

(C) Copyright IBM Corporation 2000, 2004. All Rights Reserved.
Feedback: https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=rdf

Run a structural analysis overview
This tutorial teaches you some of the structural analysis code review features. It is written for
software architects.

Time required

To simply read through this tutorial you will need approximately 30 minutes. To do the exercises
using the supplied sample project, you will need approximately 1 hour.

Prerequisites

In order to complete this tutorial, you should be familiar with designing Java software applications.
It will also help if you understand how to use the perspectives and views in the IBM Rational
Software Development Platform.

Learning objectives

This tutorial is divided into sections that you should take in sequence. You will learn how to
perform the following tasks:

 Run a structural analysis code review

 Define an architectural control rule

 Apply a supplied quick fix to resolve a structural problem

When you are ready, begin “Overview of structural analysis.”

Tutorial: Run a structural analysis code review Page 2

Overview of structural analysis
One type of code review is structural analysis, which allows you to perform the following tasks:

 Verify that the structural design for an application is followed during the implementation
phase.

 Review dependencies between components in an application.

 Resolve code errors early when problems are easiest and cheapest to fix.

It is important to run structural analysis code reviews throughout the product development life
cycle. The following scenario illustrates why in more detail.

It is possible that developers could change the design structure by introducing unplanned
dependencies in the code. The software would work, so these changes would not be flagged
during the testing phase as defects to fix. However, there could be serious business
consequences in the future if you realize that the maintenance cost of the application is very high.
As a result, business opportunities could be lost because the code cannot be modified in a
reasonable timeframe.

Problems like the ones described in the previous scenario can be avoided if the architect acts
proactively and takes the following steps:

 Run a structural analysis code review.

 Detect a problem early.

 Correct the problem before it can affect the application's performance, maintenance, or
scalability.

Now you are ready to begin “Introduction to exercises.”

Tutorial: Run a structural analysis code review Page 3

Introduction to exercises
There are four exercises in this tutorial. In the first exercise you import the required sample
project called StructuralAnalysis. In the other exercises you perform code reviews. It is best to
take the exercises in order.

 Exercise 1.1: Importing the required resources

 Exercise 1.2: Running a structural analysis code review

 Exercise 1.3: Defining an architectural control rule

 Exercise 1.4: Resolving a structural problem

Tutorial: Run a structural analysis code review Page 4

Exercise 1.1: Importing the required
resources
Before you can begin the exercises, you must first import the required sample project called
StructuralAnalysis.

Unzipping the sample project

The sample project for this tutorial is included in a ZIP file. The following steps lead you through
extracting files from that ZIP file into your Workspace folder.

1. Navigate to <installdir>\rsa\eclipse\plugins\com.ibm.r2a.rsa.tutorial.doc\resources where
the ZIP file, StructuralAnalysis, is located.

2. Extract StructuralAnalysis to <installdir>\updater\eclipse\workspace. The sample project
files are extracted in your Workspace folder so you can import them to do the exercises.

Opening the Code Review view

To open a perspective showing the Code Review view:

1. Start IBM Rational Software Development Platform 6.0.

2. Click Window > Preferences.

3. In the left pane expand Workbench and click Capabilities.

4. In the Capabilities list click Java Developer. Then click OK.

5. Click Window > Open Perspective > Java.

6. Click Window > Show View > Other > Java > Code Review.

7. Click Window > Show View > Other > Java > Package Explorer.

After you open the Java perspective and show the Code Review and Package Explorer views,
the perspective shows the views in the following screen capture. Your layout might differ. That is,
the perspective might show the views in different locations. The tutorial uses the layout in the
screen capture.

Tutorial: Run a structural analysis code review Page 5

Importing the sample project

To import the sample project to the workspace:

1. Right-click in the Package Explorer view to open the pop-up menu. Then click Import to
open the Import wizard.

2. In the Select list click Existing Project into Workspace. Then click Next.

3. Next to the Project contents text box click Browse and select
<installdir>\updater\eclipse\workspace\StructuralAnalysis.

4. Click Finish. The sample project and all its associated files are imported to Package
Explorer.

You have completed “Exercise 1.1: Importing the required resources.”

Beginning the exercise

To begin click one of the following exercises:

 Exercise 1.2: Running a structural analysis code review

 Exercise 1.3: Defining an architectural control rule

 Exercise 1.4: Resolving a structural problem

Tutorial: Run a structural analysis code review Page 6

Exercise 1.2: Running a structural analysis
code review
This exercise assumes you have completed “Exercise 1.1: Importing the required resources.” In
Exercise 1.2 you read a user scenario first. Then you assume the role of the software architect
described in the user scenario and use the project you imported in Exercise 1.1 to complete the
exercise.

User scenario

To review newly written code to assess its quality, the architect wants to look for general anti-
patterns. Anti-patterns are known problems that occur in code and do not follow best practices.
While design patterns are good models to follow, anti-patterns are bad models that you should
avoid. Some specific anti-patterns include the following types:

 Breakable: The object in the code has so many dependencies that it is likely to break
when another object is changed.

 Cyclic dependency: A group of objects is so interconnected, often circular, that a change
to any object could affect all of the others. Also referred to as a tangle.

 Hub: The object has both many dependencies and many dependents. It is affected when
another object is changed. Likewise, when it is changed other objects are affected.

In the first exercise, the architect runs a code review to look for the anti-patterns described above.

Exercise

In this exercise you perform the following tasks:

1. Select a code review to run.

2. View the rules applied in the code review.

3. Choose what code to run the review on.

4. Run the code review.

5. View the findings of the code review.

6. Select a finding to see the following information for it:

o Source code.

o Description, examples, and solutions.

Tutorial: Run a structural analysis code review Page 7

Selecting a code review

To select a structural analysis code review:

1. On the toolbar in the Code Review view click the Manage Rules icon, .

2. In the Select Code Review list, click Structural Analysis Code Review.

3. Expand the Structural Analysis folder and subfolders to see the rules applied in the
code review, as shown below. Click OK.

Tutorial: Run a structural analysis code review Page 8

Selecting a code base to review

To select the workspace as the code base to review:

 On the toolbar in the Code Review view click the Review icon () > Review
Workspace.

Running the code review

Once you select the code base to review, the code review runs. You can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the code review findings

When the code review is finished, the findings are shown in the Code Review view, as shown in
the following screen capture:

The following information is provided in the Code Review view.

 Code review statistics: The line above the findings displays information about the most
recent code review: name, scope, number of rules and files included, and number and
severity of findings.

 Code review findings: The findings in the code review are listed in the Code Review view,
within folders. Each folder name tells you the code review name and the category and
number of findings.

Tutorial: Run a structural analysis code review Page 9

Getting more information on a code review finding

To get more information on a finding in the code review:

1. Expand the Structural Analysis: Cyclic Dependency folder. It contains four findings, as
shown in the following screen capture:

Each finding is preceeded by an icon that indicates its severity level.

If an icon has a lightbulb next to it (), that means that a quick fix exists for the finding.
A quick fix is an automated, supplied solution for a specific finding. The quick fix icons are
shown in the following illustration:

2. Double-click the finding that begins with Event.java. Details about it appear in two places,
as outlined in the following points and screen capture:

o Source code: Displays the code where the finding occurs and highlights the exact
location of it.

o Code Review Details view: Describes the finding in more detail and provides
examples and solutions to correct it. If the finding is a cyclic dependency, there is
also a section on loop details.

Tutorial: Run a structural analysis code review Page 10

You have completed Exercise 1.2: Running a structural analysis code review.

Leveraging the power of a code review

By proactively running a code review you are able to spot problems early so you can also correct
them early, before they cause the following problems:

 Affect your application's performance, maintenance, or scalability.

 Cost your company money, time, and resources.

In Exercise 1.4, you build on the work you did in Exercise 1.2 by fixing a code review finding.

Tutorial: Run a structural analysis code review Page 11

Wrapping up Exercise 1.2

You have completed Exercise 1.2: Running a structural analysis code review. In it you performed
the following tasks:

1. Selected a code review to run.

2. Viewed rules applied in the code review.

3. Chose a body of code to run the review on.

4. Ran the code review.

5. Viewed the findings of the code review.

6. Selected a finding to see the following information for it:

o Source code.

o Description, examples, and solutions.

Now you are ready to begin “Exercise 1.3: Defining an architectural control rule.”

Tutorial: Run a structural analysis code review Page 12

Exercise 1.3: Defining an architectural
control rule
This exercise assumes you have completed “Exercise 1.1: Importing the required resources.” In
Exercise 1.3 you read a user scenario first. Then you assume the role of the software architect
described in the user scenario and use the project you imported in Exercise 1.1 to complete the
exercise.

User scenario

To prevent extraneous dependencies, the architect wants to put a safeguard in place to ensure
that none are introduced into the application. To do this, he creates a rule from a supplied wizard.
The rule is to alert him if the utility package becomes dependent on the application package.

After creating the rule, the architect runs a code review by applying it to a code base. The findings
will show any extraneous dependencies in the application.

Exercise

In this exercise you perform the following tasks:

1. Define a rule based on a supplied wizard.

2. Verify that your user-defined rule is added to the Structural Analysis code review.

3. Run the Structural Analysis code review.

4. View the code review findings that do not adhere to the criteria of your rule.

Defining a rule

To define an architectural control rule based on a supplied wizard:

1. On the toolbar in the Code Review view click the Manage Rules icon, .

Tutorial: Run a structural analysis code review Page 13

2. In the Preferences window click New rule. The New Code Review Rule wizard opens.

The New Code Review Rule wizard, as shown in the next screen capture, takes you
through a few steps to define your own rule. In this exercise, you will design an
architectural control rule to alert you if a dependency between two components is
introduced.

3. In the Architectural Control list of rules, click Component [dependency] introduced.
Notice that when you select this choice, the text below the list tells you to use this
template to disallow a dependency between two components. Click Next.

Tutorial: Run a structural analysis code review Page 14

Under Basic properties, accept the defaults that put the rule in the structural analysis
category, with a problem severity level.

4. Under Specific properties, specify the independent and dependent components for the
rule:

o Independent Component:
workspace\StructuralAnalysis\src\com.ibm.r2a.rules.rsa.examples.architecturalco
ntrol\IndependentComponent.java

o Dependent Component:
workspace\StructuralAnalysis\src\com.ibm.r2a.rules.rsa.examples.architecturalco
ntrol\DependentComponent.java.

5. Click Finish.

Tutorial: Run a structural analysis code review Page 15

Seeing your rule added to a code review

1. After you define a rule, the Preferences window appears. In the Select Code Review
list, click Complete Code Review if it is not already the selected code review. This
shows all code review categories.

2. Expand the Structural Analysis folder to see the rule you just created.

3. Click the rule to see the properties you set for it, as shown in the following screen
capture:

Selecting a code review that applies your rule only

To run a code review for your rule only, clear all folders in the list except for the Structural
Analysis folder, as shown in the previous screen capture. Click OK.

Tutorial: Run a structural analysis code review Page 16

Selecting a code base to review

To select the workspace as the code base to review:

 On the toolbar in the Code Review view click the Review icon () > Review
Workspace.

Running the code review

Once you select the code base to review, the code review runs. You can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the code review findings

When the code review is finished, the findings are shown in the Code Review view, as shown in
the following screen capture. Below the tab the statistics line summarizes the review.

1. Expand the Structural Analysis folder to see the findings in it.

Tutorial: Run a structural analysis code review Page 17

2. Double-click the third finding to see the source code for it in the editor, as shown in the
following screen capture:

You have completed “Exercise 1.3: Defining an architectural control rule.”

Tutorial: Run a structural analysis code review Page 18

Leveraging the power of user-defined rules

By creating your own rules, you put custom safeguards in place to monitor the implementation of
your design. You can take the following measures:

 Specify criteria for a rule.

 Assign a severity level to the rule: problem, warning, or recommendation.

 Run a code review on your rule or rules only.

Wrapping up Exercise 1.3

You have completed Exercise 2: Defining an architectural control rule. In it you performed the
following tasks:

1. Defined a rule based on a supplied wizard.

2. Verified that your user-defined rule was added to the Structural Analysis code review.

3. Ran the Structural Analysis code review.

4. Viewed the code review findings that do not adhere to the criteria of your rule.

Now you are ready to begin “Exercise 1.4: Resolving a structural problem.”

Tutorial: Run a structural analysis code review Page 19

Exercise 1.4: Resolving a structural problem
This exercise assumes you have completed “Exercise 1.1: Importing the required resources.” In
Exercise 1.4 you read a user scenario first. Then you assume the role of the software architect
described in the user scenario and use the project you imported in Exercise 1.1 to complete the
exercise.

User scenario

To check code specifically for cyclic dependencies, the architect runs a structural analysis code
review that looks only for such dependencies. The code review does find some cyclic
dependencies and the architect notices that quick fixes exist for a couple of them. A quick fix is a
supplied automated way to repair a common finding. To refactor the code to be free of cycles, the
architect applies the quick fix to one cyclic dependency.

In the final exercise, the architect runs a code review and fixes one of the findings.

Exercise

In this exercise you perform the following tasks:

1. Run a code review to find cyclic dependencies.

2. Recognize when a cyclic dependency has a supplied quick fix.

3. Apply a quick fix to resolve a cyclic dependency:

o See a list of changes to be made.

o View the existing and refactored code for each change.

4. Get a confirmation that the quick fix has been applied.

Tutorial: Run a structural analysis code review Page 20

Selecting a code review to check for cyclic dependencies

To select a code review that checks for cyclic dependencies:

1. On the toolbar in the Code Review view click the Manage Rules icon, .

2. In the Select Code Review list, click Structural Analysis Code Review.

3. Expand the Structural Analysis folder and clear everything but the Cyclic Dependency
subfolder.

4. Expand the Cyclic Dependency subfolder to see the rules that will be applied in the
code review, as shown in the following screen capture. Click OK.

Tutorial: Run a structural analysis code review Page 21

Selecting a code base to review

To select the workspace as the code base to review:

 On the toolbar in the Code Review view click the Review icon () >Review
Workspace.

Running the code review

Once you select the code base to review, the code review runs. You can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the list of cyclic dependencies found

The code review found four cyclic dependencies, as shown in the next screen capture. A cyclic
dependency is an undesirable anti-pattern that should be avoided. In a cyclic dependency, a
group of objects is so interconnected that a change to any object could affect all of the others.

Tutorial: Run a structural analysis code review Page 22

1. Expand the Structural Analysis: Cyclic Dependency folder and note the following
findings in it, as shown in the next screen capture:

o Each cyclic dependency has the highest severity level of problem () assigned
to it.

o Two of the cyclic dependencies have a quick fix () to eliminate the
dependency.

2. Right-click the third finding in the list. The Quick Fix pop-up menu choice varies
depending upon the solution. For the cyclic dependency you selected, the fix is to move
the static field from the base class to another class, thereby eliminating the cyclic
dependency.

Tutorial: Run a structural analysis code review Page 23

3. Click Quick Fix: Move static field from base class.

Applying the quick fix

The quick fix for the cyclical dependency you selected is to move the static field from the base
class to another class. You can choose to move the field to an existing class or to a new class.

To move the field to a new class:

1. In the next screen capture, review the read-only information about the cyclic dependency,
also referred to as a tangle, that you are going to fix:

o Classes that are part of the tangle

o Dependencies between classes in the tangle

2. Click Generate a new Java class and type:

o src/ for the source folder name

o com.ibm.r2a.rules.rsa.examples for the package name

o Defaults for the class name

Tutorial: Run a structural analysis code review Page 24

3. Click Preview to see the code that the quick fix will change.

Tutorial: Run a structural analysis code review Page 25

4. Expand the Changes to be performed list, as shown in the following screen capture, to
see exactly what changes the quick fix will make to the code when it moves the static
field to the new class.

Tutorial: Run a structural analysis code review Page 26

5. Click the fourth change in the list, that begins with Font.java, to see a side-by-side view of
the code. The original code is on the left and the refactored code that will be created by
the quick fix is on the right.

6. Click OK to apply the quick fix to all of the selected changes in the list.

7. After the quick fix has been applied, you see a checkmark as confirmation so you know
that the problem is resolved.

You have completed Exercise 1.4: Resolving a structural problem.

Tutorial: Run a structural analysis code review Page 27

Leveraging the power of quick fixes

Quick fixes are supplied for some common findings in code reviews. By applying a supplied quick
fix, you have an automated way to resolve a cyclic dependency. You can:

 Identify and evaluate cyclic dependencies.

 Eliminate the dependency quickly with an automated quick fix.

 See a list of exactly what changes the quick fix would make to your code.

 Fix the cyclic dependency consistently each time.

Wrapping up Exercise 1.4

You have completed Exercise 1.4: Resolving a structural problem. In it you performed the
following tasks:

1. Ran a code review to find cyclic dependencies.

2. Recognized when a cyclic dependency has a supplied quick fix.

3. Applied a quick fix to resolve a cyclic dependency:

o Saw a list of changes to be made.

o Viewed the existing and refactored code for each change.

4. Got a confirmation that the quick fix has been applied.

Finish the tutorial by reviewing the learning objectives in the “Summary.”

Tutorial: Run a structural analysis code review Page 28

Summary: Run a structural analysis code
view
This tutorial showed you how to run a structural analysis code review.

Completed learning objectives

If you completed all of the exercises, you should now be able to do the following tasks:

 Run a structural analysis code review.

 Define an architectural control rule.

 Apply a supplied quick fix to resolve a structural problem.

More information

If you want to learn more about the topics covered in this tutorial, please refer to the online Help
for structural analysis.

	Run a structural analysis overview
	
	Time required
	Prerequisites
	Learning objectives

	Overview of structural analysis
	Introduction to exercises
	Exercise 1.1: Importing the required resources
	
	Unzipping the sample project
	Opening the Code Review view
	Importing the sample project
	Beginning the exercise

	Exercise 1.2: Running a structural analysis code review
	
	User scenario
	Exercise
	Selecting a code review
	Selecting a code base to review
	Running the code review
	Viewing the code review findings
	Getting more information on a code review finding
	Leveraging the power of a code review
	Wrapping up Exercise 1.2

	Exercise 1.3: Defining an architectural control rule
	
	User scenario
	Exercise
	Defining a rule
	Seeing your rule added to a code review
	Selecting a code review that applies your rule only
	Selecting a code base to review
	Running the code review
	Viewing the code review findings
	Leveraging the power of user-defined rules
	Wrapping up Exercise 1.3

	Exercise 1.4: Resolving a structural problem
	
	User scenario
	Exercise
	Selecting a code review to check for cyclic dependencies
	Selecting a code base to review
	Running the code review
	Viewing the list of cyclic dependencies found
	Applying the quick fix
	Leveraging the power of quick fixes
	Wrapping up Exercise 1.4

	Summary: Run a structural analysis code view
	
	Completed learning objectives
	More information

