
Create and consume Web services using a simple and powerful tool
White paper
June 2007

SOA made simple with IBM Rational
Business Developer software.
Bob Cancilla
System i Software Evangelist
IBM Rational Tools System i/z Strategy/Enablement

SOA made simple with IBM Rational Business

Developer software.
Page �

Contents

2	 Introduction

3	 Services and languages

3	 The benefits of EGL

12	 Consuming a service in EGL

22	 EGL is committed to SOA

Introduction

Service-oriented architecture (SOA) has become the catchphrase of many ven-
dors and consultants throughout the IT industry. What is SOA? In a nutshell,
SOA is the creation of small reusable components of application systems that
isolate logical functionality.

Services are modular components of business logic. Today, many business applica-
tions exist as large monolithic programs with data access, business logic and
user interfaces embedded in the same programs. These systems often have redun-
dant code that performs the same functions in many programs. SOA provides
architecture (or structure) to isolate business functionality into small reusable
components that can be assembled into larger systems. This componentization
separates presentation from the underlying business logic, improving the stability
and maintainability of the modern enterprise.

In addition to improving the maintainability of internally developed systems
via modularization, SOA allows you to interact with customer and other vendor
systems. Functions or services provided by external parties can be integrated
with internally developed systems.

Consider a Web-based order-processing system. After a customer places an order,
he or she selects a shipping method. The system can utilize the shipper’s remote
services to calculate the shipping cost. It also may use an external sales tax calcu-
lation service to calculate the applicable taxes for the order. SOA is very similar
to traditional modular programming but now extends the reach of services—or
modular components—beyond any specific hardware platform, programming
language or even geographical location.

SOA made simple with IBM Rational Business

Developer software.
Page �

Services and languages

A service should focus on the goal of performing a business function. When
you look at the concept of creating services that can be invoked from anywhere
within your enterprise or via the Internet, communications can add layers of
complexity to the use of services.

SOA has been associated with the Java™ language. The reality is that SOA services
can be created from virtually any computer language. The key to creating a ser-
vice is building the interface that enables your service to be invoked anywhere it is
required. Many IBM tools—including the IBM WebSphere® Development Studio
Client for System i™ servers, IBM WebSphere Development for System z™ servers,
as well as the IBM Rational® Application Developer or IBM Rational Software
Architect system—can all create services.

If you are new to services and if protocols such as Simple Object Access Protocol
(SOAP) or Web Services Description Language (WSDL) are intimidating, you may
want to look at simple alternatives. IBM Rational Business Developer Extension
software, which contains IBM Rational Enterprise Generation Language (EGL),
hides the complexity of middleware and Web protocols, allowing you to concen-
trate on the business requirement.

The benefits of EGL

A platform-neutral development environment, Rational Business Developer
Extension offers both a simple language and powerful tools to automate the
creation and consumption of services. It allows you to leverage a single devel-
opment environment and deploy applications to any supported environment
(e.g., IBM AIX®, IBM i5/OS®, Linux®, Microsoft® Windows® or IBM-supported
versions of UNIX®). You also can develop Web applications, IBM 5250 code,
batch applications and—soon—rich client GUI applications.

SOA made simple with IBM Rational Business

Developer software.
Page �

Following is a simple example of creating a Web service with EGL, and then
consuming that service.

Creating and deploying a service with EGL

To demonstrate the simplicity of EGL and creating a service, let’s create a
simple currency conversion service. The following example was built using
Rational Business Developer Extension installed on top of IBM WebSphere
Development Studio Client for System i Advanced Edition software.

To create a service in EGL:

1.	Create an EGL Web project.
2.	Create a package to contain your services in the EGLSource folder.
3.	Create a service.
4.	Write the business logic for your service.
5.	Generate the EGL Service Binding Library.
6.	Test your service using the Web Services Explorer tool.

Figure 1: Project name is “currency services.”

SOA made simple with IBM Rational Business

Developer software.
Page �

First, create an EGL dynamic Web project. We named our project
“currencyService.” Next, create a package and call it “services” within
the EGLSource folder. Select and right-click on the services package;
select New and then Service.

In the wizard, name the service (we called ours “currencyService”). EGL will
create a template service with a template function. Just customize the template
to meet your requirements.

Figure 2: EGL service template

We will now replace the function prototype with our currency conversion function.

Figure 3: Completed service

SOA made simple with IBM Rational Business

Developer software.
Page �

Our goal is to demonstrate the simplicity of creating a service. The key point
of this example is that we can determine our service input parameters, and the
system will select the appropriate calculation and return two output param-
eters to the invoking program.

Depicted in figure 3 is our currencyService. This service has a single function
called “convertCurrency(*).”

It will have two input parameters:

1.	 country—a string that will contain the code for the country to whose cur-
rency we wish to convert

2.	usamt—the amount in U.S. dollars that we wish to convert

There are two output parameters returned from the service:

1.	 cvtamt—the converted amount based on the exchange rate for the country
2.	text—a character string that describes the result

The code uses a simple CASE expression to determine the currency conversion
to use. The code then performs a simple calculation and returns two parameters
as the result.

While this example is deliberately simplistic for illustration purposes, EGL
allows you to build sophisticated applications using many functions, input/
output (I/O) events, function Libraries and calls to other programs that may
exist in your environment, all in the context of an EGL service.

SOA made simple with IBM Rational Business

Developer software.
Page �

You may now define the deployment information necessary to deploy your
service and proceed to test your service.

Figure 4: Create a Deployment Descriptor.

To create the Deployment Descriptor for your service:

1.	Select your project (“CurrencyService”) in the Navigator display.
2.	Right-click.
3.	Select New.
4.	Select Deployment Descriptor.
5.	Name the Deployment Descriptor (“currencyService”).
6.	Click Finish.

SOA made simple with IBM Rational Business

Developer software.
Page �

Figure 5: Add a service to the Deployment Descriptor.

From the Deployment Descriptor view, be certain to select the Web Service
Deployment tab. Then:

1.	Click Add (item 1 in figure 5).
2.	Select the service from the window on the left of the dialog (item 2 in

figure 5), and click Add.
3.	Click Finish.
4.	Save the Deployment Descriptor.

SOA made simple with IBM Rational Business

Developer software.
Page �

Figure 6: EGL Build Descriptor

We must now link the Deployment Descriptor to the EGL Build Descriptor.

1.	Locate the EGL Build Descriptor in your EGL source folder
(“CurrencyService.eglbld”). Double-click to open the Build Descriptor.

2.	Uncheck the Show only specified options checkbox to see all options.
3.	Locate deploymentDescriptor. Click the down arrow and select currencyService

from the list.
4.	Locate serverType. Choose the server type on which you’re going to deploy

or test your service. We have chosen “WEBSPHERE6.X.”
5.	Click the Show only specified options checkbox, and your display should

look similar to the one shown in figure 6.
6.	Save the EGL Build Descriptor.

Now we are ready to generate and test our Web service.

1.	Select CurrencyService in the Project Explorer view.
2.	Right-click and select Generate.
3.	A dialog will appear. Messages will indicate that your service has

been deployed.

SOA made simple with IBM Rational Business

Developer software.
Page 10

Figure 7: Start the IBM WebSphere Test Environment.

To test your service, you will need to select the IBM WebSphere Application
Server option, right-click and start it.

1.	Right-click the server; then select Add and Remove Projects.
2.	Select CurrencyServiceEAR and click Add.
3.	Click Finish.

To test your Web service, use the Web Services Explorer tool.

SOA made simple with IBM Rational Business

Developer software.
Page 11

Figure 8: Launch Web Services Explorer.

Select and click LaunchWeb Services Explorer from the Run menu in
your workspace.

Figure 9: The Web Services Explorer tool

SOA made simple with IBM Rational Business

Developer software.
Page 12

To utilize the Web Services Explorer tool, click WSDL highlighted in the
upper right corner of figure 9.

1.	Click Browse.
2.	Select CurrencyService.
3.	Click the convertCurrency method link in the display to see your

input parameters.
4.	Type in a country code (recall that we specified “EUR,” “CAN” and

“FRF” when we created our service; see figure 3).
5.	Type in a dollar amount in U.S. dollars.
6.	Click Go. The results will be displayed in the Status window at the bottom

of the screen.
7.	 Be sure to test all of the options, including an invalid country code or amount.

Congratulations, you have created and tested a Web service! You may now
deploy and install your EAR file on the server of your choice.

One note about services: By definition, standard and convention, services cannot
store variables between executions. This means that every time you execute a
service, it’s the first time. Services have no concept of transaction or persistence.
EGL will initialize all variables in the service upon completion of the execution
of the service.

Consuming a service in EGL

Now that we have created a functional service, we will consume the service in
a JavaServer Faces (JSF) Web page.

To consume the service we just created in a JSF technology-based Web page:

1.	Open the project in your workspace containing the service we
previously created.

2.	Create a new EGL Web project for the Web application that will use the service.
3.	Create a Deployment Descriptor using the Service Client Bindings.
4.	Update the EGL Build Descriptor to point to the Deployment Descriptor.
5.	Create your Web page using tools to drag and drop your service onto the page.
6.	Save and test your Web application.

SOA made simple with IBM Rational Business

Developer software.
Page 13

Create a new Deployment Descriptor

Now we’ll go through the steps to create a new Deployment Desriptor.

Figure 10: Create a Deployment Descriptor.

1.	Right-click on your project or EGL source.
2.	Select New.
3.	Select Deployment Descriptor.
4.	In the dialog, name your Deployment Descriptor. We named ours

“currencyConversionWeb.”

SOA made simple with IBM Rational Business

Developer software.
Page 14

Figure 11: Point to WSDL.

5.	 Select the Service Client Bindings tab on the Deployment Descriptor view.
6.	 Click Add.
7.	 Click the Choose wsdl file from workspace and copy it to the current 	
project checkbox.

8.	 Click Browse.
9.	 Locate your WSDL file in the CurrencyService project as illustrated in

figure 11, and click OK.
10. Click Finish. The Deployment Descriptor will be created and the WSDL

file will be copied into your project.

SOA made simple with IBM Rational Business

Developer software.
Page 15

Figure 12: Results of Deployment Descriptor wizard

After completing the wizard, your Deployment Descriptor should look like
the upper illustration in figure 12.

Note that the WSDL file was copied into the EGL source folder in the
CurrencyConversionWeb project.

SOA made simple with IBM Rational Business

Developer software.
Page 16

Update the EGL Build Descriptor

Now we’ll update the Build Descriptor.

Figure 13: EGL Build Descriptor

1.	Open the EGL Build Descriptor by double-clicking on its name in the
Project Explorer tool (“CurrencyConversionWeb.eglbld”).

2.	Uncheck the Show only specified options checkbox.
3.	Locate the deploymentDescriptor option and use Browse in the entry

field to select the name of your Deployment Descriptor.
4.	Locate the serverType option. Click in the entry field; then click the

drop-down list button and select the application server you are using.
We chose “WEBSPHERE6.X.”

5.	Save and close the EGL Build Descriptor.

SOA made simple with IBM Rational Business

Developer software.
Page 17

Create an EGL Web page

Now we’ll create an EGL Web page.

Figure 14: Create an EGL Web page.

1.	Select Web Content in your Web project.
2.	Right-click and select New.
3.	Click on Web Page.

Figure 15: EGL Web page

4.	In the Web designer, type a title for your page. We used “Currency
Conversion” and edited it in the Properties tab at the bottom of
the workspace.

5.	Click Services in the tools palette.
6.	Click in the rectangular box at the circled number 3 in figure 15. This will

cause the service to appear in the Page Data view at the lower left corner of
your workspace.

SOA made simple with IBM Rational Business

Developer software.
Page 18

Figure 16: Drag a service to the Web page.

7.	 Select your service in the Page Data view in your workspace.
8.	Drag and drop the service in the rectangle on the Web page.

SOA made simple with IBM Rational Business

Developer software.
Page 19

Figure 17: Adjust field types.

9.	 Change the field type for cvtamt from an input field to an output field.
10.	Change the field type for text from an input field to an output field.
11.	 Click Finish.

SOA made simple with IBM Rational Business

Developer software.
Page 20

Figure 18: Drag and drop action on button.

12.	 Select currencyService_convertCurrency_Action() in the Page Data view.
13.	 Drag and drop the action onto Submit in the Web page.

You have now completed the steps to create a Web page consuming a Web service
that you had previously created. You may now test your application by running
the application on the WebSphere test server.

SOA made simple with IBM Rational Business

Developer software.
Page 21

Figure 19: Generated EGL code

Right-click anywhere in the Web page and select Edit Page Code if you wish
to display or customize the EGL page handler code generated by the tools.
Figure 19 illustrates the unmodified code that has been generated by the IBM
Rational Business Developer tool for you.

SOA made simple with IBM Rational Business

Developer software.
Page 22

Figure 20: Running application in browser

Figure 20 illustrates the result of our example. We entered “CAN” as the target
country, 100.00 U.S. dollars and clicked Convert Currency. As you can see, it
converted the amount to 110.62 Canadian dollars.

EGL is committed to SOA

SOA is a generic conceptual architecture. While it uses standards from many
disciplines, there are no SOA standards that define it. IBM, BEA, IONA, Oracle,
SAP, Siebel Systems and Sybase are leveraging Eclipse technology and a set of
emerging standards to create Service Component Architecture, or SCA. Unlike
SOA, SCA will rely on a more robust framework and standards—rather than Web
services—to help ensure the interoperability of companies that wish to adopt SOA.

SOA made simple with IBM Rational Business

Developer software.
Page 23

For more information

To see an introduction to SCA, visit:

ibm.com/developerworks/library/specification/ws-sca

To view information on the work that Eclipse is performing, visit:

www.eclipse.org/stp

You can count on EGL to provide levels of abstraction and ease of use similar
to those you have seen in this paper. EGL will continue to hide technical com-
plexity, allowing customers to focus on the business problem at hand.

This paper is an introduction to EGL’s implementation of SOA. EGL has much
deeper capabilities than we could describe here. For more information on
Rational EGL functionality and IBM Rational Business Developer Extension
software, visit:

ibm.com/software/awdtools/developer/business/index

Or visit:

ibm.com/developerworks/rational/products/rbde

http://ibm.com/developerworks/library/specification/ws-sca
http://www.eclipse.org/stp
http://www.ibm.com/software/awdtools/developer/business/index
http://www.ibm.com/developerworks/rational/products/egl

©	 Copyright IBM Corporation 2007

IBM Corporation	
Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

Produced in the United States of America	
06-07	
All Rights Reserved.

AIX, i5/OS, IBM, the IBM logo, Rational, System i,	
System z and WebSphere are trademarks or
registered trademarks of International Business
Machines Corporation in the United States, other
countries or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Other company, product and service names may
be trademarks or registered trademarks or service
marks of others.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible
for any damages arising out of the use of, or oth-
erwise related to, this documentation or any other
documentation. Nothing contained in this docu-
mentation is intended to, nor shall have the effect
of, creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license
agreement governing the use of IBM software.

This publication contains other company Internet
addresses. IBM is not responsible for information
found on these Web sites.

RAW11019-USEN-00

	Introduction
	Services and languages
	The benefits of EGL
	Consuming a service in EGL
	EGL is committed to SOA

