Run a structural analysis overview

This tutorial teaches you some of the structural analysis code review features. It iswritten
for software architects.

Timerequired

To simply read through this tutorial you will need approximately 30 minutes. To do the
exercises using the supplied sample project, you will need approximately 1 hour .

Prerequisites
In order to complete this tutorial, you should be familiar with designing Java software

applications. It will also help if you understand how to use the perspectives and viewsin
the IBM Rational Software Development Platform.

L ear ning obj ectives

Thistutorial is divided into sections that you should take in sequence. Y ou will learn how
to perform the following tasks:

e Runastructural analysis code review
o Define an architectural control rule
o Apply asupplied quick fix to resolve a structural problem

When you are ready, begin “Overview of structural anaysis.”

(C) Copyright IBM Corporation 2004, 2005. All Rights Reserved.
Feedback: https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=rdf

Overview of structural analysis

Onetype of code review is structural analysis, which allows you to perform the following
tasks:

o Verify that the structural design for an application is followed during the
implementation phase.

e Review dependencies between componentsin an application.

e Resolve code errors early when problems are easiest and cheapest to fix.

It isimportant to run structural analysis code reviews throughout the product
development life cycle. The following scenario illustrates why in more detail.

It is possible that developers could change the design structure by introducing unplanned
dependenciesin the code. The software would work, so these changes would not be
flagged during the testing phase as defects to fix. However, there could be serious
business consequences in the future if you realize that the maintenance cost of the
application is very high. As aresult, business opportunities could be lost because the code
cannot be modified in areasonable timeframe.

Problems like the ones described in the previous scenario can be avoided if the architect
acts proactively and takes the following steps:

e Runastructural analysis code review.

e Detect aproblem early.

o Correct the problem before it can affect the application's performance,
maintenance, or scalability.

Now you are ready to begin “Introduction to exercises.”

Tutoria: Run a structural analysis code review -2

| ntroduction to exercises

There are four exercisesin thistutorial. In the first exercise you import the required
sample project called Structural Analysis. In the other exercises you perform code
reviews. It is best to take the exercisesin order.

e Exercise 1.1: Importing the required resources

o Exercise 1.2: Running a structural analysis code review
o Exercise 1.3: Defining an architectural control rule

o Exercise 1.4: Resolving a structural problem

Tutoria: Run a structural analysis code review

Exercise 1.1: Importing therequired resources

Before you can begin the exercises, you must first import the required sample project
called Structural Analysis.

Unzipping the sample project

The sample project for this tutorial isincluded in aZIP file. The following steps lead you
through extracting files from that ZIP file into your Workspace folder.

1.

Navigate to

<installdir>\rsa\eclipse\plugins\com.ibm.r2a.rsa.tutorial .doc\resources where the
ZIPfile, StructuralAnalysis, is located.

Extract StructuralAnalysis to <installdir>\updater\eclipse\workspace. The sample
project files are extracted in your Workspace folder so you can import them to do
the exercises.

Opening the Code Review view

To open a perspective showing the Code Review view:

1.

Nook~wd

Start IBM Rational Software Architect.

@

Rational S
Architect

Click Window > Prefer ences.

In the left pane expand Wor kbench and click Capabilities.

In the Capabilitieslist click Java Developer. Then click OK.

Click Window > Open Per spective > Java.

Click Window > Show View > Other > Java > Code Review.
Click Window > Show View > Other > Java > Package Explorer.

Tutoria: Run a structural analysis code review -4

After you open the Java perspective and show the Code Review and Package
Explorer views, the perspective shows the views in the following screen capture.
Your layout might differ. That is, the perspective might show the viewsin
different locations. The tutorial uses the layout in the screen capture.

{2/ Java - IBM Rational Software Development Platform _ (O]]

Fle Edit Source Refactor Mavigate Search Project Run Window Help

Jr3e 0 4o 0 e Qe [O4- | BB G- @ |5 o 5 & i
5 B =0 B, 80 =0
L E <:-=4> v
Problems‘Javadnc‘DecIaration (@ Code Review &5 -2l g Bp = =0
Quick Code Review: \Workspace

Importing the sample project
To import the sample project to the workspace:

1. Right-click in the Package Explorer view to open the pop-up menu. Then click
Import to open the Import wizard.

2. Inthe Select list click Existing Project into Workspace. Then click Next.

3. Next to the Project contentstext box click Browse and select
<installdir>\updater\eclipse\workspace\Structural Analysis.

4. Click Finish. The sample project and all its associated files are imported to
Package Explorer.

Tutoria: Run a structural analysis code review -5

Y ou have completed Exercise 1.1: Importing the required resources.

Beginning the exercise
To begin, go to one of the following exercises.
e Exercise 1.2: Running a structural analysis code review

o Exercise 1.3: Defining an architectural control rule
o Exercise 1.4: Resolving a structural problem

Tutoria: Run a structural analysis code review

Exercise 1.2: Running a structural analysis code review

This exercise assumes you have completed Exercise 1.1: Importing the required
resources. In Exercise 1.2 you read a user scenario first. Then you assume the role of the
software architect described in the user scenario and use the project you imported in
Exercise 1.1 to compl ete the exercise.

User scenario

To review newly written code to assess its quality, the architect wantsto look for general

anti-patterns. Anti-patterns are known problems that occur in code and do not follow best
practices. While design patterns are good modelsto follow, anti-patterns are bad models

that you should avoid. Some specific anti-patterns include the following types:

o Breakable: The object in the code has so many dependenciesthat it islikely to
break when another object is changed.

e Cyclic dependency: A group of objectsis so interconnected, often circular, that a
change to any object could affect all of the others. Also referred to as atangle.

e Hub: The object has both many dependencies and many dependents. It is affected
when another object is changed. Likewise, when it is changed other objects are
affected.

In the first exercise, the architect runs a code review to ook for the anti-patterns
described above.

Exercise
In this exercise you perform the following tasks:

Select acode review to run.

View the rules applied in the code review.

Choose what code to run the review on.

Run the code review.

View the findings of the code review.

Select afinding to see the following information for it:
o Source code.
o Description, examples, and solutions.

Sk wdE

Tutoria: Run a structural analysis code review -7

Selecting a codereview

To select astructural analysis code review:

1. Onthetoolbar in the Code Review view click the Manage Rulesicon, .

z
Problems | Javadoc | Declaration (@
Cuick Code Review: \Warkspace

3

-2 |1 - 98 5 =0

2. Inthe Select Code Review list, click Structural Analysis Code Review.

Tutoria: Run a structural analysis code review

3. Expand the Structural Analysisfolder and subfolders to see the rules applied in
the code review, as shown below. Click OK.

i/

(- Workbench = | Code Review ‘
- fgent Controller
(- Ank
- Build Order Select Code Review: |Structural Analysis Code Review j
B O+
[+ Camponent Tesk
- Crystal Enterprise [N I =tructural Analysis (6 rules, 6 enabled) N | |
- Crystal Report Designer EE] [Breakable (2 rules, 2 enabled) T
¥ Crystal Reports Viewers . ™ void components that depend on »= 10 Remawe fuls |
- Data Db tweid packages that depend on == 10 ot
& Help = C0 Cyclic Dependency (2 rules, 2 enabled) me'“l
) Install{Lpdate L ' fweid cydlic dependendies between comp
[&l- Internet I ™ &void cyclic dependencies between packa Shaw Search Box |
- J2EE =[]0 Hub (2 rules, 2 enabled)
Gdava F tweid components that depend on == 10 Expand Al |
- Appearance b |- M Avoid packages that depend on »= 10 ot
[+ Build Path Export... |
[+~ Code Review
[F- Code Style Import... |
- Compiler 1 | ﬂ
[+ Debug
[+ Editor ﬂ
E'Ls:;"e'j REs Structural ﬁ,ngzlysis categgry containg set of niles that help you
- Task Tags conduct Architectural rewiew of your code.
- Type Filkers j
- Yisual Editar d|

Selecting a code base to review
To select the workspace as the code base to review:

e Onthetoolbar in the Code Review view click the Review icon (¥ =) > Review
Workspace.

Running the codereview

Once you select the code base to review, the code review runs. Y ou can track its status by
checking the progress bar in the lower-right corner of the view.

©

Tutoria: Run a structural analysis code review -

Viewing the code review findings

When the code review isfinished, the findings are shown in the Code Review view, as
shown in the following screen capture:

s = - - "
Problems | Javadoc | Declaration (@ &3 v :%:5* - Ew A2 8

Struckural Analysis Code Rewview: mkz_test, Rules: 6, Files: 121, Problems: 4, Warnings: 0, Recommendations: 0

F-23 Structural Analysis:Cyelic Dependency (4 problems)

The following information is provided in the Code Review view.

o Codereview statistics: The line above the findings displays information about the
most recent code review: name, scope, number of rules and files included, and
number and severity of findings.

e Codereview findings: The findingsin the code review are listed in the Code
Review view, within folders. Each folder name tells you the code review name
and the category and number of findings.

Getting moreinformation on a code review finding
To get more information on afinding in the code review:

1. Expand the Structural Analysis. Cyclic Dependency folder. It contains four
findings, as shown in the following screen capture:

Prnl:ulems|Javaduc|DecIaratiDn (@ &a -2 0 By = =08

Structural Analysis Code Review: Workspace, Rules: 2, Files: 18, Problems: 4, Warnings: 0, Recommendations: O

=520 Structural Analysis: Cyclic Dependency (4 problems)

----- ﬂ Event.java, Observable.java, Observer.java, ... Avoid cyclic dependencies between components
----- M subClass.java,Base. java dvoid cyclic dependencies behween components
----- ni , Font,jarea, CourierFont, java, CommonFont. java, ... &void cyclic dependendies bebween components

------ ni , DashBoardControllerjava, Car.java Awoid cyclic dependencies between components

Tutoria: Run a structural analysis code review -10

Each finding is preceeded by an icon that indicates its severity level.

lcon Severity Level
— Proklem

Warning

) Recommendstion

If anicon has alightbulb next to it (',)' that means that a quick fix exists for the
finding. A quick fix is an automated, supplied solution for a specific finding. The
quick fix icons are shown in the following illustration:

Guick Fix Available

[
b= =
1] l

Tutoria: Run a structural analysis code review -11

2. Double-click the finding that begins with Event.java. Details about it appear in
two places, as outlined in the following points and screen capture:
o Source code: Displays the code where the finding occurs and highlights

the exact location of it.

o Code Review Details view: Describes the finding in more detail and
provides examples and solutions to correct it. If thefinding isacyclic
dependency, there is also a section on loop details.

[J) Event.java 52

ﬁ package com.ibm.ria.rules.rsa.exampl &
=public class Event |
o public Ewvent | Ohservable chserva

this.observable = ohservable

A public Ohservable getChservabhlel
return ohservahle;

private Chservable obserwvable;

) b

w
1] | Y

= &3 Outline |

Drescription | Loop Details I Examples I Solutions I

Category
Struckural Anakysis § Cyclic Dependency

Name
fyvoid cyclic dependencies between components

Location —
Imz-test/srofcom/fibrm/r2aiiles rsalexamples/structur alans

fmz-
testfsro/comfibmfr2airules/rsafexamples/structuralanalsys
fmz-

testfsro/comfibmr2airules/rsafexamples/structuralanalsys

-
1| | b

Problems ‘ Javadoc ‘ Dieclaration (@ Code Review &3

=T~ 98 =2=0

Structural Analysis Code Review: Workspace, Rules: 8, Files: 18, Problems: 4, Warnings: 0, Recommendations; 0

B- I:I Structural Analysis: Cyclic Dependency (4 problems)
ﬂ Event.java, Observable java, Observer.java, ..

ﬂ , Font.java,CourierFont. java, CommonFont. java, ..

. Avoid cvclic dependencies between components
ﬂ Sublass.java,Base, java Avoid cyclic dependencies between components

. Awoid cydlic dependencies between components
ﬂ, DashBoardController java,Car.java Avoid cvelic dependencies between components

Y ou have completed Exercise 1.2: Running a structural analysis code review.

L everaging the power of a codereview

By proactively running a code review you are able to spot problems early so you can also
correct them early, before they cause the following problems:

Affect your application's performance, maintenance, or scalability.

Cost your company money, time, and resources.

In Exercise 1.4, you build on the work you did in Exercise 1.2 by fixing a code review
finding.

Wrapping up Exercise 1.2

Tutoria: Run a structural analysis code review

-12

Y ou have completed Exercise 1.2: Running a structural analysis code review. In it you
performed the following tasks:

Selected a code review to run.

Viewed rules applied in the code review.

Chose abody of code to run the review on.

Ran the code review.

Viewed the findings of the code review.

Selected afinding to see the following information for it:
o Source code.
o Description, examples, and solutions.

o~ whE

Now you are ready to begin Exercise 1.3: Defining an architectural control rule.

Tutoria: Run a structural analysis code review -13

Exercise 1.3: Defining an architectural control rule

This exercise assumes you have completed Exercise 1.1: Importing the required
resources. In Exercise 1.3 you read a user scenario first. Then you assume the role of the
software architect described in the user scenario and use the project you imported in

Exercise 1.1 to complete the exercise.

User scenario

To prevent extraneous dependencies, the architect wants to put a safeguard in place to
ensure that none are introduced into the application. To do this, he creates arule from a
supplied wizard. Theruleisto aert him if the utility package becomes dependent on the

application package.

After creating the rule, the architect runs a code review by applying it to a code base. The

findings will show any extraneous dependencies in the application.

Exercise
In this exercise you perform the following tasks:
Define arule based on a supplied wizard

Run the Structural Analysis code review.

pODNPE

Definingarule

To define an architectural control rule based on a supplied wizard:

Verify that your user-defined rule is added to the Structural Analysis code review.

View the code review findings that do not adhere to the criteria of your rule.

1. Onthetoolbar in the Code Review view click the M anage Rulesicon, %

y
Problems | Javadoc | Declaration (@,
Quick Code Review: Waorkspace

&

-2l 9% =0

Tutoria: Run a structural analysis code review

-14

2. Inthe Preferences window click New rule. The New Code Review Rule wizard
opens.

The New Code Review Rule wizard, as shown in the next screen capture, takes
you through a few steps to define your own rule. In this exercise, you will design
an architectural control ruleto alert you if a dependency between two components
isintroduced.

3. Inthe Architectural Control list of rules, click Component [dependency]
introduced. Notice that when you select this choice, the text below the list tells
you to use this template to disallow a dependency between two components. Click

Next.
@iNew Code Review Rule... x|
Create Component [dependency] introduced Rule... —

=~ Architectural Conkrol

----- [0 Awnoid extending [class]

----- D Ayoid implementing [interface]

----- D Component [dependency] introduced

----- [0 Component [dependency] removed

----- [0 Package [dependency] introduced

----- D Package [dependency] removed

= General

----- D fvoid catching [excepkion]

----- D &void defining [method] in classes that implement an [interface]
----- D fvoid defining a [method] in classes that exkend a [class]

----- D fvoid directly calling [method] —
----- D faid directly calling [rmethod] from dasses that extend [class]

----- D fyvoid directly calling [method] from classes that implement [inkerface]

----- D fvoid directly calling a [method] from a [class]

----- D Avoid directly using [class]

----- D fvoid directly using [interface]

= [Awoid overriding Mmethod] |4|;|
4 b

IJse this kemplate ko disallow a dependency between bwo components,

= Barck I Mexk = I Fimish Cancel

Tutoria: Run a structural analysis code review -15

4. Under Basic properties, accept the defaults that put the rule in the structural
analysis category, with a problem severity level.

:@:Hew Code Review Rule... EI

Configure Component [dependency] introduced ... —

—Basic properties

Categary I Structural Analysis Erowse, .. |

Severity IF‘ru:uI:uIem j

Specific properties

From Independent Component Il:l:um.il:lm.rEa.rules.rsa.examples.architectural Browse. .. |

To Dependent Cormponent I Lo, ibm . r2a.rules.rsa.examples. architectural | Browse. .,

< Back. Mexk = | Finish I Zancel

5. Under Specific properties, specify the independent and dependent components
for therule:
o Independent Component:
workspace\Structural Analysis\src\com.ibm.r2a.rules.rsa.examples.architec
tural control\I ndependentComponent.java
o Dependent Component:
workspace\Structural Analysis\src\com.ibm.r2a.rules.rsa.exampl es.architec
tural control\DependentComponent.java.
6. Click Finish.

Tutoria: Run a structural analysis code review -16

Seeing your rule added to a codereview

1. After you define arule, the Prefer ences window appears. In the Select Code
Review ligt, click Complete Code Review if it is not already the selected code
review. Thisshows all code review categories.

Expand the Structural Analysisfolder to see the rule you just created.

Click the rule to see the properties you set for it, as shown in the following screen

capture:

Wn

Code Review

Select Code Review: ICDmpIete Code Review j
D =3 Design Principles (5 rules, 0 enabled) Mew rule |
H-[JE3 Globalization (50 rules, 0 enabled)
D (53 12EE EBest Practices (68 rules, 0 enabled) Remove rule |
DI:l 1Z25E Best Practices (71 rules, 0 enabled)

D 3 Maming Conventions (2 rules, 0 enabled) MV e .. |

DI:l Performance (26 rules, 0 enabled)

D 3 Private APT {4 rules, O enabled) Show Search Box |
= 3 Security (27 rules, 0 enabled)
El---I:I Structural Analysis (7 rules, 1 enabled) Expand Al |

------ ﬂ alert me when dependency between components Indep

D I=2 Breakable (2 rules, 0 enabled) Export. .. |

D I3 Cydic Dependency (2 rules, 0 enabled)
H-[JE3 Hub (2 rules, 0 enabled) Impart. .. |
«| | i
Froperties IResuurce Filters I
Basic properties ﬂ
lrSeverit';.-' IF'ru:-I:uIem j
rSpeciFic properties | ;I

Selecting a code review that appliesyour rule only

To run acode review for your rule only, clear all foldersin the list except for the
Structural Analysisfolder, as shown in the previous screen capture. Click OK.

Tutoria: Run a structural analysis code review -17

Selecting a code base to review
To select the workspace as the code base to review:

o Onthetoolbar in the Code Review view click the Review icon (¥ ~) > Review
Wor kspace.

Running the codereview

Once you select the code base to review, the code review runs. Y ou can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the code review findings
When the code review is finished, the findings are shown in the Code Review view, as

shown in the following screen capture. Below the tab the statistics line summarizes the
review.

(-F‘rcul:ulems|Javaduc|DecIaratiDn (@ &3 = - }:& It - = Eif J=2 =8

Complete Code Review: Workspace, Rules: 3, Files: 18, Problems: 3, Warnings: 0, Recommendations: 0

-3 Structural Analysis £3 problems)

1. Expand the Structural Analysisfolder to see thefindingsin it.

F'rnblems|Javadnc|DecIaraticun (@ £ -2 T - #8270

Complete Code Review: Workspace, Rules: 3, Files: 18, Problems: 3, Warnings: 0, Recommendations: 0

B3 struckural Analysis (3 problems)

ﬂ DependentComponent, java:7 Alert me when dependency between components IndependentCompaonent and DependentCor
ﬂ DependentComponent. java: 7 Alert me when dependency between components IndependentComponent and DependentCor
ﬂ DependentComponent, java:d Alert me when dependency between components IndependentComponent and DependentCor

4] | *

Tutoria: Run a structural analysis code review -18

2. Double-click the third finding to see the source code for it in the editor, as shown
in the following screen capture:

[J] Evertt java [7] DependentComponent.java 52 B || & code Review Details 52 . Outline | =0
ﬂ Template Details
package com.ibm.rZa.rules.rsa.exampl ﬂ
bl 1 b dente . Dependency Introduced between
i3] ic class DependentComponen components
= public static void main(String[DependentComponent is called by
IndependentComponent comp = = IndependentComponent line [8]
comp.printTime (18 =
}
+
1| | 3| =
Problemns | Javadoc | Declaration (@, &3 -2 - & By 5 =0
Complete Code Review: Workspace, Rules: 3, Files: 18, Problems: 3, Warnings: 0, Recommendations: 0
EII:I Structural Analvsis 3 problems)
ﬂ DependentComponent.java: 7 Alert me when dependency betweaen components IndependentComponent and DependentCor
ﬂ DependentComponent.java: 7 alert me when dependency between components IndependentComponent and DependentCor
ﬂ DependentComponent, java: g Alert me when dependency between components IndependentComponent and DependentCor
1| | i

Y ou have completed Exercise 1.3: Defining an architectural control rule.
L everaging the power of user-defined rules

By creating your own rules, you put custom safeguards in place to monitor the
implementation of your design. Y ou can take the following measures:

e Specify criteriafor arule.

o Assign aseverity level to the rule: problem, warning, or recommendation.
e Runacode review on your rule or rules only.

Tutoria: Run a structural analysis code review -19

Wrapping up Exercise 1.3

Y ou have completed Exercise 2: Defining an architectural control rule. Init you
performed the following tasks:

1. Defined arule based on a supplied wizard.
2. Verified that your user-defined rule was added to the Structural Analysis code
review.
. Ran the Structural Analysis code review.

3
4. Viewed the code review findings that do not adhere to the criteria of your rule.

Now you are ready to begin Exercise 1.4: Resolving a structural problem.

Tutoria: Run a structural analysis code review

-20

Exercise 1.4: Resolving a structural problem

This exercise assumes you have completed Exercise 1.1: Importing the required
resources. In Exercise 1.4 you read a user scenario first. Then you assume the role of the
software architect described in the user scenario and use the project you imported in

Exercise 1.1 to compl ete the exercise.

User scenario

To check code specifically for cyclic dependencies, the architect runs a structural analysis
code review that looks only for such dependencies. The code review does find some
cyclic dependencies and the architect notices that quick fixes exist for a couple of them.

A quick fix isasupplied automated way to repair acommon finding. To refactor the code
to be free of cycles, the architect applies the quick fix to one cyclic dependency.

In the final exercise, the architect runs a code review and fixes one of the findings.

Exercise

In this exercise you perform the following tasks:

. Run acode review to find cyclic dependencies.

1
2. Recognize when a cyclic dependency has a supplied quick fix.
3

. Apply aquick fix to resolve a cyclic dependency:

o Seealist of changesto be made.

o View the existing and refactored code for each change.

4. Get aconfirmation that the quick fix has been applied.
Selecting a code review to check for cyclic dependencies

To select a code review that checks for cyclic dependencies:

1. Onthetoolbar in the Code Review view click the Manage Rulesicon, %

z
Problems | Javadoc | Declaration (@
Cuick, Code Review: \Warkspace

&3

-2 1 - B =0

2. Inthe Select Code Review list, click Structural Analysis Code Review.

Tutoria: Run a structural analysis code review

-21

3. Expand the Structural Analysisfolder and clear everything but the Cyclic

Dependency subfolder.

4. Expand the Cyclic Dependency subfolder to see the rules that will be applied in
the code review, as shown in the following screen capture. Click OK.

i@ Preferences

=101]

- Workbench
- Agent Contraller
[+~ At
- Build Grder
- ClC++
[#- Companent Test
[~ Crystal Enkerprise
- Crystal Repart Designer
[~ Crystal Reports Viewers
[Data
[+ Help
- Installjlpdate
[Inkermet
- J2EE
- Java
H- Appearance
- Build Path
- Code Review
- Code Style
- Compiler
[+ Debug
[+ Editor
- Installed JREs
- JUnik
- Task Tags
- Type Filters
[+ Visual Editor

B
B
B
B

Code Review

Select Code Review: IStructuraI Analysis Code Review

: ysis (7 rules, 2 enabled)

D = alert me when dependency between compors
-] Breakable (2 rules, 0 enabled)

EI:I Cyclic Dependency {2 rules, 2 enabled)

----- ™ avoid cydic dependencies between compr

o = void cvclic dependencies between packs
B[]0 Hub (2 rules, 0 enabled)

New rule. ..
Remove rule

Mowe rule,

Show Search Box

IEURLEE

Expand All
Expart...
Irnport...
< 5
Structural Analysis category contans set of rules that help you
conduct Architectural review of your code.
oK I Cancel |

Selecting a code base to review

To select the workspace as the code base to review:

e Onthetoolbar in the Code Review view click the Review icon (¥ =) >Review

Workspace.

Running the codereview

Once you select the code base to review, the code review runs. Y ou can track its status by
checking the progress bar in the lower-right corner of the view.

Tutoria: Run a structural analysis code review

-22

Viewing thelist of cyclic dependenciesfound

The code review found four cyclic dependencies, as shown in the next screen capture. A
cyclic dependency is an undesirable anti-pattern that should be avoided. In acyclic
dependency, agroup of objectsis so interconnected that a change to any object could
affect al of the others.

s = - - "
Problems | Javadoc | Declaration (@ &3 v :%:5* - Ew A2 8

Struckural Analysis Code Rewview: mkz_test, Rules: 6, Files: 121, Problems: 4, Warnings: 0, Recommendations: 0

F-E3 Structural Analysis:Cyelic Dependency (4 problems)

1. Expand the Structural Analysis. Cyclic Dependency folder and note the
following findingsin it, as shown in the next screen capture:

?‘rnhlems‘Javadcu:‘Declaration (@ £ -2 - 9B 2508

Structural Analysis Code Review: Workspace, Rules; 2, Files; 18, Problems: 4, Warnings: 0, Recommendations: 0

= D Struckural Analysis: Cyelic Dependency (4 problems)
ﬂ Event.java, Observable. java, Observer.java,. .. Avoid cyclic dependencies between components
ﬂ SubClass java,Base.java Avoid cyclic dependencies between components
EJ Font.java, CourierFonk. java, CommonFonk. java,. .. Avoid cyclic dependendies between components
5-----EJ DashBoardController jawva, Car.java Avoid cyclic dependencies between components

(o]

Each cyclic dependency has the highest severity level of problem ()
assigned to it.

Two of the cyclic dependencies have a quick fix (' /) to eliminate the
dependency.

2. Right-click the third finding in the list. The Quick Fix pop-up menu choice varies
depending upon the solution. For the cyclic dependency you selected, the fix isto
move the static field from the base class to another class, thereby eliminating the
cyclic dependency.

Tutoria: Run a structural analysis code review -23

3. Click Quick Fix: Move static field from base class.

Quick Fix: Mave skatic field From base class

& Edt...

Problems | Javadoc | Dec ;E|Gg to location

-2 - 98 870

Structural Analysis Code
Disable rule

=3 structural Anz
" [Disable rule on Font, java

i ﬂ Event,jaw.
M subClass. (x| Ignare match

t, Warnings: 0, Recommendations; O

pendencies between components

ompanents

Applying the quick fix

The quick fix for the cyclical dependency you selected isto move the static field from the
base class to another class. Y ou can choose to move the field to an existing class or to a

new class.

To move the field to anew class;

1. Inthe next screen capture, review the read-only information about the cyclic
dependency, aso referred to as atangle, that you are going to fix:

o Classesthat are part of the tangle

o Dependencies between classesin the tangle

Tutoria: Run a structural analysis code review

- 24

2. Click Generate a new Java class and type:
o src/ for the source folder name

o comibmr2a.rules.rsa. exanpl es for the package name

o Defaults for the class name

1@1MD?E static field from base class

lasses that are part of the Tangle

Dependencies between classes in this Tanagle

Font instantiates CourierFont, line 49
CaormmonFont extends Font, line 14
CourierFont extends CommonFont, line 15

Please select the new place for code that must be moved

" Use an existing Java class

Dualified class nanme I

¥ Generate a new Java class

Source Folder name I srif

Package name I corm.ibr.rZa.rules rsa, examples

lass name I Defaulks

com.ibm,r2a.rules . rsa, examples, structuralanalsysis, componentdependencies tangle, second, CourierFont
comibm,r2a.rules, rsa,examples, structuralanalsysis . componentdependencies, tangle, second, Fonk
com.ibm.r2a.rules.rsa.examples. structuralanalsysis, componentdependencies. tangle. second. CommonFonk

Browse, ..

Browse, ..

Browse, ..

il

Preview = | (] 4 I Cancel

3. Click Preview to see the code that the quick fix will change.

Tutoria: Run a structural analysis code review

-25

4. Expand the Changesto be performed list, as shown in the following screen
capture, to see exactly what changes the quick fix will make to the code when it
moves the static field to the new class.

:@:'JZMuve static field from base class il

Changes to be performed @7 @

@ Fort.java - Structuraldnalysis/srcfcomfibmfr2ajrulesrsafexamples/structuralanalsysisfcomponentdependencie:
@ Document.java - Skructuraldnalysisfsecfcom/ibm/rZa/rules rsafexamples/strockuralanalsysisfcomponentdepend

1| 3

Mo presviewy available

Preview = | (a]4 I Zancel

Tutoria: Run a structural analysis code review -26

5. Click the fourth change in the list, that begins with Font.java, to see a side-by-side
view of the code. The original code is on the left and the refactored code that will
be created by the quick fix ison the right.

iﬁtMqu static field from base class ﬂ

Changes to be performed @7 ‘G‘

- [#]#y Create package: com.ibm.rZa.rules.rsa,examples

[¥la Create file: [Struckuralfnalysis/srcfcomfibmirZafrulesrsalexamples/Defaults. java

ﬁ%‘a Fank.java - Skruckuraldnalys =/componentdependencie
%D Document. java - Structuraldnalysisisrcfcom/fibm)rZafrules rsafexamples/structuralanalsysis/componentdepend

Isrifoomnfibmir2afrules rsalexamples struckuralanalsy

K1 :
[J] Fontjava L 9F
m Criginal Source Refactored Source
return | getFontDatal() .getd return | | getFontData() *
! }

public boolean isItalic() {

return [[getFontDatal()
public static Font getDefaultF 3

return defaultFont;
public boolean isPlaini) {
return [getFontDatal() .d

| (] 4 I Cancel

6. Click OK to apply the quick fix to all of the selected changesin the list.
7. After the quick fix has been applied, you see a checkmark as confirmation so you
know that the problem is resolved.

Prnhlems|Javadnc|DecIaratinn (@ P -2 - & Bs = =0

Structural Analysis Code Review: Workspace, Rules; 2, Files: 18, Problems: 4, Warnings: 0, Fecommendations: O

B3 Struckural Anabysis: Cydic Dependency (3 problems)

----- M Event.java,Observable java, Observer java, ... Awoid cyclic dependencies between components
----- ﬂ Sublass,java,Base.java Avoid cclic dependencies between components
----- [Font.java:1, CourierFonk. java, CommanFont. java, ... &void cyclic dependencies bebween components

------ u , DashBoardController . java, Car.java Awoid cyclic dependencies between components

Tutoria: Run a structural analysis code review - 27

Y ou have completed Exercise 1.4: Resolving a structural problem.
L everaging the power of quick fixes

Quick fixes are supplied for some common findings in code reviews. By applying a
supplied quick fix, you have an automated way to resolve a cyclic dependency. Y ou can:

e ldentify and evaluate cyclic dependencies.

« Eliminate the dependency quickly with an automated quick fix.

o Seealist of exactly what changes the quick fix would make to your code.
e Fix the cyclic dependency consistently each time.

Wrapping up Exercise 1.4

Y ou have completed Exercise 1.4: Resolving a structural problem. In it you performed
the following tasks:

1. Ranacode review to find cyclic dependencies.
2. Recognized when a cyclic dependency has a supplied quick fix.
3. Applied aquick fix to resolve a cyclic dependency:

o Saw alist of changes to be made.

o Viewed the existing and refactored code for each change.
4. Got aconfirmation that the quick fix has been applied.

Finish the tutorial by reviewing the learning objectivesin “Summary.”

Tutoria: Run a structural analysis code review -28

Summary: Run a structural analysis code view

This tutorial showed you how to run a structural analysis code review.

Completed lear ning objectives

If you completed al of the exercises, you should now be able to do the following tasks:
e Runastructura analysis code review.
o Define an architectural control rule.

e Apply asupplied quick fix to resolve a structural problem.

M oreinformation

If you want to learn more about the topics covered in thistutorial, please refer to the
online Help for structural analysis.

Tutoria: Run a structural analysis code review -29

