

 /

IBM Rational Rose RealTime
Target Service Library

Version 1.1

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

Revision History
Date Version Description Author

2006 March 17 1.0 Initial Release M. Lang

2006 March 29 1.1 Added some communication performance
information and reference to testing a
TargetRTS port.

M. Lang

 IBM / Rational software, 2006 Page 2 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

Table of Contents
1. Introduction 5

1.1 Purpose 5
1.2 Scope 5
1.3 Definitions, Acronyms, and Abbreviations 5
1.4 Overview 5

2. References 5

3. Target Service Library Architecture 6
3.1 Key Responsibilities 6

3.1.1 The Target Service Library 6
3.1.2 Target Service Library Features 6

3.2 Structure and Role of the Components 7
3.2.1 TSL Component Overview 7
3.2.2 Capsules 8
3.2.3 Ports 9
3.2.4 TSL Behavioral Overview 10
3.2.5 Controllers 10
3.2.6 RTController 11
3.2.7 RTController Structure Model 12

3.3 How Threads are Used 13
3.3.1 Threads 13
3.3.2 Single-Threaded Target Service Library 13
3.3.3 Multi-Threaded Target Service Library 13
3.3.4 Initialization of the Target Service Library 15

4. Intra-thread and Inter-thread Communication 16
4.1 Intra-thread Communication 17

4.1.1 Message Structures 17
4.1.2 Message Send 18
4.1.3 Message Receive 19

4.2 Inter-Thread Communication 20
4.2.1 Message Structures 20
4.2.2 Message Send 21
4.2.3 Message Receive 22
4.2.4 Message Ordering 23

4.3 Performance 24
4.3.1 Threading Recommendations 24

5. Configuring and Customizing the Target Service Library 25
5.1 Organization of the TSL Source 25
5.2 Changing the TSL Functionality 25
5.3 Predefined Configuration Options 26
5.4 Predefined build options 27
5.5 Overriding TSL Source 27

5.5.1 The mainLoop() method 28
5.5.2 The targetStartup()/targetShutDown() method 28
5.5.3 Overriding other TargetRTS code 28

 IBM / Rational software, 2006 Page 3 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.6 Customizing the Target Service Library 28
5.6.1 Preferred Method 29
5.6.2 Temporary Solutions 29

5.7 Compiling the Target Service Library 29
5.8 Using the new Target Service Library 30
5.9 Overriding Predefined Capsule Operations 30

5.9.1 Process for Overriding Operations 30
5.10 Override Makefile - Example 31
5.11 Testing the TargetRTS Port 31

 IBM / Rational software, 2006 Page 4 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

IBM Rational Rose RealTime - Target Service Library
1. Introduction

1.1 Purpose
This document provides insight in to some of the key concepts of IBM Rational Rose RealTime’s Target
Service Library (TSL). The reader will gain an understanding of the TSL architecture, communication
performance considerations, and the opportunities available to customize the TSL for specific needs and
environments.

1.2 Scope
While this document is directed to the TSL, a general knowledge of the IBM Rational Rose RealTime
v2003.06.00 toolset is expected. While the majority of the concepts apply to all the supported languages,
this document is targeted to C++ development. For more specific information regarding the TSL and
considerations for customization, reference the Adapting Rational Rose RealTime for Target Environments
guide that is provided with the toolset (Tools > TargetRTS Wizard > Porting Guide or
$ROSERT_HOME\Help\rosert_cpp_ref_guide.pdf).

1.3 Definitions, Acronyms, and Abbreviations

FIFO First In First Out
OS Operating System
RRT Rose RealTime
RTS Run Time Services
TargetRTS Target Run Time Services
TSL Target Service Library
UML Unified Modeling Language
UML-RT Unified Modeling Language Real-Time profile

1.4 Overview
This document is divided in to three main sections:

• Target Service Library Architecture - This section discusses the architecture of the Target Service
Library in detail.

• Intra-thread and Inter-thread Communication - This section discusses the intra-thread and inter-
thread communication mechanisms and how messages are handled using the Target Services
Library.

• Configuring and Customizing the Target Service Library - This section discusses the different
ways that are available for customizing the Target Service Library.

2. References
• Advanced Development Workshop for Developer C++, Release 5.2 version 1.4, March 2000,

ObjecTime Limited

• Rational Rose RealTime QuickStart/Deployment Service, Version 1.1, February 2002, Rational
Software Corporation

• Adapting Rational Rose RealTime for Target Environments, Version 2003.06.00, Rational
Software Corporation

• DEV470 Mastering Rational Rose RealTime using C++, version 2003.06.00, IBM / Rational
software

 IBM / Rational software, 2006 Page 5 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3. Target Service Library Architecture
This section discusses the architecture of the Target Service Library in detail. After this section you should
understand the key responsibilities of the Target Service Library, the structure and role of each of the main
Target Service Library components, and how threads are used within a Target Service Library.

3.1 Key Responsibilities

3.1.1 The Target Service Library
The Target Service Library is the set of run-time services that provide a framework in which a Rational
Rose RealTime model can run. It provides the run-time implementation of the UML-RT constructs used in
the model.

Think of it as a layer of software that sits between a Rose RealTime model and the Operating System that
the component instance, or executable, is running on.

3.1.2 Target Service Library Features
The Target Service Library has several key features and was designed for performance, portability and ease
of customization.

• It provides essential services used by most real-time applications, this includes asynchronous and
synchronous messaging services, thread services, timing services, and log services.

• It provides support for the UML design concepts such as capsules, ports and their bindings, and
finite state machines.

• It allows Rose RealTime models to be compiled into stand-alone executables.

• It supports a wide variety of platforms out-of-box and is fully user-customizable as the entire
Service Library source is provided with the tool.

• It allows direct access to the underlying OS.

 IBM / Rational software, 2006 Page 6 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2 Structure and Role of the Components

3.2.1 TSL Component Overview
The key structural and behavioral components of a UML model manifest themselves in the form of classes
at the Target Service Library level. These components are capsules and ports, and they have several objects
related to them.

Design View

Runtime View

 IBM / Rational software, 2006 Page 7 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2.2 Capsules

Each capsule contains the definitions of its interfaces to other capsules (the ports), its behavior in the form
of a Finite State Machine (FSM), its attributes and operations, and other contained capsules (if they exist).

There are several Target Service Library classes that are used to reference and implement capsules:

• RTActorClass – This is the capsule class identifier

• RTActor – This class represents the run-time incarnation of a capsule.

• RTActorRef – This is a placeholder and manager of capsule incarnations.

3.2.2.1 RTActorClass
This class is created to represent the common external features (interface ports and capsule name) of each
capsule in your model. Only one instance of a RTActorClass structure exists for all capsule instances. This
way common information about the capsule class can be stored only once.

The class name must map to some unique identifier which is why there is a need for an RTActorClass
instance. The class has an identifier which is required to specify the capsule class for certain operations, for
example, to incarnate a capsule of a particular class.

3.2.2.2 RTActor
Every capsule when generated as C++ code is a subclass of RTActor. This common base class for all
capsules defines attributes and operations which allow the Services Library to communicate with the
running capsule instances.

RTActor::context Gets the controller for the physical thread on which a capsule
instance is executing.

RTActor::getCurrentStateString Gets the current state name containing the executing segment.

RTActor::getError Gets the last error value for this thread.

RTActor::getIndex Gets the replication index of this capsule instance in the home
capsule role.

RTActor::getName Gets the capsule role name in which this capsule instance is
running.

RTActor::getTypeName Gets the capsule class name of this capsule instance.

RTActor::isType Queries the capsule class of this capsule instance.

RTActor::logMsg Called before every message is delivered to a capsule instance (if
configured in Services Library).

RTActor::msg and RTActor::getMsg Accesses the msg attribute.

RTActor::unexpectedMessage Called when a message is delivered to a capsule instance for
which there is no trigger defined.

Capsule incarnations are the objects that actually receive and process messages. These are the graphical
objects that you design within the Rose RealTime toolset that maintain the state of individual capsule
incarnations.

 IBM / Rational software, 2006 Page 8 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2.2.3 RTActorRef

The RTActorRef class maintains information about each capsule role in your model. For each capsule role
in the structure of a capsule, an attribute of this type is added to the RTActor subclass generated C++
capsule class.

The main purpose of the reference object is to maintain the set of incarnations related to the named
reference. Typical tasks requiring capsule references are to:

• Create a new incarnation in the reference location (within the context of a container capsule)

• Destroy one or more incarnations in the reference location

• Import or deport one or more incarnations into the reference location

• Find the set of incarnations related to a particular reference

3.2.3 Ports
Ports are objects whose purpose is to send and receive messages to and from capsule instances. They are
owned by the capsule instance in the sense that they are created along with their capsule and destroyed
when the capsule is destroyed. Each port has its identity, which is distinct from the identity and state of
their owning capsule instance.

To specify which messages can be sent to and from a port, a port is associated with a protocol role. The
protocol role is the specification of a set of the messages that can be received (in) and sent (out) from the
port. The protocol role essentially defines the port type.

There are several classes related to ports:

• RTProtocol - For each protocol class in your model, two subclasses of the RTProtocol class are
generated for each direction of the protocol or protocol roles.

• RTInSignal - This class is used to work with incoming signals defined within a protocol.

• RTOutSignal - This class is used to work with outgoing signals defined within a protocol.

• RTSymmetricSignal - This class is used for symmetric signals defined within a protocol. Since
symmetric signals can be both incoming and outgoing you can perform the combined actions of
both RTOutSignal and RTInSignal on these classes.

3.2.3.1 RTProtocol
Each port defined on a capsule is generated as an attribute of the generated C++ capsule class. The port
attribute has the same name as the port, with the type as either the base or conjugate protocol role.

3.2.3.2 RTInSignal
Each signal defined on a protocol becomes an operation. For incoming signals the operations return an
RTInSignal object on which you can specify what action to perform with the signal.

RTInSignal::purge Delete all of these deferred signals for all port instances.

RTInSignal::purgeAt Delete all of the deferred signals on a specific port instance.

RTInSignal::recall Recall one deferred signal on all port instances.

RTInSignal::recallAll Recall all deferred signals on all port instances.

RTInSignal::recallAllAt Recall all deferred signals on a specific port instance.

RTInSignal::recallAt Recall one deferred signal on a specific port instance.

 IBM / Rational software, 2006 Page 9 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2.3.3 RTOutSignal

Each signal defined on a protocol becomes an operation. For outgoing signals the operations return an
RTOutSignal object on which you can specify what action to perform with the signal.

RTOutSignal::invoke Synchronous message broadcast to all port instances.

RTOutSignal::invokeAt Synchronous message send to a specific port instance.

RTOutSignal::reply Used to respond to a synchronous message.

RTOutSignal::send Asynchronous message broadcast to all port instances.

RTOutSignal::sendAt Asynchronous message send to a specific port instance.

3.2.4 TSL Behavioral Overview
Now that we have discussed the key structural components, how do they communicate with one another? A
Controller object is used to group capsules together into execution units and to handle the communication
between them.

Each execution unit exhibits the following properties:

• There is only one thread of control.

• Capsules have Run-to-completion semantics with respect to every other capsule in the unit.

• All capsules in a unit share a common resource pool: a stack, message bodies, and message
queues.

3.2.5 Controllers
Conceptually, all capsules are concurrent, but in reality they are all grouped together. Controllers are the conceptual
objects used to group capsules together into a single unit of concurrency. The controller class hierarchy is shown
below:

 IBM / Rational software, 2006 Page 10 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2.6 RTController

The RTController is an abstract class that defines the interface to a group of executing capsule instances
within a single thread of concurrency. There is one controller object for each physical thread in the system.
The controller object maintains information about the state of the thread as a whole, including the most
recent error. The RTController class provides all of the messaging support that a thread requires.

It is often said that capsules exhibit run-to-completion semantics. This statement means that the controller
does not interrupt a capsule while it is executing a run-to-completion step, although the underlying OS can
swap out the thread it is running on.

The run-time services library is thread-based. It delivers one message from the message queue at a time.
When the capsule receives a message, a transition chain is triggered. The entire transition chain must be
executed before the controller delivers the next message.

 IBM / Rational software, 2006 Page 11 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.2.7 RTController Structure Model

The structure of the RTController is shown below. Several of the notable elements of the controller are:

• internalQ – List of messages to be dispatched to capsules managed by this controller. The
controller will process the queue based on the highest priority message in a FIFO fashion.

• freeList – Manages the list of free messages available for communication.

• resourceMgr - Allocates freeList at startup and when more messages are needed. Surplus free
messages are maintained in a global free queue for redistribution across threads as needed.

• incomingQ – List of messages that have arrived from other controllers, that is, from inter-thread
communication.

Additional RTController member variables not shown are:

• internalPriority - variable holds the index to the highest priority message queue that is not empty.
The first messages to be dispatched are taken from this queue.

• incomingPriority - is used to track the highest priority message delivered to the incomingQ but
which hasn’t been moved to the internalQ. It is used to force the RTController mainloop to
retrieve events from the incomingQ when there are high priority inter-thread messages that have
been received.

 IBM / Rational software, 2006 Page 12 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.3 How Threads are Used

3.3.1 Threads
The Target Service Library supports both single-threaded and multi-threaded environments but there are
differences in how the Target Service Library sets up the execution environment and handles events
between the single-threaded and multi-threaded implementations.

• The multi-threaded version can handle external requests using a different thread

• The multi-threaded version must create extra threads at startup to handle system events and
debugging.

3.3.2 Single-Threaded Target Service Library
The single-threaded version of the Target Service Library contains a single controller object which is an
instance of RTSoleController. The RTSoleController polls for system events (such as timer timeouts and
debugger input) and dispatches messages inside of its main loop.

The RTController shown above is actually an RTSoleController (RTController is the superclass).

3.3.3 Multi-Threaded Target Service Library
In the multi-threaded version, a controller object which is an instance of RTPeerController or
RTCustomController runs on each physical user thread. This instance controls the execution of the capsules
on that thread and handles the dispatching and receiving of messages from other threads.

There are also several system threads that may be created to handle timers and debugging.

• A timer thread is required and is used for the timing services

• The debug thread is optional and is only used when the Services Library debugger is enabled.

 IBM / Rational software, 2006 Page 13 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

If you have created a multi-threaded model, in addition to the MainThread and system threads, there will be
a user thread created for each physical thread that you have specified in your model. All capsules that are
not explicitly incarnated onto a specific thread will run in the Main Thread.

The RTControllers shown above are either RTPeerController or RTCustomController (RTController is the
superclass).

 IBM / Rational software, 2006 Page 14 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

3.3.4 Initialization of the Target Service Library

When a Rose RealTime model is first executed, it is initiated from the main() function just like any other
C++ program. The main() function calls RTMain::entryPoint() which takes care of all of the setup and tear
down of the model executable.

The single-threaded and multi-threaded versions have a few differences in how they are initialized.

Single Threaded Initialization Multi-Threaded Initialization

 IBM / Rational software, 2006 Page 15 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4. Intra-thread and Inter-thread Communication
This section discusses the intra-thread and inter-thread communication mechanisms and how messages are
handled using the Target Services Library.

From the application’s perspective, there is no difference between sending a message within a thread and
sending a message across threads; the code to send the message is still the same. There are, however, some
performance implications, approximately a 10-20 X hit. Optimal designs place capsule instances that have
“an intense message dialog” on the same thread.

The capsule behaviors are control independent
and generated from the design model. They are
defined through state machines (high level) and
detailed code (detail level) and communicate by
sending and receiving messages.

The Service Libraries are linked with the
generated code to create an application
executable. The TSL provides OS abstraction,
thus making capsule designs independent of OS
selection.

COTS software that the user buys.
The TSL provides for a simple message dispatch algorithm, find the highest-priority, non-empty message
queue, take the message from the head of that queue and deliver it to the recipient capsule. Repeat once the
recipient capsule completes processing the message.

Message delivery is via a call invocation to rtsBehavior(signal,port). This call is made inside
the message dispatch loop. Run to completion is enforced as the control is not returned to the loop until the
capsule completes execution and makes a “return”.

 IBM / Rational software, 2006 Page 16 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.1 Intra-thread Communication

4.1.1 Message Structures
All queues shown are dedicated to a particular thread. Similar structures would be created for each kernel
thread defined.

The Resource Manger is responsible for allocating extra message bodies when a low threshold is passed
and also returning extra message bodies to a global pool as a high threshold is passed. When a thread needs
more, the managed pool is checked first and if sufficient messages are not available, a malloc is made on
the system heap. Note that once allocated, message bodies are not freed back to the system heap but
managed in the global pool; therefore, the system will eventually reach equilibrium and no further dynamic
memory allocation will be required.

Free queue thresholds and data buffer size are configurable values and a service library recompile is
required when these are changed.

 IBM / Rational software, 2006 Page 17 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.1.2 Message Send

The following example is the “worst case scenario” for a send by value and the data specified is too large to
fit in the buffer so memory must temporarily be allocated from the system heap. Typically, the data buffer
size value will hold the data avoiding a heap operation. Often, the malloc is the single most expensive part
of the operation.

1) Get an empty message body from this thread’s free queue.

2) Copy the signal and priority (in this case a General priority) in to the message body directly.

3) Malloc from system heap for temporary data buffer (only required if data element is too large for built
in buffer).

Note that the malloc is only required for a large block of sent data. Typically, sent data fits in the
message body buffer (the size of the buffer is configurable in the TargetRTS).

4) Data value copied into temporary buffer.

5) Pointer to temporary data buffer is updated in message body.

6) Enqueue the completed message body in the appropriate queue as indicated by the priority value in the
send statement.

 IBM / Rational software, 2006 Page 18 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.1.3 Message Receive

1) Message at the head of the highest non-empty queue is processed next (General priority queue is

shown in this example).

2) Capsule instance is identified by the destSAP field in the message body and the capsule behavior is
called via rtsBehavior(signal, port).

3) Upon completion of message processing (indicated by a return from the called capsule instance) the
temporary memory buffer, allocated when the message was sent, is released. Note that if the capsule’s
behavior kept a pointer to this data, it is now looking at garbage.

4) Message body is released to the receiving thread’s free queue. Any free queue imbalance is corrected
on an as needed basis. Typically, balance is achieved through normal message exchange between
threads.

 IBM / Rational software, 2006 Page 19 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.2 Inter-Thread Communication

4.2.1 Message Structures
In addition to the internal queue structure used for intra-thread communication, inter-thread communication
requires an incoming queue to hold the messages, an indication of highest priority and a mutex to protect
the message.

The internalQ is a list of messages to be dispatched to capsules
managed by this controller.

The incomingQ is actually a set of priority-ordered queues
(presented as a single queue here for simplicity).

Inter-thread queues are protected by mutual exclusion.

The incomingPriority is used to track the highest priority message
delivered to the incomingQ but which hasn’t been moved to the
internalQ.

Note that the incomingQ represents a set of priority ordered queues with each corresponding to an internal
queue. As the entire incomingQ is flushed, all external messages will be added into the appropriate internal
priority based queue.

This design provides optimal performance by minimizing the number of mutex claims for incomingQ
flushing. In highly concurrent systems with multiple threads, the overhead for inter-threads sends can be
reduced significantly on a per message basis.

 IBM / Rational software, 2006 Page 20 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.2.2 Message Send

The following example is the “worst case scenario” for a send by value and the data specified is too large to
fit in the buffer so memory must temporarily be allocated from the system heap. Typically, the data buffer
size value will hold the data avoiding a heap operation. Often, the malloc is the single most expensive part
of the operation.

An inter-thread message send begins just like an intra-thread message send.

1) Get an empty message body from this thread’s free queue.

2) Copy signal and priority in message body directly.

3) Malloc from system heap for temporary data buffer (only required if data element is too large for built
in buffer).

Note that as in the intra-thread case, the malloc is only required for a large block of sent data.
Typically, sent data fits in the message body buffer (the size of the buffer is configurable in the
TargetRTS).

4) Data value copied into temporary buffer.

5) Pointer to temporary data buffer is updated in message body.

6) Claim mutex for the receiving side’s incoming queue. Note that we’ve waited until we need it to
minimize blocking.

7) Message body is enqueued in the receiving side’s incoming queue in the queue of the correct priority.

8) Update the incoming priority indicator to reflect the highest priority of all messages enqueued in the
receiving side’s incoming queue.

9) Free the mutex for the receiving side’s incoming queue.

 IBM / Rational software, 2006 Page 21 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.2.3 Message Receive

1) First check to see if a message in the incoming queue has a higher priority that all internal messages. In

this example that is the case.

2) Need to claim the mutex to ensure protected fields can be updated safely.

3) Flush all messages from the incoming queue, regardless of their priorities, and add these messages to
the corresponding internal priority based queues.

4) Reset incoming priority indicator to empty.

5) Release the mutex. Note that we only hold a mutex as long as absolutely necessary to minimize
blocking.

6) Message at the head of the highest non-empty internal queue is processed next (General priority
message just flushed from incoming queue).

7) Receiving capsule instance is identified by the destSAP field in the message body. Capsule behavior is
called: rtsBehavior().

8) Upon completion of message processing, indicated by a return from the called capsule instance, the
temporary memory buffer that was allocated when the message was sent, is released.

9) Message body is released to the receiving thread’s free queue; any free queue imbalance is corrected
on an as needed basis. Typically balance is achieved through normal message exchange between
threads.

 IBM / Rational software, 2006 Page 22 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.2.4 Message Ordering

1) General priority message 1 is queued

2) General priority message 2 arrives from another thread

3) General priority message 3 is queued by this thread

Message 1 is processed first

Message 3 is processed before 2

Messages in the incoming queues are moved to the corresponding
internal queue, if the highest priority external message is higher than
all queued internal messages

This slide allows a discussion of the fact that time sequence of messages is not guaranteed for messages of
the same priority that are arriving from the same thread and other threads within a burst.

The design is done this way to reduce the number of mutex claims. In this case several messages may be
received and sorted by priority for a single mutex claim.

Interestingly for most designs this is exactly the dispatch algorithm wanted: exhaust the work at a given
priority on the internal queues, before looking for “new” work on the external queues.

 IBM / Rational software, 2006 Page 23 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

4.3 Performance
From the application’s perspective, there is no difference between sending a message within a thread and
sending a message across threads, the code is still the same:

portName.outSignal(data).send(priority);

There is however some performance implications where inter-thread communication is approximately 10-
20 times more “expensive” than intra-thread communication1. But consider that the inter-thread
performance includes the cost of two mutex claims and a context switch, which would be the equivalent
cost if conventional cross thread protection was used, for example, semaphores.

For optimal performance:

• Virtual function call on simple object is fastest – This does not take into account the logic to
identify the receiver object, which can involve a lengthy search and is dependent on the design, or
the logic to identify the appropriate response that is required.

• Intra-thread send is fastest for an indication – The identity of the receiver object is determined by
the port connections and the appropriate response is determined by the receiver’s state machine.2

• Intra-thread invoke is fastest for a query – The synchronous invoke is supported for intra-thread
capsule interactions, but it’s suggested that use be restricted to special situations that require
synchronization, such as thread-local resource allocation.

• Avoid inter-thread interactions wherever possible – Optimal designs should attempt to place
capsule that have “an intense message dialog” on the same thread.

4.3.1 Threading Recommendations
A key strategy is to minimize the number of physical threads as these consume a lot of memory resources
(stack, queues, and so on). Also, the more physical threads that are defined, the more CPU cycles are spend
on context switching. Intra-thread sends are much more efficient than inter-thread sends so keep as many
capsules on as little a number of threads as possible.

The capsule concurrency technology offered by IBM Rational Rose RealTime, helps reduce the need for
physical threads where you only need threads for “general logic” and for each blocking I/O interface. A
sanity watchdog thread is also useful in more sophisticated designs.

Logical threads3 also help reduce the number of physical threads by allowing designers more flexibility in
specifying precise threading decisions. There is no cost for using logical threads and they are a great tool to
allow teams to delay decisions on physical thread mappings until preliminary performance data is in and
intelligent mapping decisions can be made.

1 This is a general comment as actual numbers will vary depending on the reference target, chip set, chip speed, and

optimization settings.
2 This same concept applies to invokes as well.
3 This is a concept unique to IBM Rational Rose RealTime.

 IBM / Rational software, 2006 Page 24 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5. Configuring and Customizing the Target Service Library
This section discusses the different ways that are available for customizing the Target Service Library.
After this section you should know what configuration options are available and how to change them,
understand how to change the classes, functions and definitions contained in the Target Service Library
source code, understand how to compile and link customizations in with your model, and how to compile
the Target Service Library.

5.1 Organization of the TSL Source
The implementation of the TSL is contained in the $RTS_HOME/src directory. In this directory, there is a
subdirectory for each class. In general, within each subdirectory there is one source file for each method in
the class. Wherever possible, the name of the source file matches the name of the method.

Much of the configurability of the Service Library is done at the source code file level, where target-
specific source files override common source files.

5.2 Changing the TSL Functionality
There are several different ways of changing the functionality of the Target Service Library and requires
the recompilation of the TSL, the model or both.

• You will need to recompile the TSL and model if you; reconfigure the TSL by overriding the
preprocessor macros defined in RTConfig.h or modify the TSL build options in the libset.mk,
target.mk, config.mk make files, or customize the TSL by overriding or adding source to
$RTS_HOME/src/target/<target>.

• You will need to recompile only the model if you override pre-defined capsule methods from
within the toolset, or override or add TSL methods and classes using the overrides makefile.

 IBM / Rational software, 2006 Page 25 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.3 Predefined Configuration Options

There are several configuration options that can be used to change the behavior of the Target Service
Library. This is not an complete list, but most of the following options are defined in the
$RTS_HOME/include/RTConfig.h file.

• OTRTSDEBUG - Determines how much of the TSL debugger should be present;
DEBUG_VERBOSE enables the TargetRTS debugger, DEBUG_TERSE limits the amount of
debug information, and DEBUG_NONE eliminates any debug information output and will reduce
the executable size, while increasing performance.

• LOG_MESSAGE - Determines whether the RTActor::logMsg function is called after delivering
each message.

• DEFER_IN_ACTOR - Determines if a defer queue is maintained for every capsule or the default
of each controller. Maintaining a defer queue for every capsule will improve speed of defers and
recalls but adds memory overhead.

• RTS_COUNT - Used to keep track of the number of messages sent, the number of capsules
incarnated, and other statistics. Naturally, keeping track of statistics adds overhead

• PURIFY - This hides some allocation and deallocation events from tools like Rational Purify but
will cause degradation in performance

• RTMESSAGE_PAYLOAD_SIZE - Reserve this many bytes in RTMessage for small objects.
When data must be copied, objects that are no larger than this will use that space in the message
itself rather than allocated on the heap.

• MINIMUM_FREE_MSGQ_SIZE - When freeing a message, keep at least this many messages
in the Controller's free list.

• DEFAULT_FREE_MSGQ_SIZE - When freeing a message, keep at most this many messages
in the Controller's free list.

• INLINE_CHAINS – When this option is specified, transition code chains are inserted directly
into the code. This improves the performance of the executable, but it also causes the size of an
actor to be slightly larger (about .5K).

• USE_THREADS - Determines whether the single-threaded or multi-threaded version of the
TargetRTS is used. This option is not defined in the RTConfig.h file and should be set in the
$RTS_HOME/target/<target>/RTTarget.h file.

For specifying operating system specific definitions, options should be overridden in the
$RTS_HOME/target/<target>/RTTarget.h file.

For specifying compiler specific definitions, options should be overridden in the
$RTS_HOME/libset/<libset>/RTLibSet.h file.

 IBM / Rational software, 2006 Page 26 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.4 Predefined build options

The build options used to compile both the Services Library and model can be configured in one of the
makefiles.

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to compile both the
TargetRTS libraries and the model. The target.mk, libset.mk and config.mk makefiles override the
defaults defined in $ROSERT_HOME/libset/default.mk. These are the makefiles that you can edit.

The main.nmk (nmake for Windows) or main.mk (make for UNIX) is the main definition for compiling
the TargetRTS libraries. These makefiles should not be customized, and will not be discussed further in
this document.

The default.mk file contains the default macro definitions that may be overridden by the platform-
specific makefiles.

The target.mk file contains the definition specific to the target operating system.

The libset.mk file contains the definition specific to the compiler.

The config.mk file contains the definition specific to the combination of the compiler, operating system,
and TargetRTS configuration.

5.5 Overriding TSL Source
The implementation of the Services Library is in the $RTS_HOME/src directory. Any method in the
Services Library can be overridden by placing a target specific version of the method into the
$RTS_HOME/src/target/<target_base> subdirectory:

The most common reason for overriding methods in the Target Services Library is to change the way in
which it is initialized, modify the main message processing, or add platform specific implementations
(porting)

Some interesting methods in the Target Services Library that could be candidates for overriding are:

• mainLoop()

• targetStartup()/targetShutdown()

• retrieveEvents()

• wakeUp()

 IBM / Rational software, 2006 Page 27 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.5.1 The mainLoop() method

The mainLoop() function is typically overridden if you want a message handling strategy that is different
than the Rose RealTime default, if you need to receive messages from other applications, if you need to
enhance the signal handling performed by the Services Library, or if you need to perform regular sanity
checks or audits

To create a controller object that has its own mainLoop() function but is not directly overriding one of the
Rose RealTime controllers, create a subclass of RTPeerController, change the mainLoop() function, then
specify the new subclass when you assign your threads in the thread browser (this is done through the
properties dialog on a physical thread).

If you override the mainLoop() function on a Rose RealTime controller class, all controllers incarnated
from that class will have the same overrides. This may or may not be desirable.

5.5.2 The targetStartup()/targetShutDown() method
The targetStartup()/targetShutdown() methods are typically overridden to initialize and cleanup device
drivers that are specific to the target environment, to setup and cleanup any OS specific services (such as
clock timings etc.), to initialize any target specific libraries or structures that are needed by the Target
Services Library, or to initialize signal handlers.

5.5.3 Overriding other TargetRTS code
These are not the only methods that you can override. Because of the way that the Target Services Library
code is organized, you can override any Target Services Library method

5.6 Customizing the Target Service Library
As we have seen the Target Services Library can be customized for several reasons. How and which Target
Services Library files are to be modified will depend on the type of customization required.

Type of customization Files to be modified

Overriding preprocessor macros
defined in RTConfig.h

• $RTS_HOME/libset/<libset>/RTLibSet.h
or
• $RTS_HOME/target/<target>/RTTarget.h

Modifying the Services Library
build files

• $RTS_HOME/libset/<libset>/libset.mk
or
• $RTS_HOME/config/<target>.<libset>/config.mk
or
• $RTS_HOME/target/<target>/target.mk

Overriding Services Library
source files

• $RTS_HOME/src
• $RTS_HOME/src/target/<target>/

After it is determined which files are to be modified, the next decision is how to modify them. Refer to the
Adapting Rational Rose RealTime for Target Environments porting guide for using the TargetRTS wizard.

 IBM / Rational software, 2006 Page 28 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.6.1 Preferred Method

The preferred method is to create a new libset and/or target. The pros to this approach are that its light
weight and the original Service Libraries can still be used. The instructions for this approach are:

• Make a copy of the following directories and rename them to something appropriate:

o (for libset port): $RTS_HOME/config/<target>.<libset> and
$RTS_HOME/libset/<libset>

o (for target port): $RTS_HOME/target/<target>

• Then modify the files needed within the new config, libset, and/or target directories.

• If Services Library source files are to be overridden add them to $RTS_HOME/src/target/<target>
and when the Service Library is built, these directories are searched first.

5.6.2 Temporary Solutions
One temporary solution is to make a copy of the entire $RTS_HOME directory then modify the files in
place. The pros to this approach are that it is very simple and can be used if you don’t have write access to
$ROSERT_HOME. A consequence is that it is very heavy weight as you will need enough disk space to
hold a duplicate copy of $RTS_HOME (greater then 35MB).

Another temporary solution is to modify the files in place. The consequence here is that it is difficult to
manage in that the original files and libraries will be lost.

5.7 Compiling the Target Service Library
Once changes have been made to the Target Services Library the last step is to build it. In addition to the
TargetRTS wizard, you can also build from the command line. The Target Services Library can be built
from $RTS_HOME/src. Run the make utility with the platform name that is to be built: make
CONFIG=<target>.<libset>

• Example (UNIX): make CONFIG=SUN5T.sparc-gnu-2.8.1Debug

• Example (WINNT): nmake CONFIG=NT40T.x86-VisualC++-7.1

 IBM / Rational software, 2006 Page 29 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

5.8 Using the new Target Service Library

After the Services Library is rebuilt, your model must be rebuilt in order to link with the new Services
Library. Select the new Target Configuration from the Component Specification.

5.9 Overriding Predefined Capsule Operations
Some Target Services Library methods can be overridden from the toolset. The advantages to this approach
are there is no need to modify Target Services Library files, you can scope behavior changes to specified
capsules, and there is no need to recompile the Target Services Library.

Methods that can be overridden are:

• unexpectedMessage()

• unexpectedState()

• logMsg()

To override any of these functions, add an operation from the capsule class with the same name and
prototype.

5.9.1 Process for Overriding Operations
It is possible to override any Target Services Library method without having to recompile the Target
Services Library.

• Copy the function file that you plan to override from the directory where it is located in the
TargetRTS source tree ($RTS_HOME/TargetRTS/src/…) to a local directory.

 IBM / Rational software, 2006 Page 30 of 31

IBM Rational Rose RealTime Version: 1.1
Target Service Library Date: 2006 March 29

 IBM / Rational software, 2006 Page 31 of 31

• Make the changes that are required to the <function.cc> file then create an override makefile.

• From the toolset, configure the model to use the override makefile then compile the model.

5.10 Override Makefile - Example
This example shows an override makefile that will compile and link a custom mainLoop() function into a
model.

LOCAL_DIRECTORY = $(COURSE_DIR)/Exercises/M9-Customizing
USER_OBJS = mainLoop$(OBJ_EXT)

mainLoop$(OBJ_EXT) : $(LOCAL_DIRECTORY)/mainLoop.cc
 $(OTCOMPILE_CMD) \
 $(USER_CC) $(CC_HEAD) $(RTUPDATE_CCFLAGS) \
 $(RTUPDATE_INCPATHS) $(GENERATE_INCPATHS) \
 /TP $(LOCAL_DIRECTORY)/mainLoop.cc $(CC_TAIL)

5.11 Testing the TargetRTS Port
A port to a new platform requires testing the TargetRTS. There are some standard Rational Rose RealTime
models that are part of the product installation and can be used to test the functionality of the TargetRTS.
These tests are not comprehensive but provide some assurance that the port was successful.

For more information, reference the Testing the TargetRTS Port section in the Adapting Rational Rose
RealTime for Target Environments porting guide.

	Introduction
	Purpose
	Scope
	Definitions, Acronyms, and Abbreviations
	Overview

	References
	Target Service Library Architecture
	Key Responsibilities
	The Target Service Library
	Target Service Library Features

	Structure and Role of the Components
	TSL Component Overview
	Capsules
	RTActorClass
	RTActor
	RTActorRef

	Ports
	RTProtocol
	RTInSignal
	RTOutSignal

	TSL Behavioral Overview
	Controllers
	RTController
	RTController Structure Model

	How Threads are Used
	Threads
	Single-Threaded Target Service Library
	Multi-Threaded Target Service Library
	Initialization of the Target Service Library

	Intra-thread and Inter-thread Communication
	Intra-thread Communication
	Message Structures
	Message Send
	Message Receive

	Inter-Thread Communication
	Message Structures
	Message Send
	Message Receive
	Message Ordering

	Performance
	Threading Recommendations

	Configuring and Customizing the Target Service Library
	Organization of the TSL Source
	Changing the TSL Functionality
	Predefined Configuration Options
	Predefined build options
	Overriding TSL Source
	The mainLoop() method
	The targetStartup()/targetShutDown() method
	Overriding other TargetRTS code

	Customizing the Target Service Library
	Preferred Method
	Temporary Solutions

	Compiling the Target Service Library
	Using the new Target Service Library
	Overriding Predefined Capsule Operations
	Process for Overriding Operations

	Override Makefile - Example
	Testing the TargetRTS Port

