing a build, metrics might be gathered
concerning unit tests passed, code coverage or source code changes. However,
information pertaining to that build will be missed. Process metrics, such as
how many builds have passed or failed or the average total time required for
a build, yield invaluable information that can be utilized to increase efficiency.
Project metrics that can be helpful include:

Number of passed or failed builds per project.

Build confidence (the ratio of successful to failed builds).

Average total build time per project.

Components reused in a build.

Change tasks and/or defects implemented in each build.

Figure 7 illustrates some of the metrics captured in the reports. This enables
the user to evaluate the changes in project runs over time, also providing the
mean, standard deviation, and confidence values for this distribution. These
metrics include the last tag, the run time and the deltas of each.

Implementing build and release best practices
with Rational Build Forge software.
Page 14

•
•
•
•
•
•
•
•
•
•

Figure 7: This graphic is a screenshot of a reporting data from the Reports tab. It shows data of the
Project Deltas for projects in various builds.

Other useful reporting metrics include the following:

What is the duration of the project over time?

Are the total number of defects found/fixed increasing or decreasing?

What step in my project typically runs the longest?

What step in my project typically breaks most often?

Who is responsible for the code that breaks the build?

How many successful vs. unsuccessful builds have occurred for project X?

What is the number of passed/failed builds per project?

What is our build confidence?

What components can be reused in a build?

Which change tasks and/or defects are implemented in each build?

Practice seven: apply build acceleration techniques

Build acceleration is the concept of reducing the total time of the build process
from end to end. This benefit applies to both iterative and agile methodologies.
There are two ways that you can help accelerate your overall build process using
Rational Build Forge.

Execute project steps in parallel

Rational Build Forge allows you to execute project steps in parallel rather than
in a series, helping to minimize run time. Running project steps in parallel is
called threading, and it is an effective option for processes that do not depend
on an immediate previous step.

Implementing build and release best practices
with Rational Build Forge software.
Page 15

Figure 8 illustrates how, during a sample process, you can compile the same
source code on several different platform types. During the compilation stage,
you would traditionally compile in a series—on one platform, then the next
and so on—resulting in a long overall build process. But since the compilation
steps do not rely on one another (for example, the Linux® compile does not
depend on the completion of the Microsoft® Windows® compile), they can be
threaded to run in parallel, reducing the total build time.

Compile Linux

Compile Sun Microsystems Solaris

Compile Windows
(main)

Compile Windows
(UI)

Compile Windows
(main, UI)

Test Package DeployInit Get Src

Reusable steps

Environment

Project/Process

You can apply threading to any manual or inefficient steps within the overall
process, not just the compile step. For example, Rational Build Forge can
execute simultaneous source extractions, running test scripts, packaging or
multiple deployments.

Figure 8. Sample process workflow broken into steps

Efficiently use existing hardware

You can also use Rational Build Forge to help you determine the most efficient
and effective way to use your existing hardware. Rational Build Forge uses objects
called selectors to locate the best machine at a given moment for a given task.
You can also distribute parts of your overall process to different machines. For
example, it may be faster to build different components of a product on several
different machines and then have a step in the process to pull the built objects
together from the various machines.

Implementing build and release best practices
with Rational Build Forge software.
Page 16

Practice eight: abstract processes and metadata from physical resources

A best practice when creating the steps to a project is to abstract the configura-
tion information from physical resources. Over time, build scripts can quickly
become large and unwieldy as specific configuration information gets associated
with them. Often development teams attempt to manage these large scripts by
extracting the configuration data. With a scripted build process, this typically
means creating a separate data file alongside the main build scripts. However,
as the process becomes more complex, it is common to construct these data files
to rely heavily upon hardware resources. This method firmly ties the process to
the hardware resource. But in general, hardware resources for building should
be thought of as transferable. Hardware failure should not jeopardize software
processes that are critical to a project.

Rational Build Forge enables you to store configuration information for differ-
ent processes in environments in its database. For example, if a step needs to use
a compiler, you define the location of the compiler in an environment variable
and then use the variable in the step, rather than hard coding the location of
the compiler into the step command. Similarly, you can abstract metadata about
the hardware resources, such as operating system level or amount of available
memory, using collectors and selectors to store that information in manifests for
the different resources. Figure 9 shows how you can obtain and store machine-
specific information into a manifest.

Figure 9. Sample illustration of capturing and storing resource information

Implementing build and release best practices
with Rational Build Forge software.
Page 17

When you abstract steps from physical resources, it’s also a good idea to examine
each process step and to identify places where steps are repeated. Just as develop-
ers implement code routines to save time and promote sharing and reuse, build
processes can also benefit from reuse. Steps that are repeated similarly across
multiple processes, just with different parameters, can be grouped into a reusable
library. This modularization helps simplify steps when you start new projects.

Practice nine: optimize processes and supporting architecture design

Once the complete processes have been placed into Rational Build Forge, they’re
ready for optimization. Optimization includes both the Rational Build Forge
architecture and the processes implemented in it.

Optimizing the architecture

To optimize the Rational Build Forge architecture, you must fine-tune the appli-
cation’s management console. You need to examine several parameters to ensure
that the console runs efficiently. Two important ones are the run queue size
and the maximum console processes. The run queue size limits the number of
project runs that can occur at one time. The maximum console processes setting
determines the maximum number of processes that the management console
can run at one time. These two parameters work together. The maximum
console processes setting must be at least five greater (+5) then the run queue
size so that the system can support jobs that are queued.

You can control the maximum number of jobs for a given server using the
_MAXJOBS parameter in a collector for the server. You can also configure this
parameter in the management console for all servers at once. In addition to these
two parameters, the auto-logoff time and the password format settings should be
implemented to help enhance security.

Optimizing the process

Process optimization involves assessing the different building blocks in the
process, identifying reusable parts and parts that use parameters, and imple-
menting changes. Process steps can be difficult to break down and difficult to
refactor in a single increment. Instead, start simple with Rational Build Forge
projects in an as-is fashion, using existing scripts and commands. Once you get
the process in, you can further optimize it over time. As with optimizing the

Implementing build and release best practices
with Rational Build Forge software.
Page 18

architecture, examine the different processes and look for potential reuse and
parameters, and then place these tasks into libraries. Use environment groups
to influence different parameters. These modular pieces are easier to maintain
and reuse, and they scale better with growth.

Rational Build Forge is very helpful in optimization because it allows flexibil-
ity of environmental variable usage. You can define environment variables for
servers, projects and steps. Figure 10 illustrates different behaviors exhibited
by environment variables defined in groups.

Figure 10: Environment variable behavior

Practice 10: build early and often

After optimization, you can increase the frequency of product builds. More fre-
quent builds increase feedback and help identify problems quickly. They also help
ensure that your project is on track. Feedback comes from builds, and the more
feedback you have, the easier it is to gauge the health of your software applica-
tion. This makes it easier to fix problems earlier in the release process, rather than
waiting until the end of the project to address an issue.

Implementing build and release best practices
with Rational Build Forge software.
Page 19

Rational Build Forge provides several options for achieving this best practice.
First, in the management console, you can give permission to developers and
other team members to run the process on an as-needed basis. Once again,
Assign/Hidden and Suppress Display allow you to set role-based access to
projects and steps. Rational Build Forge also enables you to schedule automated
project runs at predefined intervals, such as a nightly build. Figure 11 shows a
sample schedule. Finally, Rational Build Forge allows developers to validate their
changes as part of an integration build using an integrated development environ-
ment (IDE) plug-in, so they can run a preflight check before integrating changes
into a real build.

Figure 11: Sample schedule screenshot

Why Rational Build Forge and IBM?

IBM Rational Build Forge Enterprise Edition software offers comprehensive build
and release management for medium to large development teams. With Rational
Build Forge software, teams can easily automate and reuse repetitive build and
release tasks for greater efficiency and reliability. Compatibility with existing build
scripts, batch files and development tools speeds implementation, and error log
filtering and automated notifications allow developers to rapidly detect and resolve
errors. Rational Build Forge software provides Web-based access, so build activi-
ties can be viewed and managed from anywhere, at any time. IBM Rational Build
Forge software also helps you make use of your IT investments by integrating with
existing development technologies and by offering broad operating system sup-
port, including the IBM AIX®, UNIX®, IBM i5/OS®, Linux, Apple Macintosh, Sun
Solaris, Microsoft Windows and IBM z/OS® platforms.

For more information

To learn more about how IBM Rational Build Forge software can help you
implement build and release best practices, visit:

ibm.com/software/awdtools/buildforge/

or consult your IBM Rational Build Forge account representative.

©	Copyright IBM Corporation 2008

IBM Corporation	
Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

Produced in the United States of America	
02-08	
All Rights Reserved.

AIX, Build Forge, i5, IBM, the IBM logo, Rational and
system z are trademarks of International Business
Machines Corporation in the United States, other
countries or both.

Windows is a registered trademark of Microsoft
Corporation in the United States, other countries
or both.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries or both.

Other company, product and service names may
be trademarks or registered trademarks or service
marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

RAW14005-USEN-00

http://www.ibm.com/software/awdtools/buildforge/

