Version 7.0.1
Using ProjectConsole Template Builder to Display TestManager Data

Stored in Aggregate Measure Tables

[image: image1.png]
IBM Rational® ProjectConsole Tutorial

IBM Rational® ProjectConsole
Version 7.0.1
Section 15 – Collecting and reporting on Rational TestManager data
stored in aggregate measure tables

TABLE OF CONTENTS
3Introduction

3PC Setup

4Aggregate Tables

4Aggregate Table Prerequisites

4Aggregate Tables Explained

5Configuring Rational ProjectConsole to Collect Rational TestManager Metrics

5Part 1 – Creating a source template for Rational TestManager

5Part 2 – Defining dimension and measure tables

6Part 3 – Defining a mapping and a collection task

6Part 4 – Running a collection task

9Part 5 – Reviewing the outcome of running the Webshop TM_TC Results Collection task

14Modifying a Project Console Template to Include Data from Aggregate Tables

15Part 6 – Viewing the contents of the TMIterationsResults_TutorialNoData template

20Part 7 – Accessing the aggregate table that contains the test case totals by build and iteration

23Part 8 – Displaying the names of the builds within an iteration

26Part 9 – Updating the table to show the test case results for the build(s) in an iteration

30Part 10 – Accessing the aggregate table that contains the test case totals by iteration

34Part 11 – Updating the summary below the table to show the test case results for the iteration

37Part 12 – Testing the Report

40Conclusion

Introduction

This tutorial section shows you how to perform calculations on data extracted from the Rational TestManager repository, store the calculated values in the Rational ProjectConsole warehouse, and then display the values in a report generated using a Rational ProjectConsole Template Builder template.

PC setup

The following directory references are used throughout this section of the tutorial:

· InstallDir refers to the installation path for Rational ProjectConsole (C:\Program Files\Rational\ProjectConsole is the default path).

· ClassicsDir refers to the installation path for the Classics sample application (C:\Classics is the default path).

Tutorial Preparation

For information about how to set up for the tutorial, see Section 0 – Setting Up for the Tutorial.
Note The graphics used to illustrate the Microsoft Word user interface were captured using Microsoft Word 2000. Depending on the version of Word you use, these windows may look somewhat different.

Aggregate Tables

Aggregate Table Prerequisites

Populating aggregate tables with data requires knowledge of one or more of the following scripting languages:

· SQL
· Perl
· VB Script
· ClearQuest API programming
Note Without some programming knowledge, you may find Part 5 – Reviewing the outcome the Webshop TM_TC Results Collection task difficult to follow. However, you will be able to complete the tutorial successfully without programming knowledge.

Aggregate Tables Explained

Aggregate tables are measure tables that summarize data stored in another measure table. Because an aggregate table is a measure table, you perform the same steps to create one as you do to create any other measure table. However, populating an aggregate table with data requires a different procedure than populating other measure tables.

To populate an ordinary measure table, you run a Rational ProjectConsole collection task. To populate an aggregate table, you run a script written either in Perl or in VB Script. The script queries a different measure table and uses the ClearQuest API to add the query results to the aggregate table.

For example, the sample data warehouse contains a measure table named TM_TCResults_Measure. Running the task Webshop TM_TC Results Collection adds test case results from the sample Rational TestManager repository to the TM_TCResults_Measure table. After the TM_TCResults_Measure table is populated with test case results data, the Webshop TM_TC Results Collection task executes a Perl script that queries the TM_TCResults_Measure table and updates several aggregate tables that summarize the test case results by iteration, by build, and by log.

Aggregate tables are useful for displaying calculated information in Rational ProjectConsole reports. A Template Builder template can display only the information that is available in the source to which it points. It cannot perform any calculations on the data, such as total values. For example, a template can display the properties of test cases in the Rational TestManager repository, including the actual results. However, the template cannot calculate the total number of test cases that passed or failed. To display totals in a report, you must calculate and store these totals in an aggregate table. A Template Builder template can then access this aggregate table in the Rational ProjectConsole warehouse and display the totals from the table.

Configuring Rational ProjectConsole to collect Rational TestManager data
Part 1 – Creating a source template for Rational TestManager
This section of the tutorial focuses on reporting aggregate table data. It assumes the source domain template for collecting the data has already been created in the sample warehouse. This section uses the source domain template named TM_TCResults_SourceTemplate. For a description of how to create the source domain template, see Section 10 – Collecting Rational TestManager Data in this tutorial.

Part 2 – Defining dimension and measure tables

Because this section focuses on reporting aggregate table data, the dimension and measure tables have already been created in the sample warehouse. In the exercises in this section, you’ll use the following dimension tables:

· TM_ActualResult_Dim
(
TM_LogFirstRootEventResult_Dim
· TM_BuildName_Dim
(
TM_LogName_Dim
· TM_BuildUID_Dim
(
TM_LogUID_Dim
· TM_InterpretedResult_Dim
(
TM_Product_Dim
· TM_IterationName_Dim
(
TM_Project_Dim
· TM_IterationUID_Dim
(
TM_TestCaseName_Dim
This section uses the following measure tables:

· TM_TCResults_Measure
· TM_TotalsByBuild_Aggregate
· TM_TotalsByBuildAndIteration_Aggregate
· TM_TotalsByIteration_Aggregate
· TM_TotalsByLogAndBuild_Aggregate
The tables with names that end with “_Aggregate” are aggregate tables, which were created to contain total information collected and stored in the TM_TCResults_Measure table. For a description of how to create the dimension and measure tables, see Section 10 – Collecting Rational TestManager Data in this tutorial.

Part 3 – Defining a mapping and a collection task

The mapping and collection tasks you’ll use to report on aggregate table data have already been created for you in the sample warehouse. You’ll use the mapping named TM_TCResults_Mapping and the collection task named Webshop TM_TC Results Collection. For information about how to create the mapping and collection tasks, see Section 10 – Collecting Rational TestManager Data in this tutorial.

Part 4 – Running a collection task

In this exercise, you will use the Rational ProjectConsole Designer to open and run the Webshop TM_TC Results Collection task.

	
	Use case steps
	Details
	Display

	15.4.1
	Start the Rational ProjectConsole Designer.
	On the Rational ProjectConsole toolbar, click Designer.
	[image: image2.png]

	15.4.2
	Open the Webshop TM_TC Results Collection scheduled task.
	The Rational ProjectConsole Designer starts in a new browser window.

In the Designer navigation tree, expand Scheduled Tasks, and then click Webshop TM_TC Results Collection.

	[image: image3.png]

	15.4.3
	Edit the Startup Command batch file.

The purpose of the updateTM_TCResults1.bat file is described in Part 5 –

 REF _Ref34564609 \h
 * MERGEFORMAT Reviewing the outcome the Webshop TM_TC Results Collection task.
	Click the Parameters tab.

The StartupCommands box contains the following text:

updateTM_TCResults1.bat

This batch file will be run before new data are stored in the TM_TCResults_Measure table.

Open the updateTM_TCResults1.bat file in a text editor such as Notepad. The file is in the InstallDir\bin folder.
Replace the text “[SERVERNAME]” with the name of the machine that will run the Webshop TM_TC Results Collection task.
	[image: image4.png]

	15.4.4
	Edit the Shutdown Command batch file.

The purpose of the updateTM_TCResults2.bat file is described in Part 5 –

 REF _Ref34564609 \h
 * MERGEFORMAT Reviewing the outcome the Webshop TM_TC Results Collection task.
	The Shutdown Commands box contains the following text:

updateTM_TCResults2.bat

This batch file will be run before new data are stored in the TM_TCResults_Measure table.

Open the updateTM_TCResults2.bat file in Notepad. The file is in the InstallDir\bin folder.
Replace the text “[SERVERNAME]” with the name of the machine that will run the Webshop TM_TC Results Collection task.
	[image: image5.png]

	15.4.5
	Review the schedule.
	Click the Schedule tab.

Running the Webshop TM_TC Results Collection task populates several aggregate tables with data, which can be displayed in a Template Builder template.

The data in the aggregate tables is static. That is, it is only updated as often as the task is run. If the data must be current, run the task daily.
	[image: image6.png]

	15.4.6
	Start the task run, and then acknowledge the collection task run was started on the designated host machine.
	Click Task > Run.

In the Task Scheduler message window, click OK.
	[image: image7.png]

	15.4.7
	Check to see if the task executed successfully.
	In the Designer navigation tree, expand Scheduled Task Logs, and then click Webshop TM_TC Results Collection_ <date/time stamp>.

After the task completes a successful run, the Status box displays SUCCESS.
	[image: image8.png]

	15.4.8
	Close the Designer.
	On your Web browser File menu, click Close.
	

Part 5 – Reviewing the outcome the Webshop TM_TC Results Collection task run
This part describes the batch, SQL, and Perl files executed during the Webshop TM_TC Results Collection task run to help you understand how to use these files and what they do. Although you can refer to the batch files and SQL and Perl scripts as examples, this section does not show you how to create these files. For information on how to create the batch and script files, see Section 17 – Using Transformations to Obtain Derived Data in this tutorial.
In addition to populating the TM_TCResults_Measure table with data, running the Webshop TM_TC Results Collection task does the following:
· Updates the measure and aggregate tables so that a data history is maintained.

· Updates the TM_InterpretedResult_fk field for logs that have no interpreted results information.

· Updates the total fields within the TM_TCResults_Measure table.

· Summarizes the results by iteration, build, and log, and updates the aggregate tables with this information.

Each of these aspects of running the Webshop TM_TC Results Collection task is described below.

Update the measure and aggregate tables so that a data history is maintained.
Before the Webshop TM_TC Results Collection task adds new test case results data to the TM_TCResults_Measure table, it executes the updateTM_TCResults1.bat file, which is in the InstallDir\bin folder. If you use Notepad to open this file, you can see that the file contains a single command that executes the SQL commands in a file named updateTM_TCResults1.sql, and saves the results to a file named updateTM_TCResults1.txt. For example:

osql -S [SERVERNAME] -d tutorialwarehouse -U admin -P admin ‑i updateTM_TCResults1.sql ‑o updateTM_TCResults1.txt

If you open the InstallDir\bin\updateTM_TCResults1.sql file in Notepad, you can see that the file contains five SQL UPDATE commands. The UPDATE commands set the value of the IsLatestCollection field to zero in the following tables:

· TM_TCResults_Measure

· TM_TotalsByBuild_Aggregate

· TM_TotalsByBuildAndIteration_Aggregate

· TM_TotalsByIteration_Aggregate

· TM_TotalsByLogAndBuild_Aggregate

For example, the following SQL commands set the IsLatestCollection field in the TM_TotalsByBuildAndIteration_Aggregate table to 0:

UPDATE tm_totalsbybuildandite

SET islatestcollection_4 = '0'

WHERE (islatestcollection_4 IS NULL OR islatestcollection_4 <> '0') AND (dbid <> 0)

Note that the names of the table and field in the Designer (TM_TotalsByBuildAndIteration_Aggregate and IsLatestCollection, respectively) differ from the table and field names used in the SQL command (tm_totalsbybuildandite and islatestcollection_4). The names used in the SQL command represent the physical field names of the table and field. For more information, see “Rational ProjectConsole Target Table Schema” in Section 17 – Using Transformations to Obtain Derived Data.

Setting the value of the IsLatestCollection field to zero in all existing records and the value of the IsLatestCollection field to 1 in all new records lets Rational ProjectConsole Template Builder filter the data displayed from aggregate tables and display only the latest data. Steps 15.7.4 and 15.10.4 show how to filter the displayed data so that the template displays only the data collected most recently.
Update the TM_InterpretedResult_fk field for logs that have no interpreted results information.
After the Webshop TM_TC Results Collection task stores new test results data in the TM_TCResults_Measure table, it executes the updateTM_TCResults2.bat file, which is in the InstallDir\bin folder. If you use Notepad to open the updateTM_TCResults2.bat file, you can see that this batch file executes a Perl script named updateTM_TCResults1.pl. This script updates the TM_InterpretedResult_fk field for logs that have no interpreted results information.

Some of the test scripts or test suites in the Rational TestManager Webshop repository display results on the Details tab of their corresponding log folders, but not on the corresponding Test Case Results tab, which is empty.
· The Test Case Results tab displays interpreted results information for test cases.

· The Details tab displays events information for the test results.

The Webshop TM_TC Results Collection task stores the interpreted results data in the TM_InterpretedResult_fk field for those scripts or suites that have the interpreted results information, and stores the event details information (in particular, first root event details information) in the TM_LogFirstRootEventResult_fk field. These two database fields can be found in the TM_TCResults_Measure table.

Having the results stored in two separate fields complicates the effort of determining the test results. The updateTM_TCResults1.pl script simplifies this by copying the results stored in the TM_LogFirstRootEventResult_fk field to the TM_InterpretedResults_fk field so that all test results are in a single field, the TM_InterpretedResults_fk field.
If you open the updateTM_TCResults1.pl Perl script in Notepad, you can see that it includes the code provided by the transformationTemplate.pl Perl script. For more information on this Perl script, see Section 17 – Using Transformations to Obtain Derived Data.

The updateTM_TCResults1.pl Perl script also includes the following subroutines:
· setTableAndFieldNames – Initializes variables with the names of the physical tables and physical fields
· updateLogsWithNoTests – Updates the TM_InterpretedResult_fk field for logs that have no interpreted results information
Understanding the setTableAndFieldNames subroutine

The setTableAndFieldNames subroutine creates variables that represent the physical table and physical field names of specific dimension and measure tables in the Rational ProjectConsole warehouse. The display name of a table or field in the Designer is not the same as the physical table or physical field name. To query the TM_TCResults_Measure table or add records in the aggregate tables, you must use the physical table and physical field names of the dimension and measure tables. The setTableAndFieldNames subroutine includes several calls to two statements that provide the physical table and physical field names. These statements are getPhysicalTableDbName and getPhysicalFieldDbName.
For example, the following statement sets the value of the TC_RESULTS_MEASURE_TABLE variable equal to the physical table name of the TM_TCResults_Measure table. (TM_TCResults_Measure is the display name of the table in the Designer.)

$TC_RESULTS_MEASURE_TABLE = PjCLib‑>getPhysicalTableDbName("TM_TCResults_Measure");

In the following example, the statement sets the value of the BUILD_NAME variable equal to the physical field name of the TM_BuildName_fk field within the TM_TCResults_Measure table. (TM_BuildName_fk is the display name for the field within the TM_TCResults_Measure table in the Designer.)
$BUILD_NAME = PjCLib‑>getPhysicalFieldDbName("TM_TCResults_Measure", "TM_BuildName_fk");

Understanding the updateLogsWithNoTests subroutine

The updateLogsWithNoTests subroutine consists of the following steps:

· Declare local variables used by the subroutine.

· Execute a SQL query on the TM_TCResults_Measure table to determine if there are any logs that have no interpreted results information but have the event details information (that is, the TM_InterpretedResult_fk field is set to 0 and the TM_LogFirstRootEvent_fk is not set to 0). Recall that the Test Case Results tab for the log is empty. If this query returns records, the subroutine executes another query that counts the number of interpreted results associated with each log returned in the query. If the query returns no results, the log has no test case results.

· If a log has no test case results, do the following:

–
Execute an SQL query to determine if the log result — for example, “Pass” or “Fail” — exists in the TM_InterpretedResult_Dim table. If it does not exist, add a record to the TM_InterpretedResult_Dim table.

–
Edit the log’s record in the TM_TCResults_Measure table by setting its TM_InterpretedResult_fk field to the log result.

Update the total fields within the TM_TCResults_Measure table.
The data in the TM_InterpretedResult_fk field of the TM_TCResults_Measure table references a string that indicates the outcome of running a test case, a test script, or a test suite. For example, the referenced field contains the string “Pass” if the test case, the test script, or the test suite passed. To derive the number of tests passed, or the number of tests failed, and so on, the updateTM_TCResults2.bat file in the InstallDir\bin directory executes SQL commands specified in the updateTM_TCResults2.sql file. The results of executing the SQL commands are stored in the updateTM_TCResults2.txt file in the InstallDir\bin directory. For example:

osql -S [SERVERNAME] -d tutorialwarehouse -U admin -P admin ‑i updateTM_TCResults2.sql ‑o updateTM_TCResults2.txt

If you open the InstallDir\bin\updateTM_TCResults2.sql file in Notepad, you can see that this file contains seven SQL UPDATE commands. Each UPDATE command sets the value of the appropriate total field to 1 if the value referenced in the TM_InterpretedResult_fk field matches the expected string.

UPDATE tm_tcresults_measure

SET tm_totalpassed = 1

WHERE islatestcollection = '1' AND tm_interpretedresult_f in (select dbid from tm_interpretedresult_d where interpretedresult='Pass');

For example, if the referenced string for the TM_InterpretedResult_fk field is equal to “Pass,” the TM_TotalPassed field is set to1.

Note that the names of the table and the fields in the Designer (TM_TCResults_Measure, TM_InterpretedResult_fk, and TM_TotalPassed) differ from the table and field names used in the SQL command (tm_tcresults_measure, tm_interpretedresult_f, and tm_totalpassed). The names used in the SQL command represent the physical field names of the table and fields.

For more information, see “Rational ProjectConsole Target Table Schema” in Section 17 – Using Transformations to Obtain Derived Data.

Setting the value of the “total” fields, for example, TM_TotalPassed, to 1 lets you query the TM_TCResults_Measure table and count the number of test cases/logs that passed, failed, were executed, include a warning, are informational, were stopped, or are unevaluated.
Summarize the results by iteration, build, and log and update the aggregate table.s

After collecting test results in the TM_TCResults_Measure table, the Webshop TM_TC Results Collection task executes the updateTM_TCResults2.bat file, which is in the InstallDir\bin folder. If you use Notepad to open the updateTM_TCResults2.bat file, you can see that this batch file executes a Perl script named updateTM_TCResults2.pl. This script performs various aggregate computations on the test results stored in the TM_TCResults_Measure table and stores them in appropriate aggregate tables. For example, it computes the total test results by iteration, build, and log.

If you open the updateTM_TCResults2.pl Perl script in Notepad, you can see that this script includes the code provided by the transformationTemplate.pl Perl script. For more information on this Perl script, see Section 17 – Using Transformations to Obtain Derived Data.

The updateTM_TCResults2.pl Perl script also includes the following subroutines:

· setTableAndFieldNames – Initializes variables with the names of the physical tables and physical fields.

· insertRecordsIntoAggregateBuildTable – Totals the test results in TM_TCResults_Measure by build and inserts the totals into the TM_TotalsByBuild_Aggregate table.

· insertRecordsIntoAggregateLogTable – Totals the test results in TM_TCResults_Measure by build and log and inserts the totals into the TM_TotalsByBuildAndLog_Aggregate table.

· insertRecordsIntoAggregateIterationTable – Totals the test results in TM_TCResults_Measure by iteration and inserts the totals into the TM_TotalsByIteration_Aggregate table.

· insertRecordsIntoAggregateIterationAndBuildTable – Totals the test results in TM_TCResults_Measure by build and iteration and inserts the totals into the TM_TotalsByBuildAndIteration_Aggregate table.

Understanding the setTableAndFieldNames subroutine

For a description of the setTableAndFieldNames subroutine, see Update the TM_InterpretedResult_fk field for logs that have no interpreted results information in this document.
Understanding the subroutines that update the aggregate tables

Because all of the subroutines for updating the aggregate tables are similar, only the insertRecordsIntoAggregateIterationTable subroutine is described here.

The insertRecordsIntoAggregateInterationTable subroutine consists of the following steps:

· Declare local variables used by the subroutine.

· Execute an SQL query on the TM_TCResults_Measure table that calculates totals for the number of passes, failures, warnings, executed, stopped, unevaluated, and informational results for each iteration.

· For each record returned by the SQL query:

–
Save the iteration name, iteration UID, project name, product name, and total values in the local variables.

–
Create a new Rational ClearQuest record that contains the iteration name, iteration UID, project name, product name, and total values. Add the new ClearQuest record to the TM_TotalsByIteration_Aggregate table.

Modifying a Project Console template to include data from aggregate tables

Running the Webshop TM_TC Results Collection task adds data to the following measure tables.

· TM_TCResults_Measure – Contains the test results information; for example, the result for the Purchase Items test case is “Fail.”

· TM_TotalsByBuild_Aggregate – Contains the total number of test results for each build; for example, the Build 1 build contains seven tests with results equal to “Pass.”
· TM_TotalsByLogAndBuild_Aggregate – Contains the total number of test results for each build and log combination; for example, the ClassicsCD Shop for CDs v1b#1 log of the Build 1b build contains two tests with results equal to “Pass.”
· TM_TotalsByIteration_Aggregate – Contains the total number of test results for each iteration; for example, the Construction 1 iteration contains three tests with results equal to “Pass.”

· TM_TotalsByBuildAndIteration_Aggregate – Contains the total number of test results for each build / iteration combination; for example, the Build 1b build of the Construction 1 iteration contains three tests with results equal to “Pass.”

In Part 6, you will use Template Builder to view the test results stored in the aggregate measure tables within the sample data warehouse.

Part 6 – Viewing the contents of the TMIterationsResults_TutorialNoData template

In this exercise, you will open the Template Builder template named TMIterationsResults_TutorialNoData and examine its contents. After executing this section, the template will display the test case results for all Rational TestManager iterations.

	
	Use Case Steps
	Details
	Display

	15.6.1
	Start Rational ProjectConsole Template Builder (loaded as a Microsoft Word add-in).
	Click Start > Programs > Rational Software > Rational ProjectConsole Template Builder.
	

	15.6.2
	Open the Template Builder template named: TMIterationsResults_TutorialNoData.
	Microsoft Word starts, with the ProjectConsole menu in the menu bar.

Click File > Open.

Browse to and open:

InstallDir\templates\TestManager\ TMIterationsResults_TutorialNoData.doc
	[image: image9.png]

	15.6.3
	Show paragraph marks in the document.
	If you cannot see the paragraph formatting mark at the top of the document, you must make them visible.

To view the paragraph marks (¶) in the document:

· If you are using Word 2000, on the toolbar, click Show/Hide (¶), or use CTRL+*.

· If you are using Word 2002, click ProjectConsole > Show/Hide Commands..
	[image: image10.jpg]

	15.6.4
	Save the file with another name.
	Click File > Save As.

In the File name box, type “TMIterationsResults_Tutorial.doc.”
Click Save.
	[image: image11.jpg]

	15.6.5
	See how the template accesses the Rational ProjectConsole warehouse.
	Position the insertion point at the end of line 1, after the [OPEN1] comment.
	[image: image12.jpg]

	15.6.6
	
	Click ProjectConsole > Modify Command.

In the Arguments table, look at the values set for the DatabaseSet and DatabaseLogicalName arguments.
· DatabaseSet = Dashboard

· DatabaseLogicalName = TstD1

These values are used to gain access to data stored in the Rational ProjectConsole warehouse.

Click Cancel.
	[image: image13.png]

	15.6.7
	Log in to the Rational ClearQuest database.
	Click ProjectConsole > Template View.

In the Username box, type “admin.”

Leave the Password box empty.

Click OK.

Note The username and password used here give you access to the sample database. However, to access a database other than the sample database, you must enter the correct user name and password for that database. If you do not know the user name and password, ask your Rational ProjectConsole administrator.
	[image: image14.png]

	15.6.8
	Review the contents of the rest of the template.
	The Template View window opens.

In the left frame, expand the REPEAT nodes.

· OPEN ClearQuest_CQDatabase – Provides access to the Rational ProjectConsole warehouse.

· Open TestManager_Project – Provides access to the sample Rational TestManager repository.
· DISPLAY TestManager_Project.Name – Displays the Rational TestManager project name.

· REPEAT Iteration – Iterates through all the iterations in the Rational TestManager project.

· DISPLAY Iteration.Name – Displays a list of the iteration names in the Test-Manager project. Each name is a hyperlink to the test case results for that iteration.

· LIMIT – Displays a message if the Rational TestManager repository contains no iterations.
· REPEAT Iteration – Iterates through all the iterations in the Rational TestManager project.

· DISPLAY Iteration.Name – Displays the iteration name before the table of test case results for that iteration.

· DISPLAY Iteration.Name – Displays the iteration name in the test case results summary for that iteration.

· LIMIT – Displays a message if the Rational TestManager repository contains no iterations.

Close the Template View window.
	[image: image15.png]

Part 7 – Accessing the aggregate table that contains the test case totals by build and iteration

In this exercise, you’ll add a REPEAT command to the template. The REPEAT command provides access to the data in the aggregate measure table named TM_TotalsByBuildAndIteration_Aggregate. This lets you display the total number of test case results for each build within each iteration.

	
	Use Case Steps
	Details
	Display

	15.7.1
	Add a REPEAT command to the template to iterate through the records in the TM_TotalsByBuildAndIteration_ Aggregate measure table.
	Select the second row. Make sure that you select all cells in the row, but do not select the end-of-row marker ([image: image16.bmp]).
	[image: image17.jpg]

	15.7.2
	
	Click ProjectConsole > Add Command.

Click REPEAT Command, and click OK.
	[image: image18.png]

	15.7.3
	
	In the Select Objects to REPEAT list, expand ClearQuest_CQDatabase, and click TM_TotalsByBuildAndIte.

Select the Advanced check box.
	[image: image19.png]

	15.7.4
	Display records from the TM_TotalsByBuildAndIteration_ Aggregate measure table only if the iteration UID is equal to the current iteration’s UID and if the value of the IsLatestCollection field is set to 1.

Note Before collecting new test case results, the Webshop TM_TC Results Collection task sets the value of the IsLatestCollection field to 0 in all existing records in the TM_TotalsByBuildAndIteration_ Aggregate measure table. As new test case results data is collected, the IsLatestCollection field value for all new test case result records is set to 1.
	In the And Where table:

· In the Left Operand column, click Click here to add, expand Self, expand TM_IterationUID_fk_2, and click TM_IterationUID.

· In the Right Operand column, click Click here to add, expand Iteration, and click UID.

· In the Left Operand column, click Click here to add, expand Self, and click IsLatestCollection_4.

· In the Right Operand column, click Click here to add, and click Literal. Type “1,” and then press enter.
	[image: image20.png]

	15.7.5
	Sort the builds names in the TM_TotalsByBuildAndIteration_ Aggregate table alphabetically.
	In the Sort By list, click Click here to add.
Expand TM_BuildName_fk_3, and click TM_BuildName.

Click OK.
	[image: image21.png]

Part 8 – Displaying the names of the builds within an iteration

In this exercise, you will add a REPEAT command that displays the names of builds within an iteration.

	
	Use Case Steps
	Details
	Display

	15.8.1
	Add another REPEAT command to the template to iterate through the builds within the Rational TestManager project.
	Position the pointer after the [REPEAT18] comment that you added in steps 15.7.2 through 15.7.5.

Click ProjectConsole > Add Command.

Click REPEAT Command, and click OK.
	[image: image22.jpg]

	15.8.2
	
	In the Select Objects to REPEAT list, scroll to and expand TestManager_Project, and click Builds.

Select the Advanced check box.
	[image: image23.png]

	15.8.3
	Display the build only if its UID matches the build’s UID in the record from the TM_TotalsByBuildAndIteration _Aggregate measure table.
	In the And Where table:

· In the Left Operand column
· Click Click here to add.

· Expand Self, and click UID.

· In the Right Operand column:

· Click Click here to add.

· Expand TM_TotalsByBuildAndIte
· Expand TM_BuildUID_fk_3, and click TM_BuildUID.
	[image: image24.png]

	15.8.4
	Sort the build names in the Rational TestManager project alphabetically.
	In the Sort By list, click Click here to add, and click Name.

Click OK.
	[image: image25.png]

	15.8.5
	Add a DISPLAY command to the template to display the build name as a hyperlink to a template showing more detailed information about the test case results for the build.

Note The template referenced by the hyperlink already exists.
	Make sure the insertion point is positioned after the [REPEAT20] comment that you added in steps 15.8.1 through 15.8.4.

Click ProjectConsole > Add Command.

In the Select Command to Add window, leave the default DISPLAY Command option selected and click OK.
	[image: image26.png]

	15.8.6
	
	In the Select Attribute to DISPLAY list, under Build, click Name.

Under Create Hyperlink:

· Click Artifact Page.

· In the Template box, type “TestManager/TMLogsForBuild.”
Click OK.
	[image: image27.png]

	15.8.7
	Change the style of the build name hyperlink.
	In the template table, select the text “Build.Name.”
Click Format > Style.

In the Styles list, click PjC Destination Links, and then click Apply.
	[image: image28.jpg]

Part 9 – Updating the table to show the test case results for the build(s) in an iteration

In this exercise, you will add DISPLAY commands to display the number of test cases that were executed, passed, failed, include a warning, were stopped, are informational, or were unevaluated in a build.

	
	Use case steps
	Details
	Display

	15.9.1
	Identify the template location to add the test case result data.
	In the Executed column of the table, click in the second-row. This positions the insertion point at the beginning of the cell.
	[image: image29.jpg]

	15.9.2
	Add a DISPLAY command to the template to display the number of tests that were executed for the build.
	Click ProjectConsole > Add Command.

In the Select Command to Add window, leave DISPLAY Command selected and click OK.
	[image: image30.png]

	15.9.3
	
	In the Select Attribute to DISPLAY list, under TM_TotalsByBuildAndIte, click TM_ExecutedByBuildAndI.

Click OK.
	[image: image31.png]

	15.9.4
	Add DISPLAY commands to display the rest of the test case results.
	For the remaining columns in the table (Passed, Failed, and so on) repeat steps 15.9.1 through 15.9.3, replacing the column to edit and the text to display.

For each column, click the selection in the Select Attribute to DISPLAY list under the TM_TotalsByBuildAndIte node:

Column
Selection to click

Passed
TM_PassedByBuildAndIte
Failed
TM_FailedByBuildAndIte
Warning
TM_WarningByBuildAndIt
Stopped
TM_StoppedByBuildAndIt
Information
TM_InfoByBuildAndItera
Unevaluated
TM_UnevaluatedByBuildA
Number of
TM_TCByBuildAndIterati

Tests
	[image: image32.jpg]

	15.9.5
	Verify placement of the last DISPLAY command.
	Check the Number of Tests column to see that the [DISPLAY39] comment is displayed before the [ENDREP41] comment.

If [DISPLAY39] follows [ENDREP41], do the following:
· Delete the [DISPLAY39] comment. Position the insertion point after the [DISPLAY39] comment, and then click ProjectConsole > Delete Command.

Note Template Builder commands are displayed in a template as Word comments.

In the message window that prompts you to confirm the deletion, click OK.

· In the Number of Tests column, position the insertion point at the beginning of the second row, and then repeat steps 15.9.2 and 15.9.3, and the part of step 15.9.4 that addresses the Number of Tests column.
	[image: image33.jpg]

	15.9.6
	Change the style for the number of tests executed for the build.
	In the Executed column, select the text “<TM_TotalsByBuildAndIte.TM_ExecutedByBuildAndI>.”
Click Format > Style.

In the Styles list, click PjC Copy, and then click Apply.
	[image: image34.jpg]

	15.9.7
	Update the character style for the commands displaying the other test case results
	Repeat step 15.9.6 to change the character style for text displayed in the remaining columns. In each successive test case results column (Passed, Failed, and so on), select the following text.

Text to select

<TM_TotalsByBuildAndIte.TM_PassedBy BuildAndIte>

<TM_TotalsByBuildAndIte.TM_FailedBy BuildAndIte>

<TM_TotalsByBuildAndIte.TM_Warning ByBuildAndIt>

<TM_TotalsByBuildAndIte.TM_StoppedBy BuildAndIt>

<TM_TotalsByBuildAndIte.TM_InfoBy BuildAndItera>

<TM_TotalsByBuildAndIte.TM_ UnevaluatedByBuildA>
<TM_TotalsByBuildAndIte.TM_TCBy BuildAndIterati>
	[image: image35.jpg]

Part 10 – Accessing the aggregate table that contains the test case totals by iteration

In this exercise, you will add a REPEAT command to the template to access the data in the aggregate measure table named TM_TotalsByIteration_Aggregate. This lets you display the total number of test case results for each iteration.
	
	Use case Steps
	details
	Display

	15.10.1
	Identify where in the template to add the test case result data.
	Position the insertion point before the text “Summary for.”
	[image: image36.jpg]

	15.10.2
	Add a REPEAT command to the template to iterate through the records in the TM_TotalsByIteration_Aggregate measure table.
	Click ProjectConsole > Add Command.

In the Select Command to Add window, click REPEAT Command, and click OK.
	[image: image37.png]

	15.10.3
	
	In the Select Objects to REPEAT list, expand ClearQuest_CQDatabase, and then click TM_TotalsByIteration_A.

Select the Advanced check box.
	[image: image38.png]

	15.10.4
	Display records from the TM_TotalsByIteration_Aggregate measure table only if the iteration UID is equal to the current iteration’s UID and if the value of the IsLatestCollection field is set to 1.

Note Before collecting new test case results, the Webshop TM_TC Results Collection task sets the value of the IsLatestCollection field to 0 in all existing records in the TM_TotalsByIteration_Aggregate measure table. As new test case results data is collected, the IsLatestCollection field value for all new test case result records is set to 1.
	In the And Where list:

· In the Left Operand column, click Click here to add, expand Self, expand TM_IterationUID_fk_1, and click TM_IterationUID.

· In the Right Operand column, click Click here to add, expand Iteration, and click UID.

· In the Left Operand column, click Click here to add, the Self, and click IsLatestCollection_3.

· In the Right Operand column, click Click here to add, and click Literal. Type “1,” and then press enter.
	[image: image39.png]

	15.10.5
	Sort the iteration names in the TM_TotalsByIteration_Aggregate measure table alphabetically.
	In the Sort By list:

· Click Click here to add.

· Expand TM_IterationName_fk_1, and then click TM_IterationName.

Click OK.
	[image: image40.png]

	15.10.6
	Select the summary information.
	Position the insertion point before the text “Summary for.”
Hold down the shift key, and press the down arrow key ten times to select Summary for through Number of Tests.
	[image: image41.jpg]

	15.10.7
	Cut the summary information and paste it between the [REPEAT44] and [ENDREP45] comments.
	Click Edit > Cut.

Position the insertion point between the [REPEAT44] and [ENDREP45] comments, and then click Edit > Paste.

Delete the extra space before the text “Summary for.”
Note After you paste the text, the [ENDREP45] comment is renamed to [ENDREP47].
	[image: image42.jpg]

Part 11 – Updating the summary below the table to show the test case results for the iteration

In this exercise, you will update the summary below the table to display the number of test cases that were executed, passed, failed, include a warning, were stopped, are informational, or were unevaluated in an iteration.

	
	Use case steps
	Details
	Display

	15.11.1
	Identify where in the template to add the test case result data.
	Position the insertion point at the end of the line containing the text “Number of Tests Executed.”
	[image: image43.jpg]

	15.11.2
	Add a DISPLAY command to the template to display the number of tests that were executed for the iteration.
	Click ProjectConsole > Add Command.

In the Select Command to Add window, leave the default DISPLAY Command option selected and click OK.
	[image: image44.png]

	15.11.3
	
	In the Select Attribute to DISPLAY list, under TM_TotalsByIteration_A, click TM_ExecutedByIteration.

Click OK.
	[image: image45.png]

	15.11.4
	Remove the extra line following the number of tests executed.
	The insertion point should be on a blank line after the [ENDDISP48] comment. Press delete to remove the extra line.
	[image: image46.jpg]

	15.11.5
	Add DISPLAY commands to display the remaining test case results.
	For the remaining test case results lines, position the insertion point at the end of each line, and then repeat steps 15.11.2 through 15.11.4, replacing the text to display and the blank line to delete.

For each line, click the appropriate selection in the Select Attribute to DISPLAY list under the TM_TotalsByIteration_A node.

Line for
Number of…
Selection to click
Tests Passed
TM_PassedByIteration
Tests Failed
TM_FailedByIteration
Warnings
TM_WarningByIteration
Tests Stopped
TM_StoppedByIteration
Informational Tests
TM_InfoByIteration
Unevaluated Tests
TM_UnevaluatedByIterat
Tests
TM_TCByIteration
	[image: image47.jpg]

	15.11.6
	Change the style of the text to display the number of tests executed for the iteration.
	Select the text “<TM_TotalsByIteration_A.TM_ExecutedBy Iteration>.”
Click Format > Style.

In the Styles list, click PjC Copy, and then click Apply.
	[image: image48.jpg]

	15.11.7
	Update the style of the text displayed by the commands for the rest of the test case results.
	Repeat step 15.11.6, replacing the text to select on each line.

Text to select

<TM_TotalsByIteration_A.TM_PassedBy Iteration>

<TM_TotalsByIteration_A.TM_FailedBy Iteration>

<TM_TotalsByIteration_A.TM_WarningBy Iteration>

<TM_TotalsByIteration_A.TM_Stopped ByIteration>

<TM_TotalsByIteration_A.TM_InfoBy Iteration>

<TM_TotalsByIteration_A.TM_Unevaluated ByIterat>

<TM_TotalsByIteration_A.TM_TCBy Iteration>
	[image: image49.jpg]

	15.11.8
	Save the template.
	Click File > Save.

The TMIterationsResults_TutorialComplete.doc file is an example of the completed template. This file is located in the following folder:

 InstallDir\templates\TestManager
	

Part 12 – Testing the Report

In this exercise, you will use Template Builder to test the report.

	
	Use case steps
	Details
	Display

	15.12.1
	Save the document that you created in Parts 6 through 11 as a Web page.
	Click ProjectConsole > Save Web Page.

Word displays a message that indicates the TMIterationResults_Tutorial.htm file was created in the same directory as your template.

Click OK.
	[image: image50.png]

	15.12.2
	Display the template in a Web browser to see how the report looks.
	Click ProjectConsole > Test Web Page.

A progress indicator message window opens while the document is initializing.
	[image: image51.png]

	15.12.3
	Specify the Rational TestManager project containing the test cases with results.
	The window Identify TestManager_Project, a TestManager Project is displayed.
Click Browse.

Browse to and open:

 ClassicsDir\Projects\Webshop\Webshop.rsp

Click OK.
	[image: image52.png]

	15.12.4
	Log in to the ClearQuest (ProjectConsole) warehouse.
	In the Username box, type “admin.”

Leave the Password box empty and click OK.

Note These are the username and password for the sample database. To access a database other than the sample database, you must enter the correct user name and password for that database. If you do not know the user name and password, ask your Rational ProjectConsole administrator.
	[image: image53.png]

	15.12.5
	Log in to the Rational TestManager project.
	In the Username box, type “admin.”

Leave the Password box blank and click OK.
	[image: image54.png]

	15.12.6
	Wait for the report to be generated.
	A progress indicator message is displayed while Template Builder generates the report.

Report generate may take several minutes.
	[image: image55.png]

	15.12.7
	View the report in your Web browser.
	The finished report is displayed in your default Web browser.

After verifying that the report is displayed as expected, on your browser File menu, click Close.
	[image: image56.png]

You are now ready to add a node for the updated template in the Rational ProjectConsole navigation tree.

Note You can only view the hyperlink of the build name that you created in step 15.8.6.

For information about how to add a report node to the Rational ProjectConsole navigation tree, see Part 4 in Section 2 – Working with Web Reports in Rational ProjectConsole in this tutorial.

Conclusion

Congratulations! You have successfully populated your Rational ProjectConsole warehouse with Rational TestManager test case result data and viewed the results in a Rational ProjectConsole template. Let’s review what you did.

You used the Rational ProjectConsole Designer to:

· Run the Rational TestManager collection task.

You reviewed the SQL and Perl scripts that populate the aggregate tables with data.

You used Rational ProjectConsole Template Builder to:

· Review the contents of the TMIterationsResults_TutorialNoData template.

· Access the aggregate table that contains the test case totals by build and iteration.

· Display the names of the builds within an iteration.

· Add commands to display the test case results for the build(s) within an iteration.

· Access the aggregate table that contains the test case totals by iteration.

· Add commands to display the test case results for the iteration.

· Test the template that you updated.

Rational Software
ii
Section 15

