
Telelogic Logiscope

RuleChecker & QualityChecker
Java Reference Manual

Version 6.5

Before using this information, be sure to read the general information under “Notices” section, on
page 61.

This edition applies to VERSION 6.5, TELELOGIC LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.
ii Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual September

About This Manual

Audience
This manual is intended for Telelogic® Logiscope™ RuleChecker & QualityChecker
users for Java source code verification.

Related Documents
Reading first the following manual is highly recommended:

• Telelogic Logiscope - Basic Concepts.

• Telelogic Logiscope - RuleChecker & QualityChecker - Getting Started.

Creating new scripts to check specific / non standard programming rules is addressed in
dedicated document:

• Telelogic Logiscope - Adding Java, Ada and C++ scriptable rules metrics and con-
texts.

Overview
Java project Settings

Chapter 1 presents basic concepts of Logiscope RuleChecker & QualityChecker Java, its
input and output data.

Command Line Mode

Chapter 2 specifies how to run Logiscope RuleChecker & QualityChecker Java using a
command line interface.

Standard Metrics

Chapter 3 specifies the metrics computed by Logiscope QualityChecker Java.
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual iii

Programming Rules

Chapter 4 specifies the programming rules checked by Logiscope RuleChecker Java.

Customizing Standard metrics and Rules

Chapter 5 describes the way to modify standard predefined rules and to create new ones
with Logiscope RuleChecker Java.

Conventions
The following typographical conventions are used:

bold literals such as tool names (Studio)
and file extension (*.java),

bold italics literals such as type names (integer),

italics
names that are user-defined such as directory names
(log_installation_dir),
notes and documentation titles,

typewriter file printouts.
iv Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual September

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned from the
Telelogic Support site to the IBM Rational Software Support site. During this transition
phase, your product support location depends on your customer history.

Product support
• If you are a heritage customer, meaning you were a Telelogic customer prior to

November 1, 2008, please visit the Logiscope Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational Software
Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-licensed
products prior to November 1, 2008, please visit the IBM Rational Software Support
site.

Before you contact Support, gather the background information that you will need to
describe your problem. When describing a problem to an IBM software support
specialist, be as specific as possible and include all relevant background information so
that the specialist can help you solve the problem efficiently. To save time, know the
answers to these questions:
• What software versions were you running when the problem occurred?
• Do you have logs, traces, or messages that are related to the problem?
• Can you reproduce the problem? If so, what steps do you take to reproduce it?
• Is there a workaround for the problem? If so, be prepared to describe the workaround.

Other information
For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual v

https://support.telelogic.com/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/

vi Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual September

Table of Contents

Chapter 1 Java Project Settings
1.1 Input Data ... 1
1.2 Output Data... 3

Chapter 2 Command Line Mode
2.1 Logiscope create ... 5

2.1.1 Command Line Mode..5
2.1.2 Makefile mode...6
2.1.3 Options ...7

2.2 Logiscope batch .. 9
2.2.1 Options ...9
2.2.2 Examples of Use ...10

Chapter 3 Standard Metrics
3.1 Function Scope ...12

3.1.1 Line Counting...12
3.1.2 Lexical and Syntactic Items ...13
3.1.3 Halstead Metrics...14
3.1.4 Control Graph...16
3.1.5 Relative Call Graph..17

3.2 Class Scope ..19
3.2.1 Line Counting...19
3.2.2 Lexical and Syntactic Items ...19
3.2.3 Halstead Metrics...19
3.2.4 Data Flow ...20
3.2.5 Statistical Aggregates of Function Metrics ..21
3.2.6 Inheritance Tree..24
3.2.7 Use Graph...24

3.3 Module Scope ..26
3.3.1 Line Counting...26
3.3.2 Lexical and syntactic items ..27

3.4 Package Scope ...28
3.4.1 Basic Metrics..28
3.4.2 Halstead Metrics...28
3.4.3 Statistical Aggregates of Class Metrics..29
3.4.4 Statistical Aggregates of Function Metrics ..30
3.4.5 Inheritance ..32
September 2008 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual vii

3.5 Application Scope ... 33
3.5.1 Line Counting .. 33
3.5.2 Application Aggregates ... 34
3.5.3 Application Call Graph.. 35
3.5.4 Inheritance Tree ... 36

Chapter 4 Programming Rules

Chapter 5 Customizing Standard Rules and Rule Sets
5.1 Modifying the Rule Set .. 53
5.2 Customizable Rules.. 54
5.3 Creating New Rules ... 59

Chapter 6 Notices
viii Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual September
2008

Telelogic Logiscope
 Chapter 1

Java Project Settings
This chapter details specifics of the Logiscope Java projects.

Logiscope Java projects (“.ttp”) can be created using:

• Logiscope Studio Wizard: a graphical interface requiring a user interaction, please
refer to Telelogic Logiscope - RuleChecker & QualityChecker - Getting Started
documentation to learn how to create a Logiscope project using Logiscope Studio,

• Logiscope Create: a tool to be used from a standalone command line or within
makefiles, please refer to Chapter Command Line Mode to learn how to create a
Logiscope project using Logiscope Create.

Logiscope uses source code parsers to extract all necessary information from the source
code of the files specified in the project.

1.1 Input Data
Project Name

The project name is used to create the Logiscope project file containing the specification
of a Logiscope project: e.g. list of source code files, parsing options, quality model, rules
set.

The “.ttp” extension will be added to the user-specified project name to name the
Logiscope project file.

Location
The user shall specify the directory where the Logiscope project file will be created.

Source Files
Logiscope Java RuleChecker & QualityChecker must be given all the source files to
analyze when creating a project.

Please note that the Logiscope application to be analyzed should be all or part of a
complete project, able to be compiled and linked. Respecting this prerequisite will avoid
problems like for instance multiply defined functions, which are poorly handled by
Logiscope.
Java Project Settings 1

Telelogic Logiscope
Source files to be analysed are specified using:

Source file root directory: the single directory gathering all the source files of the
application.

Directories: to select the list of directories covering the application sources:
- Include all subdirectories means that selected files will be searched for in every
sub-directory of the application directory.
- Do not include subdirectories means that only files included in the application
directory will be selected.
- Customize subdirectories to include allows the user to select the directories list
that includes application files through a new page.

Extensions: to specify the extensions of the Java source files needed in the above
selected directories. The extensions shall be separated with a semi-colon.

Quality Model File
Logiscope QualityChecker allows evaluation of a software quality according to factors
and criteria. The Quality Model file specifies:

• the metrics (i.e.static measurements, i.e. obtained without executing a program) to
be used for assessing source code characteristics (e.g; maintainability, portability),

• the thresholds associated to each metric,

• the association between metrics and software characteristics to be assessed,

• the rating principles of the components defined in the source code files (e.g.
functions, modules, classes, application),

applicable to the application under analysis.

It is highly recommended to adapt the default / example Quality Model files provided in
the standard Logiscope installation.

For more information, see Telelogic Logiscope - Basic Concepts manual.

Rules Set File
Logiscope RuleChecker allows to automatically check a set of programming rules /
coding standards which are gathered within a Rules Set file. This file is used to indicate
which rules must be checked and to give parameters to customizable rules.

About seventy programming rules are supplied with Logiscope Java RuleChecker (see
Chapter Programming Rules). About half of these rules can be customized to match the
user applicable requirements (see Chapter Modifying a Predefined Rule).
2 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
1.2 Output Data
Logiscope Repository

Logiscope Java RuleChecker & QualityChecker stores all data generated during source
code parsing in a specific directory. This user-specified directory is called the
Repository.

The source files for a given Java project are parsed one at a time. For each source file ,
the Logiscope parser produces Logiscope internal ASCII format files containing all
necessary information extracted from the source code files among which:

• a file named standards.chk containing all the violations found for the source code
file of the project under analysis.

• a control graph file (suffixed by .cgr) for each source code file,

• global analysis result files (suffixed by .dat, .tab and .graph).

All files stored in the Logiscope Repository are internal data files to be used by
Logiscope Studio, Viewer and Batch. They are not intended to be directly used by
Logiscope users. The format of these files is clearly subject to changes.
Java Project Settings 3

Telelogic Logiscope
4 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
 Chapter 2

Command Line Mode

2.1 Logiscope create
Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described
in chapter Project Settings or in the Logiscope RuleChecker & QualityChecker Getting
Started documentation.

The logiscope create tool builds Logiscope projects from a standalone command line or
within makefiles (replacing the compiler command) .

2.1.1 Command Line Mode
When started from a standard command line, The create tool creates a new project file
with the information provided on the command line.

For a complete description of the command line options, please refer to the Command
Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be
included into the project:

Automatic search
This is the default mode where the tool automatically searches the files in the directories.
Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source
files. This option is not mandatory, and if omitted the default is to start the search in the
current directory.

-recurse : if present indicates to the tool that the search for source files has to be
recursive, meaning that the tool will also search the subdirectories of the root directory.

File list
In this mode, the tool will look for the –list option which has to be followed by a file
name. This provided file contains a list of files to be included into the project. The file
shall contain one filename per line.
Command Line Mode 5

Telelogic Logiscope
Example: Assuming a file named filelist.lst containing the 3 following lines:
/users/logiscope/samples/Java/Jonas/src/Account.java

/users/logiscope/samples/Java/Jonas/src/AccountExplBean.java

/users/logiscope/samples/Java/Jonas/src/AccountHome.java

Using the command line:
create aProject.ttp –audit -rule –lang java –list filelist.lst

will create a new Logiscope Java project file aProject.ttp containing 3 files:
Account.java, AccountExplBean.java and AccountHome.java on which the
QualityChecker and RuleChecker verification modules will be activated.

2.1.2 Makefile mode
When launched from makefiles, create is designed to intercept the command line usually
passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the
compiler. In this mode, the name of the project file (“.ttp” file) has to be an absolute path,
otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,
except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate
preprocessor options if any, then Create starts the normal compilation command which
will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used
either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full
rebuild and to ensure that the create will catch all files.
6 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
2.1.3 Options
The create options are the following:

create -lang java

<ttp_file> name of a Logiscope project to be created
(with the .ttp extension).
Path has to be absolute if the option -- is used.

[-source <suffixes>] where <suffixes> is the list of accepted suf-
fixes for the source files.
Default is "*.java".

[-root <directory>] where <directory> is the starting point of the
source search. Default is the current directory.
This option is exclusive with -list option.

[-recurse] if present the source file search is done recur-
sively in subfolders.

[-list <list_file>] where <list_file> is the name of a file contain-
ing the list of filenames to add to the project
(one file per line).
This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the direc-
tory where Logiscope internal files will be
stored.

[-no_compilation] avoid compiling the files if the -- option is
used

[--] when used in a makefile, introduces the com-
pilation command with its arguments.

[-audit] to activate the QualityChecker verification
module

[-ref <Quality_model>] where <Quality_model> is the name of the
Quality Model file (“.ref”) to add to the
project.
Default is <install_dir>/Ref/Logiscope.ref

[-rule] to select the RuleChecker verification module
[-rules <rules_file>] where <rule_file> is the name of the rule set

file (.rst) to be included into the project.
Default is the RuleChecker.rst file located in
the /Ref/RuleSets/Java/ will be used.

[-relax] to activate the violation relaxation mechanism
for the project.
Command Line Mode 7

Telelogic Logiscope

[-import <folder_name>] where <folder_name> is the name of the
project folder which will contain the external
violation files to be imported.
When this option is used the external viola-
tion importation mechanism is activated.

[-external <file_name>]* where <file_name> is the name of a file to be
added into the import project folder.
This option can be repeated as many times as
needed.
Only applicable if the -import option is acti-
vated.
8 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
2.2 Logiscope batch
Logiscope batch is a tool designed to work with Logiscope in command line to:
• parse the source code files specified in a Logiscope project: i.e. “.ttp” file,
• generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:
• using Logiscope Studio, refer refer to Section 1 or to RuleChecker & QualityChecker

Getting Started documentation,
• or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

2.2.1 Options
The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.
[-tcl <tcl_file>] name of a Tcl script to be used to generate the

reports instead of the default Tcl scripts.
[-o <output_directory>] directory where the all reports are generated.
[-external
<violation_file>]*

name of the file to be added into the import
project folder. This option can be repeated as
many times as needed.
This option is only significant for RuleCh-
ecker module for which the external violation
importation mechanism is activated

[-nobuild] generate reports without rebuilding the
project. The project must have been built at
least once previously.

[-clean] before starting the build, the Logiscope build
mechanism removes all intermediate files and
empties the import project folder when the
external violation importation mechanism is
activated.

[-addin <addin> options] where addin nis the name of the addin to be
activated and options the associated options
generating the reports.
Command Line Mode 9

Telelogic Logiscope
2.2.2 Examples of Use
Considering a previously created Logiscope project named MyProject.ttp where:
• RuleChecker and QualityChecker verification modules have been activated,
• the Logiscope Repository is located in the folder MyProject/Logiscope,

(Refer to the previous section or to the RuleChecker & QualityChecker Getting Started
documentation to learn how creating a Logiscope project).

Executing the command on a command line or in a script:
batch MyProject.ttp

will:
• perform the parsing of all source files specified in the Logiscope project

MyProject.ttp,
• run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts

to generate the standard QualityChecker HTML report named
MyProjectquality.html in the default MyProject/Logiscope/reports.dir folder.

• run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to
generate the standard RuleChecker HTML report named MyProjectrule.html in the
default MyProject/Logiscope/reports.dir folder.

[-table] generate tables in predefined html reports
instead of slices or charts. By default, slices or
charts are generated (depending on the project
type).
This option is available only on Windows as
on Unix there are no slices or charts, only
tables are generated.

[-noframe] generate reports with no left frame.
[-v] display the version of the batch tool.
[-h] display help and options for batch.
[-err <log_err_folder>] directory where troubleshooting files

batch.err and batch.out should be put. By
default, messages are directed to standard out-
put and error.
10 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
 Chapter 3

Standard Metrics
Logiscope QualityChecker proposes a set of standard source code metrics. Source code
metrics are static measurements (i.e. obtained without executing the program) to be used
to assess attributes (e.g. complexity, self-descriptiveness) or characteristics (e.g.
Maintainability, Reliability) of the Java functions, classes, modules, packages,
application under evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality
evaluation of the source code. For example, the “comments frequency” metric, well
suited to evaluate quality criteria such as self-descriptiviness or analyzability, can be
defined by combining two basic metrics: “number of comments” and “number of
statements”.

The user can associate threshold values with each of the quality model metrics,
indicating minimum and maximum reference values accepted for the metric.

Source code metrics apply to different domains (e.g. line counting, control, flow, data
flow, calling relationship) and the range of their scope varies.

The scope of a metric designates the element of the source code the metric will apply
to.The following scopes are available for Logiscope QualityChecker C++.

• The Function scope: the metrics are available for each member and non-member
functions defined in the source files specified in the Logiscope Project under analysis.

• The Class scope: the metrics are available for each Java classes defined in the source
files specified in the Logiscope Project under analysis. Classes contain member
functions and member data.

• The Module scope: the metrics are available for each Java source files specified in the
Logiscope Project under analysis.

• The Package scope: the metrics are available for each Java package defined in the
source files specified in the Logiscope Project under analysis.

• The Application scope: the metrics are available for the set of Java source files
specified in the Logiscope Project .
Standard Metrics 11

Telelogic Logiscope
3.1 Function Scope

3.1.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

lc_cline Total number of lines

lc_cloc Number of lines of code

lc_cblank Number of empty lines

lc_ccomm Number of lines of comments

lc_csbra Number of lines with lone braces

lc_parse Number of lines not parsed

Definition Total number of lines in the function.

Definition Total number of lines containing executable code in the function.

Definition Number of lines containing only non printable characters in the function.

Definition Number of lines of comments in the function.
Alias LCOM

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the function.

Definition Number of lines that cannot be parsed in a function because of syntax
errors or of some particular uses of macros.
12 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.1.2 Lexical and Syntactic Items

lc_dclstat Number of declarative statements

ic_except Number of raised exceptions

ic_param Number of parameters

lc_stat Number of statements

Definition Number of declarations in a method body.

Definition Number of exceptions declared by the keyword throws in a method.

Definition Number of a formal parameters in the function.
Alias PARA

Definition Number of executable statements in a function’s body.
Executable statements are:
• Control statements: break, statement block, continue, do, for,

goto, if, labels, return, switch, while, case, default,

• Statements followed by ; ,

• Empty statement.

lc_stat that can be parametrized to count the statements a familiar way:

• if the parameter "no_null_stat" is provided, block statements, empty
statements and labeled statements (including case and default
labels in switch statements) are omitted (default),

• if the parameter "no_decl_stat" is provided, declarative statements are
omitted, as well as statements omitted with the parameter
"no_null_stat".

Alias STMT
Standard Metrics 13

Telelogic Logiscope
3.1.3 Halstead Metrics
The four following metrics allows to compute all metrics defined by Halstead [Hal, 77]
at function level in the Logiscope Quality Model file. See the Quality Model file
Halstead.ref.

For more details on Halstead metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

n1 Number of distinct operators

The following are operators:

• Statements:

• Expressions:
• Unary operators:

• Binary Operators:

• Ternary conditional operator: ?:

Definition Number of different operators used in a function.

IF ELSE WHILE() DO WHILE()
RETURN FOR(;;) SWITCH BREAK
CONTINUE CASE DEFAULT THROW
TRY SYNCHRONIZED CATCH
; (empty statement)

+ - unary plus or minus
++ -- pre-/post- increment or decrement
! negation
~ complement of 1 or destructor
new new
delete delete
isinstance instance of

+ - * / % arithmetic operators
<< >> & | ^ bitwise operators
> < <= >= == != comparison operators
&& || logical operators
.* pointer to member operators
14 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
• Assignment operators: = *= /= %= += -= >>= <<= &= ^= |=
• Other operators:

• Specifiers: class, package, private, public, protected, static, volatile, native, abstract,
synchronized, trancient, final, extend, implement.

N1 Total number of operators

n2 Number of distinct operands

The following are operands:

• Literals:
• Decimal literals (ex: 45, 45u, 45U, 45l, 45L, 45uL)
• Octal literals (ex: 0177, 0177u, 0177l)
• Hexadecimal literals (ex: 0x5f, 0X5f, Ox5fu, 0x5fl)
• Floating literals (ex: 1.2e-3, 1e+4f, 3.4l)
• Character literals (ex: ’c’, L’c’, ’cd’, ’\a’, ’\177’, ’\x5f’)
• String literals (ex: "hello", L" world\n")
• Boolean literals : true or false

• Identifiers : variable names, function names, class names, package names,

• this,

• super,

• predefined types : boolean, long, int, byte, short, float, char, double, void

N2 Total number of operands

(...) cast (ex: (float)1)
...() function call (ex: func(1))

Definition Total number of operators used in a function.
Note The function area where operators are counted depends on the parameter

of the n1 metric (see above).

Definition Number of different operands used in a function.

Definition Total number of operands used in a function.
Note The function area where operands are counted depends on the parameter

of the n2 metric (see above).
Standard Metrics 15

Telelogic Logiscope
3.1.4 Control Graph
For more details on Control Graph Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

ct_bran Number of destructuring statements

ct_decis Number of decisions

ct_degree Maximum degree

ct_edge Number of edges

ct_exit Number of exits

ct_loop Number of loops

ct_nest Maximum nesting level

ct_node Number of nodes

Definition Number of destructuring statements in a function (break and continue
in loops, and goto statements).

Definition Number of selective structures in a function : if, switch.
Alias N_STRUCT

Definition Maximum number of edges departing from a node of the function control
graph.

Definition Number of edges of a function control graph.
Alias N_EDGES

Definition Number of exit nodes in the control graph of the function : return, exit
statements.

Alias N_OUT

Definition Number of loop statements in a function (pre- and post- tested loops):
for, while, do ... while

Definition Maximum nesting level of control structures in a function.

Definition Number of nodes of a function control graph.
Alias N_NODES
16 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
ct_path Number of paths

ct_raise Number of exception raises

ct_try Number of exceptions handlers

ct_vg Cyclomatic number (VG)

DES_CPX Design complexity

ESS_CPX Essentiel complexity

3.1.5 Relative Call Graph
For more details on Call Graph Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

cg_levels Number of relative call graph levels

Definition Number of non-cyclic execution paths of the control graph of the function.
Alias PATH

Definition Number of occurrences of the throw clause within a function body.
Alias N_RAISE

Definition Number of try blocks in a function.
Alias N_EXCEPT

Definition Cyclomatic number of the control graph of the function.
Alias VG, ct_cyclo

Definition Cyclomatic number of the design control graph of the function.
The design control graph is obtained by removing all constructs that do
not contain calls from the control graph of the function.

Definition Cyclomatic number of the reduced control graph of the function.
The reduced control graph is obtained by removing all structured con-
structs from the control graph of the function.
A structured contruct is a a selective or iterative structure that does not
contains branching or auxiliary exit statements: goto, break, con-
tinue or return.

Definition Number of levels of the relative call graph of the function.
Alias LEVELS
Standard Metrics 17

Telelogic Logiscope
cg_entropy Relative call graph entropy

cg_ hiercpx Relative call graph hierarchical complexity

cg_strucpx Relative call graph structural complexity

cg_testab Relative call graph system testability

Definition This metric proposed by SCHUTT [SHT, 77] applies to the system call
graph. It is an indicator of call graph analysability, characterizing both
width and depth of the call graph:

where |xi| is the number of components in the ith path.
Alias ENTROPY

Definition Average number of components per level: i.e. number of components
divided by number of levels.

Alias HIER_CPX

Definition Average number of calls per component: i.e. number of calls between
components divided by the number of components.

Alias STRU_CPX

Definition

Np is the number of paths through the system.
TPi is the testability of the ith call path.
The definition involves the number of paths and the test difficulty level for
each path. The result obtained can help to evaluate the software reliability.

Alias TESTBTY

H GA() 1
x

i 1=

Np
xi log2

x
xi
-------=

ST 1
Np
------- 1

TPi

i 1=

Np

∑

 1

=

18 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.2 Class Scope

3.2.1 Line Counting

cl_line Number of lines

cl_comm Number of lines of comments

3.2.2 Lexical and Syntactic Items

cl_dclstat Number of declarative statements

cl_stat Number of statements

3.2.3 Halstead Metrics
The four following metrics allows to compute all metrics defined by M.H. Halstead [Hal,
77] at class level in the Logiscope Quality Model file.
See the Quality Model file: Halstead.ref.

For more details on Halstead metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

cl_n1 Number of distinct operators

Definition Total number of lines in the class or interface.

Definition Number of comment lines of comment in the class or interface.
 Comments located outside the class are not counted.

Definition Number of declarations of fields and methods in a class or an interface.

Definition Number of statements in all methods and initialization code of a class.
This counting of staf tements and optional parameters "no_null_stat"
and "no_decl_stat" are explained in lc_stat in the Function Scope part.

Note Because the value of the metric cl_stat for the class scope depends on the
value of lc_stat for the method scope, it is strongly recommended to use
the same parametrization for the two scopes.

Definition Number of different operators used in the class.
Standard Metrics 19

Telelogic Logiscope
cl_N1 Total number of operators

cl_n2 Number of distinct operands

cl_N2 Total number of operands

3.2.4 Data Flow

cl_interf Number of implemented interfaces

cl_extend Number of extended classes

cl_subclass Number of included classes

cl_data Total number of attributes

cl_data_priv Number of private attributes

cl_data_prot Number of protected attributes

Definition Total number of operators used in the class.

Definition Number of different operands used in the class.

Definition Total number of operands used in the class.

Definition Number of declared interfaces implemented by a class or extended by an
interface.

Definition Equals 1 if the class extends another class, 0 otherwise.

Definition Number of classes or interfaces declared inside a class or an interface.
Note Anonymous classes are not taken into account.

Definition Total number of data members declared inside a class declaration.
Alias cl_field

Definition Number of data members declared in the private section of a class.
Alias LAPI, cl_field_priv

Definition Number of data members declared in the protected section of a class.
Alias LAPO, cl_field_prot
20 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
cl_data_publ Number of public attributes

cl_data_final Number of final attributes

cl_data_const Number of constants

cl_data_static Number of class attributes

cl_data_pack Number of attributes in package scope

cl_data_nostat Number of instance attributes

3.2.5 Statistical Aggregates of Function Metrics

cl_func Total number of methods

Definition Number of data members declared in the public section of a class.
Alias LAPU, cl_field_publ

Definition Number of data members declared in a class declaration with the attribute
final.

Note For interfaces, cl_data_final is equal to cl_data.
Alias cl_field_final

Definition Number of data members declared in a class declaration with the attributes
final and static.

Note For interfaces, cl_data_const is equal to cl_data.
Alias cl_field_const

Definition Number of data members declared in a class declaration with the attribute
static and without the final attribute.

Note For interfaces, cl_data_static is equal to 0.
Alias cl_field_static

Definition Number of data members declared in the class declaration without any of
the attributes private, protected or public.

Note For public classes or interfaces, cl_data_pack is equal to 0.
Alias cl_field_pack

Definition Number of fields declared in a class declaration without attribute static.
Note For interfaces, cl_data_nostat is equal to 0.
Alias cl_field_nostat

Definition Total number of methods declared inside a class.
Standard Metrics 21

Telelogic Logiscope
cl_func_priv Number of private methods

cl_func_prot Number of protected methods

cl_func_publ Number of public methods

cl_func_abstract Number of abstract methods

cl_func_native Number of methods implemented in another lan-
guage

cl_func_pack Number of methods in package scope

cl_func_static Number of class methods

Alias cl_meth

Definition Number of methods declared in the private section of a class.
Alias LMPL, cl_meth_priv

Definition Number of methods declared in the protected section of a class.
Alias LMPO, cl_meth_prot

Definition Number of methods declared in the public section of a class.
Alias LMPU, cl_meth_publ

Definition Number of methods declared in a class declaration with the attribute
abstract.

Note For interfaces, cl_func_abstract is equal to cl_func.
Alias cl_meth_abstract

Definition Number of methods declared in a class declaration with the attribute
native.

Note For interfaces, cl_func_native should be 0.
Alias cl_meth_native

Definition Number of methods declared in a class declaration without any of the
attributes private, protected or public.

Note For public interfaces, cl_func_pack is equal to 0.
Alias cl_meth_pack

Definition Number of methods declared in a class declaration with the attribute
static.

Note For interfaces, cl_func_static is equal to 0.
22 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
cl_func_nostat Number of instance methods

cl_fpriv_path Sum of paths for private class methods

cl_fprot_path Sum of paths for protected class methodss

cl_fpubl_path Sum of paths for public class methods

cl_wmc Weighted Methods per Class

The sum of cl_func_static and cl_func_nostat gives the total number of
methods cl_func.

Alias cl_meth_static

Definition Number of methods declared in a class declaration without the attribute
static.

Note For interfaces, cl_func_nostat is equal to cl_func.
The sum of cl_func_static and cl_func_nostat gives the total number of
methods cl_func.

Alias cl_meth_nostat

Definition Sum of non-cyclic execution paths for each class’s private methods. This
metric is an indicator of the static complexity of the private part of the
class.

Alias LMPIPATH

Definition Sum of non-cyclic execution paths for each class’s protected meth-
ods. This metric is an indicator of the static complexity of the class
protected part.

Alias LMPOPATH

Definition Sum of non-cyclic execution paths for each class’s public methods.
This metric is an indicator of the static complexity of the public part
of the class.

Alias LMPUPATH

Definition Sum of static complexities of class methods.
Static complexity is represented in this calculation by the cyclomatic num-
bers (VG).

Alias LMVG, cl_cyclo
Standard Metrics 23

Telelogic Logiscope
3.2.6 Inheritance Tree

in_bases Number of base classes

in_dbases Number of direct base classes

in_depth Depth of the inheritance tree

in_derived Number of derived classes

in_noc Number of children

3.2.7 Use Graph

cu_level Depth of use

cu_cdused Number of direct used classes

cu_cused Number of used classes

Definition Number of classes from which a class inherits directly or not
If multiple inheritance is not used, the value of in_bases is equal to the
value of in_depth.

Alias in_inherits

Definition Number of classes from which a class directly inherits.
Note A value of in_dbases upper than 1 denotes multiple inheritance.
Alias MII, in_dinherits

Definition Maximum length of an inheritance chain starting from a class.

Definition Total number of classes which inherit from a class directly or indirectly.

Definition Number of classes which inherit directly from a class.
Justification The children number of a class is an indicator of the class criticalness

within a given system. In fact, more children a class has, more the modifi-
cations made to the class will induce changes in the global system.

Alias NOC, in_dderived

Definition Maximum length of a chain of use starting from a class (not counting use
loop).

Definition Number of classes used directly by a class.

Definition Number of classes used by the current class directly or not.
24 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
cu_cdusers Number of direct users classes

cu_cusers Number of users classes

Definition Number of classes which use directly a class.

Definition Total number of classes which use directly or not a class.
Standard Metrics 25

Telelogic Logiscope
3.3 Module Scope

3.3.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

md_blank Number of empty lines

md_comm Number of lines of comments

md_line Total number of lines

md_loc Number of lines of code

md_sbra Number of lines with lone braces

Definition Number of lines containing only non printable characters in the module.

Definition Number of lines of comments in the module.
Alias LCOM

Definition Total number of lines in the module.

Definition Total number of lines containing executable code in the module.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the module.
26 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.3.2 Lexical and syntactic items

md_class Number of classes

md_interf Number of interfaces

md_import_pack Number of imported packages

md_import_demd Number of importations on demand

md_import_type Number of imported types

md_dclstat Number of declarative statements

md_stat Number of statements

Definition Number of classes declared at the first level of the file.

Definition Number of interfaces declared at the first level of the file.

Definition Number of packages appearing in the import statement of a module.
The parameter of the import stement is supposed to be a package name if
it is a simple name (without a dot in it) or if it is not used as a type in the
module.

Definition Number of import statements in a module whose parameter is a generic
name (ended by .*).

Definition Number of types appearing in the import statements of a module.
The parameter of the import stement is supposed to be a type name if it is
not a simple name (with at least a dot in it) or if it is used as a type in the
module.

Definition Total number of declarations in the method bodies in the file.

Definition Total number of executable statements in the method bodies in the file.
Standard Metrics 27

Telelogic Logiscope
3.4 Package Scope

3.4.1 Basic Metrics

 pk_line Number of lines

pk_com: Number of lines of comments

pk_file Number of files

pk_pkused Number of used packages

3.4.2 Halstead Metrics
The four following metrics allows to compute all metrics defined by Halstead [Hal, 77]
at package level in the Logiscope Quality Model file.
See the Quality Model file: Halstead.ref.

For more details on Halstead metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

pk_n1 Number of distinct operators

pk_n2 Number of distinct operands

pk_N1 Total number of operators

pk_N2 Total number of operands

Definition Total number of lines in the files containing the package.

Definition Total number of comment lines in the package.
Comments located outside the package are not counted.

Definition Total number of files within the package.

Definition Number of imported packages of the package.

Definition Number of distinct operators referenced in the package.

Definition Number of distinct operands referenced in the package.

Definition Total number of operators referenced in the package.

Definition Total number of operands referenced in the package.
28 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.4.3 Statistical Aggregates of Class Metrics

pk_class Number of classes

pk_interf Number of interfaces

pk_const Number of constants

pk_data Number of attributes

pk_data_priv Number of private attributes

pk_data_prot Number of protected attributes

pk_data_publ Number of public attributes

pk_data_stat Number of static attributes

pk_except Number of raised exceptions

Definition Total number of classes declared in the package.
Nested classes are counted.

Definition Total number of interfaces declared in the package.

Definition Total number of constants declared in the classes of the package.

Definition Total number of data declared in the classes of the package.

Definition Total number of data explicitely declared with the “private” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “protected” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “public” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “static” keyword in the
classes of the package.

Definition Total number of exceptions declared by the keyword throw in the
method declaration of the package.
Standard Metrics 29

Telelogic Logiscope
pk_raise Number of raising an exceptions raises

pk_try Number of exception handlers

pk_type Number of public classes

3.4.4 Statistical Aggregates of Function Metrics

pk_cpx Sum of size of statements

pk_cpx_max Maximum size of statements

pk_func Number of functions

pk_func_priv Number of private functions

pk_func_prot Number of protected functions

pk_func_publ Number of public functions

Definition Total number of occurrences of throw keyword in the classes of the
package.

Definition Total number of occurrences of try blocks in the classes of the package.

Definition Total number of public classes of the package.

Definition Sum of the size (number of operands and operators) of the statements in
the package.

Definition Maximum number of operands and operators in a statement of the pack-
age.

Definition Total number of functions declared in the classes of the package

Definition Total number of functions explicitely declared with the “private” key-
word in the classes of the package.

Definition Total number of functions explicitely declared with the “protected” key-
word in the classes of the package.

Definition Total number of functions explicitely declared with the “public” keyword
in the classes of the package.
30 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
pk_func_stat Number of static functions

pk_func_abstract Number of abstract functions

pk_func_used Sum of called functions

pk_func_used_max Maximum number of called functions

pk_levl Sum of maximum nested levels

pk_levl_max Maximum nested levels

pk_path Sum of non-cyclic paths

pk_path_max Maximum number of non-cyclic paths

pk_param Sum of function parameters

Definition Total number of functions explicitely declared with the “static” keyword
in the classes of the package.

Definition Total number of abstract functions in the classes of the package.

Definition Number of calls of functions by a function declared in the classes of the
package.

Definition Maximum number of calls of functions by a function declared in the
classes of the package.

Definition Sum of nested levels (ct_nest) in the functions declared in the classes of
the package.

Definition Maximum number of nested levels (ct_nest) in a function declared in the
classes of the package.

Definition Sum of non-cyclic paths (ct_path) in the functions declared in the classes
of the package.

Definition Maximum number of non-cyclic paths (ct_path) in a function declared in
the classes of the package.

Definition Sum of the number of formal parameters (ic_param) in the functions
declared in the classes of the package.
Standard Metrics 31

Telelogic Logiscope
pk_param_max Maximum number of parameters

pk_stmt Sum of statements

pk_stmt_max Maximum number of statements

pk_vg Sum of cyclomatic numbers

pk_vg_max Maximum cyclomatic number

3.4.5 Inheritance

pk_extend Total number of extends

pk_implement Total number of implement

pk_inh_levl Sum of depth of the inheritance tree

pk_inh_levl_max Depth of the inheritance tree

Definition Maximum number of formal parameters (ic_param) in a function declared
in the classes of the package.

Definition Sum of executable statements (lc_stat) in the functions declared in the
classes of the package.

Definition Maximum number of executable statements (lc_stat) in a function
declared in the classes of the package.

Definition Sum of cyclomatic numbers (ct_vg) of the functions declared in the
classes of the package.

Definition Maximum cyclomatic numbers (ct_vg) in a function declared in the
classes of the package.

Definition Number of classes referenced in the “extend” directives of the classes in
the package.If a class is referenced several times, it is counted several
times.

Definition Number of classes referenced in the “implement” directives of the classes
in the package. A class referenced several times is counted several times.

Definition Sum of the depth of the inheritance tree of each class declared in the pack-
age.

Definition Maximum depth of an inheritance tree of a class declared in the package.
32 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.5 Application Scope
Metrics presented in this section are based on the set of Java source files specified in
Logiscope Project under analysis. It is therefore recommended to use these metrics
values exclusively for a complete application or for a coherent subsystem.

3.5.1 Line Counting
For more details on Line Counting Metrics, please refer to:

• Telelogic Logiscope - Basic Concepts.

ap_sline Total number of lines

ap_sloc Number of lines of code

ap_sblank Number of empty lines

ap_scomm Total number of lines of comments

ap_ssbra Number of lines with lone braces

Definition Total number of lines in the application source files.

Definition Total number of lines containing executable in the application source files.

Definition Total number of lines containing only non printable characters in the
application source files.

Definition Number of lines of comments in the application source files.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}”
application source files.
Standard Metrics 33

Telelogic Logiscope
3.5.2 Application Aggregates

ap_clas Number of application classes

ap_func Number of application functions

ap_interf_func Number of application interface functions

ap_npm Number of public methods

ap_line Number of function lines

ap_stat Number of statements

ap_vg Sum of cyclomatic numbers

Definition Number of classes in the application.
Alias LCA

Definition Number of functions in the application. The application is defined by the
list of analyzed files.

Alias LMA

Definition Number of interface functions in the application.

Definition Number of public method in the application.
Alias LCA

Definition Sum of numbers of lines (i.e. lc_line) of all the functions defined in the
application.

See also ap_sloc

Definition Sum of executable statements (i.e. lc_stat) for all the functions defined in
the application.

Definition Sum of cyclomatic numbers (i.e. ct_vg) for all the functions defined in the
application.

Alias VGA, ap_cyclo
34 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
3.5.3 Application Call Graph

ap_cg_cycle Call Graph recursions

ap_cg_edge Number of Edges in the Call graph

ap_cg_levl Number of Levels in the Call graph

ap_cg_maxdeg Maximum of Calling/Called

ap_cg_maxin Maximum of Calling

Definition Number of recursive paths in the call graph for the application’s functions.
A recursive path can be for one or more functions.

Justification Excessive use of recursiveness increases the global complexity of the
application and may diminish system performances.

Alias GA_CYCLE

Definition Number of edges in the call graph of application functions.
Alias GA_EDGE

Definition Depth of the Call Graph: number of call graph levels.
Justification Too many call graph levels indicates a strong hierarchy of calls among

system functions. This may be due to incorrectly implemented object-cou-
pling relationships.

Alias GA_LEVL

Definition Maximum number of calling/called for nodes in the call graph of applica-
tion functions.

Languages C, ADA
Alias GA_MAXDEG

Definition Maximum number of “callings” for nodes in the call graph of Application
functions.

Alias GA_MAX_IN
Standard Metrics 35

Telelogic Logiscope
 ap_cg_maxout Maximum of Called

ap_cg_node Number of Nodes in the Call graph

ap_cg_root Number of Roots

ap_cg_leaf Number of Leaves

3.5.4 Inheritance Tree

ap_inhg_cpx Inheritance tree complexity

ap_inhg_edge Inheritance graph edges

Definition Maximum number of called functions for nodes in the call graph of Appli-
cation functions.

Alias GA_MAX_OUT

Definition Number of nodes in the call graph of Application functions. This metric
cumulates Application’s member and non-member functions as well as
called but not analyzed functions.

Alias GA_NODE

Definition Number of roots functions in the call graph of Application functions.
Alias GA_NSP

Definition Number of functions executing no call. In other words, number of leaves
nodes in the call graph of Application functions.

Alias GA_NSS

Definition Thecomplexity of the inheritance tree is defined as a ratio between:
• the sum for all of the graph levels of the number of nodes on the level

times the level weight index,
• the number of graph nodes.
• Basic classes are on the top level and leaf classes on the lower levels

where N is the number of nodes for level i.
Alias GH_CPX

Definition Number of inheritance relationships in the application.
Alias GH_EDGE
36 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
ap_inhg_leaf Number of final class

ap_inhg_levl Depth of inheritance tree

ap_inhg_maxdeg Maximum Number of derived/inherited classes

ap_inhg_maxin Maximum Number of derived classes.

ap_inhg_maxout Maximum Number of inherited classes.

ap_inhg_node Inheritance tree classes

ap_inhg_pc Protocol complexity

Definition Number of final classes in the inheritance tree of the application.
A class is said to be a final class if it has no child class.

Alias GH_NSP

Definition The Depth of the Inheritance Tree (DIT) is the number of classes in the
longest inheritance link.

Alias GH_LEVL

Definition Maximum number of inheritance relationships for a given class. This met-
ric applies to the Application’s inheritance graph.

Alias GH_MAX_ DEG

Definition Maximum number of derived classes for a given class in the inheritance
graph.

Alias GH_MAX_ IN

Definition Maximum number of inherited classes for a given class in the inheritance
graph.

Alias GH_MAX_ OUT

Definition Number of classes present in the inheritance tree of the application.
Alias GH_NODE

Definition Depth of the Inheritance Tree times the maximum number of functions in
a class of the inheritance tree over the total number of functions in the
inheritance tree
Standard Metrics 37

Telelogic Logiscope
ap_inhg_root Number of basic classes

ap_inhg_uri Number of repeated inheritances

Alias GH_PC

Definition Number of basic classes in the application. A class is said to be basic if it
does not inherit from any other class.

Alias GH_NSS

Definition Repeated inheritances consist in inheriting twice from the same class. The
number of repeated inheritances is the number of inherited class couples
leading to a repeated inheritance.

Alias GH_URI
38 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
 Chapter 4

Programming Rules
This section describes the default set of rules provided by Logiscope Java RuleChecker.
About half of these rules can be customized by modifying parameters in the Rule Set file
(see Chapter Customizing Standard Metrics & Rules).

asscal Assignment inside function calls

asscon Assignment inside conditions

Example:

assexp Assignment inside expressions

Description Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=, ++,
--) shall not be used inside function calls.

Justification Removes ambiguity about the evaluation order.

Description Assignment operators (=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=, ++,
--) must not be used inside conditional expression in control statements
if, while, for and switch.

Justification An instruction such as if (x=y) { ... is ambiguous and unclear. One
might think the author wanted to write if (x==y) {...

// do not write
if (x -= dx) { ...
for (i=j=n; --i > 0; j--) { ..

// write
x -= dx;
if (x) { ...
for (i=j=n; i > 0; i--, j--) { ...

Description Inside an expression:
 •a variable has to be assigned only once,
 •with multiple assignments, an assigned variable can appear only
where it has been assigned.

Justification Removes ambiguity about the evaluation order.
Programming Rules 39

Telelogic Logiscope
Example:

blockdecl Declarations in blocks

brkcont break and continue forbidden

condop No ternary operator

// do not write
i = t[i++];
x.a=b=c+x.a;
i=t[i]=15;

// but you can write
(new B).i = i = 7;

// the following expressions are detected as a violation,
// but they are not really multiple assignments
// nevertheless, this should be avoided
(new B).i = (new B).i = 7;
nextval().i = nextval().i = 7;

Description Declarations must appear at the beginning of blocks.
Justification Makes the code easier to read.

Description Break and continue statements are forbidden inside conditional expres-
sions in control statements (for, do, while, labeled statements).
Nevertheless, the break statement is allowed in the block statement of the
switch statement.
It is possible to choose between three options:
• in_switch (or no parameter) means that the break are allowed in
switch statements, break and continue are forbidden everywhere
else,
• without_label means that any break or continue without a label is
allowed,
• with_label means that any break and continue with a label is
allowed, break and continue without a label is forbidden everywhere.

Parameters One of the three character strings explained above.
Justification Like a goto, these instructions break down code structure. Prohibiting

them in loops makes the code easier to understand.

Description The ternary conditional operator ? ... : ... must not be used.
Justification Makes the code easier to read.
40 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
const Literal constants

Example:

constrdef Default constructor

Example:

Description Numbers and strings have to be declared as constants instead of being
used as literals inside a program.
Specify allowed literal constants. By default, the allowed literal constants
are 0, 1, ’\0’ and the character string literals.

Parameters A list of character strings representing the allowed literal constants. The
"*" character can be used in constants definition to indicate that only the
beginning of the literal shall match the definition in parameter

Justification Makes maintenance easier by avoiding the scattering of constants among
the code, often with the same value.

Note In the case of constants used in initializing lists (concerning array and
struct structures), only the first five violations are detected.

// do not write
String tab = new String(100);
int i;
...
if (i == 7) {
 p = "Hello World.\n";
}

// write
static final int TAB_SIZE =100
static final int ok =7, ko =11;
static final String HelloWorld = "Hello World.\n";
String tab = new String(TAB_SIZE);
i_val i;
...
if (i == ok) {
 p = HelloWorld;
}

Description Each class must contain the explicit declaration of at least a constructor.
By default, a default constructor (without parameters) is required for each
class.

Parameters The character string "default", which, if used, requires a default construc-
tor (without parameters) to be provided.

Justification Makes sure the author has thought about the way to initialize an object of
the class.

// write
class aClass {
...
aClass();
...
}

Programming Rules 41

Telelogic Logiscope
ctrlblock Blocks in control statements

Example:

declinitsep Declaration and initialisation separate

declord Declaration order

Description Block statements shall always be used in control statements (if, for,
while, do).

Justification Removes ambiguity about the scope of instructions and makes the code
easier to read and to modify.

// do not write
if (x == 0) return;
else
 while (x > min)
 x--;

// write
if (x == 0) {
 return;
} else {
 while (x > min) {
 x--;
 }
}

Description Declaration and initialisation of a variable shall be done separately.
Justification Maintainability.

Description In a class, declarations must follow a particular order, given in the param-
eters of the rule. The order depends on the types of the declarations.
The type is defined by:

 •the access type (public, protected, private or package if no access
type is specified),
 •the scope (class or instance),
 •the variable type (constant, variable, method, constructor, type).

The order is defined by an ordered list of strings defining a set of declara-
tion types.
A declaration of one type can not follow a declaration of another type if its
type matches a set of type that is before the set of types of the first one in
the ordered list.
A declaration matches a set of types if the set of types is the first of the list
of the highest number of criteria which includes the type of the declara-
tion.
42 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
Example:

dmaccess Access to Data Members

Parameters A list of character strings representing the declaration types in the wanted
order. Each string contains a set of the above keywords. Several keywords
of the category are alternatives. Several categories increase the number of
criteria of the set. In addition to the keywords described above, allaccess
means private, protected, public or package; allscope means class or
instance; alldecl means constant, variable, method, constructor or type;
others means any types not listed above.

Notes Class definitions have not to contain all the types defined in the standard.
If the constructor type does not appear in the list, constructors will be con-
sidered as ordinary methods.
It is advisable to use allaccess, allscope and alldecl to increase the num-
ber of criteria of a set. For instance, use “allaccess allscope constructor” to
match any constructor, but use “method” to match the methods not
matched by other sets.

Justification Makes the code easier to read.

// if the standard has the following strings
// in this order:
// “allaccess allscope constructor” “public class method”
// “public method” “method” “constant” “others”,
// following declarations are allowed:
class aClass {

public aClass(){}
public int f() {}
int i;

}
class aClass {

static public void p() {}
public int f(int j) {}
int f() {}
static final int ID = 123;
class subClass { }

}
// and not the following one:
class aClass {
int f() {}
public F() {}
}

Description The class interface must be purely functional: data members definitions
can be limited.
By default, only the data members definition in the private part of a class
are authorized.

Parameters A list of character strings corresponding to the forbidden access specifiers
for the data members. The keyword package indicates that no access
specifier is provided.
Programming Rules 43

Telelogic Logiscope
emptythen No empty then

exprparenth Parentheses in expressions

Example:

exprcplx Expressions complexity

Justification The good way to modify the state of an object is via its methods, not its
data members. The data members of a class should be private or at least
protected.

Description The then part of an if structure shall not be empty.

Description In expressions, every binary and ternary operator shall be put between
parentheses..
It is possible to limit this rule by using the partpar option. The following
rule is then applied: when the right operand of a "+" or "*" operator uses
the same operator, omit parenthesis for it. In the same way, omit parenthe-
sis in the case of the right operand of an assignment operator. Moreover,
omit parenthesis at the first level of the expression.
By default, the partpar option is selected.

Parameters The character string "partpar", which, if used, allows programmers not
to put systematically parenthesis, according to the rule above.

Justification Reliability, Maintainability: Removes ambiguity about the evaluation pri-
orities.

// do not write
result = fact / 100 + rem;
// write
result = ((fact / 100) + rem);
// or write, with the partpar option
result = (fact / 100) + rem;
// with the partpar option, write
result = (fact * ind * 100) + rem + 10 + pow(coeff,c);
// instead of
result = ((fact * (ind * 100)) + (rem + (10 + pow(coeff,c))));

Description Expressions complexity must be smaller than a limit given as a parameter.
This complexity is calculated with the associated syntactic tree, and its
number of nodes.
By default, the maximum authorized complexity level is 10.

Parameters A number representing the maximum authorized complexity level.
Justification Maintainability.
44 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
Example:

filelength File length

headercom Header comments

Example of the default required header comment for classes and interfaces:

For instance, this expression:
(b+c*d) + (b*f(c)*d)

is composed of 8 operators and 7 operands.

The associated syntactic tree has 16 nodes, so if the limit is under 16,
there will be a rule violation.

Description A source file shall not contain more than a maximum number of lines.
By default, the maximum length is limited to 1000 lines.
STANDARD filelength ON 1000 END STANDARD

Parameter A number representing the maximum number of lines authorised.
Justification Analysability

Description Modules, interfaces, classes, methods and attributes must be preceded by a
comment.
It is possible to define a format for this comment depending on the type of
the item (module, interface, class, method, attribute).
By default, a header comment with the author and the version is required
for each class and interface.

Parameters Five lists of character strings concerning the five cases listed above. Each
list begins with one of the five strings (method for instance), followed by
strings representing the regular expressions.

Justification Makes the code easier to read.

/**
 *
 * @author Andrieu
 * @version 1.3, 08/07/96
 */
Programming Rules 45

Telelogic Logiscope
identfmt Identifier format

identl Identifier length

identres Reserved identifiers

import Explicit import

linelength Line length

Description The identifier of a class, method, type or variable declared in a module
must have a format corresponding to the category of the declaration.
By default, the names of classes, interfaces and constants must begin with
an uppercase letter and the names of packages and variables must begin
with a lowercase letter.

Parameters A list of couples of character strings; the first string of the couple repre-
sents the declaration category name, the second one the regular expression
associated to that category.

Justification Makes the code easier to understand.

Description The length of a class, method, type or variable identifier has to be between
a minimum and a maximum value.
By default, the packages, classes, interfaces, methods and global variables
must have between 5 and 25 characters, the constants between 2 and 25,
and the other identifiers between 1 and 25.

Parameters A list of couples of character strings; the first string of the couple repre-
sents the declaration category name, the second one the MINMAX expres-
sion associated.

Justification Makes the code easier to read.

Description Some identifiers may be forbidden in declarations. For instance, names
used in package names or in libraries.
By default, the reserved identifiers are "byvalue", "cast", "const", "future",
"generic", "goto", "inner", "operator", "outer", "rest" and "var".

Parameters A list of character strings representing reserved identifiers.
Justification Portability.

Description Always use explicit import such as: import.io.basic.
Never use generic import such as java.io.*.

Justification Maintainability.

Description A line in a source shall not exceed a maximum number of characters.
By default, the maximum number of characters is limited to 80 lines.
STANDARD linelength ON 80 END STANDARD

Parameter A number representing the maximum number of characters authorised.
46 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
mclass A single class definition per file

mname File names

Example:

Justification Analysability, Portability

Description A file must not contain more than one class definition.
Nested classes are tolerated.

Justification Analysability.

Description A class name and the name of the file in which it is declared or defined
must be closely related. The name of the public class declared in the file is
taken into account. If no public class is declared the name of the first
declared class is taken into account.
Two modes of comparison are available:

 •If a parameter is provided, the comparison is made only on
alphanumeric characters and is not case sensitive. The part of the file
name taken into account is between the MIN and the MAX characters
(these included). This character string should be found in the identifier
according to the above comparison rules.
 •If no parameter is provided, the name of the class shall be exactly the
name of the file.

The extension of the file name is never taken into account.
By default, the name of the class shall be exactly the name of the file.

Parameters An optional MINMAX couple of values giving the part of the file name to
take into account.

Justification Analysability.

if the MINMAX parameters are 4 and 10, and the file is
 My_graph_node.java

then the part of the file name that should be found in the
class name is

GRAPHN
(the first 10 characters: My_Graph_N,
minus the first 3: Graph_N,
minus non alphanumeric characters: GraphN)

Then, the class name that the file is based upon could have one
of the following declarations
 class CLA_Graph_Node { ...}
 class Graph_Node { ...}
 class Graph_Node_Def { ...}
 class graphnode { ...}
But not the following ones
 class Graph { ...}
 class NodeGraph { ...}
Programming Rules 47

Telelogic Logiscope
nodeadcode No inaccesible code

packres Reserved Packages

Example:

parse Parse Error

Description There shall be no dead code: i.e. statement located after break, continue,
return and exit statements.

Justification Maintainability.

Description Some packages cannot be used in import statements or in the scope of
identifiers.
By default, the reserved packages are "java.awt" and "java.util.zip".

Parameters A list of character strings representing reserved packages. These names
may include dots.

Justification Prevents from the import or the use of packages that are non portable or
dangerous.

// if the java.rmi package is forbidden, do not write
import java.rmi.*;
import java.rmi.server.RemoteServer;

java.rmi.server.RemoteRef ref;
host = java.rmi.server.RemoteServer.getClientHost();
throw new java.rmi.ServerNotActiveException;

Description This rule identifies module parts that could not be parsed.
48 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
proxdecl Variable Declarations Close to the Use

Example:

simplestmt Effective statement

Example:

sgdecl A Single Variable per Declaration

Description Variables must be declared as close as possible to their uses. Each local
variable shall be declared in the block where it is used or in the smallest
block containing the blocks where it is used. If a variable is used in a loop
(do, while, for) or a multiple alternatives statement (switch) it can be
declared in the enclosing block.

Note Local variables that are declared but not used is a violation of the rule.
Justification Maintainability.

// do not write
int temp;
String str;

...
if (a > b) {
temp = a;
a = b;
b = temp

}

// write
if (a > b) {
int temp;
temp = a;
a = b;
b = temp

}

Description There shall not be a statement containing only the following operators or a
cast cannot be a statement.
>,<,>=, <=, ==, !=, &&, ||, true, false, not, <<, >>, &, |, +, -, /, *.

Justification Reliability: such a statement is useless and may be a typing error.

// statements with no effect
x + 5; // violation: may be a misspelling with x = 5;
x == y; // violation: may be a misspelling with x = y;

Description Variable declarations have the following formalism:
type variable_name;

It is forbidden to have more than one variable for the same type declarator.
Parameters The character string "forinit", which, if used, specifies that the multiple

declarations are allowed in for statements.
Programming Rules 49

Telelogic Logiscope
Example:

sglreturn A single return per function

slstat A single statement per line

Example:

Justification Makes the code easier to read.

// write
int width;
int length;

// do not write
int width, length;

// with forinit option you can write
for (int i=0, j=0; i<len; i++, j++) { ...}

Description Only one return instruction is allowed in a function.
Justification Maintainability : a basic rule for structured programming.

Description There shall not be more than one statement per line.
A statement followed by a curly bracket (instr {) or a curly bracket
followed by a statement ({ instr) is allowed in the same line, but not
both of them (instr { instr). An empty block ({}) is not allowed on
the same line as another statement.
A line containing a label cannot contain another label or a statement.
If an anonymous class appears inside a statement, its declarations shall be
on different lines and shall not be on the same lines as the beginning or the
end of the including statement.

Justification Makes the code easier to read.

// write
x = x0;
y = y0;
while (IsOk(x)) {
 x++;
}
new_id = (new B{

int f() {
return value;

}
}).id;

// do not write
x = x0; y = y0;
while (IsOk(x)) {x++;}
new_id = (new B {int f() {return value;}}).id;
50 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
swdef Default in switch

swend End of cases in switch

Example:

unaryplus No unary plus operator

Description A switch statement shall contain a default case.
The default label shall be the last label.
By default, the default case shall be the last label.

Parameters The character string "last", which, if used, specifies that the default
case has to be the last one.

Justification Fault Tolerance: All cases must be provided for in a switch.

Description Each case in a switch shall end with break, continue, return, Sys-
tem.exit(), Runtime.getRuntime().exit() or Thread.cur-
rentThread().stop().
Several consecutive case labels are allowed.
By default, such instructions are not mandatory for the last case.

Parameters •The character string "nolast", which, if used, allows not to have one
of these instructions in the last case.
 •A character string beginning with comment and containing a regular
expression, which, if used, allows to use a comment containing a string
matching the regular expression to end a case.

Justification Makes the code easier to understand and reduces the risk of errors.

//with the following parameters
//STANDARD swend “nolast” “comment CONTINUE WITH NEXT CASE”
//END STANDARD
//you can write
switch (x) {
case 1:
case 2:

i++;
break;

case 3:
System.exit();

case 4:
i += 2;

// CONTINUE WITH NEXT CASE because ...
case 5:

return f(i);
default:

i = 0;
}

Description The unary plus operator shall not be used.
Programming Rules 51

Telelogic Logiscope
Example:

varinit Variable initialization

x = +10; // violation

Description Variables shall be initialized in their declarations.
Justification Ensures correct variable initialization prior to use.
52 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
 Chapter 5

Customizing Standard Rules
and Rule Sets

5.1 Modifying the Rule Set
A Rule Set is user-accessible textual file containing the specification of the programming
rules to be checked by Logiscope RuleChecker.

Specifying one or more Rule Set files is mandatory when setting up a Logiscope
RuleChecker project.

The Rule Sets allow to adapt Logiscope RuleChecker verification to a specific context
taking into the applicable coding standard.

• Rule checking can be activated or de-activated.

• Some rules have parameters that allow to customize the verification. Changing the
parameters changes the behaviour of the rule checking.

• The default name of a standard rule can be changed to match the name and/or
identifier specified in the applicable coding standard.
The same standard rule can even be used twice with different names and different
parameters.

• The default severity level of a rule can be modified.

• A new set of severity levels with a specific ordering: e.g. “Mandatory”, “Highly
recommended”, “Recommended”. acn be specified.

All these actions can be done by editing the Logiscope Rule Set(s) and changing the
corresponding specifications. We highly recommend to make copies of the default Rule
Set files provided with Logiscope Java RuleChecker before making changes.

How to modify Rule Set files is documented in the Telelogic Logiscope Basic Concepts
manual.
Customizing Standard Rules and Rule Sets 53

Telelogic Logiscope
5.2 Customizable Rules
The precise definition of these rules has been given in the previous chapter.

brkcont Break and Continue Forbidden
By default, break statements are allowed in switch statements, break and continue
are forbidden everywhere else:
STANDARD brkcont ON "in_switch" END STANDARD

To allow any break or continue statement without a label:
STANDARD brkcont ON "without_label" END STANDARD

To allow any break or continue statement with a label:
STANDARD brkcont ON "with_label" END STANDARD

const Literal Constants
By default, the allowed literal constants are 0, 1, ’\0’ and the character string literals:
STANDARD const ON LIST "0" "1" "’\0’" """*" END LIST END STANDARD

To allow the use of hexadecimal literals and character string literals:
STANDARD const ON LIST "0x*" """*" END LIST END STANDARD

constrdef Default Constructor
By default, a default constructor (without parameters) is required for each class:
STANDARD constrdef ON "default" END STANDARD

For each class to contain the explicit declaration of at least a constructor:
STANDARD constrdef ON END STANDARD

declord Declarations Order
By default, in a class, declarations must be in the following order: constructors, public
class methods, public methods, public declarations and other declarations, and must end
with private declarations:
STANDARD declord ON
LIST "constructor" "public method class" "public method" "public"
"others" "private" END LIST END STANDARD

dmaccess Access to Data Members
By default, only the data members definition in the private part of a class are authorized:
STANDARD dmaccess ON LIST "public" "protected" "package" END LIST END
STANDARD

To forbid the data members in the public part of a class:
STANDARD dmaccess ON LIST "public" END LIST END STANDARD

exprcplx Expressions Complexity
By default, the maximum authorized complexity level is 10:
STANDARD exprcplx ON MINMAX 0 10 END STANDARD
54 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
To change this value to 16, for example:
STANDARD exprcplx ON MINMAX 0 16 END STANDARD

exprparenth Parenthesis in Expressions
By default, the partpar parameter is put:
STANDARD exprparenth ON "partpar" END STANDARD

For the rule to be stricter, remove this parameter:
STANDARD exprparenth ON END STANDARD

headercom Header Comments
It is possible to define a format for comments depending on the type of the item
(module, interface, class, method, attribute).

The format of the comment is defined as a list of regular expressions that shall be found
in the header comment in the order of declaration.

Formats are defined by regular expressions. The regular expression language is a subset
of the one defined by the Posix 1003.2 standard (Copyright 1994, the Regents of the
University of California).

A regular expression is comprised of one or more non-empty branches, separated by the
"|" character.

A branch is one or more atomic expressions, concatenated.

Each atom can be followed by the following characters:

• * - the expression matches a sequence of 0 or more matches of the atom,

• + - the expression matches a sequence of 1 or more matches of the atom,

• ? - the expression matches a sequence of 0 or 1 match of the atom,

• {i} - the expression matches a sequence of i or more matches of the atom,

• {i,j} - the expression matches a sequence of i through j (inclusive) matches of the
atom.

An atomic expression can be either a regular expression enclosed in "()", or:
Customizing Standard Rules and Rule Sets 55

Telelogic Logiscope
• [...] - a brace expression, that matches any single character from the list enclosed in
"[]",

• [^...] - a brace expression that matches any single character not from the rest of the list
enclosed in "[]",

• . - it matches any single character,

• ^ - it indicates the beginning of a string (alone it matches the null string at the
beginning of a line),

• $ - it indicates the end of a string (alone it matches the null string at the end of a line).

For more details, please refer to the related documentation.

Example:

By default, a header comment with the author and the version is required for each class
and interface:
STANDARD headercom ON
LIST "module" "/*" END LIST
LIST "class" "/**" "@author" "@version" END LIST
LIST "interface" "/**" "@author" "@version" END LIST
LIST "attribute" "/*" END LIST
LIST "method" "/*" END LIST
END STANDARD

Example of required header for classes and interfaces:

identfmt Identifier Format
It is possible to define a format for each of the categories listed below:

".+_Ptr" matches strings like "abc_Ptr", "hh_Ptr", but not
"_Ptr",
"T[a-z]*" matches strings like "Ta", "Tb", "Tz",
"[A-Z][a-z0-9_]*" matches strings like "B1", "Z0", "Pp",
“P_1_a”.

/**
 *
 * @author Andrieu
 * @version 1.3, 08/07/96
 */

NAME DESCRIPTION DEFAULT
package package name any
interface interface name any
interface-public public interface name interface, any
class class name any
class-public public class name class, any
class-abstract abstract class name class, any

class-abstract-public public abstract class name class-public, class-abstract,
class, any
56 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
The third column represents inherited categories: for instance, for no distinction between
the method-public, the method-private and the method-protected categories, just
define a particular format for the method categories, which is inherited by the previous
ones.

class-local local class name class, any

class-local-abstract local abstract class name class-local, class-abstract,
class, any

method method name any
method-public public method name method, any
method-private private method name method, any
method-protected protected method name method, any
method-class class method name method, any

method-class-public public class method name method-class, method-pub-
lic, method, any

method-class-private private class method name method-class, method-pri-
vate, method, any

method-class-pro-
tected protected class method name method-class, method-pro-

tected, method, any
method-abstract abstract method name method, any
method-abstract-pub-
lic public abstract method name method-abstract, method-

public, method, any
method-abstract-pri-
vate private abstract method name method-abstract, method-

private, method, any
method-abstract-pro-
tected protected abstract method name method-abstract, method-

protected, method, any
var variable name any
var-public public variable name var, any
var-private private variable name var, any
var-protected protected variable name var, any
var-class class variable name var, any

var-class-public public class variable name var-class, var-public, var,
any

var-class-private private class variable name var-class, var-private, var,
any

var-class-protected protected class variable name var-class, var-protected,
var, any

var-local local variable name var, any
constant constant name var, any
constant-local local constant name constant, var-local, var, any
parameter method parameter name var-local, var, any

parameter-constant constant method parameter name parameter, constant-local,
constant, var-local, var, any
Customizing Standard Rules and Rule Sets 57

Telelogic Logiscope
A special keyword any is used to define the default value for all identifier categories not
explicitly defined.

The format of the identifier is defined by a regular expression (see in Paragraph ,
headercom Header Comments).

By default, the names of classes, interfaces and constants must begin with an uppercase
letter and the names of packages and variables must begin with a lowercase letter:
STANDARD identfmt ON
LIST "any" ".*"
 "package" "[a-z]*"
 "interface" "[A-Z][A-Za-z0-9]*"
 "class" "[A-Z][A-Za-z0-9]*"
 "constant" "[A-Z][A-Z0-9_]*"
 "var" "[a-z][A-Za-z0-9]*"
 "var-local" "[a-z][a-z0-9]*"
END LIST END STANDARD

For the class methods to begin with "m_", the constants to have no lower case letter and
no underscore at the beginning and the end, the local variables to begin with "l_" and all
other identifiers not to begin or end with an underscore:
STANDARD identfmt ON
LIST "any" "[^_](.*[^_])?$"
 "method" "m_.*[^_]$"
 "const" "[A-Z0-9]([A-Z0-9_]*[A-Z0-9])?$"
 "var-local" "l_.*[^_]$"
END LIST END STANDARD

identl Identifier Length
The possible categories of identifiers are the same as for the identfmt rule (see in
Paragraph , identfmt Identifier Format).

By default, the packages, classes, interfaces, methods and global variables must have
between 5 and 25 characters, the constants between 2 and 25, and the other identifiers
between 1 and 25:
STANDARD identl ON
LIST "any" MINMAX 1 25
 "package" MINMAX 5 15
 "class" MINMAX 5 25
 "interface" MINMAX 5 25
 "method" MINMAX 5 25
 "constant" MINMAX 2 25
 "var" MINMAX 5 25
 "var-local" MINMAX 1 25
 "parameter" MINMAX 1 25
END LIST END STANDARD

identres Reserved Identifiers
By default, the reserved identifiers are "byvalue", "cast", "const", "future", "generic",
"goto", "inner", "operator", "outer", "rest" and "var":
STANDARD identres ON LIST "byvalue" "cast" "const" "future" "generic"
"goto" "inner" "operator" "outer" "rest" "var" END LIST END STANDARD

mname File Names
By default, the name of the file shall be exactly the name of the class:
58 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
STANDARD mname ON END STANDARD

For the part of the class name to be taken into account to be between the characters 1 and
5:
STANDARD mname ON MINMAX 1 5 END STANDARD

packres Reserved Packages
By default, the reserved packages are "java.awt" and "java.util.zip":
STANDARD packres ON LIST "java.awt" "java.util.zip" END LIST END STAN-
DARD

sgdecl A Single Variable per Declaration
By default, multiple declarations are allowed in for statements:
STANDARD sgdecl ON "forinit" END STANDARD

To forbid multiple declarations in all declarations:
STANDARD sgdecl ON END STANDARD

swdef "default" within "switch"
By default, the default case has to be the last one:
STANDARD swdef ON "last" END STANDARD

To have a default case, whatever its position:
STANDARD swdef ON END STANDARD

swend End of Cases in a "switch"
By default, an instruction break, continue, return, System.exit(),
Runtime.getRuntime().exit() or Thread.currentThread().stop() is not
mandatory for the last switch of a case:
STANDARD swend ON "nolast" END STANDARD

To impose such an instruction at the end of all the cases of a switch including the last
one:
STANDARD swend ON END STANDARD

5.3 Creating New Rules
New rules can also be created entirely using Tcl scripts.

More about this can be found in the dedicated Telelogic Logiscope - Adding Java, Ada
and C++ scriptable rules, metrics and contexts manual.
Customizing Standard Rules and Rule Sets 59

Telelogic Logiscope
60 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
Notices
This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.
Notices 61

Telelogic Logiscope
Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.
62 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

Telelogic Logiscope
Trademarks
IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Telelogic DOORS, Telelogic Tau, Telelogic DocExpress, Telelogic Rhapsody,
Telelogic Statemate, and Telelogic System Architect are trademarks or registered
trademarks of International Business Machine Corporation in the United States, other
countries, or both, are trademarks of Telelogic, an IBM Company, in the United States,
other countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.
Notices 63

Telelogic Logiscope
64 Telelogic Logiscope RuleChecker & QualityChecker Java Reference Manual

	Java Project Settings
	1.1 Input Data
	1.2 Output Data

	Command Line Mode
	2.1 Logiscope create
	2.1.1 Command Line Mode
	2.1.2 Makefile mode
	2.1.3 Options

	2.2 Logiscope batch
	2.2.1 Options
	2.2.2 Examples of Use

	Standard Metrics
	3.1 Function Scope
	3.1.1 Line Counting
	3.1.2 Lexical and Syntactic Items
	3.1.3 Halstead Metrics
	3.1.4 Control Graph
	3.1.5 Relative Call Graph

	3.2 Class Scope
	3.2.1 Line Counting
	3.2.2 Lexical and Syntactic Items
	3.2.3 Halstead Metrics
	3.2.4 Data Flow
	3.2.5 Statistical Aggregates of Function Metrics
	3.2.6 Inheritance Tree
	3.2.7 Use Graph

	3.3 Module Scope
	3.3.1 Line Counting
	3.3.2 Lexical and syntactic items

	3.4 Package Scope
	3.4.1 Basic Metrics
	3.4.2 Halstead Metrics
	3.4.3 Statistical Aggregates of Class Metrics
	3.4.4 Statistical Aggregates of Function Metrics
	3.4.5 Inheritance

	3.5 Application Scope
	3.5.1 Line Counting
	3.5.2 Application Aggregates
	3.5.3 Application Call Graph
	3.5.4 Inheritance Tree

	Programming Rules
	Customizing Standard Rules and Rule Sets
	5.1 Modifying the Rule Set
	5.2 Customizable Rules
	5.3 Creating New Rules

	Notices

