
Web application security management
White paper
January 2008

Understanding Web application
security challenges.

Contents

2	 What makes Web applications

vulnerable?

3	 Typical Web application attacks

4	 Table 1: Common types of Web

application attacks

6	 Basic guidelines for providing

security for Web applications

7	 Understanding the Web

application lifecycle

9	 Security testing throughout the

application lifecycle

10	 Table 2: Relative cost of

error fixes, based on time of

discovery

10	 Considering the right testing

approaches

10	 Table 3: Web application

security testing approaches

12	 Four strategic best practices

for protecting Web applications

15	 Table 4: Inception—defining

security requirements

16	 Table 5: Elaboration and

construction—modeling and

coding for security measures

As businesses grow increasingly dependent upon Web applications, these com-
plex entities grow more difficult to secure. Most companies equip their Web sites
with firewalls, Secure Sockets Layer (SSL), and network and host security, but
the majority of attacks are on applications themselves – and these technologies
cannot prevent them.

This paper explains what you can do to help protect your organization, and it
discusses an approach for improving your organization’s Web application security.

What makes Web applications vulnerable?

In the Open System Interconnection (OSI) reference model,1 every message
travels through seven network protocol layers. The application layer at the top
includes HTTP and other protocols that transport messages with content,
including HTML, XML, Simple Object Access Protocol (SOAP) and Web services.

This paper focuses on application attacks carried by HTTP—an approach that
traditional firewalls do not effectively combat. Many hackers know how to make
HTTP requests look benign at the network level, but the data within them is
potentially harmful. HTTP-carried attacks can allow unrestricted access to
databases, execute arbitrary system commands and even alter Web site content.

Understanding Web application security challenges.
Page �

Understanding Web application security challenges.
Page �

Without governance measures to manage security testing throughout the applica-
tion delivery lifecycle, software teams can expose applications to HTTP-carried
attacks as a result of:

Analysts and architects viewing security as a network or IT issue, so that only

a few organization security experts are aware of application-level threats.

Teams expressing application security requirements as vague expectations

or negative statements (e.g., You will not allow unprotected entry points)

that make test construction difficult.

Testing application security late in the lifecycle—and only for hacking attempts.

Typical Web application attacks

A Web application’s specific vulnerabilities should dictate the technology you
use to defend it. Figure 1 shows many points within a system that might require
protection. Often, it is best to employ generic countermeasure concepts first
to help ensure that you choose the technology best suited to your needs rather
than one that claims to counter the latest hacking technique.

•

•

•

Database

Web
server

Fi
re

w
al

l

Preventing
parameter

manipulation

Preventing
session
hijacking

Protecting
sensitive

data

Authenticating
users

Providing secure
configuration

Denial of
service

Fine input
validation Protecting

sensitive dataHandling
exceptions

Concurrency

Coarse input
validation

Authorizing
users

Auditing and
logging

Application
server

Application Application

Figure 1: Web application security concerns

Highlights

To protect Web applications against

attacks, enterprises should employ

generic preventive approaches as

well as targeted technologies.

Understanding Web application security challenges.
Page �

Highlights
Table 1 shows common threats and preventive measures. However, specific
threats to your application may be different.

Table 1: Common types of Web application attacks

Description Common causes Preventive measures

Impersonation

Typing a different user’s

credentials or changing

a cookie or parameter

to impersonate a user or

pretend that the cookie

originates from a differ-

ent server

Using communications-

based authentication to allow

access to any user’s data

Using unencrypted

credentials that can be

captured and reused

Storing credentials in cookies

or parameters

Using unproven authentication

methods or authentication

from the wrong trust domain

Not permitting client software

to authenticate the host

•

•

•

•

•

Use stringent authentication

and protection for credential

information using:

Operating system (OS)-

supplied frameworks

Encrypted tokens such

as session cookies

Digital signatures

•

•

•

Tampering

Changing or deleting

a resource without

authorization (e.g.,

defacing a Web site,

altering data in transit)

Trusting data sources without

validation

Sanitizing input to prevent

execution of unwanted code

Running with escalated

privileges

Leaving sensitive data

unencrypted

•

•

•

•

Use OS security to lock

down files, directories

and other resources

Validate your data

Hash and sign data in

transit (by using SSL or

IPsec, for example)

•

•

•

Repudiation

Attempting to destroy,

hide or alter evidence

that an action occurred

(e.g., deleting logs,

impersonating a user to

request changes)

Using a weak or missing

authorization and

authentication process

Logging improperly

Allowing sensitive

information on unsecured

communication channels

•

•

•

Use stringent authenti-

cation, transaction logs

and digital signatures

Audit

•

•

Enterprises can employ multi-	

ple preventive measures against 	

Web application breaches caused 	

by impersonation, tampering 	

and repudiation.

Understanding Web application security challenges.
Page �

Highlights
Description Common causes Preventive measures

Information disclosure

Revealing personally

identifiable information

(PII) such as passwords

and credit card data,

plus information about

the application source

and/or its host machines

Allowing an authenti-

cated user access to

other users’ data

Allowing sensitive infor-

mation on unsecured

communication channels

Selecting poor encryption

algorithms and keys

•

•

•

Store PII on a session

(transitory) rather than

permanent basis

Use hashing and

encryption for sensitive

data whenever possible

Match user data to user

authentication

•

•

•

Denial of service (DoS)

Flooding—sending

many messages or

simultaneous requests

to overwhelm a server

Lockout—sending

a surge of requests

to force a slow ser-

ver response by

consuming resources

or causing the appli-

cation to restart

•

•

Placing too many applications

on a single server or placing

conflicting applications on the

same server

Neglecting to conduct

comprehensive unit testing

•

•

Filter packets using

a firewall

Use a load balancer to

control the number of

requests from a single

source

Use asynchronous

protocols to handle

processing-intensive

requests and error

recovery

•

•

•

Elevation of privilege

Exceeding normal

access privileges to

gain administrative

rights or access to

confidential files

Running Web server

processes as “root” or

“administrator”

Using coding errors to allow

buffer overflows and elevate

application into a debug state

•

•

Use fewest-privileges

context whenever possible

Use type-safe languages

and compiler options

to prevent or control

buffer overflows

•

•

Preventive measures can also be

taken to ward off attacks that attempt

to access sensitive information and

overwhelm server resources.

Understanding Web application security challenges.
Page �

Highlights
Basic guidelines for providing security for Web applications

By using security-specific processes to create applications, software develop-
ment teams can guard against security violations like those shown in table 1.
Specifically, you can apply several basic guidelines to existing applications
and new or reengineered applications throughout your process to help achieve
greater security and lower remediation costs, such as:

Discover and create baselines: Conduct a complete inventory of applica-

tions and systems, including technical information (e.g., Internet Protocol [IP],

Domain Name System [DNS], OS used), plus business information (e.g., Who

authorized the deployment? Who should be notified if the application fails?).

Next, scan your Web infrastructure for common vulnerabilities and exploits.

Check list serves and bug tracking sites for any known attacks on your OS,

Web server and other third-party products. Prior to loading your application

on a server, ensure that the server has been patched, hardened and scanned.

Then, scan your application for vulnerabilities to known attacks, looking at

HTTP requests and other opportunities for data manipulation. And, finally,

test application authentication and user-rights management features and

terminate unknown services.

Assess and assign risks: Rate applications and systems for risk— focusing

on data stores, access control, user provisioning and rights management.

Prioritize application vulnerabilities discovered during assessments. Review

organizational, industry and governmental policy compliance. And identify

both acceptable and unacceptable operations.

Shield your application and control damage: Stay on top of known

security threats and apply available patches to your applications and/or

infrastructure. If you cannot fix a security issue, use an application firewall,

restrict access, disable the application or relocate it to minimize exposure.

Continuously monitor and review: Schedule assessments as part of your

documented change management process. When you close one out, immedi-

ately initiate a new discovery stage.

•

•

•

•

By applying several basic practices,

software development teams can	

help prevent common Web appli-

cation security violations and

reduce remediation costs.

Understanding Web application security challenges.
Page �

Highlights
Understanding the Web application lifecycle

Shown in figure 2, the IBM Rational® Unified Process®, or IBM RUP®, solution
delivers a widely used iterative process framework for developing Web applications
based on industry best practices. The core phases of the framework (which may
require two or more iterations to complete) are:

Inception: Establish a business case, scope and operational vision. Then,

create an initial use-case model, project plan, risk assessment and project

description, including core requirements, security requirements (such as

clarification of security compliance and policies), constraints, features and

prototype candidate architectures.

Elaboration: Refine your vision, address architecturally significant scenar-

ios to establish a baseline architecture, and detail the use-case model. Then,

create and test one or more prototypes to mitigate technical risks.

Construction: Develop detailed designs for specific components and their

interactions with other applications, continuously tracking against require-

ments. Generate code and test components for performance, reliability and

security—while tracking and resolving issues—and integrate tested compo-

nents into a first release.

Transition: Deploy the application, train users and conduct beta testing to

verify security and performance and validate the application against require-

ments. Continuously monitor performance, reliability and security as the

application undergoes changes.

•

•

•

•

The Rational Unified Process

delivers a comprehensive, iterative

framework for developing Web

applications based on industry 	

best practices.

Understanding Web application security challenges.
Page �

Highlights

Iterations

Phases
Inception Elaboration Construction Transition

Initial E1 T2T1CnC2C1E2
Major

milestones
Product
release

Initial operational
capability

Lifecycle
architecture

Lifecycle
objective

Business modeling

Requirements

Analysis and design

Implementation

Test

Deployment

Configuration and
change management

Project management

Environment

Disciplines

Figure 2: Phases, disciplines and milestones in the IBM Rational Unified Process

Each of the four phases of the

Rational Unified Process—

inception, elaboration, construc-	

tion and transition—spans

multiple disciplines and may

require multiple iterations.

Understanding Web application security challenges.
Page �

Highlights
When marketplace pressures motivate organizations to push Web applications
through development phases without adequate security testing, serious vulner-
abilities can place the business at risk.

Security testing throughout the application lifecycle

By applying the RUP framework guidelines early in the Web application lifecycle,
you can discover and fix vulnerabilities when it is most cost-effective to do so.
As applications move through the development and delivery process, errors can
quickly become more complicated and expensive to remedy.

For example, teams that gather requirements during the inception and elabo-
ration phases may not understand common Web application security threats
and, therefore, neglect to specify requirements to prevent them. In construction,
without clear application-level security requirements, coders might reuse flawed
code or generate new code using a security-unaware integrated development
environment (IDE) wizard, and then fail to properly validate data or correctly
interpret security features in the application framework. In the transition phase,
organizations often entrust Web application review to a few security experts
who attempt to catch vulnerabilities before deployment, leading to process
bottlenecks. Moreover, flaws that experts discover at this stage are likely to be
expensive and time-consuming to fix.

As the figures in table 22 show, fixing a design error after a Web application is
available costs approximately 30 times more than addressing it during design.
And these estimates do not even factor in costs such as losses in marketshare,
reputation or customer satisfaction.

Enterprises can use the RUP

framework throughout the Web

application lifecycle to proactively

discover and fix vulnerabilities

before they become more costly 	

to remedy.

Understanding Web application security challenges.
Page 10

Highlights
Table 2: Relative cost of error fixes, based on time of discovery

Type of
error

Design Coding Integration Beta Deployment

Design 1x 5x 10x 15x 30x

Coding 1x 10x 20x 30x

Integration 1x 10x 20x

Considering the right testing approaches

To help prevent expensive fixes, organizations need to build application security
testing approaches, such as those shown in figure 3, into their development and
delivery process alongside other quality management measures.

Table 3: Web application security testing approaches

Description Pros Cons

Manual

Penetration or security

acceptance testing by

a small set of security

experts using known

tools and scripts

Generates well-targeted

tests for specific application

functions

Limits testing to experts, which

may lead to bottlenecks

Can lead to a high error rate

and recurring costs

Limits application coverage

due to time constraints

•

•

•

Automated

Typically built in one of

two ways:

Bottom up—Specific

tests for individual

functions, built by the

code developer

Top down—QA

teams build tests

from an end-user

perspective

•

•

Offsets expenses with

improvements in quality,

reduced effort for accep-

tance testing and iterative

development processes

Requires greater overhead to

create and maintain than manual

testing requires

Fixing a design error after a Web

application has been deployed

costs approximately 30 times more

than addressing it during design.

To help prevent expensive fixes,

enterprises can build application

security testing approaches into their

development and delivery process.

Understanding Web application security challenges.
Page 11

Highlights
Description Pros Cons

Black box or system

Looks only at system

input and output,

modifying normal

user input to make the

application behave in

unintentional ways

Uses well-established

automated test tools that

require minimal application

knowledge to use

Possible only when all

application components are

ready for testing (late staging

or production environment)

May produce transactions that

are difficult to ignore or reverse

through user input mutations

Can obscure flaws by limiting

visibility into the application

•

•

•

White box or source

Assesses individual

components for

specific functional

errors, often in

combination with code

scanning tools and

peer reviews

Uses tools that have

established integrations with

developer IDEs, enabling

the well-defined discovery of

flaws in tested functions

Does not uncover requirement

and design flaws

May not uncover vulnerabilities

to attacks involving multiple

components or specific timing

not covered by unit testing

Assumes that coders are

aware of needed security tests

•

•

•

Gray box (using an application-defined framework)

Combines black- and

white-box testing to

create tests unavailable

via commercial tools

Provides the most

comprehensive method

by combining system-

and unit-level testing

Provides state- and

timing-based tests, and

uses agents or proxies

Integrates the framework

into the application to

monitor data flows and

conduct audits without

affecting production data

•

•

•

Requires that a framework be

specified during the inception

phase and design activities

May require as much effort to

build the test framework as to

build the application

•

•

Black-box and white-box testing

approaches can leverage commer-

cial tools, while gray-box testing

calls for a uniquely defined

application framework.

Understanding Web application security challenges.
Page 12

Highlights
Four strategic best practices for protecting Web applications

To address security-related issues as they pertain to Web applications, orga-
nizations can employ four broad, strategic best practices.

1. Increase security awareness

This encompasses training, communication and monitoring activities, prefer-
ably in cooperation with a consultant.

Training

Provide annual security training for all application team members: develop-
ers, quality assurance professionals, analysts and managers. Describe current
attacks and a recommended remediation process. Discuss the organization’s
current security practices. Require developers to attend training to master the
framework’s prebuilt security functions. Use vendor-supplied material to train
users on commercial off-the-shelf (COTS) security tools, and include security
training in the project plan.

With help from a third-party 	

consultant, enterprises can 	

employ training, communication

and monitoring activities to

improve security awareness.

Understanding Web application security challenges.
Page 13

Highlights
Communication

Collect security best practices from across all teams and lines of business in your
organization. Distribute them in a brief document and make them easily acces-
sible on an intranet. Get your IT security experts involved early and develop
processes that include peer mentoring. Assign a liaison from the security team
to every application team to help with application requirements and design.

Monitoring

Ensure that managers stay aware of the security status of every application
in production. Track security errors through your normal defect tracking and
reporting infrastructures to give all parties visibility.

2. Categorize application risk and liability

Every organization has limited resources and must manage priorities. To help
set security priorities, you can:

Define risk thresholds and specify when the security team will terminate

application services.

Categorize applications by risk factors (e.g., Internet or intranet vs. extranet).

Generate periodic risk reports based on security scans that match issues to

defined risk thresholds.

Maintain a database that can analyze and rank applications by risk, so you

can inform teams of how their applications stack up against deployed systems.

•

•
•

•

To allocate limited security

resources, enterprises can 	

prioritize risk and liability issues.

Understanding Web application security challenges.
Page 14

Highlights
3. Set a zero-tolerance enforcement policy

An essential part of governing the development and delivery process, a well-
defined security policy can reduce your risk of deploying vulnerable or
noncompliant applications. During inception, determine which tests the appli-
cation must pass before deployment, and inform all team members. Formally
review requirements and design specifications for security issues during inception
and elaboration—before coding begins. Allow security exceptions only during
design and only with appropriate executive-level approval.

4. Integrate security testing throughout the development and delivery process

By integrating security testing throughout the delivery lifecycle, you can have
significant positive effects on the design, development and testing of applications.
You should base functional requirements on security tests your application must
pass, making sure that your test framework:

Uses automated tools and can run at any point during the development and

delivery process.

Includes unit and system tests as well as application-level tests.

Allows for audit testing in production.

Includes event-driven testing.

Uses an agile development methodology for security procedures.

Can be run during coding, testing, integration and production activities.

•

•
•
•
•
•

To help govern development and

delivery processes and to manage

compliance, enterprises must

establish a security program and set

a zero-tolerance enforcement policy.

By integrating security testing

throughout the software delivery

lifecycle, enterprises can improve

application design, development

and testing.

Understanding Web application security challenges.
Page 15

Highlights
Table 4 suggests ways to structure requirements that address a spectrum of
application-level security concerns during the inception phase.

Table 4: Inception—defining security requirements

Application
concern

Considerations for constraints/requirements

Application

environment

Identify, understand and accommodate your organization’s secur-

ity policies

Recognize infrastructure restrictions, such as services, protocols

and firewalls

Identify hosting environment restrictions (e.g., virtual private network

[VPN], sandboxing)

Define the application deployment configuration

Define network domain structures, clustering and remote appli-

cation servers

Identify database servers

Identify which secure communication features the environment supports

Address Web farm considerations (including session state manage-

ment, machine-specific encryption keys, SSL, certificate deployment

issues and roaming profiles). If the application uses SSL, identify the

certificate authority (CA) and types to be used

Address required scalability and performance criteria

Investigate the code trust level

•

•

•

•

•

•

•

•

•

•

Input/data

validation and

authentication

Assume that all client input is potentially dangerous

Identify all trust boundaries for identity accounts and/or resources

that cross those boundaries

Define account management policies and a least-privileged

accounts policy

Specify requirements for strong passwords and enforcement measures

Encrypt user credentials using SSL, VPN, IPsec or the like, and

ensure that authentication information (e.g., tokens, cookies, tickets)

will not be transmitted over nonencrypted connections

Ensure that minimal error information will be returned to the client in

the event of authentication failure

•

•

•

•

•

•

Session

management

Limit the session lifetime

Protect the session state from unauthorized access

Ensure that session identifiers are not passed in query strings

•

•

•

During the inception phase, enter-

prises can structure requirements

that address multiple application-

level security concerns.

Understanding Web application security challenges.
Page 16

Table 5 details activities during elaboration and construction that align with
defined security requirements.

Table 5: Elaboration and construction—modeling and coding for security measures

Security
consideration

Elaboration Construction

Coding practices Do not reduce or change

default security settings

without testing to understand

the implications

Do not rely on obscurity to

protect secrets; avoid putting

them into code

Do not expose unneeded

information

Test often for security errors

and fix them early

Direct failures to safe mode; do

not display stack traces or leave

sensitive data unprotected

•

•

•

•

•

Input/data

validation

Treat all client input as suspect;

validate it on a server controlled

by the application, even if you

also validate on the client side

Address potential structured

query language (SQL) injection

and cross-site scripting issues

Identify entry points and trust

boundaries

•

•

•

Validate all input parameters,

including form fields, query

strings, cookies and HTTP

headers

Accept only known good input

and reject known bad input

Validate data by type, length,

format and range

Ensure output containing

input is properly HTML

encoded or URL encoded

•

•

•

•

Coding and data validation measures

can offer significant benefits during

the elaboration and construction

phases of the software development

and delivery process.

Highlights

Understanding Web application security challenges.
Page 17

Security
consideration

Elaboration Construction

Authentication Separate access to public and

restricted areas, ID accounts

and resources that cross trust

boundaries

Identify accounts that service

or administer the application

Ensure that user credentials are

encrypted and stored securely

Specify the ID for authenticating

with the database

•

•

•

•

Store passwords as digests

Return minimal error information

with authentication failures

Do not use HTTP header

information for security

purposes

•

•

•

Authorization Specify all IDs and resources

that each can access

Identify privileged resources

and privileged operations

Separate privileges for

different roles (i.e., build in

authorization granularity)

Identify code-access security

requirements

•

•

•

•

Restrict database logins

to access-specific stored

procedures; do not allow

direct access to tables

Restrict access to system-

level resources

•

•

Configuration

management

Protect administration

interfaces and remote

administration channels with

strong authentication and

authorization capabilities

Provide role-based

administrator privileges

Use least-privileged process

and service accounts

•

•

•

Secure configuration stores

Do not hold confidential data

in plain text configuration files

•

•

By improving authentication, 	

authorization and configuration

management practices, enterprises

can address security issues 	

during the elaboration and

construction phases.

Highlights

Understanding Web application security challenges.
Page 18

Security
consideration

Elaboration Construction

Sensitive data

and session

protection

Avoid storing secret data;

identify encryption algorithms

and key sizes for any that you

must retain

Identify protection mechanisms

for sensitive data sent over

the network

Use SSL to protect authenti-

cation cookies and encrypt

their contents

Identify a methodology to help

secure encryption keys and

use only known cryptography

libraries and services

Identify proper cryptographic

algorithms and key size

•

•

•

•

•

Do not store sensitive data

in code

Do not store database

connections, passwords or

keys in plain text

Do not log sensitive data in

clear text

Do not store sensitive data

in cookies or transmit it as a

query string or form field

•

•

•

•

Exception

management

Define a standard approach to

structured exception handling

Specify generic error messages

to be returned to the client

•

•

Disclose minimal information

following an exception

•

Auditing and

logging

Identify key parameters for

auditing and logging

Specify storage, security and

analysis features for log files

Specify how to flow caller

identity across multiple tiers—

at the OS or application level

•

•

•

Do not log sensitive data•

Session protection, exception

management, and auditing

and logging can also provide

opportunities for improving the

security of Web applications.

Highlights

Understanding Web application security challenges.
Page 19

In addition to making security an integral part of the application development
and delivery process, you can integrate security tests right into the applica-
tion you are building to conduct event-driven testing. In this case, where a user
makes a request and the application responds, the test compares the response to
an expected or previously stored response to determine whether the system is
operating properly. For example, in figure 3, an application uses a database as
its back-end component. The tester inserts a spy proxy and a verifier into the
request flow, telling the verifier what a normal request should be so that the
verifier can compare it with the spy proxy’s actual request.

Database

Web
server

Fi
re

w
al

l

Application Application

Application
server

Te
st

er Spy

Expected
proxy request

Actual
proxy request

Proxy or agent
to monitor

database requests

Reporting

Verifier

Figure 3: Security testing a Web application with a back-end database

Through event-driven testing,

enterprises can integrate security

tests right into the application

being developed.

Highlights

Any service, e-mail, XML or legacy service can serve as a back end. How you
implement the code to review requests depends on the application architecture.
For example, your spy component might be a mock data access object, a proxy
or a class that inherits from the front-end service. You can also create code
specifically for a test that you insert into the data stream to supply reporting
data needed by the testing framework. Coordinating the testing objects gives
you comprehensive, fine-grained control of a range of tests. You can perform
these tests using either black-box or white-box testing, improving your chances
of catching security problems early in the lifecycle—before they pose a serious
business risk.

For more information

To learn more about the IBM Rational methodology and how you can create
security-rich Web applications using IBM Rational automated lifecycle security
tools, please contact your IBM representative or visit:

ibm.com/software/rational/offerings/testing/webapplicationsecurity

©	Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
01-08
All Rights Reserved.

IBM, the IBM logo, Rational, Rational Unified
Process and RUP are registered trademarks
of International Business Machines Corporation in
the United States, other countries, or both.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise
related to, this documentation or any other docu-
mentation. Nothing contained in this documentation
is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and
conditions of the applicable license agreement
governing the use of IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

This publication contains other-company Internet
addresses. IBM is not responsible for information
found on these Web sites.

1	 International Organization for Standardization; 	
	 www.iso.org.
2	 www.nist.gov/director/prog-ofc/report02-3.pdf.

RAW14010-USEN-00

http://www.ibm.com/software/rational/offerings/testing/webapplicationsecurity

