
A technical discussion of the IBM Software Development Platform
White paper

Realizing the IBM Software
Development Platform

By Alan W. Brown
IBM Distinguished Engineer

April 2004

Realizing the IBM Software Development Platform.
Page 2

Introduction

The IBM Software Development Platform is an evolving vision for software

development that recognizes the important role played by software in the fabric

of on demand organizations. It highlights a new perspective on the importance

of software development as a key business process for organizations that rely

on software to run their businesses, or that include a significant software

component in the goods they manufacture, distribute or sell.

However, the IBM Software Development Platform is much more than an

interesting concept. There is practical value in the IBM Software Development

Platform to today’s on demand enterprise. In this whitepaper, we focus on what

the IBM Software Development Platform means in the context of three key

customer goals:

• Enabling business integration and transformation

• Managing software development assets throughout the software life cycle

• Adopting an effective, open technology infrastructure

By focusing on these three goals, we introduce the solutions available from

IBM Software Group today, explore the technological underpinnings of the

IBM Software Development Platform and highlight the planned evolution

of those solutions as they leverage that technology.

The role of IT in business

Over the past decade, there has been growing recognition of the important

role of information technology (IT) in driving today’s Internet-based economy.

Worldwide spending on IT systems was estimated to be around US$2.4 trillion

in 2001.1 Software has been the linchpin for many organizations as new

markets were created, major new corporations grew at lightening speed, new

business alliances and supply chains were formed, and traditional markets

were transformed. Of course, the euphoria of the 1990s has now given way to

the business realities of the new millennium. This has been characterized as

a return to traditional business economics, a "back-to-basics" movement that

has reminded many organizations that success is built on high-quality products

that address high-priority customer needs and provide a measurable return

on investment (ROI).

Contents

2 Introduction

2 The role of IT in business

3 Software as a business process

6 What that means to IT-driven

businesses

11 The technical underpinnings of

the IBM Software Development

Platform

20 WebSphere programming model

21 A role-based solution portfolio

23 Summary

23 Further reading

Realizing the IBM Software Development Platform.
Page 3

The focus on business basics and economic realities has led a number of

people to reexamine the role that information systems play in business,

and the ROI of IT investments. Commenting in a recent InformationWeek
article,2 General Motors CIO Ralph Szygenda summarized the concerns

driving IT by saying:

… business-process improvement, competitive advantage, optimization, and

business success do matter and they aren't commodities. To facilitate these business

changes, IT can be considered a differentiator or a necessary evil. But today, it's

a must in a real-time corporation . . . I also agree on spending the minimum on IT

to reach desired business results. Precision investment on core infrastructure and

process-differentiation IT systems is called for in today's intensely cost-conscious

business versus the shotgun approach sometimes used in the past.

Szygenda’s comments highlight that IT investment is important, but also

that those investments must be targeted at the business processes that help to

differentiate an organization, drive business change and control costs. Hence,

successful management of business priorities requires that organizations take

a new perspective on the role that software plays in achieving the organization’s

business goals.

Software as a business process

Business transformation occurs by integrating and automating horizontal

business processes. Initial efforts at business transformation focused on

common major infrastructural concerns, such as enterprise resource planning

(ERP), supply chain management (SCM), human resource management (HRM)

and customer relationship management (CRM). Today, key elements of these

business processes can be purchased off-the-shelf, providing standard ways

to execute these functions, and reducing risk in their deployment, operation

and evolution.

Realizing the IBM Software Development Platform.
Page 4

However, there are many other business processes that are unique to each

business. Integrating and automating them cannot be achieved solely by

purchasing packaged applications. Customization is required in order to

capture business rules and strategies that embody key practices that differenti-

ate a company from its competitors. Examples of these processes for specific

industries may include:

• Insurance industry—underwriting, customer rating and claims processing.

• Financial services industry— trading and brokering services, portfolio management

and settlement actions.

• Travel and transportation industry— freight management, asset maintenance

and equipment utilization.

Because this integration and automation is unique to each business, it is also

the key to achieving strategic, competitive advantage. Successful organizations

not only automate business processes, they achieve integration across these

business processes, monitor them in execution and provide real-time feedback

to improve business processes in light of changes to their customers’ needs.

Figure 1. The role of IT in the model-driven enterprise.

Line of
business

(LOB)

Develop

Put in
production

Monitor

Aanalyze the
business

(LOB)

Financial
analyst

IT
department

• Model and simulate business processes

Model applications and data

Analyze the financials and prioritize the
areas that bring maximum business value

Identify and prepare existing assets or reuse

• Perform rapid integration or
application development, or both

• Run visual construction and
programmatic code generation

• Perform functional and load testing

• Generate XML code and manage
UML blueprints and automated
workflow

• Apply patterns to accelerate
development

• Manage testing,
requirements,
configuration and
project management

• Audit processes
and improvements

• Make iterative improvements

• Model the next as-is and
to-be process

• Document and specify as-is process
with metrics

• Specify and construct goals, objectives
and requirements

• Apply technology to improve the process

• Model the to-be process

Model business
process

Realizing the IBM Software Development Platform.
Page 5

Software is key to achieving business transformation. There are five major

actions that organizations take to automate and integrate their strategic

business processes:

• Build new applications

• Modernize existing applications

• Extend packages and existing applications

• Integrate new, existing and packaged applications

• Deploy new, existing and packaged applications

Not only is software development key to integrating and automating other

business processes, but it is a strategic business process in itself. As such, the

process of software development benefits from the same type of horizontal

integration we apply to SCM, CRM and HRM.

When we compare software development with other business processes,

we see that each is composed of activities that were once considered to be

separate and distinct, and supported by different IT systems. Over time,

business integration has evolved to the point where today, these activities

are recognized as components of a single, horizontally integrated business

process supported by a single integrated application: HRM, CRM, SCM and so

on (see Figure 2)..

Supply chain
management

Activities

Requirements
and analysis

Design and
construction Testing

Project and
change

management

Software
development

Human
resources

management

Business
process

Supporting
system

Software
Development

Platform

SCM

CRM

HRM

Figure 2. Software development: A strategic business process.

Customer
relationship

management

Inventory
management

Vendor
relations

Resource
planning

Customer
acquisition

Customer
support

Customer
retention

Sales
forecasting

Hiring Benefi ts
administration

Payroll
administration

Realizing the IBM Software Development Platform.
Page 6

Software development is at the beginning of this transformation, with

companies increasingly realizing the value of an integrated software develop-

ment platform in improving the efficiency of interrelated software development

activities. Viewing software as a business process is important because it

highlights three major concerns:

• Connecting business needs with IT solutions

• Enabling teams of practitioners

• End-to-end visibility, cost containment and risk management

With the introduction of IBM Rational® Suite in 1999, IBM was the

first to provide this integrated software development solution to the

business community.

What that means to IT-driven businesses

After this discussion the role and importance of a software development

platform, it is useful to briefly examine an example of how the IBM Software

Development Platform is used in practice. In this section, we provide an

example of the IBM Software Development Platform in use, drawn from a

real-world customer scenario.3

Example: Connecting business and IT

One of the primary challenges to be addressed in developing enterprise-scale

solutions is to connect the domain-specific requirements expressed by business

analysts with the technology-specific solutions designed by IT architects.

Typically, the connection between these two disparate worlds is very low

bandwidth—the two communities have very different skills, use different

modeling concepts and notations (if at all) and rarely understand the mapping

between those concepts. The IBM Software Development Platform is intended

to assist with this problem. In particular, the integration of process, assets

and deliverables is aimed at connecting these two different aspects to the

system in a precise, automated way.

Realizing the IBM Software Development Platform.
Page 7

Let us consider how we would approach the problem of redesigning an airline’s

flight planning system. The process begins by modeling the business process in

an intuitive, easy-to-use notation accessible to business analysts, as illustrated

in Figure 3.

Figure 3. An example of the business process model.

As shown in Figure 3, a business process model captures the key business

activities and workflows, in this case using the IBM WebSphere® Business

Integration Modeler product. This allows the current system of automated and

manual steps to be understood, and potential changes to the system to be

designed, simulated and costed before the organization commits to any

changes to the business process.

Realizing the IBM Software Development Platform.
Page 8

After it has been completed, decisions can be made about which pieces of the

new business process should be automated in the software. These can be auto-

matically transformed into an initial set of use cases for the proposed system.

in this example, the activities are automatically transformed into use cases

in IBM Rational Rose® XDE™ software. The mapping between business activi-

ties and use cases can initially be quite straightforward, and then the resulting

use cases can be elaborated to add further detail, as illustrated in Figure 4.

This realizes the mapping from the domain-specific concepts of the business

analyst into technology-specific concepts of the IT architect.

Figure 4. Use case model.

Flight
planner

Crew
scheduler

Users

Weather system

Plan crew
information

Weather forecast
monitoring

Develop
flight plan

Solution overview diagram
Business processes and functions

Back-end systems

At this point, an initial high-level architecture of a solution should be

proposed and refined. A number of patterns are available to guide the architect

in choosing an architecture. In this example, the IBM Patterns for e-Business

provide one set of architectural solutions that have proved to be useful in

practice. The architect selects one of these patterns that matches the particular

characteristics of his or her problem domain and binds the various variability

points in the pattern to previously defined model elements. The result, as

illustrated in Figure 5, provides the initial solution blueprint. In this example,

the transformation is realized by applying a predefined IBM e-business pattern

in the IBM Rational Rose XDE product.

Internet
PDA

Browser

Realizing the IBM Software Development Platform.
Page 9

Patterns such as the IBM Patterns for e-Business provide strategies for refining

the initial solution through the application of further patterns that transform

abstract model elements into more-concrete model elements. Eventually, this

results in the application of a set of deployment patterns that realize the map-

ping of the solution to a specific physical topology, as illustrated in Figure 6.

This completes the mapping into the underlying technologies of choice.

Figure 5. An architectural model.

Flight planner

Crew scheduler

PDA
Browser

Presentation
tier

Application
Database

Application
tier

Application
Data.

Synchronous Synchronous or
asynchronous

Develop
flight plan

Weather forecast
monitoring

Plan crew
information

Weather
systemsystem

Flight planner

Crew scheduler

User

BrowserPDA

Public key
infrastructure

Web server
redirector

Application
server

Develop
flight plan

Weather forecast
monitoring

Plan crew
information

Existing applications
and Data.

Directory

Figure 6. A deployment model.

Weather
systemsystem

Internet

Back-end
application DB

Back-end
application

Back-end
application Data.

Domain
name server

Realizing the IBM Software Development Platform.
Page 10

Further refinements would then take place to add details of the particular

platform products that had been chosen and the physical characteristics of

those products (for example, the particular application server, messaging

infrastructure and database management system).

Additionally, the behavior of the system must be realized by connecting to

existing services, developing new functionality, and so on. Here, traditional

Unified Modeling Language (UML) modeling approaches can be applied,

such as class modeling for describing the data being manipulated, behavioral

modeling to describe the business logic and workflow and user interface

modeling to define the user interactions. Here again, patterns are applied to

transform these models, with the final step being patterns expressed as code

templates that generate code from model elements based on a predefined set

of transformation rules.

An important result of this real-world example is that the client organization

was able to gain visibility in the process of connecting domain-specific

business needs into a technology-specific solution following a repeatable,

predictable process. The lessons of this example are now being applied in

a family of similar solutions in the transportation domain.

Summary: Driving business change with the

IBM Software Development Platform

To manage costs and improve predictability, investments in IT must be

closely related to the business goals of an organization. Unfortunately, too

often, the business drivers are expressed in ways that cannot easily be related

to the IT systems, and changes in IT systems are not related back to have an

impact on the business. Here, we highlighted an example of a business-driven

approach to IT that illustrates how business activities can very explicitly

provide the context for software development. This approach applies best

practice solutions to improve the predictability and reduce risk in software

development, implementing the business-driven life cycle.

Realizing the IBM Software Development Platform.
Page 11

The technical underpinnings of the IBM Software Development Platform

As the earlier example illustrated, there are tangible benefits that can be

realized today with the IBM Software Development Platform. The integrated

set of capabilities offered today supports a business-driven approach to

software development across the software life cycle. Many customers in a

range of industries are benefiting from this approach today.

IBM is committed to evolve the IBM Software Development Platform to offer

users a richer experience for business-driven solutions. In particular, IBM

investments are targeted at achieving greater openness for customization and

extension by customers and partners, enhanced integration for synchronization

of artifacts and assets, real-time feedback and monitoring of tasks and artifacts

through improved management and visualization, and coordination of teams

across the software life cycle.

As illustrated in Figure 7, the proposed next-generation IBM Software

Development Platform will be characterized by improvements in a number

of areas, particularly with regard to its role-based focus and its improved

integration across the software development life cycle.

Figure 7. Desktop tools integration direction.

Business
architect

Business process
and information

modeling

IT architect
Application logic,

data modeling and
pattern creation

Developer
Traditional

corporate Java™

2 Platform,
Enterprise Edition

(J2EE™), IBM DB2®

and Microsoft®
.NET technical

Tester
Functional and

load testing

Eclipse platform, EMF (UML, J2EE, Web services...) models
(Integration with IBM Team IBM Rational Team Unifying Platform™)

Team Unifying Platform
Requirements management, test management, change management (iTeam),

software confi guration management, IBM Rational Unifi ed Process®

Integrate with IBM WebSphere Portal, DB2, IBM Tivoli® and IBM Lotus® and IBM Lotus® ® Workplace® Workplace®

Realizing the IBM Software Development Platform.
Page 12

To achieve this, the IBM Software Development Platform will be based on a

sophisticated technical infrastructure that consists of five key elements:

• Eclipse

• The Eclipse Modeling Framework (EMF)

• The open Model-Driven Development (MDD) platform

• The WebSphere programming model

• A role-based solutions portfolio

Eclipse

Eclipse is an open source development project aimed at providing a highly

integrated tool framework. The main components of Eclipse include a generic

framework for tool integration, and a Java development environment built

using this framework. Additionally, many other projects extend the framework

and have built tools using the framework to support specific kinds of develop-

ment approaches and technologies.

At the heart of Eclipse is an extensive tool framework offering a set of core

capabilities that supports extension through a plug-in architecture. When

companies build solutions based on Eclipse, they are most often creating a set

of plug-ins that extends and customizes the Eclipse platform. Furthermore,

the architecture of Eclipse itself is a framework and set of tools that are both

composed of plug-ins (see Figure 8).

Figure 8. The Eclipse plug-in architecture.

Eclipse platform

Workbench

JFace

SWT

Workspace

Java platform run time

Help

Version
control
management
(VCM)

Java tooling

XDE

C++ tooling

COBOL tooling

Realizing the IBM Software Development Platform.
Page 13

In some respects, the Eclipse project and framework resemble efforts at

creating common tool integration infrastructures of the past. However,

Eclipse has a number of important differences that make it an excellent basis

for the IBM Software Development Platform:

• High demand for a common Java desktop. There are an estimated three million Java

developers worldwide. They require a configurable Java development tooling to

support their varied needs. The Eclipse project has been very successful in attracting

attention and support in the Java community, with over 18 million downloads of

Eclipse software. Hence, rather than creating technology in search of an audience,

the Eclipse platform is widely welcomed by the Java developer community.

• Flexible plug-in architecture. Great attention has been directed in Eclipse at

an extensible architecture based on plug-ins. This has proved very successful,

with hundreds of projects building Eclipse plug-ins. Many of these projects are

open-sourced; however, there ise also a growing number of commercial products

based on Eclipse.

• Use of open source. The Eclipse technology is based on a broad range of existing

open source technologies that are widely in use in the developer community,

and hence, both very familiar and open to scrutiny by the developer community.

Examples include Ant, JUnit, Xerces, and so on. This offers an immediate

familiarity to developers.

• Eclipse is an open standard. As well as using open source technologies, Eclipse

is also contributing to the open source community. The Eclipse software is made

available under the Common Public License (CPL). The work on Eclipse is

governed by a not-for-profit foundation consisting of members from many different

organizations. This encourages wide adoption, use and experimentation with

Eclipse by both commercial and academic communities.

• Completeness of functionality for tool integration. The Eclipse platform is not

simply a configurable data repository for tools, as was typical of many previous tool

integration efforts. The Eclipse platform includes sophisticated capabilities for other

key aspects of integration, most notably metadata management and user interface

(UI) design. For example, Eclipse includes a UI framework comprising the Standard

Widget Toolkit (SWT), and built on top of that the JFace services providing

standard ways to view and manipulate common UI elements. These are provided

within a workbench that defines the overall structure of an Eclipse integrated

software environment (IDE).

Realizing the IBM Software Development Platform.
Page 14

• Broad industry support. Many major software companies (both software suppliers

and users) are supporting Eclipse with membership in the Eclipse Foundation,

contributions of software and through use of Eclipse as a key part of their technology

infrastructures. More than 175 vendors have, or plan to have, products based on

Eclipse. This provides a maturity and breadth to the Eclipse technology that was

never achieved in previous efforts.

The role of Eclipse in the IBM Software Development Platform

IBM has played a significant role in Eclipse from its inception. IBM

recognized the need for a powerful, flexible tool integration infrastructure

for creating its next-generation software tooling platform. This focus on a

single core technology platform for tools has been a central tenet of the IBM

Software Group for the past five years, and significant progress has been made

in delivering commercial software based on Eclipse, including the IBM

WebSphere Studio family of products.

More recently, additional attention has been placed on the Eclipse infrastruc-

ture. With the recent additions of further tool offerings through the acquisition

of IBM CrossWorlds®, Holosofx® and Rational software, IBM Software Group

has extended its software tooling capabilities across a broader range of roles,

projects and domains. Many of the tools that were acquired already included

some level of interoperation with core IBM tooling (for example through

common data formats, or through import and export using standard inter-

change mechanisms). However, it was essential that these tools coalesced

around a single, clear technology platform that addresses the key customer

needs for integration, flexibility and extensibility. The Eclipse technology

plays that role in the IBM Software Development Platform, and has enabled

significant acceleration of IBM’s goal of a rich, highly integrated platform

for software development. In this regard, it is impossible to overstate the

importance of the Eclipse framework technology on the different teams

contributing to the IBM Software Development Platform and the broader

ecosystem that makes the IBM Software Development Platform viable to

such a broad constituency of users.

Realizing the IBM Software Development Platform.
Page 15

Figure 9. The key role of Eclipse in the IBM Software Development Platform.

Integration: Eclipse for deeper product integration

Analyst Architect Developer Tester

Requirements and analysis

Design and constructionDesign and constructionDesign and constructionDesign and constructionDesign and constructionDesign and construction

Software quality

Eclipse

• Role-based UIs
• Common models for integration across the life cycle
• Artifact sharing via interface to Team Unifying PlatformCu

st
om

er
ex

te
ns

io
ns

Third-party
ISV tools

Project
manager

Software configuration managementSoftware configuration managementSoftware configuration managementSoftware configuration managementSoftware configuration managementSoftware configuration managementSoftware configuration management

Process and project managementProcess and project managementProcess and project managementProcess and project managementProcess and project management

Team Unifying PlatformTeam Unifying PlatformTeam Unifying PlatformTeam Unifying PlatformTeam Unifying Platform

As illustrated in Figure 9, the Eclipse platform performs three

primary functions in the IBM Software Development Platform.

First, Eclipse provides the UI framework and set of services that

will be common across the IBM Software Development Platform.

This offers a rich client experience and a large measure of visual

consistency when moving between activities within the IBM

Software Development Platform. Second, sharing of information

across different activities is enhanced through the use of a set

of common models expressed in the EMF technology. Third, a

consistent set of team infrastructure capabilities is used within

the IBM Software Development Platform. These are integrated

with the Eclipse infrastructure as another plug-in, and hence,

are available to all other plug-ins within the IBM Software

Development Platform.

Realizing the IBM Software Development Platform.
Page 16

The Eclipse Modeling Framework

For integration among software tools to be meaningful, there needs to be

common agreements on many of the underlying artifacts and processes

that they share. These detailed shared semantics are represented using the

Ecl ipse Model ing Framework (EMF). EMF is a modeling framework for

Eclipse. EMF is a framework and code-generation facility that is typically used

when defining the data structures manipulated by an application. EMF takes

a model defined in UML, an XML (Extensible Markup Language) schema or

Java interface, and generates the corresponding implementations classes.

One of the key roles of EMF is to relate modeling concepts directly with their

implementation. This brings to Eclipse the benefits of modeling with a low

cost of entry for code-focused developers.

EMF is intended to unify the representation of the "data structures" defined

in the application so that it is irrelevant whether these structures are defined

in UML, as XML schema or as Java interfaces. For example, to create an

application to manipulate an XML message structure, an XML schema can

be defined. A UML class diagram for that schema can then be generated using

EMF. Additionally, a set of Java implementation classes for manipulating

XML can be generated. Similarly, starting with Java code describing the key

interfaces in the design for an application, the corresponding UML model and

XML message structure can be generated using EMF.

The models described in EMF are represented in an internal model called

Ecore. EMF is IBM’s realization of the Meta Object Facility (MOF). MOF is

a standard defined by the Object Management Group (OMG) for describing

metadata repositories. MOF defines a subset of UML for describing class

modeling concepts within an object repository. Hence, MOF is similar to

Ecore in its ability to specify classes with its structural and behavioral features,

inheritance, packages and reflection. Where they differ, however, is that

MOF has additional complexities for the life cycle, data structures, package

relationships and complex kinds of associations.

Realizing the IBM Software Development Platform.
Page 17

The open MDD Platform built on Eclipse

Having read a description of the key elements of Eclipse, you can now see how

important a role Eclipse plays in defining the next-generation IBM Software

Development Platform. The Eclipse platform provides an open, extensible

tools framework offering a rich client experience, a plug-in architecture for

ease of extensibility and a sophisticated modeling framework for deep levels

of semantics integration.

Then, to leverage this platform, the integration process involves the

following steps:

• Technology or tool-specific metamodels are defined using EMF. Where possible

these are based on industry-standard metamodels (for example, UML) and

extended where necessary.

• Much of the infrastructure for tool integration is generated from the EMF models.

As the tools and their integration evolve, the infrastructure is regenerated from

the models as necessary.

• Common metadata semantics are refined and shared (defined using UML, XSD,

XMI, Annotated Java, and so on).

• A common programmatic interface is used for all tool interaction (Java).

• A common metadata interchange approach is used across the tools, and for

external interaction with partner tools (XML).

• Simple implementation features are generated from the models (CRUD operations,

basic editing capabilities, and so on).

• Metamodels for J2EE, Web services and model-driven architectures are used

to drive internal transformations.

The resulting technical infrastructure of the IBM Software Development

Platform, as illustrated in Figure 10, consists of three primary components.

• At the heart of this infrastructure is a set of open source technologies provided

by the Eclipse project. This includes the Eclipse core, the various plug-ins and a

set of metamodels defined in the EMF.

• IBM value-add capabilities are built on top of this set of open source technologies.

These are leveraged across the IBM portfolio and they provide a range of reusable

services to IBM engineering teams.

Realizing the IBM Software Development Platform.
Page 18

• Underpinning all of these capabilities is the team platform. This consists of the core

IBM technologies for data sharing, artifact management, team interaction and

information aggregation.

Figure 10. Details of the IBM Software Development Platform technical infrastructure.

Two technology developments in particular illustrate the power and openness

of the IBM Software Development Platform based on this technical infrastruc-

ture: the UML2 metamodel and the Hyades testing framework.

UML2

The UML2 metamodel is a realization of major elements of the UML 2.0

specification in EMF. This will be the primary realization of UML 2.0

underlying all tools in the IBM Software Development Platform, and will

hence represent the core semantic elements underlying the IBM Software

Development Platform. It is used extensively in the various IBM tools,

and extended where necessary by each tool through the standard UML

extension mechanisms.

IBM MDD platform

Language tooling
(J2EE, Web services,

deployment)

Common service (reporting, and so on)

Eclipse core

Diagram
and

visualization

MDD core
(code generation,
pattern engine)

Content
(pattern engine)

CM, merge, traceability... GEF EMF JDT/CDT Team

J2EE, Web services, UML2 Models

Mode services (UML2 ext., other meta models, Code Gen APIs,...) Hyades

Team platform (WebSphere Portal, WebSphere Application Server, DB2, Lotus collaboration)

Op
en

 so
ur

ce

Realizing the IBM Software Development Platform.
Page 19

The UML2 metamodel is being developed by an open source project within

the Eclipse community. The objectives of this project are to provide a useable

implementation of the metamodel to support the development of modeling

tools, a common XML Metadata Interchange (XMI) schema to facilitate inter-

change of semantic models, test cases as a means of validating the specification,

and validation rules as a means of defining and enforcing levels of compliance.

The UML 2.0 specification is currently undergoing finalization. The goal is

to create a first full release of the UML2 metamodel to coincide with release

of the final specification, and the release of Eclipse 3 (Summer 2004).4

Hyades

The Hyades Testing Framework provides a single view of test assets and the

testing life cycle for all tools in the IBM Software Development Platform. It

facilitates integration of test activities throughout the life cycle, encouraging

test-first approaches to development, and enhancing traceability from test

artifacts to other artifacts in the life cycle. Hyades is designed to support a

full range of testing methodologies via an open source infrastructure layer

through which test and trace tools interoperate.

The Hyades Testing Framework is developed via an open source effort within

the Eclipse community. The goal of the Hyades project is to integrate test

and trace tools into the Eclipse environment to enable compatibility with

tools across the software life cycle. This integration will reduce the cost and

complexity of implementing effective automated software quality control

processes. For developers, Hyades will improve solutions for both functional

and performance-related testing by helping improve interoperability and

lowering the cost of tools acquisition and subsequent cost of ownership.

Hyades uses UML to describe all artifacts used during testing (for example,

traces and tests). To provide interoperability of tools and concepts, the test

artifacts take a form that is defined by the OMG-supported testing profile.

The artifacts are also compatible with MOF so that they can be stored and

retrieved through EMF.5

Realizing the IBM Software Development Platform.
Page 20

Summary of technical underpinnings

IBM is creating a sophisticated set of services as the basis for the IBM Software

Development Platform. Based on open standards, this set of services will

help provide consistency and uniformity across IBM’s tools, and provide

openness for partners and customers to access those tools and extend them

with value-added services.

IBM is also contributing metamodels and tooling frameworks into the open

source. The UML2 metamodel and the Hyades Testing Framework are two

examples illustrating the power of this approach. They both leverage open

source technologies in their creation and use, and contribute back into the

open source community to enhance tool integration across the IBM Software

Development Platform. Both the UML2 and Hyades technologies are freely

available to the software community in the Eclipse project.

WebSphere programming model

A key aspect of the IBM Software Development Platform is the use of a

programming model influenced strongly by a service oriented architecture

that is being implemented in the WebSphere platform, the IBM middleware

stack (DB2, Tivoli and Lotus), and in particular, within the IBM Software

Development Platform.

Key elements of the programming model common to IBM Software

Development Platform and the IBM middleware platform include:

• Service Data Objects (SDOs), now in the standardization path at the Java

Community Process. SDOs provide a simplified data access programming model

for various resources (data as well as EIS) and complement the core Web services

standards XML, Web Services Definition Language (WSDL), and Simple Object

Access Protocol (SOAP).

• BPEL4WS, which is a service orchestration and component scripting standard

that supports workflow and business process integration.

Realizing the IBM Software Development Platform.
Page 21

• JSF , which is a Java framework that speeds Web application development

for developers who are not expert J2EE developers.

• Customization of applications using external policies and rules. A series of emerging

standards are in development for policy definition and enforcement, including

Web Services Policy and OMG Business Semantics of Business Rules (BSBR).

A role-based solution portfolio

IBM leverages the IBM Software Development Platform to create a portfolio of

solutions targeted at key roles within the software development life cycle. For

example, in the area of design and construction, there are a number of specific

offerings available to practitioners. These solutions are illustrated in Figure 11.

Figure 11. An Example of the role-based solution portfolio.

High-
performance
development

Focus on architecture: Spectrum of solutions

The most comphrehensive set of design and construction solutions

Code
visualization

and visual
editing

Modeling and
round-trip

engineering
Legacy

integration

Rapid development
Direct Architected

Business
modeling and

model execution

WebSphere Studio
Application Developer

Rational Rose XDE
Rational Rose XDE Developer Plus

WebSphere Studio
Site Developer

WebSphere Business
Integration Modeler

WebSphere Studio
Enterprise Developer

Rational Rapid
 Developer

Supports spectrum
of development
requirements

• Development languages
• Operating environments
• Skill levels
• Modeling paradigms

Realizing the IBM Software Development Platform.
Page 22

In Figure 11, we see that design and construction offerings address a range

of practitioners concerns. At one extreme, we have code-focused practitioners

expecting highly productive, code-oriented tools that help them drive the

IBM run-time platforms. At the other extreme, we have business-focused

practitioners needing to express business concerns in the language familiar

to business-oriented communities.

In all of these areas we see an aggressive migration to the Eclipse-base

technology infrastructure described before. The first wave of tools leveraging

this infrastructure is already in commercial use, most notably the WebSphere

Studio products and the Rational Rose XDE products, illustrated in Figure 12.

Figure 12. Examples of released products leveraging the Eclipse platform.

Realizing the IBM Software Development Platform.
Page 23

Additional tools built on this platform are already in alpha and beta stages,

and are planned for release through 2004 and 2005.6 These tools capabilities

will expand the openness, completeness and integration of the IBM Software

Development Platform in the coming months

Summary

The role of software in the many businesses is now seen as central to their

ability to compete effectively and efficiently. Focusing attention on software

as a core business in those organizations will help to channel investments

into IT toward innovation in key business processes that differentiate the

organization from its competitors. The IBM Software Development Platform

plays an important role in helping organizations to create a set of services

capable of realizing this goal.

In this paper, we have described some of the ways that the IBM Software

Development Platform contributes to realizing that value. In particular,

we have illustrated how that platform can be realized today with current

technologies. Furthermore, we have highlighted the technical infrastructure

that forms the core of the IBM Software Development Platform. IBM is

aggressively investing in the future of these technologies, leveraging those

investments in the solutions delivered to customers.

Further reading

Gallardo, D. et al., Eclipse in Action: A Guide for the Java Developer, Eclipse in Action: A Guide for the Java Developer, Eclipse in Action: A Guide for the Java Developer
Manning Publications Company, 2003.

Budinsky, F. et al., The Eclipse Modeling Framework, Addison Wesley, 2003.

Booch, Grady, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison Wesley, 1998.

Brown, A.W. et al., Principles of CASE Tool Integration, Oxford University

Press, 1994.

Messerschmitt, D.G. and C. Szyperski, Software Ecosystem: Understanding
an Indispensable Technology and Industry, MIT Press, 2003.an Indispensable Technology and Industry, MIT Press, 2003.an Indispensable Technology and Industry

© Copyright IBM Corporation 2004

IBM Corporation
Software Group, Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
04-04
All Rights Reserved

CICS, CrossWorlds, DB2, e-business on demand,
the e-business logo, the e(logo)business on demand
lockup, Holosofx, IBM, the IBM logo, Lotus, Rational,
Rose, Team Unifying Platform, Tivoli, WebSphere
and XDE are trademarks of International Business
Machines Corporation in the United States, other
countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft is a trademark of Microsoft Corporation
in the United States, other countries, or both.

Other company, product and service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

All statements regarding IBM future direction or intent
are subject to change or withdrawal without notice and
represent goals and objectives only.

1 See the World Information and Technology Services
Alliance (WITSA) report, “Digital Planet 2002:
The Global Information Economy”, available at
www.witsa.org/dp2002execsumm.pdf

2 See Bob Evans, "Business Technology: IT is a must, no
matter how you view it", InformationWeek May 19, 2003, InformationWeek May 19, 2003, InformationWeek
www.informationweek.com/story/showArticle.jhtm?
articleID=10000185

3 This high-level example is drawn from a num-
ber of engagements by IBM in the Travel and
Transportation industry sector. Contact Ben Amaba
(baamaba@us.ibm.com) for further details.

4 For further details, see www.eclipse.org/uml2

5 For further details, see www.eclipse.org/hyades

6 All such features are subject to change, and are used
here purely for illustrative purposes.

