
OOAD with UML2 and RSM

Part I - UML2
1© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

PART I – The Unified Modeling Language (UML2)

OOAD with UML2 and RSM

Part I - UML2
2© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

2

Table of Contents

00. Introduction

01. Concepts of Object-Orientation

02. Objects, Classes and Interactions

03. Classes, Relationships and Packages

04. Other UML Diagrams

p. 03

p. 09

p. 23

p. 47

p. 81

OOAD with UML2 and RSM

Part I - UML2
3© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

00. Introduction

OOAD with UML2 and RSM

Part I - UML2
4© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

4

Introductions

� Your organization

� Your role

� Your background, experience
�Object technology experience

�Software development experience

� Your expectations for this course

� One interesting fact about you!

OOAD with UML2 and RSM

Part I - UML2
5© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

5

Course Objectives

� Understand the concepts of Object-Orientation

� Capture system requirements with use cases

� Identify classes, objects and relations, and creating interaction
diagrams and class diagrams

� Build an analysis model with analysis classes

� Understand Model-Driven Development (MDD) and Model-Driven
Architecture (MDA)

� Apply a use-case driven, architecture-centered and iterative process
to build a robust design model

OOAD with UML2 and RSM

Part I - UML2
6© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

6

Agenda

� Day 1:

�UML 2

� Day 2:
�Object-Oriented Analysis (OOA)

� Day 3:
�Object-Oriented Analysis (OOA) (cont.)

�Object-Oriented Design (OOD)

� Day 4:
�Object-Oriented Design (OOD) (cont.)

� The labs for days 2 to 4 will be based on IBM Rational Software
Modeler 7 or above

OOAD with UML2 and RSM

Part I - UML2
7© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

7

Logistics

Morning
1 Fifteen minute break
Lunch
1 Hour
Afternoon
1 Fifteen minute break

OOAD with UML2 and RSM

Part I - UML2
8© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

8

OOAD with UML2 and RSM

Part I - UML2
9© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

01. Concepts of Object-Orientation

OOAD with UML2 and RSM

Part I - UML2
10© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

10

Where Are We?

� What is Modeling?

� Principles of Object-Orientation

� The Unified Modeling Language

OOAD with UML2 and RSM

Part I - UML2
11© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

11

What is a Model?

� A model is a simplification of reality

� Modeling achieves four aims:

�Helps you to visualize a system as you want it to be

�Permits you to specify the structure or behavior of a system

�Gives you a template that guides you in constructing a system

�Documents the decisions you have made

� You build models of complex systems because you cannot
comprehend such a system in its entirety

� You build models to better understand the system you are developing

Software teams often do not model.

Many software teams build applications approaching the problem like they were
building paper airplanes :

• Start coding from project requirements

• Work longer hours and create more code

• Lacks any planned architecture

• Doomed to failure

Modeling is a common thread to successful projects.

Some general facts about models:

• The model you create influences how the problem is attacked.

• Every model may be expressed at different levels of precision.

• The best models are connected to reality.

• No single model is sufficient.

OOAD with UML2 and RSM

Part I - UML2
12© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

12

Model-Driven Development

� A natural evolution of object-oriented technologies

� The encapsulation of business logic in (UML) models

� The use of these models to automate the development of applications,
code generation, testing and maintenance

? ?

OOAD with UML2 and RSM

Part I - UML2
13© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

13

Model-Driven Architecture (MDA)

� An architectural style

� An OMG initiative

Transformation RulesTransformation Rules

PSM PSMPSM

Platform Specific

Model –
Design/

Implementation

PSM PSMPSM

Platform Specific

Model –
Design/

Implementation

A
u
to
m
a
te
d
 G
e
n
e
ra
ti
o
n

A
u
to
m
a
te
d
 G
e
n
e
ra
ti
o
n

Transformation RulesTransformation Rules

Platform
Independent

Model –

Analysis/Design

PIM PIM

Platform
Independent

Model –

Analysis/Design

PIM PIM

Computation
Independent Model –

Domain Model,
Business Model,

Requirements, etc.

CIM

Computation
Independent Model –

Domain Model,
Business Model,

Requirements, etc.

CIM

Code, Files, Artifacts

Transformation Rules

Code, Files, Artifacts

Transformation Rules

Code, Files, Artifacts

Transformation Rules

http://www.omg.com/

OOAD with UML2 and RSM

Part I - UML2
14© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

14

Where Are We?

� What is Modeling?

� Principles of Object-Orientation

� The Unified Modeling Language

OOAD with UML2 and RSM

Part I - UML2
15© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

15

Basic Principles of Object Orientation

� Abstraction

� Encapsulation

� Modularity

� Hierarchy

OOAD with UML2 and RSM

Part I - UML2
16© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

16

What Is Abstraction?

� The essential
characteristics of an
entity that distinguishes
it from all other kinds of
entities

� Depends on the
perspective of the
viewer

� Is not a concrete
manifestation, denotes
the ideal essence of
something

From Object-Oriented Analysis and Design with Applications by Grady Booch, 1994

OOAD with UML2 and RSM

Part I - UML2
17© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

17

What Is Encapsulation?

� Hides implementation
from clients

�Clients depend on
interface

� Improves the resiliency
of the system, i.e. its
ability to adapt to
change

From Object-Oriented Analysis and Design with Applications by Grady Booch , 1994

OOAD with UML2 and RSM

Part I - UML2
18© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

18

What Is Modularity?

� Breaks up something complex into manageable pieces.

� Helps people understand complex systems

From Object-Oriented Analysis and Design with Applications by Grady Booch , 1994

OOAD with UML2 and RSM

Part I - UML2
19© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

19

What Is Hierarchy?

Decreasing
abstraction

Increasing
abstraction

Asset

RealEstate

Savings

BankAccount

Checking Stock

Security

Bond

Elements at the same level of the hierarchy should
be at the same level of abstraction

OOAD with UML2 and RSM

Part I - UML2
20© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

20

Where Are We?

� What is Modeling?

� Principles of Object-Orientation

� The Unified Modeling Language

OOAD with UML2 and RSM

Part I - UML2
21© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

21

What Is UML?

� UML is a language for:

� Visualizing

� Specifying

� Constructing

� Documenting

the artifacts of a software-intensive system

� UML covers all aspects of software development:
� System architecture

� Requirements

� Tests

� Project planning

� Etc.

OOAD with UML2 and RSM

Part I - UML2
22© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

22

History of UML

UML 1.0
(Jan. ‘97)

UML 1.1
(Sept. ‘97)

UML 1.5
(March, ‘03)

UML 2.0
(2004)

Other
Methods

Booch ‘91 OMT - 1OOSE

Booch ’93 OMT - 2

Unified Method 0.8
(OOPSLA ’95)

UML 0.9
(June ‘96)

UML 0.91
(Oct. ‘96)

and

Current
version = 2.1

OOAD with UML2 and RSM

Part I - UML2
23© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

02. Objects, Classes and Interactions

OOAD with UML2 and RSM

Part I - UML2
24© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

24

Where Are We?

� What is an Object?

� What is a Class?

� Interaction Diagrams

� Sequence Diagrams

� Communication Diagrams

OOAD with UML2 and RSM

Part I - UML2
25© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

25

What Is an Object?

� Informally, an object represents an entity, either physical, conceptual,
or software

�Physical entity

�Conceptual entity

�Software entity

Truck

Chemical Process

Linked List

OOAD with UML2 and RSM

Part I - UML2
26© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

26

A More Formal Definition

� An object is an entity with a
well-defined boundary and
identity that encapsulates
state and behavior
�State is represented by

attributes and relationships

�Behavior is represented by
operations, methods, and state
machines

Sub
m

itF
in

al
Gra

de
s(

)

AcceptCourseOffering()

TakeSabbatical()

Object “Professor Clark”

SetM
axLoad()

Name: J Clark
Employee ID: 567138
HireDate: 07/25/1991
Status: Tenured
Discipline: Finance
MaxLoad: 3

Operations

Attributes

The state of an object is one of the possible conditions in which an object may exist.
State normally changes over time.

The state of an object is usually implemented by a set of properties called attributes,
along with the values of the properties and the links the object may have with other
objects.

State is not defined by a “state” attribute or set of attributes. Instead, state is defined
by the total of an object’s attributes and links. For example, if Professor Clark’s status
changed from Tenured to Retired, the state of the Professor Clark object would
change.

The second characteristic of an object is that it has behavior. Objects are intended to
mirror the concepts that they are modeled after, including behavior.

Behavior determines how an object acts and reacts to requests from other objects.

Object behavior is represented by the operations that the object can perform. For
example, Professor Clark can choose to take a sabbatical once every five years. The
Professor Clark object represents this behavior through the TakeSabbatical()
operation.

In the real world, two people can share the same characteristics: name, birth date, job
description. Yet, there is no doubt that they are two individuals with a unique identity.

The same concept holds true for objects. Although two objects may share the same
state (attributes and relationships), they are separate, independent objects with their
own unique identity.

OOAD with UML2 and RSM

Part I - UML2
27© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

27

Objects and Encapsulation

� Encapsulation:

�Protects the supplier
object from incorrect use
by clients

�Protects the clients from
implementation changes in
the supplier

Sub
m

itF
in

al
Gra

des
()

AcceptCourseOffering()

TakeSabbatical()

Professor Clark

SetM
axLoad()

Name: J Clark

Employee ID: 567138

HireDate: 07/25/1991

Status: Tenured

Discipline: Finance

MaxLoad:4
SetMaxLoad(4)

The key to encapsulation is an object’s interface. The object interface ensures that all
communication with the object takes place through a set of predefined operations.
Data inside the object is only accessible by the object’s operations. No other object
can reach inside the object and change its attribute values.

For example, Professor Clark needs to have her maximum course load increased from
three classes to four classes per semester. Another object makes a request to
Professor Clark to set the maximum course load to four. The attribute, MaxLoad, is
then changed by the SetMaxLoad() operation.

Encapsulation is beneficial in this example because the requesting object does not
need to know how to change the maximum course load. In the future, the number or
variables that are used to define the maximum course load may be increased, but it
doesn’t affect the requesting object. It depends on the operation interface for the
Professor Clark object.

OOAD with UML2 and RSM

Part I - UML2
28© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

28

Where Are We?

� What is an Object?

� What is a Class?

� Interaction Diagrams

� Sequence Diagrams

� Communication Diagrams

OOAD with UML2 and RSM

Part I - UML2
29© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

29

What Is a Class?

� A class is a description of a set of objects that share the same
attributes, operations, relationships, and semantics

�An object is an instance of a class

� A class is an abstraction in that it
�Emphasizes relevant characteristics

�Suppresses other characteristics

OOAD with UML2 and RSM

Part I - UML2
30© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

30

Representing Classes in UML

� A class is represented using a rectangle often with three
compartments:

�The class name

� It should be a simple name and it should reflect exactly
what the class is and does

�The structure (attributes)

�The behavior (operations)

Visibility
+ = public
- = private
= protected

public (+)

Visible to all elements that can access the contents of the namespace that owns it

private (-)

Only visible inside the namespace that owns it

protected (#)

Visible to elements that have a generalization relationship to the namespace that
owns it

package (~)

Only named elements that are not owned by packages can be marked as having
package visibility

Any element marked as having package visibility is visible to all elements within
the nearest enclosing package

OOAD with UML2 and RSM

Part I - UML2
31© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

31

Representing Classes in UML (cont.)

� Style Guidelines

� Capitalize the first letter of class
names

� Begin attribute and operation
names with a lowercase letter

� Compartments

� Only the name compartment is
mandatory

� Additional compartments may be
supplied to show other properties

Representation with the attribute
compartment suppressed, operation visibility
shown as “decoration”, and the operation
compartment filtered to show only two
operations

OOAD with UML2 and RSM

Part I - UML2
32© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

32

The Relationship between Classes and Objects

� A class is an abstract definition of an object

� It defines the structure and behavior of each object in the class

� It serves as a template for creating objects.

� Classes are not collections of objects

Slot compartment

OOAD with UML2 and RSM

Part I - UML2
33© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

33

Where Are We?

� What is an Object?

� What is a Class?

� Interaction Diagrams

� Sequence Diagrams

� Communication Diagrams

OOAD with UML2 and RSM

Part I - UML2
34© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

34

UML Diagrams

� UML diagrams contain graphical elements
(nodes connected by paths) that represent
elements in the UML model

� Each diagram has a contents area

� As an option, it may have a frame and a
heading as shown on the right

� Two main types

� Structure Diagrams show the static
structure of the objects in a system

� Behavior Diagrams show the dynamic
behavior of the objects

� Include interaction diagrams

Note: A complete taxonomy of UML diagrams is provided in module 4

OOAD with UML2 and RSM

Part I - UML2
35© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

35

Interaction Diagrams

� Objects interact through messages

�A client object sends a “message” to a supplier object to perform some
activity

� Interaction diagrams show the interactions between collaborating
objects
�Sequence Diagram (the most common variant)

� Time oriented view of object interaction

�Communication Diagram

� Structural view of messaging objects

�Specialized Variants (not covered in this module)

� Timing Diagram: time constraint view of messages involved in an
interaction

� Interaction Overview Diagram: define interactions in a way that promotes
overview of the control flow

Objects need to collaborate:

• Each object is responsible for its own behavior and status

• No one object can carry out every responsibility on its own

OOAD with UML2 and RSM

Part I - UML2
36© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

36

Where Are We?

� What is an Object?

� What is a Class?

� Interaction Diagrams

� Sequence Diagrams

� Communication Diagrams

OOAD with UML2 and RSM

Part I - UML2
37© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

37

What Is a Sequence Diagram?

� A sequence diagram is an interaction diagram that emphasizes the
time ordering of messages

� The diagram shows:

�The objects participating in the interaction

�The sequence of messages exchanged

Sequence Diagrams

The sequence diagram is “the mainstay of dynamic modeling” (The Object Primer,
Third Edition, Scott W. Ambler, 2004). It describes a pattern of interaction among
objects, arranged in a chronological order.

Sequence diagrams are used to:

• Illustrate use-case realizations.

• Illustrate detailed structural designs.

• Model the detailed design of an operation or service.

OOAD with UML2 and RSM

Part I - UML2
38© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

38

Example

Lifeline

Unnamed (anonymous) object

Message

Reflexive
message Return

message

Execution
specification

An object is represented by its lifeline, a rectangle forming its “head” followed by a
vertical line, which may be dashed.

Note the inclusion of the actor instance (Peggy Sue:Student). This is important as it
explicitly models what elements communicate with the “outside world.”

A message reflects either an operation call and start of execution or a sending and
reception of a signal. The object’s class and the message’s operation may be initially
unspecified.

An Execution specification is a specification of the execution of a unit of behavior or
action within the Lifeline.

OOAD with UML2 and RSM

Part I - UML2
39© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

39

Message Types

� Synchronous
message

�Call to an
operation

� Asynchronous
message

�Asynchronous call
to an operation

�Asynchronous
send action of a
signal

� Create Message

� Delete Message

� Reply message to
an operation call

OOAD with UML2 and RSM

Part I - UML2
40© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

40

Interaction Use

Interaction
use (see
next slide)

New in
UML2

OOAD with UML2 and RSM

Part I - UML2
41© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

41

Interaction Use and Combined Fragments

Combined
fragments

New in
UML2

An Interaction Use allows multiple interactions to reference an interaction that
represents a common portion of their specification.

Other useful Combined Fragments include alt (represents a choice of behavior, opt
(option), break (if a guard is included, and the guard is true, the rest of the enclosing
Interaction Fragment is ignored), par (parallel). The operator critical can be used to
indicate that a (critical) region is treated atomically by the enclosing fragment. More
advanced operators: neg (negative), assert and ignore/consider, strict (strict
sequencing) / seq (weak sequencing).

OOAD with UML2 and RSM

Part I - UML2
42© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

42

Where Are We?

� What is an Object?

� What is a Class?

� Interaction Diagrams

� Sequence Diagrams

� Communication Diagrams

OOAD with UML2 and RSM

Part I - UML2
43© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

43

What Is a Communication Diagram?

� A communication diagram emphasizes the organization of the objects
that participate in an interaction

� The communication diagram shows:

�The objects participating in the interaction

�Links between the objects

�Messages passed between the objects

Communication
Diagrams

OOAD with UML2 and RSM

Part I - UML2
44© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

44

Example

Link

OOAD with UML2 and RSM

Part I - UML2
45© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

45

Communication vs. Sequence Diagrams

� In UML 1.x, collaboration diagrams (as they were called) and
sequence diagrams were completely equivalent

�The major difference, which is retained in UML 2.x, is the ability to explicitly
show links in collaboration/communication diagrams

� In UML 2.x, communication diagrams are much less expressive and
precise than sequence diagrams

�UML 2.1 define communication diagrams as “simple Sequence Diagrams
that use none of the structuring mechanisms such as InteractionUses and
CombinedFragments”

OOAD with UML2 and RSM

Part I - UML2
46© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

46

Exercise

� Perform the exercise provided by
the instructor (lab 1)

OOAD with UML2 and RSM

Part I - UML2
47© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

03. Classes, Relationships and Packages

OOAD with UML2 and RSM

Part I - UML2
48© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

48

Where Are We?

� Associations

� Dependencies

� Generalizations

� Packages

� Miscellaneous Topics

OOAD with UML2 and RSM

Part I - UML2
49© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

49

Classes Collaborate

� Objects collaborate with each other by sending messages

�To send a message to an object, the client object must have a link with the
supplier

� If there is a link between two objects, there must be some kind of
relationship between the corresponding classes:
�The relationship may be a structural relationship: association and its variants

(aggregation, composition)

�Or a non-structural relationship, called a dependency

OOAD with UML2 and RSM

Part I - UML2
50© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

50

What Is an Association?

� The semantic relationship between two or more classifiers that
specifies connections among their instances

� A structural relationship specifying that objects of one thing are
connected to objects of another thing

OOAD with UML2 and RSM

Part I - UML2
51© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

51

What is Navigability?

� Navigability indicates that it is possible to navigate from one class to
another (or more precisely from one instance of a class to another
instance of the same class or of another class)

�Associations are bi-directional by default

�An association with an arrow is a one-way association

� The client class can navigate to the supplier class, but not the other way
around

Association navigable in
both directions

Association navigable from
RegistrationController to Schedule

OOAD with UML2 and RSM

Part I - UML2
52© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

52

Naming Associations

� To clarify its meaning, an association can be named

� The name is represented by a label as shown below

� Usually a verb or an expression starting with a verb

OOAD with UML2 and RSM

Part I - UML2
53© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

53

Association Roles

� A role name specifies the role that a
class plays in its relationship with
another class

� Role names are typically names or
noun phrases

� A role name is placed near the
association next to the class to
which it applies (as a role)

� Each association end may be
named

OOAD with UML2 and RSM

Part I - UML2
54© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

54

What Is Multiplicity?

� Multiplicity is the number of instances one class relates to ONE
instance of another class

� For each association, there are two multiplicity decisions to make, one
for each end of the association
�For each instance of Professor, many Course Offerings may be taught

�For each instance of Course Offering, there may be either one or zero
Professor as the instructor

OOAD with UML2 and RSM

Part I - UML2
55© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

55

Multiplicity Indicators

� Unspecified

� Exactly one

� Zero or more (no upper
limit)

� One or more

� Zero or one (optional)

� Specific range

� Multiple, disjoint ranges
2..4

0..1

1..*

0..*

1

*

2, 4..6

OOAD with UML2 and RSM

Part I - UML2
56© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

56

Example

Although UML only has the notion of a comment, RSM has separate menu entries for
notes and comments. Comments in RSM map directly to comments in UML and, as
such, will appear in the model hierarchy. Notes are constructs that are bound to the
actual diagrams. If a diagram is deleted, its notes are also deleted.

OOAD with UML2 and RSM

Part I - UML2
57© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

57

Association Classes

� Take the n-n relationship between Student and Course

� If you have to capture the grade received by a student for a given
course, where would you place the grade? On Student? On Course?

� The answer is on the association itself by adding an association
class, called Result

� The association class represents the association of exactly one
student and one course

OOAD with UML2 and RSM

Part I - UML2
58© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

58

Qualified Associations

� A qualifier is an attribute of an association whose values partition the
set of objects related to an object across an association

�A qualified association represents a lookup table (which can be implemented
as a hash table for instance)

� The multiplicity of the target class is often 0..1 but it may be 0..*

� Example:

� In the context of the WorkDesk, you’d have a jobId that would identify a
particular ReturnedItem. In that sense, jobId is an attribute of the
association. Then, given an object of type WorkDesk and a particular value
for jobId, you can navigate to 0 or 1 object of type ReturnedItem.

In RSM, to add a qualified association, you must right-click the association role (here
returneditem) in the Project Explorer, then select Add UML > Qualifier.

OOAD with UML2 and RSM

Part I - UML2
59© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

59

What Is an Aggregation?

� A special form of association that models a whole-part relationship
between the aggregate (the whole) and its parts
�An aggregation is an “is a part-of” relationship

� Multiplicity is represented like other associations

Aggregation is used to model a whole-part relationship between model elements.
There are many examples of whole-part relationships: a Library contains Books,
Departments are made up of Employees, a Computer is composed of a number of
Devices.

A hollow diamond is attached to the end of an association path on the side of the
aggregate (the whole) to indicate aggregation.

An aggregation relationship that has a multiplicity greater than one for the aggregate is
called shared. Destroying the aggregate does not necessarily destroy the parts. By
implication, a shared aggregation forms a graph or a tree with many roots. Shared
aggregations are used when one instance is a part of two other instances. So, the
same instance can participate in two different aggregations.

OOAD with UML2 and RSM

Part I - UML2
60© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

60

What Is a Composition?

� A form of aggregation with strong ownership and coincident lifetimes

�The parts cannot survive the whole/aggregate

Composition is a form of aggregation with strong ownership and coincident lifetimes of
the part with the aggregate. The whole “owns” the part and is responsible for the
creation and destruction of the part. The part is removed when the whole is removed.
The part may be removed (by the whole) before the whole is removed.

A solid filled diamond is attached to the end of an association path (on the “whole
side”) to indicate composition.

OOAD with UML2 and RSM

Part I - UML2
61© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

61

Example

OOAD with UML2 and RSM

Part I - UML2
62© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

62

Where Are We?

� Associations

� Dependencies

� Generalizations

� Packages

� Miscellaneous Topics

OOAD with UML2 and RSM

Part I - UML2
63© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

63

What Is A Dependency?

� A non-structural relationship between two classes

�The client needs access to the services provided by the supplier

�But doesn’t need to maintain a permanent relationship with the supplier
objects (transient relationship)

� A dependency may result from:
�A local declaration within the body of an operation (op1 below)

�The supplier appears as a parameter type (op2 in the example)

public class Client {
public void op1() {

Supplier localVar = new Supplier();
…

OOAD with UML2 and RSM

Part I - UML2
64© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

64

Where Are We?

� Associations

� Dependencies

� Generalizations

� Packages

� Miscellaneous Topics

OOAD with UML2 and RSM

Part I - UML2
65© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

65

What Is Generalization?

� A relationship among classes where one class shares the structure
and/or behavior of one or more classes

�A subclass inherits its parent’s attributes, operations, and relationships

�A subclass may:

� Add additional attributes, operations, relationships

� Redefine inherited operations (use caution!)

� Defines a hierarchy of abstractions in which a subclass inherits from
one or more super-classes

� Is an “is a kind of” relationship

� Single or multiple inheritance

Generalization can be defined as:

• A specialization/generalization relationship, in which objects of the specialized element (the child)
are substitutable for objects of the generalized element (the parent). (The Unified Modeling
Language User Guide, Booch, 1999.)

• The subclass may be used where the super-class is used, but not vice versa.

• The child inherits from the parent.

• Generalization is transitive. You can always test your generalization by applying the “is a kind of”
rule. You should always be able to say that your generalized class “is a kind of” the parent class.

• The terms “generalization” and “inheritance” are generally interchangeable, but if you need to
distinguish, generalization is the name of the relationship. Inheritance is the mechanism that the
generalization relationship represents/models.

Inheritance can be defined as:

• The mechanism by which more specific elements incorporate the structure and behavior of more
general elements. (The Unified Modeling Language User Guide, Booch, 1999.)

• Single inheritance: The subclass inherits from only one super-class (has only one parent).

• Multiple inheritance: The subclass inherits from more than one super-class (has multiple parents).

OOAD with UML2 and RSM

Part I - UML2
66© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

66

Example

Superclass,
parent or
ancestor

Subclasses,
children or

descendants

Generalization
Relationship

OOAD with UML2 and RSM

Part I - UML2
67© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

67

What is an Abstract Class?

� Abstract classes cannot be instantiated

�Name in italics

� Abstract operations: the subclasses must provide the implementation
�Name in italics

All objects are either lions or tigers

Abstract Class

Abstract Operation

OOAD with UML2 and RSM

Part I - UML2
68© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

68

What Is An Interface?

� A “contract” between providers and consumers of services

�Equivalent to an abstract class in which all operations are abstract

�Provided interfaces: interfaces the element exposes to its environment

�Required interfaces: interfaces the element requires from other elements

�Note: UML interfaces can have attributes (not possible for Java interfaces)

� The provider of the interface is said to realize the interface

Interface

Interface
Realization

Ball and Socket
notation: see module 4

New in
UML2

The label <<interface>> is called a stereotype. Stereotypes are formally introduced
later on in this module.

OOAD with UML2 and RSM

Part I - UML2
69© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

69

What Is Polymorphism?

� The ability to hide many different implementations behind a single
class or interface

With polymorphism:

Shape s = …;
s.draw();

Without polymorphism:

Shape s = …;
If (s instanceof Rectangle) {

((Rectangle) s).draw();
else if (s instanceof Circle) {

((Circle) s).draw();
else if (s instanceof Triangle) {

((Triangle) s).draw();
}

OOAD with UML2 and RSM

Part I - UML2
70© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

70

Where Are We?

� Associations

� Dependencies

� Generalizations

� Packages

� Miscellaneous Topics

OOAD with UML2 and RSM

Part I - UML2
71© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

71

What Is a Package?

� A general purpose mechanism for organizing elements into groups

� A model element that can contain other model elements

�Grouping of logically related elements

� A package can be used:
�To organize the model under development

�As a unit of configuration management

A Package can be defined as:

• A general purpose mechanism for organizing elements into groups. (The Unified
Modeling Language User Guide, Booch, 1999.)

• Models can contain hundreds and even thousands of model elements. The sheer
number of these elements can quickly become overwhelming. Therefore, it’s critical
to group model elements into logical collections to maintain and easily read the
model (application of modularity and hierarchy).

• Packages are a general grouping mechanism for grouping elements into
semantically related groups. A package contains classes that are needed by a
number of different packages, but are treated as a “behavioral unit.”

• A package is simply a grouping mechanism. No semantics are defined for its
instances. Thus, packages do not necessarily have a representation in
implementation, except maybe to represent a directory.

• In the UML, a package is represented as a tabbed folder.

• Package diagrams depict dependencies between packages and are now formalized
in UML 2.

OOAD with UML2 and RSM

Part I - UML2
72© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

72

Package Relationships

� A package A depends on a package B if there is at least one element
from A that depends on at least one element from B

Dependency

ClassA1 depends on
ClassB1

(any relationship
between two elements
implies a dependency
and the arrow indicates
the direction of the
dependency)

OOAD with UML2 and RSM

Part I - UML2
73© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

73

Where Are We?

� Associations

� Dependencies

� Generalizations

� Packages

� Miscellaneous Topics

OOAD with UML2 and RSM

Part I - UML2
74© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

74

What Is A Stereotype?

� A stereotype is a mechanism used to extend the vocabulary of UML

�Represented textually (<<mystereo>>) and/or graphically

�Any UML element may be stereotyped

� Stereotypes are grouped into collections of stereotypes, called profiles

� Can be defined for specific domains and/or applications
�Pre-defined or custom

� A stereotype may have its own properties

OOAD with UML2 and RSM

Part I - UML2
75© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

75

Classifier Scope

� Determines number of instances of
the attribute/operation

� Instance: one instance for each
class instance

� Classifier: one instance for all class
instances

� Classifier scope is denoted by
underlining the attribute/operation
name

� “Static” attributes and operations in
languages like Java and C++

public static CourseCatalog
getInstance() {

If (instance == null) {
instance = new CourseCatalog();

}
return instance;

}

And some client code:

CourseCatalog cat = CourseCatalog.getInstance();
CourseList courses = cat.retrieveCourses();

Pattern
Singleton

OOAD with UML2 and RSM

Part I - UML2
76© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

76

Structure Diagrams

� Structure Diagrams show the static structure of the objects in a
system

�Class diagrams typically show classes and relationships between classes

� Most of the diagrams we have used so far are class diagrams

�Package diagrams typically show packages and relationships between
packages

�Object diagrams typically show objects (instances of classes) and links
between objects (instances of relationships between classes)

�The other structure diagrams (composite structure, component and
deployment) are presented in module 4

� There are no strict boundaries between different variations

� It is possible to display any element you normally display in a given structure
diagram in any variation

Class diagrams are used for a variety of purposes. According to Scott Ambler (The
Elements of UML Style, 2005), “they are used to:

• explore domain concepts in the form of a domain model,

• analyze requirements in the form of a conceptual/analysis model,

• depict the detailed design of object-oriented or object-based software.”

Any diagram that depicts only packages (and their interdependencies) is considered a
package diagram. The term “UML package diagrams” is in fact new to UML 2.

One important use of packages is to logically organize the design of your system.
Another fundamental – but possibly underestimated – use of packages is to provide a
high-level overview of the system, showing the main parts/components and their
interdependencies. This is a topic we will discuss in detail at several points in this
course.

OOAD with UML2 and RSM

Part I - UML2
77© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

77

Object Diagram: Example

An object diagram also
represent a snapshot
of the system at a
given time, highlighting
existing and non-
existing links: Here
boris needs to
establish a link with PM
to deliver parcel1 …

Object diagrams are often used to
conceptualize the more abstract class
diagrams by providing “real-world”
examples of objects and object connections

The example above illustrates one use of object diagrams that is often overlooked,
and yet points to the real challenge of the object-oriented analysis and design
approach: traditional systems were focused on how to implement the system
algorithms. In OO algorithms are encapsulated in specialized objects (and as much as
possible existing objects) and the challenge has moved to identifying the objects that
provide the correct functionality.

If we go back to our example, the class diagram makes it clear that the purpose of this
system is for a DeliveryMan to deliver Parcels to a person identified by the parcel
attributes. The object diagram shows the state of the system BEFORE the
DeliveryMan object boris has started its processing: boris has access to the parcels to
deliver and to a map, but not (yet) to the addressee (the object PM in the case of
parcel1). boris will use its map to identify the correct Building using the Parcel’s
address. Having access to the building, it can ask the Reception object (a singleton in
the scope of a given building) to identify the occupant given the addressee’s name. At
that point, boris will have a (presumably transient) link to PM and will be able to
complete the processing of parcel1. Alternatively, boris could deliver the parcel to the
Reception object, which, in turn, will identify the addressee and hand over the parcel
to PM. No matter what the solution is, boris will need to obtain some kind of Receipt
object (not shown here) in exchange…

•In UML2, an object is also called an instance specification.

OOAD with UML2 and RSM

Part I - UML2
78© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

78

What Is A Constraint?

� A condition or restriction (a Boolean expression) expressed in natural
language text or in a machine readable language for the purpose of
declaring some of the semantics of an element

� Some are predefined in UML (“xor”), others may be user-defined

� OCL (Object Constraint Language) is a predefined language for
writing constraints

RSM Implementation Note: the use of a note to express the constraint is optional in
UML. For instance, it should be possible to draw a dashed line with the label xor
between the Account-Person and Account-Corporation associations. In RSM, the use
of the note symbol is imposed.

RSM has a built-in OCL editor with completion lists. The 2 examples on the right were
written using this editor.

OOAD with UML2 and RSM

Part I - UML2
79© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

79

Exercise

� Perform the exercise provided by
the instructor (lab 2)

OOAD with UML2 and RSM

Part I - UML2
80© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

80

OOAD with UML2 and RSM

Part I - UML2
81© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group

© 2005-2007 IBM Corporation

Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

04. Other UML Diagrams

OOAD with UML2 and RSM

Part I - UML2
82© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

82

The Taxonomy of Diagrams in UML 2.1

�

�

�
�

� �
�

�

�

�

OOAD with UML2 and RSM

Part I - UML2
83© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

83

Composite Structure Diagrams

� A composite structure diagram can be used to
represent the internal structure of a classifier, for instance a class

�Allows to show details otherwise not visible on other diagrams, as illustrated
in the following example:

� External structure of the classifier described using ports, “collection
points” for the classifier’s provided and required interfaces

� Internal structure shown using parts and connectors in the structure
compartment (see example next slide) or in a structure diagram

New in
UML2

Same class diagram
describes multiple
implementations!

OOAD with UML2 and RSM

Part I - UML2
84© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

84

Example of a Composite
Structure Diagram

Parts

Ports

OOAD with UML2 and RSM

Part I - UML2
85© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

85

Components

� Definition of a component:

� Specifies a formal contract of the
services that it provides to its clients
(provided interfaces) and those that
it requires from other components
or services in the system (required
interfaces)

� Can be replaced at design time or
run-time by a component that offers
equivalent functionality based on
compatibility of its interfaces

� Components can be used to:

� Provide a high-level, architectural
view of the system

� Represent the logical components
that will be running on the physical
systems

Revised
in UML2

Three views of the same component �

The relationship between a component and an interface is an interface realization.
UML2 introduces also a component realization for a component to realize (or
implement) other classifiers, including other components.

OOAD with UML2 and RSM

Part I - UML2
86© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

86

Example of a Component Diagram

The structure diagram of the Store component �

OOAD with UML2 and RSM

Part I - UML2
87© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

87

Subsystems

� A subsystem is a specialized version of a
component, but it does not add anything to it

�The decision to use a subsystem vs. a component is
up to the methodology of the modeler

�Subsystems are often equated to larger components

�Component stereotyped <<subsystem>>

�Note: There are other pre-defined UML2 component stereotypes (e.g.
<<implement>>, <<specification>>, <<process>>, <<service>>)

OOAD with UML2 and RSM

Part I - UML2
88© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

88

Artifacts

� An artifact is the specification of a physical
piece of information that is used or
produced by a software development
process, or by deployment and operation
of a system

� Examples: source files, scripts, and binary
executable files

� Standard UML stereotypes:
<<document>>, <<executable>>, <<file>>,
<<library>>, <<script>>, <<source>>

� The physical rendering of one or more
model elements by an artifact is shown
with a <<manifest>> dependency

� May be further stereotyped (e.g. <<tool
generated>>)

� Artifacts may have composition
associations to other artifacts that are
nested within it

OOAD with UML2 and RSM

Part I - UML2
89© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

89

Deployment: Nodes and Communication Paths

� A node is computational resource
upon which artifacts may be
deployed for execution

� Examples: application server, client
workstation, mobile device,
embedded device

� Nodes can be connected to
represent a network topology by
using communication paths

� Specific network topologies can
then be defined through links
between node instances

� Hierarchical nodes (i.e., nodes
within nodes) can be modeled using
composition associations, or by
defining an internal structure

OOAD with UML2 and RSM

Part I - UML2
90© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

90

Deploying Artifacts

� A deployment is the allocation of an
artifact or artifact instance to a
deployment target

� A deployment specification can be
used to specify the execution
parameters of a component artifact
that is deployed on a node

Two equivalent visual representations of the �
deployment of artifacts to a deployment target
(including th e dependency between the artifacts)

OOAD with UML2 and RSM

Part I - UML2
91© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

91

Deployment: Execution Environments

� An Execution Environment is a node
that offers an execution
environment for specific types of
components that are deployed on it
in the form of executable artifacts

� Examples: OS, workflow engine,
database system, J2EE container

� Execution Environment instances
are assigned to node instances by
using composite associations (the
Execution Environment plays the
role of the part)

� Execution Environments can be
nested (e.g., a database Execution
Environment may be nested in an
operating system Execution
Environment)

OOAD with UML2 and RSM

Part I - UML2
92© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

92

Deployment: Devices

� A Device is a physical
computational resource
with processing capability
upon which artifacts may
be deployed for execution

� Devices may be complex
(i.e., they may consist of
other devices)

A complete deployment diagrams with devices,
execution environments and artifacts �

OOAD with UML2 and RSM

Part I - UML2
93© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

93

State Machine Diagrams

States

Transition

Trigger and
its “effect”

Initial
state

Final state

“Do”
activity

Guard
condition

Entry point

Exit point

A state machine diagram describes the states an object or interaction may be in, as
well as the transitions between states. Typically used to explore the design of a
complex class or component.

OOAD with UML2 and RSM

Part I - UML2
94© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

94

Orthogonal State with Regions

OOAD with UML2 and RSM

Part I - UML2
95© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

95

State Machine Diagram with History

If the transition terminates on a shallow history pseudostate, the active substate
becomes the most recently active substate prior to this entry, unless the most recently
active substate is the final state or if this is the first entry into this state. In the latter
two cases, the default history state is entered. This is the substate that is target of the
transition originating from the history pseudostate.

Deep history entry: The rule here is the same as for shallow history except that the
rule is applied recursively to all levels in the active state configuration below this one.

OOAD with UML2 and RSM

Part I - UML2
96© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

96

Activity Diagrams Revised
in UML2

Action

Output pin
Input pin

Object node (data store)

Control node (decision)

Control node (fork and join)

Activity parameter

OOAD with UML2 and RSM

Part I - UML2
97© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

97

Activity Diagrams (cont.)

Activity diagram with partitions �

Activity diagram with Send / Receive
Signal Actions �

OOAD with UML2 and RSM

Part I - UML2
98© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

98

Use Case Diagrams

Optional system
boundary Some authors recommend stereotyping system actors

Use Case

Actor

An actor models a type of role played by an entity that interacts with the system, but
which is external to the system. Actors may represent roles played by human users,
external hardware, or other systems.

An actor is active (initiates a use case) or passive.

Some authors, like Scott Ambler (The Elements of UML 2.0 Style, 2005), recommend
stereotyping system actors

A use case is the specification of a set of actions performed by a system, which yields
an observable result that is, typically, of value for one or more actors.

An include relationship between two use cases means that the behavior defined in
the including use case is included in the behavior of the base use case. The include
relationship is intended to be used when there are common parts of the behavior of
two or more use cases.

An extend relationship means that the extending use case continues the behavior of a
base use case by inserting additional action sequences. The extending use case can
only extend the base use case at specific extension point and only when the
extension conditions (if any) are fulfilled.

