
Telelogic Logiscope

Writing C Rules Using RuleChecker Tcl
Verifier

Version 6.5

ii Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Before using this information, be sure to read the general information under “Notices” section, on
page 27.

This edition applies to VERSION 6.5, TELELOGIC LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier iii

iv Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Table of Contents
1. Support Procedures..4

1.1. MapRole..4
1.2. Violation..5
1.3. IsClassObject...5

2. From C Code to Data Model...6
2.1. Scopes and Symbols..6
2.2. Types..7
2.3. Function Declaration and Definition...11
2.4. Variable Declaration and Definition..11
2.5. Expressions..12
2.6. Instructions and Labels..20

3. Shortcuts..25
4. Special Cases...26

4.1. Finding the Function Body..26
4.2. Implicit Function Declaration..26

Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier v

vi Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

About this manual
This manual is a complement to the Telelogic Logiscope RuleChecker & QualityChecker – C
Reference Manual where the Tcl Verifier data model and main support procedures are described.

Reading first the above document is mandatory.

What is important to remember is that the data model mainly describes an abstract syntax tree of the
code, with some semantic information already resolved and attached to the syntax tree.

Audience
This manual is intended for Telelogic® Logiscope™ RuleChecker C users who want to verify
new programming rules using the Tcl Verifier and develop the associated scripts.

Overview
This document describes some fine points and how C constructs translate to the data model used by
the Logiscope Tcl Verifier.

Section 1 explains some key support procedures of the Tcl Verifier.

Section 2 gives examples of how C code is translated into the data model.

Section 3 provides usual shortcuts when using the Tcl Verifier.

Section 4 addresses some special cases.

.

Conventions
The following typographical conventions are used in this manual:

italics names of textual elements (filename), notes, documentation titles.

typewriter screen and file examples.

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 1

Telelogic Logiscope

Contacting IBM Rational Software Support

Support and information for Telelogic products is currently being transitioned from
the Telelogic Support site to the IBM Rational Software Support site. During this
transition phase, your product support location depends on your customer history.

Product support
● If you are a heritage customer, meaning you were a Telelogic customer prior to

November 1, 2008, please visit the Logiscope Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational
Software Support site after the product information has been migrated.

● If you are a new Rational customer, meaning you did not have Telelogic-
licensed products prior to November 1, 2008, please visit the IBM Rational
Software Support site.

Before you contact Support, gather the background information that you will need
to describe your problem. When describing a problem to an IBM software support
specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To
save time, know the answers to these questions:
• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce it?

• Is there a workaround for the problem? If so, be prepared to describe the
workaround.

Other information
For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.

2 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

Bibliography

[TCL94] JOHN K. OUSTERHOUT

Tcl and the Tk Toolkit - Addison-Wesley Professional Computing Series

1994 ISBN 0-201-63337-X

[TCL03] BRENT WELCH, KEN JONES, JEFFREY HOBBS

Practical Programming in Tcl and Tk (4th Edition) – Prentice Hall

2003 ISBN 0-130-38560-3

[C90] ISO/IEC 9899:1990

International standard Programming languages - C

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 3

Telelogic Logiscope

1. Support Procedures

1.1. MapRole
The main support procedure is MapRole. The main purpose of this procedure is to allow
navigation in the data model, as described in the Telelogic Logiscope RuleChecker &
QualityChecker C Reference Manual .
But it can also be used in other ways. The purpose of this procedure is to allow actions on the target
objects of a link in the data model, but it returns a count of objects on which the action has been
performed.

For example, if you want to know whether a type is qualified with const, you may use the fact that
there is a QualifierConst object in the qualifier role of the type:
if {[MapRole $type qualifier -filterclass QualifierConst {expr 0;#}]}
Here, the action is to return 0, which stops the MapRole as soon as a QualifierConst is
encountered during the navigation on the role. ;# introduces a TCL comment, so that the exact
action performed, expr 0;# <handle on qualifier>, does not see the handles on the
qualifier objects. This MapRole will return 0 if no action is performed (i.e. there is no
QualifierConst object in the role), or 1 if there is at least one QualifierConst. The
MapRole will stop as soon as a QualifierConst object is processed.

Another example: you may compute the number of operands of an ExpressionComplex (i.e an
expression with operator or function) with:
set argumentCount [MapRole $expression operand]
(a missing action is like having an action that always returns 1).

A filter can be inserted between the name of the link that is to be followed and the action. The filter
restricts the objects that are subject of the action. Note that these objects are thus not counted in the
result of MapRole.

The filter can be:

• -filter <script fragment>. The <script fragment> is evaluated, like the action,
with the object handle appended. If the filter returns 0, the action is not evaluated; if the filter
returns 1, the action is evaluated.

• -filterclass <class list> . The action is evaluated only if the object is an instance of
one of the classes of <class list>.

For example, to perform an action on all expressions using the ternary operator (?:):
proc isTernary {expression} {

expr {[isClassObject ExpressionComplex $expression] && \
[isClassObject FunctionTernary [GetRole $expression function]]}

}

MapRole application expression -filter isTernary action
To count the number of typedef in a translation unit $scopeTU:

4 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

set typedefCount [MapRole $scopeTU symbolDef \
-filterclass SymbolType]

1.2. Violation
The other important support procedure is Violation:
Violation $object $::thisRule “message”
The global variable thisRule is always set to the value of the .KEY keyword of the rule file
before evaluation of the rule code. But what is interesting here is the $object part: this must be an
object handle, and the object must belong to a class which inherits of the class Origin; the object
handle is used to know where (file, line, function, if applicable) the violation will be shown. So you
can play tricks with it. For example, if you want to flag a non conforming identifier for a variable, it
may be best to issue a violation notice on all declarations and definitions of the variable.

1.3. IsClassObject
The isClassObject procedure performs the same function as the -filterclass filter of
MapRole: it allows to efficiently test the class of a data model object.
set clist {InstructionDefinition InstructionTentativeDefinition}
if {[isClassObject $clist $object]} {

...
}
is equivalent to
if {[lsearch -exact $clist [Class $object]] >= 0} {

...
}
except that the isClassObject procedure is more memory and time efficient, and that it checks
the validity of the class names in $clist.

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 5

Telelogic Logiscope

2. From C Code to Data Model

2.1. Scopes and Symbols
A Symbol is an identifier in a scope. Scope objects are name spaces for identifiers,

The identifiers visible in the whole application are in the role symbolDef of the ScopeGlobal
(there may be here only instances of SymbolVariable and SymbolFunction). There is only
one instance of ScopeGlobal.

Every C file introduces a ScopeTranslationUnit which is the name space representing the C
file with all included files expanded. Here are SymbolVariable and SymbolFunction
declared with the keyword static, SymbolType (typedef identifiers), SymbolTag (tags of
structures, unions and enumerations) and SymbolEnum (enumeration constant) that are declared at
file level, and all SymbolMacro encountered in the C file and the included files.

Every structure and union introduces a new name space, represented by a ScopeStructure, that
contains the SymbolField (field identifiers).

Every defined function introduces a new name space (ScopeFunction), that contains the
parameter identifiers (of class SymbolVariable) and the goto labels (SymbolLabel).

Every macro function introduces a new name space (ScopeFunction), that contains the
parameter identifiers (SymbolVariable). Note that the Variable objects linked to these
parameters have no type role.

Every block of instructions introduces a new name space (ScopeBlock), that contains all the
identifiers declared and defined in the block.

The Scope* objects, besides holding Symbol* objects in the symbolDef role, also hold the
Variable (variableDef role) and Function (functionDef role) objects which are valid
within the scope: functions being either extern or static, their containing scope may only be
the ScopeGlobal or a ScopeTranslationUnit; Variable objects may be automatic,
extern or static, thus their containing scope may be a ScopeBlock, the ScopeGlobal or
a ScopeTranslationUnit, respectively. Note that static block variables are represented by
a Variable object in a ScopeBlock, with the attribute permanent set to true.

Scope* objects also hold the declarations and definitions of the variables and functions in the
instructionDef role. The InstructionDeclaration (for variables and functions),
InstructionDefinition and InstructionTentativeDefinition (for variables) are
described below.
/* The C file (and all its includes) introduces a

ScopeTranslationUnit */

struct { /* Introduces a new ScopeStructure,
subScope of the ScopeTranslationUnit */

 int a; /* a SymbolField (name = "a") within the ScopeStructure */
}
/* A SymbolVariable within the ScopeTranslationUnit */

static int a;

6 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

/* A SymbolVariable within the ScopeGlobal */

extern int b = 3;
/* A SymbolFunction within the ScopeGlobal */

/* The parameter list introduces a new ScopeFunction,

subScope of the ScopeGlobal, since the function is external */

void f(int c) {
/* The body of the function introduces a new BlockScope */

/* Same Variable object as above but different Symbol,

this one being in the BlockScope */

extern int a;
{

/* another BlockScope, the superScope of which is

the previous BlockScope */

/* same Variable object as above but different Symbol */

extern int b;
}

}

2.2. Types
Types come in different flavors:

• Built in types, represented by the classes TypeVoid, TypeInt, etc.

• Constructed types, such as pointers, arrays and function types.

• Enumeration types.

• Structure and union types.

• Symbolic types, defined with typedef.

TypeMeta may not be encountered in an instantiation of the data model.

The instantiation of the data model for the different types is illustrated below.
int a[5];

(only the type of a is represented here, not the whole declaration)

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 7

TypeArray

type

TypeInt

ExpressionConstant TypeInttypesize

Telelogic Logiscope

int a[3][2];
(only the type of a is represented here, not the whole declaration)

int *a[5];
(only the type of a is represented here, not the whole declaration)

extern void f(double d, ...);
(only the type of f is represented here, not the whole InstructionDeclaration)

8 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

TypeArray

TypeArray

type

type

TypeInt

ExpressionConstant TypeInttypesize

ExpressionConstant TypeInttypesize

TypeArray

TypePointer

type

type TypeInt

ExpressionConstant TypeInttypesize

TypeFunction

TypeVoid

type

parameter

TypeDouble TypeVararg

Telelogic Logiscope

enum en {
e1 = 3 + 4,
e2

};

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 9

TypeEnum EnumValue ExpressionComplex FunctionAddfunction

ExpressionConstant ExpressionConstant

TypeInt

type

operand

TypeInt

type

typeEnum enumValue value

EnumValue value

SymbolEnum
name = “e1”

SymbolEnum
name = “e2”

symbol
enumValue

enumValue
symbol

SymbolTag
name = “en”

tag
typeTagged

Telelogic Logiscope

struct st {
char *f1;
int :2;
int f2:6;

};

Note that the data model cannot distinguish between:
struct st {

char *f1;
int :2;
int f2:6;

};

10 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

TypeStruct TypeFieldtypeStructured typeField

TypeBitField type

SymbolField
name = “f1”

SymbolField
name = “f2”

symbol
typeField

typeField
symbol

SymbolTag
name = “st”

tag
typeTagged

TypeInt

TypeBitField type TypeInt

type

ExpressionConstant TypeInttype
length

ExpressionConstant TypeInt
length

type

TypePointer TypeChartype

Telelogic Logiscope

and:
struct st {

char *f1;
int :2, f2:6;

};
Beware that the names TypeField and TypeBitField may be confusing: their instances are
not types, but fields of structures and unions.

typedef int t1; typedef t1 *t2;

(note that the role expansion does not work).

2.3. Function Declaration and Definition
Function objects have InstructionDeclaration, but no InstructionDefinition, nor
InstructionTentativeDefinition.

As may be expected, an InstructionDeclaration is created when
extern int function(int i);
is encountered in the code. The InstructionDeclaration object is linked to the
SymbolFuction, which has function as attribute name. By following the link from the
SymbolFunction object to the Function object, all other SymbolFunction objects for the
same function may be retrieved, and thus all the declarations for the function.

Retrieving the function definition and code is a bit trickier, and is covered below.

As a special case,
extern int f(void), g(int i);
creates two InstructionDeclaration objects, one for f and one for g.

2.4. Variable Declaration and Definition
Variable objects have InstructionDeclaration, InstructionDefinition, and
InstructionTentativeDefinition.

InstructionDefinition objects are created for every declaration of a variable that reserves
memory for the variable:

• Every variable declaration with an initializer.

• Every variable declaration in a block that is not introduced with the keyword extern.

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 11

SymbolType
name = “t2”

symbol
typeSymbol

TypeSymbol TypePointer

SymbolType
name = “t1”

TypeSymbolTypeSymbol TypeIntancestor type ancestor

symbol
typeSymbol

Telelogic Logiscope

InstructionDeclaration objects are created for every declaration of a variable that cannot
reserve memory for the variable:

• Every variable declaration without initialization that is introduced with the keyword extern.

All other variable declarations are represented by a InstructionTentativeDefinition
object. It is an obscure feature of the C language that such declarations do not reserve memory for
the variable by themselves: if no definition is found for the variable at the end of the translation
unit, the C compiler will reserve memory for the variable. A common extension found in C
compilers on UNIX systems allows the linker to merge the memory allocated by the compiler for
the different tentative definitions of the same variable name with external linkage.

Most of the time, InstructionTentativeDefinition objects are to be used like
InstructionDefinition objects in rules.

When several variables are declared or defined in the same statement, one
InstructionDeclaration, InstructionDefinition or
InstructionTentativeDefinition object is created for each variable.

Examples:
static int a; /* InstructionTentativeDefinition */
int b; /* InstructionTentativeDefinition */
extern int c; /* InstructionDeclaration */
extern int b = 3; /* same b, InstructionDefinition */
int a = 4; /* same a, InstructionDefinition */
void f(void) {

extern int a; /* same a InstructionDeclaration */
int d, e; /* two InstructionDefinition */

}

2.5. Expressions
Expressions come in different flavors:

• ExpressionConstant represents the literal constant (numeric or string).

• ExpressionSymbol represents the symbolic expressions, such as a variable name, a function
name, an enumeration value name, a structure or union field name.

• ExpressionType represents a type, when used in an expression, as part of a sizeof
argument or in a cast.

• ExpressionComplex represents an expression with an operator and its operands, or a
function call.

All expressions, with built in operators or function call follow a unified model. Here are two
examples, the first with a binary operator, the second with a unary operator:

12 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

a + 3 gives (provided that a is a variable or a function parameter):

!a gives (provided that a is a variable or a function parameter):

The data model is analogous for all unary and binary operators, only the function differs:
Table 1Arithmetic operators

Operator Class
+ (unary) FunctionPlus
- (unary) FunctionMinus

+ FunctionAdd
- FunctionSub
* FunctionMul
/ FunctionDiv
% FunctionMod

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 13

ExpressionSymbol

ExpressionConstant

FunctionAdd

ExpressionComplex

function

operand

TypeInt

type

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionSymbol

FunctionNot

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

Telelogic Logiscope

Table 2Bitwise operators

Operator Class
>> FunctionRsh
<< FunctionLsh
& FunctionBand
| FunctionBor
^ FunctionBxor
~ FunctionBnot

Table 3Relational and logical operators

Operator Class
< FunctionLt
<= FunctionLe
> FunctionGt
>= FunctionGe
== FunctionEq
!= FunctionNe
&& FunctionAnd
|| FunctionOr
! FunctionNot

Table 4Assignment operators

Operator Class
= FunctionAssign
+= FunctionAddAssign
-= FunctionSubAssign
*= FunctionMulAssign
/= FunctionDivAssign
%= FunctionModAssign
>>= FunctionRshAssign
<<= FunctionLshAssign
&= FunctionBandAssign
|= FunctionBorAssign
^= FunctionBxorAssign

++ (prefix) FunctionPreInc
++ (postfix) FunctionPostInc

14 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

Operator Class
-- (prefix) FunctionPreDec
-- (postfix) FunctionPostDec

All other operators follow the same model:
a ? 'a' : b

(note that 'a' has type int in C).

f(), g() (this is the comma operator, not the argument separator)

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 15

ExpressionSymbol

ExpressionConstant

FunctionTernary

ExpressionComplex

function

operand

TypeInttype

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionSymbol

SymbolVariable
name = “b” Variable

symbol

symbol variable

ExpressionComplex
FunctionSequence

ExpressionComplex

function

operand
ExpressionComplex

FunctionBuiltout

function

operand

operand

SymbolFunction
name = “f”

symbol function

FunctionBuiltout

function

SymbolFunction
name = “g”

symbol function

Telelogic Logiscope

(unsigned int)a

sizeof(“a”)

sizeof(int)

(note that ExpressionType is merely an adapter that allows to use a type as an expression.)

16 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

ExpressionSymbol
FunctionCast

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionType TypeUnsignedInttype

ExpressionConstant

FunctionSizeof

ExpressionComplex

function

operand

TypePointer

type

TypeChartype

ExpressionType

FunctionSizeof

ExpressionComplex

function

operand

TypeInt

type

Telelogic Logiscope

&a

*a

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 17

ExpressionSymbol

FunctionRef

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionSymbol

FunctionAddress

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

Telelogic Logiscope

a[3]

(*a[0])(1, 3.0)

18 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

ExpressionSymbol

ExpressionConstant

FunctionIndex

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

TypeInttype

FunctionCall

ExpressionComplex

function

operand
ExpressionComplex FunctionIndexfunction

ExpressionSymbol

SymbolVariable
name = “a”

Variable

symbol

variable
symbol

ExpressionConstant

TypeInt

type

operand

ExpressionConstant TypeInttype

ExpressionConstant TypeDoubletype

Telelogic Logiscope

a.field

a->field

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 19

ExpressionSymbol

FunctionSelect

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionSymbol

SymbolField
name = “field” TypeField

symbol

symbol typeField

TypeStruct

typeStructured

ExpressionSymbol

FunctionPointerSelect

ExpressionComplex

function

operand

SymbolVariable
name = “a” Variable

symbol

symbol variable

ExpressionSymbol

SymbolField
name = “field” TypeField

symbol

symbol typeField

TypeUnion

typeStructured

Telelogic Logiscope

int a[2][2] = {{1, 2}, {3, 4}};

2.6. Instructions and Labels

20 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

FunctionCompoundInit

ExpressionComplex

function

operand ExpressionComplex FunctionCompoundInitfunction

ExpressionConstant

SymbolVariable
name = “a”

Variable

symbol
instruction

variable
symbol

ExpressionConstant

TypeInt

type

operand

InstructionDefinition

TypeArray

TypeArray

type

type

TypeInt

ExpressionConstant TypeInttypesize

ExpressionConstant TypeInttypesizetype

TypeInt

type

initialization

ExpressionComplex FunctionCompoundInitfunction

ExpressionConstant ExpressionConstant

TypeInt

type

operand

TypeInt

type

Telelogic Logiscope

The data model for instructions is rather straightforward, once InstructionDeclaration,
InstructionDefinition, and InstructionTentativeDefinition are explained.
The only remaining difficulty is with labels and switch.

But let's look first at a simple illustration of the data model for instructions:
{

while (1) {
if (0)

a++;
else if (1)

b++;
}
b++;

}

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 21

Telelogic Logiscope

Instructions may be labeled, in order to allow the code to jump to a specific instruction with a goto
(InstructionGoto) or a switch (InstructionSwitch). Thus the labels come in two
flavors:

• Labels that may be used only in the body of a switch instruction: LabelCase and
LabelDefault.

• Labels that may appear anywhere in the code: LabelIdent.

22 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

ExpressionConstantInstructionBlock

InstructionWhile

InstructionIf

InstructionIf

InstructionExpression
InstructionExpression

InstructionExpression

InstructionBlock

sequence

sequence

body

ifTrue

ifFalse

ifTrue

ifFalse

TypeInt

type

condition

ExpressionConstant

TypeInt

type

condition

ExpressionConstant

TypeInt

type

condition

FunctionPostInc

ExpressionComplex

function

ExpressionSymbol

SymbolVariable
name = “b”

SymbolVariable
name = “a”

operand

expression

symbol

FunctionPostInc

ExpressionComplexExpressionSymbol

expression

function

operand

symbol

FunctionPostInc

function
ExpressionSymbol

operand

ExpressionComplex

expression

symbol

Telelogic Logiscope

label1:
label2:

f();

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 23

FunctionBuiltoutExpressionComplex function

operand

SymbolFunction
name = “f”

function
symbol

SymbolLabel
name = “label1”

SymbolLabel
name = “label2”

InstructionExpression

expression

tag
instruction LabelIdent

LabelIdent

labelIdent symbol

labelIdent symbol

Telelogic Logiscope

switch (ch) {
case 'a':

break;
default: ;
}

24 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

InstructionSwitch

InstructionBreak

InstructionBlock

body

InstructionExpression

expression

tag
instruction LabelDefault

tag
instruction LabelCase

sequence

ExpressionConstant

TypeInt

type

target

SymbolVariable
name = “ch”

ExpressionSymbol

symbol

condition

Telelogic Logiscope

3. Shortcuts
The TCL verifier defines several shortcuts to ease common tasks:

The application object, root of the data model, has roles to most kinds of objects of the data
model. Beware, however, that following these links may be costly for large applications, since there
may be numerous objects in these roles.

The Instruction* objects have a role, subInstruction, that allows direct navigation to the
Instruction* objects that are directly dependent on them.

The Instruction* objects have a role, allInstruction, that allows direct navigation to all
Instruction* objects that are dependent on them.

The Instruction* objects have a role, expression, that allows direct navigation to the
Expression* objects that are directly dependent on them, for example in the role condtion.

The Expression* objects have a role, subExpression, that allows direct navigation to the
Expression* objects that are directly dependent on them. For an ExpressionComplex
object, this is equivalent to the role operand.

The Expression* objects have a role, allExpression, that allows direct navigation to all
Expression* objects that are dependent on them.

The allInstruction and allExpression roles are very useful when searching for usage of
identifiers in the code.

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 25

Telelogic Logiscope

4. Special Cases

4.1. Finding the Function Body
It is often useful to find the body of a function, starting from a FunctionBuiltout object or a
SymbolFunction object. The following schema describes how to retrieve it.

4.2. Implicit Function Declaration
The C language allows to call a function that is not declared. In such a case, the function is
considered to be declared as returning int and with an unknown parameter list in the most enclosing
scope.

The TCL verifier mimics this behavior by creating an InstructionDeclaration for a
SymbolFunction for every undeclared identifier (function name or not). In order to reduce the
cluttering of the data model for very old code that relies heavily on implicit function declaration, the
InstructionDeclaration is created in the ScopeGlobal. These are the only
InstructionDeclaration that may be found in the instructionDef role of the
ScopeGlobal.

26 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

FunctionBuiltout SymbolFunction
name = “f”

FunctionScope

BlockScope

InstructionBlock

sequence

The instructions of the body
of the function are here

function symbol

function
functionScope

superScope
subScope

instructionBlock
blockScope

Telelogic Logiscope

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 27

Telelogic Logiscope

this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

28 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

Telelogic Logiscope

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.
Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Telelogic DOORS, Telelogic Tau, Telelogic DocExpress, Telelogic Rhapsody,
Telelogic Statemate, and Telelogic System Architect are trademarks or registered
trademarks of International Business Machines Corporation in the United States, other
countries, or both, are trademarks of Telelogic, an IBM Company, in the United States,
other countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier 29

http://www.ibm.com/legal/copytrade.html

Telelogic Logiscope

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.

30 Telelogic Logiscope – Writing C Rules Using RuleChecker Tcl Verifier

	1. Support Procedures
	1.1. MapRole
	1.2. Violation
	1.3. IsClassObject

	2. From C Code to Data Model
	2.1. Scopes and Symbols
	2.2. Types
	2.3. Function Declaration and Definition
	2.4. Variable Declaration and Definition
	2.5. Expressions
	2.6. Instructions and Labels

	3. Shortcuts
	4. Special Cases
	4.1. Finding the Function Body
	4.2. Implicit Function Declaration

