
OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
1© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

PART II – Object-Oriented Analysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
2© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

2

Table of Contents

05. Introduction to RUP

06. Requirement Management with Use Cases Overview

07. Analysis and Design Overview

08. Architectural Analysis

09. Use-Case Analysis

p. 03

p. 17

p. 39

p. 51

p. 75

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
3© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

05. Introduction to RUP

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
4© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

4

Success Rates of Software Development Projects

34 %2003Last “Chaos” Report

28 %2000“Extreme Chaos”

16 %1994First “Chaos” Report

Success RateYear“Standish Group” CHAOS
Chronicles

� Success = project delivered on time, within budget and meeting the
needs of the users

“We know why projects fail, we know how to prevent their failure --
so why do they still fail?” - Martin Cobb

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
5© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

5

Symptoms of Software Development Problems

� User or business needs not met

� Requirements not addressed

� Modules not integrating

� Difficulties with maintenance

� Late discovery of flaws

� Poor quality of end-user experience

� Poor performance under load

� No coordinated team effort

� Build-and-release issues

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
6© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

6

Trace Symptoms to Root Causes

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Insufficient requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Poor testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Best Practices

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
7© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

7

Definition of Iterative Development

� Iterative development = steering a project by using periodic objective
assessments, and re-planning based on those assessments

� Good iterative development means:

�Addressing risks early

�Using an architecture-driven approach

�Measuring objectively

Planning

Requirements Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
EnvironmentEach iteration

results in an
executable
release

Developing iteratively is a technique that is used to deliver the functionality of a system in
a successive series of releases of increasing completeness. Each release is developed in
a specific, fixed time period called an iteration .

Each iteration is focused on defining, analyzing, designing, building, and testing a set of
requirements.

The earliest iterations address the greatest risks. Each iteration includes integration and
testing and produces an executable release. Iterations help:

•Resolve major risks before making large investments.

•Enable early user feedback.

•Make testing and integration continuous.
•Define a project’s short-term objective milestone.

•Make deployment of partial implementations possible.

Instead of developing the whole system in lock step, an increment (for example, a subset
of system functionality) is selected and developed, then another increment, and so on.
The selection of the first increment to be developed is based on risk, with the highest
priority risks first. To address the selected risk(s), choose a subset of use cases. Develop
the minimal set of use cases that will allow objective verification (that is, through a set of
executable tests) of the risks that you have chosen. Then, select the next increment to
address the next-highest risk, and so on.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
8© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

8

Contrasting Traditional and Iterative Processes

Waterfall Process Iterative Process

� Requirements-driven and
mostly custom development

� Late risk resolution
� Diseconomy of scale

� Architecture-driven and
component-based

� Early risk resolution
� Economy of scale

Requirements
Analysis Design Code and

Unit Test
Subsystem
Integration

System
Test

In the waterfall process, there is usually a diseconomy of scale. This means that the
larger the size of the software, the higher it costs per unit to build. In an iterative process,
there is an improvement in the economy of scale. That is, the software becomes cheaper
to build per unit as you build more.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
9© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

9

Iterations and Phases

� Inception : To achieve concurrence among all stakeholders on the
lifecycle objectives for the project

� Elaboration : To baseline architecture providing a stable basis for the
design and implementation efforts in Construction

� Construction : To complete the development of the product

� Transition : To ensure the product is available for its end users

TransitionConstructionElaborationInception

Transition
Iteration

Transition
Iteration

Development
Iteration

Developme
nt Iteration

Developme
nt Iteration

Architecture
Iteration

Architecture
Iteration

Preliminary
Iteration

The overriding goal of the Inception phase is to achieve concurrence among all
stakeholders on the lifecycle objectives for the project. The Inception phase is of
significance primarily for new development efforts, in which there are significant business
and requirements risks which must be identified before the project can proceed.

The goal of the Elaboration phase is to baseline the architecture of the system to
provide a stable basis for the bulk of the design and implementation effort in the
construction phase. The architecture evolves out of a consideration of the most
significant requirements (those that have a great impact on the architecture of the
system) and an assessment of risk. The stability of the architecture may be evaluated
through one or more architectural prototypes. Other equally important risks are also the
business risks.

The goal of the Construction phase is implementing the remaining requirements and
completing the development of the system based upon the baselined architecture. The
Construction phase is in some sense a manufacturing process, where emphasis is
placed on managing resources and controlling operations to optimize costs, schedules,
and quality.

The focus of the Transition Phase is to ensure that software is available for its end
users. The Transition Phase can span several iterations, and includes testing the product
in preparation for release, and making minor adjustments based on user feedback.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
10© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

10

Managing Requirements

� Ensures that you:

�Solve the right problem

�Build the right system

� By taking a systematic approach to
�Eliciting

�Organizing

�Documenting

�Managing

� The changing requirements of a software
application

The 1994 report from the Standish Group confirms that a distinct minority of software
development projects is completed on time and on budget. In their report, the success
rate was only 16.2%, while challenged projects (operational, but late and over budget)
accounted for 52.7%. Impaired (canceled) projects accounted for 31.1%. These failures
are attributed to incorrect requirements definition from the start of the project and poor
requirements management throughout the development lifecycle. (Source: Chaos Report,
http://www.standishgroup.com)

Aspects of requirements management:

• Analyze the problem

• Understand user needs

• Define the system

• Manage scope

• Refine the system definition

• Manage changing requirements

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
11© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

11

Use Component-Based Architectures

� Basis for reuse

�Component reuse

�Architecture reuse

� Basis for project management
�Planning

�Staffing

�Delivery

� Intellectual control
�Manage complexity

�Maintain integrity

System-
software

Middleware

Business-
specific

Application-
specific

Component-based
architecture with
layers

Architecture is a part of Design. It is about making decisions on how the system will be
built. But it is not all of the design. It stops at the major abstractions, or, in other words,
the elements that have some pervasive and long-lasting effect on system performance
and ability to evolve.

A software system’s architecture is perhaps the most important aspect that can be used
to control the iterative and incremental development of a system throughout its lifecycle.

The most important property of an architecture is resilience –flexibility in the face of
change. To achieve it, architects must anticipate evolution in both the problem domain
and the implementation technologies to produce a design that can gracefully
accommodate such changes. Key techniques are abstraction, encapsulation, and object-
oriented Analysis and Design. The result is that applications are fundamentally more
maintainable and extensible.

Software architecture is the development product that gives the highest return on
investment with respect to quality, schedule, and cost, according to the authors of
Software Architecture in Practice (Len Bass, Paul Clements, and Rick Kazman [1998]
Addison-Wesley). The Software Engineering Institute (SEI) has an effort underway called
the Architecture Tradeoff Analysis (ATA) Initiative that focuses on software architecture,
a discipline much misunderstood in the software industry. The SEI has been evaluating
software architectures for some time and would like to see architecture evaluation in
wider use. As a result of performing architecture evaluations, AT&T reported a 10%
productivity increase (from news@sei, Vol. 1, No. 2).

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
12© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

12

Model Visually (UML)

� Captures structure and behavior

� Shows how system elements fit together

� Keeps design and implementation
consistent

� Hides or exposes details as appropriate

� Promotes unambiguous communication
�The UML provides one language for all

practitioners

A model is a simplification of reality that provides a complete description of a system
from a particular perspective. We build models so that we can better understand the
system we are building. We build models of complex systems because we cannot
comprehend any such system in its entirety.

Modeling is important because it helps the development team visualize, specify,
construct, and document the structure and behavior of system architecture. Using a
standard modeling language such as the UML (the Unified Modeling Language), different
members of the development team can communicate their decisions unambiguously to
one another.

Using visual modeling tools facilitates the management of these models, letting you hide
or expose details as necessary. Visual modeling also helps you maintain consistency
among system artifacts: its requirements, designs, and implementations. In short, visual
modeling helps improve a team’s ability to manage software complexity.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
13© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

13

Continuously Verify Quality

CostCost

Time

Software problems are
100 to 1000 times more costly

to find and repair after deployment

� Cost to Repair Software

� Cost of Lost Opportunities

� Cost of Lost Customers

Quality , as used within the RUP, is defined as “The characteristic of having
demonstrated the achievement of producing a product which meets or exceeds agreed-
upon requirements, as measured by agreed-upon measures and criteria, and is produced
by an agreed-upon process." Given this definition, achieving quality is not simply
“meeting requirements" or producing a product that meets user needs and expectations.
Quality also includes identifying the measures and criteria (to demonstrate the
achievement of quality) and the implementation of a process to ensure that the resulting
product has achieved the desired degree of quality (and can be repeated and managed).

This principle is driven by a fundamental and well-known property of software
development: It is a lot less expensive to correct defects during development than to
correct them after deployment.

Tests for key scenarios ensure that all requirements are properly implemented.

• Poor application performance hurts as much as poor reliability.

• Verify software reliability by checking for memory leaks and bottlenecks.

• Test every iteration by automating testing.

Inception, Elaboration, Construction, and Transition are all RUP terms that will be
discussed shortly.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
14© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

14

Manage Change

� To avoid confusion, have:

�Secure workspaces for each developer

�Automated integration/build management

�Parallel development

Workspace

Management

Process

Integration

Parallel

Development

Build

Management

Configuration
Management is more
than just check-in
and check-out

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
15© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

15

Rational Unified Process Implements Best Practices

� Iterative approach

� Guidance for
activities and
artifacts

� Process focus on
architecture

� Use cases that
drive design and
implementation

� Models that
abstract the
system

The Rational Unified Process (RUP) is a generic business process for object-oriented
software engineering. It describes a family of related software-engineering processes
sharing a common structure and a common process architecture. It provides a disciplined
approach to assigning tasks and responsibilities within a development organization. Its
goal is to ensure the production of high-quality software that meets the needs of its end
users within a predictable schedule and budget. The RUP captures the Best Practices in
modern software development in a form that can be adapted for a wide range of projects
and organizations.

The UML provides a standard for the artifacts of development (semantic models,
syntactic notation, and diagrams): the things that must be controlled and exchanged. But
the UML is not a standard for the development process. Despite all of the value that a
common modeling language brings, you cannot achieve successful development of
today’s complex systems solely by the use of the UML. Successful development also
requires employing an equally robust development process, which is where the RUP
comes in.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
16© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

16

Bringing It All Together

Disciplines
group
activities
logically

In an
iteration ,
you walk
through all
disciplines

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
17© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

06. Requirement Management with Use Cases Overview

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
18© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

18

Where Are We?

� Introduction to Use-Case Modeling

� Find Actors and Use Cases

� Use-Case Specifications

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
19© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

19

Requirements in Context

� The purpose of
Requirements is to:

�Elicit stakeholder
requests and
transform them into a
set of requirements
work products that
scope the system to
be built and provide
detailed requirements
for what the system
must do

� RUP recommends a
use-case driven
approach

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
20© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

20

What Is Use-Case Modeling?

� Links stakeholder needs to software requirements

� Defines clear boundaries of a system

� Captures and communicates the desired behavior of the system

� Identifies who or what interacts with the system

� Validates/verifies requirements

� Is a planning instrument

Use Case 2
Specification

Actor 2

Use case 1

Model

Use case 2

Use case 3

A use-case model describes a system's functional re quirements in terms of use
cases.

It is a model of the system's intended functionality (use cases) and its environment
(actors). Use cases enable you to relate what you need from a system to how the system
delivers on those needs.

Think of a use-case model as a menu, much like the menu you'd find in a restaurant. By
looking at the menu, you know what's available to you, the individual dishes as well as
their prices. You also know what kind of cuisine the restaurant serves: Italian, Mexican,
Chinese, and so on. By looking at the menu, you get an overall impression of the dining
experience that awaits you in that restaurant. The menu, in effect, "models" the
restaurant's behavior.

Because it is a very powerful planning instrument, the use-case model is generally used
in all phases of the development cycle by all team members.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
21© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

21

A Use-Case Model is Mostly Text

Use case 1

Use case 2

Use case 3

Use-Case-Model Survey
- survey description
- list of all actors
- list of all use cases

Use-Case 2 Spec
- brief description
- flow of events

Use-Case 3 Spec
- brief description
- flow of events

Actor 1

Actor 2

Actor 3

Use-Case 1 Spec
- brief description
- flow of events

The System

The use-case model consists of both diagrams and text. The diagrams give a visual
overview of the system. The text gives descriptions of the actors and the use cases.

Use cases involve writing text. Drawing the pictures is only a small part of the effort.
Typically, more than 80 percent of all effort during requirements capture is to write the
textual description of what happens in each use case, the non-functional requirements,
and rules. The description of what happens is called the flow of events.

Activity diagrams are another useful tool you can use to describe a use case. It is quite
common to use an activity diagram to describe complex flows of events. When using
activity diagrams, it is advisable to use partitions to represent each actor and the system.
Without partitions, the activities float in a “semantic emptiness” and quickly become
meaningless.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
22© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

22

Major Concepts in Use-Case Modeling

� An actor represents anything that interacts with the system

� A use case is a sequence of actions a system performs that yields an
observable result of value to a particular actor

Actor

Use Case

An actor represents a role that interacts with the system.

A use case describes a sequence of interactions between actors and the system that
occur when an actor uses the system to achieve a certain business goal.

A use case describes:

• The system, its environment, and the relationship between them.

• How things outside the system interact with the system.

• The desired behavior for the system.

Use cases are containers for contextually related requirements of the system under
development. They are containers because they group all requirements related to
achieving a particular goal into a single story of how that is achieved.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
23© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

23

Use-Case Diagram

Bank
Consortium

Bank
Customer

An Automated Teller Machine (ATM)

Cashier

Withdraw Cash

Transfer Funds

Deposit Funds

Maintain ATMMaintenance
Crew

Collect Deposits

A use-case model shows what the system is supposed to do (use cases), the system's
surroundings (actors), and the relationship between actors and use cases.

The use-case diagram is a graphical description of the use-case model. Can you tell at a
glance what users can do with an ATM?

What do you think the priorities for the use cases above would be? The diagram already
helps to determine these priorities; without the first one we do not have an ATM, so we
better get it right, (e.g. during elaboration); other use cases like deposit funds are nice to
have, but would also have quite an architectural impact.

It is also useful to distinguish between primary use case and secondary use cases:
Primary use cases support the customers/actors and business. Secondary use cases we
get, because we decided on a particular technical solution and thus have to specify
"extra" functionality to run this technical solution; thus, Maintain ATM, Print logs, Start,
Stop, Backup the System, etc are required. These could be also be organized in a
separate diagram.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
24© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

24

Use Cases Contain Software Requirements

� Each use case:

�Describes actions the system takes to deliver something of value to an actor

�Shows the system functionality an actor uses

�Models a dialog between the system and actors

� Is a complete and meaningful flow of events from the perspective of a
particular actor

Use cases contain the detailed functional software requirements. Every time a use case
says, “The system …,” is a detailed requirement of what the system must do.

Also, remember the definition: “A sequence of actions performed by a system that yields
a measurable result of value for a particular actor.”

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
25© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

25

Benefits of Use Cases

� Give context for requirements

�Put system requirements in logical sequences

� Illustrate why the system is needed

�Help verify that all requirements are captured

� Are easy to understand

�Use terminology that customers and users understand

�Tell concrete stories of system use

�Verify stakeholder understanding

� Facilitate agreement with customers

� Facilitate reuse: test, documentation, and design

Use cases are a way to organize requirements from a user perspective . All the
requirements for a user to accomplish a particular task are gathered together in a single
use case. The use-case model is the collection of all the individual use cases.

Advantages of use-case modeling include:
• Use cases show why the system is needed. Use cases show what goals the

users can accomplish by using the system.
• System requirements are placed in context. Each requirement is part of a

logical sequence of actions to accomplish a goal of a user.
• Use cases are easy to understand. The model expresses requirements from a

user perspective and in the user’s own vocabulary. The model shows how users
think of the system and what the system should do. Traditional forms of
requirements capture need some translation to make them useable to different
stakeholder types. When you translate something, information is often lost or
misinterpreted. Use cases require no such translation and therefore provide a
more consistent and reliable form of requirement capture.

• The model is a means to communicate requirements between customers and
developers to make sure that the system we build is what the customer wants.

Use-case modeling is the best tool (so far) to capture requirements and put them in
context.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
26© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

26

Where Are We?

� Introduction to Use-Case Modeling

� Find Actors and Use Cases

� Use-Case Specifications

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
27© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

27

Define Actors: Focus on the Roles

� An actor represents a role
that a human, hardware
device, or another system
can play in relation to the
system

� Actor names should
clearly denote the actor’s
role

?

The difference between an actor and an individual system user is that an actor
represents a particular class of user rather than an actual user. Several users can play
the same role, meaning they can be the same actor. In that case, each user constitutes
an instance of the actor.

However, in some situations, only one person plays the role modeled by an actor. For
example, there may be only one individual playing the role of system administrator for a
rather small system.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
28© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

28

Case Study: Course Registration System

� Review the problem statement provided in the Course Registration
Requirements Document

Actor Y
Student

Course Registration System

Actor X

Actor Y

Register for Courses

Another Use Case

Use Case 3

The use-case diagram shown here is a graphic description of the use-case model for an
online Course Registration System. It shows two of the actors (Student and Course
Catalog System) and one use case (Register for Courses) that they participate in.

The diagram is incomplete. You use the online course registration system as a case
study in this module. You develop the use-case model for this example as we go through
the module.

Take some time to look at the use-case model for an online Course Registration System
in the Student Workbook. This example gives you an idea of what a use-case model
looks like before you begin to develop one.

The use-case model for an online Course Registration System in the Student Workbook
is incomplete. It contains only enough artifacts for the purpose of this module:
Introduction to Use-Case Modeling. A larger, much more fully developed case study is
presented later in the course.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
29© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

29

How Should I Name a Use Case?

� Indicate the value or goal of the actor

� Use the active form; begin with a verb

� Imagine a to-do list

� Examples of variations

�Register for Courses

�Registering for Courses

�Acknowledge Registration

�Course Registration

�Use Registration System

Which variations show the value to the actor? Which do not?
Which would you choose as the use-case name? Why?

Each use case should have a name that indicates what is achieved by its interactions
with the actor(s).

A good rule of thumb (but not dictated by any standard) is to attach the actor’s name (of
the primary actor) at the beginning of the use-case name to see if it makes a meaningful
sentence. For example, does it make sense to say “The student registers for a course?”
Does it make sense to say, “The student takes a course?”

Another approach is to ask, “Why does the actor want to use the system?”

Be focused on identifying the goal that is trying to be attained by using the system.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
30© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

30

Steps for Creating a Use-Case Model

1. Find actors and use cases

� Identify and briefly describe actors

� Identify and briefly describe use cases

2. Write the use cases
� Outline all use cases

� Prioritize the use-case flows

� Detail the flows in order of priority

Outside the scope of this course

Creating a use-case model involves putting the pieces you have learned together. First,
the actors and the use cases are found by using the requirements of customers and
potential users as vital information. As they are discovered, the use cases and the actors
are identified and illustrated in a use-case diagram. Next, the steps in a use case are
outlined to get a sketch of the flow.

The actor's name must clearly denote the actor's role. Make sure there is little risk at a
future stage of confusing one actor's name with another.

Define each actor by writing a brief description that includes the actor's area of
responsibility and what the actor needs the system for. Because actors represent things
outside the system, you need not describe them in detail.

Each use case should have a name that indicates what is achieved by its interactions
with the actor(s). The name may have to be several words to be understood. No two use
cases can have the same name.

Define each use case by writing a brief description of it. As you write the description, refer
to the glossary and, if you need to, define new terms.
When the actors and use cases have been found, each use case is described in detail.
These descriptions show how the system interacts with the actors and what the system
does in each individual case. In an iterative development environment, you select a set of
use case flows to be detailed in each iteration. These are prioritized in such a way that
technical risk is mitigated early and the customer gets important functionality before less
important functionality.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
31© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

31

Find Actors

� Who is pressing the keys (interacting with the system)?

� Who/what gets information from this system?

� Who/what provides information to the system?

� Who/what supports and maintains the system?

Registrar Registration System

Online Registration System (www.college.edu)

Student

?

To identify the actors for a system, the simplest question to ask is: “Who is doing the
actual interaction?” The actor is the one who is interacting with the system.

What if a person is using a speech recognition system? Then the actor is the one talking
with the system.

An actor is any person or any thing that is outside the system and that exchanges data
with the system. An actor can either give information, receive information, or give and
receive information.

Actor is a role, not a particular person or thing. The name of the actor should represent,
as clearly as possible, the actor’s role.

Make sure that there is little risk of confusing one actor’s name with another at a future
stage of the work. Also, try to avoid an actor called “User,” rather try to figure out the role
of that particular user.

In most instances, some person or some other system does something to trigger the start
of the use case. If a use case in your system is initiated at a certain time, for example, at
the end of the day or the end of the month, this can be modeled with a special actor,
such as the “scheduler” or “time.” “Scheduler,” as opposed to “time,” is a useful name for
such an actor because scheduler may be human or non-human. “Time” leaves an
element of design in your use case model.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
32© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

32

Find Use Cases

Actor
GOAL 2

What goals am I
trying to achieve

by using the
system?

GOAL 1

Identifying the use cases is the next step in developing your use-case model, once the
actors have been identified. Use cases describe what an actor wants a system to do that
provides some value to the actor. Use this process to identify the use cases for each
actor.

The best way to find use cases is to consider what each actor requires of the system. Go
through all the actors and identify the particular needs of each actor.

When you have made your first list of use cases, verify that all required functionality has
been treated. Do not forget special use cases for system startup, termination, or
maintenance. Also, do not forget to include use cases for automatically scheduled
events. For example, a time-initiated job may run the payroll at midnight on the last day of
each month. Use cases that concern automatically scheduled events are usually initiated
by a special actor: the scheduler.

Try to keep all use cases at approximately the same level of importance. The notion of
use-case levels as popularized by some authors is not recommended. It can lead to a
functionally decomposed system.

Is the use case too complex? If it is, you may want to split it (a use-case report
significantly longer than 10 pages may be a candidate).

Give each use case a name that indicates what an instance of the use case does. The
name may have to consist of several words to be clearly understood.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
33© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

33

Group Exercise

� Identify the actors who interact with the Course Registration System

� Identify use cases for the system

� Sketch a use-case diagram

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
34© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

34

Where Are We?

� Introduction to Use-Case Modeling

� Find Actors and Use Cases

� Use-Case Specifications

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
35© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

35

Use-Case Specifications

� Name

� Brief description

� Flow of Events

�Basic flow

�Alternative flows (regular
variants, odd cases, error
conditions)

� Special requirements

� Pre-conditions

� Post-conditions

� Etc.

Use-Case Specifications

...

Use-Case Model

Actors

Use Cases

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
36© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

36

A Scenario Is a Use-Case Instance

Scenario 1

Log on to system.
Approve log on.
Enter subject in search.
Get course list.
Display course list.
Select courses.
Confirm availability.
Display final schedule.

Scenario 2

Log on to system.
Approve log on.
Enter subject in search.
Invalid subject.
Re-enter subject.
Get course list.
Display course list.
Select courses.
Confirm availability.
Display final schedule.

Student Course Catalog
System

Register for
Courses

A use-case instance describes one particular path through the flows of events described
in a use case. It is a specific sequence of actions that illustrates the behavior of the
system. This is also called a scenario . In the example here, the sketch of Scenario 1 for
the Register for Courses use case shows a Student interacting with the Course
Registration System and successfully enrolling in a course the first time. Scenario 2
shows a Student interacting with the Course Registration System and entering an invalid
subject; that student must re-enter the subject before successfully getting the course list.

A use case defines a set of related scenarios. A use case represents all the possible
sequences that might happen until the resulting value is achieved or until the system
terminates the attempt. The Register for Courses use case represents both of these
sequences, and all the other possible sequences of interactions that may occur when a
Student tries to enroll in a course.

Users and stakeholders can often identify the sequence of actions they want to perform
to obtain a result. Asking stakeholders for the sequence of actions they perform is a good
way to start identifying the steps in a use case.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
37© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

37

Other Requirements Management Artifacts

� Glossary

�Defines important terms used in the project

� Supplementary Specification
�Contains those requirements that do not map to a specific use case

� Functional requirements that are general to many use cases

� Non-functional requirements such as ease-of-use requirements, specific
response times

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
38© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

38

Exercise

� Perform the exercise provided by
the instructor (lab 3)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
39© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

07. Analysis and Design Overview

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
40© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

40

Analysis and Design in Context

� The purposes of
Analysis and Design
are to:

�Transform the
requirements into a
design of the
system-to-be

�Evolve a robust
architecture for the
system

�Adapt the design to
match the
implementation
environment,
designing it for
performance

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
41© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

41

Analysis and Design Overview

Supplementary
Specification

Use-Case Model

Analysis Model

Data Model
(optional)

Architecture
Document

(outside the scope of this course)

Analysis
and Design

Glossary

Design Model

Outputs :

• The analysis model contains the analysis classes and any associated work products.
The analysis model may be a temporary work product, as it is in the case where it
evolves into a design model, or it may continue to live throughout some or all of the
project, and perhaps beyond, serving as a conceptual overview of the system.

• The design model is an abstraction of the implementation of the system. It is used to
conceive as well as document the design of the software system. It is a
comprehensive, composite work product encompassing all design classes,
subsystems, packages, collaborations, and the relationships between them.

• The software architecture document provides a comprehensive overview of the
architecture of the software system. It serves as a communication medium between
the software architect and other project team members regarding architecturally
significant decisions which have been made on the project.

• The data model is used to describe the logical and physical structure of the persistent
information managed by the system. The data model may be initially created through
reverse engineering of existing persistent data stores (databases) or may be initially
created from a set of persistent design classes in the Design Model.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
42© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

42

The Analysis and Design Workflow

Define System Context
Architectural Analysis
Assess Viability of
Architectural PoC
Construct Architectural PoC

Define System Context
Architectural Analysis
Use-Case Analysis
Operation Analysis

Identify Design Elements
Use-Case Analysis
Operation Analysis
Prototype the User-Interface
Design the User-Interface

Identify Design
Mechanisms
Identify Design
Elements
Operation Analysis
Identify Services
Incorporate Existing
Design Elements
Structure the
Implementation Model
Describe the Run-time
Architecture
Describe Distribution

Use-Case Design
Subsystem Design
Operation Design
Class Design
Define Testability
Elements
Design Testability
Elements
Capsule Design

Software Architect
Designer roles
Other roles

Perform Architectural Synthesis constructs and assesses an Architectural Proof-of-
Concept to demonstrate that the system, as envisioned, is feasible.

Define a Candidate Architecture creates an initial sketch of the software architecture.

Refine the Architecture completes the architecture for an iteration.

Analyze Behavior transforms the behavioral descriptions provided by the requirements
into a set of elements upon which the design can be based.

Design Components refines the design of the system.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
43© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

43

Simplified Workflow for the OOAD Course

� Early Elaboration iteration

� Goal of Elaboration:

�To build a robust architecture
that will support the requirements
of the system at a reasonable
cost and in a reasonable time

� To achieve this goal, we need:
�To produce an evolutionary

executable of production-quality
components that will address all
architecturally significant risks of
the project

� Addressing architecturally
significant risks means
selecting for the iteration the
use-case scenarios that
expose those risks

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
44© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

44

A Component-Based Architecture

� In RUP, the architecture of a software system is:

�The organization or structure of the system's significant components
interacting through interfaces,

�With components composed of successively smaller components and
interfaces

� The activities of the Analysis and Design discipline are organized
around two major themes:
�Structure, under the responsibility of the software architect

� Architectural layers

� Components and interfaces

�Contents, under the responsibility of the designers

� Analysis and design classes

The software architect role leads and coordinates technical activities and artifacts
throughout the project. The software architect establishes the overall structure for each
architectural view: the decomposition of the view, the grouping of elements, and the
interfaces between these major groupings. Therefore, in contrast to the other roles, the
software architect's view is one of breadth as opposed to one of depth.

The software architect must be well-rounded and possess maturity, vision, and a depth of
experience that allows for grasping issues quickly and making educated, critical judgment
in the absence of complete information.

The designer role defines the responsibilities, operations, attributes, and relationships of
one or several classes, and determines how they are adjusted to the implementation
environment. In addition, the designer role may have responsibility for one or more
classes, including analysis, design, subsystems, or testability.

The designer must have a solid working knowledge of use-case modeling techniques,
system requirements, software design techniques (including UML and OOAD), and
technologies with which the system will be implemented.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
45© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

45

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
46© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

46

Analysis Versus Design

� Focus on understanding the
solution

� Operations and attributes

� Performance

� Close to real code

� Object lifecycles

� Nonfunctional requirements

� A large model

� Focus on understanding the
problem

� Idealized design

� Behavior

� System structure

� Functional requirements

� A small model

DesignAnalysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
47© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

47

Architectural Views: The 4+1 View Model

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user

Functionality

Programmers

Software management

Performance, scalability, throughput

System integrators System topology, delivery,
installation, communication

System engineering

Analysts/Designers

Structure

Architecture is represented by a number of different architectural views. In RUP, you start from a typical set
of views, called the “4+1 view model” (Philippe Kruchten 1995, "The 4+1 view model of architecture," IEEE
Software. 12(6), November 1995). It is composed of:

• The Use-Case View , which contains use cases and scenarios that encompasses architecturally
significant behavior, classes, or technical risks. It is a subset of the Use-Case Model.

• The Logical View , which contains the most important design classes and their organization into
packages and subsystems, and the organization of these packages and subsystems into layers. It
contains also some use case realizations. It is a subset of the Design Model.

• The Implementation View , which contains an overview of the Implementation Model and its
organization in terms of modules into packages and layers. The allocation of packages and classes
(from the Logical View) to the packages and modules of the Implementation View is also described.
It is a subset of the Implementation Model.

• The Process View , which contains the description of the tasks (process and threads) involved,
their interactions and configurations, and the allocation of design objects and classes to tasks. This
view need only be used if the system has a significant degree of Concurrency. In RUP, it is a subset
of the Design Model.

• The Deployment View , which contains the description of the various physical nodes for the most
typical platform configurations, and the allocation of tasks (from the Process View) to the physical
nodes. This view need only be used if the system is distributed. It is a subset of the Deployment
Model.

The architectural views are documented in a Software Architecture Document. You can envision additional
views to express different special concerns: user-interface view, security view, data view, and so on. For
simple systems, you may omit some of the views contained in the 4+1 view model.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
48© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

48

Organizing Models in RSA/RSM

� Need for well-defined guidelines to represent the architectural views in
your modeling and development environment

� Whitepaper: “Model Structure Guidelines For Rational Software
Modeler And Rational Software Architect (2004 Release)”
�Available on IBM developerWorks (http://www-128.ibm.com/developerworks/)

� Models and packages can contain any number of diagrams

�One diagram is the “default” diagram, i.e. the diagram that will display when
the owning model or package is opened

�The default diagram should contain all the necessary information to navigate
in the package, for instance:

� Owned packages (double-click opens the package)

� Other major owned elements, e.g. public classes and interfaces

� Shortcuts to other diagrams (created by drag-and-drop)

� Explanatory free text and/or notes

� Other guidelines will be introduced as we go along

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
49© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

49

Determining the (Elaboration) Iteration Scope

� The iteration scope is defined in terms of use-case scenarios that best
address the drivers for the iteration

� In the Elaboration phase, the focus is on architecturally significant use-case
scenarios

� The implementation of a specific use case will be in most cases spread
over several iterations – and in fact phases

�There are three main drivers for defining the objectives of an iteration in
elaboration:

� Risk

� Criticality

� Coverage

The main driver to define iteration objectives are risks . You need to mitigate or retire
your risks as early as you can. This is mostly the case in the elaboration phase, where
most of your risks should be mitigated, but this can continue to be a key elements in
construction as some risks remain high, or new risks are discovered. But since the goal
of the elaboration phase is to baseline an architecture, some other considerations have to
come into play, such as making sure that the architecture addresses all aspects of the
software to be developed (coverage). This is important since the architecture will be
used for further planning: organization of the team, estimation of code to be developed,
etc.

Finally, while focusing on risks is important, one should keep in mind what are the
primary missions of the system; solving all the hard issues is good, but this must not be
done in detriment of the core functionality: make sure that the critical functions or
services of the system are indeed covered (criticality), even if there is no perceived risk
associated with them.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
50© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

50

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
51© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

08. Architectural Analysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
52© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

52

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
53© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

53

Architectural Analysis

� Purpose

�To define a candidate architecture for the system based on experience
gained from similar systems or in similar problem domains

�To define the architectural patterns, key mechanisms, and modeling
conventions for the system

� Role
�Software Architect

� Major Steps

�Define the High-Level Organization of Subsystems

� Identify Key Abstractions

�Develop Deployment Overview

� Identify Analysis Mechanisms

Architectural analysis focuses on defining a candidate architecture and constraining the
architectural techniques to be used in the system. It relies on gathering experience
gained in similar systems or problem domains to constrain and focus the architecture so
that effort is not wasted in architectural rediscovery. In systems where there is already a
well-defined architecture, architectural analysis might be omitted; architectural analysis is
primarily beneficial when developing new and unprecedented systems.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
54© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

54

Where Are We?

� Define the High-Level Organization of Subsystems

� Identify Key Abstractions

� Develop Deployment Overview

� Identify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
55© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

55

Define the High-Level Organization of Subsystems

� Purpose

�To create an initial structure for the Design Model

� Normally the design model is organized in layers – a common
architectural pattern for moderate to large-sized systems

� During architectural analysis, you usually focus on the two high-level
layers, that is, the application and business-specific layers

�This is what is mean by the high-level organization of subsystems

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
56© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

56

Patterns and Frameworks

� Pattern
�Provides a common solution to a common problem in a context

� Analysis/Design pattern
�Provides a solution to a narrowly-scoped technical problem

�Provides a fragment of a solution, or a piece of the puzzle

� Framework
�Defines the general approach to solving the problem

�Provides a skeletal solution, whose

details may be Analysis/Design patterns

Design patterns are studied in the Design part of the course.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
57© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

57

What Is an Architectural Pattern?

� An architectural pattern expresses a fundamental structural
organization schema for software systems
� It provides a set of predefined subsystems, specifies their responsibilities,

and includes rules and guidelines for organizing the relationships between
them – Buschman et al, “Pattern-Oriented Software Architecture — A System of
Patterns”

� Examples:

�Layers

�Model-view-controller (MVC)

�Pipes and filters

�Blackboard

Layers : The layers pattern is where an application is decomposed into different levels of
abstraction. The layers range from application-specific layers at the top to
implementation/technology-specific layers on the bottom.

Model-View-Controller : The MVC pattern is where an application is divided into three
partitions: The Model, which is the business rules and underlying data, the View, which is
how information is displayed to the user, and the Controllers, which process the user
input.

Pipes and Filters : In the Pipes and Filters pattern, data is processed in streams that flow
through pipes from filter to filter. Each filter is a processing step.

Blackboard : The Blackboard pattern is where independent, specialized applications
collaborate to derive a solution, working on a common data structure.

Architectural patterns can work together. (That is, more than one architectural pattern
can be present in any one software architecture.)

The architectural patterns listed above imply certain system characteristics, performance
characteristics, and process and distribution architectures. Each solves certain problems
but also poses unique challenges. For this course, you will concentrate on the Layers
architectural pattern.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
58© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

58

The Model-View-Controller (MVC) Architecture

� Conceived in the mid-1980's

� Extensively applied in most object-oriented user interfaces

� Adapted to respond to specific platform requirements, such as J2EE

Model

Manages the application domain’s
concepts, both behavior and
state

Controller

Captures user events and
determines which actions to take

View

Retrieves the data from the model
or receives it from the controller,
and displays it to the user in a way
the user

User Event

Change Notification

State Query

View Selection

State Change

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
59© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

59

An MVC Example: Struts Components

(From the IBM Redbook, Rational Application Developer V6 Programming Guide, June 2005)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
60© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

60

Layered Architectures
Equipment and
customer specific code

Processes and other
application code

Major abstractions,
classes, etc.

Mechanisms,
services

H/W specific code, O/S
specific code, general-
purpose code (ex. ORB,
MQS, etc.)

A
pp

lic
at

io
n

fr
am

ew
or

k
A

pp
lic

at
io

n

In
fr

a-
st

ru
ct

ur
e

M
or

e
G

en
er

ic

M

or
e

R
eu

se
M

or
e

S
pe

ci
fic

Le

ss
 R

eu
se

Context

A large system that requires decomposition.

Problem

A system which must handle issues at different levels of abstraction. For example:
hardware control issues, common services issues and domain-specific issues. It would
be extremely undesirable to write vertical components that handle issues at all levels.
The same issue would have to be handled (possibly inconsistently) multiple times in
different components.

Forces

• Parts of the system should be replaceable.

• Changes in components should not ripple.

• Similar responsibilities should be grouped together.

• Size of components-complex components may have to be decomposed.

Solution

Structure the systems into groups of components that form layers on top of each other.
Make upper layers use services of the layers below only (never above). Try not to use
services other than those of the layer directly below (don't skip layers unless intermediate
layers would only add pass-through components).

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
61© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

61

Layering Considerations

� Level of abstraction

�Group elements at the same level of abstraction

� Separation of concerns
�Group like things together

�Separate disparate things

�Application vs. domain model elements

� Resiliency
�Loose coupling

�Concentrate on encapsulating change

�User interface, business rules, and retained data tend to have a high
potential for change

Layers are used to encapsulate conceptual boundaries between different kinds of
services and provide useful abstractions that make the design easier to understand.

When layering, concentrate on grouping things that are similar together, as well as
encapsulating change.

There is generally only a single application layer. On the other hand, the number of
domain layers is dependent upon the complexity of both the problem and the solution
spaces.

When a domain has existing systems, complex systems composed of inter-operating
systems, and/or systems where there is a strong need to share information between
design teams, the Business-Specific layer may be structured into several layers for
clarity.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
62© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

62

Modeling Architectural Layers

� Architectural layers can be modeled using packages stereotyped
<<layer>>

Software Layers for a
Generic J2EE
Application �

Note: <<global>> is a mere
convention used here to
indicate layers that can be
used by all others

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
63© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

63

Where Are We?

� Define the High-Level Organization of Subsystems

� Identify Key Abstractions

� Develop Deployment Overview

� Identify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
64© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

64

What Are Key Abstractions?

� A key abstraction is a concept, normally uncovered in Requirements,
that the system must be able to handle

� Sources for key abstractions

�Domain knowledge

�Requirements

�Glossary

�Domain Model, or the Business Model (if one exists)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
65© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

65

Describing Key Abstractions

� Key abstractions are modeled as analysis classes

� For each class, provide

�A short description of the class

� Its main attributes

� Its relationships with other classes

� Don't spend too much time describing classes in detail at this initial
stage

�The purpose is not to identify classes
that will survive throughout design

�You will probably identify classes and
relationships not actually needed by
the use cases

�This initial set of classes is useful to
“jump-start” the Use-Case Analysis task

Do not turn the next page
before being told to do so!

While defining the initial analysis classes, you can also define any relationships that exist
between them. The relationships are those that support the basic definitions of the
abstractions. It is not the objective to develop a complete class model at this point, but
just to define some key abstractions and basic relationships to “kick off” the analysis
effort. This will help to reduce any duplicate effort that may result when different teams
analyze the individual use cases.

Relationships defined at this point reflect the semantic connections between the defined
abstractions, not the relationships necessary to support the implementation or the
required communication among abstractions.

The analysis classes identified at this point will probably change and evolve during the
course of the project. The purpose of this step is not to identify a set of classes that will
survive throughout design, but to identify the key abstractions the system must handle.
Do not spend much time describing analysis classes in detail at this initial stage, because
there is a risk that you might identify classes and relationships that are not actually
needed by the use cases. Remember that you will find more analysis classes and
relationships when looking at the use cases.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
66© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

66

Group Exercise

� Identify the key abstractions for the Course Registration System

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
67© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

67

Key Abstractions for the Course Registration System

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
68© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

68

Where Are We?

� Define the High-Level Organization of Subsystems

� Identify Key Abstractions

� Develop Deployment Overview

� Identify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
69© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

69

Develop Deployment Overview

� Purpose:

�To gain an understanding of
the geographical distribution
and operational complexity of
the system

� Develop the high level
overview of how the software
is deployed to show:
�Remote access

�Distribution across multiple
nodes

�Existing hardware and
software components

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
70© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

70

Where Are We?

� Define the High-Level Organization of Subsystems

� Identify Key Abstractions

� Develop Deployment Overview

� Identify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
71© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

71

What Are Analysis Mechanisms?

� Analysis mechanisms are architectural mechanisms* used early in the
Analysis and Design process:

�Capture the key aspects of a solution in a way that is implementation
independent

�Are “computer science” concepts, usually unrelated to the problem domain

�Provide specific behaviors to a domain-related class or component

� Examples:

�Persistence

� Inter-process communication

�Error or fault handling

�Notification

�Messaging

�Etc.

* Architectural mechanisms = Common concrete solutions to frequently encountered problems

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
72© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

72

Why Use Analysis Mechanisms?

� Analysis mechanisms are used during analysis to reduce the
complexity of analysis and to improve its consistency by providing
designers with a shorthand representation for complex behavior

Oh no! I found a group of classes that
has persistent data. How am I
supposed to design these things if I
don’t even know what database we are
going to be using?

That is why we have a persistence
analysis mechanism. We don’t
know enough yet, so we can
bookmark it and come back to it
later.

Analysis mechanisms are primarily used as “placeholders” for complex technology in the
middle and lower layers of the architecture. When mechanisms are used as
“placeholders” in the architecture, the architecting effort is less likely to become distracted
by the details of mechanism behavior.
Mechanisms allow the analysis effort to focus on translating the functional requirements
into software concepts without bogging down in the specification of relatively complex
behavior needed to support the functionality but which is not central to it. Analysis
mechanisms often result from the instantiation of one or more architectural or analysis
patterns.
Persistence provides an example of analysis mechanisms. A persistent object is one that
logically exists beyond the scope of the program that created it. The need to have object
lifetimes that span use cases, process lifetimes, or system shutdown and startup, defines
the need for object persistence. Persistence is a particularly complex mechanism. During
analysis we do not want to be distracted by the details of how we are going to achieve
persistence. This gives rise to a “persistence” analysis mechanism that allows us to
speak of persistent objects and capture the requirements we will have on the persistence
mechanism without worrying about what exactly the persistence mechanism will do or
how it will work.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
73© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

73

Identifying and Describing Analysis Mechanisms

� Analysis mechanisms can be identified top-down (a priori knowledge)
or bottom-up (discovered as you go along)

� Initially the name might be all that exists (for instance, persistence)

� As client classes get identify, it becomes necessary to qualify the use
of each mechanism

�For persistence, identify characteristics like granularity (size), volume
(number), retrieval mechanism, update frequency, etc.

� Eventually, analysis mechanisms will be refined into design
mechanisms

�A design mechanism assumes some details of the implementation
environment, but it is not tied to a specific implementation

�Example: DBMS as the design mechanism for persistence

� And design mechanisms into actual implementation mechanisms

�Example: Oracle

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
74© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

74

Exercise

� Perform the exercise provided by
the instructor (lab 4)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
75© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

09. Use-Case Analysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
76© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

76

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
77© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

77

Use-Case Analysis

� Purpose

�To identify the analysis classes of our system, including:

� their “responsibilities”, attributes and associations to other classes, and

� usage of analysis mechanisms

� Role

�Designer

� Major Steps
�Create Analysis Use-Case Realization

�Supplement the Use-Case Description

�Model Use-Case Scenarios with Interaction Diagrams

�Model Participating Classes in Class Diagrams

�Reconcile the Analysis Use-Case Realizations

�Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
78© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

78

Analysis Classes: A First Step Toward Executables

Use Cases
Analysis
Classes

Source
Code

ExecDesign
Elements

Use-Case Analysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
79© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

79

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
80© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

80

What Is a Use-Case Realization?

� The bridge between Requirements-centric tasks and Analysis/Design-
centric tasks

� It provides:

�A way to trace behavior in the Analysis and Design Models back to the Use-
Case Model

�A construct in the Analysis and Design Models, which organizes work
products related to the use case but which belong to the design model

� Typically consist of sequence and class diagrams

� Shown as a collaboration* stereotyped <<use-case realization>>

* UML Collaboration = structure of collaborating elements (roles), each performing a
specialized function, which collectively accomplish some desired functionality

A use-case realization describes how a particular use case is realized within the
Analysis/Design Model, in terms of collaborating objects. A use-case realization ties
together the use cases from the Use-Case Model with the classes and relationships of
the Analysis/Design Model. A use-case realization specifies what classes must be built to
implement each use case.

A use-case realization in the Analysis/Design Model can be traced to a use case in the
Use-Case Model. A realization relationship is drawn from the use-case realization to
the use case it realizes.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
81© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

81

What Is a Use-Case Realization?

Class Diagrams

Communication
Diagrams

Use-Case Model Analysis/Design Model

Use Case
Use-Case Realization

Sequence
Diagrams

Realization Relationship

Use-case realizations are represented as stereotyped collaborations. The symbol for a
collaboration is an ellipsis containing the name of the collaboration. The symbol for a use-
case realization is a dotted line version of the collaboration symbol. In RSA 7.0, a UML
Collaboration can only be shown as a rectangle.

A use-case realization consists of a set of diagrams that model the context of the
collaboration (the classes/objects that implement the use case and their relationships —
class diagrams), and the interactions of the collaborations (how these classes/objects
interact to perform the use cases — communication and sequence diagrams).

The number and types of the diagrams that are used depend on what is needed to
provide a complete picture of the collaboration and the guidelines developed for the
project under development.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
82© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

82

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
83© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

83

Supplement the Use-Case Description

� Purpose: To capture additional information needed in order to understand
the required internal behavior of the system that might be missing from the
use-case description written for the customer of the system

“The ATM
validates the
Bank Customer's
card.”

“The ATM sends the customer's
account number and the PIN to
the ATM Network to be validated.
The ATM Network returns
success if the customer number
and the PIN match and the
customer is authorized to perform
transactions, otherwise the ATM
Network returns failure.”

Automated Teller
Machine (ATM)

Examine the use-case description to see if the internal behavior of the system is clearly
defined. The internal behavior of the system should be unambiguous , so that it is clear
what the system must do.

Sources of information for this detail include domain experts who can help define what
the system needs to do. A good question to ask, when considering a particular behavior
of the system, is "what does it mean for the system to do that thing?".

The following alternatives exist for supplementing the descriptio n of the Flow of
Events:

• Do not describe it at all. This might be the case if you think the interaction diagrams
are self-explanatory, or if the Flow of Events of the corresponding use case
provides a sufficient description.

• Supplement the existing Flow of Event description. Add supplementary descriptions
to the Flow of Events in areas where the existing text is unclear about the actions
the system should take.

• Describe it as a complete textual flow, separate from the "external" Use Case Flow
of Events description. This is appropriate in cases where the internal behavior of the
system bears little resemblance to the external behavior of the system. In this case,
a completely separate description, associated with the analysis use-case realization
rather than the use case, is warranted.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
84© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

84

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

This section and the following cover the following steps in the RUP Use-Case Analysis
task:

• Find Analysis Classes from Use-Case Behavior

• Distribute Behavior to Analysis Classes

• Describe Responsibilities

• Describe Attributes and Associations

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
85© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

85

Find Classes from Use-Case Behavior

� The complete behavior of a use case has to be distributed to analysis
classes

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
86© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

86

What Is an Analysis Class?

System
boundary

Use-case
behavior
coordination

System
information

<<boundary>>

<<control>>

<<entity>>

System
information

<<entity>>

System
boundary

<<boundary>>

Analysis classes represent an early conceptual model for “things in the system that have
responsibilities and behavior”.

Analysis classes handle primarily functional requirements. They model objects from the
problem domain. Analysis classes can be used to represent "the objects we want the
system to support" without making a decision about how much of them to support with
hardware and how much with software.

Three aspects of the system are likely to change independently from each other:

• The boundary between the system and its actors

• The information the system uses

• The control logic of the system

In an effort to isolate the parts of the system that will change more frequently, the
following types of analysis classes are identified:

• Boundary

• Entity

• Control

Each of these types of analysis classes are discussed on the following slides.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
87© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

87

What Is a Boundary Class?

� Intermediates between the interface and something outside the
system

� Several Types

�User interface classes

�System interface classes

�Device interface classes

� Environment dependent

�GUI

�Communication protocols

A boundary class intermediates between the interface and something outside the system.
Boundary classes insulate the system from changes in the surroundings (for example,
changes in interfaces to other systems and changes in user requirements), keeping these
changes from affecting the rest of the system.

A system can have several types of boundary classes:

• User interface classes : Classes that intermediate communication with human
users of the system.

• System interface classes : Classes that intermediate communication with other
systems. A boundary class that communicates with an external system is
responsible for managing the dialog with the external system; it provides the
interface to that system for the system being built.

• Device interface classes : Classes that provide the interface to devices which
detect external events. These boundary classes capture the responsibilities of
the device or sensor.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
88© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

88

The Role of a Boundary Class

Model interaction between the system and its environment

A boundary class is used to model interaction between the system's surroundings and its
inner workings. Such interaction involves transforming and translating events and noting
changes in the system presentation (such as the interface).

Because boundary classes are used between actors and the working of the internal
system (actors can only communicate with boundary classes), they insulate external
forces from internal mechanisms and vice versa. Thus, changing the GUI or
communication protocol should mean changing only the boundary classes, not the entity
and control classes.

A boundary object (an instance of a boundary class) can outlive a use-case instance if,
for example, it must appear on a screen between the performance of two use cases.
Normally, however, boundary objects live only as long as the use-case instance.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
89© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

89

Finding Boundary Classes

� One boundary class per actor/use case pair

Student Course CatalogRegister for Courses

RegisterForCoursesForm CourseCatalogSystem

One recommendation for the initial identification of boundary classes is one boundary
class per actor/use-case pair. This class can be viewed as having responsibility for
coordinating the interaction with the actor. This may be refined as a more detailed
analysis is performed. This is particularly true for window-based GUI applications where
there is typically one boundary class for each window, or one for each dialog box.

In the above example:

• The RegisterForCoursesForm contains a Student's "schedule-in-progress." It
displays a list of Course Offerings for the current semester from which the
Student may select courses to be added to his or her Schedule.

• The CourseCatalogSystem interfaces with the legacy system that provides the
unabridged catalog of all courses offered by the university.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
90© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

90

Guidelines: Boundary Class

� User Interface Classes

�Concentrate on what information is presented to the user

�Do NOT concentrate on the UI details

� System and Device Interface Classes
�Concentrate on what protocols must be defined

�Do NOT concentrate on how the protocols will be implemented

Concentrate on the responsibilities, not the details!

When identifying and describing analysis classes, be careful not to spend too much time
on the details. Analysis classes are meant to be a first cut at the abstractions of the
system. They help to clarify the understanding of the problem to be solved and represent
an attempt at an idealized solution.

User Interface Classes : Boundary classes may be used as “holding places” for GUI
classes. The objective is not to do GUI design in this analysis, but to isolate all
environment-dependent behavior. The expansion, refinement and replacement of these
boundary classes with actual user-interface classes (probably derived from purchased UI
libraries) is a very important activity of Class Design. Sketches or screen captures from a
user-interface prototype may have been used during the Requirements discipline to
illustrate the behavior and appearance of the boundary classes. These may be
associated with a boundary class. However, only model the key abstractions of the
system; do not model every button, list, and widget in the GUI.

System and Device Interface Classes : If the interface to an existing system or device is
already well-defined, the boundary class responsibilities should be derived directly from
the interface definition.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
91© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

91

What Is an Entity Class?

� Represents the key concepts of the system

� Models information that must be stored

� Usually persistent

� Environment independent

� Not specific to one use case

Entity classes represent stores of information in the system. They are typically used to
represent the key concepts that the system manages. They are usually persistent, having
attributes and relationships needed for a long period, sometimes for the lifetime of the
system.

An entity object is usually not specific to one Use-Case Realization and sometimes it is
not even specific to the system itself. The values of its attributes and relationships are
often given by an actor. An entity object may also be needed to help perform internal
system tasks. Entity objects can have behavior as complicated as that of other object
stereotypes. However, unlike other objects, this behavior is strongly related to the
phenomenon the entity object represents. Entity objects are independent of the
environment (the actors).

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
92© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

92

The Role of an Entity Class

Store and manage information in the system

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
93© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

93

Finding Entity Classes

� Key abstractions usually become entity classes

� Entity classes can also be found in:

�Use-case flow of events (developed during requirements)

�Glossary (developed during requirements)

�Business-Domain Model (if business modeling has been performed)

� Look for system information that must be stored:

�Nouns or nominal sentences that identify persistent data are candidates to
become:

� Attributes of an entity class, or

� Entity classes on their own

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
94© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

94

Example: Course Registration System

� Basic flow of events for the Submit Grades use case:

This use case starts when a Professor wishes to submit student grades for
one or more classes completed in the previous semester:

1. The system displays a list of course offerings the Professor
taught in the previous semester.

2. The Professor selects a course offering.
3. The system retrieves a list of all students who were registered for

the course offering. The system displays each student and any
grade that was previously assigned for the offering.

4. For each student on the list, the Professor enters a grade: A, B,
C, D, F, or I. The system records the student’s grade for the
course offering. If the Professor wishes to skip a particular
student, the grade information can be left blank and filled in at a
later time. The Professor may also change the grade for a
student by entering a new grade.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
95© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

95

Example: Course Registration System

� Key abstractions (previously identified)

� Newly identified classes

� How would you characterize the new class?

CourseOffering CourseCatalog Course

ScheduleStudent

Professor

CourseResult

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
96© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

96

What Is a Control Class?

� Use-case behavior coordinator

�Complex use cases may need more than one control class

� Delegates responsibility to other classes

� Use-case dependent but environment independent

Control classes provide coordinating behavior in the system. The system can perform
some use cases without control classes by using just entity and boundary classes. This is
particularly true for use cases that involve only the simple manipulation of stored
information. More complex use cases generally require one or more control classes to
coordinate the behavior of other objects in the system. Examples of control classes
include transaction managers, resource coordinators, and error handlers.

Control classes effectively decouple boundary and entity objects from one another,
making the system more tolerant of changes in the system boundary. They also decouple
the use-case specific behavior from the entity objects, making them more reusable
across use cases and systems.

Control classes provide behavior that:
• Is surroundings-independent (does not change when the surroundings

change).

• Defines control logic (order between events) and transactions within a use
case.

• Changes little if the internal structure or behavior of the entity classes
changes.

• Uses or sets the contents of several entity classes, and therefore needs to
coordinate the behavior of these entity classes.

• Is not performed in the same way every time it is activated (flow of events
features several states).

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
97© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

97

The Role of a Control Class

Coordinate the use-case behavior

A control class is a class used to model control behavior specific to one or more use
cases. Control objects (instances of control classes) often control other objects, so their
behavior is of the coordinating type. Control classes encapsulate use-case-specific
behavior.

The behavior of a control object is closely related to the realization of a specific use case.
In many scenarios, you might even say that the control objects "run" the Use-Case
Realizations. However, some control objects can participate in more than one Use-Case
Realization if the use-case tasks are strongly related. Furthermore, several control
objects of different control classes can participate in one use case. Not all use cases
require a control object. For example, if the flow of events in a use case is related to one
entity object, a boundary object may realize the use case in cooperation with the entity
object. You can start by identifying one control class per Use-Case Realization, and then
refine this as more Use-Case Realizations are identified, and commonality is discovered.

Control classes can contribute to understanding the system, because they represent the
dynamics of the system, handling the main tasks and control flows.

When the system performs the use case, a control object is created. Control objects
usually die when their corresponding use case has been performed.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
98© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

98

Finding Control Classes

� In general, identify one control class per use case

�As analysis continues, a complex use case’s control class may evolve into
more than one class

Student Course Catalog
System

Register for Courses

RegistrationController

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
99© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

99

Summary: Course Registration System Example

Student Course Catalog
System

Register for Courses

Use-Case Model

Analysis Model

RegisterForCoursesForm CourseCatalogSystem Student Schedule

CourseOffering RegistrationController

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
100© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

100

Distribute Use-Case Behavior

� For each use-case flow of events:

�Create one or more interaction diagrams (sequence diagrams recommended)

� Identify analysis objects responsible for the required use-case behavior

�Allocate use-case responsibilities to analysis classes

Use Case
Class Diagrams

Communication
DiagramsSequence

Diagrams

Use-Case Realization

You can identify analysis classes responsible for the required behavior by stepping
through the flow of events of the use case. In the previous step, we outlined some
classes. Now it is time to see exactly where they are applied in the use-case flow of
events.

In addition to the identified analysis classes, the Interaction diagram should show
interactions of the system with its actors. The interactions should begin with an actor,
since an actor always invokes the use case. If you have several actor instances in the
same diagram, try keeping them in the periphery of that diagram.

Interactions between actors should not be modeled. By definition, actors are external,
and are out of scope of the system being developed. Thus, you do not include
interactions between actors in your system model. If you need to model interactions
between entities that are external to the system that you are developing (for example, the
interactions between a customer and an order agent for an order-processing system),
those interactions are best included in a Business Model that drives the System Model.

Guidelines for how to distribute behavior to classes are described on the next slide.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
101© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

101

Guidelines: Interaction Diagrams and Use Cases

� Each initial interaction diagram describes one use-case scenario

�Diagrams should be named after the use-case scenarios

�The interaction should begin with an actor, since an actor always invokes the
use case

� One diagram is not enough
�At least one diagram for the main flow of events

�Plus at least one diagram for each non-trivial alternative or exceptional flow

�Separate diagrams for complex flows

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
102© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

102

Guidelines: Creating Objects and Classes

� Before you start analyzing the use case, put in place:

�The Actor object that initiates the use case (as previously indicated)

�The corresponding boundary and control objects

�Other objects that may exist before the use case starts

� Example: if there is a pre-condition for a student to be logged in, it is likely
the system has already retrieved the corresponding Student object

� Assign each object to an existing class or to a new class
�When creating new classes, capture their semantics immediately

� Analysis stereotype

� Description, attributes, relationships

�Note: Ultimately, classes will be organized into packages and layers but this
is NOT the focus of Use-Case Analysis

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
103© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

103

Guidelines: Allocating Responsibilities

� Use-Case behavior is materialized by objects exchanging messages

�When creating a message, create the corresponding class operation

� Convention: start the operation name with “//”

– It identifies the class operation as an analysis responsibility

– Example: // retrieve course offerings for the current semester

– During design, responsibilities will be refined into “real” operations

�Who has the data needed to perform the responsibility?

� If one class has the data, assign the responsibility to that class

� If multiple classes have the data, you can

– Put the responsibility with one class and add a relationship to the other

– Put the responsibility on a “third party” (new class or existing control
class for instance) and add relationships to classes needed to perform
the responsibility

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
104© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

104

Guidelines: Centralized Vs. Decentralized Control

� Centralized control

�An object controls the others

� Interaction between the other objects is minimal or non-existent

� Decentralized control
�No central object

�Each object only knows a few of the other objects

�Looks more “OO” but consider for instance the impact if the ordering of
operations changes

� The two strategies are often combiner

Stair - decentralizedFork - centralized

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
105© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

105

Example: Course Registration System

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
106© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

106

Exercise 1: Create A Sequence Diagram

� Perform the exercise provided by
the instructor (lab 5 – tasks 5.1
and 5.2)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
107© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

107

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
108© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

108

Reminder: Finding Responsibilities

// PerformResponsibility

:Client :Supplier

Supplier

// PerformResponsibility

Interaction Diagram

Class Diagram

A responsibility is a statement of something an object can be asked to provide.
Responsibilities evolve into one (or more) operations on classes in design; they can be
characterized as:

• The actions that the object can perform.

• The knowledge that the object maintains and provides to other objects.

Responsibilities are derived from messages on interaction diagrams. For each message,
examine the class of the object to which the message is sent. If the responsibility does
not yet exist, create a new responsibility that provides the requested behavior.

We have chosen to document analysis class responsibilities as “analysis” operations by
adopting the naming convention to precede the “analysis” operation name by “//”. This
naming convention indicates that the operation is being used to describe the
responsibilities of the analysis class and that they WILL PROBABLY change/evolve in
design.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
109© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

109

Reminder: Finding Relationships

PerformResponsibility

Link

Association

Communication Diagram

Class Diagram

0..*0..*

Client Supplier

:Client :Supplier

Client Supplier

PerformResponsibility()

Relationship for every link!

A link between two objects (explicit in the Communication diagrams, implicit in the
Sequence diagrams) indicate that there must be some form of relationship between the
corresponding classes. This relationship can be an association, an aggregation, a
dependency, etc. A link is an instance of a relationship.

Reflexive links do not need to be instances of reflexive relationships; an object can send
messages to itself. A reflexive relationship is needed when two different objects of the
same class need to communicate.

The navigability of the relationship should support the required message direction. In the
above example, if navigability was not defined from the Client to the Supplier, then the
PerformResponsibility message could not be sent from the Client to the Supplier.

Remember to give the associations role names and multiplicities. You can also specify
navigability, although this will be refined in Class Design.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
110© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

110

Creating a VOPC

� The View of Participating Classes (VOPC) class diagram contains the
classes whose instances participate in the Use-Case Realization
Interaction diagrams, as well as the relationships required to support
the interactions

Use Case
Class Diagrams

Communication
DiagramsSequence

Diagrams

Use-Case Realization

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
111© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

111

Example: Course Registration System

This relationship could
have a multiplicity of 1
or it could be replaced
by a dependency

This class is a
singleton

This relationship
could be replaced
by a dependency

Three of the relationships
are uni-directional. Can
you tell why?

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
112© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

112

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
113© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

113

Reconcile the Analysis Use-Case Realizations

Register for
Courses

(White team)

Close
Registration
(Red team)

Student

Course
Offering

Course
Offering

StudentCloseRegistration
Controller

Registration
Controller

CloseRegistration
Form

Course
Catalog
System

Schedule

Course
Catalog
System

Course
Offering

Schedule

Registration
Controller

Student

CloseRegistration
Controller

Schedule

Course
Catalog
System

Billing
System

RegisterFor
CoursesForm

RegisterFor
CoursesForm

CloseRegistration
Form

Different use cases will contribute to the same classes. In the example above, the
classes CourseCatalogSystem, CourseOffering, Schedule and Student participate in both
the Register for Courses and Close Registration use cases.

A class can participate in any number of use cases. It is therefore important to examine
each class for consistency across the whole system.

Merge classes that define similar behaviors or that represent the same phenomenon.

Merge entity classes that define the same attributes, even if their defined behavior is
different; aggregate the behaviors of the merged classes.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
114© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

114

Where Are We?

� Create Analysis Use-Case Realization

� Supplement the Use-Case Description

� Model Use-Case Scenarios with Interaction Diagrams

� Model Participating Classes in Class Diagrams

� Reconcile the Analysis Use-Case Realizations

� Qualify Analysis Mechanisms

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
115© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

115

Describing Analysis Mechanisms

� Collect all analysis mechanisms in a list

� Draw a map of the client classes to the analysis mechanisms

� Identify characteristics of the analysis mechanisms

In Architectural Analysis, the possible analysis mechanisms were identified and defined.

From that point on, as classes are defined, the required analysis mechanisms and
analysis mechanism characteristics should be identified and documented. Not all classes
will have mechanisms associated with them. Also, it is not uncommon for a client class to
require the services of several mechanisms.

A mechanism has characteristics, and a client class uses a mechanism by qualifying
these characteristics. This is to discriminate across a range of potential designs. These
characteristics are part functionality, and part size and performance.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
116© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

116

Example: Course Registration System

� Analysis class to analysis mechanism map

Analysis Class Analysis Mechanism(s)

Student

Schedule

CourseOffering

Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Persistency, Security

As analysis classes are identified, it is important to identify the analysis mechanisms that
apply to the identified classes.

The classes that must be persistent are mapped to the persistency mechanism.

The classes that are maintained within the legacy Course Catalog system are mapped to
the legacy interface mechanism.

The classes for which access must be controlled (that is, control who is allowed to read
and modify instances of the class) are mapped to the security mechanism. Note: The
legacy interface classes do not require additional security as they are read-only and are
considered readable by all.

The classes that are seen to be distributed are mapped to the distribution mechanism.
The distribution identified during analysis is that which is specified/implied by the user in
the initial requirements. Distribution will be discussed later during Design. For now, just
take it as an architectural given that all control classes are distributed for the OOAD
course example and exercise.

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
117© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

117

Exercise 2: Create A VOPC Diagram

� Perform the exercise provided by
the instructor (lab 5 – tasks 5.3
and 5.4)

OOAD with UML2 and RSM

Part II – Object-Oriented Analysis
118© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

118

