
OOAD with UML2 and RSM

Part III – Object-Oriented Design
1© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

PART III – Object-Oriented Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
2© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

2

Table of Contents

10. Identify Design Elements

11. Identify Design Mechanisms

12. Class Design

13. Subsystem Design

14. Describe the Run-Time Architecture and Distribution

15. Design the Database

p. 03

p. 31

p. 51

p. 79

p. 97

p. 127

OOAD with UML2 and RSM

Part III – Object-Oriented Design
3© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

10. Identify Design Elements

OOAD with UML2 and RSM

Part III – Object-Oriented Design
4© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

4

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

In Architectural Analysis, an initial attempt was made to define the layers of our
system, concentrating on the upper layers. In Use-Case Analysis, you analyzed your
requirements and allocated the responsibilities to analysis classes.

In Identify Design Elements, the analysis classes are refined into design elements
(design classes and subsystems).

In Use-Case Analysis, you were concerned with the “what.” In the architecture activities,
you are concerned with the “how”. Architecture is about making choices.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
5© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

5

Identify Design Elements

� Purpose

�To analyze interactions of analysis classes to identify design model
elements

� Role
�Software Architect

� Major Steps
�Map Analysis Classes to Design Elements

� Identify Subsystems and Subsystem Interfaces

�Update the Organization of the Model

� Note:

�The objective is to identify design elements, NOT to refine the design, which
is covered in Design Components

OOAD with UML2 and RSM

Part III – Object-Oriented Design
6© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

6

Where Are We?

� Map Analysis Classes to Design Elements

� Identify Subsystems and Subsystem Interfaces

� Update the Organization of the Model

OOAD with UML2 and RSM

Part III – Object-Oriented Design
7© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

7

From Analysis Classes to Design Elements
Analysis Classes Design Elements

<<boundary>>

<<control>>

<<entity>>

<<boundary>>

Many-to-Many Mapping

Subsystem
<<subsystem>>

Subsystem
<<subsystem>>

OOAD with UML2 and RSM

Part III – Object-Oriented Design
8© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

8

Analysis Classes vs. Design Elements

� Analysis classes:

�Handle primarily functional requirements

�Model objects from the “problem” domain

� Design elements:
�Must also handle nonfunctional requirements

�Model objects from the “solution” domain

It is in Identify Design Elements that you decide which analysis classes are really
classes, which are subsystems (which must be further decomposed), and which are
existing components and do not need to be “designed” at all.

Once the design classes and subsystems have been created, each must be given a
name and a short description. The responsibilities of the original analysis classes should
be transferred to the newly created subsystems. In addition, the identified design
mechanisms should be linked to design elements (next module).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
9© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

9

Drivers When Identifying Design Elements

� Non-functional requirements, for instance consider:

�Application to be distributed across multiple servers

�Real-time system vs. e-Commerce application

�Application must support different persistent storage implementations

� Architectural choices

�For instance, .NET vs. Java Platform

� Technological choices
�For instance, Enterprise Java Beans can handle persistence

� Design principles (identified early in the project’s life cycle)

�Use of patterns (discussed in detail in the Identify Design Mechanisms
module)

�Best practices (industry, corporate, project)

�Reuse strategy

OOAD with UML2 and RSM

Part III – Object-Oriented Design
10© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

10

Mapping the Design Model to Other Models

� Maintaining a separate analysis model

�Every Analysis Class in the Analysis Model should be associated with at
least one design class in the Design Model

� Mapping design to implementation

�The decision to map design to implementation should be made before
design starts

�May vary based on how you map the design elements to implementation
classes, files, packages and subsystems in the implementation model but
should be consistent

� Impact of using an MDD/MDA approach

OOAD with UML2 and RSM

Part III – Object-Oriented Design
11© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

11

Identifying Design Classes

� An analysis class maps directly to a design class if:

� It is a simple class

� It represents a single logical abstraction

� Typically, entity classes survive relatively intact into Design

� A more complex analysis class may:

�Be split into multiple classes

�Become a part of another class

�Become a package

�Become a subsystem (discussed later)

�Become a relationship

�Be partially realized by hardware

�Not be modeled at all

�Any combination …

Some examples:

• A single boundary class representing a user interface may result in multiple
classes, one per window.

• A control class may become a design class directly, or become a method within
a design class.

• A single entity class may become multiple classes (for example, an aggregate
with contained classes, or a class with associated database mapping or proxy
classes, etc.).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
12© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

12

Example: Analysis

� At the end of Analysis, let’s assume we ended up with the (very simple
and yet generic) model below

�Our requirements stipulate that this is a typical J2EE Web application, with a
thin client and a Web server…

OOAD with UML2 and RSM

Part III – Object-Oriented Design
13© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

13

Example: Design

In fact our architect has decided to use the
Struts framework, which will among other
things handle the FrontController and
ActionMap parts …

In our example, the
form becomes a JSP
and the controller is
split in 2 classes: a
FrontController servlet
(a J2EE best practice
and pattern) and an
Action class that does
the actual work
(performAction)

Patterns are
discussed in detail in
the next module

Client Tier Web Tier

The purpose of this slide is not to describe a complete solution. In fact there are many
possible variants depending on many factors. And this is what we need to have a generic
solution (the FrontController and Action scheme here) for a common problem (user
actions in web pages). The next module (Identify Design Mechanism) discusses this topic
in more detail.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
14© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

14

Where Are We?

� Map Analysis Classes to Design Elements

� Identify Subsystems and Subsystem Interfaces

� Update the Organization of the Model

OOAD with UML2 and RSM

Part III – Object-Oriented Design
15© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

15

Subsystems As Replaceable Design Elements

� Subsystems are components that provide services to their clients
only through public interfaces

�Any two subsystems that realize the same interfaces are interchangeable

�Subsystems support multiple
implementation variants

� Subsystems can be used to partition
the system into units which:

�Can be independently changed without
breaking other parts of the systems

�Can be independently developed (as
long as the interfaces remain
unchanged)

�Can be independently ordered,
configured, or delivered

Subsystems are ideal for modeling components - the replaceable
units of assembly in component-based development

OOAD with UML2 and RSM

Part III – Object-Oriented Design
16© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

16

Candidate Subsystems

� Analysis Classes providing complex services and/or utilities

�For example, security authorization services

� Boundary classes
�User interfaces

�Access to external systems and/or devices

� Classes providing optional behavior or different levels of the same
services

� Highly coupled elements

� Existing products that export interfaces
(communication software, database access
support, etc.)

A complex analysis class is mapped to a design subsystem if it appears to embody
behavior that cannot be the responsibility of a single design class acting alone. A
complex design class may also become a subsystem, if it is likely to be implemented as a
set of collaborating classes.

The design subsystem is used to encapsulate these collaborations in such a way that
clients of the subsystem can be completely unaware of the internal design of the
subsystem, even as they use the services provided by the subsystem. If the participating
classes/subsystems in a collaboration interact only with each other to produce a well-
defined set of results, the collaboration and its collaborating design elements should be
encapsulated within a subsystem.

This rule can be applied to subsets of collaborations as well. Anywhere part or all of a
collaboration can be encapsulated and simplified, doing so will make the design easier to
understand.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
17© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

17

Packages and Subsystems

� Packages and subsystems both provide structure

� In fact in UML 1.x, subsystems were a cross between packages (providing
structure) and classes (providing behavior)

� Both packages and subsystems can be used to achieve the desired
effect (see diagram)
�Subsystems should be preferred in most cases, as they provide better

encapsulation, better de-coupling and are more easily replaceable

Collections of types and data structures (e.g. stacks, lists, queues) may be better
represented as packages, because they reveal more than behavior, and it is the
particular contents of the package that are important and useful (and not the package
itself, which is simply a container).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
18© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

18

Example: Course Registration System

Analysis Design

During Use-Case Analysis, we modeled two boundary classes, the BillingSystem and the
CourseCatalog, whose responsibilities were to cover the details of the interfaces to the
external systems. It was decided by the architects of the Course Registration System that
the interactions to support external system access will be more complex than can be
implemented in a single class. Thus, subsystems were identified to encapsulate these
responsibilities and provide interfaces that give the external systems access.

The BillingSystem subsystem provides an interface to the external billing system. It is
used to submit a bill when registration ends and students have been registered in
courses.

The CourseCatalog subsystem encapsulates all the work involved for communicating to
the legacy Course Catalog System. The system provides access to the unabridged
catalog of all courses and course offerings provided by the university, including those
from previous semesters.

These are subsystems rather than packages because a simple interface to their complex
internal behaviors can be created. Also, by using a subsystem with an explicit and stable
interface, the particulars of the external systems to be used (in this case, the Billing
System and the legacy Course Catalog) could be changed at a later date with no impact
on the rest of the system.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
19© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

19

Incorporating Interfaces in Class Diagrams

� Every relationship to the initial analysis class must be replaced by an
equivalent relationship to the subsystem interface

Keep in mind that you
may be introducing new
dependencies for the
client classes: here
RegistrationController
now also depends on
Semester and
CourseOfferingList

Same role name

In RSA/RSM, these changes have to be performed manually:

• Retrieve the interface to use and drag it to the diagram

• Select the relationship and move the target end from the analysis class to the
interface

• Delete the analysis class from the diagram

• Delete the analysis class from the design model after all changes have been
made

OOAD with UML2 and RSM

Part III – Object-Oriented Design
20© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

20

Incorporating Interfaces in Sequence Diagrams

In RSA/RSM, simply drag the interface over the analysis object and update the message.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
21© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

21

Subsystem Dependencies

� Keep in mind: The interfaces provided (and/or required) by a
subsystem are outside the subsystem

� Often the services described by an interface will involve non-standard
types, e.g. Semester and CourseOfferingList
�You can group the

interfaces and types
in a single package

�Both the client packages
and the realizing
subsystem have
dependencies on this
package

OOAD with UML2 and RSM

Part III – Object-Oriented Design
22© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

22

Where Are We?

� Map Analysis Classes to Design Elements

� Identify Subsystems and Subsystem Interfaces

� Update the Organization of the Model

OOAD with UML2 and RSM

Part III – Object-Oriented Design
23© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

23

The Building Blocks of our Architecture

� Keep in mind: we are building a component-based architecture

�The building blocks of our architecture are the packages, subsystems, and
other components of our system

� The building blocks are “layered” in order to achieve a number of
goals like application
availability, security,
performance, user-friendliness,
reuse, …, and of course
functionality to end-users

� To achieve our goals, we
need to control how our
building blocks are packaged
and assigned across layers

?

OOAD with UML2 and RSM

Part III – Object-Oriented Design
24© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

24

Design Packages

� Design packages are used to group related design elements together

� Design packages and subsystems are the building blocks of our
architecture

�They should be organized to achieve the goals of this architecture

�Simply grouping logically related classes is not enough

�Apply the basic object-oriented principles:

� Encapsulation

� Separation of interface and implementation

� Loose coupling with the “outside”

� Design packages are also often used as configuration units and to
organize the allocation of work across development teams

� Remember: If one element of package A has a relationship with at
least one element of package B, then package A depends on package
B

OOAD with UML2 and RSM

Part III – Object-Oriented Design
25© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

25

Example 1: What Is Wrong With This Picture?

� Can you point out the weaknesses of this model organization?

� What changes would you suggest?

OOAD with UML2 and RSM

Part III – Object-Oriented Design
26© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

26

Example 2: Improve This Model

� How would you improve this model?

� Could you use an interface instead of an abstract class?

OOAD with UML2 and RSM

Part III – Object-Oriented Design
27© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

27

Packaging Tips

� Consider grouping two design elements in the same package if:

�They are dependent on each other (relationships)

�Their instances interact with a large number of messages (to avoid having a
complicated intercommunication)

�They interact with, or affected by changes in, the same actor

� If an element is related to an optional service, group it with its
collaborators in a separate subsystem

� Consider moving two design elements in different packages if:

�One is optional and the other mandatory

�They are related to different actors

� Think of the dependencies that co-located elements may have on your
element

� Consider how stable your design element is:

�Try to move stable elements down the layer hierarchy, unstable elements up

OOAD with UML2 and RSM

Part III – Object-Oriented Design
28© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

28

Evaluating Package Coupling

����

����

����

Avoid circular
dependencies

Packages in
lower layers
should not be
dependent
upon packages
in upper layers

Avoid skipping
layers

Only public
classes can be
referenced
outside of the
owning
package

OOAD with UML2 and RSM

Part III – Object-Oriented Design
29© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

29

Exercise

� Perform the exercise provided by
the instructor (lab 6)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
30© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

30

OOAD with UML2 and RSM

Part III – Object-Oriented Design
31© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

11. Identify Design Mechanisms

OOAD with UML2 and RSM

Part III – Object-Oriented Design
32© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

32

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
33© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

33

Identify Design Mechanisms

� Purpose

�To analyze interactions of analysis classes to identify design model
elements

� Role
�Software Architect

� Major Steps
� Identify Design and Implementation Mechanisms

�Document Architectural Mechanisms

OOAD with UML2 and RSM

Part III – Object-Oriented Design
34© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

34

Where Are We?

� Introduction to Design Patterns

� Identify Design and Implementation Mechanisms

� Document Architectural Mechanisms

OOAD with UML2 and RSM

Part III – Object-Oriented Design
35© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

35

What Is a Design Pattern?

� A design pattern describes a commonly-recurring structure of
communicating components that solves a general design problem
within a particular context

� Popularized by Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides (the “Gang of Four”) in Design Patterns, Elements of
Reusable Object-Oriented Software, Addison Wesley, 1994

� Deep, really useful patterns are typically ancient; you see one and will
often remark, “Hey, I’ve done that before.”
(Grady Booch, Foreword in Core J2EE Patterns, Deepak Alur, John Crupi & Dan Malks,
Prentice Hall, 2003)

� Patterns are “half baked,” meaning that you always have to finish
them off in the oven of your own project
(Martin Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2003)

Design patterns are medium-to-small-scale patterns, smaller in scale than architectural
patterns but typically independent of programming language. When a design pattern is
bound, it forms a portion of a concrete design model (perhaps a portion of a design
mechanism). Design patterns tend, because of their level, to be applicable across
domains.

We will introduce several patterns in this module and the remaining design modules.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
36© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

36

Some of the GoF Patterns

Issue a request to an object without knowing anything about the
operation requested or the receiver of the request: for example, the
response to a menu item, an undo request, the processing of a time-
out

Command

(behavioral pattern)

When the state of an object changes, the dependent objects are
notified. The changed object is independent of the observers.

Observer

(behavioral pattern)

Handle distributed objects in a way that is transparent to the client
objects (remote proxy)

Load a large graphical object or any entity object “costly” to
create/initialize only when needed (on demand) and in a transparent
way (virtual proxy)

Proxy

(structural pattern)

Create GUI objects (buttons, scrollbars, windows, etc.) independent of
the underlying OS: the application can be easily ported to different
environments

Abstract factory

(creational pattern)

Example Pattern

OOAD with UML2 and RSM

Part III – Object-Oriented Design
37© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

37

Example of a Structural Pattern: Composite (GoF)

� Examples:
�File system composed of files and directories

�Graphic composed of elementary shapes and assemblages of shapes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
38© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

38

Case Study: Building a Generic GUI Component

� The problem

� Imagine we want to build a reusable GUI component

�To keep it simple, we will limit ourselves to the implementation of generic
menus in a windowing system (in such a way that it will be possible to add
new menus without having to modify the GUI component)

� The solution
� Is based on the Command pattern

�Will now be exposed by your instructor

OOAD with UML2 and RSM

Part III – Object-Oriented Design
39© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

39

Representing Patterns in UML

� A design pattern is a parameterized collaboration

�Note: <<role>> is not a standard stereotype

Parameters of the collaboration

OOAD with UML2 and RSM

Part III – Object-Oriented Design
40© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

40

Where Are We?

� Introduction to Design Patterns

� Identify Design and Implementation Mechanisms

� Document Architectural Mechanisms

OOAD with UML2 and RSM

Part III – Object-Oriented Design
41© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

41

Design Mechanisms

� A design mechanism is a refinement of a corresponding analysis
mechanism
� It adds concrete detail to the conceptual analysis mechanism, but stops

short of requiring particular technology - for example, a particular vendor's
implementation of a RDBMS

� It may instantiate one or more patterns (architectural or design patterns)

� To identify design mechanisms from analysis mechanisms:
� Identify the clients of each analysis mechanism

� Identify characteristic profiles for each analysis mechanism

�Group clients according to their use of characteristic profiles

�Proceed bottom up and make an inventory of the design mechanisms that
you have at your disposal

OOAD with UML2 and RSM

Part III – Object-Oriented Design
42© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

42

Example: Design Mechanisms

Analysis
Mechanism:
Persistency

In-Memory Storage

Flash card

Binary File

RDBMS

OOAD with UML2 and RSM

Part III – Object-Oriented Design
43© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

43

Implementation Mechanisms

� An implementation mechanism is a refinement of a corresponding
design mechanism

� It may use, for example, a particular programming language and other
implementation technology

� It may instantiate one or more idioms or implementation patterns

Design Mechanism:
RDBMS

Analysis
Mechanism:
Persistency

Implementation
Mechanism:

JDBC

ObjetObjetObjetObjetObjetObjetObjetObjet
Object

RDBMS

OOAD with UML2 and RSM

Part III – Object-Oriented Design
44© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

44

Where Are We?

� Introduction to Design Patterns

� Identify Design and Implementation Mechanisms

� Document Architectural Mechanisms

OOAD with UML2 and RSM

Part III – Object-Oriented Design
45© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

45

Document Architectural Mechanisms

� A mechanism represents a pattern that constitutes a common solution
to a common problem

�Our ultimate goal is to ensure consistency in the implementation of our
system, while improving productivity

� Having defined what implementation mechanism should be used by all
client classes with the same characteristics profile, the software
architect also defines how to use it

�The end result is a collaboration that will be documented like any other
collaboration: using sequence diagrams and diagrams of participating
classes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
46© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

46

Example: The JDBC Persistency Mechanism

The next few slides demonstrate the JDBC mechanism chosen for our persistent classes
in our example.

For JDBC, a client works with a DBPersistentClass to read and write persistent data. The
DBPersistentClass is responsible for accessing the JDBC database using the
DriverManager Java class. Once a database Connection is opened, the
DBPersistentClass can then create SQL statements that will be sent to the underlying
RDBMS and executed using the Statement class. The Statement is what “talks” to the
database. The result of the SQL query is returned in a ResultSet object.

DBPersistentClass understands the OO-to-RDBMS mapping and has the ability to
interface with the RDBMS. It flattens the object, writes it to the RDBMS, reads the object
data from the RDBMS, and builds the object. Every class that is persistent has a
corresponding DBPersistentClass.

The PersistentClassList is used to return a set of persistent objects as a result of a
database query (for example, DBClass.read()).

The <<role>> stereotype was used for anything that should be regarded as a placeholder
for the actual design element to be supplied by the developer. This convention makes it
easier to apply the mechanism, because it is easier to recognize what the designer must
supply.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
47© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

47

JDBC Mechanism: Initializing the Connection

� Initialization must occur before any persistent class can be accessed

�getConnection() returns a Connection object for the specified url

OOAD with UML2 and RSM

Part III – Object-Oriented Design
48© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

48

JDBC Mechanism: Retrieving Data

OOAD with UML2 and RSM

Part III – Object-Oriented Design
49© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

49

Exercise

� There is no exercise in this
module

OOAD with UML2 and RSM

Part III – Object-Oriented Design
50© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

50

OOAD with UML2 and RSM

Part III – Object-Oriented Design
51© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

12. Class Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
52© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

52

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
53© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

53

Class Design

� Purpose

�To ensure that the class provides the behavior the use-case realizations
require

�To ensure that sufficient information is provided to unambiguously
implement the class

�To handle nonfunctional requirements related to the class

�To incorporate the design mechanisms used by the class

� Role
�Designer

� Major Steps
�Create Initial Design Classes

�Refine Design Classes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
54© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

54

Where Are We?

� Create Initial Design Classes

� Refine Design Classes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
55© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

55

Class Design Considerations

� Specific strategies can be used to
design a class, depending on its
original analysis stereotype (boundary,
control, entity)
�Analysis stereotypes not maintained in

Design

� Consider how design patterns can be
used to help solve implementation
issues

� Consider how the architectural
mechanisms will be realized in terms
of the defined design classes

(…) I argue that the goal of a model is
to capture design decisions as directly
as possible, and the best way to do
this is to evolve the model by adding
elements rather than by replacing
them.
(Jim Rumbaugh, p.1 in OMT Insights,
Prentice Hall, 1996)

Specific strategies can be used to design a class, depending on its original analysis
stereotype (boundary, control, and entity). These stereotypes are most useful during
Use-Case Analysis when identifying classes and allocating responsibility. At this point in
design, you really no longer need to make the distinction — the purpose of the distinction
was to get you to think about the roles objects play, and make sure that you separate
behavior according to the forces that cause objects to change. Once you have
considered these forces and have a good class decomposition, the distinction is no
longer really useful.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
56© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

56

How Many Classes Are Needed?

� Many, simple classes means that each class:

�Encapsulates less of the overall system intelligence

� Is more reusable

� Is easier to implement

� A few, complex classes means that each class:

�Encapsulates a large portion of the overall system intelligence

� Is less likely to be reusable

� Is more difficult to implement

A class should have a single well-focused purpose.
A class should do one thing and do it well!

OOAD with UML2 and RSM

Part III – Object-Oriented Design
57© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

57

Strategies for Designing Analysis Classes

� Boundary Classes

�Consider the use of subsystems (see module 10, Identify Design Elements)

�Many patterns available for Web Browser-based User Interfaces

� See for instance Core J2EE Patterns, Deepak Alur, John Crupi & Dan
Malks, Prentice Hall, 2003

� Control Classes

�Control classes are directly impacted by issues of concurrency and
distribution: see module 14, Describe the Run-time Architecture and
Distribution

� Entity Classes
�Entity classes are usually persistent: see module 15, Design the Database

Remember: the software architect is responsible for the overall design of the
architecture and the designer for the actual contents – there is sometimes a fine line
between the two. In the remainder of this module we discuss issues related to the
detailed design of our classes.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
58© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

58

Where Are We?

� Create Initial Design Classes

� Refine Design Classes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
59© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

59

Define Design Operations

� Design operations are directly derived from analysis responsibilities

�Specify operation name and full operation signature (parameters and return
type)

� Additional operations
�Operations not explicitly defined in analysis (e.g. getters/setters)

�Manager functions (like constructors, destructors)

�Functions for copying objects, to test for equality, to test for optional
relationships (e.g. isProfessorAssigned() for a CourseOffering class), etc.

�Helper functions (often private or protected)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
60© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

60

Define Design Attributes

� Design attributes are derived from analysis attributes

�Specify name, type and optional default value

�Private visibility in most cases

� Type can be a built-in data type (UML2 or other), user-defined data
type, or user-defined class

�Consider not using data types from the implementation language

address could be
typed as a String or

as a new class
Address

OOAD with UML2 and RSM

Part III – Object-Oriented Design
61© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

61

Derived Attributes

� Attributes whose value may be calculated based on the value of other
attributes, typically introduced for performance reason

�But avoid optimizing before you know you really need it!

� Identified by a “/”

Also applicable to roles �

OOAD with UML2 and RSM

Part III – Object-Oriented Design
62© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

62

Refining Classes: Example

� Performance requirements may force some re-factoring

Analysis Design

During Analysis, entity classes may have been identified and associated with the analysis
mechanism for persistence, representing manipulated units of information. Performance
considerations may force some re-factoring of persistent classes, causing changes to the
Design Model that are discussed jointly between the database designer and the designer
responsible for the class. The details of a database-based persistence mechanism are
designed during Database Design, which is beyond the scope of this course.

Here we have a persistent class with five attributes. One attribute is not really persistent;
it is used at runtime for bookkeeping. From examining the use cases, we know that two
of the attributes are used frequently. Two other attributes are used less frequently. During
Design, we decide that we’d like to retrieve the commonly used attributes right away, but
retrieve the rarely used ones only if some client asks for them. We do not want to make
a complex design for the client, so, from a data standpoint, we will consider the FatClass
to be a proxy in front of two real persistent data classes. It will retrieve the
FatClassDataHelper from the database when it is first retrieved. It will only retrieve the
FatClassLazyDataHelper from the database in the rare occasion that a client asks for one
of the rarely used attributes.

Such behind-the-scenes implementation is an important part of tuning the system from a
data-oriented perspective while retaining a logical object-oriented view for clients to use.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
63© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

63

Refine Relationships

� Navigability

� Multiplicity

� Generalization vs. aggregation

� Factoring and delegation

� Refactoring

OOAD with UML2 and RSM

Part III – Object-Oriented Design
64© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

64

Navigability: Which Directions Are Really Needed?

� Restricting navigability reduces dependencies and increases reuse

?

OOAD with UML2 and RSM

Part III – Object-Oriented Design
65© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

65

Navigability: Alternatives

1. The total number of orders
is small, or we rarely need a
list of orders that reference
a given product

2. The total number of
products is small, or we
rarely need a list of
products included in a given
order

3. The numbers of products
and orders are not small
and one must be able to
navigate in both directions

1

2

3

OOAD with UML2 and RSM

Part III – Object-Oriented Design
66© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

66

Multiplicity Design

� Multiplicity = 1, or Multiplicity = 0..1

�May be implemented directly as a simple value or pointer

�No further “design” is required

� Multiplicity > 1

�Cannot use a simple value or pointer

�Further “design” may be required Needs a container for
CourseOffering objects

OOAD with UML2 and RSM

Part III – Object-Oriented Design
67© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

67

Modeling a Container Class

� The container class may be implied by the multiplicity (n > 1) or it may
be explicitly modeled

The container is implied

Role name unchanged but
multiplicity transferred

OR

OOAD with UML2 and RSM

Part III – Object-Oriented Design
68© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

68

Parameterized Class

� A class definition that defines other classes

� In UML, known as “templates”

� Often used for container classes

�Sets, lists, dictionaries, stacks, queues

� C++, Java 5

Formal parameter(s)

Actual parameter(s)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
69© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

69

Generalization vs. Aggregation

� Generalization and aggregation are often confused

�Generalization represents an “is a” or “kind-of” relationship

�Aggregation represents a “part-of” relationship

Is this correct?

OOAD with UML2 and RSM

Part III – Object-Oriented Design
70© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

70

Generalization vs. Aggregation (cont.)

A WindowWithScrollbar “is a” Window
A WindowWithScrollbar “contains a” Scrollbar

OOAD with UML2 and RSM

Part III – Object-Oriented Design
71© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

71

Generalization: Substitution Principle

� Follows the “is a” style of programming

� Liskov Substitution Principle: It should be possible to replace an object
of type T by any instance of a subtype of T

Do these classes follow the “is a” style of programming?

A subtype is a type of relationship expressed with inheritance. A subtype specifies that
the descendent is a type of the ancestor and must follow the rules of the “is a” style of
programming.

The “is a” style of programming states that the descendent "is a" type of the ancestor and
can fill in for all its ancestors in any situation.

The “is a” style of programming passes the Liskov Substitution Principle, which states: “If
for each object O1 of type S there is an object O2 of type T such that for all programs P
defined in terms of T, the behavior of P is unchanged when O1 is substituted for O2 then
S is a subtype of T.”

OOAD with UML2 and RSM

Part III – Object-Oriented Design
72© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

72

Generalization: Substitution Principle (cont.)

� Classes Lion and Tiger follow the Substitution Principle, not Stack

The classes on the left-hand side of the diagram do follow the "is a" style of
programming: a Lion is an Animal and a Tiger is an animal.

The classes on the right side of the diagram do not follow the “is a” style of
programming: a Stack is not a List. Stack needs some of the behavior of a List but not all
of the behavior. If a method expects a List, then the operation insert(position) should be
successful. If the method is passed a Stack, then the insert (position) will fail.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
73© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

73

Sharing Implementation: Factoring

� Supports the reuse of the implementation of another class

� Cannot be used if the class you want to “reuse” cannot be changed

OOAD with UML2 and RSM

Part III – Object-Oriented Design
74© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

74

Sharing Implementation: Delegation

� Supports the reuse of the implementation of another class

� Can be used even if the class you want to “reuse” cannot be changed

With delegation, you use a composition relationship to “reuse” the desired functionality.
All operations that require the “reused” service are “passed through” to the contained
class instance.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
75© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

75

Refining Relationships: Example

� In the university, there are full-time students and part-time students

�Part-time students may take a maximum of three courses but there is no
maximum for full-time students

�Full-time students have an expected graduation date but part-time students
do not

� A generalization may be created to factor out common data
�But what happens if a part-time student becomes a full-time student?

Changing a student from part-time to full-time involves a non-trivial sequence of steps:

• Creation of an object FullTimeStudent.

• Copy of the shared data from PartTimeStudent to FullTimeStudent.

• Notification to all clients of PartTimeStudent.

• Destruction of the PartTimeStudent object.

And what happens if in addition there is a requirement to maintain a history of the
student.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
76© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

76

Refining Relationships: Example (cont.)

� The solution makes the change from PartTime to FullTime simple and
efficient (no data copy or notifications)

� Now possible to maintain a history by simply changing the
composition multiplicity to 1..*

� Added flexibility: e.g. if a student lives on the campus, we could add
additional data, such as the room location, in a ResidentInfo class with
a 0..1 composition from Student to ResidentInfo

The solution makes the change from PartTime to FullTime simple and efficient. The data
copy and the notifications to clients of PartTime are no longer required. It is now possible
to maintain a history by simply changing the composition multiplicity to 1..*. A
dateOfChange attribute can then be added to Classification and the history list can be
ordered by date.

What’s more, this structure adds to the flexibility of the model: imagine for instance that
the student lives on the campus. In this case, we could add additional data, such as the
room location, in a ResidentInfo class with a 0..1 composition from Student to
ResidentInfo.

Note: The State pattern uses this structure in which a class State is introduced instead of
Classification. The aggregate (the equivalent of Student in our diagram) can then invoke
operations without having to know the current state. When there is a change of state, the
aggregate receives a new State object, an instance of a subclass of State. When a
request is received, the aggregate simply invokes the correct operation of State, as it is
implemented in the subclass.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
77© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

77

Exercise (Optional)

� Perform the exercise provided by
the instructor (lab 7)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
78© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

78

OOAD with UML2 and RSM

Part III – Object-Oriented Design
79© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

13. Subsystem Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
80© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

80

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
81© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

81

Subsystem Design

� Purpose

�To incorporate the subsystems in the Design model and document their
behavior

� Role
�Designer

� Major Steps
� Incorporate the subsystems into the Design model

�Specify the internal behavior of the subsystems

OOAD with UML2 and RSM

Part III – Object-Oriented Design
82© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

82

Where Are We?

� Incorporate the subsystems into the Design model

� Specify the internal behavior of the subsystems

OOAD with UML2 and RSM

Part III – Object-Oriented Design
83© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

83

Review: Subsystem and Subsystem Interfaces

� Subsystems are components that provide services to their clients only
through public interfaces

�Any two subsystems that realize the same interfaces are interchangeable

�Subsystems and subsystem interfaces were identified in the Identify Design
Elements task (module 10)

Analysis Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
84© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

84

Review: Incorporating Interfaces in Class Diagrams

� Every relationship to the initial analysis class must be replaced by an
equivalent relationship to the subsystem interface

Keep in mind that you
may be introducing new
dependencies for the
client classes: here
RegistrationController
now also depends on
Semester and
CourseOfferingList

Same role name

In RSA/RSM, these changes have to be performed manually:

• Retrieve the interface to use and drag it to the diagram

• Select the relationship and move the target end from the analysis class to the
interface

• Delete the analysis class from the diagram

• Delete the analysis class from the design model after all changes have been
made

OOAD with UML2 and RSM

Part III – Object-Oriented Design
85© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

85

Review: Incorporating Interfaces in Sequence Diagrams

In RSA/RSM, simply drag the interface over the analysis object and update the message.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
86© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

86

Encapsulating Subsystem Interactions

� Subsystem interactions must be described in their own interaction
diagrams (next topic)

� Imagine we have an analysis interaction involving an analysis class
(A) that is converted to an interface IA

If A becomes an interface
in design, then the call to :B
should be described in the
subsystem interaction only

:A :B
:IA :B

Subsystem A

Analysis Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
87© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

87

Where Are We?

� Incorporate the subsystems into the Design model

� Specify the internal behavior of the subsystems

OOAD with UML2 and RSM

Part III – Object-Oriented Design
88© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

88

Internal Behavior of Subsystems

� So far, we have only reasoned in terms of the outside view of the
subsystems (the interfaces)

� We are now looking at the internal behavior

�Keep in mind, encapsulation is the key: the client is completely independent
of the subsystems that provide the implementation

Subsystems are similar to
packages in the sense they
contain other design
elements:

� At least one of those
design elements will
“realize” the interface(s)

� Design elements inside a
subsystem are never
public

OOAD with UML2 and RSM

Part III – Object-Oriented Design
89© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

89

Internal Behavior of Subsystems (cont.)

� Similar to any collaboration

�One (or more) interaction diagram(s) for each service provided by the
subsystem

�One (or more) class diagram(s) showing the classes involved in the
implementation of the services

�To illustrate this discussion, we will use the CourseCatalog subsystem

� In Identify Design Mechanisms, we described a JDBC Mechanism to
apply to persistent classes

OOAD with UML2 and RSM

Part III – Object-Oriented Design
90© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

90

Review: The JDBC Persistency Mechanism

See module 11,
slides 46 to 48 for a
more complete
description of the
JDBC mechanism

OOAD with UML2 and RSM

Part III – Object-Oriented Design
91© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

91

Step 1: Create the Class That Realizes the Interface

CourseCatalogImpl
Main Class Diagram

OOAD with UML2 and RSM

Part III – Object-Oriented Design
92© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

92

Step 2: Incorporate the JDBC Mechanism

OOAD with UML2 and RSM

Part III – Object-Oriented Design
93© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

93

Retrieve Course Offerings Interaction Diagram

Note the use of an
anonymous object

to represent the
client

Rather than duplicating the information, we make use of the
Interaction Use UML2 construct

OOAD with UML2 and RSM

Part III – Object-Oriented Design
94© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

94

Controlling Dependencies

� Controlling dependencies is critical for the architecture (see slides in
module 8 about component-based architectures and in module 9
about layered architectures)

� Dependencies result from:
�Relationships from one element to

another

�References to another element in an
operation parameters and/or return type

�References to another element in an
attribute type

� In the case of our subsystem,
it was very easy to determine
the dependencies from our
subsystem to other components

�For a complete system, you need to
automate this processing (see exercise)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
95© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

95

Exercise

� Perform the exercise provided by
the instructor (lab 8)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
96© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

96

OOAD with UML2 and RSM

Part III – Object-Oriented Design
97© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

14. Describe the Run-Time Architecture and Distribu tion

OOAD with UML2 and RSM

Part III – Object-Oriented Design
98© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

98

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
99© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

99

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Concurrency Control

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
100© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

100

What Is Concurrency?

� The performance of two or more
activities during the same time
interval

� Example of concurrency at work:
�Parallel roads require little

coordination

�Two-way roads require some
coordination for safe interaction

� Intersections require careful
coordination

Parallel

Two-way

Intersections

Concurrency is the tendency for things to happen at the same time in a system.
Concurrency is a natural phenomenon, of course. In the real world, at any given time
many things are happening simultaneously. When we design software to monitor and
control real-world systems, we must deal with this natural concurrency.

When dealing with concurrency issues in software systems, you must consider two
important aspects:

• Being able to detect and respond to external events occurring in a random
order.

• Ensuring that these events are responded to in some minimum required
interval.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
101© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

101

Why Do We Need Concurrency?

� Some reasons for concurrency

�Reactive software systems:

� Many systems must respond to externally generated events which may
occur at somewhat random times, in some-what random order, or both

�Optimized processing time

� Executing tasks in parallel

� Preventing one activity from blocking another while waiting for I/O

�Controllability of the system

� Ability to start, stop, or otherwise influence in mid-stream a system
function

� Concurrent software permits a “separation of concerns” among
concurrent activities

� But, when concurrent activities interact or share the same resources,
concurrency issues will arise

�Lost updates, race conditions, deadlocks, etc.

Some of the driving forces behind finding ways to manage concurrency are external. That
is, they are imposed by the demands of the environment. In real-world systems, many
things are happening simultaneously and must be addressed “in real-time” by software.
To do so, many real time software systems must be “reactive.” They must respond to
externally generated events that might occur at somewhat random times, in somewhat
random order, or both.

There also can be internally inspired reasons for concurrency. For example, performing
tasks in parallel can substantially speed up the computational work of a system if multiple
CPUs are available. Even within a single processor, multitasking can dramatically speed
things up by preventing one activity from blocking another while waiting for I/O. A
common situation in which this occurs is during the startup of a system. There are often
many components, each of which requires time to be made ready for operation.
Performing these operations sequentially can be painfully slow.

Controllability of the system can also be enhanced by concurrency. For example, one
function can be started, stopped, or otherwise influenced in midstream by other
concurrent functions — something extremely difficult to accomplish without concurrent
components.
If each concurrent activity evolved independently, in a truly parallel fashion, managing
them would be relatively simple: we could just create separate programs to deal with
each activity. However, this is not the case. The challenges of designing concurrent
systems arise mainly because of the interactions that happen between concurrent
activities. When concurrent activities interact, some sort of coordination is required.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
102© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

102

Realizing Concurrency: Concurrency Mechanisms

� To support concurrency, a system must provide for multiple threads of
control

� Common concurrency mechanisms
�Multitasking

� The operating systems simulate concurrency on
a single CPU by interleaving the execution of
different tasks

�Multiprocessing

� Multiple CPUs execute concurrently

�Application-based solutions

� The application software takes responsibility for
switching between different branches of code
at appropriate times

Of course, multiple processors offer the opportunity for truly concurrent execution. Most
commonly, each task is permanently assigned to a process in a particular processor, but
under some circumstances tasks can be dynamically assigned to the next available
processor. Perhaps the most accessible way of doing this is by using a “symmetric
multiprocessor.” In such a hardware configuration, multiple CPUs can access memory
through a common bus.

Operating systems that support symmetric multiprocessors can dynamically assign
threads to any available CPU. Examples of operating systems that support symmetric
multiprocessors are SUN’s Solaris and Microsoft’s Windows NT.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
103© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

103

Concurrency Requirements

� Concurrency requirements are driven by:

�The degree to which the system must be distributed

�The degree to which the system is event-driven

�The computation intensity of key algorithms

�The degree of parallel execution supported by the environment

� Concurrency requirements are ranked
in terms of importance to resolve conflicts

Concurrency requirements define the extent to which parallel execution of tasks is
required for the system. These requirements help shape the architecture.

A system whose behavior must be distributed across processors or nodes virtually
requires a multi-process architecture. A system that uses some sort of Database
Management System or Transaction Manager also must consider the processes that
those major subsystems introduce.

If dedicated processors are available to handle events, a multi-process architecture is
probably best. On the other hand, to ensure that events are handled, a uni-process
architecture may be needed to circumvent the “fairness” resource-sharing algorithm of
the operating system: It may be necessary for the application to monopolize resources by
creating a single large process, using threads to control execution within that process.

In order to provide good response times, it might be necessary to place computationally
intensive activities in a process or thread of their own so that the system still is able to
respond to user inputs while computation takes place, albeit with fewer resources. If the
operating system or environment does not support threads (lightweight processes), there
is little point in considering their impact on the system architecture.

The above requirements are mutually exclusive and might conflict with one another.
Ranking requirements in terms of importance will help resolve the conflict.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
104© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

104

Example: Course Registration System

� In the Course Registration System, the concurrency requirements
come from the requirements and the architecture:

�Multiple users must be able to perform their work concurrently

� If a course offering becomes full while a student is building a schedule
including that offering, the student must be notified

�Risk-based prototypes have found that the legacy course catalog database
cannot meet our performance needs without some creative use of mid-tier
processing power

The above concurrency requirements were documented in the Course Registration
System Supplemental Specification.

The first requirement is typical of any system, but the multi-tier aspects of our planned
architecture will require some extra thought for this requirement.

The second requirement demonstrates the need for a shared, independent process that
manages access to the course offerings.

The third issue leads us to use some sort of mid-tier caching or preemptive retrieval
strategy.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
105© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

105

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Dealing With Concurrency Problems

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
106© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

106

Processes and Threads

� Process

�Provides heavyweight flow of control

� Is stand-alone

�Can be divided into individual threads

�Provides isolation for the internal data
it works on but use up a lot of resources

� Thread
�Provides lightweight flow of control

�Runs in the context of an enclosing process

�Provides good utilization of resources but
usually share memory, which leads to
concurrent problems

When the operating system provides multitasking, a common unit of concurrency is the
process. A process is an entity provided, supported, and managed by the operating
system whose sole purpose is to provide an environment in which to execute a program.
The process provides a memory space for the exclusive use of its application program, a
thread of execution for executing it, and perhaps some means for sending messages to
and receiving them from other processes. In effect, the process is a virtual CPU for
executing a concurrent piece of an application.

Many operating systems, particularly those used for real-time applications, offer a “lighter
weight” alternative to processes, called “threads” or “lightweight threads.”

Threads are a way of achieving a slightly finer granularity of concurrency within a
process. Each thread belongs to a single process, and all the threads in a process share
the single memory space and other resources controlled by that process.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
107© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

107

Modeling Processes

� Processes can be modeled using

� Active classes (Class Diagrams)
and Objects (Interaction Diagrams)

� Components (Component
Diagrams)

� Stereotype <<process>>

� Process relationships can be
modeled as dependencies

� Threads can be modeled using

� Regular classes

� Stereotype <<thread>>

� Process to thread and
process/thread to class/subsystem
modeled as compositions

An active class is a class that
“owns” its own thread of
execution
(this is not the standard UML2
representation)

You can use “active” classes to model processes and threads. An active class is a class
that “owns” its own thread of execution and can initiate control activity, contrasted with
passive classes that can only be acted upon. Active classes can execute in parallel (that
is, concurrently) with other active classes.

The model elements can be stereotyped to indicate whether they are processes
(<<process>> stereotype) or threads (<<thread>> stereotype).

Note: Even though you use “active” classes to model processes and threads, they are
classes only in the meta-modeling sense. They aren’t the same kind of model elements
as classes. They are only meta-modeling elements used to provide an address space
and a run-time environment in which other class instances execute, as well as to
document the process structure. If you try to take them further than that, confusion may
result.

Process communication is modeled using dependency relationship whether you use
classes or components to represent your processes.

In cases where the application has only one process, the processes may never be
explicitly modeled. As more processes or threads are added, modeling them becomes
important.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
108© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

108

Example: Course Registration System

� StudentApplication

�One instance for each
student who is currently
registering for courses

� CourseRegistrationProcess
�One instance for each

student who is currently
registering for courses

� CourseCatalogSystem

�Separate process that can
be shared by multiple users
registering for courses

� The threads are used to
asynchronously retrieve
items from the legacy
system

The above example demonstrates how processes and threads are modeled. Processes
and threads are represented as stereotyped classes. Separate processes have
dependencies among them. When there are threads within a process composition is
used. The composition relationship indicates that the threads are contained within the
process (that is, cannot exist outside of the process).

The StudentApplication process manages the student functionality, including user
interface processing and coordination with the business processes. There is one instance
of this process for each student who is currently registering for courses.

The CourseRegistrationProcess encapsulates the course registration processing. There
is one instance of this process for each student who is currently registering for courses.

The CourseRegistrationProcess talks to the separate CourseCatalogSystemAccess
process, which manages access to the legacy system. CourseCatalogSystemAccess is a
separate process that can be shared by multiple users registering for courses. This
allows for a cache of recently retrieved courses and offerings to improve performance.

The separate threads within the CourseCatalogSystemAccess process, CourseCache,
and OfferingCache are used to asynchronously retrieve items from the legacy system.
This improves response time.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
109© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

109

Modeling Process Lifecycles

In the Automated Teller Machine, asynchronous events must be handled coming from
three different sources: the user of the system, the ATM devices (in the case of a jam in
the cash dispenser, for example), or the ATM Network (in the case of a shutdown
directive from the network). To handle these asynchronous events, we can define three
separate threads of execution within the ATM itself, as shown below using active classes
in UML.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
110© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

110

Modeling Process Relationships

� Process relationships can be modeled as dependencies

� Process relationships must support design element relationships

OOAD with UML2 and RSM

Part III – Object-Oriented Design
111© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

111

Example: Course Registration System

OOAD with UML2 and RSM

Part III – Object-Oriented Design
112© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

112

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Concurrency Control

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
113© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

113

Dealing With Concurrency Problems

� About concurrency problems:

�Difficult to enumerate the possible scenarios

�Hard to test for

�Difficult to reproduce

� Two main situations

�Loss of data during the execution of database transactions

� Example: two sessions S1 and S2 read the same record holding a value
“X”, S1 appends a “Y” to the data and commits the result (“XY”), S2
appends a “Z” to the data and commits the result (“XZ”) overwriting S1’s
update (lost update)

� Incorrect results generated during the concurrent execution of multiple
interacting computational tasks (concurrent computing)

� Example: if two threads T1 and T2, which increment the value of a global
integer by one, run simultaneously without locking or synchronization, the
result can be 1 or 2 (race condition)

Software flaws in Life-critical systems can be disastrous. Race conditions were among
the flaws in the Therac-25 radiation therapy machine, which led to the death of five
patients and injuries to several more. Another example is the Energy Management
System provided by GE Energy and used by Ohio-based FirstEnergy Corp. (and by many
other power facilities as well). A race condition existed in the alarm subsystem; when
three sagging power lines were tripped simultaneously, the condition prevented alerts
from being raised to the monitoring technicians, delaying their awareness of the problem.
This software flaw eventually led to the North American Blackout of 2003. (GE Energy
later developed a software patch to correct the previously undiscovered error.)

(Source: Wikipedia 2007)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
114© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

114

Concurrency Control (in the Field of Databases)

� Purpose

�To ensure that database transactions are executed in a safe manner

� Two main forms of concurrency control:
�Optimistic lock

� Conflict detection scheme

�Pessimistic lock

� Conflict prevention scheme

� Can lead to deadlock situations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
115© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

115

Optimistic Lock Pattern

� Source: Martin Fowler,
Optimistic Offline Lock
in Patterns of
Enterprise Application
Architecture, Addison
Wesley, 2003

System Transaction Boundary

Business Transaction Boundary

OOAD with UML2 and RSM

Part III – Object-Oriented Design
116© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

116

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Concurrency Control

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

Client/server is a conceptual way of breaking up the application into service requestors
(clients) and service providers (servers).

A client often services a single user and often handles end-user presentation services
(GUIs). A system can consist of several different types of clients, examples of which
include user workstations and network computers.

The server usually provides services to several clients simultaneously. These services
are typically database, security, or print services. A system can consist of several
different types of servers. For example: database servers, handling database machines
such as Oracle, DB2; print servers, handling the driver logic, such as queuing for a
specific printer; communication servers (TCP/IP, ISDN, X.25); window manager servers
(X); and file servers (NFS under UNIX).

The application and business logic is distributed among both the client and the server
(application partitioning).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
117© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

117

Client/Server Architectures

� Typical applications include
�Application Services

�Business Services

�Data Services

� Different types of architectures
based on how these services
are allocated to processing
nodes, for instance:
�Two-Tier “Fat Client” Architecture

�Three-Tier Architecture

�Web Application Architecture �

Client

WWW Browser

Web Server

HTML
CGI

ASP Java

Business Object
Services

Business Object
Engine

Database Server(s)

Application
Services
Business
Services

Data Services

Fat client distribution pattern: Much of the functionality in the system runs on the client.

Three-tier architecture: The system is divided into three logical partitions: application services, business
services, and data services. The “logical partitions” may in fact map to three or more physical nodes.

Application services, primarily dealing with GUI presentation issues, tend to execute on a dedicated
desktop workstation with a graphical, windowing operating environment.

Data services tend to be implemented using database server technology, which normally executes on one
or more high-performance, high-bandwidth nodes that serve hundreds or thousands of users, connected
over a network.

Business services are typically used by many users in common, so they tend to be located on specialized
servers as well, although they may reside on the same nodes as the data services.

Partitioning functionality along these lines provides a relatively reliable pattern for scalability: by adding
servers and rebalancing processing across data and business servers, a greater degree of scalability is
achieved.

At the other end of the spectrum from the fat client is the typical Web Application (which might be
characterized as fat server or “anorexic client”). Since the client is simply a Web browser running a set of
HTML pages and Java applets, Java Beans, or ActiveX components, there is very little application there at
all. Nearly all work takes place on one or more Web servers and data servers.

Web applications are easy to distribute and easy to change. They are relatively inexpensive to develop and
support (since much of the application infrastructure is provided by the browser and the web server).
However, they might not provide the desired degree of control over the application, and they tend to
saturate the network quickly if not well-designed (and sometimes despite being well-designed).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
118© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

118

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Concurrency Control

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
119© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

119

Process-to-Node Allocation Considerations

� Client/Server architecture

� Response time and system throughput

� Minimization of cross-network traffic

� Node capacity

� Communication medium bandwidth

� Availability of hardware and communication links

� Rerouting requirements

Processes must be assigned to a hardware device for execution in order to distribute the
workload of the system.

Those processes with fast response time requirements should be assigned to the fastest
processors.

Processes should be allocated to nodes so as to minimize the amount of cross-network
traffic. Network traffic, in most cases, is quite expensive. It is an order of magnitude or
two slower than inter-process communication. Processes that interact to a great degree
should be co-located on the same node. Processes that interact less frequently can
reside on different nodes. The crucial decision, and one that sometimes requires
iteration, is where to draw the line.

Additional considerations:

• Node capacity (in terms of memory and processing power)

• Communication medium bandwidth (bus, LANs, WANs)

• Availability of hardware and communication links

• Rerouting requirements for redundancy and fault-tolerance

OOAD with UML2 and RSM

Part III – Object-Oriented Design
120© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

120

Modeling the Allocation of Processes to Nodes

� Processes are typically represented as components stereotyped
<<process>>

� Processes will be rendered in the physical world as executables

�An executable will be represented as an artifact stereotyped <<executable>>

� Executables will be deployed to processing nodes

(the three representations above are equivalent)

Deployment diagrams allow you to capture the topology of the system nodes, including
the assignment of run-time elements to them.

A deployment diagram contains nodes connected by associations. The associations
indicate a communication path between the nodes.

Nodes may contain artifacts which indicates that the artifact lives on or runs on the node.
An example of a run-time object is a process.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
121© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

121

Deployment Diagram with Allocated Processes

The above diagram once again illustrates the Deployment View for the Course
Registration System. Note: No threads are shown in the above diagram, because threads
always run in the context of a process.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
122© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

122

Where Are We?

� Run-Time Architecture

� Introduction to Concurrency

�Modeling Processes and Threads

�Concurrency Control

� Distribution

�Client/Server Architectures

�Mapping Processes to Nodes

�Design Considerations

OOAD with UML2 and RSM

Part III – Object-Oriented Design
123© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

123

Example of a Distribution Mechanism: Java RMI

� RMI = Remote Method Invocation

RemoteObject is the
distributed class

Remote Method Invocation (RMI) is a Java-specific mechanism that allows client objects
to invoke operations on server objects as if they were local. The only catch is that, with
basic RMI, you must know where the server object resides.

The mechanisms of invoking an operation on a remote object are implemented using
“proxies” on the client and server, as well as a service that resides on both that handles
the communication.
The client establishes the link with the remote object via the Naming utility that is
delivered with RMI. There is a single instance of the Naming class on every node. The
Naming instances communicate with one another to locate remote objects. Once the
connection is established (via lookup()), it may be reused any time the client needs to
access the remote object.
RemoteStub and RemoteSkeleton are automatically generated. To get them, you run the
compiled distributed class through the rmic compiler to generate the stubs and skeletons.
You then must add the code to look up the object on the server. The lookup returns a
reference to the auto-generated RemoteStub.

For example, say we had a class, ClassA, that is distributed through RMI. Once ClassA
is created, it is run through the rmic compiler, which generates the stub and skeleton.
When you do the lookup, the Naming object returns a reference to a ClassA, but it is
really a ClassA stub. Thus, no client adjusting needs to happen. Once a class is run
through rmic, you can access it as if it were a local class, the client does not know the
difference.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
124© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

124

Using the Proxy Design Pattern

� A proxy is a placeholder
for another object to
control access to it

� Applicability
�Remote proxy (our

example)

�Virtual proxy (creates
“expensive” objects on
demand)

�Etc.

if (loc == null) {
// retrieve copy of the RealSubject instance
// from a remote site
loc = …;

}
loc.request();

Depends only on
Subject

OOAD with UML2 and RSM

Part III – Object-Oriented Design
125© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

125

Exercise

� Perform the exercise provided by
the instructor (lab 9)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
126© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

126

OOAD with UML2 and RSM

Part III – Object-Oriented Design
127© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

®

IBM Software Group Rational Software France

© 2005-2007 IBM Corporation

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

15. Design the Database

OOAD with UML2 and RSM

Part III – Object-Oriented Design
128© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

128

Roadmap for the OOAD Course

� Analysis

�Architectural Analysis
(Define a Candidate Architecture)

�Use-Case Analysis
(Analyze Behavior)

� Design
� Identify Design Elements

(Refine the Architecture)

� Identify Design Mechanisms
(Refine the Architecture)

�Class Design
(Design Components)

�Subsystem Design
(Design Components)

�Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

�Design the Database

Analysis

Design

OOAD with UML2 and RSM

Part III – Object-Oriented Design
129© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

129

Where Are We?

� Relational Databases and Object Orientation

� Mapping Objects to Tables

� Strategies for Implementing Persistence

OOAD with UML2 and RSM

Part III – Object-Oriented Design
130© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

130

The “Object/Relational Impedance Mismatch”

� RDBMS and Object Orientation are not entirely compatible

�RDBMS

� Focus is on data

� Better suited for ad-hoc relationships and reporting application

� Expose data (column values)

�Object Oriented system

� Focus is on behavior

� Better suited to handle state-specific behavior where data is secondary

� Hide data (encapsulation)

Relational databases and object orientation are not entirely compatible. They represent
two different views of the world: In an RDBMS, all you see is data; in an object-oriented
system, all you see is behavior. The object-oriented model tends to work well for systems
with complex behavior and state-specific behavior in which data is secondary, or systems
in which data is accessed navigationally in a natural hierarchy (for example, bills of
materials). The RDBMS model is well suited to reporting applications and systems in
which the relationships are dynamic or ad hoc.

The real fact of the matter is that a lot of information is stored in relational databases, and
if object-oriented applications want access to that data, they need to be able to read and
write to an RDBMS. In addition, object-oriented systems often need to share data with
non-object-oriented systems. It is natural, therefore, to use an RDBMS as the sharing
mechanism.

While object-oriented and relational design share some common characteristics (an
object’s attributes are conceptually similar to an entity’s columns), fundamental
differences make seamless integration a challenge. The fundamental difference is that
data models expose data (through column values) while object models hide data
(encapsulating it behind its public interfaces).

OOAD with UML2 and RSM

Part III – Object-Oriented Design
131© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

131

The Data and Object Models

An Object Model �

⊳ And the Relational Data Model

Although the two technologies are not fully
compatible, it is relatively easy to derive one
model from the other if you can define the
mapping between tables and classes …

OOAD with UML2 and RSM

Part III – Object-Oriented Design
132© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

132

Where Are We?

� Relational Databases and Object Orientation

� Mapping Objects to Tables

� Strategies for Implementing Persistence

OOAD with UML2 and RSM

Part III – Object-Oriented Design
133© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

133

Mapping Persistent Classes to Tables

� Only persistent UML classes should be mapped to DB tables

�Typically <<Entity>> classes

� A UML object maps to a row

� A persistent UML attribute maps to a column

� Either the primary key of the table maps to
explicit attributes in the UML class or it
must be created (no equivalent in the UML
class)

A Data Modeling Profile

� A UML profile should be
provided to fine-tune the
mapping between classes and
tables (e.g. use a <<pk>>
stereotype to indicate what
attribute should be mapped to
the primary key)

� No standard UML profile for
Data Modeling (01/2007)

The persistent classes in the Design Model represent the information the system must
store. Conceptually, these classes might resemble a relational design (for example, the
classes in the Design Model might be reflected in some fashion as entities in the
relational schema). As we move from elaboration into construction, however, the goals of
the Design Model and the Relational Data Model diverge. The objective of relational
database development is to normalize data, whereas the goal of the Design Model is to
encapsulate increasingly complex behavior. The divergence of these two perspectives —
data and behavior — leads to the need for mapping between related elements in the two
models.

In a relational database written in third normal form, every row in the tables — every
“tuple" — is regarded as an object. A column in a table is equivalent to a persistent
attribute of a class (keep in mind that a persistent class may have transient attributes).
So, in the simple case where we have no associations to other classes, the mapping
between the two worlds is simple. The data type of the attribute corresponds to one of
the allowable data types for columns.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
134© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

134

Mapping Associations Between Persistent Classes

� Associations between two persistent objects are realized as foreign
keys to the associated objects
�A foreign key is a column in one table that contains the primary key value of

associated object

Associations between two persistent objects are realized as foreign keys to the
associated objects. A foreign key is a column in one table that contains the primary key
value of the associated object.

Assume we have the above association between Course and CourseOffering. When we
map this into relational tables, we get a Course table and a Course Offering table. The
Course Offering table has columns for attributes listed, plus an additional COURSE_ID
column that contains foreign-key references to the primary key of associated rows in the
Course table. For a given Course Offering, the COURSE_ID column contains the code of
the Course with which the Course Offering is associated. Foreign keys allow the RDBMS
to join related information together.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
135© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

135

Mapping Aggregation to the Data Model

� Aggregation is also modeled using foreign key relationships

Aggregation is also modeled using foreign key relationships.

Assume we have the above aggregation between Student and Schedule. (Note: This is
modeled as a composition, but remember that composition is a nonshared aggregation).

When we map this into relational tables, we get a Student table and a Schedule table.
The Schedule table has columns for attributes listed, plus an additional column for
Student_ID that contains foreign-key references to associated rows in the Student table.
For a given Schedule, the Student_ID column contains the Student_ID of the Student
that the Schedule is associated with. Foreign keys allow the RDBMS to join related
information together.

In addition, to provide referential integrity in the Data Model, we would also want to
implement a cascading delete constraint, so that whenever the Student is deleted, all of
its Schedules are deleted as well.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
136© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

136

Other Relationships

� Modeling many-to-many relationships

�Creation of an associative table holding the foreign keys to the other two
tables

� Modeling Inheritance in the Data Model
�A Data Model does not support modeling inheritance in a direct way

�Three options:

� Map the entire class hierarchy to a single table

� Map each concrete class to its own table

� Map each class to its own table

The standard relational Data Model does not support modeling inheritance associations
in a direct way. A number of strategies can be used to model inheritance:

• Use separate tables to represent the super-class and subclass. Have, in the
subclass table, a foreign key reference to the super-class table. In order to
“instantiate” a subclass object, the two tables would have to be joined together.
This approach is conceptually easier and makes changes to the model easier,
but it often performs poorly due to the extra work.

• Duplicate all inherited attributes and associations as separate columns in the
subclass table. This is similar to de-normalization in the standard relational Data
Model.

OOAD with UML2 and RSM

Part III – Object-Oriented Design
137© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

137

Where Are We?

� Relational Databases and Object Orientation

� Mapping an Object Model to a Data Model

� Strategies for Implementing Persistence

OOAD with UML2 and RSM

Part III – Object-Oriented Design
138© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

138

Strategies for Implementing Persistence

� Business objects access data sources directly

� In Java applications, this is typically done using JDBC

�Simple but business objects directly coupled to the database

� Data access objects (DAOs)
�DAOs encapsulate the database access logic

� Isolate business objects from the data sources

� Persistence frameworks
�Database access code automatically generated by the persistence

framework

�Overall performance usually better

�Examples: Enterprise JavaBeans (EJB), Hibernate, OJB
(ObJectRelationalBridge)

� Any combination of the above

OOAD with UML2 and RSM

Part III – Object-Oriented Design
139© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

139

The Data Access Object (DAO) Pattern

� Source: Core J2EE Patterns, Deepak Alur, John Crupi & Dan Malks,
Prentice Hall, 2003

� A Data Access Object encapsulates all access to the persistent store:

�The DAO manages the connection with the data source to store and obtain
data

TransferObject (TO) is another J2EE
Core Pattern

OOAD with UML2 and RSM

Part III – Object-Oriented Design
140© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

140

The Data Access Object (DAO) Pattern (cont.)

OOAD with UML2 and RSM

Part III – Object-Oriented Design
141© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

141

Exercise

� There is no exercise in this
module

OOAD with UML2 and RSM

Part III – Object-Oriented Design
142© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

IBM Software Group | Rational software

142

