
Telelogic Logiscope

RuleChecker & QualityChecker
Ada Reference Manual

Version 6.5

Before using this information, be sure to read the general information under “Notices” section, on
page 53.

This edition applies to VERSION 6.5, TELELOGIC LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
ii Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual September

About This Manual

Audience
This manual is intended for Telelogic® Logiscope™ RuleChecker & QualityChecker
users for Ada source code verification.

Related Documents
Reading first the following manuals is highly recommended:

• Telelogic Logiscope - Basic Concepts.

• Telelogic Logiscope - RuleChecker & QualityChecker - Getting Started.

Creating new scripts to check specific / non standard programming rules is addressed in
a dedicated document:

• Telelogic Logiscope - Adding Java, Ada and C++ scriptable rules, metrics and con-
texts.

Overview
Ada Project Settings

Chapter 1 presents basic concepts of Logiscope RuleChecker & QualityChecker Ada, its
input and output data, its prerequisites and its limitations.

Command Line Mode

Chapter 2 specifies how to run Logiscope RuleChecker & QualityChecker Ada using a
command line interface.

Standard Metrics

Chapter 3 specifies the metrics computed by Logiscope QualityChecker Ada.
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual iii

Programming Rules

Chapter 4 specifies the programming rules checked by Logiscope RuleChecker Ada.

Customizing Standard Rules and Rule Sets

Chapter 5 describes the way to modify standard predefined rules and to create new ones
with Logiscope RuleChecker Ada.

Conventions
The following typographical conventions are used:

bold literals such as tool names (Studio)
and file extension (*.ada),

bold italics literals such as type names (integer),

italics
names that are user-defined such as directory names
(log_installation_dir),
notes and documentation titles,

typewriter file printouts.
iv Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual September

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned from the
Telelogic Support site to the IBM Rational Software Support site. During this transition
phase, your product support location depends on your customer history.

Product support
• If you are a heritage customer, meaning you were a Telelogic customer prior to

November 1, 2008, please visit the Logiscope Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational Software
Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-licensed
products prior to November 1, 2008, please visit the IBM Rational Software Support
site.

Before you contact Support, gather the background information that you will need to
describe your problem. When describing a problem to an IBM software support
specialist, be as specific as possible and include all relevant background information so
that the specialist can help you solve the problem efficiently. To save time, know the
answers to these questions:
• What software versions were you running when the problem occurred?
• Do you have logs, traces, or messages that are related to the problem?
• Can you reproduce the problem? If so, what steps do you take to reproduce it?
• Is there a workaround for the problem? If so, be prepared to describe the workaround.

Other information
For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual v

https://support.telelogic.com/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/

vi Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual September

Table of Contents

Chapter 1 Ada Project Settings
1.1 Input Data ... 1
1.2 Output Data... 3

Chapter 2 Command Line Mode
2.1 Logiscope create ... 5

2.1.1 Command Line Mode..5
2.1.2 Makefile mode...6
2.1.3 Options ...7

2.2 Logiscope batch .. 9
2.2.1 Options ...9
2.2.2 Examples of Use ...10

Chapter 3 Standard Metrics
3.1 .Function Scope ...12

3.1.1 Line Counting...12
3.1.2 Data Flow ...13
3.1.3 Halstead Metrics...14
3.1.4 Structured Programming ..19
3.1.5 Control Flow ..20
3.1.6 Relative Call Graph..21

3.2 Module Scope ..23
3.2.1 Line Counting...23
3.2.2 Lexical and Syntactic Items ...23
3.2.3 Halstead Metrics...24
3.2.4 Interface..25

3.3 Application Scope..27
3.3.1 Line Counting...27
3.3.2 Application Aggregates..27
3.3.3 Application Call Graph ..28

Chapter 4 Programming Rules

Chapter 5 Customizing Standard Rules and Rule Sets
5.1 Modifying the Rule Set... 43
5.2 Customizable Rules .. 43
5.3 Renaming Rules.. 50
5.4 Creating a new rule entirely.. 51

Chapter 6 Notices
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual vii

viii Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual September
2008

Telelogic Logiscope
 Chapter 1

Ada Project Settings
This chapter details specifics of the Logiscope Ada projects.

Logiscope Ada projects (“.ttp”) can be created using:

• Logiscope Studio Wizard: a graphical interface requiring a user interaction; refer to
Telelogic Logiscope - RuleChecker & QualityChecker - Getting Started to learn how to
create a Logiscope project using Logiscope Studio,

• Logiscope Create: a tool to be used from a standalone command line or within
makefiles; refer to Chapter 2 to learn how to create a Logiscope project using Logiscope
Create.

Logiscope uses source code parsers to extract all necessary information from the source
code of the files specified in the project.

1.1 Input Data
Project Name

The project name is used to create the Logiscope project file containing the specification
of a Logiscope project: e.g. list of source code files, parsing options, quality model, rule
sets.

The “.ttp” extension will be added to the user-specified project name to name the
Logiscope project file.

Location
The user shall specify the directory where the Logiscope project file will be created.

Source Files
Logiscope RuleChecker & QualityChecker projects must be given all the source files to
analyze when creating a project.

Please note that the Logiscope application to be analyzed should be all or part of a
complete project, able to be compiled and linked. The source code should be compliant
with one of the Logiscope supported Ada dialects. Respecting this prerequisite will avoid
problems like for instance multiply defined functions, which are poorly handled by
Ada Project Settings 1

Telelogic Logiscope
Logiscope.

Source files to be analysed are specified using:

Source files root directory: the single directory gathering all the source files of the
application.

Directories: to select the list of directories covering the application sources:
Include all subdirectories means that selected files will be searched for in every sub-
directory of the application directory.
Do not include subdirectories means that only files included in the application direc-
tory will be selected.
Customize subdirectories to include allows the user to select the directories list that
includes application files through a new page.

Extensions: to specify the extensions of the Ada source files needed in the above
selected directories. The extensions shall be separated with a semi-colon.

Quality Model File
Logiscope QualityChecker allows evaluation of a software quality according to factors
and criteria. The Quality Model file specifies:

• the metrics (i.e.static measurements, i.e. obtained without executing a program) to be
used for assessing source code characteristics (e.g; maintainability, portability),

• the thresholds associated to each metric,

• the association between metrics and software characteristics to be assessed,

• the rating principles of the components defined in the source code files (e.g.
functions, modules, application),

applicable to the project under analysis.

It is highly recommended to adapt the default / example Quality Model files provided in
the standard Logiscope installation.

For more information, see Telelogic Logiscope - Basic Concepts Manual.

Rule Set File
Logiscope Ada RuleChecker allows to automatically check a set of programming rules /
coding standards which are gathered within a Rule Set file. This file is used to indicate
which rules will be checked and to give parameters to customizable rules (see Chapter
Customizing Standard Metrics and Rules).
2 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
1.2 Output Data
Logiscope Repository

Logiscope Ada RuleChecker & QualityChecker store all data generated during source
code parsing in a specific directory. This user-specified directory is called the Logiscope
Repository.

The source files for a given Ada project are parsed one at a time. For each source file, the
Logiscope parser produces Logiscope internal ASCII format files containing all
necessary information extracted from the source code files among which:

• a file named standards.chk containing all the violations found in the source code
files of the project under analysis.

• a control graph file (suffixed by “.cgr”) for each source code file,

• global analysis result files (suffixed by “.dat”, “.tab” and “.graph”).

All files stored in the Logiscope Repository are internal data files to be used by
Logiscope Studio, Viewer and Batch. They are not intended to be directly used by
Logiscope users. The format of these files is clearly subject to changes.
Ada Project Settings 3

Telelogic Logiscope
4 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
 Chapter 2

Command Line Mode

2.1 Logiscope create
Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described
in chapter Project Settings or in the Logiscope RuleChecker & QualityChecker Getting
Started documentation.

The Logiscope create tool builds Logiscope projects from a standalone command line or
within makefiles (replacing the compiler command) .

2.1.1 Command Line Mode
When started from a standard command line, The create tool creates a new project file
with the information provided on the command line.

For a complete description of the command line options, please refer to the Command
Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be
included into the project:

Automatic search
This is the default mode where the tool automatically searches the files in the directories.
Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source
files. This option is not mandatory, and if omitted the default is to start the search in the
current directory.

-recurse : if present indicates to the tool that the search for source files has to be
recursive, meaning that the tool will also search the subdirectories of the root directory.

File list
In this mode, the tool will look for the –list option which has to be followed by a file
name. This provided file contains a list of files to be included into the project. The file
shall contain one filename per line.
Command Line Mode 5

Telelogic Logiscope
Example: Assuming a file named filelist.lst containing the 3 following lines:
/users/logiscope/samples/Ada/OneArmedBandit/onearmedbandit.adb

/users/logiscope/samples/Ada/OneArmedBandit/onearmedbandit.ads

/users/logiscope/samples/Ada/OneArmedBandit/slotmachine.adb

Using the command line:
create aProject.ttp –audit -rule –lang ada –list filelist.lst

will create a new Logiscope Ada project file aProject.ttp containing 3 files:
onearmedbandit.adb, onearmedbandit.ads and slotmachine.adb on which the
RuleChecker and QualityChecker verification modules will be activated.

2.1.2 Makefile mode
When launched from makefiles, create is designed to intercept the command line usually
passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the
compiler. In this mode, the name of the project file (“.ttp” file) has to be an absolute path,
otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,
except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate
preprocessor options if any, then create starts the normal compilation command which
will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used
either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full
rebuild and to ensure that the create will catch all files.
6 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
2.1.3 Options
The create options are the following:

create -lang ada

<ttp_file> name of a Logiscope project to be created
(with the “.ttp” extension).
Path has to be absolute if the option -- is used.

[-source <suffixes>] where <suffixes> is the list of accepted suf-
fixes for the source files.
Default is "*.ada;*.adb;*.ads".

[-root <directory>] where <directory> is the starting point of the
source search. Default is the current directory.
This option is exclusive with -list option.

[-recurse] if present the source file search is done recur-
sively in subfolders.

[-list <list_file>] where <list_file> is the name of a file contain-
ing the list of filenames to add to the project
(one file per line).
This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the direc-
tory where Logiscope internal files will be
stored.

[-no_compilation] avoid compiling the files if the -- option is
used

[--] when used in a makefile, introduces the com-
pilation command with its arguments.

[-audit] to select the QualityChecker verification mod-
ule

[-ref <Quality_model>] where <Quality_model> is the name of the
Quality Model file (“.ref”) to add to the
project.
Default is <install_dir>/Ref/Logiscope.ref

[-rule] to select the RuleChecker verification module
[-rules <rules_file>] where <rule_file> is the name of the rule set

file (“.rst”) to be included into the project.
Default is the RuleChecker.rst file located in
the /Ref/RuleSets/Ada/ will be used.

[-relax] to activate the violation relaxation mechanism
for the project.
Command Line Mode 7

Telelogic Logiscope

[-import <folder_name>] where <folder_name> is the name of the
project folder which will contain the external
violation files to be imported.
When this option is used the external viola-
tion importation mechanism is activated.

[-external <file_name>]* where <file_name> is the name of a file to be
added into the import project folder.
This option can be repeated as many times as
needed.
Only applicable if the -import option is acti-
vated.
8 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
2.2 Logiscope batch
Logiscope batch is a tool designed to work with Logiscope in command line to:
• parse the source code files specified in a Logiscope project: i.e. “.ttp” file,
• generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:
• using Logiscope Studio, refer refer to Section 1 or RuleChecker & QualityChecker

Getting Started documentation,
• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

2.2.1 Options
The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.
[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.
[-o <output_directory>] directory where the all reports are generated.
[-external
<violation_file>]*

name of the file to be added into the import
project folder. This option can be repeated as
many times as needed.
This option is only significant for RuleCh-
ecker module for which the external violation
importation mechanism is activated

[-nobuild] generate reports without rebuilding the
project. The project must have been built at
least once previously.

[-clean] before starting the build, the Logiscope build
mechanism removes all intermediate files and
empties the import project folder when the
external violation importation mechanism is
activated.

[-addin <addin> options] where addin nis the name of the addin to be
activated and options the associated options
generating reports.
Command Line Mode 9

Telelogic Logiscope
2.2.2 Examples of Use
Considering a previously created Logiscope project named MyProject.ttp where:
• RuleChecker and QualityChecker verification modules have been activated,
• the Logiscope Repository is located in the folder MyProject/Logiscope,

(Refer to the previous section or to the RuleChecker & QualityChecker Getting Started
documentation to learn how creating a Logiscope project).

Executing the command on a command line or in a script:
batch MyProject.ttp

will:
• perform the parsing of all source files specified in the Logiscope project

MyProject.ttp,
• run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts

to generate the standard QualityChecker HTML report named
MyProjectquality.html in the default MyProject/Logiscope/reports.dir folder.

• run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to
generate the standard RuleChecker HTML report named MyProjectrule.html in the
default MyProject/Logiscope/reports.dir folder.

[-table] generate tables in predefined html reports
instead of slices or charts. By default, slices or
charts are generated (depending on the project
type).
This option is available only on Windows as
on Unix there are no slices or charts, only
tables are generated.

[-noframe] generate reports with no left frame.
[-v] display the version of the batch tool.
[-h] display help and options for batch.
[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put. By
default, messages are directed to standard out-
put and error.
10 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
 Chapter 3

Standard Metrics
Logiscope QualityChecker Ada proposes a set of standard source code metrics. Source
code metrics are static measurements (i.e. obtained without executing the program) to be
used to assess attributes (e.g. complexity, self-descriptiveness) or characteristics (e.g.
Maintainability, Reliability) of the Ada functions, modules, application under
evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality
evaluation of the source code. For example, the “comments frequency” metric, well
suited to evaluate quality criteria such as self-descriptiviness or analyzability, can be
defined by combining two basic metrics: “number of comments” and “number of
statements”.

The user can associate threshold values with each of the quality model metrics,
indicating minimum and maximum reference values accepted for the metric.

For more details on Source Code Metrics, please refer to Telelogic Logiscope - Basic
Concepts manual.

Source code metrics apply to different domains (control flow, data flow, calling
relations, etc.) and the range of their scope varies.

The scope of a metric designates the element of the source code the metric will apply to.
The following scopes are available for Logiscope QualityChecker Ada .

• The Function scope: the metrics are available for each function defined in the source
files specified in the Logiscope project under analysis.

• The Module scope: the metrics are available for each Ada source file specified in the
Logiscope project under analysis.

• The Application scope: the metrics are available for the set of Ada source files
specified in the Logiscope project under analysis.
Standard Metrics 11

Telelogic Logiscope
3.1 .Function Scope

3.1.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

lc_cline Number of lines

lc_cloc Number of lines of code

lc_cblank Number of empty lines

lc_ccomm Number of lines of comments

lc_csbra Number of “brace” lines

lc_stat Number of statements

Following statements are counted:

• Control statements: abort, block statement, loop, goto, if, labeled
statement, named statement, return, raise, case, exit,

• Statements followed by “;“ ,

Definition Total number of lines in the function.

Definition Total number of lines containing executable code in the function.

Definition Number of lines containing only non printable characters in the function.

Definition Number of comment lines in the function, including comments just before
the function’s header.

Definition Number of lines containing only a block tag (e.g. begin, end) in the mod-
ule.

Definition Number of executable statements in a function body.
12 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
• Null statements,

• Pragmas.

3.1.2 Data Flow

dc_consts Numbers of declared constants

dc_types Number of declared types

dc_vars Number of declared variables

dc_excs Number of declared exceptions

ic_param Number of parameters

Definition Number of constants declared in constant and number declarations in a
function.

Definition Number of types and sub-types declarations in a function.

Definition Number of variables declared in the variable declarations in a function.

Definition Number of exceptions declared in the exception declarations in a function.

Definition Number of formal parameters of a function.
Standard Metrics 13

Telelogic Logiscope
3.1.3 Halstead Metrics
For more details on Halstead Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

n1 Number of distinct operators
Also called ha_dopt.

The following are operators:

• Declarations and types:

Definition Number of different operators used in a function.
This metric can be parameterized to count the operators in a familiar way:

• if no parameter is provided, operators are counted between the begin-
ning of the function’s definition and the function’s "end",

• if the parameter "in_body" is provided, operators are only counted in
the function’s body (that is between the function’s "is" and "end").

type declaration (ex: type Int is range 1 .. 10;)
private type (ex: type X is private;)
private extension (ex: type X is new Y with private;)
subtype declaration (ex: subtype Int is Integer;)
object declaration (ex: I : Integer;)
aliased object (ex: I : aliased Integer := 1;)
constant object (ex: I : constant Integer := 1;)
aliased constant object (ex: I : aliased constant Integer := 1;)
number declaration (ex: PI : constant := 3.14;)
scalar type (ex: type X is Integer range 1 .. 10;)
floating point definition (ex: type X is digits 8;)
fixed point definition (ex: type X is delta 0.125 range 0.0 .. 255.0;)
array type (ex: type X is array (1 .. 10) of Y;)
index subtype definition (ex: type X is array (Integer range <>) of Y)
unknown discriminant part (ex: type X (<>);
record type (ex: type X is record ... end record;)
null component list (ex: type X is record null; end record;)
null record type (ex: type X is null record;)
tagged type (ex: type X is abstract tagged null record;)
abstract type (ex: type X is abstract new T;)
access to object type (ex: type X is access A;)
access to subprogram type (ex: type X is access procedure Proc;)
14 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
• Expressions:
• Unary operators:

• Binary Operators:

• Assignment operator: :=
• Other operators:

protected calling convention (ex: type X is access protected procedure Proc;)
access definition (ex: type T1 is record V : access T2; end record;

+ - unary plus or minus
not negation
() expression in parenthesis

+ - * / mod rem ** arithmetic operators
& catenation operator
> < <= >= = /= comparison operators
and and then or or else xor logical operators

...(...) type conversion (ex: Integer(1.6))
() subscripting (ex: a[i])
...() subprogram call (ex: proc(1))
(..., ..., ...) x parameter part (ex: func(1,2,3))

enumeration type definition (ex: type X is (Y, Z);)
index constraint (ex: X : Y(1 .. 8, 1 .. 10);
aggregate (ex: (2 | 4 => 1, others => 0))
index definition list (ex: X : array (1 .. 3, 1 .. 5) of Y;

..., ..., ... defining identifier list (ex: A, B : Identifier;)
(...; ...; ...) formal part (ex: procedure P(A : in X; B : out Y))

discriminant part (ex: type T(A : X; B : Y) is ...;)
(..) slice (ex: Page(1 .. 4))
... selected component (ex: Car.Owner)

compound name (ex: Pack.Proc)
...’... attribute (ex: Color’First)
(... with ...) extension aggregate (ex: Painted_Point’(Point with Red))
null null access value
others others
null record null record aggregate
... in ... membership test (ex: Today in Weekday)
...’(...) qualified expression (ex: A’(B))
Standard Metrics 15

Telelogic Logiscope
• Statements:

• Subprograms:

• Visibility rules:

• Packages:

• Tasks:

IF ELSE ELSIF LOOP
WHILE FOR CASE WHEN
RETURN GOTO label <<LABEL>> EXIT
DELAY DELAY UNTIL ABORT RAISE
ACCEPT TERMINATE REQUEUE ... [WITH ABORT]
... : ... (named statement)
[DECLARE ...] BEGIN ... END (block statement)
...’ (...); (code statement)
NULL (null statement)

subprogram declaration (ex: procedure Proc;)
abstract subprogram (ex: procedure Proc is abstract;)
subprogram body (ex: procedure Proc is begin ... end Proc;)
stub (ex: procedure Proc is separate;)
subunit (ex: separate (X) procedure Y is begin ... end Y;)
parameter mode (ex: procedure Proc(P1 : in X; P2 : access Y);)

use package clause (ex: use Pack;)
use type clause (ex: use type T;)
renaming declaration (ex: package X renames Y;)

package declaration (ex: package P is ... end P;)
package body (ex: package body P is begin ... end P;)

task declaration (ex: task T is ... end T;)
task body (ex: task body T is begin ... end T;)
protected type declaration (ex: protected type T is ... end T;)
protected declaration (ex: protected P is ... end P;)
protected body (ex: protected body P is ... end P;)
entry declaration (ex: entry E;)
entry body (ex: entry E when ... is begin ... end E;)
entry index (ex: for I in T range <>
select clause list (ex: select ... or ... ab ... end select;)
timed entry call (ex: select ... or delay ... end select;)
16 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
• Program structure:

• Exceptions:

• Generic units:

• Representation issues:

N1 Total number of operators
Also called ha_topt.

n2 Number of distinct operands
Also called ha_dopd.

conditional entry call (ex: select ... else ... end select;)
asynchronous select (ex: select ... then abort ... end select;)

private unit (ex: private procedure Proc;)
with clause (ex: with Pack;)
pragma (ex: pragma Page;)

exception declaration (ex: X : exception;)
exception handler (ex: when X => ...;)

generic declaration (ex: generic procedure Proc;)
generic instantiation (ex: procedure X is new Proc;)
formal type (ex: type T is digits <>;)
formal subprogram (ex: with procedure Proc is <>;)
formal package (ex: with package Pack is new GP <>;)

at clause (ex: for X use at Y;)
attribute definition clause (ex: for X’Address use Y;)
record representation clause (ex: for T use record ... end record;)
component clause (ex: X at 1*Word range 0 .. 1;)

Definition Total number of operators used in a function.

Definition Number of different operands used in a function.
This metric can be parametrized to count the operands in a familiar way:

• if no parameter is provided, operands are counted between the begin-
ning of the function’s definition and the function’s "end",

• if the parameter "in_body" is provided, operands are only counted in
the function’s body (that is between the function’s "is" and "end").
Standard Metrics 17

Telelogic Logiscope
The following are operands:

• Literals:
• Integer literals (ex: 12, 0, 1E6, 123_456)
• Real literals (ex: 12.0, 0.0, 0.456, 3.14159_26)
• Based literals (ex: 2#1111_1111#, 16#F.FF#E+2)
• Character literals (ex: ’A’, ’*’, ’’’, ’ ’)
• String literals (ex: "", "hello", "this is a ""string""")

• Identifiers (variable names, type names, function names, etc.)

• Operator names:

N2 Total number of operands

n Halstead vocabulary

N Halstead length

CN Halstead estimated length

 V Halstead volume

"and" "or" "xor" "=" "/=" "<" "<=" ">" ">="
"+" "-" "&" "*" "/" "*" "mod" "rem" "**"
"abs" "not"

Definition Total number of operands used in a function.
Alias ha_topd

Definition Halstead vocabulary of the function:
n = n1 + n2

Alias ha_voc

Definition Halstead length of the function:
N = N1 + N2

Alias ha_olg

Definition Halstead estimated length of the function:
CN= n1 * log2(n1) + n2 * log2(n2)

Alias ha_elg

Definition Halstead volume of the function:
V = N * log2(n)

Alias ha_vol
18 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
L Halstead level

D Halstead difficulty

I Halstead intelligent content

E Halstead mental effort

3.1.4 Structured Programming
In structured programming:

• a function shall have a single entry point and a single exit point,
• each iterative of selective structures shall have a single exit point.

ct_bran Number of destructuring statements

ct_goto Number of gotos

Definition Halstead level of the function:
L = (2 * n2) / (n1 * N2)

Alias ha_lev

Definition Halstead difficulty of the function:
D = 1/L

Alias ha_dif

Definition Halstead intelligent content of the function:
I = L * V

Alias ha_int

Definition Halstead mental effort of the function:
E = V / L

Alias ha_eff

Definition Number of destructuring statements in a function (goto, exit and
raise).

Definition Number of goto statements in a function.
Alias GOTO
Standard Metrics 19

Telelogic Logiscope
ct_exit Number of exits

ESS_CPX Essentiel complexity

3.1.5 Control Flow
For more details on Control Graph Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

ct_decis Number of decisions

ct_degree Maximum degree

ct_edge Number of edges

ct_loop Number of loops

ct_nest Maximum nesting level

Definition Number of explicit exit from a function (return, terminate, raise
non récupéré dans la fonction).

Alias N_OUT

Definition Cyclomatic Number of the “reduced” control graph of the function.
The “reduced” control graph is obtained by removing all structured con-
structs from the control graph of the function.

Definition Number of selective statement in a function :
if, case,select

Alias N_STRUCT

Definition Maximum number of edges departing from a node.

Definition Number of edges e of the control graph of a function.

Definition Number of iterative statements in a function (pre- and post- tested loops):
for, while, do while,

Definition Maximum nesting level of control structures in a function.
20 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
ct_node Number of nodes

ct_vg Cyclomatic number (VG)
.

ct_path Number of paths

DES_CPX Design complexity

3.1.6 Relative Call Graph
For more details on Call Graph Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

dc_calling Number of callers

IND_CALLS Relative call graph call-paths

cg_entropy Relative call graph entropy

cg_ hiercpx Relative call graph hierarchical complexity

Definition Number of nodes n of the control graph of a function.

Definition Cyclomatic Number of the control graph of the function.
Alias VG, ct_cyclo

Definition Number of non-cyclic execution paths of the control graph of the function.
Alias PATH

Definition Cyclomatic Number of the “design” control graph of the function.
The “design” control graph is obtained by removing all constructs that do
not contain calls from the control graph of the function.

Definition Number of functions calling the designated function.
Alias NBCALLING

Definition Number of call paths in the relative call graph of the function.

Definition SCHUTT entropy of the relative call graph of the function.
Alias ENTROPY

Definition Average number of components per level(i.e. number of components
divided by number of levels) of the relative call graph of the function..

Alias HIER_CPX
Standard Metrics 21

Telelogic Logiscope
cg_levels Relative call graph levels

cg_strucpx Relative call graph structural complexity

cg_testab Relative call graph testability

Definition Depth of the relative call graph of the function..
Alias LEVELS

Definition Average number of calls per component: i.e. number of calling relations
between components divided by the number of components) of the rela-
tive call graph of the function..

Alias STRU_CPX

Definition Mohanty system testability of the relative call graph of the function.
Alias TESTBTY
22 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
3.2 Module Scope

3.2.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

md_blank Number of empty lines

md_comm Number of lines of comments

md_line Total number of lines

md_loc Number of lines of code

md_sbra Number of “brace” lines

3.2.2 Lexical and Syntactic Items

md_algo Number of syntactic entities in algorithms

md_decl Number of syntactic entities in declarations

Definition Number of lines containing only non printable characters in the module.

Definition Number of lines of comments in the module.
Alias LCOM

Definition Total number of lines in the module.

Definition Total number of lines containing executable code in the module.

Definition Number of lines containing only a block tag (e.g. begin, end) in the mod-
ule.

Definition Number of syntactic entities inside statements that are not counted as dec-
laration in a module.

Definition Number of syntactic entities in the declaration part of the module (func-
tion headers and declaration).
Standard Metrics 23

Telelogic Logiscope
md_synt Number of syntactic entities

md_stat Number of statements

md_consts Number of declared constants

md_excs Number of declared exceptions

md_types Number of declared types

md_vars Number of declared variables

3.2.3 Halstead Metrics
For more details on Halstead Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

md_n1 Number of distinct operators

md_n2 Number of distinct operands

md_N1 Total number of operators

Definition Total number of syntactic entities in the file.

Definition Total number of executable statements in the method bodies defined in the
file.

Definition Number of constants declared in the file.

Definition Total number of exceptions declared in the exception declaration in the
module.

Definition Number of types declared in the module.

Definition Number of variables declared in the module.

Definition Number of distinct operators referenced in the module.
See metric n1 in Function Scope section for the specification of operators.

Definition Number of distinct operands referenced in the module.
See metric n2 in Function Scope section for the specification of operands.

Definition Total number of operators referenced in the module.
24 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
md_N2 Total number of operands

md_n Halstead vocabulary

md_N Halstead length

md_CN Halstead estimated length

 md_V Halstead volume

md_L Halstead level

md_D Halstead difficulty

md_I Halstead intelligent content

md_E Halstead mental effort

3.2.4 Interface

md_expco Number of exported constants

Definition Total number of operands referenced in the module.

Definition Halstead vocabulary of the module: n = n1 + n2

Definition Halstead observed length of the module: N = N1 + N2

Definition Halstead estimated length of the module.

= n1 * log2(n1) + n2 * log2(n2).

Definition Halstead Program Volume: V = N * log2(n)

Definition Halstead Program Level: L = (2 * n2) / (n1 * N2)

Definition Halstead Program Difficulty: D = 1/L

Definition Halstead Intelligent Content: I = L * V

Definition Halstead Intelligent Content: E = V / L

Definition Numbers of constants exported by the differents compilation units of the
module.

N̂

Standard Metrics 25

Telelogic Logiscope
md_expex Number of exported exceptions

md_expfn Number of exported functions

md_expty Number of exported types

md_expva Number of exported variables

md_with Number of WITH clauses

Definition Numbers of exceptions exported by the differents compilation units of the
module.

Definition Numbers of functions (packages, subprograms, tasks) exported by the dif-
ferents compilation units of the module.

Definition Numbers of types exported by the differents compilation units of the mod-
ule.

Definition Numbers of variables exported by the differents compilation units of the
module.

Definition Numbers of WITH clauses in the module.
26 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
3.3 Application Scope
Metrics presented in this section are based on the set of Ada source files specified in
Logiscope Project under analysis. It is therefore recommended to use these metrics
values exclusively for a complete application or for a coherent subsystem.

3.3.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

ap_sline Total number of lines

ap_sloc Number of source lines

ap_ssbra Number of “brace” lines

ap_sblank Total number of empty lines

ap_scomm Total number of source lines of comments

3.3.2 Application Aggregates

ap_func Number of functions

Definition Total number of lines in the application source files.

Definition Total number of lines containing executable code in the application source
files.

Definition Number of lines containing only a block tag (e.g. begin, end) in the appli-
cation source files.

Definition Total number of lines containing only non printable characters in the
application source files.

Definition Totam number of lines of comments in the application source files.

Definition Number of functions defined in the application.
Alias LMA
Standard Metrics 27

Telelogic Logiscope
ap_stat Number of statements

ap_vg Sum of cyclomatic numbers

3.3.3 Application Call Graph
For more details on Call Graph Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

ap_cg_cycle Call graph recursions

ap_cg_edge Call graph edges

ap_cg_leaf Call graph leaves

ap_cg_levl Call graph depth

ap_cg_maxdeg Maximum callers/called

Definition Sum of the numbers of executable statement (i.e. lc_stat) for all the func-
tions defined in the application.

Definition Sum of the cyclomatic numbers (i.e. ct_vg) for all the functions defined in
the application.

Alias VGA, ap_cyclo

Definition Number of recursive paths in the call graph for the application’s functions.
A recursive path can be for one or more functions.

Alias GA_CYCLE

Definition Number of edges in the call graph of application functions.
Alias GA_EDGE

Definition Number of functions executing no call.
In other words, number of leaves nodes in the application call graph.

Alias GA_NSS

Definition Depth of the Call Graph: number of call graph levels.
Alias GA_LEVL

Definition Maximum number of calling/called for nodes in the call graph of applica-
tion functions.

Alias GA_MAXDEG
28 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
ap_cg_maxin Maximum callers

 ap_cg_maxout Maximum called

ap_cg_node Call graph nodes

ap_cg_root Call graph roots

Definition Maximum number of “callings” for nodes in the call graph of Application
functions.

Alias GA_MAX_IN

Definition Maximum number of called functions for nodes in the call graph of Appli-
cation functions.

Alias GA_MAX_OUT

Definition Number of nodes in the call graph of Application functions. This metric
cumulates Application’s member and non-member functions as well as
called but not analyzed functions.

Alias GA_NODE

Definition Number of roots functions in the application call graph.
Alias GA_NSP
Standard Metrics 29

Telelogic Logiscope
30 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
 Chapter 4

Programming Rules
This section describes the default set of rules provided by Logiscope Ada RuleChecker.
About half of these rules can be customized by modifying parameters in the default rules
description file (see Chapter Customizing Metrics & Rules).

address "use at" Clause

aggregate Choices in Aggregates

Example:

arraytyp Array Types

Example:

Description The use at clause is forbidden for local variables and param-
eters.

Justification Improves code portability.

Description In aggregates component associations shall be all named or all
positional.

Justification Makes the code easier to read.

-- do not write
(14, MONTH=>JULY, YEAR=>1789)

-- write
(14, JULY, 1789)
-- or
(DAY=>14, MONTH=>JULY, YEAR=>1789)

Description An array has to be declared as a type and not used directly
inside a declaration.

Justification Makes maintenance easier by avoiding the scattering of array
types among the code, often with the same specification.

-- do not write
Var_Array : array (1 .. 4) of Var;

-- write
type My_Array is array (1 .. 4) of Var;
Var_Array : My_Array;
Programming Rules 31

Telelogic Logiscope
const Literal Constants

count "count" Attribute

dblneg Double Negation

enum Enumerations

excephand Handled Exceptions

exprlevel Level of Complexity of Expression

Description Numbers, characters and strings have to be declared as constants
instead of being used as literals inside a program. Characters are
allowed inside enumerative types.
Specify allowed literal constants. By default, allowed literal
constants are "", " ", "0" and "1".

Parameters A list of character strings representing the allowed literal con-
stants.

Justification Makes maintenance easier by avoiding the scattering of con-
stants among the code, often with the same value.

Description The count attribute is forbidden.
Justification Improves code portability.

Description Only one not operator shall be used in each expression.
Justification Makes the code easier to understand.

Description The number of literal values in an enumerated type is limited.
Parameters A number representing the maximum authorized number of val-

ues.
Justification Makes the code easier to understand and maintain.

Description Each function or procedure shall handle a predefined list of
exceptions.

Parameters A list of character strings representing names of exceptions that
shall be handled.

Justification Makes the code more robust.

Description The complexity of an expression is limited by the depth of the
syntactic tree used to represent it. The parenthesis, the associa-
tion of a name and the "." (dot) operator do not increase the level
of complexity.
32 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
Example:

genpack Generic Packages

Example:

By default, the maximum authorized complexity level is 3.
Parameters A number representing the maximum authorized complexity

level.
Justification Makes the code easier to read.

The level of a + b is 2.
The level of a + b + c or (a + b) + c is 3.

Description Each instantiation of a generic package belonging to a pre-
defined list of packages shall be included in another package.

Parameters A list of character strings representing the names of the pack-
ages from which the generic packages shall not be instantiated
outside an including package.

Justification Reinforces code structuration.

-- if the Text_Io generic package is listed in the
-- parameter list,
-- do not write
package My_Integer_Io is new
Ada.Text_Io.Integer_Io (My_Integer);

-- encapsulate the instantiation in a package
-- write
package Pack is
 package My_Integer_Io is new
Ada.Text_Io.Integer_Io (My_Integer);
 ...
end Pack;
Programming Rules 33

Telelogic Logiscope
goto Goto Statement

Headercom Module Header Comments

Example of the default required header comment:

Description The goto statement must not be used.
It is possible to specify certain labels which are authorized.
By default, all goto statements are forbidden.

Parameters A list of strings representing the labels that can be used with the
goto statement.

Justification Insures that structured programming rules are respected, so the
code is easier to understand. The goto statement often reveals
an analysis error and its systematic rejection improves the code
structure.

Description Modules must be preceded by a header comment.
It is possible to define a format for this comment.
By default, a header comment with the name of the file, its
author, its date and possible remarks is required for each module
(see below example).

Parameters A list of character strings representing the associated regular
expressions.

Justification Makes the code easier to read.

--
-- Name: program
-- Author: Andrieu
-- Date: 08/07/96
-- Remarks: example of comments
--
34 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
headercom Function Header Comments

identfmt Identifier Format

identl Identifier Length

Description Packages and subprograms must be preceded by a comment.
It is possible to define a format for this comment depending on
the type of the package or subprogram (pack_decl, pack_body,
proc_decl, proc_body, func_decl, func_body).
By default, only a comment beginning with "" is required for
packages or subprograms.

Parameters Six lists of character strings concerning six cases listed above.
Each list begins with one of the six strings (proc_decl for
instance), followed by a string representing the regular expres-
sion.

Justification Makes the code easier to read.

Description The identifier of a package, subprogram, task, task type, entry,
type, constant, variable or exception exported by a compila-
tion unit must have a format corresponding to the category of
the declaration.
By default, no restrictions are imposed.

Parameters A list of couples of character strings; the first string of the cou-
ple represents the declaration category name, the second one
the regular expression associated to that category.

Justification Makes the code easier to understand.

Description The length of an identifier (of a package, subprogram, task, task
type, entry, type, constant, variable or exception) exported by a
compilation unit must be between a minimum and a maximum
value.
By default, the above identifiers must have between 5 and 25
characters.

Parameters A list of couples of character strings; the first string of the cou-
ple represents the declaration category name, the second one the
MINMAX expression associated.

Justification Makes the code easier to read.
Programming Rules 35

Telelogic Logiscope
loopexit Exits in Loops

loopname Named Loops

lvarinit Local Variable Initialization

mainpar Parameters of Main

others "when others" Forbidden

Description The exit statement shall be unique inside a loop statement, it
shall be associated to the when statement and shall not be at the
beginning of the loop.

Justification Having only one exit point in a loop makes it easier to under-
stand. The when statement in an exit is easier to read than the
exit statement within an if statement.

Description Every loop shall have a name. Each loop shall have a different
name.
By default, the name of a loop shall be unique in each compila-
tion unit.

Parameters A character string with two possible values, "unit" which
means that the name of the loop shall be unique in each compila-
tion unit, or "subprogram" which means that the name of the
loop shall be unique in the body of each function or procedure.

Justification Makes the code easier to understand.

Description Local variables shall be initialized in the first branch of the dec-
laration block. That means before any conditional statement.
Out parameters shall be initialized in the first branch of the body
of the function or procedure

Note Potential initializations by calling a procedure are not taken into
account.

Limitation Violations are detected for records even if they have default
values for their fields.

Justification Reliability.

Description A main program shall not have parameters.
Justification Portability.

Description The use of the when others clause is forbidden in case state-
ments, exception handlers and record variant parts

Justification It is better to anticipate all the possible cases than resorting to a
choice with no precise value(s).
36 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
noabort "abort" Statement

parinit Parameter Default Value

parname Named Parameters

parord Parameter Order

pragma Pragma Statement

raisedef Raise defined exceptions

Description The abort statement is forbidden.
Justification Improves code portability.

Description No default value shall be provided for function or procedure
parameters.

Justification Makes the code easier to understand.

Description When calling a function or a procedure, parameters shall be all
named or all positional (no named parameters).

Justification Makes the code easier to read.

Description Inside a subprogram declaration, parameters must be ordered
according to their nature (in, in out or out). Parameters of
mode in with a default value are allowed at the end of the list.

Parameters A list of character strings (from zero to three, with the following
possible values: "in", "out" or "in out") giving the imposed
order. No parameter means that the order is indifferent.

Justification Maintainability.

Description Using some pragmas is forbidden or authorized.
By default all pragmas are authorized.

Parameters A list of character strings representing names of pragmas. The
list shall begin either by "authorized" which indicates the fol-
lowing strings are names of pragmas that can be used, or by
"forbidden" which indicates the following strings are names of
pragmas that are forbidden.

Justification Portability.

Description A subprogram declared in a specification package may only
raise in its body exceptions that are defined in that specification
package.
Programming Rules 37

Telelogic Logiscope
Justification Maintainability.
38 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
recnest Structured Types

repsize Length Clause

retinit Return Value Initialization

return "return" Statement

slret Single "return"

specbod Specification and Body

typacs Access Types

Description The number of levels of structured record types is limited.
The level of a record type not containing any record type is 1.

Parameters A number representing the maximum authorized level.
Justification Makes the code easier to understand.

Description The use of the length clause (...’size use ...;) is forbid-
den.

Justification Portability.

Description In a function body, each local variable used in the returned
expression shall be initialized outside a conditional statement.

Note Potential initializations by calling a procedure are not taken into
account.

Justification Reliability.

Description The return statement has to be the last statement of a state-
ments sequence.

Justification Prevents inaccessible parts of code.

Description Each procedure or function shall only have one return statement.
Justification Maintainability: Structured Programming

Description The specification and the body part shall be in different files.
Justification Maintainability:.

Description The access types are forbidden.
The use of the new clause is forbidden.

Justification Prevents memory leaks.
Programming Rules 39

Telelogic Logiscope
typeres Reserved types

use "use" Clauses

varinit Variable Initialization

with "with" Clauses

nameres Reserved Names

Description The use of some types in variable or subprogram declarations
and return types is forbidden.

Parameters A list of character strings representing the names of the forbid-
den types.

Justification Portability: not relying on predefined types.

Description No use clause must be used inside context clauses of a unit.
It is possible to specify certain units which are authorized.
By default, all use clauses are forbidden.

Parameters A list of strings representing names that can be used in use
clauses.

Justification Makes the code easier to understand.

Description Variables must be initialized in their declarations.
Limitation Violations are detected for records even if they have default

values for their fields.
Justification Ensures correct variable initialization prior to use.

Description Using some with clauses is forbidden.
By default, all with clauses are authorized.

Parameters A list of strings representing names of units that can not be used
in a with clause.

Justification Prevents from using non portable or dangerous packages.

Description Using some functions, procedures, tasks or exceptions is forbid-
den. Only the first use of each item in a function, procedure or
task is taken into account.

Parameters A list of character strings representing names of forbidden func-
tions, procedures, tasks or exceptions.

Justification Improves code portability.
40 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
specvar Variables Inside a Specification
Description No variable must be declared inside the visible part of a package

specification.
Justification The good way to have access to the services of a package is via

its subprograms, not its variables. The variables of a package
specification should only be private.
Programming Rules 41

Telelogic Logiscope
42 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
 Chapter 5

Customizing Standard Rules
and Rule Sets

5.1 Modifying the Rule Set
A Rule Set is user-accessible textual file containing the specification of the programming
rules to be checked by Logiscope RuleChecker.

Specifying one or more Rule Set files is mandatory when setting up a Logiscope
RuleChecker project.

The Rule Sets allow to adapt Logiscope RuleChecker verification to a specific context
taking into the applicable coding standard.

• Rule checking can be activated or de-activated.

• Some rules have parameters that allow to customize the verification. Changing the
parameters changes the behaviour of the rule checking.

• The default name of a standard rule can be changed to match the name and/or
identifier specified in the applicable coding standard.
The same standard rule can even be used twice with different names and different
parameters.

• The default severity level of a rule can be modified.

• A new set of severity levels with a specific ordering: e.g. “Mandatory”, “Highly
recommended”, “Recommended” can be specified.

All these actions can be done by editing the Logiscope Rule Set(s) and changing the
corresponding specifications. We highly recommend to make copies of the default Rule
Set files provided with Logiscope RuleChecker Ada before making changes.

How to modify Rule Set files is documented in the Logiscope - Basic Concepts manual.

5.2 Customizable Rules
The precise definition of these rules has been given in the previous chapter.
Customizing Standard Rules and Rule Sets 43

Telelogic Logiscope
const Literal Constants
By default, the allowed literal constants are "", " ", "0" and "1":
STANDARD const ON LIST "" " " "0" "1" END LIST END STANDARD

To allow the literal constant MY_CST, but forbid the constant 1:
STANDARD const ON LIST "" " " "0" "MY_CST" END LIST END STANDARD

enum Enumerations
By default, the maximum number of literal values in an enumerated type is 25:
STANDARD enum ON MINMAX 0 25 END STANDARD

To change this value to 16, for example:
STANDARD enum ON MINMAX 0 16 END STANDARD

excephand Handled Exceptions
By default, no exception handling is imposed on subprograms:
STANDARD excephand ON LIST END LIST END STANDARD

To impose the handling of Storage_Error and Constraint_Error:
STANDARD excephand ON LIST "Storage_Error" "Constraint_Error" END LIST
END STANDARD

exprlevel Level of Complexity of Expression
By default, the maximum authorized level of complexity is 3.
STANDARD exprlevel ON MINMAX 0 3 END STANDARD

To change this value to 7, for example:
STANDARD exprlevel ON MINMAX 0 7 END STANDARD

genpack Generic Packages
By default, no instantiation of a generic package is forbidden outside an including
package:
STANDARD genpack ON LIST END LIST END STANDARD

Not to instantiate the generic packages inside Text_Io outside an including package :
STANDARD genpack ON LIST "Text_Io" END LIST END STANDARD

goto Goto Statement
By default, all goto statements are forbidden:
STANDARD goto ON LIST END LIST END STANDARD

To authorize the statements goto OK; and goto ERROR;:
STANDARD goto ON LIST "OK" "ERROR" END LIST END STANDARD

Headercom Module Header Comments
The format of the comment is defined as a list of regular expressions that shall be found
in the header comment in the order of declaration.

Formats are defined by regular expressions. The regular expression language is a subset
44 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
of the one defined by the Posix 1003.2 standard (Copyright 1994, the Regents of the
University of California).

A regular expression is comprised of one or more non-empty branches, separated by the
"|" character.

A branch is one or more atomic expressions, concatenated.

Each atom can be followed by the following characters:

• * - the expression matches a sequence of 0 or more matches of the atom,

• + - the expression matches a sequence of 1 or more matches of the atom,

• ? - the expression matches a sequence of 0 or 1 match of the atom,

• {i} - the expression matches a sequence of i or more matches of the atom,

• {i,j} - the expression matches a sequence of i through j (inclusive) matches of the
atom.

An atomic expression can be either a regular expression enclosed in "()", or:

• [...] - a brace expression, that matches any single character from the list enclosed in
"[]",

• [^...] - a brace expression that matches any single character not from the rest of the list
enclosed in "[]",

• . - it matches any single character,

• ^ - it indicates the beginning of a string (alone it matches the null string at the
beginning of a line),

• $ - it indicates the end of a string (alone it matches the null string at the end of a line).

For more details, please refer to the related documentation.

Example:

By default, a header comment with the name of the file, its author, its date and possible
remarks is required for each file:
STANDARD Headercom ON
LIST "Name: [a-z]*" "Author: [A-Z][a-z]*"
 "Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"
 "Remarks:" END LIST
END STANDARD

".+_Ptr" matches strings like "abc_Ptr", "hh_Ptr", but not
"_Ptr",
"T[a-z]*" matches strings like "Ta", "Tb", "Tz",
"[A-Z][a-z0-9_]*" matches strings like "B1", "Z0", "Pp",
“P_1_a”.
Customizing Standard Rules and Rule Sets 45

Telelogic Logiscope
Example of required header:

headercom Function Header Comments
It is possible to define a format for the comment preceding a package or a subprogram,
depending on the type of the package or subprogram (pack_decl, pack_body,
proc_decl, proc_body, func_decl, func_body).

The format of the comment is defined as a list of regular expressions (see in Paragraph ,
Headercom Module Header Comments) that shall be found in the comment in the order
of declaration.

By default, only a comment beginning with "" is required for functions or classes:
STANDARD headercom ON
LIST "pack_decl" ".*" END LIST
LIST "pack_body" ".*" END LIST
LIST "proc_decl" ".*" END LIST
LIST "proc_body" ".*" END LIST
LIST "func_decl" ".*" END LIST
LIST "func_body" ".*" END LIST
END STANDARD

Here is another example, with different required comments depending on the item type:
STANDARD headercom ON
LIST "pack_decl" "Definition of the package declaration:"
 "Author: [A-Z][a-z]*"
END LIST
LIST "pack_body" "Definition of the package body:"
 "Author: [A-Z][a-z]*"
END LIST
LIST "proc_decl" "Declaration of the procedure:"
 "Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"
END LIST
LIST "proc_body" "Body of the procedure:"
 "Remarks:"
END LIST
LIST "func_decl" "Declaration of the functon:"
 "Date: [0-9][0-9]/[0-9][0-9]/[0-9][0-9]"
END LIST
LIST "func_body" "Body of the function:"
 "Remarks:"
END LIST
END STANDARD

--
-- Name: program
-- Author: Andrieu
-- Date: 08/07/96
-- Remarks: example of comments
--
46 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
identfmt Identifier Format
It is possible to define a format for each of the categories listed below:

The third column represents inherited types: for instance, for no distinction between the
procedure and the function categories, simply define a particular format for the
subprogram category, which is inherited by the previous ones.

A special keyword any is used to define the default value for all identifier categories not
explicitly defined.

The format of the identifier is defined by a regular expression (see in Paragraph ,
Headercom Module Header Comments).

By default, no restrictions are imposed:
STANDARD identfmt ON
LIST "any" ".*"
 "type" ".*"
 "variable" ".*"
 "constant" ".*"
 "exception" ".*"
 "procedure" ".*"
 "function" ".*"
 "subprogram" ".*"
 "package" ".*"
 "task" ".*"
 "entry" ".*"
 "task_type" ".*"
END LIST END STANDARD

For the subprograms to begin with "S_", the constants to have no lower case letter and no
underscore at the beginning and the end, the variables to begin with "V_" and all other
identifiers not to begin or end with an underscore:

NAME DESCRIPTION DEFAULT

type type name any

variable variable name any

parameter parameter name variable

constant constant name any

exception exception name any

procedure procedure name subprogram, any

function function name subprogram, any

subprogram subprogram name any

package package name any

task task name any

task_type task type name type, task, any

entry entry name any
Customizing Standard Rules and Rule Sets 47

Telelogic Logiscope
STANDARD identfmt ON
LIST "any" "[^_](.*[^_])?$"
 "subprogram" "S_.*[^_]$"
 "const" "[A-Z0-9]([A-Z0-9_]*[A-Z0-9])?$"
 "variable" "V_.*[^_]$"
END LIST END STANDARD

identl Identifier Length
The possible categories of identifiers are the same as for the identfmt rule (see in
Paragraph , identfmt Identifier Format).

By default, all the identifiers must have between 5 and 25 characters:
STANDARD identl ON
LIST "any" MINMAX 1 25
 "type" MINMAX 5 25
 "variable" MINMAX 5 25
 "constant" MINMAX 5 25
 "exception" MINMAX 5 25
 "procedure" MINMAX 5 25
 "function" MINMAX 5 25
 "subprogram" MINMAX 5 25
 "package" MINMAX 5 25
 "task" MINMAX 5 25
 "entry" MINMAX 5 25
 "task_type" MINMAX 5 25
END LIST END STANDARD

loopname Named Loops
By default, every loop shall have a name and the name of a loop shall be unique in each
compilation unit:
STANDARD loopname ON "unit" END STANDARD

To have the loop name to be unique in the body of each function or procedure:
STANDARD loopname ON "subprogram" END STANDARD

nameres Reserved Names
By default, there are no reserved names:
STANDARD nameres ON LIST END LIST END STANDARD

To forbid the use of the subprograms Unchecked_Deallocation and
Unchecked_Conversion:
STANDARD nameres ON LIST "Unchecked_Deallocation"
"Unchecked_Conversion"
END LIST END STANDARD

parord Parameter OrderOrder
By default the authorized order of parameters in a subprogram is in parameters first,
then in out parameters and then out parameters:
STANDARD parord ON LIST "in" "in out" "out" END LIST END STANDARD

To authorize only in parameters and then out parameters:
STANDARD parord ON LIST "in" "out" END LIST END STANDARD
48 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
pragma Pragma Statement
By default, all pragmas are authorized:
STANDARD pragma ON LIST "forbidden" END LIST END STANDARD

To forbid all pragmas:
STANDARD pragma ON LIST "authorized" END LIST END STANDARD

To forbid the pragmas SYSTEM_NAME, MEMORY_SIZE, STORAGE_UNIT and SHARED:
STANDARD pragma ON LIST "forbidden" "SYSTEM_NAME" "MEMORY_SIZE"
"STORAGE_UNIT" "SHARED" END LIST END STANDARD

To authorize only the Ada95 pragmas:
STANDARD pragma ON LIST "authorized" "All_Calls_Remote" "Asynchronous"
"Atomic" "Atomic_Components" "Attach_Handler" "Controlled" "Convention"
"Discard_Names" "Elaborate" "Elaborate_All" "Elaborate_Body" "Export"
"Import" "Inline" "Inspection_Point" "Interrupt_Handler"
"Interrupt_Priority" "Linker_Options" "List" "Locking_Policy"
"Normalize_Scalars" "Optimize" "Pack" "Page" "Preelaborate" "Priority"
"Pure" "Queuing_Policy" "Remote_Call_Interface" "Remote_Types" "Restri-
cions" "Reviewable" "Shared_Passive" "Storage_Size" "Suppress"
"Task_Dispatching_Policy" "Volatile" "Volatile_Components" END LIST END
STANDARD

To authorize only the Ada83 pragmas:
STANDARD pragma ON LIST "authorized" "CONTROLLED" "ELABORATE" "INLINE"
"INTERFACE" "LIST" "MEMORY_SIZE" "OPTIMIZE" "PACK" "PAGE" "PRIORITY"
"SHARED" "STORAGE_UNIT" "SUPPRESS" "SYSTEM_NAME" END LIST END STANDARD

recnest Structured Types
By default, the maximum authorized level of structured record types is 5:
STANDARD recnest ON MINMAX 0 5 END STANDARD

To change this value to 3, for example:
STANDARD recnest ON MINMAX 0 3 END STANDARD

typeres Reserved Types
By default, there are no reserved types:
STANDARD typeres ON LIST END LIST END STANDARD

To forbid the types Integer and Float:
STANDARD typeres ON LIST "Integer" "Float" END LIST END STANDARD

use "use" Clauses
By default, all use clauses are forbidden:
STANDARD use ON LIST END LIST END STANDARD

To authorize the use of Text_Io and System:
STANDARD use ON LIST "Text_Io" "System" END LIST END STANDARD

with "with" Clauses
By default, all with clauses are authorized:
STANDARD with ON LIST END LIST END STANDARD

To forbid the with Standard; clause:
STANDARD with ON LIST "Standard" END LIST END STANDARD
Customizing Standard Rules and Rule Sets 49

Telelogic Logiscope
5.3 Renaming Rules
It is possible to rename standard rules to have as many versions of them as needed. The
renamed rules have their own set of parameters, and their own definition. Creating rules
in this way allows to have multiple versions of the same rule using different parameters.
It also enables adapting the names of the rules that are provided to your naming standard
and their definitions to the description you are used to seeing.

The rule used to create a new one can be a built-in rule, a user rule or even an already
renamed rule.

The rule file format
A rule file containing a renamed rule description should be created. It should be nammed
rule_name.std, where rule_name is the name of the rule being created. The contents of
the file should follow the following format:

.NAME long_name

.DESCRIPTION user_description

.COMMAND rename mnemonic_of_the_renamed_rule

where

long_name is free text, that can include spaces. It’s a more detailed title of the rule. It
will appear as an explanation of the rule name in Logiscope.

user_description is the description of the rule, that will be available in Logiscope.

rename is the type of command used for this rule, and should not be changed.

mnemonic_of_the_renamed_rule is the name of the standard rule that the new rule is
based upon

Example of a renamed rule (rename of the goto rule):
.NAME No goto at all

.DESCRIPTION

In our standard the goto statement is absolutely forbidden.

.COMMAND rename goto

The rule file location
The rule file should be placed in one of the following places:

1. in log_installation_dir/Ref/Rules/C++/ where log_installation_dir is the Logis-
cope installation directory

2. in one of the directories in the environment variable LOG_RULE_ENV. The syn-
tax of LOG_RULE_ENV is dir1;dir2;…;dirn (directory names separated by semi-
colons) on Windows and dir1:dir2:…:dirn (directory names separated by colons)
50 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
on Unix and Linux. Directories in LOG_RULE_ENV should contain the subdirec-
tories "Rules/Ada".

Activating the new rule
The new rule must be added into the Rule Set file (.rst) using the following syntax:

STANDARD new_std RENAMING old_std ON parameters END STANDARD

 where

new_std is the name of the rule being created.

old_std is the name of the existing rule.

parameters (optional) is the list of parameters, as for any other Logiscope rule.

Example:
STANDARD mygoto RENAMING goto ON LIST "test" END LIST END STANDARD

5.4 Creating a new rule entirely
New rules can also be created entirely using Tcl scripts.

More about this can be found in the dedicated Telelogic Logiscope - Adding Ada, Java
and C++ scriptable rules, metrics and contexts advanced guide.
Customizing Standard Rules and Rule Sets 51

Telelogic Logiscope
52 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
Notices
This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.
Notices 53

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.
54 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

Telelogic Logiscope
Trademarks
IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Telelogic DOORS, Telelogic Tau, Telelogic DocExpress, Telelogic Rhapsody,
Telelogic Statemate, and Telelogic System Architect are trademarks or registered
trademarks of International Business Machine Corporation in the United States, other
countries, or both, are trademarks of Telelogic, an IBM Company, in the United States,
other countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.
Notices 55

56 Telelogic Logiscope RuleChecker & QualityChecker Ada Reference Manual

	Ada Project Settings
	1.1 Input Data
	1.2 Output Data

	Command Line Mode
	2.1 Logiscope create
	2.1.1 Command Line Mode
	2.1.2 Makefile mode
	2.1.3 Options

	2.2 Logiscope batch
	2.2.1 Options
	2.2.2 Examples of Use

	Standard Metrics
	3.1 .Function Scope
	3.1.1 Line Counting
	3.1.2 Data Flow
	3.1.3 Halstead Metrics
	3.1.4 Structured Programming
	3.1.5 Control Flow
	3.1.6 Relative Call Graph

	3.2 Module Scope
	3.2.1 Line Counting
	3.2.2 Lexical and Syntactic Items
	3.2.3 Halstead Metrics
	3.2.4 Interface

	3.3 Application Scope
	3.3.1 Line Counting
	3.3.2 Application Aggregates
	3.3.3 Application Call Graph

	Programming Rules
	Customizing Standard Rules and Rule Sets
	5.1 Modifying the Rule Set
	5.2 Customizable Rules
	5.3 Renaming Rules
	5.4 Creating a new rule entirely

	Notices

