
Transforming software development and delivery
White paper
April 2008

Best practices for software analysis.
An introduction to the IBM Rational Software
Analyzer application

Contents

2	 Introduction

3	 Heed the studies

4	 Establish goals and

expectations

5	 Use focused analysis

6	 Start with small blocks of code

6	 Beware of false positives

7	 Don’t be a slave to the tool

8	 Be prepared for a lot of results

9	 Make sure you address results

10	 Use static analysis as a tool,

not as a weapon

10	 Pay attention to simple things

11	 Start improving your code

quality today

Introduction

As software becomes more complex, the probability of exposing end users
to application defects increases exponentially. While it was once enough to
modify code and then stage a code review with fellow developers, this practice
frequently missed intricate coding problems. Today, even subtle quality prob-
lems can cause unexpected failures, potentially leading to lost business and a
damaged reputation for product quality.

To go beyond peer review and improve time to market for complex applications, a
range of static analysis tools has evolved that can automatically detect—and often
correct—common source code problems. Although there is still room for improve-
ment, static analysis tools are doing a good job of solving developer problems.

The IBM Rational® Software Analyzer application is designed to address the
needs of your organization by automatically detecting and, in many cases, cor-
recting coding problems. It adds value to the application lifecycle management
(ALM) and governance process, helping to improve and raise awareness of overall
product quality. It can also integrate into your existing developer environment
and/or build system, adding value to the development process almost immediately.

Because Rational Software Analyzer can automatically review code, many users
assume it is a black box in which you can insert bad code at one end and extract
perfect code at the other. No static analysis tool can convert bad code into good
code without some intervention. Instead, think of Rational Software Analyzer as
a tool for highlighting areas of concern.

Best practices for software analysis.
Page 2

Best practices for software analysis.
Page 3

Highlights
As with any technology introduced into the development process, there are traps
to avoid and tips that can help you derive immediate value. This paper explains
the benefits of successfully introducing static analysis into your organization
using Rational Software Analyzer. Additionally, it identifies some common pitfalls
that can hinder the effective use of static analysis tooling. Here are 10 simple
strategies designed to help you quickly realize the value of static analysis
using Rational Software Analyzer.

Heed the studies

A quick Internet search brings up dozens of studies showing that software quality
improves with the use of automated static analysis tools. Depending on the study
and type of analysis used, static analysis tools can find 5 percent to 30 percent
of all defects in code. Many reliable studies have proved that if you wait until a
customer finds one of your defects, resolution will cost US$15,000 to US$20,000.
Finding these defects during development costs much less.

Even if you are quite conservative and believe that static analysis tools can
discover only 1 percent of your defects, if you have 1,000 total defects, you
can still potentially save US$150,000 on a typical project. But cost savings is
just one part of the equation. You can also soften the blow to your business’s
reputation if you find yourself in a situation where you’ve shipped poor-quality
code. IBM, for example, has lowered its defect rates 33 percent by introducing
static analysis tools into some of its key applications. In fact, on one product we
achieved a cost savings of more than US$250,000.

Using static analysis tools to find

a code defect is much less costly

than resolving the defect after a

customer finds it.

Best practices for software analysis.
Page 4

Highlights
Establish goals and expectations

There is no silver bullet in software analysis. You cannot put your bad code
into a magic box, send it through the build process and get nicely formatted,
high-quality code on the other side. The reality is that your code is probably
never going to be perfect no matter what technologies are implemented in
your development process.

To establish realistic expectations, it’s important to outline some common goals
and parameters that will help ensure a reasonable level of quality. Here are
some examples of policies you might put in place:

For previously unanalyzed code, strive to eliminate 60 percent to 70 percent •	
of the code review problems detected by Rational Software Analyzer.

Mandate that your team scan any modified code using at least code review •	
and data flow analysis before delivering it to the code management system.

Ask developers to justify why they have not addressed all analysis results.

Although Rational Software Analyzer allows users to ignore code review •	
results, your team should not neglect individual source files with more than

10 ignored results. If it does, it should justify the exceptions.

Comment/code ratio metrics should be within range before delivering the •	
code. Good in-line documentation is the simplest form of code maintainabil-

ity, and code should provide enough comments to allow a new developer to

quickly understand and take over the code.

Data flow analysis should produce no results (without justification). This •	
type of analysis can identify possible resource and memory leaks, and the

team should leverage it early to prevent subtle defects later on.

No code is completely perfect, so it’s

important to establish parameters

that can help ensure a reasonable

level of quality.

Best practices for software analysis.
Page 5

Highlights
Many static analysis tools force developers into a particular workflow that makes
them play by their rules. In contrast, Rational Software Analyzer has the flexibil-
ity necessary to fit into your organization and does not require you to modify your
development process in order to benefit from static analysis. You can deploy it on
developer desktops or as an integral part of the build process without affecting
your quality goals or forcing you to change your existing procedures.

Use focused analysis

Rational Software Analyzer provides approximately 1,000 rules for various
forms of analysis. Although there is a tendency to select all of them and perform
static analysis in one step, you should avoid this. It’s better to focus on a much
smaller rule set so the results you produce are more manageable.

For example, if you are executing basic code review, select the subset of rules that
is focused on performance instead of the entire collection of rules. This will
produce a much smaller and more digestible result set and more immediate
results by helping to eliminate code that may be introducing performance prob-
lems. In addition to producing a more focused set of results, using a smaller
subset of rules consumes less time for code scans.

The rule sets in Rational Software Analyzer have been divided into logical col-
lections to simplify the task of selecting a focus. There are rule categories for
performance, globalization, best practices and more, so try to focus on these
categories to make your analysis more efficient. Although many static analysis
tools assume that you want to run all analysis rules, Rational Software Analyzer
gives you the freedom to select groups of rules or even individual rules.

More focused rule sets yield smaller,

more digestible results that you can

deal with more practically; they also

consume less scanning time.

Best practices for software analysis.
Page 6

Highlights
Start with small blocks of code

You might have millions of lines of code and want to get a complete set of results.
However, you should avoid scanning the entire code base, especially if you are just
starting to use a static analysis tool. Although Rational Software Analyzer can cer-
tainly handle a million-line code scan, you probably would not want to deal with
the results. If the code you are scanning is legacy and has never been exposed to
static analysis tools before, the scan is bound to generate massive amounts of data,
which would inundate any development team.

It’s better to analyze a much smaller collection of code, for example, the proj-
ect, package or even the file that is being modified. Performing code review on
more than a few thousand lines of code at one time is generally ineffective, so
it’s better to analyze only the code that is actively being modified, which will
typically be in the range of 50 to 1,000 lines of code.

Many static analysis tools assume the entire code base will be scanned, but this
is usually ineffective and costly. In contrast, the IBM Rational Software Analyzer
Developer Edition application offers a finely grained selection of the code to
be scanned. For example, it can analyze the entire workspace, a single project or
an individual class. This enables developers to quickly scan only the code they
are editing without waiting for unmodified code to be examined unnecessarily,
causing delays in the development process.

Beware of false positives

When describing static analysis results, it is often confusing to use the term “false
positive.” Developers sometimes claim they have false positive results, but they are
really saying they do not like the answer—and there is a big difference between
the two. A genuine false positive is one in which the static analysis tool reports
something that is simply untrue; for example, failure to close a stream that is
actually closed. This scenario is usually unique to deeper forms of analysis such as
data flow and control flow analysis. However, most forms of static analysis involve
detecting patterns in code or execution flow and rarely report a valid false positive.

Because scanning an entire

code base is usually costly and

ineffective, Rational Software

Analyzer Developer Edition lets

you scan a more finely grained

selection of code, such as a single

project or an individual class.

Best practices for software analysis.
Page 7

Highlights
With most static analysis tools, there is no convenient way to identify a genuine
false positive, and as a result, the same invalid results appear every time the
code is scanned. Rational Software Analyzer offers several ways around this
problem. First, developers can assess analysis results and use a one-click action
to ignore results, thereby avoiding any future distraction the false positive would
cause. Additionally, because Rational Software Analyzer offers a finely grained
selection of analysis rules, you can simply turn off rules that do not apply in
your situation (e.g., there is no need to pay attention to globalization results if
the code is targeted toward a single locale).

Don’t be a slave to the tool

It would be unwise to assume that any static analysis is going to find and fix
all of your coding problems. Static analyses are simply tools you can deploy to
improve overall code quality by identifying the parts of your code that require
attention. Developers should scan code as they are writing it and use full code
analysis on daily builds to help ensure ongoing code quality.

You also cannot assume that any static analysis tool has completely understood
your code, processes or practices, or that every result the tool produces is some-
thing that should concern your entire development team. Instead, you should use
static analysis tools as learning aids to help you avoid problem code in the future.

It’s important to manage your coding effort and not let analysis tools control
you. With Rational Software Analyzer, you can control what code is scanned,
what rules are enforced and what results are important to you.

If you think a result is inappropriate for your situation, simply ignore it or disable
the rules. Even though the results might be correct, not every rule will apply
to your code. For example, not all users will find enforcement of the Java™
Javadoc tool useful. If your code is not part of an application programming
interface (API), it is possible that Javadoc rules can be relaxed. Likewise, just
because the structural analysis rules detected a code tangle does not mean you
have a fundamental architectural problem. Depending on your design, it may
be completely logical to have circular references in your code.

Rational Software Analyzer helps

deal with false positives by enabling

you to ignore results or turn off rules

that don’t apply to your situation.

With Rational Software Analyzer,

you control what code to scan,

what rules to enforce and what

results to emphasize.

Best practices for software analysis.
Page 8

Highlights
The basic rule of thumb: If the results from a given rule do not apply or make
sense for your design, then simply disable the rule so Rational Software Analyzer
does not waste your time highlighting issues you already understand. Rational
Software Analyzer is not designed to replace human code reviews. Instead it is
designed to assist in improving manual code reviews by providing consistent
analysis of common code problems.

Be prepared for a lot of results

Automated static analysis involves a complex set of processes that is designed to
find common coding problems. To achieve the best experience from static analy-
sis, you should make sure you start with reasonably clean code so the tool has an
opportunity to find the real problems. We recommend that you manually review
your code and clean it up before using any static analysis tool. The cleaner your
code before the scan, the fewer initial results you will need to work through.

For example, if the Javadoc tool is important to your application, you should
do a manual check of the code to make sure it is in place and that the code
compiles and performs the intended tasks. Early in the software design, consider
using a modeling tool such as the IBM Rational Software Architect application
to help ensure that the code you are developing starts from a sound design. If
your design or coding is poor, Rational Software Analyzer is not going to make
perfect code. A relatively clean design and code base will give the analysis
tool more opportunity to find real problems rather than simply highlighting
problems associated with a poor design.

Of course, Rational Software Analyzer does not assume you write perfect code.
Indeed if you did, there would be no reason to run the tool. However, analyzing
code is time consuming, and any overly complex code is just going to add more
time to the analysis process. Your first code scans are likely to generate many
results, and to help you manage and understand these problems, Rational
Software Analyzer Developer Edition offers a simple user interface. You can
display results in a tree view organized by rule, or you can display them in table
format, which you can sort by the result severity, rule type, file name, and so forth.

To get the best results from static

analysis, you should start with

clean code that you have manually

reviewed and cleansed.

Best practices for software analysis.
Page 9

Highlights
Rational Software Analyzer Enterprise Edition generates and publishes neatly
formatted reports with the same result information, and you can view these
reports in virtually any browser or print them. The goal is to always provide a
simple path to view and manage a potentially large volume of information.

Make sure you address results

Rational Software Analyzer can find many problems consistently and rigorously.
However, it is important to address the problems as they are discovered because
one problem could be masking another. By ensuring that all reported results
that require correction are logged as defects in your defect tracking system, you
can reduce the number of results reported and markedly improve overall code
quality, resulting in fewer bugs to be reported in the future.

One of the easiest ways to ensure that problems are addressed as you go is to raise
their visibility. And Rational Software Analyzer Enterprise Edition can help you
achieve the necessary visibility. It expands the reach of code analysis by offering
centralized reporting and code scanning. You can also use the IBM Rational Build
Forge® adapter to connect to build and release processes.

It’s a good idea to make static analysis part of the daily build and to produce
ongoing reports that highlight analysis results. Remember, finding and fixing
problems early is the key to successful development. However, Rational Software
Analyzer is only half of the solution; keeping everyone on the development team
focused on fixing the reported results is the other.

To make sure one problem isn’t

masking another, you should

address problems as they

are discovered.

Best practices for software analysis.
Page 10

Highlights
Use static analysis as a tool, not as a weapon

Whenever a development team mandates using a tool such as Rational Software
Analyzer, there is a tendency to focus on its potential negative implications.
Developers often view these types of tools as a punch clock that’s used to moni-
tor their progress and penalize them when things go wrong. Managers who are
introducing static analysis tools into either the build process or the developer
workflow should present these tools in a way that encourages their use. It’s
important to emphasize the goal of improving overall software quality rather
than monitoring individual developer capabilities.

Developers can actually exploit static analysis tools to help improve their skills.
The tools provide a great deal of knowledge codified into a process for reporting
common software issues. Developers can use this to improve their knowledge
of more ideal coding techniques, which can directly benefit the entire team
because not only will developers start writing better code, but there also will be
more consistency among developers.

Rational Software Analyzer benefits both developers and managers. First, it
offers many rules that can teach best practices to developers and help ensure
that they maintain good coding practices. Second, it can be integrated into
central enterprise builds for long-term monitoring of quality trends in code
and to generate reports for project and development managers.

Pay attention to simple things

It is easy for developers to ignore simple issues in code that result in serious issues
after deployment. Rational Software Analyzer includes many rules for style and
coding convention enforcement that on the surface may seem trivial. However,
even these simple code review rules can find subtle errors. For example, a style
rule that enforces the placement of curly braces around all single line if state-
ments will generate a result for the following code:

if(someValue)

	 doSomething();

Static analysis tools should be used

to improve overall software quality

and to help improve developer

skills—rather than to monitor

individual performance.

Because even simple coding

issues can become serious

after deployment, it’s important

to pay attention to style rules

and coding conventions.

Best practices for software analysis.
Page 11

Highlights
This example seems simple, even though many developers would argue the
case for avoiding curly braces in this code. What if the code looked like this?

if(someValue)
	 doSomething();
	 doSomethingElse();

In this example, the developer’s intention is unclear because two lines are
indented. The code could be correct with the wrong indentation, or it could in
fact be incorrect if both indented lines were intended to be called within the
if block.

Some other commercial analysis tools offer only data flow analysis or focus only
on software metrics. Rational Software Analyzer offers these capabilities in
addition to more basic analysis, thereby avoiding the need to run several tools.
Although very simple rules typically focus on code compliance, even those rules
can find big problems in your code.

Start improving your code quality today

The benefits of automated static analysis are well established. We all know
that it can reduce effort, improve quality and save money. And if you use the
simple strategies presented in this article, you can effectively introduce static
analysis into your development environment and quickly benefit from it.

The fact is, software development is challenging, and as systems become larger
and more complex, the process of building quality code in a timely manner is
becoming more and more difficult. The old techniques of peer development and
manual code reviews are no longer sufficient, nor is it enough to focus on just one
aspect of code quality. To build class-leading software today, you need to lever-
age many forms of analysis including software metrics, code review, architectural
discovery and data flow analysis. Virtually the only tool available to handle these
requirements today with an ability to smoothly adopt new capabilities in the
future is Rational Software Analyzer.

As applications become more

complex and increasingly custo-

mer facing, developers need

to leverage the many forms of

analysis at their disposal.

For more information

To learn more about how IBM Rational Software Analyzer software can help
you identify and rectify code bugs early in the development lifecycle, contact
your IBM representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/swanalyzer

© Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
04-08
All Rights Reserved

Build Forge, IBM, the IBM logo and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product and service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates. The
information contained in this documentation is pro-
vided for informational purposes only. While efforts
were made to verify the completeness and accuracy
of the information contained in this documentation,
it is provided “as is” without warranty of any kind,
express or implied. In addition, this information is
based on IBM’s current product plans and strategy,
which are subject to change by IBM without notice.
IBM shall not be responsible for any damages aris-
ing out of the use of, or otherwise related to, this
documentation or any other documentation. Nothing
contained in this documentation is intended to, nor
shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licen-
sors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

RAW14019-USEN-00

http://www.ibm.com/software/awdtools/swanalyzer

