
Exploiting Java with Enterprise Generation Language
March 2005

Exploiting Java with
Enterprise Generation Language

Gary Cernosek
Market Manager, Rational software
IBM Software Group

http://www.ibm.com/software/rational/

Exploiting Java with Enterprise Generation Language
Page 2

Abstract

The Java™ platform offers many attractive characteristics for building modern

software systems. Programmers already experienced with object-oriented

languages typically find Java relatively easy to learn and use. But developers

familiar with procedural programming, 4th-generation languages (4GLs), and

other traditional development technologies often find Java complex—so much

so that they resist opportunities to use it. They instead continue developing

with the programming technologies with which they are most comfortable.

Enterprise Generation Language (EGL) is specifically designed to help the

traditional developer leverage all the benefits of the Java platform, yet avoid

learning all of its details. EGL is a simplified high-level programming language

that lets you quickly write full-function applications based on Java and modern

Web technologies. Developers write their business logic in EGL source code,

and from there, the EGL tools generate Java or COBOL code, along with all the

runtime artifacts you need to deploy the application to the desired execution

platform.

EGL hides the details of the Java platform and associated middleware

programming mechanisms. This frees developers to focus on the business

problem rather than on the underlying implementation technologies.

Developers who have little or no experience with Java and Web technologies

can use EGL to create enterprise-class applications quickly and easily.

This paper first provides some background into EGL’s conceptual foundation.

It then describes EGL at a high level, along with the motivations for employing

such a language and its development environment. The paper goes on to

present more details of EGL as it pertains to building applications. Finally, it

provides some insight into the architecture behind an EGL-based application.

After reading this article, you should have a good understanding of what EGL

is, who would use it, and what value it brings to your users.

3 Conceptual foundation.

6 What is EGL?

7 Business value of EGL.

9 Who benefits from using EGL?

9 EGL and the IBM Rational Software

Development Platform.

11 Application Development

with EGL.

18 Conclusions.

19 Acknowledgements.

Contents

Exploiting Java with Enterprise Generation Language
Page 3

Conceptual foundation
Before delving into the details of EGL, let’s review the conceptual foundation

upon which the language was built. IBM centers the vision for its application

development tools on the themes of developer productivity and robust platform

support. The vision has always been to provide an environment that enables

developers to efficiently apply their business knowledge to creating applications

that can operate across various execution platforms.

As far back as 1981, when IBM introduced a tool called Cross System Product,

the core development tools product mission has been:

Over the years, IBM products have evolved to continuously improve IBM’s

support of this mission. We’ve added many enhancements that improve

development productivity In addition, we have incorporated new technologies

that leverage advancements in the latest runtime platform support. Each

improvement and advancement lets developers work on concerns farther away

from implementation details and closer to the problem under consideration.

This is the principle of abstraction at work.

Working at increasingly higher levels of abstraction helps achieve higher levels

of productivity. Abstraction is also key for allowing developers to write code

that can run on different target runtime platforms. The following list serves

as basic guiding principles for how abstraction has helped each new product

release further deliver our development tools mission:

• Language neutrality: Factors other than what developers prefer or are most

comfortable with often dictate which programming language they will use for an

application. But what if we had a common language that was designed to generate

applications into various other, more conventional languages? Such neutrality

provides the developer with a common means of expressing application logic, which

developers can later transform into the implementation language best suited for the

selected target platform (e.g., COBOL or Java).

• Platform neutrality: As with language neutrality, platform neutrality lets you

support the runtime platform best suited for the application. To effectively provide

To provide an integrated tools environment for the rapid development of scalable, robust,

mission-critical applications using traditional enterprise skills to create applications capable of

running under a variety of environments and topologies.

Exploiting Java with Enterprise Generation Language
Page 4

platform neutrality, you must support virtually any platform in the market—from the

largest mainframe running to the smallest workstation or desktop PC. Abstraction

provides a mechanism for developers to design and implement their applications with

a language that is not tied to a specific technology. In doing so, you can generate

the actual deployed application from this neutral development environment. As

technology changes, the tooling vendor can provide drivers that transform the neutral

application to the new target technology.

• Code generation: Code generation is the bridge between the abstract application

written in a neutral language and a concrete implementation written in a

conventional language. The generation technology also worries about how the

concrete application gets deployed to a particular target runtime platform. Tooling

vendors can provide generation drivers that automatically and transparently perform

these transformations. These generators provide a high percentage of code that is

associated with the application’s structural “plumbing.” Developers focus on business

rules, which typically comprise a smaller percentage of the entire application code

set. By separating business logic from infrastructural code, you can later cast the

entire application into a new implementation technology by simply using a new set of

code-generation drivers. This all results in a new realm of development productivity.

• Debugging – For a language like EGL to work in practice, the developer writing

code at the abstract language level must be able to debug at that level. The tools

environment should have a testing facility that includes a source-level debugger. The

debugger permits stepping through the abstract program code using real data before

the application is deployed into the target environment.

Exploiting Java with Enterprise Generation Language
Page 5

These guiding principles result in real, tangible benefits that will increase the

likelihood of every project’s success. The benefits include:

• Less code to write: Generating a large portion of the application code—particularly

the infrastructural plumbing required as part of any target architecture, such as

J2EE—shields developers from having to learn about or write special code for most of

the application. The developer can instead focus on writing only the business rules.

• Reduced training requirements: Due to the time and cost required to train legacy

developers, training proves to be a barrier for legacy developers moving into object-

oriented programming and other new technologies. Code generation reduces the cost

and time needed to become proficient in designing and implementing applications.

• Proxy to new technology: As technology evolves (a change that we know is

a constant), the training cost as well as the disruption caused by applying new

technologies to applications are both very high. The neutral language application,

combined with a code-generation driver for the new technology, makes this transition

much easier. In this way, you are keeping the application definition constant while

leveraging improvements in implementation technology.

• Improved quality and performance: Code generation offers the benefit that it pre-

tests a great portion of the generated code for quality and performance. The custom

code that developers need to write for a given application includes only the code that

defines the business rules. This results in fewer bugs and a net gain in quality and

performance.

EGL and Model Driven Architecture

Readers familiar with the Object Management Group (OMG) and its Model Driven Architecture (MDA)

initiative will notice parallels to EGL. MDA is a form of model-driven development based on the Unified

Modeling Language (UML) and other OMG standards. MDA calls for modeling the software lifecycle at

distinct levels of abstraction, coupled with transformations that map and manage the relationships

between those models.

MDA defines the notion of a Platform Independent Model (PIM) to which EGL matches quite nicely

(albeit as a textual “model”). MDA also defines a Platform Specific Model (PSM), which corresponds

to EGL-generated code (e.g., Java/J2EE or COBOL). The notion of MDA’s model transformations

is analogous to EGL’s code generation.

These comparisons suggest that EGL can offer traditional developers an opportunity to practice what

the MDA initiative is all about: separation of concerns, modularized reuse across the lifecycle,

managing complexity, and the ultimate in productivity.

Exploiting Java with Enterprise Generation Language
Page 6

What is EGL?

Any abstract programming language described in the previous section must

meet the following goals:

• Familiar to business-oriented developers

• Automatically manages lower-level programming details

• Transparently deploys to a set of potentially available execution platforms

IBM’s development tools had always included a high-level procedural language

generally classified as a 4th Generation Language (4GL). Informix (now part

of IBM) and many other companies also had their own 4GLs. All of these

languages enabled business-oriented enterprise developers to design and

implement applications without having to focus on the underlying technology.

IBM’s 4GL has evolved and has been renamed EGL, making it the modern

version of IBM’s 4th Generation Language legacy. Figure 1 below illustrates

how EGL has evolved across several generations of IBM product technologies.

Today’s EGL is the result of continuously enhancing the language with new

constructs, integrations with new technologies, such as JavaServer™ Faces

(JSF), and new code-generation drivers for the latest runtime platforms. EGL

continues to provide developers with an unparalleled abstraction layer that

enhances productivity and provides the conduit to multiple runtime platforms.

Figure 1. Evolution of EGL across its legacy

VAGen 4.0
10/1999

VAGen 3.0
12/1997

VG 2.0
7/1995

VG 1.0
6/1994

CSP v3.3
5/1990

WSED v5.0
3/2003

VAGen 4.5.3
2/2002

VAGen 3.1
6/1998

VAGen 2.2
6/1996

VG 1.1
12/1994

CSP v4.1
8/1992

CSP
1981

COBOL
GENERATION

TODAY

Exploiting Java with Enterprise Generation Language
Page 7

At the most basic level, EGL is a procedural programming language that

enterprise-level or business-oriented developers can use to implement

applications quickly. The word “generation” in the name implies two things:

• Business logic written in EGL will be transformed into lower-level code.

• Runtime artifacts will be created to help execute the generated application on a

desired target platform.

 EGL programs are written, tested, and debugged at the EGL source level,

not on the generated code level. This means that you can defer actual

code generation until you have satisfactorily tested the EGL application

functionality. This aspect differentiates EGL from many other types of code

generators. The EGL developer never changes the generated code—all changes

are made at the EGL level.

In a broader and more comprehensive definition, EGL defines not only a

language but a highly productive development environment. Integrated into

several IBM Rational products, EGL increases productivity not only with the

language abstraction and simplicity but also with the integration of other key

technologies, such as JSF and Eclipse.

Business value of EGL

EGL provides a simplified approach to application development based on these

principles:

• Familiar programming model: EGL provides an easy-to-learn programming

paradigm embodied in a traditional procedural programming syntax that is familiar

to business-oriented developers. The developer’s view is abstracted to a level

independent of the underlying implementation technology. It shields developers from

the complexities of various supported runtime environments. This results in reduced

training costs and a great improvement in productivity.

• Transparent code generation: Developers write their business logic in EGL source

code while the tools environment does the rest. These tools transform business logic

into Java or COBOL, and optimize the infrastructure code for the target runtime

platform. This results in less user-written code, which means faster turn-around time

and fewer bugs in the deployed application. As an example, when generating Java

code to run in the application server that will call a z/OS service, EGL automatically

generates the Java classes necessary to invoke the associated CICS/COBOL program

elements.

Exploiting Java with Enterprise Generation Language
Page 8

• Runtime platform robustness: Whenever a change to the target runtime platform

occurs, only a new code-generation driver for the new platformis needed. This

allows the application source code to remain constant while improvements in

implementation technology are leveraged. For example, if a new Web services

technology becomes available, you can reuse the same EGL source code—you only

need to simply regenerate the application using the new driver.

• End-to-end EGL-based debugging: Source-level debugging is provided at the

EGL level; therefore, you don’t need to generate code before debugging it! This

provides developers complete, end-to-end isolation from the complexity of the

underlying implementation technology. Developers debug at the EGL level even if

the application makes calls to other, non-EGL components. For example, if EGL calls

a COBOL DB2-stored procedure that will execute in the z/OS, the EGL debugger

works even when stepping into such components.

Many companies are under pressure to quickly roll out new systems based on

existing and emerging J2EE and Web Services standards; this is due to the

obvious benefits of these technologies. While many available developers lack

the technical skills needed in these areas, they are extremely valuable because

of their expertise in the business domain, their understanding of business

requirements, and their general experience in how to implement such systems.

However, simply re-training this workforce in Java, J2EE, and related Web

technologies is generally not practical or cost effective.

 As a development environment, EGL can address many of the training and

transition challenges. It allows you to leverage your current business-domain

knowledgeable staff to use the latest technologies with minimal costs and

effort. The result will allow your company to be more flexible and responsive to

new business opportunities.

Exploiting Java with Enterprise Generation Language
Page 9

Who benefits from using EGL?

Simply put, anyone who needs to focus more on solving business problems and

less on underlying implementation technologies will benefit from EGL. To

be more specific, the list below features the most common types of business-

oriented developers who benefit from using EGL:

• Informix 4GL Developers: IBM has a special utility that helps migrate a large

portion of your Informix 4GL-based applications to EGL, enabling you to begin

working in a modern, extensible software development environment.

• RPG Developers: EGL offers a procedural language that is familiar to RPG

developers. This will enable developers to move to a modern platform with minimal

training costs while reaping the benefits of the latest technologies.

• Visual Age Generator Developers: EGL represents the next generation and logical

migration path for these developers. The environment provides easy-to-use and highly

automated migration capabilities that bring your valued Visual Age applications into

a modern development environment—an environment in which the applications can

leverage a modern set of runtime technologies.

• Visual Basic Developers: EGL offers similar but more powerful development

efficiencies than Visual Basic, particularly in the areas of enterprise scalability and

multi-platform runtime support.

• COBOL/PLI Developers: By generating COBOL from EGL, COBOL developers

can move to a new platform that leverages the latest technologies. Moving to EGL

within the IBM Rational development tools will free developers who have been

trapped in legacy platforms and who can contribute greatly to new projects with their

business domain expertise.

• Database Developers: EGL simplifies having to learn the database manipulation

language and code the Create, Read, Update, Delete (CRUD) functionality by simply

doing it for you.

• Other 4GL Developers (Oracle Forms, Natural, CA 4GL tools, etc.): A community

of IBM Business Partners can help you transform your legacy 4GL applications to

the IBM Rational development platform with EGL.

EGL and the IBM Rational Software Development Platform

EGL is a key technology integrated into several IBM software development

tools. The products below are organized in the Design and Construction

discipline of the IBM Rational Software Development Platform. The choice

of which product to use for EGL development is based on the role and scope

Exploiting Java with Enterprise Generation Language
Page 10

of responsibilities that the user has within his or her project. Any of these

products supports the full range of EGL core capabilities. The notes below

explain some of the integrations and other facets of the lifecycle to consider in

determining which offering is best for your needs.

• IBM Rational Web Developer for WebSphere Software: A visually driven,

integrated development environment that simplifies and accelerates the development,

testing, and deployment of applications using Web, Web services, and service-oriented

architecture technologies.

 This is our entry-level product for EGL development. It supports EGL generation

to Java and pre-existing J2EE components. This integration supports Web page

development by integrating the EGL language with JSF controls. You can write

controller logic in the page handlers associated with every JSP page. Business logic

is written in EGL libraries and EGL programs.

• IBM Rational Application Developer for WebSphere Software:

A comprehensive, integrated development environment for rapidly designing,

developing, analyzing, testing, profiling, and deploying applications using Java,

J2EE, Web, Web services, service-oriented architecture, and portal technologies.

 Rational Application Developer includes all the capabilities found in Rational Web

Developer and adds support for J2EE, EJB, and portal/portlet development. This is

our product for users who need to integrate EGL development with J2EE and portal

development.

• IBM WebSphere Studio Application Developer Integration Edition:

An integrated development environment optimized for building composite

applications that deploy to IBM WebSphere Business Integration Server Foundation.

 This product includes all the capabilities of Rational Application Developer and is

best for integrating EGL development with business modeling using IBM WebSphere

Business Integration tools.

• IBM WebSphere Developer Studio Client for iSeries, Advanced Edition:

An integrated development environment for developing Java, Web, Web services,

and client/server applications specifically to run on the iSeries server. This product

makes it easy to create, test, deploy, and maintain modern business applications

requiring little Java, Web, or Web-service programming.

 This product includes all the capabilities of IBM WebSphere Studio Site Developer

v5.1, which is the predecessor to IBM Rational Web Developer v6 and includes EGL

support for Java generation.

• IBM WebSphere Studio Enterprise Developer: An integrated development

environment optimized for developing applications running on the z/OS. Developers

Exploiting Java with Enterprise Generation Language
Page 11

create J2EE and Web applications integrated with legacy transactional environments

(CICS and IBM IMS™) and their associated languages (COBOL and PL/I). The

product includes wizards that help developers write Web services against existing

legacy COBOL CICS programs using either Java connectors or SOAP for CICS.

 This product also includes all the capabilities of Rational Application Developer and

adds support for EGL generation to COBOL.

• IBM Rational Software Architect: A compressive design-and-construction tool

that leverages model-driven development with UML, enabling users to create well-

architected applications and services. This product also includes all the capabilities

of Rational Application Developer and offers UML modeling for users who want a

model-driven approach to their EGL development.

Application development with EGL

The following sections describe EGL elements that are important to developing

applications.

EGL language

The EGL language is a full-featured, procedural language that abstracts out

the details of a target technology. EGL has verbs like “get,” which simplify the

programming model by providing a consistent specification to various target

data sources. For example, a “get” statement can refer to records in a database

or messages in a message queue. Developers are not required to learn and code

technology-dependent database managers or message-oriented middleware

programming.

Writing your applications in EGL can also protect your development

investment. You can cast or generate the abstracted language into any other

language. Currently, EGL can generate Java or COBOL. As technology changes

and evolves, you protect your investment by having the ability to re-generate

into a new, improved target platform or to entirely new platforms—without the

need to modify your application.

EGL libraries

EGL has a construct called a library. An EGL library is simply a file that

includes EGL code. EGL libraries allow application developers to easily

decouple the business logic from other application code. EGL libraries provide

various entry points—one per function. You can call these functions from other

Exploiting Java with Enterprise Generation Language
Page 12

functions in other libraries or from EGL code in EGL programs or EGL page

handlers.

The use of EGL libraries is optional, but it is the best way to reuse components.

You can compare EGL libraries to COBOL subroutines or Java classes. Many

EGL libraries are provided directly in the products with built-in functions.

This is similar to Java classes provided by Java toolkits or frameworks. These

libraries greatly simplify and accelerate application development.

EGL programs and functions

Developers can also use EGL programs to code the business logic, but with a

single entry point. EGL programs are similar to COBOL programs. An EGL

program can be a main program, or can be called in the same way they are

called in COBOL. EGL programs usually call EGL functions. You can compare

an EGL function to a paragraph in the COBOL Procedure Division or to a Java

method.

EGL page handler

When coding EGL applications to be deployed for the Web, the preferred

method utilizes JSF. This framework has one or more Java Server Pages (JSP)

screens. In an EGL-based application, every page will have a “shadow” page

handler. The EGL page handler controls a user’s runtime interaction with a

Web page. Specifically, the page handler provides data and services to the page-

displaying JSP. The page handler itself includes variables and the following

kinds of logic:

• An OnPageLoad function, which is invoked the first time the JSP renders the

Web page

• A set of event handlers, each of which is invoked in response to a specific user action

(specifically, by the user clicking a button or link)

It is considered a best practice to not include any logic in the page handler.

The page handler implements the controller component of the MVC pattern

(discussed later). Although the handler might include lightweight data

validations, such as range checks, you should invoke other programs or

functions to perform complex business logic in order to follow MVC principles.

Exploiting Java with Enterprise Generation Language
Page 13

Database connectivity with EGL

Accessing data from databases can sometimes be challenging for developers

who primarily want to provide users with the information to make the best

business decisions.

 To access data, a developer needs to:

• Connect to a database

• Know and use the database schema

• Be proficient in SQL in order to get the appropriate data

• Provide the primitive functions to perform the basic CRUD database tasks

• Provide a test environment to efficiently test your application

EGL provides capabilities that make this task easy for that business-oriented

developer:

• Connectivity: Wizards will take these developers through a step-by-step process of

defining connectivity. You could locate the databases in remote locations, such as

z/OS systems.

• Database schema: If you are using an already existing database, EGL provides an

easy-to-use import capability that will make the schema structure available to your

application.

• SQL coding: EGL provides the generation of SQL statements based on your EGL

code. You can then use the generated SQL or alter it to suit your needs.

• Primitive functions: The EGL generation engine will automatically generate

the typical CRUD functions that are the workhorse functions for database-driven

applications.

• Test capabilities: The IBM development tools have a test environment that

eliminates the complexities associated with deploying and running your application

in complex target platforms.

File access with EGL

You can also use EGL programs and libraries to access other data storage

mechanisms, such as serial files, indexed and relative record files (VSAM), MQ

Series queues, and other system files. This provides a large amount of flexibility

in the types of data sources that you can use within an EGL application system.

Exploiting Java with Enterprise Generation Language
Page 14

Application architecture with EGL

To complete your application, you need to bring the above elements together in

the context of an application architecture. When you complete this integration,

you’ll have a concrete, deployable application. The architecture that EGL

generates is the J2EE architecture. Other important technologies you need

to understand include Java Server Faces (JSF) and the Model View Controller

(MVC) pattern.

JSF and EGL

JSF is a set of Java classes and JSP tag libraries that provide a framework for

developing Web applications. Its implementation in Rational Web Developer

and Rational Application Developer lets you drag and drop JSF controls

onto a page canvas instead of having to implement pages using hand-coding

techniques.

The integration of EGL and JSF produces an event-driven model in which a

page-specific handler manages each request. The page handler can act on

information submitted with the request, or it can forward the information to

another handler for processing. This event-driven model greatly simplifies the

building of Web applications. Control logic in the page handler is written in

EGL. Business logic in the libraries and programs is also written in EGL.

This means that you don’t need Java skills to write your application’s user

interface or business logic. The EGL code will generate all the Java code. The

JSF with EGL duo makes for an extremely high productivity page development

environment.

Model View Controller

The Model View Controller framework (referred to as MVC or “model 2”)

has many benefits and is often considered a best practice for developing Web

applications.

At runtime, the application server contains both the view and controller

components of an MVC Web application, while a third tier (which can be inside

or outside the application server) contains the model.

Model: You can find the business logic, which in most cases involves accessing

data stores, such as relational databases, in the EGL libraries

and programs.

Exploiting Java with Enterprise Generation Language
Page 15

View: The code responsible for the presentation layer consists of JSPs and Java

beans that store data for the JSPs to use. Page creation is greatly simplified

by using JSF controls available within the Rational Developer products’ page

editor.

Controller: The EGL page handlers contain the code that determines the

overall flow of events.

Figure 2. Relationships between elements
of an EGL application.

MODEL

EGL Libraries
EGL Programs

Database

JSP
Pages

EGL
PageHandler

Files

CONTROLLER VIEW

Call EGL
PageHandelers...

Render
HTML...Call EGL

Programs...
Invoke EGL
Library Functions...

Exploiting Java with Enterprise Generation Language
Page 16

The beauty of the EGL development environment is that business-oriented

application developers are not confronted with and do not need to understand

how to implement the MVC pattern. The generation engine does that for them.

Text user interface support

In some cases, you will require existing text-based user interfaces. EGL

provides an Eclipse-based WYSIWYG editor in order to construct text user

interfaces (TUI, a.k.a. “green screens”) for EGL. This allows EGL developers

to define EGL TUIs that deploy as 5250 or 3270 applications running in iSeries

or zSeries environments, respectively. You can also run these EGL TUIs on

distributed Java platforms as required.

Exploiting Java with Enterprise Generation Language
Page 17

Walking through an EGL application scenario

Figure 3 illustrates an application scenario using EGL. The following steps will

show the flow of information and tasks associated with a simple development

scenario in the context of an EGL application.

In this application:

 1. The user types an ID and clicks a button.

 2. Clicking the button creates a request that the JSF Servlet handles. The controller

servlet in turn invokes the appropriate server program. The ID then passes to the

server program.

 3. The server program validates the ID by reading a DB2 database using the ID

as the key to find. The server program can be a function within an EGL library or

an EGL program.

 4. If the server program finds the ID, it collects information (name, salary, and

commission) and returns the ID.

 5. The server sends the returned data to the Result JSP page, which displays it.

 6. If server program does not find the ID, it creates an error message and returns

the ID.

 7. The server sends the error message to the Error JSP page, which displays it.

Figure 3. Typical EGL application scenario.

JSF SERVLET
(Faces Servlet)

VIEW

SERVER

Request

APPLICATION SERVER

JSP

CONTROLLER

BROWSER

Response

Invoke

MODEL

EGL

EGL

EGL

Exploiting Java with Enterprise Generation Language
Page 18

To accomplish this simple application, the developer will create the three pages

using the drag-and-drop page editor shown in Figure 3. The controller logic

that calls the appropriate server function is written as an EGL page handler and

the server function that performs the validation is also written in EGL as an

EGL library function. The EGL development environment will generate Java

and pull all these pieces together into a J2EE-based application that you can

deploy and run.

You can find details of this example by visiting http://www-106.ibm.com/

developerworks/websphere/library/techarticles/0408_barosa/0408_barosa.

html.

You can see with this simple walkthrough example that the complexity behind

the new and evolving Web technologies is hidden from the developer by an

easy-to-use page editor and an easy-to-use programming language called EGL.

Conclusions

Our purpose here was to introduce Enterprise Generation Language: What it

is, why IBM has invested in its development, and how many types of traditional

software developers benefit from it. Java, J2EE, and all the modern Web

technologies are powerful, yet their complexities make them sometimes

challenging to learn. IBM is making advancements in all its product lines to

make Java and Web development easier. EGL is one important technology

enabling us to do just that.

We hope that this paper has you thinking about the possibilities of using EGL

to speed up the adoption of emerging Web technologies, improve productivity,

leverage legacy developers, and increase your likelihood of success in building

applications. If you feel that EGL can benefit you or your organization, contact

your local IBM sales team or visit our Web site at http://www-128.ibm.com/

developerworks/rational/products/egl/ to learn more about EGL.

Exploiting Java with Enterprise Generation Language
Page 19

Acknowledgements

This paper is a composition drawn from several documents produced for IBM

developerWorks/Rational by the following EGL subject matter experts: Raul

Ortega, Steve Choquette, Joe Pesot, Stephen Hancock, Cliff Meyers, Tim

Wilson, Larry England, Rusty Edmister, Stefano Sergi, Daphne Green, Todd

Britton, Mark Evans, Jon Sayles, and Reginaldo Barosa.

© Copyright 2005 IBM Corporation

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
04-05
All Rights Reserved

IBM, the IBM logo, Rational, and Rational Unified
Process are trademarks of International Business
Machines Corporation in the United States, other
countries or both.

Microsoft is a trademark or registered trademark
of Microsoft Corporation in the United States, other
countries or both.

Other company, product and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

All statements regarding IBM future direction or
intent are subject to change or withdrawal without
notice and represent goals and objectives only. ALL
INFORMATION IS PROVIDED ON AN “AS-IS” BASIS,
WITHOUT ANY WARRANTY OF ANY KIND.

The IBM home page on the Internet can be found at
ibm.com

G507-0995-00

http://www.ibm.com

