Object-Oriented Analysis and Design with
UML2 and Rational Software Modeler

Student Workbook

OOAD with UML2 and RSM — Student Workbook

Table of contents

= Lo I R Y=o [[T o ToT N I = Vo | = o TSRS 3
[1o 2 O = LT I T = Vo = 3 L 4
Task 2.1: Modeling graphs, points and CONNECLOLS..........cccvvvieiiiiiiiiiiiiieee e e eeee e e 4

Task 2.2: Modeling a family trEEoi e e e e e e 4
Task 2.3: Modeling a file SYSIEM ..o 4
Lab 3 — Requirements Management...........icceeeiiieee et e e e eee e e e e e e e e e e e e eees 5
Task 3.1: Preliminary SEUD......oooii i eeeeeee ettt e e e e e e e e e e e e ee e e e e e eeeeeaeenannes 5
Task 3.2: Identify the actors and use cases gbalyeoll system.........ccccceeeevveeiiniiniri e 10
Lab 4 — Architectural ANAIYSIS........ oo 12
Task 4.1: Creating the Analysis MOdel.......cccceeeiiiiiiiii e 12
Task 4.2: Identify the Key Abstractions of the RdlyBystem...........cccccceiiiiiiiiiiiiii 14
Task 4.3: Represent the Higher Layers of the Aeciifrecooovvvvveeiiiiiinininieeee 16
Lab 5 —USE CaSE ANAIYSIS.....ccciiiiiiiiiiteeee ettt e e e aa e e e e e e e e e e e e e e eeeeeaanees 17
Task 5.1: Create Use-Case RealiZatioNns ... ceeeereeeeeeeeeiiiiiiiiniiiiiiiiiieeeeeseesnnnns 17
Task 5.2: Assign the Use-Case Behavior to Classes........ccccvevviiiiiiiiiii v, 18
Task 5.3: Complete the VOPC ... ceeeeee e 19
Open the VOPC diagram for the Maintain TimecardREalization.ccccceeeeeerinnnnn. 19
Task 5.4: Map Analysis Mechanisms t0 ClaSSeS........ccceevviiieieeeiiieeiiieeiiiiis s 19
Lab 6 — Identify DeSign EIEMENTS..........uiiiiaii e e 20
Task 6.1: Transform an Analysis Class int0 @ SUBBYS..........cccevieiiiieeeeeeiieeeeeeeiieisnen 20
. Lo I Al O F= LT B =T o | o PP 22
Lab 8 — SUDSYSIEM DESIGNvvviiiiiiiiecceeeeeeie e e e e e seeeeen e e e e e e e e e e e e e eeees 23
Lab 9 — Finalize the Design MOluuuueiiiii e 24
Appendix 1 — Course Registration ReqQUIr€mMEeNtS..ceeec..coooeeeeeiiiiiieeeeiise e 25
Problem STAtEMENToooi i et 25
L€ (01517 oYU PPPUPPRTPRP 26
Supplementary SPECITICALIONSuuvtcammmmm e e eeeeeeeee e e e e e ereeareaeeeeeaaeeeees 27
RegiSter fOr COUISES UCoiiiiiiiiiiiet ettt e s s e e e e e e e e e e e e e eeeeeseaaeeeeeesesnsennnnns 29
Appendix 2 — Payroll SYSIEM.......ccooo e 32
Problem STatemMENTuuu e 32
L] 017 T Y75 PSSR 34
Supplementary SPECIfICAtIONSeuiuitcammmmm e aa e e e e e e eees 35
Maintain TIMECArd UC.........oooiiiiiiiiiceeeemr ettt e e e e e e e e e 36
RUN PAYIOI UC ...ttt s e e e e e e e e e ees 38

OOAD with UML2 and RSM — Student Workbook 2

Lab 1 — Sequence Diagram

Interpret the following sequence diagram:

= Jorge:Borrower = :Librarian = Catalo = 1day:Video
JOrgE DOMTOWET ALiprarian Aataioc] Loay VICen
| |
ﬁ‘l.l: check if valid | |
_________________ ok : :
3 title requested ? | |
"A day in the life of a programmer” | |
------------------------------------- | | |
| 1.5: refrieve video "A day|..." |
| 1,5.1: find kideo "a day ..."
| |
| 1.5.2: is available ?
| Mo
| unavailable |~ T
| T |
| 1.7p order "Aday .." | N
' ' " = newOrder: Order |
11.8: add newCrder | | |
| |
|
..................................... . | | |
[| | |

OOAD with UML2 and RSM — Student Workbook 3

Lab 2 — Class Diagrams

Task 2.1: Modeling graphs, points and connectors

Create a class diagram to model the following cptse

A drawing is composed of several graphs.

A graph is composed of one or more points, that beagonnected or not.

One connector connects two points. There can beamd connector between two
points.

Every point has a color.

Every connector has a color.

All the connectors of a given graph have the saoherc

All the points of a given graph have the same color

Destroying a point also destroys the associatedestiors.

wN e

©~NO A

You can complete these statements with your owmnagsons.

Task 2.2: Modeling a family tree

Model in a class diagram a family tree: the faet ttne has parents and possibly children.
Add relevant attributes.

Focus on the “biological” family ties — one has ajw two parents, even if they are deceased.

Consider creating a first model without using gaheations, and a second one with
generalizations.

Hint: It might be necessary to add constraintsctueately model the family tree.

Task 2.3: Modeling a file system

Model a simple file system: a directory may contaiimer directories and/or files.

Implement thalestroy()operation for both directories and files. Assuned thfile or
directory can destroy itself by calling a hypothatisystem functiosystem.destroy(self)
However, in the case of a directory, this functiam be called onlif the directory is empty.
For a file, thedestroy()operation looks like (in Java-like pseudo-code):

public class File {
public void destroy() {
Syst em destroy(self);
}

OOAD with UML2 and RSM — Student Workbook 4

Lab 3 — Requirements Management

Task 3.1: Preliminary setup
For the remaining labs, the following files are\pd®d:

» ArchitectAssistantxxxxxx.zgontains a plug-in that controls dependencies éatw
model components. This plug-in is used in the Desggtion of the course.

» PayrollSystem.zipontains the solutions to the different labs {stgrfrom lab 3).

Please do NOT open the RSM/RSA models before helddo.

Installing the ArchitectAssistant plug-in:

1. Extract the contents @éfrchitectAssistantxxxxxx.zip a valid RSM extension location:

a. An extension location is where plug-ins are insthllYou can see all extension
locations by using the commabhi&lp > Software Updates > Manage
Configuration(this may take a long time). The snapshot belowvshibe
default configuration settings: you should &&Program Files\IBM\SDP70
as theC:\Program Files\IBM\SDP70Sharddcation is not updatable.

g

&2 Product Configuration
File:

B

= 5, Rational Software Architect .
%5 C\Program Files\IBMISDP70 £
+ %3 C:\Program Files\IBMSDP70Shared

i

1 - _—ry
e S Y G
il

Y T

b. In the example below, the contents of the zipWilk be extracted into the

C:\Program Files\IBM\SDP7@irectory:

OOAD with UML2 and RSM — Student Workbook

L A i] Naeieat NCAT 4 4 = | [
‘@ nLip - ArcimtectAssistant Ksays 1.1 e | L] | B

= &= i @
o g P $

Mew Dpen Favorites Add
Marne Tvpe
E@ architect.jar Executable Jar File
}_ij dependenciesZ, JRG REL Trame .

Lli] dependenciesl.]l Extract

Eﬂhierarchy.JPG .

& readme. htmil E”E’_?E,P;.—______
@Architect.ﬂ.ssistan Q‘Tm FilesW BMYSDPTO iV i
;;-!'_l'z]layers.JPG e —) - E

[. Filez Folders drives:
Q plugin.xml - o
[0 [|
e a5 HElD
) [hep]

2] Feature xml Selocted fies T I O =
=) Al files i H o BB

3] F—— () Files; : L+ i fCUf:fl!
Selected O files, O by o B o @ tedl
§o0 b @ Wy Image
[Dvenwrite existing files L Bk
[Skip older files P ohoa B
Use folder names 2 i H i
[] Open Explorer windaw I_‘_(! I | [l

2. To ensure that RSA/RSM picks up the newly added-pluyou must restart
RSA/RSM with the-cleanoption

a. To add the-cleanoption, create (or edit) the RSM/RSA shortcut and ‘&
clean” as shown below:

IBM Rational Software Architect 7 Properties

General | Shortout |Eum|:uatibi|it_l,l Security

|EM Rational Software Architect 7

Target type: Application

Target lozation: SDPF0

Target: n.ibm.rational rza product ide -shuwlucati

Start in: "C:MProgram FileshEMYSDPTO!

Shartcut ke | Mane |

Fiur; | P orrnal window [v]

Comment: A ational S oftware Architect

[Find Target...] [Change lcon...] [Advanced...]

b. Restart RSM/RSA.

OOAD with UML2 and RSM — Student Workbook

c. To verify that the plug-in was correctly added,adoght-click on any UML
package or model. You should havefanhitectAssistansubmenu as shown

below:
| | L L]
1
Ly AddumL v
! 4 &dd Diagram 4
& Add Mote
Mavigate 4
Yisualize 4
File: 4
Edit 4

¥ Delete from Diagram
3 Delete From Madel

Modeling References 4
Find/Replace. ..

Formak 4
Filters 4
Linkability 4
Transfarm 4

¥ vald

Architect Assistant 4 Fix Access Wiolations

- Show Access Yiolations
1 Show Properties Yiew

ML Properties. .,

3. If the ArchitectAssistansubmenu is not available, the plug-in may be Irestdut not
enabled

a. SelectHelp > Software Updates > Manage Configuratighis may take a
long time).

b. Open the Eclipse location where you installed ymug-in (C:\Program
Files\IBM\SDP70n our example).

c. If you do not see an entArchitect Assistant 1.1,.@ress th&how Disabled
Featurescon as shown below:

e

i Product Configuration ;
_ =R *
= C#s Rational Software architect !
=" Ci\Program Files\IBM\SDP70 5”#
ML UK To Web Feature 2.0,5 %
[‘*ﬁ Ci\Program Files\IBM\SDP70Shared }f"‘j
._.'#H- e k .."1_\ o _Jl-.-"n* .I"'v-\\,...-m'- e T F,_m o

d. If you now see thérchitect Assistant 1.1@éntry with the symbciﬂ?, the
feature is disabled. At this point, you simply néedlick onEnableas shown
below and restart the workspace as requestedultigo’t see thérchitect

OOAD with UML2 and RSM — Student Workbook 7

Assistant 1.1.@ntry, it is likely you have not extracted the piago the
correct location. Go back to step 1!

=

i3 Product Configuration

File &
S| = | R =EREE "
{

= @ F.ational Su:uftwan? architect Architect Assistant 1.1.0

-y = =

Architect Assistant consists of a menu ikem .ﬁ.rchite’
Model Explarer view and Diagram area of the Model,
bwo commands: - Show Access Yiolations identifie?

andjor packages, - Fix Access Violations identifies b
them based on the model lavered architecture an
these commands, select one or more packages ani,
pop-up meny, Mare infa... 3

Available Tasks

%ou can enable or disable the Functionality of a F?

action,
Show Properties '
. . YWiew properties of the Feature such as version
ARSI e W R P eot g Shesiie

4. Remove the-cleanoption from the shortcut (or create a separatetsimr

Importing the Payroll System solutions (RSA only for RSM, see next section):
1. File > Import ... > Project Interchange > Next
2. In thelmport Project Interchange Conterdglog:
a. SelectPayrollSystem.zipsing theBrowsebutton to the right of the fielBrom
zip file:
b. Check thePayrollSystenproject and clickEinish

xm} Import Project Interchange Contents

Import Projects

Import Projects From a zip File, |

ot |t [e e)
Fromapler KD UML2 snd RSAI0S. 2 lestPayrolysten. 2523
Project location rook: C:'I,Du:u:umen.llzs ar;él SéI£I£ings'i,ﬂdllﬁ.il.'u.i's.éralzln;'l,.l;ﬂ.v If)u:ucuments

= Payrollsystem

Importing the Payroll System solutions (RSM — alsevorks with RSA):
1. Ifitis not already the case, start RSM (or RSAJ go to theMlodelingperspective.
2. Create a new project call&ahyrollSystenusing theProjectwizard:

OOAD with UML2 and RSM — Student Workbook 8

-

! New

Select a wizard

hiizards;
proj

4% Java Project
& Java Project From Existing Ant Buildfile
[64] Managed Make C++ Project
5% Plug-in Project
= UML Project
= |.;:? SI=t
' i T__‘{f Project

= [= Business Inteligence and Reporting Tools
. o luil? Report Praject
Bl TR ietinikiin Al

3. Open the zip file, select all the .emx file (se®b@ and extract them into the
directory where your project was created (checktloaifull path of the project in the

Propertieswindow):

2 <
= i"“ i1 @ -r lﬁ S = ‘ <
43 |) L T 4
3 P e e 2 @ P
T Open Favorites d Extract Wigy Checkiout ‘Wizard 1
Mame = Tvpe Modified Size | Ratio Packed(

g project PROJECT File 05/02/2007 08:21 0 45% 18

3:|‘I33 Use-Case Model. em:x: - oDe7

? b L":
?jD4 Analysis, emx i D - 15 4

&= 05,1, Anakysis. emx

5 Estract to: 105 4
05.2. Analysis.em:x e e T o e B33 2

CAD ts and Settings\Administiator\My D SRS e £
j 5.4, ,lfl.nal\:,u'5|s e | QCUmMents an =] |n9-8 rminEtraton _',' oCLments Jl:r_,_ % 586

=) 08, Design.emx File:s Falders/dives:
=] 07, Design.em:x %) Selected files

_Ej 09, Cesign.emx

i 1_“; EustomerSearch-’-\ppE.-‘-‘«F! A | m 556
j_-_EﬂDS. Design.enm:)l fles L+) EJBTest j

! -3 EJETestClient
@ java,sgl.emx OFies v Ble

[Ovenwrite existing files Jj v {f
[Skip older files o7y TestUsT owebMadels &i
lUze folder names s | f‘
[] 0pen Explarer window |'¢ | | n I | §

P, e, Ltk et ﬁf j

B T o A PN e g S

4. In RSM, right-click thePayrollSystenproject and select tHeefreshcommand to see
the files in theProject Explorer

OOAD with UML2 and RSM — Student Workbook 9

Task 3.2: Identify the actors and use cases of the payroll system
1. Ifitis not already the case, start RSM (or RSAJ go to theModelingperspective

2. Create in théayrollSystenproject a new blank model namgde-Case Modekith
Use Case Diagraras the default diagram type.

=I-1=F PavrollSwstem
- =8

04, Analysis

Ea Ll | L

) New UML Model

Create a new UML model

Prowide File name For the new model

File types:

Templates:

= UML Modeling Qﬁh Blank Maodel |
qﬁh Enterprise IT Design Model
'-r Service Design Model
?ﬁ Use Case Model
% 95D Madel

v.
Template Description:
Create a blank UML model.
File name:

se-Case Model
Destination Folder:

PayrollSystem

Default diagram

Create a default diagram in the new model.

Default diagram kype: |Use Case Diagram

Finish l [Cancel

3. Rename the diagraMain asGlobal View

OOAD with UML2 and RSM — Student Workbook 10

—I-B21 Use-Case Madel

0
E]
o T
Yisualize r
Renarne
Refactor ¥ | Rename...
of Cut b Move. .,

=1 T A r

4. Create and briefly describe the actors and usesdas¢he Payroll System in this
diagram, based on the problem statement, glossarg@pplementary specifications
provided in the Appendix 2 of this document.

OOAD with UML2 and RSM — Student Workbook 11

Lab 4 — Architectural Analysis

Task 4.1: Creating the Analysis Model

1. In thePayrollSystenproject, create a new blank model, narAedlysis and with
class diagram as the default diagram type.

2. Create in thédnalysismodel two class diagrams respectively nadehitectural
LayersandKey Abstractions

06, Design
07, Degi==
08, D Add UL L4
09, Des Add Diagram * 2| Class Diagram
= nalysi ? Composite Structure Diagram
E= [andl Hew ' 2
P__IIEEI| Mai Add Shortcut] Component Diagram
'_"I’ (L Open 1 Deployrment Diagram
ava.s0
] Cpen \With * E Cbject Diagram

+-E2 Use-Ca

lmmm

The analysis model should look like this in thejgcbexplorer:

—I-E2 Analysis
|El| Architectural Lavers
|E| Kew Abstractions
Bl Main
o (UMLPrimitiveTypes)

3. In theMain diagram, create shortcuts to the newly createdamg. To do this, you
can simply drag and drop each diagram (make suatbthe note below before you
do) from theProject Exploreronto theMain diagram.

Note In some configurations, clicking on a diagranthia project explorer or
attempting to drag-and-drop it automatically britiges diagram to the front if it is
already open, thus hiding the intended targettaan diagram). To avoid this
situation, close th@rchitectural LayersandKey Abstractionsliagrams or use “split
screens” as in the snapshot below.

OOAD with UML2 and RSM — Student Workbook 12

2| Main &3

|E] Architectural Layers
Double-click to see the architectural layers

|2 Key Abstractions
Double-click tosee the key abstractions

\E| Architectural Lavers |E| Key Abstractions 23

Note Every package in a model (including the modelfysshould have a “default
diagram”. This default diagram is the entry pommbithe package, i.e. the diagram that
is opened when double-clicking on the package.Mam diagram should contain all
relevant information for the user to easily find/hier way in the package (shortcuts to
other diagrams, main nested packages, textuainmaton and notes, etc.).

4. Add the profilesAnalysis ProfileandArchitectAssistantio theAnalysismodel. First
select the model in the project explorer, thenRheilestab in thePropertiesview.
You will need to repeat thiedd Profilefor each profile.

- 1
! Select Profile
B &3 Tasks | Console | Bookmarks | Searcl| () Deploved Profile
General Ea <Model> Analysis Analysis Profile hé
y 2 Profile in Workspace
Profiles applied Profiles: © i
Stereaktvpes
Documentakion Marne Wersion | Release L3 o
I File

Zonskraints Default L £ ol

Deplovment 1 7.00
&dwvanced Standard 1

I (w] 4 I [Zancel]
&dd Prafile. ..

The profiles should appear in tApplied Profiledist. We will use them in later labs.

OOAD with UML2 and RSM — Student Workbook 13

= Properties 53 Tasks | Console | Bookmarks | Search | Servers | Problems | Requirement

Gereral Ea <Model> Analysis

Profiles Applied Profiles:

Skerentypes

Diocumentation Mame Wersion | Felease Label | Location

e ArchitectAssistant ¥ 1.0.5 Ci\Program F?Ies'l,IBM'I,SDI
Crefaulk 1 7.00 C:YProgram Files\ IBMVSDI

Advanced Dreploy e 1 7.00 C\Program Files\IEMISDI
FUPAnalysis 3 7.00 :\Program Files\IGMIS0I

—_

Skandard :\Program Files\IBMSDI

&dd Prafile. ..

Task 4.2: Identify the Key Abstractions of the Payroll System

1. For this task, you need:
a. The problem statement and glossary for the Pa$ysdtem in Appendix 2 You
should already be familiar with these documentgoasused them in lab 3.
b. The Use-Case Model created in lab 3: you can eitbethe model you created
or the solution provided in mod@B. Use Case Modelvhichyou can now
open.

2. Open theKey Abstractionsliagram in théAnalysismodel.

3. ldentify the key abstractions of the system ande®sgnt them as classes in Ky
Abstractiongdiagram:

a. Remember: A key abstraction is a concept, an etfititythe system must be
able to handle. The key abstractions form an irse# of classes that is useful
to “jump-start” the analysis work.

b. As an_exampleconsider the following extracted from the problstatement:
“Some employees (...) submit timecards that recordateeand number of
hours worked for a particular charge number.

i. Employees and timecards are major entities thasykeem will have to
handle. They are key abstractions. We thereford wecreate two
classes to represent theBmployeeandTimecard This is also the
right time to provide a brief description of eadass.

OOAD with UML2 and RSM — Student Workbook 14

2| Key Abstractions &2

= Employee

[~
[~

—| Timecard

£ properties 57 Tasks | Console | Bookmarks | Search | Servers | Proble

General E «<Class> Analysis::Employee
Attributes A person working For the Acme companty,
Operations

Stereatypes

Documentation

Caonskrainks

ii. Because each employee “owns” the timecards thahbesfubmits every
week, we will add an association between the ZekasAn employee
may have 0 to n timecards. A timecard only makesed it can be
associated with exactly 1 employee.

|E| Key Abstractions &5

= Employee -employes - timecards

T_q_‘_““——-—‘ — Timecard

*

lii. Because it is also said that the timecards rederalate and number of
hours worked for a particular charge number, weazhiperiod (date
is not enough) andours worked per projeéts attributes ofimecard

|2 Key Abstrackions &2

—| Employee
-employee tirmecards

1 Q Timecard
e [Eg period
(g hours per project

Shouldhours worked per projedte more detailed? First, keep in mind
that the purpose of key abstractions istoatreate classes that will
survive throughout design (although most will)miay make sense to
provide a more detailed representation (introdueiddjtional classes),
but it is only just that: another representatiothaf same information...
And there are other factors: knowledge of the lessrdomain, whether
this is a new application or an overhaul of antaxjsone, etc.

OOAD with UML2 and RSM — Student Workbook 15

Note When a class is created in a diagram, its pasehe package
containing the diagram. For now, we will not woatyout the exact
location of the classes. If it helps you organtee information, feel free
to allocate those classes to specific packagedyeatvare we may
have to change this allocation.

Task 4.3: Represent the Higher Layers of the Architecture

The architect has indicated that, at this stage@tnalysis, two architectural layers must be
created : th€resentatiorlayer and th&usinesdayer. ThePresentatiodayer depends on the
Businesdayer.

Create two packageBresentatiorandBusinessin theArchitectural Layersliagram. Assign
the stereotype<layer>> to these packages.

Draw the necessary relationship to support thestant “thePresentatiorlayer depends on
theBusinessayer”.

Note For the time being, it is not necessary to asalggtractions to specific layers.

OOAD with UML2 and RSM — Student Workbook 16

Lab 5 — Use Case Analysis

Task 5.1: Create Use-Case Realizations

You have been assigned the use ddasimtain Timecardo analyze.

First create the packa@#C Realizationsn the analysis model. Add the newly created
diagram to théVlain diagram of the model.

In the packag&C Realizations

1. Create a package call&thintain Timecardand add this package to thkain diagram
of theUC Realizationpackage.

2. In theMain diagram of the packaddaintain Timecardcreate a use-case realization
namedMaintain Timecard

a. Use theCollaborationtool in theClassdrawer under th€lass entry

[Class >
£ Package
] Class i
v chass @ Inkerface
%Steregtyped Class .~ Association -

A zeneralization

[Signal P

A Realizati =
EE2| Enumer ation . Ealzadu:un

- Dependency o
Daka Type -
[Artifact i, Element Impart. -
Re) ArkiFac

-~ iCollaboration

b. Still in the same diagram, add the use ddaetain Timecarccreated in the
lab 3 (or use the use case from mdi|Use-Case Modgl

c. Draw aRealizationrelationship from the use-case realization toue case.

=5 Class -
£ Package

Q Class =

=] Interface

Bssociation -
A Generalization

. Realization -

Y A

o,
3 Interface Realization s, Element Import

0, Substibution

The diagram should look something like:

OOAD with UML2 and RSM — Student Workbook 17

“MaintainTimecard | [

Maintain?imecard

Task 5.2: Assign the Use-Case Behavior to Classes

For this exercise, you will need the specificationthe Maintain TimecardJC in appendix 2
of this document. Also, you can either work frora Analysismodel created during the
previous exercise, or from mod#h.1. Analysis

If this is not already the case, make sureMiaén diagram for theéviaintain TimecardJC
Realization is displayed on your screen.

Create a new sequence diagram for the basic flalweofise case:

1. In theProject Explorer right-click theMaintain Timecarccollaboration =) and
selectAdd Diagram > Sequence Diagram

2. Name the interactior’]) and the diagran™) Maintain Timecard — Basic Flofsee
below).

3. Create a class diagram calM@PCunder theMaintain Timecarccollaboration (see
below)

-1-E3 U Realizations
Ef Main
=-E3 Maintain Timecard
Ef Main
=25 Mainkain Timecard
A (Maintain Timecard)
E| YoPC
=1~ | Maintain Timecard - Basic Flow
3 Mainkain Timecard - Basic Flow

4. Drag and drop the VOPC and Maintain Timecard —®&B&kw diagrams onto the
Main diagram of theMiaintain TimecardJC, which should look like this:

~Maintain Timecard |---------—-———-- [

Maintain Timecard

Bl VORC

B Maintain Timecard - Basic Flow

OOAD with UML2 and RSM — Student Workbook 18

5. From the textual description of the basic flow ntfy the classes that participate in
the use case and assign use case behavior tocthsses as this was previously shown
by the instructor:

a. Each object must be assigned to a class (existingw).
b. Each message between objects must correspondassaoperation.

c. Each participating class will be added to W@PCdiagram (note: for the time
being, we are not concerned with the actual looaticthe classes — this will
be dealt with at a later time).

d. For each class, define its documentation, anasgsreotypelfoundary
control or entity), and main attribute®(tity classes).

Task 5.3: Complete the VOPC

For this exercise, you will need tMaintain Timecard — Basic Flosequence diagram
created in task 5.2. You can either work fromAmalysismodel created during the previous
exercise, or from mod@5.2. Analysis

Open thevOPCdiagram for theviaintain TimecardJC Realization.

Complete the diagram as follows:
1. Add stereotypes to all classes (if not already jlone

2. Create relationships between classes: remembey; Evie between object is an
instance of a relationship between the correspgnclasses:

e. Specify multiplicity and role names as appropriate.
3. Add class responsibilities (if not already done).
4. Add relevant attributes to entity classes (if Hoéady done).

Task 5.4: Map Analysis Mechanisms to Classes

The architect has indicated that the following gsigl mechanisms have been identified:
Persistence

Distribution

Security

Legacy interface

pwnNPE

This exercise will be done as a group discussion.

OOAD with UML2 and RSM — Student Workbook 19

Lab 6 — Identify Design Elements

Task 6.1: Transform an Analysis Class into a Subsystem

For this exercise, you will work from the mod#.4. Design

Your task is to transform tHerojectManagementDBito a subsystem + corresponding
interface:

1. Create the subsysteRrojectManagementDB theBusinesgpackage:
a. Method 1: right-click thdBusinespackage and seleddd UML > Subsystem

b. Method 2: in the drawing area, use 8tereotyped Componetol in the
Componentrawer (see below), and select @reate <<subsystem>>
componenmenu entry.

[~ Component w»
& | Companent =
v 5 |Component |1 Package
=, 'Stereotyped Component =] Interface
& Artifack

c. Name the componeRrojectManagementDBoe careful not to delete the
stereotype while renaming it).

2. Create a packadgerojectManagementDati theBusinesgpackage. This new package
will contain the interface corresponding to thesidbem as well as associated data.

3. In theProjectManagementDBubsystem, create a class diagram c&ldasystem
ProjectManagementDB

a. Right-click the subsystem in thi&roject Explorerand selecAdd Diagram >
Class Diagram

b. Name the diagrarBubsystem ProjectManagementDB

c. Right-click the newly created diagram in tReoject Explorerand selecMake
Default Diagram

4. Using the examples provided in the seclidentify Subsystems and Subsystem
Interfacesfrom module 10, create the interfd&ojectManagementDB

a. Move the boundary clas¥ojectManagementDBito the subsystem (and
remove its stereotype).

b. Transform the responsibility retrieve charge numbeirs a full operation with
the appropriate parameters and return value.

c. Create the interfad®rojectManagementDBN the package
ProjectManagementDajadefine its operations and add realization

relationships from the subsystétnojectManagementDBND the class
ProjectManagementDB this interface.

OOAD with UML2 and RSM — Student Workbook 20

5. Replace all references to the analysis dRasgectManagementDBYy references to
IProjectManagementDih the rest of the model (hint: check tMaintain Timecard
UC Realization).

OOAD with UML2 and RSM — Student Workbook 21

Lab 7 — Class Design

For this exercise, you will work from the modi. Design

Inspect the model:
1. Open the model if not already done.

2. In theMain diagram, double-click on tHeusinesgackage, then on titEemployee
This diagram contains the cladSmployeeits subclasses and several associated classes:

a. The clasPaycheckis not displayed not to overload the diagram.

b. Note the attributes in tHemployeeclass: they are now all typed except the
bank infoattribute for which we didn’t have enough infornoati

c. Still in the Employeeclass, note that most operations are shown wiin tO
parameters and return values. For the operggthlethodPayment(ve have
introduced a new class of typ@mumeration

d. In the clasg?urchaseOrdergetters have been added.

e. Finally, note that the compositioBsnployee > Timecardand
CommissionedEmployee > PurchaseOrdesx unidirectional.

3. Note: In order to type the miscellaneous attribated parameters, the clasfege
andDoublehave been added to tReimitivespackage.

You have been asked to complete the following gamthe diagram:

1. For the remainder of the exercise, use ONLY thesyqready defined (including
DateandDouble):

a. Atime interval or period (of time) will be expresswith two attributes (or
parameters) of typPate, for instancdrom : Dateandto : Date
2. Change the responsibilifyretrieve amount to pay theEmployeeclass into a
calculatePay(Joperation:

a. calculatePay(yeturns the amount to pay an employee for a gpeziod of
time.

b. It must be designed with polymorphism in mind: iishbe possible to
calculate the amount to pay for Bmployeebject WITHOUT knowing its
type (hourly, salaried, commissioned).

3. Update the analysis classmecard

a. Consider in particular the representation of thelysis attributéhours per

project
4. A new requirement has been added: it must be dedsilchange an hourly employee

into a salaried employee. What do you suggestndleahis situation? (Discussion
with the instructor.)

OOAD with UML2 and RSM — Student Workbook 22

Lab 8 — Subsystem Design

For this exercise, you will work from the mod#&l. Design

Your task is to apply the JDBC mechanism describedodule 13 to the subsystem
ProjectManagementDB
1. In theProjectManagementDBubsystem, create a collaboration named
IProjectManagementDB Implementation
2. In the collaboration, createMDPCclass diagram and a sequence diagram titled
retrieveChargeNumbers Implementation
3. Apply the IDBC mechanism:
a. Complete the subsystem class diagrams based 8@ mechanism
described in page 44 or 88 of the Part Il — Obfegented Design fascicule.
Note: thgava.sglclasses are available in the mogefa.sql
b. Optionally, build the sequence diagram fletrieveChargeNumbers
Implementatiorbased on the diagram on page 46 of the PartQlbject-
Oriented Design fascicule.

OOAD with UML2 and RSM — Student Workbook 23

Lab 9 — Finalize the Design Model

For this exercise, you will work from the mod. Design

All the classes you have created must be assignpddkages. The packages in turn must be
assigned to the layers of your architecture. Ratatbetween classes determine the
dependencies between packages. From the resuiéragdhy depend the potential for reuse,
scalability and flexibility of your system.

Allocate all classes to packages contained irPttesentatiorandBusinesdayers. You can
either build your own hierarchy from scratch, oe asy of the following suggestions (note:
these suggestions are minimalist — in real life,glackage structure will be significantly
different):

1. Regroup the control classd@3mecardFormandServiceSchedulen two packages in
thePresentatioriayer (for instancé&dminActivitiesandEmployeeActivities

2. All other classes are allocated to Bwsinesdayer:
a. Classes associated with the employee are stor@packag&EmployeeData

b. The other classd3ankSysterandPrintingServiceare stored in a package
OtherServicesthis is an extreme simplification that would nesarvive in a
real system).

3. Stereotype the packafC Realizationgs <<perspective>> (this means tb&
Realization®nly contains diagrams and no classes or other @Minents).

4. Add the stereotypeglobal andlayer to the packagrimitivesTypegagain reality
would be quite different but it does not modify onessages).

Solve the access violations:

1. Right-click on theDesignmodel in theProject Explorer then select
ArchitectAssistant > Fix Access ViolationSix Access Violationattempts to
automatically resolve the access violations basetthe layered architecture.

2. When a potential access violation is identifieEtk, Access Violationsan:
a. Create a dependency if the violation can be soiwgdmatically.

b. Report an error in the case of a “true” violatidor (nstance if thdBusiness
layer attempts to access tReesentatiorlayer).

c. Prompt the user in all other cases.

3. Inspect theConsoleand/orProblemsview to identify the remaining access violations
and modify the model to eliminate them.

Create a diagram titledackage DependencigstheDesignmodel (at the same level B&in,
Key AbstractionsandArchitectural Layersliagrams). Add to this diagram all the packages
and subsystems from the layers. Inspect the result.

OOAD with UML2 and RSM — Student Workbook 24

Appendix 1 — Course Registration Requirements

Problem Statement

As the head of information systems for Wylie Collegu are tasked with developing a new
student registration system. The college would #ikeew client-server system to replace its
much older system developed around mainframe téagypoThe new system will allow
students to register for courses and view repadsciiom personal computers attached to the
campus LAN. Professors will be able to access ystem to sign up to teach courses as well
as record grades.

Due to a decrease in federal funding, the collegmot afford to replace the entire system at
once. The college will keep the existing courselcgt database where all course information
is maintained. This database is an Ingres reldtaatabase running on a DEC VAX.
Fortunately the college has invested in an open Biface that allows access to this
database from the college’s Unix servers. The pggstem performance is rather poor, so
the new system must ensure that access to theuldlte legacy system occurs in a timely
manner. The new system will access course infoom&tom the legacy database but will not
update it. The registrar’s office will continuert@intain course information through another
system.

At the beginning of each semester, students mayest@ course catalogue containing a list
of course offerings for the semester. Informatbout each course, such as professor,
department, and prerequisites, will be includeddip students make informed decisions.

The new system will allow students to select foaurse offerings for the coming semester.

In addition, each student will indicate two altdima choices in case the student cannot be
assigned to a primary selection. Course offenmigjshave a maximum of ten students and a
minimum of three students. A course offering wetver than three students will be canceled.
For each semester, there is a period of time thdeats can change their schedule. Students
must be able to access the system during thistbraed or drop courses. Once the
registration process is completed for a studeptreéigistration system sends information to
the billing system so the student can be billedtiersemester. If a course fills up during the
actual registration process, the student must béaabof the change before submitting the
schedule for processing.

At the end of the semester, the student will be &blccess the system to view an electronic
report card. Since student grades are sensitieenation, the system must employ extra
security measures to prevent unauthorized access.

Professors must be able to access the on-linensystendicate which courses they will be

teaching. They will also need to see which stuslsigned up for their course offerings. In
addition, the professors will be able to recorddhedes for the students in each class.

OOAD with UML2 and RSM — Student Workbook 25

Glossary

Introduction

This document is used to define terminology spectdithe problem domain, explaining terms,
which may be unfamiliar to the reader of the usseagescriptions or other project documents.
Often, this document can be used as an informal diationary, capturing data definitions so
that use-case descriptions and other project doctshwan focus on what the system must do
with the information.

Definitions

The glossary contains the working definitions fog key concepts in the Course Registration
System.

Course
A class offered by the university.

Course Offering

A specific delivery of the course for a specificrsster — you could run the same course in
parallel sessions in the semester. Includes the dfathe week and times it is offered.

Course Catalog
The unabridged catalog of all courses offered leyuthiversity.

Faculty
All the professors teaching at the university.

Finance System

The system used for processing billing information.

Grade

The evaluation of a particular student for a pattic course offering.

Professor
A person teaching classes at the university.

Report Card
All the grades for all courses taken by a studeat given semester.

Roster
All the students enrolled in a particular coursieing.

Student
A person enrolled in classes at the university.

Schedule
The courses a student has selected for the cleeemtster.

Transcript

The history of the grades for all courses, for dipalar student sent to the finance system,
which in turn bills the students.

OOAD with UML2 and RSM — Student Workbook 26

Supplementary Specifications

Objectives

The purpose of this document is to define requirgmef the Course Registration System.
This Supplementary Specification lists the requiata that are not readily captured in the
use cases of the use-case model. The Supplem&nacyfications and the use-case model
together capture a complete set of requirementh@grystem.

Scope

This specification defines the non-functional regmients of the system; such as reliability,
usability, performance, and supportability, as vaslifunctional requirements that are
common across a humber of use cases. (The functemarements are defined in the Use
Case Specifications.)

References
None.

Functionality

Multiple users must be able to perform their wookecurrently.
If a course offering becomes full while a studenbuilding a schedule including that offering,
the student must be notified.

Usability
The desktop user-interface shall be Windows 95@8pdiant.

Reliability
The system shall be available 24 hours a day 7 aaysek, with no more than 10% down
time.

Performance

The system shall support up to 2000 simultaneoessiegainst the central database at any
given time, and up to 500 simultaneous users agtiadocal servers at any one time.

The system shall provide access to the legacy eaatslog database with no more than a 10
second latency.

Note: Risk-based prototypes have found that thedggourse catalog database cannot meet
our performance needs without some creative usgidtier processing power

The system must be able to complete 80% of alkaetions within 2 minutes.

Supportability
None.

Security

The system must prevent students from changingemgdules other than their own, and
professors from modifying assigned course offerfiog®ther professors.

Only Professors can enter grades for students.

Only the Registrar is allowed to change any stugdgatmation.

OOAD with UML2 and RSM — Student Workbook 27

Design Constraints
The system shall integrate with an existing legaygstem, the Course Catalog System, which

is an RDBMS database.
The system shall provide a Windows-based desktepfate.

OOAD with UML2 and RSM — Student Workbook 28

Register for Courses UC

Brief Description

This use case allows a Student to register forsmafferings in the current semester. The
Student can also update or delete course seledtiohanges are made within the add/drop
period at the beginning of the semester. The CaDatalog System provides a list of all the
course offerings for the current semester.

Flow of Events

Basic Flow

This use case starts when a Student wishes tdeefps course offerings, or to change
his/her existing course schedule.

1.

The Student provides the function to perform (ohthe sub flows is executed):
If the Student selected “Create a Schedule”, theatéra Schedule subflow is
executed.

If the Student selected “Update a Schedule”, thddipa Schedule subflow is
executed.

If the Student selected “Delete a Schedule”, thiefieea Schedule subflow is
executed.

Create a Schedule

1. The system retrieves a list of available courseroffs from the Course
Catalog System and displays the list to the Student

2. The Select Offerings subflow is executed.

3. The Submit Schedule subflow is executed.

Update a Schedule

1. The system retrieves and displays the Studentiecuschedule (e.g., the
schedule for the current semester).

2. The system retrieves a list of available courseraffis from the Course
Catalog System and displays the list to the Student

3. The Student may update the course selections aruthent selection by
deleting and adding new course offerings. The Stuskelects the course
offerings to add from the list of available coudsterings. The Student also
selects any course offerings to delete from thstieg schedule.

4. Once the student has made his/her selectionsystens updates the schedule
for the Student using the selected course offerings

5. The Submit Schedule subflow is executed.

Delete a Schedule

1. The system retrieves and displays the Studentiecuschedule (e.g., the
schedule for the current semester).

2. The system prompts the Student to confirm the weletf the schedule.

3. The Student verifies the deletion.

4. The system deletes the Schedule. If the schedul@ios “enrolled in” course
offerings, the Student must be removed from thesmaffering.

Select Offerings

OOAD with UML2 and RSM — Student Workbook 29

The Student selects 4 primary course offeringszaaliernate course offerings
from the list of available offerings.

Once the student has made his/her selectionsysitens creates a schedule for the
Student containing the selected course offerings.

Submit Schedule

For each selected course offering on the schedilalready marked as “enrolled
in”, the system verifies that the Student has #ngessary prerequisites, that the
course offering is open, and that there are nodsdbeconflicts.

The system then adds the Student to the selectedecoffering. The course
offering is marked as “enrolled in” in the schedule

The schedule is saved in the system.

Alternative Flows

Save a Schedule
At any point, the Student may choose to save adst@eather than submitting it. If this
occurs, the Submit Schedule step is replaced Wwétidllowing:

The course offerings not marked as “enrolled i€ mwarked as “selected” in the schedule.
The schedule is saved in the system.

Unfulfilled Prerequisites, Course Full, or ScheduleConflicts

If, in the Submit Schedule sub-flow, the systenedaines that the Student has not satisfied
the necessary prerequisites, or that the seleoctade offering is full, or that there are
schedule conflicts, an error message is displayéd Student can either select a different
course offering and the use case continues, savactiedule, as is (see Save a Schedule
subflow), or cancel the operation, at which poirg Basic Flow is re-started at the beginning.

No Schedule Found

If, in the Update a Schedule or Delete a Schedueflews, the system is unable to retrieve
the Student’s schedule, an error message is deshlajhe Student acknowledges the error,
and the Basic Flow is re-started at the beginning.

Course Catalog System Unavailable

If the system is unable to communicate with therSeCatalog System, the system will
display an error message to the Student. The Stad&nowledges the error message, and
the use case terminates.

Course Registration Closed

When the use case starts, if it is determinedrdgistration for the current semester has been
closed, a message is displayed to the Studenthangse case terminates. Students cannot
register for course offerings after registrationtfee current semester has been closed.

Delete Cancelled

If, in the Delete A Schedule sub-flow, the Studdetides not to delete the schedule, the
delete is cancelled, and the Basic Flow is re-tiaat the beginning.

OOAD with UML2 and RSM — Student Workbook 30

Special Requirements
None.

Pre-Conditions
The Student must be logged onto the system bdi@e@ise case begins.

Post-Conditions
If the use case was successful, the student sehedaleated, updated, or deleted. Otherwise,
the system state is unchanged.

OOAD with UML2 and RSM — Student Workbook 31

Appendix 2 — Payroll System

Problem Statement

As the head of Information Technology at Acme, Iiyou are tasked with building a new
payroll system to replace the existing system, twischopelessly out of date. Acme needs a
new system to allow employees to record timecdatimation electronically and
automatically generate paychecks based on the numhbeurs worked and total amount of
sales (for commissioned employees).

The new system will be state of the art and willdha Windows-based desktop interface to
allow employees to enter timecard information, eptechase orders, change employee
preferences (such as payment method), and createisaeports. The system will run on
individual employee desktops throughout the ertim@pany. For reasons of security and
auditing, employees can only access and edit thvairtimecards and purchase orders.

The system will retain information on all employéeshe company (Acme currently has
around 5,000 employees world-wide.) The system mpagteach employee the correct
amount, on time, by the method that they spec#g (ossible payment methods described
later). Acme, for cost reasons, does not wantpaoe one of their legacy databases, the
Project Management Database, which contains afmédition regarding projects and charge
numbers. The new system must work with the exidirgject Management Database, which
is a DB2 database running on an IBM mainframe. Hagroll System will access, but not
update, information stored in the Project ManagdrDatabase.

Some employees work by the hour, and they aregraliburly rate. They submit timecards
that record the date and number of hours worked fmarticular charge number. If someone
works for more than 8 hours, Acme pays them 1.8githeir normal rate for those extra
hours. Hourly workers are paid every Friday.

Some employees are paid a flat salary. Even ththaghare paid a flat salary, they submit
timecards that record the date and hours workdtls i$ so the system can keep track of the
hours worked against particular charge numbersy Hne paid on the last working day of the
month.

Some of the salaried employees also receive a cesionibased on their sales. They submit
purchase orders that reflect the date and amouhtedfale. The commission rate is
determined for each employee, and is one of 10%, P%%, or 35%.

One of the most requested features of the newmyistemployee reporting. Employees will
be able to query the system for number of hourkedyrtotals of all hours billed to a project
(i.e., charge number), total pay received yearetegremaining vacation time, etc.

Employees can choose their method of payment. Taryhave their paychecks mailed to the
postal address of their choice, or they can reqiliestt deposit and have their paycheck
deposited into a bank account of their choosing @imployee may also choose to pick their
paychecks up at the office.

The Payroll Administrator maintains employee infatian. The Payroll Administrator is
responsible for adding new employees, deleting eyaas and changing all employee

OOAD with UML2 and RSM — Student Workbook 32

information such as name, address, and paymerifatation (hourly, salaried,
commissioned), as well as running administratiyeres.

The payroll application will run automatically eydfriday and on the last working day of the
month. It will pay the appropriate employees orsthdays. The system will be told what date
the employees are to be paid, so it will generatenents for records from the last time the

employee was paid to the specified date. The netesyis being designed so that the payroll
will always be generated automatically, and theitebg no need for any manual intervention.

OOAD with UML2 and RSM — Student Workbook 33

Glossary

Introduction

This document is used to define terminology spectdithe problem domain, explaining terms,
which may be unfamiliar to the reader of the usseagescriptions or other project documents.
Often, this document can be used as an informal diationary, capturing data definitions so
that use-case descriptions and other project doctshwan focus on what the system must do
with the information.

Definitions
The glossary contains the working definitions fog key concepts in the Payroll System.

Bank System

Any bank(s) to which direct deposit transactiore sent.

Employee

A person that works for the company that owns gretates the payroll system (Acme, Inc.)

Payroll Administrator
The person responsible for maintaining employeéseamployee information in the system.

Project Management Database
The legacy database that contains all informatgarding projects and charge numbers.

System Clock

The internal system clock that keeps track of tififee internal clock will automatically run
the payroll at the appropriate times.

Pay Period
The amount of time over which an employee is paid.

Paycheck
A record of how much an employee was paid durisgexified Pay Period.

Payment Method
How the employee is paid, either pick-up, maildwect deposit.

Timecard
A record of hours worked by the employee duringecgied pay period.

Purchase Order
A record of a sale made by an employee.

Salaried Employee
An employee that receives a salary.

Commissioned Employee
An employee that receives a salary plus commissions

Hourly Employee
An employee that is paid by the hour.

OOAD with UML2 and RSM — Student Workbook 34

Supplementary Specifications

Objectives

The purpose of this document is to define requirgmef the Payroll System. This
Supplementary Specification lists the requireméms are not readily captured in the use
cases of the use-case model. The SupplementaryiSawans and the use-case model
together capture a complete set of requirementh@grystem.

Scope

This Supplementary Specification applies to ther®agystem, which will be developed by
the OOAD students.

This specification defines the non-functional regmients of the system; such as reliability,
usability, performance, and supportability as vaslifunctional requirements that are common
across a number of use cases. (The functionalnagants are defined in the Use Case
Specifications.).

Functionality

None.
Usability
None.
Reliability

The main system must be running 98% of the timis.ithperative that the system be up and
running during the times the payroll is run (evEriday and the last working day of the
month).

Performance

The system shall support up to 2000 simultaneoesswegainst the central database at any
given time, and up to 500 simultaneous users ag#iadocal servers at any one time.

Supportability
None.

Security

The system should prevent employees from changigdiaecards other than their own.
Additionally, for security reasons, only the Pal#diministrator is allowed to change any
employee information with the exception of the pawtdelivery method.

Design Constraints

The system shall integrate with an existing legaystem, the Project Management Database,
which is a DB2 database running on an IBM mainframe

The system shall interface with existing bank syst&ia an electronic transaction interface
The system shall provide a Windows-based desktepfate.

OOAD with UML2 and RSM — Student Workbook 35

Maintain Timecard UC

Brief Description

This use case allows the Employee to update amdistimecard information. Hourly and
salaried employees must submit weekly timecardsrdétg all hours worked that week and
which projects the hours are billed to. An Emplogaa only make changes to the timecard
for the current pay period and before the timetaslbeen submitted.

Flow of Events

Basic Flow

This use case starts when the Employee wishedéo leours worked into his current
timecard.

1. The system retrieves and displays the current &ntefor the Employee. If a
timecard does not exist for the Employee for theesu pay period, the system
creates a new one. The start and end dates btifrteeard are set by the system
and cannot be changed by the Employee.

2. The system retrieves and displays the list of atsél charge numbers from the
Project Management Database.

3. The Employee selects the appropriate charge nunaberenters the hours worked
for any desired date (within the date range ottithhecard).

4, Once the Employee has entered the informationsybem saves the timecard.

Submit Timecard

1. At any time, the Employee may request that theesystubmit the timecard.

2. At that time, the system assigns the current aatkd timecard as the submitted
date and changes the status of the timecard tovitgal.” No changes are
permitted to the timecard once it has been subditte

3. The system validates the timecard by checking tleber of hours worked
against each charge number. The total number ashweorked against all charge
numbers must not exceed any limit establishedifeiBmployee (for example, the
Employee may not be allowed to work overtime).

4, The system retains the number of hours workeddoh &harge number in the

timecard.

The system saves the timecard.

The system makes the timecard read-only, and nibeiuchanges are allowed once

the timecard is submitted.

oo

Alternative Flows

Invalid Number of Hours

If, in the Basic Flow, an invalid number of housseintered for a single day (>24), or the
number entered exceeds the maximum allowable &éEthployee, the system will display an
error message and prompt for a valid number of$iotlie Employee must enter a valid
number, or cancel the operation, in which caseiieecase ends.

Timecard Already Submitted

If, in the Basic Flow, the Employee’s current tiragt has already been submitted, the system
displays a read-only copy of the timecard and mf®the Employee that the timecard has

OOAD with UML2 and RSM — Student Workbook 36

already been submitted, so no changes can be madelihe Employee acknowledges the
message and the use case ends.

Project Management Database Not Available

If, in the Basic Flow, the Project Management Databis not available, the system will
display an error message stating that the lisvailable charge numbers is not available. The
Employee acknowledges the error and may eithersghtiocontinue (without selectable
charge numbers), or to cancel (any timecard chaagediscarded and the use case ends).
Note: Without selectable charge numbers, the Eng@lagay change hours for a charge
number already listed on the timecard, but he/sag mot add hours for a charge number that
is not already listed.

Special Requirements
None.

Pre-Conditions
The Employee must be logged onto the system bé#imeise case begins.

Post-Conditions

If the use case was successful, the Employee ti@crmation is saved to the system.
Otherwise, the system state is unchanged.

OOAD with UML2 and RSM — Student Workbook 37

Run Payroll UC

Brief Description

The use case describes how the payroll is run dwedpy and the last working day of the
month.

Flow of Events

Basic Flow

1. The use case begins when it's time to run the playifee payroll is run
automatically every Friday and the last working déyhe month.

2. The system retrieves all employees who should megrathe current date.

3. The system calculates the pay using entered tirdecpurchase orders, employee
information (e.qg., salary, benefits, etc.) andelal deductions.

4. If the payment delivery method is mail or pick-tipe system prints a paycheck.

5. If the payment delivery method is direct deposig $ystem creates a bank
transaction and sends it to the Bank System fargasing.

6. The use case ends when all employees receivin{pp#élye desired date have been
processed.

Alternative Flows

Bank System Unavailable

If the Bank System is down, the system will attetoptend the bank transaction again after a
specified period. The system will continue to @ to re-transmit until the Bank System
becomes available.

Deleted Employees
After the payroll for an Employee has been proadgs$¢he employee has been marked for
deletion (see the Maintain Employee use case),ttieesystem will delete the employee.

Special Requirements
None.

Pre-Conditions
None.

Post-Conditions
Payments for each employee eligible to be paichercurrent date have been processed.

OOAD with UML2 and RSM — Student Workbook 38

