
What’s New in UML 2.0?
April 2005

What’s New in UML™ 2.0?

Bran Selic
IBM Distinguished Engineer, IBM Rational Software
Kanata, Ontario, Canada
bselic@ca.ibm.com

http://www.ibm.com/software/rational/

What’s New in UML 2.0?
Page 2

Introduction

The early part of the 1990s saw a greatly heightened interest in the object

paradigm and related technologies. New object-based programming languages,

such as SmallTalk, Eiffel, C++, and Java, were devised and adopted. These

were accompanied by a prodigious and confusing glut of object-oriented (OO)

software design methods and modeling notations. Thus, in his very thorough

overview of OO analysis and design methods (covering more than 800 pages),

Graham lists more than 50 “seminal” methods [Graham01]. Given that the

object paradigm consists of relatively few fundamental concepts, including

encapsulation, inheritance, and polymorphism, there was clearly heavy overlap

and conceptual alignment across these methods—much of which was obscured

by notational and other differences of no consequence. This caused great

confusion and needless market fragmentation, which, in turn, impeded the

adoption of the useful new paradigm. Software developers had to make difficult

and binding choices between mutually incompatible languages, tools, methods,

and vendors.

For this reason, when Rational Software proposed the Unified Modeling

Language™ (UML™) initiative, led by Grady Booch, Ivar Jacobson, and Jim

Rumbaugh, the reaction was immediate and positive. Rational did not intend

to propose anything new, but—through collaboration among top industry

thought leaders—consolidated the best features of the various OO approaches

into one vendor-independent modeling language and notation. Because of

that, UML quickly became the first de facto standard and, following its Object

Management Group adoption in 1996, a bona-fide industry standard [OMG03a]

[OMG04] [RJB05].

2 Introduction.

6 The rationale.

7. The highlights of UML 2.0.

8 Degree of precision.

11 New language architecture.

14 Large-scale system modeling

capabilities.

15 Complex structures.

16 Activities.

18 Interactions.

20 State machines.

21 Language specialization

capabilities.

24 General consolidation.

26 Summary.

27 For more information.

28 References.

30 Footnotes.

Contents

What’s New in UML 2.0?
Page 3

Since then, the majority of modeling tool vendors have adopted and supported

UML in their tools. The language has became an essential part of the computer

science and engineering curricula in universities throughout the world and in

various professional training programs; academic and other researchers use it

as a convenient lingua franca.

UML also helped raise general awareness about the value of modeling when

dealing with software complexity. Although this highly useful technique

is almost as old as software itself (with flowcharts and finite state machines

as early examples), most practitioners have generally been slow to accept it

as anything more than a minor power assist. It is fair to say that this is still

the dominant attitude, which is why so-called “model-driven” methods are

encountering great resistance in this community.

There are valid reasons for this situation1. The main one is that software models

can often be inaccurate in unpredictable ways. Clearly, any model’s practical

value is directly proportional to its accuracy. If we cannot trust the model to tell

us true things about the software system it represents, then the model is worse

than useless—it can foster false conclusions. The key to increasing a software

model’s value then is to narrow the gap between it and the system it is modeling.

Paradoxically, as we shall discuss later, this is easier to do in software than in

any other engineering discipline.

You can blame some of this model inaccuracy on the extremely detailed

and sensitive nature of current programming language technologies. Minor

lapses and barely detectable coding errors, such as misaligned pointers or

uninitialized variables, can have enormous consequences. For instance, a well-

documented case noted that one missing break in one case of a nesting switch

statement resulted in the loss of long-distance telephone service for a large part

1. In addition, some not-so-valid reasons, such as general human distrust of innovation.

What’s New in UML 2.0?
Page 4

of the United States, causing immense economic losses [Lee92].

If such seemingly minute detail can have such dire consequences, how can we

trust models to be accurate, since models, by definition, are supposed to hide

or remove detail?

The solution to this conundrum is to formally link a model to its corresponding

software implementation through one or more automated model

transformations. Perhaps the best and most successful exemplar of that can

be found in the concept of a compiler, which translates a high-level language

program into an equivalent machine language implementation. Like all

useful models, the model—in this case, a high-level language program—hides

irrelevant detail, such as the idiosyncrasies of the underlying computing

technology (internal word size, the number of accumulators and index

registers, the type of ALU, etc.).

(Note that few, if any, other engineering media can provide such a tight

coupling between a model and its corresponding engineering artifact.

This is because the modeled artifact is software rather than hardware.

A model of any kind of physical artifact (automobile, building, bridge, etc.)

inevitably involves an informal step of abstracting the physical characteristics

into a corresponding formal model, such as a mathematical or scale model.

Similarly, implementing an abstract model using physical materials involves

an informal transformation from the abstract into the concrete. The informal

nature of this step can lead to inaccuracies that, as noted above, can render

the models ineffective or even counterproductive. In software, however, this

transformation can, in principle, be performed formally in either direction.)

What’s New in UML 2.0?
Page 5

The potential behind this powerful combination of abstraction and automation

has led to the emergence of new modeling technologies and corresponding

development methods, collectively referred to as model-driven development

(MDD) [Brown04] [Booch04]. MDD’s defining feature is that models have

become primary artifacts of software design, shifting the focus away from the

corresponding program code. Models serve as blueprints from which programs

and related models are derived by various automated and semi-automated

processes. MDD’s degrees of automation today vary from simple skeleton code

derivation to complete automatic code generation (which is comparable to

traditional compilation). Clearly, the greater the levels of automation, the more

accurate the models and greater the MDD benefits become.

Model-driven methods are not particularly new and have been used in software

development with varying degrees of success. They are receiving much more

attention today because the supporting technologies have matured to the point

where you can automate much more than you could in the past. This is not just

in terms of efficiency but also in terms of scalability, and the ability of such

tools to be integrated with legacy tools and methods. The emergence of MDD

standards that result in the commoditization of corresponding tools plus the

obvious benefits to users reflect this maturation. One of these MDD standards

is the Unified Modeling Language version 2.0.

What’s New in UML 2.0?
Page 6

The rationale

UML 2.0 is the standard’s first major revision, following a series of lesser minor

revisions [OMG04] [RJB05]. So why was it necessary to revise UML?

The primary motivation came from the desire to better support MDD tools

and methods. In the past decade, several vendors had developed UML-based

tools that supported significantly greater levels of automation than traditional

CASE tools. To support these higher forms of automation, it was necessary

to define UML in much more precise terms than the original standard did2.

Unfortunately, these definitions varied from vendor to vendor, threatening

once again to lead to the kind of fragmentation that the original standard was

intended to eliminate. A new version of the standard could rectify this.

In addition, after close to a decade of practical UML experience and the

emergence of important new technologies during that time, such as Web-based

applications and service-oriented architectures, new modeling capabilities

were identified. While practically all of these could be represented by

appropriate combinations of existing UML concepts, there were clear benefits

to introducing some of these as first-class built-in language features.

Finally, during the same extensive period, much has been learned about

suitable ways of using, structuring, and defining modeling languages3.

For example, there are now emerging theories of meta-modeling and

of model transformations, which impose certain demands on how a modeling

language should be defined. The OMG needed to incorporate these and similar

developments into UML to ensure its utility and longevity.

2. In tune with the times, the original UML standard was primarily designed to serve as an auxiliary
tool for informal capture and communication of design intent.

3. However, we still lack a consolidated and systematic theory of modeling language design that is
comparable to the current theory of programming language design.

What’s New in UML 2.0?
Page 7

The highlights of UML 2.0

We can group the new developments in UML 2.0 into the following five major

categories, listed in order of significance:

1. A significantly increased degree of precision in the language’s definition.

This addresses the need to support the higher levels of automation that MDD

requires. Automation implies the elimination of model ambiguity and imprecision

(and, hence, from the modeling language) so that computer programs can transform

and manipulate models.

2. An improved language organization, characterized by a modularity that not only

makes the language more approachable to new users but that also facilitates

inter-working between tools.

3. Significant improvements in the ability to model large-scale software systems.

Some modern software applications represent integrations of existing stand-alone

applications into more complex systems of systems. This trend will likely continue,

resulting in ever-more complex systems. To support such trends, the OMG added

flexible new hierarchical capabilities to the language to support software modeling

at arbitrary levels of complexity.

4. Improved support for domain-specific specialization. Practical experience with UML

demonstrated the value of its so-called “extension” mechanisms.

The OMG consolidated and refined these to allow simpler and more precise

refinements of the base language.

5. Overall consolidation, rationalization, and clarifications of various modeling concepts

resulting in a simplified and more consistent language. This involved consolidating

and, in a few cases, removing redundant concepts, refining numerous definitions,

and adding textual clarifications and examples.

We now delve into each of these in more detail.

What’s New in UML 2.0?
Page 8

Degree of precision

Most early software modeling languages were defined informally with little

attention paid to precision. More often than not, modeling concepts were

explained using imprecise and informal natural language. This was deemed

sufficient at the time, since most modeling languages were used either for

documentation or for what Martin Fowler referred to as design “sketching”

[Fowler04]. The idea was to convey a design’s essential properties, leaving

developers to work out details during implementation.

However, this often led to confusion because different individuals could—

and often did—interpret models expressed in such languages quite differently.

Further, unless these individuals explicitly discussed model interpretation up

front, such differences could remain undetected, until later in the development

stage when costs to fix resulting problems are much greater.

To minimize ambiguity as well as in contrast to most other modeling

languages of the time, the first standardized UML definition was specified

using a metamodel. This is a model that defines the characteristics of each

UML modeling concept, and its relationships to other modeling concepts.

The metamodel was defined using an elementary subset of UML4 and was

supplemented by a set of formal constraints written in the Object Constraint

Language (OCL). This combination represented a formal specification

of UML’s abstract syntax5; that is, it defined the set of rules that you can use

to determine whether a given model is well formed. For example, such rules

would inform us not to connect two UML classes by a state machine transition.

4. This subset of UML, primarily comprising concepts defined in UML class diagrams is called the
Meta-Object Facility (MOF). This subset was chosen such that you could use it to define other
modeling languages.

5. It is called “abstract” because it is independent of the actual notation or “concrete syntax” (e.g.,
text, graphics) that is used to represent models.

What’s New in UML 2.0?
Page 9

However, the degree of precision used in this initial UML metamodel proved

insufficient to support the full potential behind MDD (see, for example, the

discussion in [Stevens02]). In particular, the specification of the semantics, or

meaning, of the UML modeling concepts remained inadequate for such MDD-

oriented activities as automatic code generation or formal verification.

Consequently, the degree of precision used in the definition of UML 2.0 was

increased significantly. This was achieved by the following means:

· A major refactoring of the metamodel infrastructure. UML 2.0’s “infrastructure”

comprises a set of low-level modeling concepts and patterns that are in most cases

too rudimentary or too abstract to use directly in modeling software applications.

However, their relative simplicity makes it easier to be precise about their semantics

and their corresponding well-formedness rules. These finer-grained concepts are

then combined in different ways to produce more complex user-level modeling

concepts. For instance, in UML 1, the notion of ownership (i.e., elements owning

other elements), the concept of namespaces (named collections of uniquely named

elements), and the concept of classifier (elements that you can categorize according

to their features), were all inextricably bound into one semantically complex notion.

(Note that this also meant that you could not use any one of these without implying

the other two.) In the UML 2.0 infrastructure, these concepts were separated

and their syntax and semantics defined separately.

· Extended and more precise semantics descriptions. The semantics definition

of the UML 1 modeling concepts was problematic in a number of ways.

The level of description was highly uneven, with some areas having extensive and

detailed descriptions (e.g., state machines), while others had little or no explanations.

The UML 2.0 specification puts more emphasis on the semantics and, in particular,

in the key area of basic behavioral dynamics (see below)6.

6. For a more detailed discussion of the semantics of UML 2.0, refer to [bs1].

What’s New in UML 2.0?
Page 10

· A clearly defined dynamic semantic framework. The UML 2.0 specification clarifies

some of the critical semantic gaps in the original version. This framework is depicted

in Figure 1 and is described in more detail in [Selic04].

In particular, this framework addresses explicitly the following issues:

· The structural semantics of links and instances at runtime

· The relationship between structure and behavior

· The semantic underpinnings or causality model shared by all current

high-level behavioral formalisms in UML (i.e., state machines, activities,

interactions) as well as potential future ones. This also ensures that objects

whose behaviors are expressed using different formalisms can interact with

each other.

Figure 1. The UML 2.0 semantics framework

Actions

Inter-Object Behavior Base Intra-Object Behavior Base

Activities State Machines Interactions

Structural Foundations

What’s New in UML 2.0?
Page 11

New language architecture

One immediate consequence of UML 2.0’s increased level of precision is that

the language definition has grown—even without accounting for the new

modeling capabilities. This is a concern, especially given that the industry

criticized the original UML for being too rich and, therefore, too cumbersome

to learn and use. However, such criticisms typically ignore the fact that UML

is intended to address some of today’s most complex software problems and

that such problems demand sufficiently powerful tools. (Successful

technologies, such as automobiles and electronics, have not become simpler

over time; it is a part of human nature to persistently demand more of our

machinery, which, ultimately, implies more sophisticated tools. No one would

even contemplate building a modern skyscraper using basic hand tools.)

To deal with the language-complexity problem, the OMG modularized UML 2.0

in a way that allows developers to selectively use language modules. Figure 2

shows the general form of this structure. It consists of a foundation comprising

shared concepts, such as classes and associations, on top of which is a collection

of vertical “sub-languages” or language units, each one suited to modeling

a specific form or aspect (see Table I). These vertical language units

are generally independent of each other; therefore, you can use them

independently. (Note that this was not the case in UML 1, where, for example,

the activities formalism was based entirely on the state machine formalism.)

Figure 2. The language architecture of UML 2.0

OCL

Structures State
Machines

Activities Interactions

Language Foundation

Level 3

Level 2

Level 2

What’s New in UML 2.0?
Page 12

Further, the vertical language units are hierarchically organized into as many

as three levels, with each successive level adding more modeling capabilities

to those available in the levels below. This provides an additional dimension

of modularity so that, even within a given language unit, you can only use

specific subsets.

This architecture means that users can learn and use only the UML subset that

suits them best. It is no more necessary to become familiar with the full extent

of UML in order to use it effectively than it is to learn all of English

to use it effectively. As you gain experience, you have the option of gradually

introducing more powerful modeling concepts as necessary.

Table 1. The language units of UML 2.0
Language Unit Purpose

Actions (Foundation) modeling of fine-grained actions

Activities Data and control flow behavior modeling

Classes (Foundation) modeling of basic structures

Components Complex structure modeling for component technologies

Deployments Deployment modeling

General Behaviors (Foundation) common behavioral semantic base and time modeling

Information Flows Abstract data flow modeling

Interactions Inter-object behavior modeling

Models Model organization

Profiles Language customization

State Machines Event-driven behavior modeling

Structures Complex structure modeling

Templates Pattern modeling

Use Cases Informal behavioral requirements modeling

What’s New in UML 2.0?
Page 13

As part of the same architectural reorganization, the definition and structure of

compliance has been significantly simplified in UML 2.0. In UML 1, the basic

units of compliance were defined by the metamodel packages, with literally

hundreds of possible combinations7. This meant that it was highly unlikely

to find two or more modeling tools that could interchange models, since each

would likely support a different package combination.

In UML 2.0, only three levels of compliance are defined and those correspond

to the hierarchical language unit levels already mentioned and depicted in

Figure 28. These are defined in such a way that models at level (n) are compliant

with models at any of the higher levels (n+1, etc.). That is, a tool compliant to a

given level can import models, without loss of information, from tools that were

compliant to any level equal to or below its own.

Four types of compliance are defined:

· Compliance to the abstract syntax

· Compliance to the concrete syntax (i.e., the UML notation)

· Compliance to both abstract and concrete syntax

· Compliance to both the abstract and concrete syntax and the diagram interchange

standard [OMG03b]

This means that there is a maximum of only 12 different compliance

combinations with clear dependency relationships between them (e.g., abstract

and concrete syntax compliance is compatible with only concrete syntax

compliance or only abstract syntax compliance). Consequently, in UML 2.0,

model interchange between compliant tools from multiple vendors becomes

more than just a theoretical possibility.

7. In fact, because UML 1 formalized the notion of “incomplete” compliance to a given compliance
point, the possible number of different capability combinations that allowed a vendor to claim
compliance was orders of magnitude greater.

8. Formally, UML 2 also defines a fourth level (Level 0), but this is an internal level intended
primarily for tool implementers.

What’s New in UML 2.0?
Page 14

Large-scale system modeling capabilities

Relatively few features were added to UML 2.0. This was intentional to avoid

the infamous “second system” effect [Brooks95], whereby a language gets

bloated by an excess of new features demanded by a highly diverse user

community. In fact, the majority of new modeling capabilities are, in essence,

simply extensions of existing features that allow you to use them to model

large-scale software systems. Moreover, these extensions were all achieved

using the same basic approach: recursive application of the same basic set

of concepts at different levels of abstraction. This means that you could

combine model elements of a given type into units that, in turn, you would use

as the building blocks for the next level of abstraction and so on;

this is analogous to the way that you could nest procedures in programming

languages within other procedures to any desired depth.

Specifically, the following modeling capabilities are extended in this way:

· Complex structures

· Activities

· Interactions

· State machines

The first three of these account for more than 90 percent of UML 2.0’s

new features.

What’s New in UML 2.0?
Page 15

Complex structures

The basis for this set of features comes from long-term experience with various

architectural description languages, such as UML-RT [SR98], Acme [GMW97],

and SDL (Systems Description Language) [ITU02]. These languages

are characterized by a relatively simple set of graph-like concepts:

basic structural nodes called “parts” that may have one or more ports and

which are interconnected via communication channels called connectors.

You may encapsulate these aggregates within higher-level units that include

their own ports; therefore, you can combine them with other higher-level units

into yet even-higher-level units, and so on.

Figure 3. Complex structure modeling concepts

a : A

d : D

b : B

Port

Connector

Part

What’s New in UML 2.0?
Page 16

To a degree, you could already find these concepts in the UML 1 definition

of collaborations, except that they were not applied recursively. To allow

recursion, you nest a collaboration structure within a class specification,

which means that all instances of that class will have an internal structure that

the class definition specifies. For example, in Figure 3, parts a:A and b:B are

nested within part c:C, which represents an instance of the composite structure

class C. Other instances of that class would have the same structural pattern,

including all the port, parts, and interconnections.

With these three simple concepts and their recursive application, you can

model arbitrarily complex software architectures.

Activities

You use activities in UML to model flows of various kinds: signal/or data flows

as well as algorithmic/procedural flows (see Figure 4). Needless to say, there

are numerous domains and applications that are most naturally rendered by

such flow-based descriptions. In particular, business-process modelers and also

systems engineers (who tend to view their systems primarily as flow-through

signal processors) embraced this formalism. Unfortunately, the UML 1 version

of activity modeling had several serious limitations in the types of flows that it

could represent. Many of these were due to the fact that activities were overlaid

on top of the basic state machine formalism and were, therefore, constrained

to the semantics of state machines.

9. In fact, the semantic foundations are represented by a variant of generalized colored Petri nets
[pet].

What’s New in UML 2.0?
Page 17

UML 2.0 replaced the state machine underpinning with a much more general

semantic base9 that eliminated all of these restrictions. In addition, inspired by

several industry-standard business-processing formalisms, including notably

BPEL4WS [BPEL03], a rich set of new and highly refined modeling features

were added to the basic formalism. These include the ability to represent

interrupted activity flows, sophisticated forms of concurrency control, and

diverse buffering schemes. The result is a rich modeling toolset that can

represent a wide variety of flow types.

Figure 4. Activity modeling—purchasing a product(s)

Order Product

[more products]

[no more products]

[not valid]

[valid]

Provide Receipt

Assemble Order

Ship Order

Get Billing Information

Validate Billing Information

Get Shipping Information

What’s New in UML 2.0?
Page 18

As with complex structures, you can recursively group activities and their

interconnection flows into higher-level activities with clearly defined inputs

and outputs. In turn, you can combine these with other activities to form more

complex activities, up to the highest system levels.

Interactions

Interactions in UML 1 were represented either as sequenced message

annotations on collaboration diagrams or as separate sequence diagrams.

Unfortunately, two fundamental capabilities were missing:

1. The ability to reuse sequences that may be repeated in the context of more extensive

(higher-level) sequences. For example, a sequence that validates a password may

appear in multiple contexts in a given application. Without the ability to package

such repeated sequences into separate units, you had to define them numerous times,

adding not only overhead but also complicating model maintenance (e.g., when you

needed to change the sequence).

2. The ability to adequately model various complex control flows that are common

in representing interactions of complex systems, including repetition of subsequences,

alternative execution paths; concurrent and order-independent execution;

and so forth.

Fortunately, the problem of specifying complex interactions was extensively

studied in the telecommunications domain, where a standard was evolved

based on many years of practical experience in defining communications

protocols [ITU04]. This formalism was used as a basis for representing

interactions in UML 2.0.

What’s New in UML 2.0?
Page 19

The key innovation was to introduce an interaction as a separately named

modeling unit. Such an interaction represents a sequence of inter-object

communications of arbitrary complexity. You may even parameterize it to allow

the specification of context-independent interaction patterns.

You can invoke these “packaged” interactions recursively from within higher-

level interactions analogous to macro invocations (Figure 5). As you might

expect, you can nest these to an arbitrary degree. Further, interactions can

serve as operands in complex control constructs, such as loops (for example,

you may have to repeat a given interaction several times) and alternatives.

UML 2.0 defines several convenient modeling constructs of this type,

providing a rich facility for modeling complex end-to-end behavior at any level

of decomposition.

Figure 5. An example of an interaction model—
ATMAccess. :Client

ref

ref

ref

ref

:ATM

CheckPIN(3)

1:Msg(t)

DispenseCash

[t=”cash”]

[t=”bill”]

PayBill

What’s New in UML 2.0?
Page 20

Figure 5 shows an example of an extended interaction model. In this case,

the interaction ATMAccess first “invokes” another lower-level transaction

called CheckPIN (the diagram does not show this interaction’s contents).

Note that the latter interaction has a parameter (in this case, say, the number

of times a user can enter an invalid PIN before the transaction is cancelled).

After that, the client sends an asynchronous message specifying what kind

of interaction it requires and, based on the value specified, it performs either

the DispenseCash interaction or the PayBill interaction.

You can represent interactions in UML 2.0 by sequence diagrams as shown

in the example above as well as by other diagram types, including

the collaboration-based form defined in UML 1. There is even a non-graphical

tabular representation.

State machines

The main new capability added to state machines in UML 2.0 is quite similar

to the previous cases. The basic idea is that you can make a composite state fully

modular with explicit points of transition entry and transition exit.

This, in turn, allows you to define the internal decomposition of that state

separately with a reusable state machine specification. That is, you can reuse

the same specification in multiple places within the state machine or some

other state machines. This simplifies the specification of shared behavior

patterns in different contexts.

One other notable state machine innovation in UML 2.0 is a clarification

of state machine inheritance between a class and its subclasses.

See Figure 6 for a simple state machine model.

What’s New in UML 2.0?
Page 21

Language specialization capabilities

Experience with UML 1 indicated that a very common way of applying UML

was to first define a UML profile for a particular problem or domain and then

to use that profile instead of or in addition to general UML. In essence, profiles

are a way of producing what are now commonly referred to as domain-specific

languages (DSLs).

An alternative to using UML profiles is to define a new custom modeling

language using the MOF standard and tools. The latter approach has the

obvious advantage of providing a clean slate, enabling a language definition

that is optimally suited to the problem at hand. At first glance, this may seem

the preferred approach to a DSL definition, but closer scrutiny reveals that

there can be serious drawbacks to it.

Figure6. State machine diagram for a simple
burglar alarm

Initializing Armed Sound Alarm

Turn Off

Turn Off

Turn OffIntrusionArmSetup

What’s New in UML 2.0?
Page 22

As noted in the introduction, too much diversity leads to the kind of

fragmentation problems that UML was designed to eliminate. In fact, this is one

of the primary reasons why it was accepted so widely and so rapidly.

Fortunately, the profile mechanism provides a convenient solution for many

practical cases. This is because there is typically a lot of commonality even

between diverse DSLs. For example, practically any object-oriented modeling

language will need to define the concepts of classes, attributes, associations,

interactions, etc. UML, which is a general-purpose modeling language,

provides just such a convenient and carefully defined collection of useful

concepts. This makes it a good starting point for a large number of possible

DSLs.

But there is more than just conceptual reuse at play here. Because a UML

profile, by definition, has to be compatible with standard UML10: (1) you can

use any tool that supports standard UML to manipulate models based on that

profile and (2) directly apply any knowledge of and experience with standard

UML. Therefore, you can mitigate many of the fragmentation problems

stemming from diversity or even avoid them altogether. This type of reasoning

led the international standards body responsible for the SDL language

[ITU02]—a DSL widely used in telecommunications—to redefine SDL as a UML

profile [ITU00] [ITU03].

This is not to say that any DSL can and should be realized as a UML profile;

there are indeed many cases where UML may lack the requisite foundational

concepts that you can cast into corresponding DSL concepts.

However, given UML’s generality, it may be more widely applicable than

many people might think.

10. A UML profile can only specialize in the standard UML concepts by defining constraints
on those concepts that gives them a unique domain-specific interpretation. For example, a
constraint may disallow multiple inheritance or it may require that a class must have a particular
type of attribute.

What’s New in UML 2.0?
Page 23

With these considerations in mind, the profiling mechanism in UML 2.0 has

been rationalized and its capabilities extended. The conceptual connection

between a stereotype and the UML concepts that it extends has been clarified.

In effect, a UML 2.0 stereotype is defined as if it was simply a subclass of an

existing UML metaclass, with associated attributes (representing tags for

tagged values), operations, and constraints. The mechanisms for writing such

constraints using a language such as OCL have been fully specified.

In addition to constraining individual modeling concepts, a UML 2.0 profile

can also explicitly hide UML concepts that make no sense or are unnecessary

in a given DSL. This allows you to define minimal DSL profiles.

Finally, you can also use the UML 2.0 profiling mechanism to viewa complex

UML model from multiple, different domain-specific perspectives—something

not generally possible with DSLs. That is, you can selectively “apply” or

“de-apply” any profile without affecting the underlying UML model in any

way. For example, a performance engineer may choose to apply a performance

modeling interpretation over a model, attaching various performance-related

measures to the model’s elements. An automated performance analysis tool

can then use these to determine a software design’s fundamental performance

properties. At the same time and independent of the performance modeler,

a reliability engineer might overlay a reliability-specific view on the same

model to determine its overall reliability characteristics.

What’s New in UML 2.0?
Page 24

General consolidation

This item covers several areas, including the removal of overlapping concepts

as well as numerous editorial modifications, such as adding clarifications

to confusing descriptions and the standardization of terminology and

specification formats.

The removal of overlapping concepts and the clarification of poorly defined

concepts were two other important requirements for UML 2.0. The three major

areas affected by this requirement were actions and activities, templates,

and component-based design concepts.

Actions were introduced in UML 1.5. The conceptual model of actions was

intentionally made general enough to accommodate both data-flow and

control-flow computing models. This resulted in a significant conceptual

similarity to the activities model. UML 2.0 exploits this similarity to provide

a common syntactic and semantic foundation for actions and activities.

From the user’s point of view, these are formalisms that occur at different

abstraction levels since they typically model phenomena at different

granularity levels. However, the shared conceptual base results in overall

simplification and greater clarity.

In UML 1, templates were defined very generally: you could make any UML

concept into a template. Unfortunately, this generality impeded its application

since it allowed for potentially meaningless template types and template

substitutions. UML 2.0’s template mechanism was restricted to cases that

were well understood: classifiers, operations, and packages. The first two were

modeled after template mechanisms found in popular programming languages.

What’s New in UML 2.0?
Page 25

In the area of component-based design, UML 1 had a confusing abundance

of concepts. You could use classes, components, or subsystems. These concepts

had a lot in common but were subtly different in non-obvious ways. There was

no clear delineation as to which to use in any given situation. Was a subsystem

just a “big” component? If so, how big did a component have to be before

it became a subsystem? Classes provided encapsulation and realized interfaces,

but so did components and subsystems.

In UML 2.0, all these concepts were aligned, so that components were simply

defined as a special case of the more general concept of a structured class, and,

similarly, subsystems were merely a special case of the component concept.

The qualitative differences between these were clearly identified so that you

could decide when to use which concept on the basis of objective criteria.

On the editorial side, the specification format was consolidated with the

semantics and notation specifications for the modeling concepts combined

for easier reference. Each metaclass specification was expanded with

information that explicitly identifies semantic variation points, notational

options, as well as its relationship to the UML 1 specification. Also,

the terminology was made consistent so that a given term (e.g., type, instance,

specification, occurrence) has the same general connotation in all contexts

in which it appears.

What’s New in UML 2.0?
Page 26

Summary

UML 2.0 was designed to allow a gradual introduction of model-driven

methods. You can still use it in the same informal way as UML 1 if you prefer

it as a “sketching” tool. Moreover, since the new modeling capabilities

are non-intrusive, , in most cases, you will not see any change in the language’s

look and feel.

However, the opportunity to move forward on the MDD scale is now available

and standardized. The increased precision is also available for you to use,

if desire, all the way through to completely automated code generation.

The standards body carefully reorganized the language structure to allow

a modular and graduated approach to adoption: users only need to learn t

he parts of the language that are of interest to them and can safely ignore

the rest. As your experience and knowledge increases, you can selectively add

new capabilities. Along with this reorganization, the definition of compliance

to facilitate interoperability between complementary tools as well as between

tools from different vendors is greatly simplified.

Only a small number of new features were added to avoid language bloat,

and practically all of those are designed along the same recursive principle

that enables modeling of large and complex systems. In particular, extensions

were added to more directly model software architectures, complex system

interactions, and flow-based models for applications, such as business process

modeling and systems engineering.

What’s New in UML 2.0?
Page 27

The language extension mechanisms were slightly restructured and simplified

for a more direct way of defining UML-based domain-specific languages.

These languages have the distinct advantage that they can directly take

advantage of UML tools and expertise, both of which are abundantly available.

The overall result is a second-generation modeling language that will help us

develop more sophisticated software systems faster and more reliably—but still

using the same type of intuition and expertise that is every software developer’s

bread and butter. In essence, it is still program design, only at a higher

level—comparable to the step that occurred in hardware design when discrete

components gave way to large-scale integration.

For more information

The UML diagrams in this whitepaper were created using IBM® Rational®

Software Architect. Rational Software Architect is a design-and-construction

tool for software architects and senior developers creating applications

for the Java platform or in C++ that leverages model-driven development

withthe UML and unifies all aspects of software application architecture.

For a free trial version and additional information, visit our Rational Software

Architect Webpage.

You can find information on the full portfolio of IBM Rational’s modeling tools

at our Design and Construction site.

http://www-306.ibm.com/software/rational/offerings/design.html

Learn more about Model-Driven Architecture® at our MDA® site.

http://www-306.ibm.com/software/rational/mda/

To find information on the UML, visit our UML Resource Center.

http://www-306.ibm.com/software/rational/uml/

For additional information visit the IBM Rational homepage.

http://www-306.ibm.com/software/rational/

What’s New in UML 2.0?
Page 28

References

BPEL03] BEA, et al., Business Process Execution Language for Web Services (Version
1.1), 5 May 2003, (ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf).

[Brooks95] Brooks Jr., F., The Mythical Man-Month (1995 edition), Addison-Wesley, 1995.

[Brown04] Brown, A., “An Introduction to Model-Driven Architecture,” IBM Rational
developerWorks (http://www-106.ibm.com/developerworks/rational/library/3100.html), 2004.

[Fowler04] Fowler, M., UML Distilled (3rd edition), Addison-Wesley, 2004.

[GMW97] Garlan, D., Monroe, R., and Wile, D., “Acme: An Architecture Description
Interchange Language,” in Proceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research, Association for Computing Machinery (ACM), 1997.

[Graham01] Graham, I., Object-Oriented Methods: Principles and Practice (3rd edition),
Addison-Wesley, 2001.

[ITU00] International Telecommunications Union, ITU Recommendation Z.109: SDL
Combined with UML, ITU-T, 2000.

[ITU02] International Telecommunications Union, ITU Recommendation Z.100:
Specification and Description Language (SDL), (08/02), ITU-T, 2002.

[ITU04] International Telecommunications Union, ITU Recommendation Z.120:
Message Sequence Chart (MSC), (04/04), ITU-T, 2004.

[ITU05] International Telecommunications Union, “Study Group 17: Question 13/17—
System Design Languages Framework and Unified Modeling Language,” ITU-T Study Group 17,
(http://www.itu.int/ITU-T/studygroups/com17/sg17-q13.html), 2003.

[Lee92] Lee, L. The Day the Phones Stopped Ringing, Plume Publishing, 1992.

[Booch04] Booch, G., et al., “An MDA Manifesto,” with Frankel, D., and Parodi, J. (eds.),
The MDA Journal, Meghan-Kiffer Press, 2004.

[OMG03a] Object Management Group, Unified Modeling Language (UML), Version 1.5,
OMG document formal/03-03-01 (http://www.omg.org/cgi-bin/doc?formal/03-03-01), 2003.

[OMG03b] Object Management Group, UML 2.0 Diagram Interchange, Final Adopted
Specification, OMG document ptc/03-09-01 (http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-
01.pdf), 2004.

[OMG04] Object Management Group, UML 2.0 Superstructure, Available Specification,
OMG document ptc/04-10-02 (http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-02.zip), 2004.

[RJB05] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language
Reference Manual (2nd edition), Addison-Wesley, 2005.

What’s New in UML 2.0?
Page 29

[Stevens02] Stevens, P., “On the Interpretation of Binary Associations in the Unified
Modeling Language,” Journal of Software and Systems Modeling, vol.1, no.1, Springer-Verlag,
September 2002.

[Selic04] Selic, B., “On the Semantic Foundations of Standard UML 2.0,” with Bernardo,
M., and Corradini, F. (eds.), Formal Methods for the Design of Real-Time Systems, Lecture Notes
in Computer Science vol. 3185, Springer-Verlag, 2004.

[SR98] Selic, B. and Rumbaugh, J. “Using UML for Modeling Complex Real-Time
Systems,” unpublished whitepaper (http://www.rational.com/media/whitepapers/umlrt.pdf),
Apr. 4, 1998.

What’s New in UML 2.0?
Page 30

(Footnotes)

1 In addition, some not-so-valid reasons, such as general human distrust of innovation.

2 In tune with the times, the original UML standard was primarily designed to serve as an auxiliary
tool for informal capture and communication of design intent.

3 However, we still lack a consolidated and systematic theory of modeling language design that is
comparable to the current theory of programming language design.

4 This subset of UML, primarily comprising concepts defined in UML class diagrams is called the
Meta-Object Facility (MOF). This subset was chosen such that you could use it to define other
modeling languages.

5 It is called “abstract” because it is independent of the actual notation or “concrete syntax” (e.g.,
text, graphics) that is used to represent models.

6 For a more detailed discussion of the semantics of UML 2.0, refer to [bs1].

7 In fact, because UML 1 formalized the notion of “incomplete” compliance to a given compliance
point, the possible number of different capability combinations that allowed a vendor to claim
compliance was orders of magnitude greater.

8 Formally, UML 2 also defines a fourth level (Level 0), but this is an internal level intended primarily
for tool implementers.

9 In fact, the semantic foundations are represented by a variant of generalized colored Petri nets
[pet].

10 A UML profile can only specialize in the standard UML concepts by defining constraints
on those concepts that gives them a unique domain-specific interpretation. For example, a
constraint may disallow multiple inheritance or it may require that a class must have a particular
type of attribute.

What’s New in UML 2.0?
Page 31

© Copyright 2005 IBM Corporation

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
05-05
All Rights Reserved

IBM, the IBM logo and Rational are trademarks
of International Business Machines Corporation
in the United States, other countries or both.

Microsoft is a trademark or registered trademark
of Microsoft Corporation in the United States, other
countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

All statements regarding IBM future direction or
intent are subject to change or withdrawal without
notice and represent goals and objectives only. ALL
INFORMATION IS PROVIDED ON AN “AS-IS” BASIS,
WITHOUT ANY WARRANTY OF ANY KIND.

The IBM home page on the Internet can be found at
ibm.com

G507-0992-00

http://www.ibm.com

