
Online security management
White paper
December 2007

A layered approach to delivering
security-rich Web applications.

Contents

2	 The	Web	application		

security	challenge

3	 Understanding	the	Web	

application	lifecycle

4	 Security	from	the	eagle’s	view

5	 Security	at	the	single	

transaction	layer

8	 Security	at	the	session	layer

11	 Security	at	the	application	layer

14	 Securing	the	Web	appli-	

cation	environment

15	 Securing	third-party	tools

17	 Summary	guidelines	for	building	

security-rich	Web	applications

The Web application security challenge

As businesses grow increasingly dependent upon Web applications to provide
services to customers, employees and partners, these complex applications become
more difficult to secure. As their code typically resides on a combination of Web
servers, application servers, databases and back-end systems, potential breaches
lurk in every layer.

A layered approach to delivering security-rich Web applications.
Page 2

Iterations

Phases
Inception Elaboration Construction Transition

Initial E1 T2T1CnC2C1E2
Major

milestones
Product
release

Initial operational
capability

Lifecycle
architecture

Lifecycle
objective

Business modeling

Requirements

Analysis and design

Implementation

Test

Deployment

Configuration and
change management

Project management

Environment

Disciplines

Phases, disciplines and milestones in the IBM Rational Unified Process.

A layered approach to delivering security-rich Web applications.
Page �

Although traditional security solutions protect Internet infrastructure layers,
they do not guard against HTTP and HTML attacks. Many organizations that
conduct security testing still deploy applications that allow attackers to manipulate
their logic and wreak havoc on their business. To mitigate this risk, development
and delivery teams must address Web application security throughout the life-
cycle, addressing the many layers detailed in this paper.

Understanding the Web application lifecycle

This paper refers to lifecycle phases in the IBM Rational® Unified Process, or IBM RUP®,
a widely used iterative process framework based on industry best practices (see figure).
Below is a brief description of activities within each phase, which may require two or
more iterations to complete.

Inception: Establish a business case, scope and operational vision, and create an initial use-case
model (of how users will interact with the system), project plan, risk assessment and project
description, including core requirements, security requirements (including clarification of security
compliance and policies), constraints, features and prototype candidate architectures.

Elaboration: Refine the vision, baseline the architecture by addressing architecturally
significant scenarios, and detail the use-case model. Create and test one or more prototypes
to mitigate technical risks.

Construction: Develop detailed designs for specific components and their interactions with other
applications, continuously tracking against original requirements. Generate code and test com-
ponents for performance, reliability and security, continuously tracking and resolving issues.
Integrate the tested components into a first release.

Transition: Deploy the application, train users and conduct beta testing to verify security and
performance and to validate the application against requirements. Continuously monitor for
performance, reliability and security as the application undergoes changes.

When marketplace pressures motivate organizations to push Web applications through these
phases without adequate security testing, serious vulnerabilities can place the business at risk.

A layered approach to delivering security-rich Web applications.
Page �

Software and systems development and delivery teams need to think defensively.
Instead of focusing exclusively on making things easy for users, assume that some
users who visit your Web site will try to manipulate your applications. One defen-
sive approach is to test often, using automated testing and security tools like those
in the IBM Rational Software Delivery Platform, to help ensure coverage and
detect issues that can slip through the cracks with manual testing. In addition,
IBM Rational security experts suggest a set of guidelines for building security into
every layer of a Web application, which is further discussed in this paper.

Security from the eagle’s view

First, a view from the top. Here is one rule to guide your thinking about Web
application security overall: Never trust data that comes from a user, and never
make assumptions about the limits of users’ technologies. Assume that anything
a user can theoretically manipulate will be manipulated in reality by one or
more users. Moreover, just because a user is supposedly employing a specific tech-
nology, do not assume that it will constrain his or her actions. For example, even
if a browser does not show hidden fields in a page’s HTML code, assume that some
users will still be able to find and manipulate those fields before sending pages
back to your server.

A layered approach to delivering security-rich Web applications.
Page �

Security at the single transaction layer

Single transactions are the basic building blocks of a Web application. Providing
security measures for these transactions gives developers a safer way to create
more complex entities. This section explains how to do this.

Standardize encoding

The first step in providing security for transaction processing is encoding: putting
each transaction into a standard format that leaves no room for ambiguity. You
need a single encoding scheme, with a single representation, for each request—
preferably one that is common to all requests within the same application—to
apply standardized security measures.

Protect parameter values

Hackers often change the value of parameters that a Web application sends to
the server, so check all input for the maximum number of characters. Setting
limits on an HTML page or using a scripting language to verify input by the
client are not reliable security measures. Hackers can remove client-side tests by
changing the page on their browsers or creating requests outside the browser.
Even when dealing with constrained input from pull-down menus or hidden
fields, it is not safe to rely on assumptions about length. Insert validation checks
for parameters after the standardized encoding function has completed to avoid
value changes that might result from the encoding.

A layered approach to delivering security-rich Web applications.
Page �

Filter meta-characters such as <, >, ” and & from your parameters, as hackers
use them to encode attacks. If you must use them, specify which characters
are allowed, and eliminate potentially dangerous sequences. Avoid free-format
input, and wherever possible, make users choose specific values from a list instead.
During the elaboration phase, define correct input; during the construction
phase, enforce adherence to it by adding as many attributes and constraints as you
can, such as maximum size and valid characters for the field, using the CHARSET
HTML attribute.

Use obscurity for security

An effective way to protect transaction information is to keep it on your
system’s back end, away from the client and opportunities for easy access and
manipulation. Using the HTTP POST method instead of the GET method can
also help; it relays parameters within the body of a request instead of exposing
them within a URL. However, this will not deter advanced hackers who typi-
cally have tools for seeing and manipulating POST parameters.

Use a closely related technique to improve obscurity: remove parameters from
links. For those you must leave, either encrypt and sign them, or pass them as
hidden parameters whose names and values you can encrypt, or sign them for
protection from manipulation. Meta-information on Web pages, such as com-
ments sent to the client, can provide clues to hackers. In addition to stripping
comments from Web pages in the production environment, delete any client-
side code or HTML code that includes comments.

A layered approach to delivering security-rich Web applications.
Page 7

Control dynamic pages

Dynamic sites that can place client input onto a Web page can provide users with
an experience tailored to that specific profile and session. However, this can create
security risks. One way to combat these security risks is to avoid using values that
you receive directly from the client. Suppose you want to create a welcome mes-
sage with the user’s name. Be aware that the client might submit a JavaScript code
within this parameter that will cause cross-site scripting; when the script runs
in the user’s browser, it may either copy or alter data passed between the client
and the site. Instead, help ensure that the client input is script free by removing
dangerous meta-characters after the standardized encoding function completes.

Protect HTTP headers

Like all other information from the client, HTTP headers are easy to manipu-
late and should not be used to provide security. For example, you can add any
URL to the REFERER header, which denotes the page leading to a transaction.
However, you can use this header to disqualify requests from outside the site,
thereby forcing hackers to make manual changes to get around it. Whenever
you use an HTTP header, it must be signed—and preferably encrypted—just as
you would with cookies.

A layered approach to delivering security-rich Web applications.
Page �

Apply standards

Although Web protocols and standards have well-defined specifications, most
Web servers and Web applications allow deviations from them. Using nonstan-
dard protocols can lead to ambiguity and ill-defined responses. Instead, it is
good practice to use standard HTML and HTTP to help prevent components
from misinterpreting information and misbehaving.

The following links will direct you to specifications for the most common
standards and protocols:

HTTP/1.0: http://www.ietf.org/rfc/rfc1945.txt

HTTP/1.1: http://www.ietf.org/rfc/rfc2616.txt

HTML 3.2: http://www.w3.org/TR/REC-html32

HTML 4.0: http://www.w3.org/TR/html4

HTML 4.01: http://www.w3.org/TR/html401

Security at the session layer

Multiple requests are organized into sessions tied to a logical entity represent-
ing a single user. To secure a session, you must first secure all its component
transactions. Since Web-based protocols and standards such as HTTP and
HTML are context free, the first task is to create an application-level context
mechanism. Typically, sessions are initiated through an authentication process
that identifies the user via a simple user name/password mechanism. The user
is assigned a token that identifies him or her to the application and provides a
context within which to evaluate interactions with the server. In most instances,
once a session is created, all further actions are legal and do not require addi-
tional authentication.

•
•
•
•
•

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/html4
http://www.w3.org/TR/html401

A layered approach to delivering security-rich Web applications.
Page �

Safeguard your authentication process

Additional defensive measures might include a delay in the authentication mecha-
nism to slow enumeration, and a threshold for multiple failed authentication
attempts on an account, including consecutive attempts and cumulative failures.

As the session creation process described above is highly vulnerable to security
attacks, it is desirable to pass authentication information (user name/password)
over a secure medium, such as Secure Sockets Layer (SSL), to prevent it from fall-
ing into the wrong hands. Make sure the application is free of default user names
and passwords for demos and administrators, which are easy prey for attackers.
And use a strong password scheme to prevent hackers from easily enumerating
short or obvious passwords.

Finally, use a secondary authentication mechanism for access to crucial transac-
tions. For example, require one set of credentials to enter an online bank and a
second internal set to transfer money from an account.

Use strong session IDs

Session IDs should be cryptographically strong, signed and time stamped to
protect illegal authentication bypasses. Use well-known algorithms instead of
inventing new ones that may be prone to design mistakes. A strong session ID
for all public areas helps slow hackers and represents a formidable obstacle to
both automatic and manual attacks. Following login, ensure that all private
areas of the site are associated with the session IDs. Switching to a weaker ID
or counting on Internet Protocol (IP)/SSL information to maintain the user’s
identity places the whole session at risk.

A layered approach to delivering security-rich Web applications.
Page 10

Attach a session ID to the user whenever the application is accessed, even
before the authentication process is complete. Following successful authenti-
cation, you can assign a second ID or associate the public ID with the login
credentials via the back end. Never allow the client to change the ID, as this
may open security vulnerabilities.

Historically, session IDs have been passed as cookies that are sent to the client
and submitted back to the server with every request. However, some applica-
tions now add the ID to the URL as either a parameter or part of the path. This
is not a secure practice because the ID becomes part of the REFERER header,
which is exposed when the user accesses a different site.

Automatically terminate sessions

Automatic termination is an important aspect of session maintenance, as
unattended sessions invite hackers to steal the legitimate user’s identity. It is
good practice to automatically terminate a session under any of the follow-
ing conditions:

Inactive session. The session has not been active over a reasonable time, which

varies among sites and applications. The typical limit is 15 to 30 minutes.

Long session. The user has exceeded the maximum time allowed for a session

and must either reauthenticate or start a new session. The maximum can vary

according to application type, but it is typically several hours.

Security error. A session should terminate automatically if any security error

is found in the application.

•

•

•

A layered approach to delivering security-rich Web applications.
Page 11

Enforce and protect sequencing

By default, Web-based protocols have no flow, so transactions have no inher-
ent sequencing. However, many Web applications have implicit constraints that
require sequencing. For example, applying for an account might require filling
out multiple forms in a certain order that is crucial to protecting parts of the
application from hackers. During the elaboration phase, it is important to define
all possible flows for the site and assign every single Web page to one of them. The
server should maintain that assigned flow, and, since it might be sent to the user
as a cookie or a field, it should be encrypted and signed to prevent hijacking.

Security at the application layer

Web application architecture plays a major role in overall security. The simpler
it is, the greater your chances for achieving good security.

Separate public and private areas

During the elaboration phase, determine which areas search engines and crawl-
ers can access without initiating a session. Best practice is to separate these areas
into individual directories or onto separate servers to avoid mixing public data
with private applications. Remove cross-dependencies within the application and
reduce linkages between applications. Be sure to map security considerations for
those that remain.

A layered approach to delivering security-rich Web applications.
Page 12

Protect entry points

You cannot secure an application without knowing where external users might
have access to it. Entry points fall into the following four main categories:

User access points. These are root points of entry. Increasing their number

increases the design, coding and testing effort you will need to secure the

application.

Search and index agent access. Such agents do not maintain a session,

and any page they access is an entry point. During the elaboration phase,

define pages that should be indexed and regarded as public and sessionless;

assign them to different areas of the site hierarchy. Use the robots.txt file

to limit access for search agents or robots and prevent indexing of a confi-

dential section.

Bookmark access. Bookmarks should be public, sessionless and accessible

entry points. Allow for these in your design. Typically, users bookmark ses-

sion-based pages following authentication; these bookmarks should redirect

to a legal entry point instead of to the requested object.

Secure entry points. These typically allow business partners to access pri-

vate areas of the site. Instead of treating them as simple entry points, identify

them early in the elaboration phase, limit their number and sign them to mini-

mize the risk that hackers will use them to bypass authentication mechanisms.

Pass data for these entry points over SSL to prevent interception.

In general, keep entry points to a minimum so that you can easily review
them on an ongoing basis. Disable any that are unnecessary or that create
high security risks.

•

•

•

•

A layered approach to delivering security-rich Web applications.
Page 1�

Use encryption

Encryption is a key aspect of securing a Web application. It is possible to encrypt
specific parts of a transaction, and it is necessary to encrypt complete transactions
using SSL. However, the application architecture should not create dependencies
on the encryption itself, because dependencies allow hackers to insert an SSL
proxy between the client and the Web site. Links should be relative and should not
contain the https:// prefix. Never use IP addresses in URLs; instead, use host
names to allow flexibility and the addition of secure applications (or, better yet, to
keep the links relative).

Applications that include proxies and SSL accelerators can change server IP
addresses. SSL protects the transport layer but is not specific to the applica-
tion, so in addition to encrypting the data stream, you should encrypt specific
fields in HTML forms and also mangle links (URLs) within pages to obscure
the application’s content and structure from probing. All fields and links used
by the server should be signed—and preferably encrypted—or compared with
values stored in the back end to prevent manipulation.

Limit caching

When a Web site allows proxy servers to cache information, it actually trans-
fers part of its logic to these external servers. These servers can speed delivery
of multimedia information to users, but they also pose security hazards. To pro-
tect against page changes and the loss of control over application flow, never put
content pages (i.e., anything that is not multimedia) on external, unprotected
cache servers.

A layered approach to delivering security-rich Web applications.
Page 1�

Also, use the no-cache setting for private information. This will prevent records
from remaining on the user’s computer, cached for future use, after the Web
page is served—exposing private data to potential manipulation.

Securing the Web application environment

No Web application can be truly secure unless the elements within its operat-
ing environment are secure as well.

Control your production server

The server running the production version of an application must always be
separate from other internal servers (preferably in a demilitarized zone[DMZ],
as discussed later in this paper). The production server should not run any other
software that might disrupt the Web application, and it should never be used to
develop code. This prevents the possibility of exposing temporary or old files by
mistake that were saved for development or test purposes. To ensure that only
the necessary parts of the application reside in the production environment,
clean it thoroughly before every new release, and then copy the new application
into the environment from an internal computer.

To prevent management application violations, do not allow the production site
to be administered from outside your organization. In fact, it is best not to use
remote administration even from within your organization. To be safe, adminis-
ter your Web applications locally on a production computer.

A layered approach to delivering security-rich Web applications.
Page 1�

Create a DMZ

A DMZ is a crucial component of an organization’s periphery and network
defense system, and it plays a vital part in creating a safe environment for the
Web application. The DMZ separates external-facing machines from internal
machines, enabling you to separate Web applications from one another, and to
offer the same application to internal and external users. The application’s front
end can reside within the DMZ while the back end resides within the internal
part of the network. External users can access the application through the DMZ,
and internal users can go through an intranet or other internal application.

You can also achieve a more secure application configuration by separating the
DMZ into two parts—one with public application areas and multimedia files
on separate servers, and the other with private application areas that access the
back-end system. This would enable you to contain damage to the public part of
the site and prevent it from spreading to more critical private areas.

Securing third-party tools

Yet another level of security concern is the third-party software included in
typical Web applications. Ranging from freeware to packaged applications cre-
ated by large vendors, third-party tools might include Web servers, application
servers and e-commerce packages.

A layered approach to delivering security-rich Web applications.
Page 1�

Security for your configuration

Many vendors supply guidelines for creating a maximum-security installation,
which you should follow closely. If possible, use separate servers to segregate
third-party software from the rest of the application, thereby minimizing risk
to your own code and private data.

Remove demos and sample applications, which hackers know how to abuse. Clean
these from the production server—or do not install them in the first place. Check
for other default accounts and change default passwords to prevent attackers from
using publicly available user and password lists.

Stay on top of vulnerabilities and patches

Use one of the many Web sites and mailing lists that announce vulnerabilities
and available patches to stay on top of third-party tool security issues. The time
between public discovery of vulnerability and the hour that you can actually
obtain and deploy a patch in your production environment may be dangerously
long. During this time, it is crucial to monitor your site diligently for signs of
intrusion or other forms of attack.

Although you may be tempted to try off-brand patches during your wait, it is
usually best to hold out for a carefully tested remedy. Once the patch becomes
available, be certain to apply it to all affected product installations, including
new deployments.

A layered approach to delivering security-rich Web applications.
Page 17

Summary guidelines for building security-rich Web applications

We have covered a lot of territory in this paper. To help you remember which
security measures you can apply at various layers of concern, print out and
post the summary guidelines below.

Eagle’s view

Never trust data that comes from a user, and never make assumptions about

the limits of users’ technologies.

Remember that it is always easier to secure simple logic than complex logic.

Transaction layer

Translate all incoming requests into a standard encoding scheme.

Verify the maximum number of characters for all fields, and verify that input

does not contain dangerous characters.

Avoid free-format input; use as many constraints as possible.

Never use values supplied directly from the client to create dynamic pages.

Obscure your transaction by using the POST method instead of GET.

Ensure that parameters passed through the client are encrypted and signed.

Remove meta-information from information sent to the client.

Use only standard protocols in the application.

•

•

•
•

•
•
•
•
•
•

A layered approach to delivering security-rich Web applications.
Page 1�

Session layer

Encrypt all authentication information and use strong password schemes to

prevent hacking via enumeration.

Require secondary authentication for critical parts of the application.

Delete default accounts from the application.

Use defensive measures to counter authentication attacks, such as a delay

in the authentication mechanism to slow enumeration and a threshold for

multiple failed authentication attempts.

Ensure that all private areas of the application are associated with a session

ID that the client or client code cannot change.

Terminate sessions automatically if they become inactive or overly long, or if

a security error is detected.

Define all possible application flows during the elaboration phase, and

ensure that each page is associated with a flow.

Application layer

During the elaboration phase, identify application entry points and areas

that will not be associated with session information.

Minimize cross-dependencies within applications and links between applications.

Encrypt the information stream to all private areas of the application; do

not create links that are dependent on the stream encryption.

Encrypt and sign critical information (in addition to stream encryption).

Use the no-cache setting for private information.

•

•
•
•

•

•

•

•

•
•

•
•

A layered approach to delivering security-rich Web applications.
Page 1�

Application environment layer

Never develop code on the production server; use an internal server, and

then copy the code to the production server.

Minimize the code you keep on the production server, and distribute compo-

nents to other servers.

Never put content pages on an external cache server.

Use a DMZ to separate the back and front ends of your application.

Third-party tools layer

Use vendor guidelines for a maximum-security installation.

Remove all demos, samples and default accounts; change default passwords.

Stay up to date on vulnerabilities and patches for all tools.

Wait for vendor-approved patches, and install them on all affected deploy-

ments as soon as they become available.

•

•

•
•

•
•
•
•

For more information

To learn more about creating security-rich Web applications using IBM
Rational automated lifecycle security tools such as IBM Rational AppScan,
please contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational/offerings/testing/webapplicationsecurity

©	Copyright	IBM	Corporation	2007

IBM	Corporation	
Software	Group	
Route	100	
Somers,	NY	10589	
U.S.A.

Produced	in	the	United	States	of	America	
12-07	
All	Rights	Reserved

IBM,	the	IBM	logo,	Rational,	Rational	Unified	
Process	and	RUP	are	trademarks	or	registered	
trademarks	of	International	Business	Machines	
Corporation	in	the	United	States,	other	countries,	
or	both.	

Java	and	all	Java-based	trademarks	are	trade-
marks	of	Sun	Microsystems,	Inc.	in	the	United	
States,	other	countries,	or	both.	

Microsoft	is	a	trademark	of	Microsoft	Corporation	
in	the	United	States,	other	countries,	or	both.	

Other	company,	product	and	service	names	may	
be	trademarks	or	service	marks	of	others.	

References	in	this	publication	to	IBM	products	
or	services	do	not	imply	that	IBM	intends	to	
make	them	available	in	all	countries	in	which	
IBM	operates.	The	information	contained	in	this	
documentation	is	provided	for	informational	pur-
poses	only.	While	efforts	were	made	to	verify	the	
completeness	and	accuracy	of	the	information	
contained	in	this	documentation,	it	is	provided	
“as	is”	without	warranty	of	any	kind,	express	or	
implied.	In	addition,	this	information	is	based	on	
IBM’s	current	product	plans	and	strategy,	which	
are	subject	to	change	by	IBM	without	notice.	
IBM	shall	not	be	responsible	for	any	damages	
arising	out	of	the	use	of,	or	otherwise	related	
to,	this	documentation	or	any	other	documenta-
tion.	Nothing	contained	in	this	documentation	is	
intended	to,	nor	shall	have	the	effect	of,	creating	
any	warranties	or	representations	from	IBM	(or	its	
suppliers	or	licensors),	or	altering	the	terms	and	
conditions	of	the	applicable	license	agreement	
governing	the	use	of	IBM	software.

RAW14007-USEN-00

http://www.ibm.com/software/rational/offerings/testing/webapplicationsecurity

