Create and consume Web services
using a simple and powerful tool
June 2006

software

SOA made simple with EGL.

Bob Cancilla
Product Market Manager, Rational Tools for
System i and System z

SOA made simple with EGL.

Page 2
Contents
2 Introduction
3 Services and languages
4 The benefits of EGL
4 Creating a service with EGL
10 Consuming a service with EGL
16 EGL does more...
19 EGL is committed to SOA

Introduction

Service-oriented architecture (SOA) has become the catchphrase of many ven-
dors and consultants throughout the IT industry. What is SOA? In a nutshell,
SOA is the creation of small reusable components of application systems that

isolate logical functionality.

“Services” are modular components of business logic. Today, many business
applications exist as large monolithic programs with data access, business logic
and user interfaces embedded in the same programs. These systems often

have redundant code that performs the same functions in many programs.
SOA provides architecture (or structure) to isolate business functionality into
small reusable components that can be assembled into larger systems. This
componentization separates presentation from the underlying business logic,

improving the stability and maintainability of the modern enterprise.

In addition to improving the maintainability of internally developed systems
via modularization, SOA allows you to interact with customer and other
vendor systems. Functions or services provided by external parties can be

integrated with internally developed systems.

SOA made simple with EGL.
Page 3

Consider a Web-based order-processing system. After a customer places an
order, he or she selects a shipping method. The system can utilize the ship-
per’s remote services to calculate the shipping cost. It also may use an external

sales tax calculation service to calculate the applicable taxes for the order.

SOA is very similar to traditional modular programming but now extends the
reach of services—or modular components—beyond any specific hardware

platform, programming language or even geographical location.

Services and languages

A service should focus on the goal of performing a business function. When
you look at the concept of creating services that can be invoked from any-
where within your enterprise or via the Internet, communications can add

layers of complexity to the use of services.

SOA has been associated with the Java™ language. The reality is that SOA
services can be created from virtually any computer language. The key to creat-
ing a service is building the interface that enables your service to be invoked
anywhere it is required. Many IBM tools—including the IBM WebSphere®
Development Studio Client for System 1™ servers, IBM WebSphere Development
for System z" servers, as well as the IBM Rational® Application Developer or

IBM Rational Software Architect system —can all create services.

If you are new to services and if protocols such as Simple Object Access
Protocol (SOAP) or Web Services Description Language (WSDL) are intimi-
dating, you may want to look at simple alternatives. Enterprise Generation
Language (EGL) hides the complexity of middleware and Web protocols,

allowing you to concentrate on the business requirement.

SOA made simple with EGL.
Page 4

The benefits of EGL

A platform-neutral development environment, EGL offers both a simple
language and powerful tools to automate the creation and consumption of ser-
vices. It allows you to leverage a single development environment and deploy
applications to any supported environment (e.g., IBM AIX®, IBM i5/0S°,
Linux®, Microsoft® Windows® or IBM-supported versions of UNIX®). You also
can develop Web applications, IBM 5250 code, batch applications and —soon —
rich client GUI applications.

Following is a simple example of creating a Web service with EGL, and then

consuming that service.

Creating a service with EGL
To demonstrate the simplicity of EGL and creating a service, let’s create a
simple currency conversion service. The following example was built using IBM

WebSphere Development Studio Client for iSeries™ Advanced Edition software.

SOA made simple with EGL.
Page 5

To create a service in EGL:

Create an EGL Web project.

Create a package to contain your services in the EGLSource folder.
Create a service.

Write the business logic for your service.

Generate the EGL Service Binding Library.

SR o~

Test your service using the Web Service Explorer.

o Frojedt Explorar X

- Lig Dynamic Web Projects #
= 1:’ CurrencySerice B!
= .,_1 EGLSouwrce
1 (default package)
(1] com
(T comibm
(1] com.ibm.eql
- ;[, com.ibm.eql jsf
F currencyService.ed
[& currancyService_Sar

+ 1 pogehanders

9a| CurrencyService eghld

SOA made simple with EGL.
Page 6

First, create an EGL dynamic Web project. We named our project “Currency-
Service.” Next, create a package and call it “services” within the EGLSource
folder. Select and right-click on the “services” package; select “New” and

then “Service.”

In the wizard, name the service (we called ours “currencyService”). EGL will
create a template service with a template function. Just customize the template

to meet your requirements.

packaye ssrvicea:

£ sepvice
Service curenc yserulcs’

/¢ Function Declarations
(x] Tunction functionMame (parameterName parameterType in] returns(recurnType)

L
endd

enid

Figure 1: Service template

We will now replace the function prototype with our currency conversion function.

Erermled W wetibome | Loeenoderioned |
packayr SECViIcEd;

BEEFISE

Service ouwreneyierview

Fiitsert kien BeslaEab iena
funcbish convertCUSTEROV(SOEnEEY Strimg in, usast dscimal (9,51 1A,
oviamt devimal (F.3] uml, Lext siring wul}
case (councoy)
slin ["EUR")
EvEmm: = ummmm ¥ . TT7SA;
TEAT = “EmpoT}
when [FCADT)
EVEARE & WEamt Y 3, 10%31
Rt = "Candian Dollare"s

wiven [“TEF<}
cvtant = msame ¥ 5. 05091
LENE = *French Frass=)
ulherwise

rveamy = O
LeNt & "Countcy Unknown™:
enal // End of EASE NTATERENE

and erd of Somvertlusteaty fusditisn

eral and &f sarvice

Figure 2: Completed function

SOA made simple with EGL.
Page 7

Our goal is to demonstrate the simplicity of creating a service. The key point
of this example is that we can determine our service input parameters, and the
system will select the appropriate calculation and return two output param-

eters to the invoking program.

Depicted in figure 2 is our currencyService. This service has a single function

called “convertCurrency(*).” It will have two input parameters:

* country—a string that will contain the code for the country to whose
currency we wish to convert

* usamt—the amount in U.S. dollars that we wish to convert
There are two output parameters returned from the service:

* cvtamt—the converted amount based on the exchange rate for the country

* text—a character string that describes the result

SOA made simple with EGL.
Page 8

The code uses a simple CASE expression to determine the currency conver-

sion to use. The code then performs a simple calculation and returns two

parameters as the result.

Galery =0
+ L§ EGL Frojects
= g Erterprse Spplestions
L= Application Chent Projects
= L& Cornector Projects
= L E18 Projects
= L@ Dyname Web Projects
= _5 CUrrEre yIervice
= (M EGlsowce
[1] (default package)
(1] cam
(1] com.bm
(1] eam.iben.egl
@ [com.iben.egls
4 (1) pagehanders
=W services
LHM M 3
L' CLINEncy
wzl CurrencySes Oipen
u Wb St:Nmﬂ';:l Open With 3
+ ‘g Deploymient Des
[Java Resources |2 Copy
4= EGlbn "t
+ [WebConberic G
+ 42 EGLWeb Mo
+ ‘l_—‘.' Movies REMAME. ..
| Ciher Prajects M Delete
2 (g Web Services
= L[) Databases =g fmport...
+ L0 Daksbase Servers o Expert...
2 Run Validation

®

0] Page Daka 52 Dutlire
Ho data companents found.

Estrack EGL Interface. ..

Dpen in Paks Let
Open n Parts Refererce

Figure 3: Generate the EGL Service Binding Library.

The next step is to save the service created. Select the Project Explorer view,

right-click in the view and select “Create EGL Service Binding Library...”

from the context menu.

SOA made simple with EGL.
Page 9

service_ServiceBindinglib.egl X

package services;

library currencylervice_ServiceBindingLib type ServiceBindingLibrary

currencydervice currencydervice{feglBEinding {
comoType=local,
serviceName="currencyService”,
servicePackage="services"}};

/*ocurrencyServiceWeb currencyService{fwebBinding {
wsdlFile="JebContent/WEB- INF/ wadl/eurrencyService, vsdl®,
wsdlService="currencyServiceService®,
wsdlPort="currencydervice”}};

emnd

Figure 4: Service Binding Library
EGL generates all of the underlying XML, WSDL and program code necessary

to deploy and run your service.

You may now test the service in your development environment using the Web

Service Explorer tool built into the program.

SOA made simple with EGL.
Page 10

Consuming a service with EGL

Now that we have created a functional service, we will consume the service in

a JavaServer Faces (JSF) Web page.

We start by expanding the project we just created. Select the WebContent
folder, right-click and select “New.” Now select “Faces JSP File” from the
menu. In the wizard that follows, we provide a name and select a page tem-

plate —which will give us our look and feel.
To consume a service in EGL via a JSF Web page:

1. Use a service in the same or different project, or import a WSDL file into
the project.
. Create a JSF JavaServer Pages (JSP) file.
. Use the Page Data view to import a service into your JSF JSP file.
. Drag and drop the service onto the Web page.
. Drag and drop the function you wish to execute on top of the Submit button.

S L AW o

. Run the Web page on your integrated WebSphere test environment server.

< I | >

0} Page Data X

¥ ? Scripting Yarisbles
+-55; testWs2
Design | Source | Preview

[rroperties &2 Quick Edit Servers Console | Problems G

harlv Content area name:

Stripting Yariabls v

£ Web Segvice

[@ EJ8 Session bean

[T Relational Record List

—_—

Figure 5: Import the EGL service.

In the new JSF JSP file workspace that’s open on your desktop, click in the

Page Data view. Now, right-click and select “EGL Service” from the menu.

SOA made simple with EGL.
Page 11

& hdd Service

Wil Servioe

Saleet & sk Sarvice 2l & Punetion, ‘%

Semct & Servics
\atiabig

Selact & function:

[] oo |

L

Figure 6: Add the service.

The Add Service dialog appears. In this case, there is the single service that
we just created and the single function “convertCurrency(*).” If there were
other services available to the project or other functions within the service,
they would be displayed and available for selection. In our case, we do nothing
but click the Finish button.

You will now see the service that we created appear in the Page Data view. We
need only drag and drop the service onto the JSF Web page in the large Page

Designer view of the tools.

SOA made simple with EGL.
Page 12

2 progect Explarer £ Gallery =[5 *nestwrsz.psp
020 5w | RedtWSEEp - bestWis2 jap ¢
U EGL Prejecks
|/& Enterpeiss Appications
({1 daplication Chenit Projects
L@ Connector Profects
L EM Frojects
9B Dnasic web polects “Web Service Basic Test
=52 CurencyService pa—. <
+ 1 ELsource FES
[Weh Site Navigation £l
+ "3z Deployment Descriptar Cusen: ‘i'.
L lava Resaurces Drop here to insert e
+ (= EGLbin centras g:r ?
rtCure
EHS WebCortent sﬂnufurﬁl:ntva-;:?l(':\do‘.nwrt}‘amt
¥ [METRANF detimal, ket ring)”
H- (= theme
¥ [WEBINF
5] eurCanert. jsp
[testws.jsp
5] beskWSZ.jsp
| whiesguace.jpg
+ 2 EGLWeb
¥ 52 Movies
() Cther Projects
3 Web Servces
() Databasss
L) Database Servers

(IR I

o)
=

[Pags Data X

%% Soipting Yarables
= 2 eurrencyService - currencyService
cormvertCurrency ¥ Design Source | Prediew

Figure 7: Drag and drop the service on the Web page.

As you can see in figure 7, we select the service in the Page Data view (lower

left corner of the figure; note the blue circled “F”). We drag and drop the

service onto the Web page as illustrated.

SOA made simple with EGL.
Page 13

© Insert Service
Input Form
Configurs the data contrds for the input Form IEQ
Fields to display:
Fiel Name | Label | contrel Type [
[couritry (string) Country: Input Fighd with mess: _'_l
[usank: (decimal) Usamt: Iriput Figd with mess:
[evtanit (decinal) Crtamt: Quipet field -
[text (string) Text! Cutput figld -

& Options

L2

Buttons ILahuIs] Advanced 1
Butbons to create:

I¥ submi buttan
Label: | Go
[Delate button

) e e || T

lII Cancel
| oo o] cmet |

Figure 8: The Insert Service dialog

As illustrated in figure 8 above, EGL will discover and list the input and output
parameters. Because of the nature of the XML or WSDL file, EGL will display
all of the parameters as input. Since we know that “cvtamt” and “text” are
output parameters, change them to output fields as indicated in the illustration.
Note that the illustration also shows that we have clicked the Options button
and changed the name of the Submit button (to “Go”) generated on the page.

SOA made simple with EGL.
Page 14

| bk, jop - besbWSE 5 El= td

“Web Service Basic Test |

Figure 9: Generated Web page

Figure 9 illustrates the Web page with the fields and data bindings generated

from the service by the wizard.

The last step in the process is to bind the function “convertCurrency(*)” to the

Go (Submit) button.

Hr] COr_oneerL. ea

T testwS.jsp "J
5] testisz s %{Er{ar Messages}
N - -
o Ll whitasqueere. 1) ' Drophere to bind
- ELWeb % WS _eLrTenKySenios _punant
* 'i-_f Moies yoervice_cerwertOurency Ak
¥ Cithar Progects ian" bo bhe comtral "buttend™
+ L Web Services
+] Datzbases
+ L[] Database Servers
L >

w Seripting Variables
-1 A2 ourencyService - currencySersice

¥ 3 coretCurencp(touniey stang, uss Design Source Prasiew
[Tl Praperties 23 . Quick Edt | Servers Con

hesoiptCalocter | Colltype: O Hea

WS _CLITENCYSErvcE_CLITENCYSerh

Figure 10: Bind the function to the Go (Submit) button.

SOA made simple with EGL.
Page 15

Once you have bound the function to the Go button, save your JSP file and

run it in the integrated WebSphere test environment.

- [= Weblorkent
+ - |2 META-INF
4 [2 theme B
3-{ WEB-INF fCurency: %.,‘F'al SUrrERCY S
T curCormert. jsp i: of SRERPIRIPTNCL =Lk diwt oo el
T beskWS. jap |
= [G‘" N)
[whiesquare. Wew et
)
+ 4= EGLiv=h &
g Pvies ﬂpmwth b
[Cther Prajects neh
L3 Wehb Servioss = e
+ _[j Databases .:
+ [Database Servers = Paste
X Dolete
Ruefackor AkShfe+T *
g Tpoit:,..
£ £ Export...
|0] Page Dsts 52 Cutine ™
R i Refresh
e SopEr varables Run validation
-1 A oarencyService - currenc _m
+ (@ coroertCurrencytoour Detusg b
15, testws2 Profie v 3 Run

Figure 11: Run your JSP file on the server.

Select your JSP file in the WebContent folder (figure 11). Right-click on the
file icon, select “Run” and then select “Run on Server....” If this is the first
time you are running the file, a dialog will appear. Click “Finish” in the

dialog box.

SOA made simple with EGL.
Page 16

[testws i m

| bt ffocalrost: POBN Currency Servica T sces e st W3t

[Test the Service

Courntry
LIS Amountt ||—
Converted Amournt

Currancy

[testws. jmp m

[hetpe o sast-S0stdCumency Servce Facesfbestia's. 5o

Test the Serice

|: cuntry CAD

LIS Amountt |
Comverted Amount 1 10820
Currancy Candian Dollars
Gl

Figure 12: Finished Web page

As you can see, with only a few clicks and a bit of dragging and dropping, you

have created a Web page that consumes a Web service.

EGL does more ...

If you wish to consume a public Web service, first locate the WSDL file for
the public Web service and save it to your workstation. Create a folder under
the WebContent directory (we called ours “WSDL”) and import the external
service’s WSDL file into the folder. Right-click and select “Generate EGL

Binding Library....”

Now when you right-click in the Page Data view and select “EGL Service,” you

will see the imported service. You can drag and drop the service just as we did

in the previous example with our own Web service.

SOA made simple with EGL.
Page 17

(I,

a
TR o e P e—— =l w- [.

Lets Go lo the Movies
DpCode [S8210

Rads 1
Hame Addess | hicies
E:‘-lafds ﬂﬁrgm Rebng| Mame | RunningTime ShowTimes
abasas @y, Calabasas, | o
Stadium & CA P12 | ey Luck |1 hr 43 mins :gg{p;ﬁr;-HMIHMI
P13 [Mission z 1. 10psm | 4-20pm | T 30pm|
impossitie 2 hws. O mirs 10 300m
FiE |Overthe f he 23 ming 12:40pm | 2 50pm | S:00pm |
Ha330 i 7 20pen |5 50pm
P13 a 12 50pm |4 Mpm | 7 10pm |
Possidon | b 28 ming 10 000m
P13 11 30am | 1200pm | 3 15pm
"C'""GE"""""" hes Zamins |400pm | T 00pm | &00pm |
i 10 25pen
I{.{ Paga SR a6l | > | 31
Whats Plaang
=" _"">—— —— 4
[

Figure 13: An external Web service

Figure 13 illustrates how EGL can consume a public Web service. This service
may be located at: http://www.ignyte.com/webservices/ignyte.whatsshowing.

webservice/moviefunctions.asmx?WSDL.

SOA made simple with EGL.
Page 18

Notice that with this service, we input a U.S. ZIP code and radius in miles.

The program returns a complex data structure consisting of two nested arrays.

EGL resolves the data structures and maps them to the Web page for you.

To use the public Web service described above:

AW N~

. Create an EGL Web project.

. Create a directory for the WSDL file in the WebContent folder.

. Import the WSDL file you previously downloaded into the WSDL directory.
. Right-click the WSDL file and run the “Create EGL Binding Library...”

wizard.

5. Create a JSF JSP file.

9.

. In the Page Data view, use “EGL Service” to import the service into your

Web page.

. Drag and drop the service onto the page.
. Drag and drop the appropriate function from “Actions” in the Page Data

view onto your Submit button.

Save and run the application.

To achieve the look and feel illustrated in figure 13, you may want to edit the
JSP file utilizing a number of JSF facilities.

SOA made simple with EGL.
Page 19

EGL is committed to SOA

SOA is a generic conceptual architecture. While it uses standards from many
disciplines, there are no SOA standards that define it. IBM, BEA, IONA,
Oracle, SAP, Siebel Systems and Sybase are leveraging Eclipse technology
and a set of emerging standards to create Service Component Architecture, or
SCA. Unlike SOA, SCA will rely on a more robust framework and standards—
rather than Web services—to ensure the interoperability of companies that

wish to adopt SOA.

See an introduction to SCA at:
ibm.com/developerworks/library/specification/ws-sca

Information on the work that Eclipse is performing can be viewed at:
www.eclipse.org/stp

You can count on EGL to provide levels of abstraction and ease of use similar
to those you have seen in this paper. EGL will continue to hide technical com-

plexity, allowing customers to focus on the business problem at hand.

This paper is an introduction to EGLs implementation of SOA. EGL has much
deeper capabilities than we could describe here. For more information on

Rational EGL functionality, visit:

ibm.com/software/awdtools/eglcobol

.|lli

© Copyright IBM Corporation 2006

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
07-06
All Rights Reserved

AlX, i5/0S, IBM, the IBM logo, iSeries, Rational,
System i, System z and WebSphere are trademarks
of International Business Machines Corporation in
the United States, other countries or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries or both.

Linuxis aregistered trademark of Linus Torvalds in
the United States, other countries or both.

Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other
countries or both.

UNIXis a registered trademark of The Open Group
in the United States and other countries.

Other company, product and service names may
be trademarks or service marks of others.

The information contained in this documentation

is provided for informational purposes only. While
efforts were made to verify the completeness

and accuracy of the information contained in this
documentation, itis provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise
related to, this documentation or any other docu-
mentation. Nothing contained in this documentation
is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and
conditions of the applicable license agreement
governing the use of IBM software.

G507-1948-00

