
OOAD with UML2 and RSM – Student Workbook 1

Object-Oriented Analysis and Design with
UML2 and Rational Software Modeler

Student Workbook

OOAD with UML2 and RSM – Student Workbook 2

Table of contents

Lab 1 – Sequence Diagram .. 3
Lab 2 – Class Diagrams ... 4

Task 2.1: Modeling graphs, points and connectors .. 4
Task 2.2: Modeling a family tree ... 4
Task 2.3: Modeling a file system ... 4

Lab 3 – Requirements Management... 5
Task 3.1: Preliminary setup.. 5
Task 3.2: Identify the actors and use cases of the payroll system.. 10

Lab 4 – Architectural Analysis... 12
Task 4.1: Creating the Analysis Model .. 12
Task 4.2: Identify the Key Abstractions of the Payroll System... 14
Task 4.3: Represent the Higher Layers of the Architecture ... 16

Lab 5 – Use Case Analysis... 17
Task 5.1: Create Use-Case Realizations .. 17
Task 5.2: Assign the Use-Case Behavior to Classes.. 18
Task 5.3: Complete the VOPC... 19
Open the VOPC diagram for the Maintain Timecard UC Realization. 19
Task 5.4: Map Analysis Mechanisms to Classes ... 19

Lab 6 – Identify Design Elements.. 20
Task 6.1: Transform an Analysis Class into a Subsystem ... 20

Lab 7 – Class Design.. 22
Lab 8 – Subsystem Design ... 23
Lab 9 – Finalize the Design Model .. 24
Appendix 1 – Course Registration Requirements .. 25

Problem Statement ... 25
Glossary.. 26
Supplementary Specifications .. 27
Register for Courses UC .. 29

Appendix 2 – Payroll System... 32
Problem Statement ... 32
Glossary.. 34
Supplementary Specifications .. 35
Maintain Timecard UC... 36
Run Payroll UC .. 38

OOAD with UML2 and RSM – Student Workbook 3

Lab 1 – Sequence Diagram

Interpret the following sequence diagram:

OOAD with UML2 and RSM – Student Workbook 4

Lab 2 – Class Diagrams

Task 2.1: Modeling graphs, points and connectors

Create a class diagram to model the following concepts:

1. A drawing is composed of several graphs.
2. A graph is composed of one or more points, that may be connected or not.
3. One connector connects two points. There can be only one connector between two

points.
4. Every point has a color.
5. Every connector has a color.
6. All the connectors of a given graph have the same color.
7. All the points of a given graph have the same color.
8. Destroying a point also destroys the associated connectors.

You can complete these statements with your own assumptions.

Task 2.2: Modeling a family tree

Model in a class diagram a family tree: the fact that one has parents and possibly children.
Add relevant attributes.

Focus on the “biological” family ties – one has always two parents, even if they are deceased.

Consider creating a first model without using generalizations, and a second one with
generalizations.

Hint: It might be necessary to add constraints to accurately model the family tree.

Task 2.3: Modeling a file system

Model a simple file system: a directory may contain other directories and/or files.

Implement the destroy() operation for both directories and files. Assume that a file or
directory can destroy itself by calling a hypothetical system function System.destroy(self).
However, in the case of a directory, this function can be called only if the directory is empty.
For a file, the destroy() operation looks like (in Java-like pseudo-code):

public class File {
 public void destroy() {
 System.destroy(self);
 }
}

OOAD with UML2 and RSM – Student Workbook 5

Lab 3 – Requirements Management

Task 3.1: Preliminary setup
For the remaining labs, the following files are provided:

• ArchitectAssistantxxxxxx.zip contains a plug-in that controls dependencies between
model components. This plug-in is used in the Design section of the course.

• PayrollSystem.zip contains the solutions to the different labs (starting from lab 3).
Please do NOT open the RSM/RSA models before being told to.

Installing the ArchitectAssistant plug-in:

1. Extract the contents of ArchitectAssistantxxxxxx.zip in a valid RSM extension location:

a. An extension location is where plug-ins are installed. You can see all extension
locations by using the command Help > Software Updates > Manage
Configuration (this may take a long time). The snapshot below shows the
default configuration settings: you should use C:\Program Files\IBM\SDP70
as the C:\Program Files\IBM\SDP70Shared location is not updatable.

b. In the example below, the contents of the zip file will be extracted into the
C:\Program Files\IBM\SDP70 directory:

OOAD with UML2 and RSM – Student Workbook 6

2. To ensure that RSA/RSM picks up the newly added plug-in, you must restart
RSA/RSM with the –clean option

a. To add the –clean option, create (or edit) the RSM/RSA shortcut and add “–
clean” as shown below:

b. Restart RSM/RSA.

OOAD with UML2 and RSM – Student Workbook 7

c. To verify that the plug-in was correctly added, do a right-click on any UML
package or model. You should have an ArchitectAssistant submenu as shown
below:

3. If the ArchitectAssistant submenu is not available, the plug-in may be installed but not
enabled:

a. Select Help > Software Updates > Manage Configuration (this may take a
long time).

b. Open the Eclipse location where you installed your plug-in (C:\Program
Files\IBM\SDP70 in our example).

c. If you do not see an entry Architect Assistant 1.1.0, press the Show Disabled
Features icon as shown below:

d. If you now see the Architect Assistant 1.1.0 entry with the symbol , the
feature is disabled. At this point, you simply need to click on Enable as shown
below and restart the workspace as requested. If you don’t see the Architect

OOAD with UML2 and RSM – Student Workbook 8

Assistant 1.1.0 entry, it is likely you have not extracted the plug-in to the
correct location. Go back to step 1!

4. Remove the –clean option from the shortcut (or create a separate shortcut).

Importing the Payroll System solutions (RSA only – for RSM, see next section):

1. File > Import … > Project Interchange > Next

2. In the Import Project Interchange Contents dialog:

a. Select PayrollSystem.zip using the Browse button to the right of the field From
zip file:

b. Check the PayrollSystem project and click Finish

Importing the Payroll System solutions (RSM – also works with RSA):

1. If it is not already the case, start RSM (or RSA) and go to the Modeling perspective.

2. Create a new project called PayrollSystem using the Project wizard:

OOAD with UML2 and RSM – Student Workbook 9

3. Open the zip file, select all the .emx file (see below) and extract them into the
directory where your project was created (check out the full path of the project in the
Properties window):

4. In RSM, right-click the PayrollSystem project and select the Refresh command to see
the files in the Project Explorer.

OOAD with UML2 and RSM – Student Workbook 10

Task 3.2: Identify the actors and use cases of the payroll system

1. If it is not already the case, start RSM (or RSA) and go to the Modeling perspective.

2. Create in the PayrollSystem project a new blank model named Use-Case Model with
Use Case Diagram as the default diagram type.

3. Rename the diagram Main as Global View:

OOAD with UML2 and RSM – Student Workbook 11

4. Create and briefly describe the actors and use cases for the Payroll System in this
diagram, based on the problem statement, glossary and supplementary specifications
provided in the Appendix 2 of this document.

OOAD with UML2 and RSM – Student Workbook 12

Lab 4 – Architectural Analysis

Task 4.1: Creating the Analysis Model

1. In the PayrollSystem project, create a new blank model, named Analysis, and with
class diagram as the default diagram type.

2. Create in the Analysis model two class diagrams respectively names Architectural

Layers and Key Abstractions.

The analysis model should look like this in the project explorer:

3. In the Main diagram, create shortcuts to the newly created diagrams. To do this, you
can simply drag and drop each diagram (make sure to read the note below before you
do) from the Project Explorer onto the Main diagram.

Note: In some configurations, clicking on a diagram in the project explorer or
attempting to drag-and-drop it automatically brings the diagram to the front if it is
already open, thus hiding the intended target (the Main diagram). To avoid this
situation, close the Architectural Layers and Key Abstractions diagrams or use “split
screens” as in the snapshot below.

OOAD with UML2 and RSM – Student Workbook 13

Note: Every package in a model (including the model itself) should have a “default
diagram”. This default diagram is the entry point into the package, i.e. the diagram that
is opened when double-clicking on the package. The Main diagram should contain all
relevant information for the user to easily find his/her way in the package (shortcuts to
other diagrams, main nested packages, textual information and notes, etc.).

4. Add the profiles Analysis Profile and ArchitectAssistant to the Analysis model. First
select the model in the project explorer, then the Profiles tab in the Properties view.
You will need to repeat the Add Profile for each profile.

The profiles should appear in the Applied Profiles list. We will use them in later labs.

OOAD with UML2 and RSM – Student Workbook 14

Task 4.2: Identify the Key Abstractions of the Payroll System

1. For this task, you need:
a. The problem statement and glossary for the Payroll System in Appendix 2 You

should already be familiar with these documents as you used them in lab 3.
b. The Use-Case Model created in lab 3: you can either use the model you created

or the solution provided in model 03. Use Case Model, which you can now
open.

2. Open the Key Abstractions diagram in the Analysis model.

3. Identify the key abstractions of the system and represent them as classes in the Key

Abstractions diagram:
a. Remember: A key abstraction is a concept, an entity that the system must be

able to handle. The key abstractions form an initial set of classes that is useful
to “jump-start” the analysis work.

b. As an example, consider the following extracted from the problem statement:
“Some employees (…) submit timecards that record the date and number of
hours worked for a particular charge number.”

i. Employees and timecards are major entities that the system will have to
handle. They are key abstractions. We therefore want to create two
classes to represent them: Employee and Timecard. This is also the
right time to provide a brief description of each class.

OOAD with UML2 and RSM – Student Workbook 15

ii. Because each employee “owns” the timecards that he/she submits every
week, we will add an association between the 2 classes. An employee
may have 0 to n timecards. A timecard only makes sense if it can be
associated with exactly 1 employee.

iii. Because it is also said that the timecards record the date and number of
hours worked for a particular charge number, we can add period (date
is not enough) and hours worked per project as attributes of Timecard.

Should hours worked per project be more detailed? First, keep in mind
that the purpose of key abstractions is not to create classes that will
survive throughout design (although most will). It may make sense to
provide a more detailed representation (introducing additional classes),
but it is only just that: another representation of the same information…
And there are other factors: knowledge of the business domain, whether
this is a new application or an overhaul of an existing one, etc.

OOAD with UML2 and RSM – Student Workbook 16

Note: When a class is created in a diagram, its parent is the package
containing the diagram. For now, we will not worry about the exact
location of the classes. If it helps you organize the information, feel free
to allocate those classes to specific packages, but be aware we may
have to change this allocation.

Task 4.3: Represent the Higher Layers of the Architecture

The architect has indicated that, at this stage of the analysis, two architectural layers must be
created : the Presentation layer and the Business layer. The Presentation layer depends on the
Business layer.

Create two packages, Presentation and Business, in the Architectural Layers diagram. Assign
the stereotype <<layer>> to these packages.

Draw the necessary relationship to support the statement “the Presentation layer depends on
the Business layer”.

Note: For the time being, it is not necessary to assign abstractions to specific layers.

OOAD with UML2 and RSM – Student Workbook 17

Lab 5 – Use Case Analysis

Task 5.1: Create Use-Case Realizations

You have been assigned the use case Maintain Timecard to analyze.

First create the package UC Realizations in the analysis model. Add the newly created
diagram to the Main diagram of the model.

In the package UC Realizations:

1. Create a package called Maintain Timecard and add this package to the Main diagram
of the UC Realizations package.

2. In the Main diagram of the package Maintain Timecard, create a use-case realization
named Maintain Timecard.

a. Use the Collaboration tool in the Class drawer under the Class entry

b. Still in the same diagram, add the use case Maintain Timecard created in the
lab 3 (or use the use case from model 03. Use-Case Model).

c. Draw a Realization relationship from the use-case realization to the use case.

The diagram should look something like:

OOAD with UML2 and RSM – Student Workbook 18

Task 5.2: Assign the Use-Case Behavior to Classes

For this exercise, you will need the specification for the Maintain Timecard UC in appendix 2
of this document. Also, you can either work from the Analysis model created during the
previous exercise, or from model 05.1. Analysis.

If this is not already the case, make sure the Main diagram for the Maintain Timecard UC
Realization is displayed on your screen.

Create a new sequence diagram for the basic flow of the use case:

1. In the Project Explorer, right-click the Maintain Timecard collaboration () and
select Add Diagram > Sequence Diagram.

2. Name the interaction () and the diagram () Maintain Timecard – Basic Flow(see
below).

3. Create a class diagram called VOPC under the Maintain Timecard collaboration (see
below)

4. Drag and drop the VOPC and Maintain Timecard – Basic Flow diagrams onto the
Main diagram of the Maintain Timecard UC, which should look like this:

OOAD with UML2 and RSM – Student Workbook 19

5. From the textual description of the basic flow, identify the classes that participate in
the use case and assign use case behavior to these classes as this was previously shown
by the instructor:

a. Each object must be assigned to a class (existing or new).

b. Each message between objects must correspond to a class operation.

c. Each participating class will be added to the VOPC diagram (note: for the time
being, we are not concerned with the actual location of the classes – this will
be dealt with at a later time).

d. For each class, define its documentation, analysis stereotype (boundary,
control or entity), and main attributes (entity classes).

Task 5.3: Complete the VOPC

For this exercise, you will need the Maintain Timecard – Basic Flow sequence diagram
created in task 5.2. You can either work from the Analysis model created during the previous
exercise, or from model 05.2. Analysis.

Open the VOPC diagram for the Maintain Timecard UC Realization.

Complete the diagram as follows:

1. Add stereotypes to all classes (if not already done).

2. Create relationships between classes: remember, every link between object is an
instance of a relationship between the corresponding classes:

e. Specify multiplicity and role names as appropriate.

3. Add class responsibilities (if not already done).

4. Add relevant attributes to entity classes (if not already done).

Task 5.4: Map Analysis Mechanisms to Classes

The architect has indicated that the following analysis mechanisms have been identified:

1. Persistence

2. Distribution

3. Security

4. Legacy interface

This exercise will be done as a group discussion.

OOAD with UML2 and RSM – Student Workbook 20

Lab 6 – Identify Design Elements

Task 6.1: Transform an Analysis Class into a Subsystem

For this exercise, you will work from the model 05.4. Design.

Your task is to transform the ProjectManagementDB into a subsystem + corresponding
interface:

1. Create the subsystem ProjectManagementDB in the Business package:

a. Method 1: right-click the Business package and select Add UML > Subsystem.

b. Method 2: in the drawing area, use the Stereotyped Component tool in the
Component drawer (see below), and select the Create <<subsystem>>
component menu entry.

c. Name the component ProjectManagementDB (be careful not to delete the
stereotype while renaming it).

2. Create a package ProjectManagementData in the Business package. This new package
will contain the interface corresponding to the subsystem as well as associated data.

3. In the ProjectManagementDB subsystem, create a class diagram called Subsystem
ProjectManagementDB:

a. Right-click the subsystem in the Project Explorer and select Add Diagram >
Class Diagram.

b. Name the diagram Subsystem ProjectManagementDB.

c. Right-click the newly created diagram in the Project Explorer and select Make
Default Diagram.

4. Using the examples provided in the section Identify Subsystems and Subsystem
Interfaces from module 10, create the interface IProjectManagementDB:

a. Move the boundary class ProjectManagementDB into the subsystem (and
remove its stereotype).

b. Transform the responsibility // retrieve charge numbers in a full operation with
the appropriate parameters and return value.

c. Create the interface IProjectManagementDB (in the package
ProjectManagementData), define its operations and add realization
relationships from the subsystem ProjectManagementDB AND the class
ProjectManagementDB to this interface.

OOAD with UML2 and RSM – Student Workbook 21

5. Replace all references to the analysis class ProjectManagementDB by references to
IProjectManagementDB in the rest of the model (hint: check the Maintain Timecard
UC Realization).

OOAD with UML2 and RSM – Student Workbook 22

Lab 7 – Class Design

For this exercise, you will work from the model 06. Design.

Inspect the model:

1. Open the model if not already done.

2. In the Main diagram, double-click on the Business package, then on the Employee.
This diagram contains the class Employee, its subclasses and several associated classes:

a. The class Paycheck is not displayed not to overload the diagram.

b. Note the attributes in the Employee class: they are now all typed except the
bank info attribute for which we didn’t have enough information.

c. Still in the Employee class, note that most operations are shown with their I/O
parameters and return values. For the operation getMethodPayment(), we have
introduced a new class of type Enumeration.

d. In the class PurchaseOrder, getters have been added.

e. Finally, note that the compositions Employee > Timecard, and
CommissionedEmployee > PurchaseOrder are unidirectional.

3. Note: In order to type the miscellaneous attributes and parameters, the classes Date
and Double have been added to the Primitives package.

You have been asked to complete the following points in the diagram:

1. For the remainder of the exercise, use ONLY the types already defined (including
Date and Double):

a. A time interval or period (of time) will be expressed with two attributes (or
parameters) of type Date, for instance from : Date and to : Date.

2. Change the responsibility // retrieve amount to pay in the Employee class into a
calculatePay() operation:

a. calculatePay() returns the amount to pay an employee for a given period of
time.

b. It must be designed with polymorphism in mind: it must be possible to
calculate the amount to pay for an Employee object WITHOUT knowing its
type (hourly, salaried, commissioned).

3. Update the analysis class Timecard:

a. Consider in particular the representation of the analysis attribute hours per
project.

4. A new requirement has been added: it must be possible to change an hourly employee
into a salaried employee. What do you suggest to handle this situation? (Discussion
with the instructor.)

OOAD with UML2 and RSM – Student Workbook 23

Lab 8 – Subsystem Design

For this exercise, you will work from the model 07. Design.

Your task is to apply the JDBC mechanism described in module 13 to the subsystem
ProjectManagementDB:

1. In the ProjectManagementDB subsystem, create a collaboration named
IProjectManagementDB Implementation.

2. In the collaboration, create a VOPC class diagram and a sequence diagram titled
retrieveChargeNumbers Implementation.

3. Apply the JDBC mechanism:

a. Complete the subsystem class diagrams based on the JDBC mechanism
described in page 44 or 88 of the Part III – Object-Oriented Design fascicule.
Note: the java.sql classes are available in the model java.sql.

b. Optionally, build the sequence diagram for retrieveChargeNumbers
Implementation based on the diagram on page 46 of the Part III – Object-
Oriented Design fascicule.

OOAD with UML2 and RSM – Student Workbook 24

Lab 9 – Finalize the Design Model

For this exercise, you will work from the model 08. Design.

All the classes you have created must be assigned to packages. The packages in turn must be
assigned to the layers of your architecture. Relations between classes determine the
dependencies between packages. From the resulting hierarchy depend the potential for reuse,
scalability and flexibility of your system.

Allocate all classes to packages contained in the Presentation and Business layers. You can
either build your own hierarchy from scratch, or use any of the following suggestions (note:
these suggestions are minimalist – in real life, the package structure will be significantly
different):

1. Regroup the control classes, TimecardForm and ServiceScheduler in two packages in
the Presentation layer (for instance AdminActivities and EmployeeActivities).

2. All other classes are allocated to the Business layer:

a. Classes associated with the employee are stored in a package EmployeeData.

b. The other classes BankSystem and PrintingService are stored in a package
OtherServices (this is an extreme simplification that would never survive in a
real system).

3. Stereotype the package UC Realizations as <<perspective>> (this means that UC
Realizations only contains diagrams and no classes or other UML elements).

4. Add the stereotypes global and layer to the package PrimitivesTypes (again reality
would be quite different but it does not modify our messages).

Solve the access violations:

1. Right-click on the Design model in the Project Explorer, then select
ArchitectAssistant > Fix Access Violations: Fix Access Violations attempts to
automatically resolve the access violations based on the layered architecture.

2. When a potential access violation is identified, Fix Access Violations can:

a. Create a dependency if the violation can be solved automatically.

b. Report an error in the case of a “true” violation (for instance if the Business
layer attempts to access the Presentation layer).

c. Prompt the user in all other cases.

3. Inspect the Console and/or Problems view to identify the remaining access violations
and modify the model to eliminate them.

Create a diagram titled Package Dependencies in the Design model (at the same level as Main,
Key Abstractions, and Architectural Layers diagrams). Add to this diagram all the packages
and subsystems from the layers. Inspect the result.

OOAD with UML2 and RSM – Student Workbook 25

Appendix 1 – Course Registration Requirements

Problem Statement
As the head of information systems for Wylie College you are tasked with developing a new
student registration system. The college would like a new client-server system to replace its
much older system developed around mainframe technology. The new system will allow
students to register for courses and view report cards from personal computers attached to the
campus LAN. Professors will be able to access the system to sign up to teach courses as well
as record grades.

Due to a decrease in federal funding, the college cannot afford to replace the entire system at
once. The college will keep the existing course catalog database where all course information
is maintained. This database is an Ingres relational database running on a DEC VAX.
Fortunately the college has invested in an open SQL interface that allows access to this
database from the college’s Unix servers. The legacy system performance is rather poor, so
the new system must ensure that access to the data on the legacy system occurs in a timely
manner. The new system will access course information from the legacy database but will not
update it. The registrar’s office will continue to maintain course information through another
system.

At the beginning of each semester, students may request a course catalogue containing a list
of course offerings for the semester. Information about each course, such as professor,
department, and prerequisites, will be included to help students make informed decisions.
The new system will allow students to select four course offerings for the coming semester.
In addition, each student will indicate two alternative choices in case the student cannot be
assigned to a primary selection. Course offerings will have a maximum of ten students and a
minimum of three students. A course offering with fewer than three students will be canceled.
For each semester, there is a period of time that students can change their schedule. Students
must be able to access the system during this time to add or drop courses. Once the
registration process is completed for a student, the registration system sends information to
the billing system so the student can be billed for the semester. If a course fills up during the
actual registration process, the student must be notified of the change before submitting the
schedule for processing.

At the end of the semester, the student will be able to access the system to view an electronic
report card. Since student grades are sensitive information, the system must employ extra
security measures to prevent unauthorized access.

Professors must be able to access the on-line system to indicate which courses they will be
teaching. They will also need to see which students signed up for their course offerings. In
addition, the professors will be able to record the grades for the students in each class.

OOAD with UML2 and RSM – Student Workbook 26

Glossary

Introduction
This document is used to define terminology specific to the problem domain, explaining terms,
which may be unfamiliar to the reader of the use-case descriptions or other project documents.
Often, this document can be used as an informal data dictionary, capturing data definitions so
that use-case descriptions and other project documents can focus on what the system must do
with the information.

Definitions
The glossary contains the working definitions for the key concepts in the Course Registration
System.

Course
A class offered by the university.

Course Offering
A specific delivery of the course for a specific semester – you could run the same course in
parallel sessions in the semester. Includes the days of the week and times it is offered.

Course Catalog
The unabridged catalog of all courses offered by the university.

Faculty
All the professors teaching at the university.

Finance System
The system used for processing billing information.

Grade
The evaluation of a particular student for a particular course offering.

Professor
A person teaching classes at the university.

Report Card
All the grades for all courses taken by a student in a given semester.

Roster
All the students enrolled in a particular course offering.

Student
A person enrolled in classes at the university.

Schedule
The courses a student has selected for the current semester.

Transcript
The history of the grades for all courses, for a particular student sent to the finance system,
which in turn bills the students.

OOAD with UML2 and RSM – Student Workbook 27

Supplementary Specifications

Objectives
The purpose of this document is to define requirements of the Course Registration System.
This Supplementary Specification lists the requirements that are not readily captured in the
use cases of the use-case model. The Supplementary Specifications and the use-case model
together capture a complete set of requirements on the system.

Scope
This specification defines the non-functional requirements of the system; such as reliability,
usability, performance, and supportability, as well as functional requirements that are
common across a number of use cases. (The functional requirements are defined in the Use
Case Specifications.)

References
None.

Functionality
Multiple users must be able to perform their work concurrently.
If a course offering becomes full while a student is building a schedule including that offering,
the student must be notified.

Usability
The desktop user-interface shall be Windows 95/98 compliant.

Reliability
The system shall be available 24 hours a day 7 days a week, with no more than 10% down
time.

Performance
The system shall support up to 2000 simultaneous users against the central database at any
given time, and up to 500 simultaneous users against the local servers at any one time.
The system shall provide access to the legacy course catalog database with no more than a 10
second latency.
Note: Risk-based prototypes have found that the legacy course catalog database cannot meet
our performance needs without some creative use of mid-tier processing power
The system must be able to complete 80% of all transactions within 2 minutes.

Supportability
None.

Security
The system must prevent students from changing any schedules other than their own, and
professors from modifying assigned course offerings for other professors.
Only Professors can enter grades for students.
Only the Registrar is allowed to change any student information.

OOAD with UML2 and RSM – Student Workbook 28

Design Constraints
The system shall integrate with an existing legacy system, the Course Catalog System, which
is an RDBMS database.
The system shall provide a Windows-based desktop interface.

OOAD with UML2 and RSM – Student Workbook 29

Register for Courses UC

Brief Description
This use case allows a Student to register for course offerings in the current semester. The
Student can also update or delete course selections if changes are made within the add/drop
period at the beginning of the semester. The Course Catalog System provides a list of all the
course offerings for the current semester.

Flow of Events

Basic Flow

This use case starts when a Student wishes to register for course offerings, or to change
his/her existing course schedule.

1. The Student provides the function to perform (one of the sub flows is executed):
If the Student selected “Create a Schedule”, the Create a Schedule subflow is
executed.
If the Student selected “Update a Schedule”, the Update a Schedule subflow is
executed.
If the Student selected “Delete a Schedule”, the Delete a Schedule subflow is
executed.

Create a Schedule
1. The system retrieves a list of available course offerings from the Course

Catalog System and displays the list to the Student.
2. The Select Offerings subflow is executed.
3. The Submit Schedule subflow is executed.

Update a Schedule
1. The system retrieves and displays the Student’s current schedule (e.g., the

schedule for the current semester).
2. The system retrieves a list of available course offerings from the Course

Catalog System and displays the list to the Student.
3. The Student may update the course selections on the current selection by

deleting and adding new course offerings. The Student selects the course
offerings to add from the list of available course offerings. The Student also
selects any course offerings to delete from the existing schedule.

4. Once the student has made his/her selections, the system updates the schedule
for the Student using the selected course offerings.

5. The Submit Schedule subflow is executed.

Delete a Schedule
1. The system retrieves and displays the Student’s current schedule (e.g., the

schedule for the current semester).
2. The system prompts the Student to confirm the deletion of the schedule.
3. The Student verifies the deletion.
4. The system deletes the Schedule. If the schedule contains “enrolled in” course

offerings, the Student must be removed from the course offering.

Select Offerings

OOAD with UML2 and RSM – Student Workbook 30

The Student selects 4 primary course offerings and 2 alternate course offerings
from the list of available offerings.

Once the student has made his/her selections, the system creates a schedule for the
Student containing the selected course offerings.

Submit Schedule
For each selected course offering on the schedule not already marked as “enrolled
in”, the system verifies that the Student has the necessary prerequisites, that the
course offering is open, and that there are no schedule conflicts.

The system then adds the Student to the selected course offering. The course
offering is marked as “enrolled in” in the schedule.

The schedule is saved in the system.

Alternative Flows

Save a Schedule
At any point, the Student may choose to save a schedule rather than submitting it. If this
occurs, the Submit Schedule step is replaced with the following:

The course offerings not marked as “enrolled in” are marked as “selected” in the schedule.

The schedule is saved in the system.

Unfulfilled Prerequisites, Course Full, or Schedule Conflicts
If, in the Submit Schedule sub-flow, the system determines that the Student has not satisfied
the necessary prerequisites, or that the selected course offering is full, or that there are
schedule conflicts, an error message is displayed. The Student can either select a different
course offering and the use case continues, save the schedule, as is (see Save a Schedule
subflow), or cancel the operation, at which point the Basic Flow is re-started at the beginning.

No Schedule Found
If, in the Update a Schedule or Delete a Schedule sub-flows, the system is unable to retrieve
the Student’s schedule, an error message is displayed. The Student acknowledges the error,
and the Basic Flow is re-started at the beginning.

Course Catalog System Unavailable
If the system is unable to communicate with the Course Catalog System, the system will
display an error message to the Student. The Student acknowledges the error message, and
the use case terminates.

Course Registration Closed
When the use case starts, if it is determined that registration for the current semester has been
closed, a message is displayed to the Student, and the use case terminates. Students cannot
register for course offerings after registration for the current semester has been closed.

Delete Cancelled
If, in the Delete A Schedule sub-flow, the Student decides not to delete the schedule, the
delete is cancelled, and the Basic Flow is re-started at the beginning.

OOAD with UML2 and RSM – Student Workbook 31

Special Requirements
None.

Pre-Conditions
The Student must be logged onto the system before this use case begins.

Post-Conditions
If the use case was successful, the student schedule is created, updated, or deleted. Otherwise,
the system state is unchanged.

OOAD with UML2 and RSM – Student Workbook 32

Appendix 2 – Payroll System

Problem Statement
As the head of Information Technology at Acme, Inc., you are tasked with building a new
payroll system to replace the existing system, which is hopelessly out of date. Acme needs a
new system to allow employees to record timecard information electronically and
automatically generate paychecks based on the number of hours worked and total amount of
sales (for commissioned employees).

The new system will be state of the art and will have a Windows-based desktop interface to
allow employees to enter timecard information, enter purchase orders, change employee
preferences (such as payment method), and create various reports. The system will run on
individual employee desktops throughout the entire company. For reasons of security and
auditing, employees can only access and edit their own timecards and purchase orders.

The system will retain information on all employees in the company (Acme currently has
around 5,000 employees world-wide.) The system must pay each employee the correct
amount, on time, by the method that they specify (see possible payment methods described
later). Acme, for cost reasons, does not want to replace one of their legacy databases, the
Project Management Database, which contains all information regarding projects and charge
numbers. The new system must work with the existing Project Management Database, which
is a DB2 database running on an IBM mainframe. The Payroll System will access, but not
update, information stored in the Project Management Database.

Some employees work by the hour, and they are paid an hourly rate. They submit timecards
that record the date and number of hours worked for a particular charge number. If someone
works for more than 8 hours, Acme pays them 1.5 times their normal rate for those extra
hours. Hourly workers are paid every Friday.

Some employees are paid a flat salary. Even though they are paid a flat salary, they submit
timecards that record the date and hours worked. This is so the system can keep track of the
hours worked against particular charge numbers. They are paid on the last working day of the
month.

Some of the salaried employees also receive a commission based on their sales. They submit
purchase orders that reflect the date and amount of the sale. The commission rate is
determined for each employee, and is one of 10%, 15%, 25%, or 35%.

One of the most requested features of the new system is employee reporting. Employees will
be able to query the system for number of hours worked, totals of all hours billed to a project
(i.e., charge number), total pay received year-to-date, remaining vacation time, etc.

Employees can choose their method of payment. They can have their paychecks mailed to the
postal address of their choice, or they can request direct deposit and have their paycheck
deposited into a bank account of their choosing. The employee may also choose to pick their
paychecks up at the office.

The Payroll Administrator maintains employee information. The Payroll Administrator is
responsible for adding new employees, deleting employees and changing all employee

OOAD with UML2 and RSM – Student Workbook 33

information such as name, address, and payment classification (hourly, salaried,
commissioned), as well as running administrative reports.

The payroll application will run automatically every Friday and on the last working day of the
month. It will pay the appropriate employees on those days. The system will be told what date
the employees are to be paid, so it will generate payments for records from the last time the
employee was paid to the specified date. The new system is being designed so that the payroll
will always be generated automatically, and there will be no need for any manual intervention.

OOAD with UML2 and RSM – Student Workbook 34

Glossary

Introduction
This document is used to define terminology specific to the problem domain, explaining terms,
which may be unfamiliar to the reader of the use-case descriptions or other project documents.
Often, this document can be used as an informal data dictionary, capturing data definitions so
that use-case descriptions and other project documents can focus on what the system must do
with the information.

Definitions
The glossary contains the working definitions for the key concepts in the Payroll System.

Bank System
Any bank(s) to which direct deposit transactions are sent.

Employee
A person that works for the company that owns and operates the payroll system (Acme, Inc.)

Payroll Administrator
The person responsible for maintaining employees and employee information in the system.

Project Management Database
The legacy database that contains all information regarding projects and charge numbers.

System Clock
The internal system clock that keeps track of time. The internal clock will automatically run
the payroll at the appropriate times.

Pay Period
The amount of time over which an employee is paid.

Paycheck
A record of how much an employee was paid during a specified Pay Period.

Payment Method
How the employee is paid, either pick-up, mail, or direct deposit.

Timecard
A record of hours worked by the employee during a specified pay period.

Purchase Order
A record of a sale made by an employee.

Salaried Employee
An employee that receives a salary.

Commissioned Employee
An employee that receives a salary plus commissions.

Hourly Employee
An employee that is paid by the hour.

OOAD with UML2 and RSM – Student Workbook 35

Supplementary Specifications

Objectives
The purpose of this document is to define requirements of the Payroll System. This
Supplementary Specification lists the requirements that are not readily captured in the use
cases of the use-case model. The Supplementary Specifications and the use-case model
together capture a complete set of requirements on the system.

Scope
This Supplementary Specification applies to the Payroll System, which will be developed by
the OOAD students.
This specification defines the non-functional requirements of the system; such as reliability,
usability, performance, and supportability as well as functional requirements that are common
across a number of use cases. (The functional requirements are defined in the Use Case
Specifications.).

Functionality
None.

Usability
None.

Reliability
The main system must be running 98% of the time. It is imperative that the system be up and
running during the times the payroll is run (every Friday and the last working day of the
month).

Performance
The system shall support up to 2000 simultaneous users against the central database at any
given time, and up to 500 simultaneous users against the local servers at any one time.

Supportability
None.

Security
The system should prevent employees from changing any timecards other than their own.
Additionally, for security reasons, only the Payroll Administrator is allowed to change any
employee information with the exception of the payment delivery method.

Design Constraints
The system shall integrate with an existing legacy system, the Project Management Database,
which is a DB2 database running on an IBM mainframe.
The system shall interface with existing bank systems via an electronic transaction interface
The system shall provide a Windows-based desktop interface.

OOAD with UML2 and RSM – Student Workbook 36

Maintain Timecard UC

Brief Description
This use case allows the Employee to update and submit timecard information. Hourly and
salaried employees must submit weekly timecards recording all hours worked that week and
which projects the hours are billed to. An Employee can only make changes to the timecard
for the current pay period and before the timecard has been submitted.

Flow of Events

Basic Flow

This use case starts when the Employee wishes to enter hours worked into his current
timecard.

1. The system retrieves and displays the current timecard for the Employee. If a
timecard does not exist for the Employee for the current pay period, the system
creates a new one. The start and end dates of the timecard are set by the system
and cannot be changed by the Employee.

2. The system retrieves and displays the list of available charge numbers from the
Project Management Database.

3. The Employee selects the appropriate charge numbers and enters the hours worked
for any desired date (within the date range of the timecard).

4. Once the Employee has entered the information, the system saves the timecard.

Submit Timecard
1. At any time, the Employee may request that the system submit the timecard.
2. At that time, the system assigns the current date to the timecard as the submitted

date and changes the status of the timecard to “submitted.” No changes are
permitted to the timecard once it has been submitted.

3. The system validates the timecard by checking the number of hours worked
against each charge number. The total number of hours worked against all charge
numbers must not exceed any limit established for the Employee (for example, the
Employee may not be allowed to work overtime).

4. The system retains the number of hours worked for each charge number in the
timecard.

5. The system saves the timecard.
6. The system makes the timecard read-only, and no further changes are allowed once

the timecard is submitted.

Alternative Flows

Invalid Number of Hours
If, in the Basic Flow, an invalid number of hours is entered for a single day (>24), or the
number entered exceeds the maximum allowable for the Employee, the system will display an
error message and prompt for a valid number of hours. The Employee must enter a valid
number, or cancel the operation, in which case the use case ends.

Timecard Already Submitted
If, in the Basic Flow, the Employee’s current timecard has already been submitted, the system
displays a read-only copy of the timecard and informs the Employee that the timecard has

OOAD with UML2 and RSM – Student Workbook 37

already been submitted, so no changes can be made to it. The Employee acknowledges the
message and the use case ends.

Project Management Database Not Available
If, in the Basic Flow, the Project Management Database is not available, the system will
display an error message stating that the list of available charge numbers is not available. The
Employee acknowledges the error and may either choose to continue (without selectable
charge numbers), or to cancel (any timecard changes are discarded and the use case ends).
Note: Without selectable charge numbers, the Employee may change hours for a charge
number already listed on the timecard, but he/she may not add hours for a charge number that
is not already listed.

Special Requirements
None.

Pre-Conditions
The Employee must be logged onto the system before this use case begins.

Post-Conditions
If the use case was successful, the Employee timecard information is saved to the system.
Otherwise, the system state is unchanged.

OOAD with UML2 and RSM – Student Workbook 38

Run Payroll UC

Brief Description
The use case describes how the payroll is run every Friday and the last working day of the
month.

Flow of Events

Basic Flow

1. The use case begins when it’s time to run the payroll. The payroll is run
automatically every Friday and the last working day of the month.

2. The system retrieves all employees who should be paid on the current date.
3. The system calculates the pay using entered timecards, purchase orders, employee

information (e.g., salary, benefits, etc.) and all legal deductions.
4. If the payment delivery method is mail or pick-up, the system prints a paycheck.
5. If the payment delivery method is direct deposit, the system creates a bank

transaction and sends it to the Bank System for processing.
6. The use case ends when all employees receiving pay for the desired date have been

processed.

Alternative Flows

Bank System Unavailable
If the Bank System is down, the system will attempt to send the bank transaction again after a
specified period. The system will continue to attempt to re-transmit until the Bank System
becomes available.

Deleted Employees
After the payroll for an Employee has been processed, if the employee has been marked for
deletion (see the Maintain Employee use case), then the system will delete the employee.

Special Requirements
None.

Pre-Conditions
None.

Post-Conditions
Payments for each employee eligible to be paid on the current date have been processed.

