
A technical discussion of software modeling
June 2004

The Value of Modeling

Gary Cernosek
IBM Rational Software Design and Construction Products
IBM Software Group

Eric Naiburg
IBM Rational Desktop Products
IBM Software Group

The Value of Modeling
Page 1

The Value of Modeling
Page 2

Executive summary

This white paper discusses how modeling can positively affect software and

systems development. The intended audience includes both technical and non-

technical personnel associated with the software development process.

Modeling can be an effective way to manage the complexity of software

development. It enables communication, design and assessment of

requirements, architectures, software and systems. In spite of these virtues,

mainstream software development has yet to take advantage of modeling in

everyday practice.

This white paper examines how modeling provides not only visual but also

textual content, and why the combination is important. It also explains how to

model throughout the various phases of the software development life cycle and

what modeling types are appropriate for each phase. Although the focus will

be on modeling as a discipline in itself, the Unified Modeling Language (UML)

will be used as the common means for expressing the models.

Introduction

This white paper discusses the value of modeling in the context of software

development. The concepts presented here are not new—savvy software

professionals have practiced modeling for years. But in the mainstream

software development community, only a fraction of software developers

formally model their software. This white paper examines the basics of what

motivates the practice of modeling software. For those who are knowledgeable

of software modeling, those who know nothing about it or those who know of it

but have never embraced it, this white paper intends to explain the benefits and

values that this practice can offer.

What is modeling?

For many years, business analysts, engineers, scientists and other professionals

who build complex structures or systems have been creating models of what

they build. Sometimes the models are physical, such as scaled mock-ups of

airplanes, houses or automobiles. Sometimes the models are less tangible, as

seen in business financials models, market trading simulations and electrical

circuit diagrams. In all cases, a model serves as an abstraction—an approximate

representation of the real item that is being built.

Contents

1 Executive summary

1 Introduction

1 What is modeling?

2 Why model?

2 Why model software?

3 Why some developers choose not

to model software

4 When do I model?

7 How do I model?

8 What people are saying about the

value of modeling

9 Trends and the future

The Value of Modeling
Page 1

The Value of Modeling
Page 2

Modeling provides architects and

others with the ability to visualize

entire systems, assess different

options and communicate designs

more clearly before taking on the risks.

Why model?

Why should you model something before you build it? Perhaps you should not.

Simple things do not necessarily need a model preceding its construction—such

as a simple checkbook register, a currency conversion utility, a doghouse or

a simple macro in a word processor that opens up a set of routinely used files.

Such projects share all or most of the following characteristics:

• The problem domain is well known.

• The solution is relatively easy to construct.

• Very few people need to collaborate to build or use the solution (often only one).

• The solution requires minimal ongoing maintenance.

• The scope of future needs is unlikely to grow substantially.

But suppose none of these characteristics apply? Why do some professional

disciplines bother to create models? Why do they not just build the real thing

right away? The answer has to do with the complexity, the risk and the fact

that original practitioners are not always appropriate or even available for

completing the task.

It is neither technically wise nor economically practical to build certain kinds

of complex systems without first creating a design, a blueprint or another

abstract representation. While professional architects might build a doghouse

without a design diagram, they would never construct a 15-story office building

without first developing an array of architectural plans, diagrams and some

type of a mock-up for visualization.

Modeling provides architects and others with the ability to visualize entire

systems, assess different options and communicate designs more clearly before

taking on the risks—technical, financial or otherwise—of actual construction.

Why model software?
For years, the practice of software development was exempt from many of these

modeling issues. By its very nature, software can be easily created and easily

changed. Little capital equipment is required, and virtually no manufacturing

costs are incurred. These attributes cultivated a do-it-yourself culture—

imagine it, build it and change it as often as necessary. There is no “final”

system anyway, so why even try to conceive of one before writing code?

The Value of Modeling
Page 3

The Value of Modeling
Page 4

Today, software systems have become very complex. They must be integrated

with other systems to run the items used in everyday life. Automobiles, for

example, are now heavily equipped with computers and associated software

to control everything from the engine and cruise control to all kinds of new

onboard navigation and communication systems. Software also is heavily used to

automate business processes of all kinds—those that are seen and experienced by

customers and those that are in the back office.

Some software systems support important health-related or property-related

functions, making them necessarily complex to develop, test and maintain.

And even those systems that are not critical to human health or property can

be critical to businesses. In many organizations, software development is no

longer a cost-center overhead line item—it is an integral part of the company’s

strategic business processes. For those companies, software has become a key

discriminator in competing in the marketplace.

For these reasons and more, developers need a better understanding of what

they are building, and modeling offers an effective way to do that. At the same

time, modeling must not slow things down. Customers and business users still

expect software to be delivered on time and to perform as expected on demand.

To achieve this “fast and good” goal, IBM sees four imperatives for software

development: develop iteratively, focus on architecture, continuously ensure

quality and manage change and assets.

The same basic reasons why other complex, high-risk systems are modeled also

apply to software—to manage the complexity and to understand the design and

associated risks. More specifically, by modeling software, developers can:

• Create and communicate software designs before committing additional resources

• Trace the design back to the requirements, helping to ensure that they are building

the right system

• Practice iterative development, in which models and other higher levels of abstraction

facilitate quick and frequent changes

Why some developers choose not to model software

Despite the many reasons and virtues behind modeling, a great majority of

software developers still do not employ any form of abstraction higher than that

of source code. Why? As described earlier, sometimes the actual complexity

In many organizations, software

development is no longer a cost-center

overhead line item—it is an integral

part of the company’s strategic

business processes.

The Value of Modeling
Page 3

The Value of Modeling
Page 4

of the problem or solution does not warrant it. Again, if you are building a

doghouse, you do not need to hire an architect or contract a builder to produce

a set of design specifications. But in the world of software, systems often begin

simple and well-understood and then—through the natural evolution of a

successful implementation—become more and more complex. In other cases,

developers choose not to model because they simply do not perceive a need for

it until much too late.

Many will argue that the resistance to modeling software is more cultural than

anything else. Traditional programmers are very proficient at conventional

coding techniques. Even when unexpected complexity begins to encroach, most

developers are comfortable sticking to their integrated development environment

(IDE) and debugger and simply working more hours on the problem. Because

modeling requires additional training and tools, a corresponding investment in

time, money and effort is needed—not at the time of toil, but early in a project’s

development life cycle. The reason traditional developers are not more proactive

in this regard is that they believe modeling will slow them down. The next section

intends to help dispel this notion.

When do I model?

Modeling complex applications has several general benefits. Some specific

situations in which the modeling effort is worthwhile include:

• To better understand the business or engineering situation at hand (“as-is” model)

and to craft a better system (“to-be” model)

• To build and design a system architecture

• To create visualizations of code and other forms of implementation

Modeling is not an all-or-nothing proposition. Models can play a part in the

software development process in many ways. Figure 1 illustrates the spectrum

of ways to practice model-driven development.

Integrated development environments. In the loosest notion of modeling,

IDEs can be considered an entry point into the practice of model-driven

development. Modern IDEs offer several mechanisms that raise the level of

abstraction in creating and maintaining code. Tools such as language-sensitive

editors, wizards, form builders and other GUI controls are not “models” in the

more strict sense of the term. Nonetheless, they can raise the level of abstraction

The Value of Modeling
Page 5

The Value of Modeling
Page 6

above source code, make developers more productive, help create more reliable

code and enable a more effective maintenance process. All these attributes are

the essence of model-driven development.

�
��

��
��

��
�

�
��

��
��

��
�

�������������������������������

�����������������
�������������������

���

�����������������
�����������

������
�����������������������

����������
�����������������������������

������������������

Code visualization and visual editing. A step above the basic IDE functions

is the ability to visualize source code in graphical form. Here, a picture is worth

a thousand lines of code, in a sense. Developers have used graphical forms of

abstraction above their code for many years. Traditional flow charts are a common

method for depicting the algorithmic control flow of code. Structure charts, or

even simple block diagrams with arrows, are often used on whiteboards—using

boxes to represent functions and subprograms, arrows to indicate calling

dependencies and so on. For object-oriented software, boxes typically denote

classes and lines between boxes denote relationships between those classes.

Coupled closely with code visualization is visual editing, in which developers

edit code through the diagrams instead of through conventional IDE text

windows. Visual editing is well suited for changes that have systematic effects

on other pieces of code. For example, in an object-oriented system that has a

set of classes related in an inheritance hierarchy, certain features of the classes

(the field members, methods or functions) may need to be reorganized into

different classes (a process called refactoring) as the application evolves. Using

conventional code editors to enact such changes can be tedious and error-prone.

But an effective visual editor allows developers, for example, to drag and drop

a member function from one class to its base class and automatically adjust all

code that is affected by such a change.

Figure 1. A spectrum of times, places and

ways to model.

The Value of Modeling
Page 5

The Value of Modeling
Page 6

In one sense, code visualization and visual editing are simply alternative

methods for viewing and editing the code. Changes to the code are immediately

reflected in corresponding diagrams and vice versa. Although some may argue

that such depictions do not constitute a “model,” the essence of modeling is

abstraction and any visualization of code is indeed an abstraction—selectively

exposing certain information while suppressing details deemed unnecessary

or unwanted. Some practitioners prefer to use terms such as code model,

implementation model or platform-specific model (PSM) to qualify such

abstractions from other, higher-level forms of modeling that do not have such

direct relationships to the code.

Modeling and round-trip engineering. The next step on the modeling

spectrum represents the state of conventional model-driven development.

Here, visual models are created from a methodological process that begins

with requirements and delves into a high-level architectural design model.

Developers then create a detailed design model from which skeletal code is

generated to an IDE. The IDE is used to complete the detailed coding. Any

changes made to the code that affect the design model are synchronized back

into the model; any model changes are synchronized into the existing code.

Legacy integration. When developers are ready to integrate systems—whether

all legacy or some new systems—they must understand the systems in place,

know how the business intends for these systems to work together and prioritize

those integrations. Modeling legacy systems does not necessarily mean that the

entire system and all its components must be incorporated; however, developers

should understand the legacy systems’ architectures, how they work and how

they interface with others. Understanding what the system does and what other

software is dependent on it will help determine suitable steps moving forward.

Several methods can be used to model legacy systems. Developers can reverse-

engineer code into models to understand them, manually model them or use

some combination thereof.

Code visualization and visual editing

are simply alternative methods for

viewing and editing the code.

The Value of Modeling
Page 7

The Value of Modeling
Page 8

Rapid Application Development (RAD). The practice of RAD has been

around since the early 1980s. The premise is simply to provide highly

productive ways to generate and maintain code. RAD is accomplished through

easy-to-use, highly graphical features of an advanced IDE. RAD, distinct

from both code-centric and model-driven development, raises the level of

abstraction above the code, but does not use “models” per se.

Business modeling and model execution. Before the need to develop

software is even known, business and engineering analysts often find it useful

to create “as-is” models of how their systems work today. From that model, they

can analyze what works and what needs improvement. Special-purpose tools

can simulate these models along several key variables, such as time, cost and

resources. From the analysis, “to-be” models can be built to prescribe how

new, improved processes should work. Generally, new software development is

needed to implement the new processes, and the “to-be” models serve as key

drivers for the ensuing development.

For some application domains, the “to-be” models are specified to such rigor

that complete applications can be generated from the models. Modeling at this

level of abstraction offers the greatest potential for productivity and integration

between the business or engineering problem domains and the technology or

implementation domains.

How do I model?

The software industry has adopted the Unified Modeling Language as its

standard means for representing software models and related artifacts.

Software architects, designers and developers use UML for specifying,

visualizing, constructing and documenting all aspects of a software system.

Key leaders from IBM Rational led the original development of UML. Today,

UML is managed by the Object Management Group (OMG), which consists

of representatives throughout the world to help ensure that the specification

continues to meet the dynamic needs of the software community. Adopting a

standard notation such as UML is an important step in taking a model-driven

approach to software development.

UML is more than just a graphical notational standard—it is a modeling

language. As with all languages, UML defines syntax (both graphical and

textual, in this case) and semantics (the underlying meanings of the symbols

Adopting a standard notation such as

UML is an important step in taking a

model-driven approach to software

development.

The Value of Modeling
Page 7

The Value of Modeling
Page 8

and text). Having a true modeling language rather than just a standard notation

is essential for standardizing the use of UML as well as for helping to ensure

that automated tools can properly enforce the rules behind the symbols. UML—

a true modeling language—has helped it become the software industry’s most

recognized and widely applicable modeling standard.

What people are saying about the value of modeling

Like any technology, UML had early adopters that led the charge in discovering

its value. Here are just a few comments from IBM Rational® customers about

the value that modeling contributed to their businesses:

 “We are trying to reduce the overall cost of insurance to our members. One of the

ways to do that is to reuse information and reuse the assets that we build as we go

through our business modeling…Model-driven architecture is really at the core of

what we’re doing from a business modeling perspective. When we begin projects from

a software development perspective without a clear business model, without a clear

set of business objectives or business goals, we are finding that the customers don’t

get what they think they have asked for.”

— Sue Nelson, director of business modeling for Blue Cross and Blue Shield of Florida

 “I think visual modeling is just a key element in any developer’s toolbox. It enables

us to bring in specialized expertise, such as security analysis of a product. By having

a common modeling technique that everyone knows how to read, we can bring in

our company security expert and that person can very easily review the product and

point out any potential holes.”

— Nanette Brown, director of applied architecture and quality assurance at Pitney Bowes

 “Enterprise architecture presents its own very unique modeling challenges. You

are modeling at multiple levels. You are modeling with large groups of people and

different teams. And the models at each level tend to have to be customized for the

individual stakeholder types. [Modeling with UML] provided us with the flexibility

[to meet] our unique needs and demands at each level of the enterprise architecture.”

— Frank Armour, president of ArmourIT, LLC

Testimonials like these can show the reduced risks to others who are just

getting started with modeling and can ultimately help position modeling closer

to the mainstream of software development.

The Value of Modeling
Page 9

The Value of Modeling
Page 10

Trends and the future

Ask any software development professional, “Where is the software industry

heading?” and you will probably get a wide array of responses. But one trend

seems to be quite common:

 Software development continues to grow in complexity, and developers must work at

increasingly higher levels of abstraction to cope with this complexity.

Modeling software is and will continue to be a key way that developers work at

those higher levels. The following specific trends are noteworthy at this time.

Beyond visual modeling. UML has traditionally been associated with a

graphical means for depicting software artifacts. While this remains true,

there is a growing importance in modeling “under the hood.” Meta-modeling

is the discipline of having “models of models.” The most evident and practical

application of meta-modeling can be seen in UML Version 2, which forms the

basis for how automated tools share data and interoperate with one another.

This applies not only to modeling tools, but also to tools for requirements

management, compilers, testing, configuration management and other

aspects of the software development life cycle. All of these areas can become

better integrated as a result of a common underlying meta-model, such as that

afforded by UML 2 and its associated modeling standards.

Unifying software, data and business modeling. This white paper has

focused primarily on the value of modeling software. But data modeling and

business modeling have been in practice for even longer in some form. The

problem is that these types of modeling have traditionally involved entirely

different worlds of modeling languages and practitioner cultures. Now the

promise for unifying these three worlds is evident—not necessarily with a single

modeling language or tool, but through a combination of multiple, open

industry standards that are converging.

Modeling across the life cycle. As standards continue to evolve, modeling will

become applicable to an even broader range of activities across the software

development life cycle. Applications of modeling are already driving testing

and other aspects of quality assurance earlier in the life cycle. And as business

modeling becomes more standardized and integrated with data and software, a

model-driven business integration discipline will likely emerge.

As business modeling becomes more

standardized and integrated with data

and software, a model-driven business

integration discipline will likely emerge.

The Value of Modeling
Page 9

The Value of Modeling
Page 10

Domain-specific modeling languages. UML and other modeling languages

allow developers to focus on levels of abstraction above implementation details.

As shown earlier in Figure 1, modeling includes a wide spectrum of levels, even

when removed from actual code. Taken to the highest level of abstraction, a

business or domain model focuses not on software, but on the nature of the

problem under consideration. Here, the model should use terms and icons

familiar to the people and systems of that particular business or application field.

The industry is moving toward domain-specific languages—special-purpose

modeling languages dedicated to their respective area of use. More often,

however, general-purpose modeling languages—UML, in particular—are

extended in standard ways to meet domain-specific modeling needs through

innovations such as profiles. Both approaches are consistent with the value

of modeling in general: to provide abstractions for specifying problems and

solutions in a more productive and effective manner.

The business of software development. Many have called software development

a “team sport.” A companion statement would be that it is an “international team

sport.” With today’s technology, the software development has no geographical

boundaries. The business of software development will likely continue to be

distributed and global. Modeling and other higher forms of abstraction will be

crucial for helping the practitioner handle the associated complexity.

Model-Driven Architecture (MDA): The next step. MDA is an initiative led

by the Object Management Group. While still in its early-adopter stage, MDA

can be considered the next logical step in the evolution of modeling and model-

driven development technologies. MDA, based on UML and other related

standards, focuses on defining models at varying levels of abstraction and on

the transformations defined between these different levels. Automated tool

support is crucial to the evolution and successful application of MDA.

© Copyright IBM Corporation 2004

IBM U.S.A.

IBM Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America
June 2004
All Rights Reserved.

IBM, the IBM logo and Rational are trademarks of
International Business Machines Corporation in the
United States, other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

All statements regarding IBM future direction or
intent are subject to change or withdrawal without
notice and represent goals and objectives only. ALL
INFORMATION IS PROVIDED ON AN “AS-IS” BASIS,
WITHOUT ANY WARRANTY OF ANY KIND.

 The IBM home page on the Internet can be found at
ibm.com

 Printed in the (country of origin) on recycled paper
containing 10% recovered post-consumer fiber.

G507-1002-00

IBM Project information

Form Number: G000-000-000 Title: IBM Project Description

Announce date: 00/00/00 IBM Contact: IBM Contact Name/phone
number

Agency information: Name of agency

Job Number: 000000 Contact: Agency contact/phone number

File name: Name of the current page layout file

Based on: Name of the file this file is based on

Version: 2-00/00/00 Location: Location of job on agency
system

Station: Station identification Operator: Initials of opertor(s) rrr/rrr/qqq

Trim size: Width x height Output size: Width x height

Output device: Name and model Output style: Type of output (eg., RRED-
Neg-Film)

Line screen: 000 lpi Colors: List of all plates for output

Document fonts: Complete screen font name (eg. Helvetica Regular, Berthold
BQBodoni Light)

Graphic Data Chart

File Name: Page # File Type: Usage rights Photographer Stock House

eb_pos_clr.eps 1 IBM owned All

ibmpos.eps 3 IBM owned All

