
Create and consume Web services
using a simple and powerful tool
June 2006

SOA made simple with EGL.
Bob Cancilla
Product Market Manager, Rational Tools for
System i and System z

SOA made simple with EGL.
Page 2

2	 Introduction

3		 Services	and	languages

4	 The	benefits	of	EGL

4	 Creating	a	service	with	EGL

10	 Consuming	a	service	with	EGL

16	 EGL	does	more…

19	 EGL	is	committed	to	SOA

Contents
Introduction

Service-oriented architecture (SOA) has become the catchphrase of many ven-
dors and consultants throughout the IT industry. What is SOA? In a nutshell,
SOA is the creation of small reusable components of application systems that
isolate logical functionality.

“Services” are modular components of business logic. Today, many business
applications exist as large monolithic programs with data access, business logic
and user interfaces embedded in the same programs. These systems often
have redundant code that performs the same functions in many programs.
SOA provides architecture (or structure) to isolate business functionality into
small reusable components that can be assembled into larger systems. This
componentization separates presentation from the underlying business logic,
improving the stability and maintainability of the modern enterprise.

In addition to improving the maintainability of internally developed systems
via modularization, SOA allows you to interact with customer and other
vendor systems. Functions or services provided by external parties can be
integrated with internally developed systems.

SOA made simple with EGL.
Page �

Consider a Web-based order-processing system. After a customer places an
order, he or she selects a shipping method. The system can utilize the ship-
per’s remote services to calculate the shipping cost. It also may use an external
sales tax calculation service to calculate the applicable taxes for the order.

SOA is very similar to traditional modular programming but now extends the
reach of services—or modular components—beyond any specific hardware
platform, programming language or even geographical location.

Services and languages

A service should focus on the goal of performing a business function. When
you look at the concept of creating services that can be invoked from any-
where within your enterprise or via the Internet, communications can add
layers of complexity to the use of services.

SOA has been associated with the Java™ language. The reality is that SOA
services can be created from virtually any computer language. The key to creat-
ing a service is building the interface that enables your service to be invoked
anywhere it is required. Many IBM tools—including the IBM WebSphere®
Development Studio Client for System i™ servers, IBM WebSphere Development
for System z™ servers, as well as the IBM Rational® Application Developer or
IBM Rational Software Architect system—can all create services.

If you are new to services and if protocols such as Simple Object Access
Protocol (SOAP) or Web Services Description Language (WSDL) are intimi-
dating, you may want to look at simple alternatives. Enterprise Generation
Language (EGL) hides the complexity of middleware and Web protocols,
allowing you to concentrate on the business requirement.

SOA made simple with EGL.
Page �

The benefits of EGL

A platform-neutral development environment, EGL offers both a simple
language and powerful tools to automate the creation and consumption of ser-
vices. It allows you to leverage a single development environment and deploy
applications to any supported environment (e.g., IBM AIX®, IBM i5/OS®,
Linux®, Microsoft® Windows® or IBM-supported versions of UNIX®). You also
can develop Web applications, IBM 5250 code, batch applications and—soon—
rich client GUI applications.

Following is a simple example of creating a Web service with EGL, and then
consuming that service.

Creating a service with EGL

To demonstrate the simplicity of EGL and creating a service, let’s create a
simple currency conversion service. The following example was built using IBM
WebSphere Development Studio Client for iSeries™ Advanced Edition software.

SOA made simple with EGL.
Page �

To create a service in EGL:

Create an EGL Web project.

Create a package to contain your services in the EGLSource folder.

Create a service.

Write the business logic for your service.

Generate the EGL Service Binding Library.

Test your service using the Web Service Explorer.

1.

2.

3.

4.

5.

6.

SOA made simple with EGL.
Page 6

First, create an EGL dynamic Web project. We named our project “Currency-
Service.” Next, create a package and call it “services” within the EGLSource
folder. Select and right-click on the “services” package; select “New” and
then “Service.”

In the wizard, name the service (we called ours “currencyService”). EGL will
create a template service with a template function. Just customize the template
to meet your requirements.

Figure 1: Service template

We will now replace the function prototype with our currency conversion function.

Figure 2: Completed function

SOA made simple with EGL.
Page �

Our goal is to demonstrate the simplicity of creating a service. The key point
of this example is that we can determine our service input parameters, and the
system will select the appropriate calculation and return two output param-
eters to the invoking program.

Depicted in figure 2 is our currencyService. This service has a single function
called “convertCurrency(*).” It will have two input parameters:

country—a string that will contain the code for the country to whose

currency we wish to convert

usamt—the amount in U.S. dollars that we wish to convert

There are two output parameters returned from the service:

cvtamt—the converted amount based on the exchange rate for the country

text—a character string that describes the result

•

•

•

•

SOA made simple with EGL.
Page �

The code uses a simple CASE expression to determine the currency conver-
sion to use. The code then performs a simple calculation and returns two
parameters as the result.

Figure 3: Generate the EGL Service Binding Library.

The next step is to save the service created. Select the Project Explorer view,
right-click in the view and select “Create EGL Service Binding Library…”
from the context menu.

SOA made simple with EGL.
Page �

Figure 4: Service Binding Library

EGL generates all of the underlying XML, WSDL and program code necessary
to deploy and run your service.

You may now test the service in your development environment using the Web
Service Explorer tool built into the program.

SOA made simple with EGL.
Page 10

Consuming a service with EGL

Now that we have created a functional service, we will consume the service in
a JavaServer Faces (JSF) Web page.

We start by expanding the project we just created. Select the WebContent
folder, right-click and select “New.” Now select “Faces JSP File” from the
menu. In the wizard that follows, we provide a name and select a page tem-
plate—which will give us our look and feel.

To consume a service in EGL via a JSF Web page:

Use a service in the same or different project, or import a WSDL file into

the project.

Create a JSF JavaServer Pages (JSP) file.

Use the Page Data view to import a service into your JSF JSP file.

Drag and drop the service onto the Web page.

Drag and drop the function you wish to execute on top of the Submit button.

Run the Web page on your integrated WebSphere test environment server.

Figure 5: Import the EGL service.

In the new JSF JSP file workspace that’s open on your desktop, click in the
Page Data view. Now, right-click and select “EGL Service” from the menu.

1.

2.

3.

4.

5.

6.

SOA made simple with EGL.
Page 11

Figure 6: Add the service.

The Add Service dialog appears. In this case, there is the single service that
we just created and the single function “convertCurrency(*).” If there were
other services available to the project or other functions within the service,
they would be displayed and available for selection. In our case, we do nothing
but click the Finish button.

You will now see the service that we created appear in the Page Data view. We
need only drag and drop the service onto the JSF Web page in the large Page
Designer view of the tools.

SOA made simple with EGL.
Page 12

Figure 7: Drag and drop the service on the Web page.

As you can see in figure 7, we select the service in the Page Data view (lower
left corner of the figure; note the blue circled “F”). We drag and drop the
service onto the Web page as illustrated.

SOA made simple with EGL.
Page 1�

Figure 8: The Insert Service dialog

As illustrated in figure 8 above, EGL will discover and list the input and output
parameters. Because of the nature of the XML or WSDL file, EGL will display
all of the parameters as input. Since we know that “cvtamt” and “text” are
output parameters, change them to output fields as indicated in the illustration.
Note that the illustration also shows that we have clicked the Options button
and changed the name of the Submit button (to “Go”) generated on the page.

SOA made simple with EGL.
Page 1�

Figure 9: Generated Web page

Figure 9 illustrates the Web page with the fields and data bindings generated
from the service by the wizard.

The last step in the process is to bind the function “convertCurrency(*)” to the
Go (Submit) button.

Figure 10: Bind the function to the Go (Submit) button.

SOA made simple with EGL.
Page 1�

Once you have bound the function to the Go button, save your JSP file and
run it in the integrated WebSphere test environment.

Figure 11: Run your JSP file on the server.

Select your JSP file in the WebContent folder (figure 11). Right-click on the
file icon, select “Run” and then select “Run on Server….” If this is the first
time you are running the file, a dialog will appear. Click “Finish” in the
dialog box.

SOA made simple with EGL.
Page 16

Figure 12: Finished Web page

As you can see, with only a few clicks and a bit of dragging and dropping, you
have created a Web page that consumes a Web service.

EGL does more …

If you wish to consume a public Web service, first locate the WSDL file for
the public Web service and save it to your workstation. Create a folder under
the WebContent directory (we called ours “WSDL”) and import the external
service’s WSDL file into the folder. Right-click and select “Generate EGL
Binding Library….”

Now when you right-click in the Page Data view and select “EGL Service,” you
will see the imported service. You can drag and drop the service just as we did
in the previous example with our own Web service.

SOA made simple with EGL.
Page 1�

Figure 13: An external Web service

Figure 13 illustrates how EGL can consume a public Web service. This service
may be located at: http://www.ignyte.com/webservices/ignyte.whatsshowing.
webservice/moviefunctions.asmx?WSDL.

SOA made simple with EGL.
Page 1�

Notice that with this service, we input a U.S. ZIP code and radius in miles.
The program returns a complex data structure consisting of two nested arrays.
EGL resolves the data structures and maps them to the Web page for you.

To use the public Web service described above:

Create an EGL Web project.

Create a directory for the WSDL file in the WebContent folder.

Import the WSDL file you previously downloaded into the WSDL directory.

Right-click the WSDL file and run the “Create EGL Binding Library…”

wizard.

Create a JSF JSP file.

In the Page Data view, use “EGL Service” to import the service into your

Web page.

Drag and drop the service onto the page.

Drag and drop the appropriate function from “Actions” in the Page Data

view onto your Submit button.

Save and run the application.

To achieve the look and feel illustrated in figure 13, you may want to edit the
JSP file utilizing a number of JSF facilities.

1.

2.

3.

4.

5.

6.

7.

8.

9.

SOA made simple with EGL.
Page 1�

EGL is committed to SOA

SOA is a generic conceptual architecture. While it uses standards from many
disciplines, there are no SOA standards that define it. IBM, BEA, IONA,
Oracle, SAP, Siebel Systems and Sybase are leveraging Eclipse technology
and a set of emerging standards to create Service Component Architecture, or
SCA. Unlike SOA, SCA will rely on a more robust framework and standards—
rather than Web services—to ensure the interoperability of companies that
wish to adopt SOA.

See an introduction to SCA at:

ibm.com/developerworks/library/specification/ws-sca

Information on the work that Eclipse is performing can be viewed at:

www.eclipse.org/stp

You can count on EGL to provide levels of abstraction and ease of use similar
to those you have seen in this paper. EGL will continue to hide technical com-
plexity, allowing customers to focus on the business problem at hand.

This paper is an introduction to EGL’s implementation of SOA. EGL has much
deeper capabilities than we could describe here. For more information on
Rational EGL functionality, visit:

ibm.com/software/awdtools/eglcobol

©	Copyright	IBM	Corporation	2006

IBM	Corporation	
Software	Group	
Route	100	
Somers,	NY	10589	
U.S.A.

Produced	in	the	United	States	of	America	
07-06	
All	Rights	Reserved

AIX,	i5/OS,	IBM,	the	IBM	logo,	iSeries,	Rational,	
System	i,	System	z	and	WebSphere	are	trademarks	
of	International	Business	Machines	Corporation	in	
the	United	States,	other	countries	or	both.

Java	and	all	Java-based	trademarks	are	trade-
marks	of	Sun	Microsystems,	Inc.	in	the	United	
States,	other	countries	or	both.

Linux	is	a	registered	trademark	of	Linus	Torvalds	in	
the	United	States,	other	countries	or	both.

Microsoft	and	Windows	are	trademarks	of	
Microsoft	Corporation	in	the	United	States,	other	
countries	or	both.

UNIX	is	a	registered	trademark	of	The	Open	Group	
in	the	United	States	and	other	countries.

Other	company,	product	and	service	names	may	
be	trademarks	or	service	marks	of	others.

The	information	contained	in	this	documentation	
is	provided	for	informational	purposes	only.	While	
efforts	were	made	to	verify	the	completeness	
and	accuracy	of	the	information	contained	in	this	
documentation,	it	is	provided	“as	is”	without	war-
ranty	of	any	kind,	express	or	implied.	In	addition,	
this	information	is	based	on	IBM’s	current	product	
plans	and	strategy,	which	are	subject	to	change	by	
IBM	without	notice.	IBM	shall	not	be	responsible	for	
any	damages	arising	out	of	the	use	of,	or	otherwise	
related	to,	this	documentation	or	any	other	docu-
mentation.	Nothing	contained	in	this	documentation	
is	intended	to,	nor	shall	have	the	effect	of,	creating	
any	warranties	or	representations	from	IBM	(or	its	
suppliers	or	licensors),	or	altering	the	terms	and	
conditions	of	the	applicable	license	agreement	
governing	the	use	of	IBM	software.

G507-1948-00

