
IBM Rational
Programmer’s Guide (version

7.0.1 Preview)

(c) Copyright IBM Corp. 2007

Team API

May, 2007

Rational Team API Programmer’s Guide 1

Legal Notices

n the U.S.A. IBM may
 other countries.

ts and services
rogram, or service is

ervice may be
. Any functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the user's
ct, program, or

ts or pending patentapplications covering subject matter described in
g of this document does not grant you any license to these

nd license inquiries, in writing, to:

poration North Castle Drive
Armonk, NY 10504-1785

ng double-byte (DBCS) information,
M Intellectual Property Department in your country or send inquiries,

IBM World Trade Asia Corporation Licensing

law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
 EITHER

 THE IMPLIED
OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

This information was developed for products and services offered i
not offer the products, services, or features discussed in this document in
Consult your local IBM representative for information on the produc
currently available in your area. Any reference to an IBM product, p
not intended to state or imply that only that IBM product, program, or s
used

responsibility to evaluate and verify the operation of any non-IBM produ
service.

IBM may have paten
this document. The furnishin
patents. You can se

IBM Director of Licensing
IBM Cor

U.S.A.
For license inquiries regardi
contact the IB
in writing, to:

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local

PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY

Rational Team API Programmer’s Guide 2

Any references in this information to non-IBM Web sites are provided fo
only and do not in any manner serve as an endorsement of those Web site
at those Web sites

r convenience
s. The materials

 are not part of the materials for this IBM product and use of those Web

IBM may use or distribute any of the information you supply in any way it believes

h to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and

ms (including this one) and (ii) the mutual use of the information
en exchanged, should contact:

 Corporation

Lexington, MA 02421

and conditions,
including in some cases, payment of a fee.

terial available
t, IBM
between

e data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.

ms and there is no
rally available systems.

gh extrapolation. Actual
ta for their

specific environment.

suppliers of those
 sources. IBM has

nce,
estions on the

capabilities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs

sites is at your own risk.

appropriate without incurring any obligation to you.

Licensees of this program who wis

other progra
which has be

IBM
Department BCFB
20 Maguire Road

U.S.A.
Such information may be available, subject to appropriate terms

The licensed program described in this document and all licensed ma
for it are provided by IBM under terms of the IBM Customer Agreemen
International Program License Agreement or any equivalent agreement
us.

Any performanc

Some measurements may have been made on development-level syste
guarantee that these measurements will be the same on gene
Furthermore, some measurement may have been estimated throu
results may vary. Users of this document should verify the applicable da

Information concerning non-IBM products was obtained from the
products, their published announcements or other publicly available
not tested those products and cannot confirm the accuracy of performa
compatibility or any other claims related to non-IBM products. Qu

Rational Team API Programmer’s Guide 3

conforming to the application programming interface for the operating platform for
e not been thoroughly tested

ability,
ify, and distribute

ithout payment to IBM for the purposes
of developing, using, marketing, or distributing application programs conforming

ve work, must include

(c) (your company name) (year). Portions of this code are derived from IBM Corp.
IBM Corp. _enter

the year or years_. All rights reserved.

Trademarks
http://www.ibm.com/legal/copytrade.shtml

which the sample programs are written. These examples hav
under all conditions. IBM, therefore, cannot guarantee or imply reli
serviceability, or function of these programs. You may copy, mod
these sample programs in any form w

to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivati
a copyright notice as follows:

Sample Programs. (c) Copyright

Rational Team API Programmer’s Guide 4

http://www.ibm.com/legal/copytrade.shtml

Rational Team API introduction... 6

. 6
... 7
... 9
... 10
... 12
... 14
... 16
... 16
... 16
... 17
... 18
... 19
... 20
... 21
... 22
... 23
... 24
... 24
... 25
... 27
... 28
... 28
... 31
... 32
... 33
... 33
... 34
... 35
... 35
... 35
... 37
... 39
... 40
.. 41
... 42

Filename location specifications... 44
Stable locations ... 45

Exceptions... 45
StpException ... 46
StpPropertyException ... 47
StpPartialResultsException... 47

Use case examples .. 48
Rational Team API class overviews ... 48

...
Rational Team API provider... ..
Rational Team API clients
Rational Team API sub-providers
Packaging... ..
Installation and setup requirements
Summary

Rational Team API object model..
Resources and proxies..

Proxy method naming conventions..
Getting a provider
Getting resource proxies
Resources

Location objects
Properties and meta-properties

Additional resource properties.. ..
Setting up a property name list
Reading properties
Writing properties
Nested properties
Naming convention for get and set property value methods
Request lists

....

....
Additional resource proxies

....Collections

....Additional information on resources

....Resource type... ..
Creating a proxy for an existing resource
Creating a new resource.. ..
Creating a versioned resource.. ..

....Change contexts and actionable resources.. ..

....Actionable resources... ..

....Additional information on change contexts.................................. ..

....Additional information on proxy methods.. ..

....
Additional information on ControllableResource proxy methods ..

....

....
Additional information on properties and meta-properties................ ..
Additional information on Location objects

Rational Team API Programmer’s Guide 5

Rational Team API introduction
you can access

equisitePro for this
VCM (Workspace Versioning and

Configuration Management) API, which is a standard Java API for configuration

ated tools that
es and span the entire software development

lifecycle. Traditionally, each individual Rational product has had its own API that
PI provides one

With the Rational Team API you can build client applications that access Rational Team
he client application

 use the Rational Team

learCase checkout and checkin operations from your Java application.
nd browse the

ferences to ClearCase objects (that is, elements or versions) in a
ects are loaded into a

trieving and updating change

rammatically do
other common functions.

he result set.
e, and create new RequisitePro requirements and other requirements

management artifacts, such as documents, views and packages.
 a RequisitePro project or repository.

 Store persistent references to objects in a ClearQuest or RequisitePro database and

For an introduction to the programming model for the Rational Team API, see Rational

The IBM Rational Team API is a unified Java API through which
Rational Team products (including ClearCase, ClearQuest, and R
release). The Rational Team API extends the W

management (see http://www.jcp.org/en/jsr/detail?id=147).

IBM Rational software products provide a comprehensive set of integr
facilitate software engineering best practic

provides access to its product-specific repository. The Rational Team A
unified API for access to all Rational Team products.

product applications, and build new integrations to these products. T
can be an Eclipse plug-in or other Java client application. You can
API to build client applications that:

 Perform C
 Identify the ClearCase Web views on a target server machine, a

hierarchy of ClearCase elements to view them.
 Store persistent re

database and later retrieve those objects, or find where those obj
ClearCase view.

 Perform common ClearQuest functions such as re
requests and other record types.

 Change the state of a change request record in a database and prog

 Execute ClearQuest queries and browse the ClearQuest records in t
 Retrieve, updat

 Browse the Requirement types in

later retrieve those objects, or find where those objects are located.

Team API Object Model.

Rational Team API provider
The Rational Team API is implemented by a Rational Team API provider. The provider
is the collection of Java packages with which clients can interact with requirements,
change and configuration management services. A provider receives requests from

Rational Team API Programmer’s Guide 6

Rational Team API clients and interacts with the repositories for the given products to
process the requests.

roduct-specific
er package maps a product-specific object model to the

Rational Team API object model and thus makes the product-specific objects available to

The Team API Provider dispatches requests to product-specific sub-providers, as shown
in the following architecture diagram:

A sub-provider is a component of the Rational Team API that provides p
functionality. Each sub-provid

Rational Team API client applications.

As the figure illustrates:

 A Rational Team API client application makes Rational Team API calls to the
Rational Team API provider.

 The Rational Team API provider dispatches the Rational Team API calls to the
appropriate sub-provider.

 The Rational Team API sub-providers map the Rational Team API calls to the
underlying Rational Team products.

Rational Team API clients

Rational Team API Programmer’s Guide 7

The Rational Team API defines a client/server processing model, whe
explicit requests to a server to obtain information about resources on
make changes to these resources. The client uses proxy objects to marsh

re the client makes
the server and to

al data to and
from the server through the Rational Team API. Each proxy class defined in the Rational

erver.

 client/server
r-side processing.
tify methods that
uct, a client

ta to be read from the
ents must call a

.doReadProperties) to request that specified
n specifies the

that contains the
s for each property to be read or written.

You can create client applications to read, modify, create and delete data from any
 API provides the

tional software

The following figure shows a client application, which could be a integration between an
existing application and Rational Team products, or a tool or utility that performs
operations on data in Rational Team product repositories. With the Rational Team API,
client applications have access to data in any of the Rational products through the
Rational Team API sub-providers.

Team API maps to a specific type of Team product resource on the s

By defining proxies that map to Team product resources, the Team API
programming model helps distinguish client-side processing and serve
There is a well-defined naming convention for all methods to help iden
may make calls to a server. For example, to read data from a Team prod
application must first make an explicit request for the object or da
server and into a proxy before the value can be read from the proxy. Cli
do method (for example, Resource
values be read from a product server resource. The client applicatio
properties to be read (or written) by creating the appropriate proxy type
name

product that has a Rational Team API sub-provider. The Rational Team
interfaces to perform product-specific operations available in many Ra
products.

Rational Team API Programmer’s Guide 8

For example, if users have an application to access and work on some set of source files
in ClearCase or records in a ClearQuest or RequisitePro database, the Team API could be

n and the Rational Team
ase source control,

s from their
e Rational Team API could be used to both perform source file updates

rd.

 of client applications with a:

ions become
ess to the additional

application data.
 Consistent mechanism for relating objects within and across applications.
 Tight integration with Rational Team products.

Rational Team API sub-providers
A sub-provider is a Rational Team API extension package that is created for a supported
product. The sub-providers connect to the Rational Team API provider and represent

used to create an integration between the existing applicatio
product involved. If the files that users are updating are under ClearC
then the integration could enable users to check out and check in their file
application. Th
and associate the update with a ClearQuest change request reco

The Rational Team API provides developers

 Single data access API to Rational Team products. As more applicat
Rational Team API-enabled, Rational Team API clients have acc

Rational Team API Programmer’s Guide 9

defined product-specific resources stored in each integrated product
maps

. Each sub-provider
an integrated product object hierarchy to the Rational Team API object model

o retrieve data from the
product-specific repositories in a generic way, the Rational Team API domain-specific

asks.

 al Team API (in the
nclude the ability to:

nd delete database records (for example, create a defect)

o modify fields in a record

 d by the Rational
de the ability to:

o create, populate, and delete ClearCase Web views
eckin, and hijack

 navigate various VOB-object hierarchies and request properties of those

s Web views but does not currently support
ws.

 ties supported by Rational Team API
y to:

o open a project and add packages to the project
ent types and their attributes

o create, retrieve, modify requirements, requirement attributes, and traceability
s and queries

I the client has the ability to configure, integrate, and synchronize
repositories or resources (for example, between ClearQuest and RequisitePro).

Packaging
The Rational Team API is comprised of the following packages:

 WVCM - javax.wvcm

hierarchy.

While the top-level Rational Team API packages enable you t

packages provide additional interfaces for performing product-specific t

ClearQuest change management capabilities supported by Ration
com.ibm.rational.wvcm.stp.cq package) i

o create, modify, a
o apply an action to a record to change its state
o create and execute a query

ClearCase configuration and asset management capabilities supporte
Team API (in the com.ibm.rational.wvcm.stp.cc package) inclu

o operate on elements within Web views (such as, checkout, ch
operations)

o
ClearCase objects

Note: The Rational Team API support
ClearCase dynamic or snapshot vie

RequisitePro requirements management capabili
(in the com.ibm.rational.wvcm.stp.rp package) include the abilit

o view requirem

o create, retrieve, modify documents, view

With the Team AP

Rational Team API Programmer’s Guide 10

The JSR-147 defined interface. The Workspace Versioning and C
Management package (W

onfiguration
VCM) is the subset of team functionality that has been

VCM interfaces form the basis of Rational Team API and provide a well-
defined object model for expressing the configuration management operations and

WVCM is expressed as a set of Java interfaces with associated Javadoc comments.
ct model, and the comments describe the

expected semantics of the operations.

package contains the interfaces of the Rational Team API and provides the common
endent of product-

ommon interfaces

VCM into the realm of non-versioned resources,
specifying a rigorous editing paradigm, a common query interface, and support for

ms of WVCM are enhanced with the
mechanism, and

ational Team API

ct specific packages - com.ibm.rational.wvcm.stp.*

 are product-specific extensions that provide access to
sp ources and
properties. These packages contain functions that provide fuller (product-specific)
access to the functionality of the respective repository type and its underlying

.stp.cq

o the STP package that provide access to ClearQuest
resources.

o com.ibm.rational.wvcm.stp.cc

Contains extensions to the WVCM and STP packages that provide interfaces
specific to ClearCase resources

o com.ibm.rational.wvcm.stp.rp

accepted by the standards body.

The W

functions.

The interfaces define the form of the obje

 Rational Team package - com.ibm.rational.wvcm.stp

The Rational software team package is an extension of the WVCM package. This

object model for Rational product resources. This package is indep
specific repository or implementation boundaries. It includes the c
from which product-specific interfaces can be derived.

The Rational Team API extends W

schema-defined resources. General mechanis
introduction of meta-properties, an extended property request
support for multiple types of repositories. Additionally, the R
defines a common syntax for location strings.

 Produ

The following packages
ecific product repositories, each containing product-specific res

resources.

o com.ibm.rational.wvcm

Contains extensions t

Rational Team API Programmer’s Guide 11

Contains extensions to the STP package that provide access to RequisitePro
resources.

es of the interfaces and classes in each package have a prefix added to the wvcm
base class name (for example, Resource, StpResource, CcResource, CqResource, and

m API sub-
r example, the

ct installation includes the ClearQuest Team API sub-provider. The
 is installed. Thus,

lled, systems may have all or a subset of

 Rational Team API component infrastructure JAR files

 API sub-provider JAR file for ClearQuest
 Rational Team API sub-provider JAR file for RequisitePro

 not all of the
er JAR files to be at

different release levels.

r associated with it.
 component installed

ture component is a
newer version than the one already installed.

Th other required JAR files are installed by default in
the fo nts the directory into which the Rational
pr efault, this directory is /opt/rational on
UN C:\Program Files\Rational on

indows systems.

 O
o

The Rational Team API interface JAR file

o <install-dir>/Common/stpcmmn.jar
A common implementation JAR file

o <install-dir>/clearcase/web/teamapi/stpcc.jar

Extension for the ClearCase product
Also required are <install-dir>/clearcase/web/teamapi/remote_core.jar

The nam

RpResource).

Installation and setup requirements

Each individual product installation includes that product’s Rational Tea
provider interfaces and the required Rational Team API component. Fo
ClearQuest produ
sub-provider layer ensures that the Team API component infrastructure
depending on the combination of products insta
the following JAR files:

 Rational Team API sub-provider JAR file for ClearCase
 Rational Team

The Rational Team API infrastructure is designed to function whether or
sub-providers are present. The provider interface allows sub-provid

The Rational Team API component has a multipart version numbe
The installation of one sub-provider will overwrite the infrastructure
by a previous sub-provider installation, but only if the infrastruc

e Rational Team API JAR file and
llowing locations. install-dir represe

oduct files have been installed. By d
IX systems and Linux systems and

W

n Windows systems:
 <install-dir>/Common/stpwvcm.jar

Rational Team API Programmer’s Guide 12

<install-dir>/clearcase/web/teamapi/commons-loggi
<install-dir>/clearcase/web/teamapi/commons

ng-1.0.4.jar
-httpclient-3.0-rc3.jar

eb/teamapi/commons-codec-1.3.jar

Extension for the ClearQuest product
>/ClearQuest/cqjni.jar

rp.jar

Extension for the RequisitePro product
are <install-dir>/common/RJCB.jar

and <install-dir>/RequisitePro/lib/proxies.jar

api/remote_core.jar
o <install-dir>/clearcase/web/teamapi/commons-logging-1.0.4.jar

nt-3.0-rc3.jar
o <install-dir>/clearcase/web/teamapi/commons-codec-1.3.jar

not installed on UNIX platforms.

fault installed locations, you must add
the JAR files to a

 location, you must add the new locations of all the JAR files to your class path.

ted in the previous
 an Eclipse runtime

To add the Rational Team API plug-in to your runtime configuration you can copy the
plug-in into your Eclipse instance or create a new extension install site. This creates a
new directory for the Rational Team API (for example, C:\eclipse\plug-
ins\com.ibm.rational.stp.teamapi). This new plug-in is a simple self-contained Eclipse
plug-in consisting of the Rational Team API JAR files plus the product-specific
(ClearCase, RequisitePro, and ClearQuest) JAR files. Note that the .zip file does not
contain the actual product JAR files. After creating the plug-in directory, each installed
JAR file must be copied from its installed location into the new plug-in directory. Each

<install-dir>/clearcase/w

o <install-dir>/ClearQuest/stpcq.jar

Also required is, <install-dir

o <install-dir>/RequisitePro/lib/stp

Also required

On UNIX and Linux systems:

o <install-dir>/common/stpwvcm.jar
o <install-dir>/common/stpcmmn.jar
o <install-dir>/clearcase/web/teamapi/stpcc.jar
o <install-dir>/clearcase/web/team

o <install-dir>/clearcase/web/teamapi/commons-httpclie

o <install-dir>/clearquest/cqweb/lib/stpcq.jar
o <install-dir>/clearquest/cqweb/lib/cqjni.jar

Note: stprp.jar, RJCB.jar, and proxies.jar are

To use the Rational Team API JAR files in these de
stpwvcm.jar to the Java class path or Eclipse project. If you move
different

Accessing the Rational Team API from an Eclipse plug-in

You can create an Eclipse plug-in using the files packaged in the
com.ibm.rational.stp.teamapi.zip file and other installed files (lis
section) to support Rational Team API access from other plug-ins in
environment.

Rational Team API Programmer’s Guide 13

sub-provider JAR file requires the Rational Team API JAR file. The plug-in is available
for use the next time you start Eclipse.

the Rational Team API from your plug-in you must identify
mation on creating a

plug-in, see
firstplugin.htm.

ust have a licensed and installed version of each Rational Team product in
order to use the Rational Team API sub-provider for that product. If you install the sub-

roduct installed, calls to that Java
package will fail.

n

 ClearQuest sub-
d on the same

The ClearCase sub-provider supports Web views and remote access through the
CCRC server. The current version of Rational Team API does not support

ClearCase dynamic or snapshot views. The ClearCase-specific jar files must be copied
cation or to the

d.

Summary
ional Team product.

 Team API client applications can gain access to and perform operations on data
that is available in any integrated product through the Rational Team API sub-provider
pa

Th rogramming support for creating:

ss one or more of the Rational Team API enabled

o ClearQuest change management.
o ClearCase configuration management
o RequisitePro requirements management

 Integrations between Rational Team products and test management, functional
testing, or use case management products.

 Client access to Rational Team product (such as ClearCase) functionality from other
products (tools or applications).

To use
com.ibm.rational.stp.teamapi as a dependency. For introductory infor

http://help.eclipse.org/help30/topic/org.eclipse.platform.doc.isv/guide/

Note: You m

provider JAR files but do not have the corresponding p

Accessing the Rational Team API from a Java client applicatio

For a client application to make requests to the RequisitePro and
providers, the RequisitePro and ClearQuest products must be installe
machine as the client program invoking Rational Team API.

ClearCase

from the CCRC server to the client machine, either to the client install lo
plugin directory, depending on how the Rational Team API is being use

The Rational Team API provides unified access to any supported Rat
Rational

ckages.

e Rational Team API provides Java p

 Java client applications that acce
products:

Rational Team API Programmer’s Guide 14

This document describes the features of the Rational Team API c
first offering provides access to Rational Team services through

urrently available. This
 the ClearQuest,

ClearCase, and RequisitePro client applications installed on the same machine.

Rational Team API Programmer’s Guide 15

Rational Team API object model
This section provides an overview of the Rational Team API object model and includes

ach supported
source and

ational Team API client applications
to retrieve data from any integrated product through one set of interfaces, as WVCM

abase or query,

Rational Team API
irement in RequisitePro

ce. The Rational
com.ibm.rational.wvcm.stp.rp)

of the Resource interface (defined in com.ibm.rational.wvcm.stp), which, in turn, is an
source interface. The Resource interface provides the
ieve the properties (for example, Name and Description) and

s (for example,

stent resources
ts. A proxy is an
itory (on a server

 a Team API
he Resource

A client can only access a resource by first creating a proxy object. All proxy objects are
ethod on another

 properties and returns the
through the proxy

objects to access specific Rational Team product resources. Proxy objects are client-side
objects returned by the Provider and not the actual server resources.

Proxy method naming conventions

Each interface derived from the Resource interface has a well-defined set of properties
than can be examined and modified using the Rational Team API (through the
corresponding get and set methods). Each interface also has a well-defined set of

code examples that illustrate how to use the API.

The Rational Team API common object model maps the objects of e
Rational Team product to a resource hierarchy, based on the WVCM re
property model. This common data model enables R

resources. A file, a Versioned Object Base (VOB), a ClearQuest user dat
and a RequisitePro project are all examples of WVCM resources.

The product-specific mappings between a product resource and the
are defined in each product-specific package. For example, a requ
is mapped to an instance of the Rational Team API Requirement interfa
Team API Requirement interface is an extension (defined in

extension of the WVCM Re
standard mechanisms to retr
content of a resource including its relationships to other resource type
from a RequsitePro Requirement to a Document).

Resources and proxies
The Rational Team API consists of objects that are proxies for the persi
stored in the different repositories maintained by Rational Team produc
object on the client that represents a resource in a product-specific repos
or on the client system). A proxy object represents a resource during
Provider session. Each type of resource is represented by a subclass of t
proxy class.

obtained either by invoking a method on the Provider or invoking a m
proxy object. The Provider builds the proxy with the requested
proxy to the client. The client can then use the methods available

Rational Team API Programmer’s Guide 16

operations that can be invoked on the proxy to cause something to happen to the
underlying resource (through the corresponding do methods).

ethods return property values from the Provider, for a product resource.
e the actual product

 do methods are operations that may require a Provider to connect to a server and

et property values.
 proxy and the getter methods retrieve

property values already stored in the proxy. Values are read from a repository using a do
n to a repository

l Team API Provider
hile do methods do not always indicate that an

erformed on a server, they do indicate that an action is being performed
 resource rather than just on the proxy in memory. In most cases, this

n on proxy

 get m
 set methods specify values in an existing proxy but do not updat

resource.

access the product repository that contains the actual resource.

Property getters and setters do not interact with the resource to get or s
The setters store their argument values in the

method such as Resource.doReadProperties() and are writte
using a do method such as doWriteProperties().

The proxy methods that begin with the prefix do cause the Rationa
to perform operations on the resource. W
action is being p
on the persistent
causes the Provider to interact with a server. See Additional informatio
methods for more information.

ject before it can access resources and get Resource
proxies.

epresents a single identity within a single client
ng with one or more repositories through the Rational Team API. The

lifetime of a Provider is under the control of the client. The lifetime of some server
resources is tied to the lifetime of a Provider.

The following code example creates a Provider object for a session on a server by calling
Pr vider().

throws WvcmException
{
 Provider provider = null;

 // set up the parameters for instantiating a provider.
 // the provider name is the fully-qualified class name of the provider.
 String providerName = StpProvider.CLIENT_HOSTED_PROVIDER;

 // a callback provides authentication information to the provider
 Callback callback = new MyCallback();

 // the provider factory class instantiates a provider
 provider = ProviderFactory.createProvider(providerName, callback);
 return provider;
}

Getting a provider

A client must first get a Provider ob

A Provider is a temporary object that r
process interacti

oviderFactory.createPro

Provider getProvider()

Rational Team API Programmer’s Guide 17

A ProviderFactory.Callback is an interface through which user crede
from the client by the Rational Team API Provider when needed to acces
repository. The following MyCallback() class supplies pre-config

ntials are requested
s a product

ured user authentication
 and password) and returns to the provider.

rovider.

{

rns the specified username and password.

Authentication to authenticate the current user.
 Authentication getAuthentication(final String realm, int retryCount)

 throw UnsupportedOperationException(“Bad credentials”);
 return new Authentication()
 {

username>"; }

}

 be used to obtain
der instance.

 However, client
limit retries to a small number of attempts, since a provider will

tication method
context for which

authentication is being requested (for example, a server URL or repository name). The
nded for display

ires a domain as

alog to collect the
be presented to the

ser is logging into (for
st database or

ository). This can be helpful if users have different usernames and
passwords for different product repositories.

Note: The Callback will be called for each different realm that the client makes requests
to while using the Provider. See the Javadoc for the stp.Provider class for more details
about the requirements on the Callback passed to a Team API Provider.

Once the Provider is instantiated, the client application can make requests to the Provider
for Resource proxies.

Getting resource proxies

information (domain, user login name

// Callback class, needed to create a p
private static class MyCallback implements Callback

 // Get a WVCM Authentication object.
 // This implementation of the authentication
 // callback retu

 // The Provider calls get
 public
 {
 if (retryCount>0)

 public String loginName() { return "<the_domain>\\<the_
 public String password() { return "<the_password>"; }
 };
 }

Each Provider instance is given one Provider.Callback object that is to
credentials for any repository accessed by the client through that Provi

In this example, the realm and retryCount arguments are not used.
applications should
repeatedly try to get authentication after a failure unless the getAuthen
throws an exception. The realm argument is a string identifying the

format for the string varies from sub-provider to sub-provider and is inte
to the user as a mnemonic.

Note: The domain may be part of a username. A ClearCase login requ
part of the username.

In a client application, the authentication callback could open a login di
login-name and password from the user. The realm argument could
user in the dialog, to display what product repository the u
example, a ClearCase server-URL, or an indication of a given ClearQue
RequisitePro rep

Rational Team API Programmer’s Guide 18

The Provider class builds proxies in response to client requests. The
invoke methods on the proxy to work with the represented resource. Clie
proxy for a resource at a specific location by requesting that the Provider

client can then
nts can get a
 build and return

a proxy for that location. For example, each of the following examples creates a proxy for

Resource my_resource = provider.resource(the_location);

CcActivity my_activity = provider.activity(location);

See Location objects

the location identified:

 for more information.

. Some resources,
t only on a

server. Some exist solely in a client file area. A resource cannot exist in two different
 impression. For

ver are two different
ach has its own unique location, content, and properties.

te, modify, and ultimately destroy resources. After a
Resource is created, and until it is destroyed, it persists in its repository between

 Provider that modify it.

source class is the base class for all Rational Team API
Resource types. Examples of Resources are:

in a ClearQuest database
 Requirements in a RequisitePro project

ierarchy. The root of the
e in each Rational
ckage that

e WVCM Resource

 StpResource is derived from Resource.
 CqResource, CcResource, and RpResource are derived from StpResource.
 The stp package includes StpAction, StpFolder, StpProject, StpPropertyDefinition,

StpQuery, and StpRepository interfaces.
 The cc package includes CcActivity, CcAttributeType, CcBaseline, CcBranchType,

CcComponent, CcControllableFolder, CcControllableResource, CcElement,
CcElementType, CcFolder, CcFolderVersion, CcProject, CcProjectFolder,
CcVersion, CcView, CcVob, and CcVobResource interfaces.

Resources

A resource is a named collection of properties that exists in a repository
such as files, have content as well as properties. Some resources can exis

locations, but two resources may be so tightly linked that they give that
example, a file in a file area and the corresponding file on the ser
resources. They are related, but e

A proxy object may be used to crea

invocations of the

In the Rational Team API, the Re

 Files in a file system
 ClearCase objects in a versioned object base (VOB)
 Defects

The Resource proxy interfaces are all part of a common class h
hierarchy is javax.wvcm.Resource. The name of each class and interfac
Team API package is unique, and includes a prefix that identifies the pa
contains it. For example, some of the classes that inherit from th
interface include:

Rational Team API Programmer’s Guide 19

 The cq package includes CqAction, CqAttachment, CqAttachm
CqFieldDefinition, CqForm, CqGroup, CqHook, CqProjectMem

entFolder, CqDbSet,
ber, CqQuery,

pe, CqReport, and

ocument,
RpDocumentType, RpFolder, RpGroup, RpProject, RpQuery, RpRelationship,
RpRequirement, RpRequirementType, RpRevision, RpUser, and RpView interfaces.

types can be versioned or non-versioned objects.
ontrollableResource

OB and a workspace are examples of controllable

 Non-Versioned Objects are resources. Non-versioned examples include a Query,
rd, Attachment, and a View. Non-versioned resource types are

represented as ActionableResources.

CqQueryFolder, CqQueryFolderItem, CqRecord, CqRecordTy
CqUserDb interfaces.

 The rp package includes RpAttributeDefinition, RpDiscussion, RpD

Controllable Resources

Resource
 Versioned Objects are represented in the Rational Team API as C

proxies. A file element in a V
resources.

Document, Reco

See Additional information on Resources for more detail.

Location objects
Each resource has a location that uniquely identifies the resource in its repository. The
Rational Team API Location object represents the location of a resource and such an

ect is constructed
 for specifying

 is defined by the Rational Team API in the
-defined

 to the syntax specified in StpLocation.

e location string for the location of a client-side controllable resource (a
file on a client machine) is the file pathname. This format is used in the following code

h must first be instantiated,
 from a unique file pathname.

iew\\sample_dir\\sample_file.txt" on Windows,
// or "/sample_view/sample_dir/sample_file.txt" on UNIX.

StpLocation fileLoc =
m_provider.stpLocation("C:\\sample_view\\sample_dir\\sample_file.txt");

// Create the ControllableResource proxy for the client - a versioned file
// is a ControllableResource
CcControllableResource my_ctresource = m_provider.ccControllableResource(fileLoc);

// Use the proxy to work with the controllable resource.
// For example, check out the file:
my_ctresource.doCheckout();

object is required to construct a proxy for the resource. A Location obj
by the Provider from a string representation of the location. The syntax
resource locations in this string representation
Javadoc for StpLocation. The string argument to the WVCM
Provider.location(...) operation must conform

For example, th

fragment to checkout a file named sample_file.txt.

// Given a CcProvider object, m_provider…whic
// create a Location object
// Use "C:\\sample_v

Rational Team API Programmer’s Guide 20

As this example illustrates, the provider.stpLocation() me
Location object corresponding to a given location specification. The Lo
(fileLoc) is subsequently passed to Pro

thod returns a
cation object

vider.ccControllableResource() to

 The following example specifies the location of a server-side resource (for example,
 in a ClearCase VOB):

ix_a_bug@

Activity(activityLoc);

resource (for example, a
record in a ClearQuest database):

.repo/record:Defect/SAMPL00000234@2003.06.00/SAMPL”);
CqRecord record = ((CqProvider)provider.cqRecord(loc);

 strings

 proxy, which corresponds to the location of the
n is extended to provide the Provider from which

cts and location

construct a proxy for the resource at that location.

an activity

StpLocation activityLoc = provider.stpLocation(“cc.repo/activity:my_f
vobs/projects”);
CcActivity act = provider.cc

 The following example specifies the location of a server-side

Location loc =
provider.stpLocation(“cq

The Location interface also provides methods for parsing and composing
containing location specifications.

A Location object is available from each
object referenced by that proxy. Locatio
a Location object originated. For more information about Location obje
specification syntax, see Additional information on Location objects.

Properties and meta-properties
Resources have properties. Each property has a name, a type, and a va
other meta-properties ass

lue, and may have
ociated with it (such as access rights or ownership). The value of

rence-to-
urce class. The

t.PropertyName object. Some properties are defined by WVCM, others
e defined by the

perties are identified by a MetaPropertyName object.
The MetaPropertyName may be used to access the corresponding meta-property once it
has been read from the server. The MetaPropertyNames are defined in the StpProperty
class and its subclasses.

The PROPERTY_NAME and VALUE meta-properties of a property are distinguished
meta-properties. The PROPERTY_NAME value is used to request and access the
property and any of its meta-properties. The VALUE is the meta-property requested if
only the property-name is used in the request.

a property is of a specific type, such as integer, string, date, time, or refe
resource. The property type depends on the property name and the reso
name of a property is represented in the Rational Team API by a
PropertyNameLis
are defined by this API as extensions to WVCM, and some may also b
server, and the client application.

In the Rational Team API, meta-pro

Rational Team API Programmer’s Guide 21

A set of property names is defined for each type of resource defined by t
property names are used to request p

he API. These
roperties from the server and to access the properties

Name fields defined in the Team API are named by an uppercase
identifier in which words are separated by underscores (for example,

SPLAY_NAME,
ENT_LENGTH. Property names are

in a class are
Query class has

,
StpQuery.USER_FRIENDLY_LOCATION, and StpQuery.STABLE_LOCATION

rce class. Each
rce proxy subclass defines PropertyName fields that name and identify the

properties associated with resources of the type represented by the proxy.

erties and Meta-

once they have been obtained from the server.

All of the Property

CONTENT_LENGTH).

Examples of property names are Resource.COMMENT, Resource.DI
Resource.CREATION_DATE, and Resource.CONT
defined in the Resource class and its subclasses. Properties defined
appropriate for the class and all of its subclasses. For example, the Stp
StpQuery.DISPLAY_FIELDS, StpQuery.DYNAMIC_FILTERS

property names, this last property having been inherited from the Resou
Resou

For more information on Properties, see Additional information on Prop
Properties.

Additional resource properties

ay be available for
am API

 StpDefinedResource

ment) for which the
lly defined by the

onal Team API. The server-defined properties can be obtained from the
StpResourceDefinition associated with the resource.

rm of StpActionableType (as a CqRecordType or RpRequirementType)
resource that contains a specification for each schema-defined property of a defined-
resource.

 StpPropertyDefinition

is a proxy for a property definition (as an RpAttributeDefinition or a
CqFieldDefinition), which provides static information about server-defined
properties.

Additional properties values not defined by the Rational Team API m
RequisitePro and ClearQuest resources using the following Rational Te
interfaces.

is an StpActionableResource (as a CqRecord or an RpRequire
Rational Team product server defines a set of properties not statica
Rati

 StpResourceDefinition

is a fo

Rational Team API Programmer’s Guide 22

RpAttributeDefinition and requirement type attributes

equirement type
resource that is

tied to the requirement’s requirement type. The attribute definition specifies the static
st of its legal values.

uteDefinition object is a proxy class for an attribute
 the set of user defined properties which are applied to

requirements of a certain requirement type.

d type are called
 definition resource that is tied to the record’s

record type. The field definition specifies the static traits of a field, such as its name, its
depend on the state

 record or the action being performed on the record at a given time. These traits are
f the field property.

field definition

t a proxy to a resource before it can
d before a client can access properties from a proxy it needs

 resource into a proxy. The client application must
 name in a property name list when reading them from

:

// Create a PropertyNameList - specify the names of

 Resource.COMMENT,
CONTENT_LENGTH,

e.CONTENT_TYPE,
EATOR_DISPLAY_NAME,

 Resource.DISPLAY_NAME});

For a given resource subclass, you can specify properties defined in the class itself or any
of its superclasses. For example, for the Query class you can specify properties that are
specific to Query and properties defined in the Resource superclass:

PropertyNameList myPropListr =
 new PropertyNameList(
 new PropertyName[] {
 Resource.COMMENT,

The properties of a RequisitePro requirement that are specified by the r
are called attributes. Each attribute is specified by an attribute definition

traits of an attribute, such as its name, its value type, and perhaps a li

The Rational Team API RpAttrib
definition resource, which defines

CqFieldDefinition and record type fields

The properties of a ClearQuest CqRecord that are specified by the recor
fields. Each field is specified by a field

value type, and perhaps a list of its legal values. Some traits of a field
of the
specified as meta-properties o

The Rational Team API CqFieldDefinition object is a proxy class for a
resource.

Setting up a property name list

A Rational Team API client application must first ge
read or update properties. An
to read those properties from the
specify the wanted properties by
the resource into a proxy. For example

// properties wanted from the resource.
PropertyNameList myPropList1 =
 new PropertyNameList(
 new PropertyName[] {

 Resource.
 Resourc
 Resource.CR

Rational Team API Programmer’s Guide 23

 Resource.DISPLAY_NAME,
 // include properties specific to the Query
 CqQuery.DISPLAY_FIELDS,

 specified the PropertyNames in a PropertyNameList, you can then pass
this list to the doReadProperties() method of the Resource proxy to read the

es.

t of property names that
identifies the properties to be read and pass the list as an argument to the Resource proxy

ties() method. This method passes the resource location specified
or example:

PropertyName[] wantedPropNames = { Resource.DISPLAY_NAME,

pecified
// property names in wantedPropNames

ist(wantedPropNames);

// you must call doReadProperties to retrieve the properties

antedProps);

// for example, get and set values for these properties

m API back to the
he property

y it returns.

populated with properties, the value of these properties can be extracted
from the proxy using either a PropertyName object or by using the access method defined

rovides
t the value of that
 value methods

 CqQuery.DYNAMIC_FILTERS});

After you have

specified properti

Reading properties

To read properties from a resource, the client must create a lis

doReadProper
by the proxy and the list of desired properties to the repository. F

Resource.COMMENT};

// create a PropertyNameList proxy for retrieving the s

PropertyNameList wantedProps = new PropertyNameL

// through the proxy
my_resource = (Resource) my_resource.doReadProperties(w

// work with the properties

// ...

The response from the server is returned through the Rational Tea
client application as a new proxy that contains the requested properties. T
values obtained by the doReadProperties method are stored in the prox

Once a proxy is

by the proxy class specifically for the property. The Rational Team API p
get<PropertyName> methods for each statically-defined property, to ge
property from a proxy. See Naming convention for Get and Set property
for more information.

Writing properties

You can set a new value for a property using the property-specific setter method to set the
property value in the proxy object. (Properties that may not be set using the Rational
Team API do not have setter methods.) When specifying new values in a set method, the
values are stored in the proxy. The values are not written to the actual resource in its
repository until the client application calls a do method such as the
doWriteProperties method on the proxy object.

Rational Team API Programmer’s Guide 24

You must call the doWriteProperties method to update the
the product repository. The doWriteProperties method writes the
properties in the proxy to the product resource all at once, as one trans
not occur when property values are set in the proxy, but may occur wh
doWriteProperties() is called. At that time, an

 underlying resource in
 updated

action. Failures do
en

 exception may be thrown. Note
that all do methods will write any new property values set in the proxy to the resource

.

y of a resource:

PropertyNameList wantComment =
rtyName[] { Resource.COMMENT });

rovider.resource(location);
myResource = (Resource) myResource.doReadProperties(wantComment);

) before calling
doWriteProperties() if you know what property value to write without first
re ld of Defect
SAMPL00000005 in the ClearQuest sample database is set to the user = admin.

Th location is,

cq.record:<record-type>/<record-id>@<db-set-name>/<database-name>

so string is,

"cq.record:Defect/SAMPL00000005@7.0.0/SAMPL"

 SAMPL00000005

o <db-set-name> is 7.0.0

ecord =
myCqProvider.cqRecord((Location)myProvider.stpLocation("cq.record:Defec
t/SAMPL00000005@7.0.0/SAMPL"));
PropertyName OWNER = myRecord.fieldPropertyName(“Owner”);

myRecord.setProperty(OWNER, “cq.record:users/admin@7.0.0/SAMPL”);
myRecord.doWriteProperties();

See Additional information on Location objects

before apply the operation indicated by the method to the resource

The following example appends some text to the comment propert

 new PropertyNameList(new Prope
Location location = myProvider.location(…);
Resource myResource = myP

String comment = myResource.getComment();
myResource.setComment(comment + "addition to comment");
myResource.doWriteProperties();

It is not necessary to call doReadProperties(

ading the current value. In the following example, the Owner fie

e location string syntax for a ClearQuest record

, in the example the record location

where,

o <record-type> is Defect
o <record-id> is

o <database-name> is SAMPL

CqRecord myR

 for more information.

Nested properties

Rational Team API Programmer’s Guide 25

The value of many properties is a reference to another resource.

ameList may contain
pertyName object for the desired

property. The NestedPropertyName object can be used to retrieve properties of the

yName also includes
its own PropertyNameList. This nested PropertyNameList specifies the properties of the

es are to be

llowing code fragment creates a property name list that identifies the
MODIFIED properties, as

RSION_NAME and CREATION_DATE of the value of the

e = new PropertyNameList(new

 ControllableResource.CREATOR_DISPLAY_NAME,

 Version.VERSION_NAME,
 Version.CREATION_DATE}).

After specifying the nested properties, you can then call the doReadProperties method

lableResource) resource.doReadProperties(my_prop_name_list);
String versionName = resource.getCheckIn().getVersionName();

rties wanted from
mented with MetaPropertyName elements, which allow the client to

request specific meta-properties of a property (instead of, or in addition to, its VALUE

ments can be included in a
dMetaPropertyName object is used to request a property of a

resource referenced by a meta-property, or a meta-property of a property referenced by a
meta-property. For example,

Record r = (Record) p.cqRecord(p.location(“…”));
PropertyName OWNER = r.fieldPropertyName(“Owner”);
PropertyName NAME = r.fieldPropertyName(“Name”);
PropertyNameList pnl =
 new PropertyNameList(new PropertyName[] {
 OWNER.nest(new PropertyName[] {
 StpProperty.TYPE,
 CqFieldValue.REQUIREDNESS,

If the value of a property is a reference to a resource, the PropertyN
a NestedPropertyName object in place of the Pro

resource referenced by the property of the targeted resource.

In addition to specifying the name of the property, a NestedPropert

resource referenced by the property of the original resource whose valu
obtained from the referenced resource.

For example, the fo
CREATOR_DISPLAY_NAME, CHECKED_IN, and LAST_
well as the VE
CHECKED_IN property:

PropertyNam List my_prop_name_list
PropertyName[] {

 ControllableResource.CHECKED_IN.nest(
 new PropertyName[] {

 ControllableResource.LAST_MODIFIED});

and then access the nested properties. For example,

resource =
 (Control

// work with the properties ...

In a NestedPropertyName, the PropertyNameList designating the prope
the server can be aug

meta-property).

Additionally, NestedMetaPropertyName ele
PropertyNameList. A Neste

Rational Team API Programmer’s Guide 26

 StpPr

 })})});

CqRecord rec = (CqRecord)r.doReadProperties

operty.VALUE.nest(new PropertyName[]{
 NAME

(pnl);
CqFieldValue v = (CqFieldValue)rec.getMetaProperties(OWNER);
String name = (String)v.getValue().getProperty(NAME);

(“…”));

 ew PropertyName[] {
 Cq ew PropertyName[] {
 tpProperty.VALUE.nest(new PropertyName[]{

 StpProperty.NAME,

tFields().iterator();
while(fields.hasNext()){

;

 “ = “ + p.getValue());

The PropertyNameList nested within a NestedPropertyName may, itself, contain
 the server, it is

roperties.

hods

For each resource type the Rational Team API provides specific methods to get and
example, for the

rited by Resource in
both the WVCM and the Rational Team API packages there are also get and set methods

s getHasDuplicates,
e, and getAllFieldValues.

 the following naming convention for PropertyName fields
orresponding getter and setter methods for the property value. For a given

PropertyName XXXXXX_YYY_ZZZZZ (for example, DISPLAY_NAME):

 The getter method for the property is getXxxxxYyyZzzzz (for example,
getDisplayName or getComment).

 The setter method for the property is setXxxxxYyyZzzzz (for example,
setDisplayName or setComment).

For example,

String DisplayName = my_resource.getDisplayName();
String DisplayFields = my_resource.getComment();

CqRecord r = p.cqRecord(p.stpLocation
PropertyNameList pnl =
 n PropertyNameList(new
 Record.FIELDS.nest(n
 S

 StpProperty.TYPE,
 StpProperty.VALUE
 })})});
Iterator fields =
((CqRecord)r).doReadProperties(pnl).ge

 CqFieldValue field = (CqFieldValue)fields.next()
 System.out.println(“field “ + p.getName()
 “: “ + p.getType()

additional NestedPropertyName objects. So, in one interaction with
possible to retrieve an arbitrary number of related resources and their p

Naming convention for get and set property value met

possibly set each property value defined in the Resource subclass. For
ClearQuest CqRecord class, in addition to get and set methods inhe

for properties that are specific to a ClearQuest record, such a
getFieldsUpdatedThisSetValu

The Rational Team API uses
and the c

Rational Team API Programmer’s Guide 27

If a setter method is not defined, then the property cannot be set directly with the Rational
Team API.

You can also get and set property values with the getProperty() and setProperty()

_ZZZZZ). For
NAME)

 setXxxxxYyyZzzzz(val) is equivalent to setProperty(XXXXXX_YYY_ZZZZZ, val).
ISPLAY_NAME,

val)

For more information, see Additional information on properties and meta-properties

methods.

 getXxxxxYyyZzzzz() is equivalent to getProperty(XXXXXX_YYY
example, getDisplayName is equivalent to getProperty(DISPLAY_

For example, setDisplayName(val) is equivalent to setProperty(D

.

tructure for requesting and retrieving specific properties from

to request the
 with the resource

 an optional StpRequestList object, to which
properties from resources on the server.

ed with resource
lues retrieved in response to the requests. For example,

ialog tab

List request =

Properties(DISPLAY_PROPERTIES_FOR_SIDE_EFFECTS),
PropertiesNeededForTab(newTab))});

 record.doWriteProperties(request);

t side-effects of the operation
equest(ModifiedProperties.class).getResponse());

 if (isEmpty(record.updatedPropertyNameList())) {

();

 on the old tab
 }

Additional resource proxies
This section describes some of the important proxy interfaces in the Rational Team API.
These objects can be used to support working with collections of resources and lists of
their corresponding Resource proxies. For more information, refer to the Javadoc that is
available with each Rational Team API package.

Request lists

An StpRequestList is a s
multiple resources in one server interaction. StpRequestList extends the
PropertyNameList wanted-properties-list mechanism to provide a way
properties of multiple resources indirectly through some relationship
targeted by the server operation.

A number of server-contact methods accept
the client has added one or more requests for
When the operation completes, the StpRequestList object is populat
proxies containing the property va

 // Write properties from the current d
 // and fetch the properties for the "newTab"
 StpRequest
 new StpRequestList(new PropertyRequest[] {
 new Modified
 new TargetProperties(compute

 // Update display to reflec
 RefreshDisplay(request.getR

 // All fields were written, so proceed to next tab...
 record =
(Record)request.getRequest(TargetProperties.class).getResponse
 // setup the new tab...
 } else {
 // Report failures and stay

Rational Team API Programmer’s Guide 28

 Folder

ther resources, called
the "child resources" of that folder. The "children" of a folder are all of the child

property contains the list of children of a folder, while the
pping from a simple name to the child resource

ces may be contained in a Folder
 ControllableResources may be contained in a ControllableFolder

ples of folders:

o ClearCase directories (ControllableFolder class, which is a subclass of Folder)

t. Each persistent
 contained in one repository.

However, a server may provide access to multiple repositories.

t encounters to a
se PI handles the
au .

E ositories:

o A ClearCase VOB (CcVob class, which is a subclass of StpRepository). The
 CcVersion,
CcComponent.

o A ClearQuest user database (CqUserDb class, which is a subclass of

An StpProject is a logical set of related artifacts treated as a unit. An StpProject is
associated with one StpRepository, while an StpRepository may contain 0 or more
projects.

Resources used for change management tasks are contained by project resources.
Multiple projects may be accessible from a given server, but not all projects can
contain resources of all types.

A folder is a resource that contains a set of named mappings to o

resources of the folder.

The CHILD_ LIST
CHILP_MAP property contains a ma
for each child in the folder.

o Resour
o

Exam

o ClearQuest database set (DbSet class)

 StpRepository

A repository is a container of the resources for a given produc
resource accessed through the Rational Team API is

Each Provider instance maintains a mapping from each repository i
t of user credentials for that repository. The Rational Team A
thorization to each repository through the Callback mechanism

xamples of rep

Rational Team API CcVob object contains objects such as
CcVersionHistory, CcProject, CcStream, CcActivity, and

StpRepository).

 StpProject

Rational Team API Programmer’s Guide 29

A RequisitePro project (RpProject class) is a kind of project. In Req
database can store multiple projects. From a project, discuss
related projects, users and views can be obtained. A project also h

uisitePro, a single
ions, documents, groups,

as a set of
document types and requirement types. Security can be enabled or disabled at the

There are currently two types of projects that are supported by the Rational Team
g projects.

cts contain the following resource types:

ements

 Requirement types

olders

scussions and Responses

o Documents and Document types

lient may obtain the:

Document types defined in the project

ined in the project

he project

ject

o oject

 Root of the project’s package folder hierarchy

o External projects of this project

o Full UNC file path of the project

o Prefix used in cross-project traceability

o Auto-suspect state of the project

o Security-enabled flag for the project

o Queries of various types and visibility in the project

Defect-tracking projects (user databases) contain the following resource types:

project level.

API: Requirements projects and Defect Trackin

Requirements proje

o Requir

o
o Relationships

o Attribute definitions

o F

o Di

o Views

o Queries

o Users and Groups

From a RequisitePro project, a c

o
o Requirement types def

o Discussions defined in t

o Documents defined in the pro

 Views defined in the pr

o

Rational Team API Programmer’s Guide 30

o Records

ments

pes

o eld definitions

tions

hoice lists

 Queries

Users and Groups

project, a client can find the following

en creating records and when

the root of the user’s personal query folder hierarchy

 whether or not a particular site has mastership of the project

rsioned resources
ClearCase elements in a view). If the Workspace is a Web view, it has a
e component (the copy-area on the client machine), and a server-side

component (the underlying ClearCase view). Such a workspace may be described
orkspace location

containing the view-tag as its identification. See the Javadoc for the Rational Team
 more information.

Several Rational Team API methods return collections of resources. The resource
collections may be returned as a ResourceList or as a ResourceList.ResponseIterator().

The value of many properties is a list of references to resources. The value of such
properties is represented by a ResourceList object, which is a collection of proxy objects
with a number of additional methods for performing specific operations on the members
of the list. ResourceList-valued properties can use NestedPropertyNames to request
properties from the resources in the list.

o Attach

o Record ty

 Fi

o Ac

o Dynamic c

o
o

From a ClearQuest defect-tracking
information:

o the record types defined in the project

o the record type that is to be used by default wh
finding records by id

o
o
o the root of the project’s public query folder hierarchy

 Workspace

A Workspace extends ControllableFolder and is a container for ve
(such as
client-sid

either by its client-side copy-area file location, or by a server-side w

API ClearCase package (com.ibm.rational.wvcm.stp.cc.jar) for

Collections

Rational Team API Programmer’s Guide 31

The ResourceList provides a number of methods for performing specif
the members of the list. A ResourceList may contain proxies of any R
The proxies in a collection may be all the same proxy class or mix

ic operations on
esource subclass.

ed depending on the
generator of the list. A new ResourceList is created by the Provider.resourceList()

directly from the
 ResponseIterator.

onseIterator().release()) or its end is
reached, the ResponseIterator holds open a communication channel with the server. For

quickly as

For example, to find available repositories using the Provider.userDbFolderList() method
 you want (such as ResourceType.CQ_DB_SET or

eType.CC_VOB),

 Provider provider = getProvider();

ses known to the provider

ist(DB_PROPS);

 // List the returned information

dbs = databases.iterator(); dbs.hasNext();) {

 CqUserDb userDb = (CqUserDb)dbs.next();

m.out.println (userDb.getDbSet().getDisplayName() + "/"

 + userDb.getDisplayName()

 + ": " + userDb.getComment());

 } catch(Throwable ex) {

Additional information on resources
Proxies are not designed to be long-lived caches of information about a resource on the
server. Their purpose is to marshal the data needed to perform a server operation prior to
initiating it and to provide a container for returning the results of such an operation to a
client. In a client/server application, it is preferable not to hold data on the client too long
or it may get out of synch with the server. For this reason, the Rational Team API always
returns a new proxy on each do method operation.

method.

The ResponseIterator represents a stream of proxy information coming
server, one proxy at a time, as the client moves through the items of the
Until it is explicitly released (via ResourceList.Resp

optimal performance, clients should examine the items in the iterator as
possible and release the iterator as soon as it is no longer needed.

and specifying the type of repository
Resourc

 try {

 // Request a list of the CQ databa

 ResourceList databases =

 ((CqProvider)provider).userDbFolderL

 for (Iterator

 Syste

 }

 ex.printStackTrace();

 } finally {

 System.exit(0);

 }

See the Rational Team API Javadoc for more information.

Rational Team API Programmer’s Guide 32

As a client, to access a resource on the server you have to have a Provid
know the location of the resource. Given a Provider and location, a proxy object for that
resource can be obtained. Methods on the proxy allow the client to creat
resource at the location in

er reference and

e or delete a
dicated by the proxy, read property values from the resource at

that location, write properties to the resource at that location, or perform any number of

resource
ned resources are

So, if the client wants
taining a list of project

ns its browsing in
workspace folders.) The proxies in this list represent locations on the server

rious
 Javadoc for more

other resource that
a list of folders

Using a method on the folder proxies in the returned list, the client can obtain a list of
the members of that folder. By repeated application of this method, the client

to the user. From this
d or select a folder

ich to create a new project.

e has a resource type, a unique location (in the form of a Location selector
string), and a display name. Each type of resource has a unique interface by which it is

f a server contact
nstructed from

Location objects by the Provider implement the interface specified for the construction

Creating a proxy for an existing resource

You can create a proxy for an existing resource, given a Location. In the following
example, an Activity proxy is constructed for a ClearCase activity (named “cc.activity:
developerName1_fix_a_bug@\projects”).

Activity my_activity =

provider.activity(provider.location("cc.activity:developerName1_fix_a_bug@\projects"));

other operations on the resource.

If the client does not have the location for a resource, it must browse the
hierarchy for it, perhaps with the interactive help of the user. Non-versio
found in projects and versioned resources are found in workspaces.
to work on non-versioned objects, it begins its browsing by ob
folder proxies from the provider instance. (For versioned objects, it begi
a list of
where projects (or workspaces) may be found or constructed. See the va
XxProvider.xxxFolderList methods in the Rational Team API
information.

If the client already has one resource and wishes to create or locate an
is or will be related to it, the client can obtain from the resource in hand
where related resources of a given type can be found or created.

proxies for
can form a hierarchical list of all the projects or workspaces visible
hierarchy, the user can select an appropriate project for the task at han
in wh

Resource type

A resourc

accessed.

Any resource proxy returned by the Rational Team API as the result o
implements the interface unique to the type of resource. The proxies co

method used.

Rational Team API Programmer’s Guide 33

The "my_activity" proxy is the client-side object that represents the act
You can

ivity resource.
 then perform operations on the activity through methods of the Activity proxy.

For example:

// read properties of the activity
eadProperties(...)

ies
eProperties(...)

ity

my_activity.doUnbind()

lient can specify a
 provider (or

 that type are to be
 of the user. The resulting

iven type, but the

vel folder in the returned list may not
support creation of the resource, but one of its nested folders definitely will.

tion as an argument to a type-specific
. The Activity proxy (a2, in the following example) is constructed in

ple:

CcStream stream = . . .;

ty(provider.stpLocation("cc.activity:a_new_activity@\projects"
));

// create the activity

Any properties that may be needed for the creation, such as the stream for the activity,
reate method. You cannot create a new

resource with empty or invalid values for required properties. The failure occurs (as a
WvcmException) when you call the doCreateResource() or
doCreateGeneratedResource() method.

A new resource (including a file-area private ControllableResource or
ControllableFolder) is constructed in the following steps:

1. Determine the desired address for the new resource.

my_activity.doR

// write propert
my_activity.doWrit

//delete the activ

Creating a new resource

When the client wants to create a new resource of a given type, the c
location where to create the resource. The client may first need to ask the
one of its resource proxies) for a list of folders where resources of
created and then select one from the list, perhaps with the help
folder will always be in a repository that supports resources of the g
client may have to descend into the folder hierarchy to find a folder where creation of that
resource is actually allowed. That is, a top-le

A new resource is created by providing a loca
creation method
advance of the server-side object existing. For exam

CcActivity a2 =
provider.ccActivi

// set the headline
a2.setHeadline(“The new task”);

// Set the stream
a2.setStream(stream);

a2.doCreateResource();

must be set in the proxy before calling the c

Rational Team API Programmer’s Guide 34

2. Construct a Location object for that address using one of the
StpProvider.stpLocation() methods. Create a new location for the resource

for that location from the provider. Construct a proxy whose object
riate Provider

pulate the proxy with any property values needed or desired for the new resource.
setters on the new

5. Invoke the create-resource operation (doCreateResource method) on the proxy,
xy for the newly created resource containing any property

values requested in the create-resource operation.

Since a controllable resource or controllable folder in a ClearCase VOB must be
n similar to creating a Resource

except that the client must use the ControllableResource.doControl method

pace or container for editing actionable resources, which are
d RequisitePro

h copies the
change context

rce is delivered back to its
 location in the repository.

in the same
red from a given

ime. The delivery process empties the change context of
ces and activates any triggers or hooks associated with the

re visible only to the
ho initiated the modifications. Each change context is associated with a Provider

and access to the contents of the change context requires the use of a proxy obtained
directly or indirectly from that Provider.

Actionable resources

An StpActionableResource is a type of resource that must be edited using the Action
paradigm. An StpAction object represents a method to be applied to an actionable
resource.

by adding a child segment to the selected folder location.
3. Obtain a proxy

class matches the desired type of the new resource using the approp
proxy factory method.

4. Po
Establish the initial values for settable resource properties using the
proxy.

which returns a new pro

Creating a versioned resource

controlled, creation of such resources follows a patter

rather than doCreateResource.

Change contexts and actionable resources
A change context is a works
non-versioned resources such as ClearQuest records and queries an
requirements. To edit such a resource the client starts an action, whic
resource to a change context. Changes are made to the copy within the
and then, when all changes have been made the modified resou
permanent

Any number of resources can be added to and subsequently edited with
change context simultaneously, but all modified resources are delive
change context all at the same t
all modified resour
modifications.

Prior to delivery, the modified resources within a change context a
user w

Rational Team API Programmer’s Guide 35

Most non-versioned artifacts implement the Stp.StpActionableResource interface. Some
of the StpActionableResource types are:

nedResource and
faces.

ist, CqQuery,

p Document,
RpDocumentType, RpFolder, RpGroup, RpProject, RpQuery, RpRelationship,

RpRevision, RpUser, RpView
interfaces.

ps:

e client specifies the action to be used in the modification, thus declaring
proxy used to

modification.
y: The modifications are made to the resources and verified according to the

ged resources in the
 back to their respective repositories to make them

permanent.

 make coordinated
 at any time

ges to any of the resources involved.

de to the
fications are

 their respective projects. The changes are confined to the change
context used and visible only through proxies obtained from the Provider of that change

ry-dependent. The
fully completed by

le they were being

When the modification of a resource is initiated, a writable version of the resource is
created in the change context associated with the proxy used. Unless the resource is being
created, the properties of the original resource are subsequently copied to this new
version. Subsequent operations targeting the original resource through a proxy from the
same change context will be redirected to operate on the version cached by the change
context. Only those proxies obtained directly or indirectly from the provider for that
specific change context will see the changes before they are delivered.

• The stp package includes StpActionableResource, StpDefi
StpQuery inter

• The cq package includes CqAttachment, CqDynamicChoiceL
CqRecord interfaces.

• The r package includes RpAttributeDefinition, RpDiscussion, Rp

RpRequirement, RpRequirementType, RpResponse,

The process of modifying actionable resources involves multiple ste

1. Initiate: th
the business rules to be followed in making the modifications. The
initiate the modification determines the change context for the

2. Modif
business rules.

3. Deliver: When all resources have been modified, all of the chan
change context are delivered

This modification process allows the client to work with its user to
changes to multiple resources, with the option of altering or abandoning
chan

Once a modification has been initiated by a client for a user, changes ma
resources involved are not visible to other users or clients until the modi
delivered back to

context.

The precise locking semantics of this modification process are reposito
only guarantee is that if an initiate-modify-deliver sequence is success
a client, the resources modified did not change in the repository whi
modified by that client.

Rational Team API Programmer’s Guide 36

When modifications are delivered, all of the changes in the change conte
together. For changes within a single repository, the delivery of all the c
delivery of any one of the changes fails. For multiple repositories

xt are delivered
hanges fails if the

 in one change context,
lso fail.

ndent modification tasks
 example, if the user

y before
committing the edited resource to the server, the client must construct a new change

be saved without

es within a change context may be discarded by restoring
te. This deletes the version of the resource from the change

 the selected

from the provider in whose change context you want

e new resource.
4. Invoke the doCreateGeneratedResource() operation on the proxy, which

returns a new proxy for the newly created resource containing any property values

to a project.
ssible to other users of
g on the server.

ntact the repository (which could be a server or
e and then write

ation of a new
ilar pattern except that the client should use

StpActionableResource.doCreateGeneratedResource rather than
doCreateResource.

Additional information on change contexts

The StpChangeContext resource contains the server state of a change context, that is, the
modified copies of the resources that have been changed in the change context but have
not yet been delivered back to their repository.

failure to deliver one repository does not guarantee that the others will a

If the client wishes to maintain two or more ongoing but indepe
for the user, it must use a different change context for each task. For
is editing a resource and decides to compose, execute, and save a quer

context in which the user can do the query work so that the query can
committing the resource.

The changes made to resourc
the resource to its original sta
context.

Creating a new actionable resource

A new StpActionableResource is constructed by the following steps:

1. Create a new location for the resource by adding a child segment to
folder location.

2. Obtain a proxy for that location
to perform the modifications.

3. Populate the proxy with any property values needed or desired for th

requested in the create-resource operation.
5. For StpActionableResources, deliver the newly-created resource

The final deliver step is needed to make the new resource acce
the system. It is also the main trigger for business logic runnin

Note: The doCreateResource methods co
a file area) referenced in the proxy's Location to construct a new resourc
the property values in the proxy to the newly-created resource. The cre
StpActionableResource follows a sim

Rational Team API Programmer’s Guide 37

The modified resources contained by a StpChangeContext cannot be ac
StpChangeContext proxy. To access the modified resources, the sav
be opened and associated with a provider (see StpProvider.doOpe

cessed using a
ed context must first
nContext).

Then the modified resources can be accessed using proxies obtained from that provider.

s modified resources of a
source created for a change

ubsequently
.

A StpChangeContext proxy may be used to retrieve or set properties of the primary
ION. These may

ce to be copied from its
repository to a change context, where it is actually modified.

opy is determined by the proxy used to do the
e resource hides th onding resource in the

d copy is

ext() method.

s a client to obtain from
 been persisted. One

ontext proxies may be passed to the doOpenContext()
method to recover the modified resources and continue with the editing process.

 time it is asked
to start an action. A client may also explicitly create the change context using the

eContext class. The
tor is

d the change context.

The content of a change context is allowed to span multiple repositories, multiple
repository types, and multiple servers.

Rather than copy resources between repositories, each change context is distributed
across the repositories of the resources that it contains. In each repository, there is a
change context resource for the change context. Each change context resource of a given
change context is identified by the same <uuid>—hence a change context’s <uuid>
must truly be universally unique.

(See StpProvider.doGetModifiedResources in the Javadoc.)

A change context resource exists on each repository that contain
given Provider's change context. The first change context re
context is designated the primary location for the change context. S
constructed change context resources are designated secondary locations

change context location, such as its DISPLAY_NAME or its DESCRIPT
then be used for identification of the change context.

Operations that modify a non-versioned resource cause the resour
permanent location in the
Which change context maintains the c
modification. The modified copy of th e corresp
repository until the change context is delivered or deleted or the modifie
removed from the change context.

An edit in progress may be abandoned using the doClearCont

The doGetUnopenedContexts() method of Provider allow
the specified repositories any change contexts (for the user) that have
of the returned StpChangeC

A change context resource is created automatically by the server the first

doCreateGeneratedResource() method of the StpChang
form of a change context selec

<type>.context:<uuid>@< repo>

The <uuid> is a unique identifier generated by the server that create

Rational Team API Programmer’s Guide 38

Note: The terms change context and change context resource refer to
change context is an aggregate object made up of individual change co
The change context is manifested by the Stp

different things. A
ntext resources.

Provider class, whereas the change context

 first change context resource for the change context was created
is designated the change context’s primary location. The remaining repositories are

Once established, the resource at the primary location exists for the lifetime of the change
 change context resource, on the other

hand, exists on its server only as long as it contains modified resources.

e location of the change context at the primary location.
rimary location

RSISTENT: determines what happens to the change context when a session
using that change context terminates.

 repository that are
ntext.

 IS_EMPTY: indicates whether or not the change context resource has modified

 StpChangeContext interface

ay to map the
 copy of the resource.

Additional information on proxy methods
acted only if the

 the file area. For example, calling
doWriteContent() or doReadContent() of a controllable resource whose

do access the

Many do methods take an optional ProperyNameList or StpRequestList parameter in
which the client can request which properties are to be read from the resource as part of
executing that method. All do methods write to the actual resource any property values
that have been set in the proxy since the last server interaction.

 The names of the properties that are currently stored in a given proxy are returned by
Resource.propertyNameList().

resource is manifested by the StpChangeContext class.

The repository where the

designated secondary locations.

context as determined by the client. Each secondary

Every change context resource defines the following properties:

 PRIMARY_LOCATION: th
Servers can use this value to determine if they are working with the p
or a secondary location.

 IS_PE

 MODIFIED_RESOURCES: enumerates the resources on the given
contained in the change co

resources.

All other properties of a change context defined in the
are stored only in the primary location.

Each instance also contains the modified local resources and some w
original location of each resource into the location for the modified

If a Resource proxy addresses a file area resource, a server will be cont
operation cannot be completed by interacting with

content is stored locally on the client are not executed on the server but
resource in the file area.

Rational Team API Programmer’s Guide 39

 The names of the properties who
yet written to the resource are returned by

se values have been modified in the proxy but not

 The names of the properties requested by the last server interaction are returned by

The Resource.doGetPropertyNameList method contacts the server and returns
e.

ethods

oUnbind() methods
itself does not

use not all resources are
creatable by the end user, using a Rational Team API client application. Note the

ting a Resource
 be done via

.

A ControllableResource represents a file in the file system that is under source control, or
e in a file-area is represented by a

ource. A ControllableResource is the proxy through which ClearCase
ents can be performed. For example, the ControllableResource class

 following methods:

doMerge()
server

the file in a file-area
element

 represented by
VersionHistory objects in WVCM. An element is a history of versions.

The doControl() method of ControllableResource creates a VersionHistory object
and associates it with the ControllableResource. It also creates the initial Version object,
having the same contents as the ControllableResource, and puts that Version in the
VersionHistory. Subsequent doCheckin() operations create new Version objects and
include them in the VersionHistory. Version objects have predecessor(s) and
successor(s).

In WVCM, all relationships are represented using properties. For example,

Resource.updatedPropertyNameList().

Resource.wantedPropertyNameList().

the property names defined by the server for the given resourc

Additional information on ControllableResource proxy m

The Resource class offers the doCopy(), doRebind(), and d
for copying, renaming, and removing the resource. The Resource class
supply a method for creating the underlying resource, beca

distinction between creating the proxy, which is just a matter of instantia
object, and actually creating the resource, which needs to
doCreateResource() or doCreateGeneratedResource()

can be put under source control. A fil
ControllableRes
operations on elem
includes the

doControl() - similar to make element
doCheckout()
doCheckin()
doUncheckout()

doRefresh() - updates, refreshes the client resource from the

WVCM distinguishes between the ControllableResource, which is
through which the above operations are performed, and the underlying
(VersionHistory) it is associated with. ClearCase elements are

Rational Team API Programmer’s Guide 40

 the VERSION_HISTORY property of a ControllableResource object has as its value
rollableResource.

ose value is a list of Version
ion.

As illustrated by these examples, properties can have arbitrary values, including other

The following code fragment builds a ControllableResource proxy for a known file in a
e. The IS_CHECKED_OUT property is checked before

r the checkout.

createProvider(providerName, callback,

ist proxy. The IS_CHECKED_OUT property is
erty names.

Names = {

 = new

proxy. The checkoutPath value

 copy-area-file –

ocation(checkoutPath);
ControllableResource res1 = provider.controllableResource(loc);

is false
perties(wantedProps);

"before doCheckout(): IS_CHECKED_OUT=" +

, true);

at the
e newly-

ucted ‘res2’ proxy.
 (ControllableResource)res1.doReadProperties(wantedProps);

myAssert(res1.getIsCheckedOut() == true);
ce(loc);

s(wantedProps);
isCheckedOut = res2.getIsCheckedOut();
myAssert(res2.getIsCheckedOut() == true);

Additional information on properties and meta-
properties
While some properties are specific to a given resource, many properties are common to
all resources. From any resource, a client may obtain the following information.

the VersionHistory object (element) that is associated with the Cont
 a Version object has a SUCCESSOR_LIST property wh

objects that are successors (in the version graph) to the given vers

objects or lists of objects.

file-area, and checks out that fil
and afte

// Get provider. For example,
provider = ProviderFactory.
hash);

// Create the PropertyNameL
// the one property name on the list of wanted prop
PropertyName[] wantedProp
ControllableResource.IS_CHECKED_OUT };
PropertyNameList wantedProps
PropertyNameList(wantedPropNames);

// Create a ControllableResource
// is a string whose value is a
// selector string that specifies the
// “C:\my_views\testview\avob\file1”
Location loc = provider.l

// First check if IS_CHECKED_OUT
res1 = (ControllableResource)res1.doReadPro
boolean isCheckedOut = res1.getIsCheckedOut();
System.out.println(
isCheckedOut);
myAssert(isCheckedOut == false);

// Check it out
res1.doCheckout(true, null, false

// Check if IS_CHECKED_OUT is true, to verify th
// property was updated in the ‘res1’ proxy and in th
constr
res1 =

ControllableResource res2 = provider.controllableResour
res2 = (ControllableResource)res2.doReadPropertie

Rational Team API Programmer’s Guide 41

 A location of the resource.
 A string representing the unique and persistent location of the resource.

nded solely for display

he creator of the resource.

user-oriented comment about the resource.
), pertinent information about the

size and form of that content.

s.

ources may return
null or empty values for them or provide a NOT_SUPPORTED exception for them.

rom the server before

 values defined
 proxy using the PropertyName object for each property. WVCM defines the

methods Resource.getProperty(PropertyNameList.PropertyName)
Name,

tion if the proxy
 for the property identified by the given PropertyName

object.

tPropertyValue().
ject as getProperty.

e same exception

ropertyValue methods do
not verify that the given PropertyName is defined by the proxy class in hand. Any proxy

l fail only when
d for the resource

 Provider attempts
m the resource.

Additional information on Location objects
Each Resource has a location, which uniquely identifies the resource at a given point in
time. For a file-based resource, the location is expressed as a file pathname. For a server-
side resource, the location contains the information needed to find the object from the
server side, (for example a database ID in a VOB).

 A string containing a user-oriented name for the resource inte
purposes.

 A string containing a user-oriented description of t
 The time and date the resource was created and last modified.
 A string containing a
 If the resource has content (in addition to properties

 The resources that directly or indirectly contain the resource.
 A shallow or deep list of the resources that the resource contain

Note: Although these properties are defined for all resources, some res

All properties (except the location) must be explicitly requested f
they are available from a proxy.

The Resource class provides generic methods for accessing the property
by a

and Resource.setProperty(PropertyNameList.Property
Object). The getProperty method throws the exception PropertyExcep
does not contain a valid value

As an extension to WVCM, the Rational Team API defines Resource.ge
If the property value is defined, getPropertyValue returns the same Ob
If the property value is undefined, getPropertyValue() returns th
that would be thrown by getProperty.

Note: The setProperty, getProperty, and getP

can be used to interact with any type of resource. Such interactions wil
they attempt to write or retrieve values for properties that are not define
addressed by the proxy and the failures will occur only when the API
to transfer such property values to or fro

Rational Team API Programmer’s Guide 42

The location of the resource is required when reading or writing resource content, or
reading or writing properties on a server.

 and lastSegment)
 and impart a

an be used to
ry methods of

 a Location must be the
ype of resource
ess specification

nstructed.

tore resource
identities on the client between client sessions. This stable location might not be the

ble location for
s always available as an unchanging property of

the resource. The Rational Team API StpLocation object provides methods for obtaining
arsing that string back into a location.

There is a common location specification syntax for locations of all resource types in the

as been parsed into its
es are used to express

f one or more of the
ect name. It is the

field that determines the scheme being used.

The StpLocation interface provides methods for parsing a location specification into its
constituent parts (domain, repository name, namespace, object name). Using the
available methods, Rational Team API clients can examine location specification
provided by the end user to determine if they are appropriate for the context in which
they are being used. Based on this analysis, a client can fill in parts of the location
specification omitted by the end-user if the context defines those missing parts
unambiguously.

Location objects:

 can be mapped to and constructed from strings
 support hierarchical operations (such as parent, child,
 are composed of name segments as in a typical file path name

hierarchical structure to the namespace for resources in a repository

The StpLocation object represents a resource address and, as such, c
construct a resource proxy (by using one of the resource proxy facto
Provider). As a general rule, the Resource proxy constructed from
same type as the resource addressed by the Location. However, the t
addressed by a Location cannot always be determined from the addr
alone, so this rule cannot always be enforced at the time the proxy is co

All resources have a stable form of location that may be safely used to s

location used to create the resource, however. The server creates this sta
the user at resource creation time and i

the string representation for a location and for p

Rational Team API. A location specification is a:

 string format for identifying Rational Team API objects
 string representation of a WVCM Location object

An StpLocation instance represents a location specification that h
various component fields. A number of different formats or schem
the location of various resources as a string. These schemes consist o
following fields: domain, repository name, namespace, and obj
namespace

Rational Team API Programmer’s Guide 43

The StpProvider.stpLocation() method facilitates this proc
missing location string scheme from its Namespace parameter and fil
repository from the default repository identified to the Pro

ess by filling in a
ling in a missing

vider by the client. (See the

m pathname into
requiring a user-

ther type (such as an activity, project, record, or requirement) you
 form of a location string that

identifies an object by name:

<domain>.<namespace>:<object-name>@<repository-name>

” (where the default <domain> is implied)

pes,
een a UCM 1.0

> is recognized. In
ar in the same

nd database sets,
esource may also

appear in multiple namespaces. Repositories, for example, appear in each namespace
ser database

ars in the record, action, and query namespaces. The namespace used to name a
folder controls the meaning of doReadMemberList since the locations for the

older and hence

at understands location specifications may allow various fields to be omitted.

d if the type can be inferred, or there is a default type.
cts is understood by

 <object-name> is omitted when referring to a repository itself, or to the root of a

 <repository-name> may be omitted if there is a default repository.

Filename location specifications

ControllableResources in a file area can be referenced by an absolute or relative file
system pathname, using the host operating system naming conventions. For example:

/my_views/my_dir/my_file.txt

StpProvider.setDefaultRepository method in the Javadoc.

For operations requiring a user-specified file-system artifact, a file-syste
a workspace file area is sufficient and appropriate. For operations
specified object of ano
use a syntax that specifies the general, fully-specified

For example:

“stream:mystream@projects

 <domain > is used to distinguish between different repository ty
implementations, or providers, of similar objects (for example, betw
project and a Requisite Pro project).

 <namespace> identifies a namespace in which <object-name
the Rational Team API, several different kinds of objects may appe
namespace. For example, in the record namespace can be fou
databases, record types, records, fields, and attachments. A given r

that contains a resource within the repository. Hence a ClearQuest u
appe

members of a folder must be simple extensions of the name of the f
they must be in the same namespace as the folder.

Software th
For example:

 <domain> may be omitte
 <namespace> prefix may be omitted if the namespace of obje

the context, or if there is a default namespace.

namespace.

Rational Team API Programmer’s Guide 44

The namespace of a file location specification is Namespace.PNAME. T
field is the pathname an

he object name
d the remaining fields are null. The pathname is not modified by

The HTTP file scheme prefix, "file://" is also recognized as a valid flag for a file selector.

my_views/my_testview/my_testDir/my_file.txt

pository and object IDs (typically

f any renaming)

onsidered to have stable locations, even if the <object-
 of the selector happen to be identical to the <object-

riendly location. (That is, if an object
can only be identified by name, then its name is the most efficient and stable form of

he only form.)

eral form of a stable location is,
epository-id>

uest record, the form is,

 cq.repo.cq-record:<record-type>/<record-id>@ <db-set-name>/<database-name>

po/cq-record:Defect/SAMPL00000005@7.0.0/SAMPL"

ption object - a subclass of the exception object
defined by WVCM. From such an exception, the client may obtain the following
information:

 A reason code (extension of WVCM enumeration), classifying the type of incident
being reported (for example, WvcmException.ReasonCode.READ_FAILED).

 A subordinate reason code, providing a finer classification of the incident within the
classification of the reason code (for example,
StpException.StpReasonCode.CONFLICT)

the Provider or Location class.

For example:

file:///c:/

Stable locations

An alternate form of location specification uses re
UUIDs, but not always), instead of names. Stable locations:

 are more efficient to resolve than filename location strings
 provide a more stable reference for an object (i.e. independent o
 provide identifiers for objects that do not have names

Note that all named objects are c
id> and <repository-id> fields
name> and <repository-name> fields of the user-f

identification, because it is t

The gen
 <domain>.repo.<resource-type>:<object-id>@<r

For a ClearQ

For example,
 "cq.re

Exceptions
All problems are reported via an exce

Rational Team API Programmer’s Guide 45

 A locale-independent message identifier (catalog index) and a
to the incident being reported. This information wo

rgument values specific
uld be suitable for logging

e.
ent that

xception.
e incident—

cally the resource targeted by the operation that failed.
ce involved in the

 For operations addressing multiple resources, a list of the resources for which the

ident being reported.

n defines a set of preconditions that must be met for the operation to
succeed (for example, a resource must exist to read its properties, a resource must not

 be versioned and
e operation to

throw an exception.

peration fails on any
the exception object).

erties or meta-
o throw an

exception. Instead, the exception is associated with the property within the returned
 specific property value from the

proxy will the exception be thrown. The client may also interrogate the proxy prior to
rmine if there were problems and obtain the

al information on properties and meta-

purposes and could also be used to generate a localized messag
 A list of nested exceptions, each of which describes a subordinate incid

contributed to the one being reported by the e
 For resource access problems, the primary resource involved in th

typi
 For property access problems, the property of the primary resour

incident.

operation was successful.
 For selected incidences, additional information specific to the inc

Each operatio

already exist with the same name for one to be created, a resource must
checked-in to be checked-out). Violations of such preconditions cause th

Operations can often be applied to a collection of resources. If the o
one of them, an exception is thrown (with the successes reported in

Problems encountered by the server while reading or writing the prop
properties of a resource do not cause a Rational Team API operation t

proxy. Only when the client attempts to extract that

extracting the property value to dete
exception without it being thrown. See Addition
properties for more information.

The principal types of exceptions in the Rational Team API are:

StpException

StpException is an extension of WvcmException

 StpException (extends WvcmException)
 StpPropertyException (extends StpException)
 StpPartialResultsException (extends PropertyException)

and is the root of all checked exceptions
thrown by the Rational Team API. All implementations of WVCM-defined methods are
documented to throw WvcmException. All public methods of the Rational Team API that
are extensions to WVCM are also documented to throw WvcmException. However, the
implementations of all these methods consistently throw only StpExceptions – not
WvcmExceptions. The conventions that apply are:

Rational Team API Programmer’s Guide 46

 throws StpException is never used in any method declaration
otherwise). E

 (public or
ven when a method throws an StpException it is declared as if it throws

 a method never throws a new WvcmException. Even though the exception could be
vcmException, it is always thrown as a new StpException() instead.

 class for errors

 is associated with the result
at name is associated with the retrieved value if the retrieval
 with status information (in the form of an

.

ertyException and is used for reporting the
failure of an operation or property involving multiple resources. It becomes a substitute
for the ResourceList that would normally be returned by the operation or property. It
contains a ResourceList, which has the proxies for the resources that were successfully
processed, and a list of StpExceptions, each corresponding to a resource for which the
operation failed. See the Javadoc for more information.

a WvcmException.

expressed as a W

StpPropertyException

StpPropertyException extends StpExtension and is the base exception
associated with the reading or writing of resource properties.

After a property value is requested from a server, its name
and stored in a proxy. Th
attempt was successful or
StpPropertyException object) if the retrieval attempt was unsuccessful

StpPartialResultsException

StpPartialResultsException extends StpProp

Rational Team API Programmer’s Guide 47

Use case examples
l is available for each sub-provider that illustrates some of the common use cases

ational Team API. Common use
cases include:

 er (See the RequisitePro use case tutorial)

o erties

ay the project views

o View requirement types and their attributes

o Create, retrieve, and modify requirements, requirement attributes, and

 e ClearQuest use case tutorial)

o nd delete a record (for example, create a defect change

 Create a query, select a query and execute it – also, modify an existing query

se Remote Client (CCRC)
or ClearCase Web views)

heckin, and hijack

o Navigate VOB-object hierarchies and inquire properties of ClearCase objects

Rational Team API class overviews
The Javadoc that is included with the Rational Team API provides an Overview section
that includes descriptions of the available classes. Each class represents a major
collection of operations supported by the API.

A tutoria
available for each Rational Team product by using the R

RequisitePro sub-provid

 Open a project and retrieve prop

o Displ

traceability

ClearQuest sub-provider (See th

 Create, modify, a
request record type)

o Select an action and change a state

o
and save with a new name

o Create, modify, and delete field values in a record

ClearCase sub-provider (See the ClearCase use case tutorial)

o Create, populate, and remove Web views (ClearCa

o Operate on elements within Web views (such as checkout, c
operations)

Rational Team API Programmer’s Guide 48

Rational Team API Programmer’s Guide 49

Descriptions of the classes include:

kage classes)
ment classes

 RequisitePro Requirements Management classes

In addition to class summaries, the Javadoc provides detailed reference information for
each package.

 The base classes (WVCM and Stp pac
 ClearQuest Change Manage

 ClearCase Asset Management classes

	Rational Team API introduction
	Rational Team API provider
	Rational Team API clients
	Rational Team API sub-providers
	Packaging
	Installation and setup requirements
	
	Accessing the Rational Team API from an Eclipse plug-in
	Accessing the Rational Team API from a Java client application

	Summary

	Rational Team API object model
	Resources and proxies
	Proxy method naming conventions
	Getting a provider
	Getting resource proxies
	Resources
	Controllable Resources

	Location objects
	Properties and meta-properties
	Additional resource properties
	RpAttributeDefinition and requirement type attributes
	CqFieldDefinition and record type fields

	Setting up a property name list
	Reading properties
	Writing properties
	Nested properties
	Naming convention for get and set property value methods
	Request lists

	Additional resource proxies
	Collections
	Additional information on resources
	Resource type
	Creating a proxy for an existing resource
	Creating a new resource
	Creating a versioned resource

	Change contexts and actionable resources
	Actionable resources
	Creating a new actionable resource

	Additional information on change contexts

	Additional information on proxy methods
	Additional information on ControllableResource proxy methods

	Additional information on properties and meta-properties
	Additional information on Location objects
	Filename location specifications
	Stable locations

	Exceptions
	StpException
	StpPropertyException
	StpPartialResultsException

	Use case examples
	Rational Team API class overviews

