
Key Recovery Service Provider
Key Recovery Service Provider Interface (KRSPI)

Specification

June 11, 1999

Copyright© 1999 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication,
or disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.
001.001.004

Version 1.1.3.0 Key Recovery Service Provider Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ... 1

1.1 SERVICE PROVIDER MODULES .. 1
1.2 INTENDED AUDIENCE ... 2
1.3 DOCUMENTATION SET.. 2
1.4 REFERENCES .. 3

CHAPTER 2.KEY RECOVERY OVERVIEW.. 5

2.1 KEY RECOVERY TYPES... 5
2.2 LIFETIME OF KEY RECOVERY FIELDS .. 6
2.3 KEY RECOVERY POLICY ... 6
2.4 OPERATIONAL SCENARIOS FOR KEY RECOVERY... 7
2.5 KEY RECOVERY PHASES ... 8
2.6 KEY RECOVERY MODULE MANAGER .. 9

2.6.1 Operational Scenarios... 9
2.6.2 Key Recovery Profiles ... 9
2.6.3 Key Recovery Context ... 10
2.6.4 Key Recovery Policy ... 10
2.6.5 Key Recovery Enablement Operations... 11
2.6.6 Key Recovery Registration and Request Operations .. 11

2.7 EXTENSIONS TO THE CRYPTOGRAPHIC MODULE MANAGER.. 12

CHAPTER 3.KEY RECOVERY SERVICE PROVIDER INTERFACE .. 13

3.1 KEY RECOVERY REGISTRATION FUNCTIONS .. 13
3.2 KEY RECOVERY ENABLEMENT FUNCTIONS.. 13
3.3 KEY RECOVERY REQUEST FUNCTIONS .. 14
3.4 PRIVILEGE FUNCTIONS ... 14
3.5 DATA STRUCTURES .. 14

3.5.1 CSSM_BOOL .. 14
3.5.2 CSSM_CERTGROUP.. 14
3.5.3 CSSM_CONTEXT_ATTRIBUTE.. 15
3.5.4 CSSM_KRC_HANDLE.. 16
3.5.5 CSSM_KR_NAME... 16
3.5.6 CSSM_KR_PROFILE.. 16
3.5.7 CSSM_KRSP_HANDLE .. 17
3.5.8 CSSMKRSPI.. 17
3.5.9 CSSM_PRIV_FUNC_PTR ... 17
3.5.10 CSSM_KRSPINFO .. 17
3.5.11 CSSM_KRSPSUBSERVICE... 18
3.5.12 CSSM_KR_WRAPPEDPRODUCTINFO.. 19
3.5.13 CSSM_RETURN.. 19

3.6 KEY RECOVERY REGISTRATION FUNCTIONS .. 20
3.6.1 KRSP_RegistrationRequest ... 20
3.6.2 KRSP_RegistrationRetrieve... 21

3.7 KEY RECOVERY ENABLEMENT FUNCTIONS.. 22
3.7.1 KRSP_GenerateKRFields.. 22
3.7.2 KRSP_ProcessKRFields .. 24

3.8 KEY RECOVERY REQUEST FUNCTIONS .. 26
3.8.1 KRSP_GetRecoveredObject .. 26

Version 1.1.3.0 Key Recovery Service Provider Page iv

3.8.2 KRSP_RecoveryRequest .. 28
3.8.3 KRSP_RecoveryRequestAbort ... 29
3.8.4 KRSP_RecoveryRetrieve ... 30

3.9 KEY RECOVERY PRIVILEGE FUNCTIONS... 31
3.9.1 KRSP_PassPrivFunc ... 31

APPENDIX A. LIST OF ACRONYMS ... 32

APPENDIX B. GLOSSARY... 33

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture...2
Figure 2. Key Recovery Phases...8

Version 1.1.3.0 Key Recovery Service Provider Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services, IBM
KeyWorks Framework, and Service Providers. The IBM KeyWorks Framework is the core of this
architecture. It provides a means for applications to directly access security services through the
KeyWorks security application programming interface (API), or to indirectly access security services via
layered security services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework
manages the service provider security modules and directs application calls through the KeyWorks API to
the selected service provider module that will service the request. The KeyWorks API defines the
interface for accessing security services. The KeyWorks service provider interface (SPI) defines the
interface for service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs) which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic
manipulation of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data
Storage Library (DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. Independent Software
Vendors (ISVs) and hardware vendors will provide these service providers. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using a KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that
perform a security operation such as encrypting data, inserting a CRL into a data source, or verifying that
a certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is
defined by the service provider module developer.

Version 1.1.3.0 Key Recovery Service Provider Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic
Service

Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery
Service

Provider

KRSPI

KRSP

Manager

System
Security
Services

 Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces can be found in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

This document should be used by ISVs who want to develop their own key recovery service provider
modules. These ISVs can be highly experienced software and security architects, advanced programmers,
and sophisticated users. The intended audience of this document must be familiar with high-end
cryptography and digital certificates. They must also be familiar with local and foreign government
regulations on the use of cryptography and the implication of those regulations for their applications and
products. We assume that this audience is familiar with the basic capabilities and features of the protocols
they are considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the
IBM KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the
IBM KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

Version 1.1.3.0 Key Recovery Service Provider Page 3

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order
to be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and
Sons, Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

Version 1.1.3.0 Key Recovery Service Provider Page 4

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17,
1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture
Labs, 1997.

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E.
and Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3,
March 1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood
City, CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs,
1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication
Framework, 1988. CCITT stands for Comite Consultatif Internationale
Telegraphique et Telephonique (International Telegraph and Telephone
Consultative Committee)

Version 1.1.3.0 Key Recovery Service Provider Page 5

Chapter 2. Key Recovery Overview

Key recovery mechanisms serve many useful purposes; they may be used by individuals to recover lost or
corrupted keys, or they may be used by enterprises to deter corporate insiders from using encryption to
bypass the corporate security policy regarding the flow of proprietary information. Corporations may also
use key recovery mechanisms to recover employee keys in certain situations, e.g., in the employee’s
absence. The use of key recovery mechanisms in web-based transactional scenarios can serve as an
additional technique of non-repudiation and audit that may be admissible in a court of law. Finally, key
recovery mechanisms may be used by jurisdictional law enforcement bodies to access the contents of
confidentiality-protected communications and stored data. Thus, there appears to be multiple incentives
for the incorporation as well as adoption of key recovery mechanisms in local and distributed encryption-
based systems.

Denning and Brandstad [Key Escrow 1996] present a taxonomy of key escrow systems. A different
scheme of nomenclature was adopted in order to exhibit some of the finer nuances of key recovery
schemes. The term key recovery encompasses mechanisms that allow authorized parties to retrieve the
cryptographic keys used for data confidentiality, with the ultimate goal of recovery of encrypted data. The
remainder of this section will discuss the various types of key recovery mechanisms, the phases of key
recovery, and the policies with respect to key recovery.

2.1 Key Recovery Types

There are two classes of key recovery mechanisms based on the way keys are held to enable key recovery:

•• Key Escrow - Techniques based on the paradigm that the government or a trusted party, called an
escrow agent, holds the actual user keys or portions thereof.

•• Key Encapsulation - Techniques based on the paradigm that a cryptographically encapsulated form
of the key is made available to parties that require key recovery. The technique ensures that only
certain trusted third parties called, Key Recovery Agents (KRAs), can perform the unwrap operation
to retrieve the key material buried inside.

There may also be hybrid schemes that use some escrow mechanisms in addition to encapsulation
mechanisms.

An orthogonal way to classify key recovery mechanisms is based on the nature of the key:

•• Long-term private keys
•• Ephemeral keys

Both types of keys can be escrowed or encapsulated. Since escrow schemes involve the actual archival of
keys, they typically deal with long-term keys in order to avoid the proliferation problem that arises when
trying to archive the myriad ephemeral keys. Key encapsulation techniques, on the other hand, usually
operate on the ephemeral keys.

For a large class of key recovery (escrow as well as encapsulation) schemes, there is a set of Key Recovery
Fields (KRFs) that accompanies an enciphered message or file. These KRFs may be used by the
appropriate authorized parties to recover the decryption key and or the plaintext. Typically, the KRFs
comprise information regarding the key escrow or KRAs that can perform the recovery operation; they
also contain other pieces of information to enable recovery.

In a key escrow scheme for long-term private keys, the escrowed keys are used to recover the ephemeral
data confidentiality keys. In such a scheme, the KRFs may comprise the identity of the escrow agents,

Version 1.1.3.0 Key Recovery Service Provider Page 6

identifying information for the escrowed key, and the bulk encryption key which is wrapped in the
recipient's public key (part of an escrowed key pair); thus the KRFs include the key exchange block in this
case. In a key escrow scheme where bulk encryption keys are archived, the KRFs may comprise
information to identify the escrow agents and the escrowed key for that enciphered message.

In a typical key encapsulation scheme for ephemeral bulk encryption keys, the KRFs are distinct from the
key exchange block (if any). The KRFs identify the KRAs and contain the bulk encryption key
encapsulated using the public keys of the KRAs.

To ensure the integrity of the KRFs, and its association with the encrypted data, it may be required for
processing by the party performing the data decryption. The processing mechanism ensures that
successful data decryption cannot occur unless the integrity of the KRFs is maintained at the receiving
end. In schemes where the KRFs contain the key exchange block, decryption cannot occur at the
receiving end unless the KRFs are processed to obtain the decryption key; thus the integrity of the KRFs
are automatically verified. In schemes where the KRFs are separate from the key exchange block,
additional processing must be done to ensure that decryption of the ciphertext occurs only after the
integrity of the KRFs are verified.

2.2 Lifetime of Key Recovery Fields

Cryptographic products fall into one of two fundamental classes: archived-ciphertext products and
transient-ciphertext products. When the product allows either the generator or the receiver of ciphertext
to archive the ciphertext, the product is classified as an archived-ciphertext product. On the other hand,
when the product does not allow the generator or receiver of ciphertext to archive the ciphertext, it is
classified as a transient-ciphertext product.

It is important to note that the lifetime of KRFs should never be greater than the lifetime of the associated
ciphertext. This is somewhat obvious, since recovery of the key is only meaningful if the key can be used
to recover the plaintext from the ciphertext. Hence, when archived-ciphertext products are key recovery
enabled, the KRFs are typically archived as long as the ciphertext. Similarly, when transient-ciphertext
products are key recovery enabled, the KRFs are associated with the ciphertext for the duration of its
lifetime. It is not meaningful to archive KRFs without archiving the associated ciphertext.

2.3 Key Recovery Policy

Key recovery policies are mandatory policies that may be derived from enterprise-based or jurisdiction-
based rules on the use of cryptographic products for data confidentiality. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on export, import, or use controls.
Enterprises may define internal and external domains, and may mandate key recovery policies on the
cryptographic products within their own domain.

Key recovery policies come in two flavors: key recovery enablement policies and key recovery
interoperability policies. Key recovery enablement policies specify the exact cryptographic protocol suites
(i.e., algorithms, modes, key lengths etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of the cryptographic key that
may be left out of the key recovery enablement operation; this is typically referred to as the workfactor.
Key recovery interoperability policies specify to what degree a key recovery enabled cryptographic product
is allowed to interoperate with other cryptographic products.

Version 1.1.3.0 Key Recovery Service Provider Page 7

2.4 Operational Scenarios for Key Recovery

There are three basic operational scenarios for key recovery, including:

• Enterprise key recovery
• Law Enforcement key recovery
• Individual key recovery

Enterprise key recovery allows enterprises to enforce stricter monitoring of the use of cryptography, and
the recovery of enciphered data when the need arises. Enterprise key recovery is based on a mandatory
key recovery policy; however, this policy is set (typically through administrative means) by the
organization or enterprise at the time of installation of a recovery enabled cryptographic product. The
enterprise key recovery policy should not be modifiable or bypassable by the individual using the
cryptographic product. Enterprise key recovery mechanisms may use special, enterprise-authorized key
escrow or KRAs.

In the law enforcement scenario, key recovery is mandated by the jurisdictional law enforcement
authorities in the interest of national security and law enforcement. For a specific cryptographic product,
the key recovery policies for multiple jurisdictions may apply simultaneously. The policies (if any) of the
jurisdictions of manufacture of the product, as well as the jurisdiction of installation and use, need to be
applied to the product such that the most restrictive combination of the multiple policies is used. Thus,
law enforcement key recovery is based on mandatory key recovery policies; these policies are logically
bound to the cryptographic product at the time the product is shipped. There may be some mechanism for
vendor-controlled updates of such law enforcement key recovery policies in existing products; however,
organizations and end users of the product are unable to modify this policy at their discretion. The key
escrow or KRAs used for this scenario of key recovery need to be strictly controlled, in most cases, to
ensure that these agents meet the eligibility criteria for the relevant political jurisdiction where the product
is being used.

Individual key recovery is user-discretionary in nature and is performed for the purpose of recovery of
enciphered data by the owner of the data, if the cryptographic keys are lost or corrupted. Since this is a
nonmandatory key recovery scenario, it is not based on any policy that is enforced by the cryptographic
product; rather, the product may allow the user to specify when individual key recovery enablement will
be performed. There are few restrictions on the use of specific key escrow or KRAs.

Key recovery enabled cryptographic products must be designed so that the key recovery enablement
operation is mandatory and noncircumventable in the law enforcement and enterprise scenarios, and
discretionary for the individual scenario. The key escrow and KRAs that are used for law enforcement
and enterprise scenarios must be tightly controlled so that the agents are validated to belong to a set of
authorized or approved agents. In the law enforcement and enterprise scenarios, the key recovery process
typically needs to be performed without the knowledge and cooperation of the parties involved in the
cryptographic association.

The components of the KRFs also vary somewhat between the three scenarios. In the law enforcement
scenario, the KRFs must contain identification information for the key escrow or KRAs, whereas for the
enterprise and individual scenarios, the agent identification information is not so critical, since this
information may be available from the context of the recovery enablement operation. For the individual
scenario, there needs to be a strong user authentication component in the KRFs to allow the owner of the
KRFs to authenticate themselves to the agents; however, for the enterprise and law enforcement scenarios,
the authorization credentials checked by the agents may be in the form of legal documents or enterprise
authorization documents for key recovery, which may not be tied to any authentication component in the
KRFs. For the law enforcement and enterprise scenarios, the KRFs may contain recovery information for

Version 1.1.3.0 Key Recovery Service Provider Page 8

both the generator and receiver of the enciphered data; in the individual scenario, only the information of
the generator of the enciphered data is typically included (at the discretion of the generating party).

2.5 Key Recovery Phases

The process of cryptographic key recovery involves three major phases. The first phase is an optional key
recovery registration phase in which the parties that desire key recovery performs some initialization
operations with the key escrow or KRAs. These operations include obtaining a user public key certificate
(for an escrowed key pair) from an escrow agent, or obtaining a public key certificate from a KRA. In
phase two, parties that are involved in cryptographic associations have to perform operations to enable key
recovery (such as the generation of KRFs, etc.); this is typically called the key recovery enablement phase.
In the third and final phase, authorized parties that desire to recover the data keys do so with the help of a
Key Recovery Server (KRS) and one or more escrow agents or KRAs; this is the key recovery request
phase.

Figure 2 illustrates the three phases of key recovery. In Figure 2(a), a key recovery client registers with a
KRA prior to engaging in cryptographic communication. In Figure 2(b), two key recovery enabled
cryptographic applications are communicating using a key encapsulation mechanism. The KRFs are
passed along with the ciphertext and key exchange block to enable subsequent key recovery. The key
recovery request phase is illustrated in Figure 2(c), where the KRFs are provided as input to the KRS
along with the authorization credentials of the client requesting service. The KRS interacts with one or
more local or remote KRAs to reconstruct the secret key that can be used to decrypt the ciphertext.

Key_Exch,
KRFields,
CipherText

(b) Key Recovery Enablement

 (c) Key Recovery Request

(a) Key Recovery Registration

Recovered Key

Key
Recovery
Server

KR
Agent1

KR
Agent2

KR
Agentn

 KR Request
 Application

KR-enabled
Cryptographic
Application A

KR-enabled
Cryptographic
Application B

Registration
Messages

KR
Registration
Application

Key Recovery
Agent

Authentication /
Authorization
Credentials,
Key Recovery Block

Figure 2. Key Recovery Phases

It is likely that governments or organizations will operate their own KRS hosts independently, and that
KRSs may support a single or multiple key recovery mechanisms. There are a number of important issues
specific to the implementation and operation of the KRSs, such as vulnerability and liability. The focus of

Version 1.1.3.0 Key Recovery Service Provider Page 9

this document is a framework-based approach to implementing the key recovery operations pertinent to
end parties that use encryption for data confidentiality. The issues with respect to the KRS and agents
will not be discussed further in this section.

2.6 Key Recovery Module Manager

The Key Recovery Module Manager is responsible for handling the key recovery application programming interface (API)
functions and invocation of the appropriate Key Recovery Service Provider Interface (KRSPI) functions. The Key
Recovery Module Manager enforces the key recovery policy on all cryptographic operations that are obtained through the
IBM KeyWorks. It maintains key recovery state in the form of key recovery contexts.

2.6.1 Operational Scenarios

The IBM KeyWorks architecture supports three distinct operational scenarios for key recovery, namely, key recovery for
law enforcement purposes, enterprise purposes, and individual purposes. The law enforcement and enterprise scenarios for
key recovery are mandatory in nature, thus the KeyWorks layer code enforces the key recovery policy with respect to these
scenarios through the appropriate sequencing of key recovery API and cryptographic API calls. On the other hand, the
individual scenario for key recovery is completely discretionary, and is not enforced by the KeyWorks layer code. The
application/user requests key recovery operations using the key recovery APIs at their discretion.

The three operational scenarios for key recovery enablement drive certain design decisions with respect to the KeyWorks.
The details of the specific features of the operational scenarios are described in the following subsections.

2.6.2 Key Recovery Profiles

The KRSPs require certain pieces of information related to the parties involved in a cryptographic association in order to
generate and process KRFs. These pieces of information (such as the public key certificates of the KRAs) are contained in
key recovery profiles. A key recovery profile contains all of the
per-user parameters for KRF generation and processing for a specific KRSP. In other words, each user has a distinct profile
for each KRSP.

The information contained in the profile comprises the following:

• User identity

• Public key certificate chain for the user

• Set of KRA certificate chains for enterprise key recovery

• Set of KRA certificate chains for law enforcement key recovery

• Set of KRA certificate chains for individual key recovery

• Authentication Information (AI) field for individual key recovery

• Set of key recovery flags that fine tune the behavior of a KRSP

• Extension field

The key recovery profiles support a list of KRA certificate chains for each of the law enforcement, enterprise, and individual
key recovery scenarios, respectively. While the profile allows full certificate chains to be specified for the KRAs, it also
supports the specification of leaf certificates; in such instances, the KRSP and the appropriate Trust Policy (TP) modules are
expected to dynamically discover the intermediate Certificate Authority (CA) certificates up to the root certificate of trust.
One or more of these certificate chains may be set to NULL, if they are not needed or supported by the KRSP involved.

The user public key certificate chain is also part of a profile. This is a necessary parameter for certain key escrow and
encapsulation schemes. Similarly, certain schemes support the notion of an authentication field for individual key recovery.
This field is used by the KRS and/or KRAs to verify the authorization of the individual requesting the key. One or more of
fields may be set to NULL if their use is not required or supported by the KRSP involved.

Version 1.1.3.0 Key Recovery Service Provider Page 10

The key recovery flags are defined values that are pertinent for a large class of escrow and recovery schemes. The
extension field is for use by the KRSPs to define additional semantics for the key recovery profile. These extensions may be
flag parameters or value parameters. The semantics of these extensions are defined by a KRSP; the application that uses
profile extensions has to be cognizant of the specific extensions for a particular KRSP. However, it is envisioned that these
extensions will be for optional use only. KRSPs are expected to have reasonable defaults for all such extensions; this is to
ensure that applications do not need to be aware of specific KRSP profile extensions in order to get basic key recovery
enablement services from a KRSP. Whenever the extension field is set to NULL, the defaults should be used by a KRSP.

2.6.3 Key Recovery Context

All operations performed by the KRSPs are performed within a key recovery context. A key recovery context is
programmatically equivalent to a cryptographic context; however, the attributes of a key recovery context are different from
those of other cryptographic contexts. There are three kinds of key recovery contexts: registration contexts, enablement
contexts, and recovery request contexts. A key recovery context contains state information that is necessary to perform key
recovery operations. When the key recovery API functions are invoked by application layer code, the Key Recovery
Module Manager passes the appropriate key recovery context to the KRSP using the key recovery SPI function parameters.

A key recovery registration context contains no special attributes. A key recovery enablement context maintains
information about the profiles of the local and remote parties for a cryptographic association. When the key recovery API
function to create a key recovery enablement context is invoked, the key recovery profiles for the specified communicating
peers are specified by the application layer code using the API parameters. A key recovery request context maintains a set
of KRFs which are being used to perform a recovery request operation, and a set of flags that denotes the operational
scenario of the recovery request operation. Since the establishment of a context implies the maintaining of state information
within the KeyWorks, contexts acquired should be released as soon as their need is over.

2.6.4 Key Recovery Policy

The KeyWorks enforces the applicable key recovery policy on all cryptographic operations. There are two key recovery
policies enforced by the KeyWorks: a law enforcement key recovery policy and the enterprise key recovery policy. Since
the requirements for these two mandatory key recovery scenarios are somewhat different, they are implemented by different
mechanisms within the KeyWorks.

The law enforcement key recovery policy is predefined (based on the political jurisdictions of manufacture
and use of the cryptographic product) for a given product. The parameters on which the policy decision is
made are predefined as well. Thus, the law enforcement key recovery policy is implemented using two
Key Recovery Policy Tables (KRPTs); one table corresponding to the policy of the jurisdiction of
manufacture, and the second corresponding to the jurisdiction of use of the product. These two law
enforcement policy tables are consulted by the key recovery policy enforcement function in the KeyWorks.
The law enforcement policy tables are implemented as two separate physical files for ease of
implementation and upgrade (as law enforcement policies evolve over time); however, these files are
protected using the same integrity mechanisms as the framework module, and thus has the same assurance
properties.

The enterprise key recovery policy could vary anywhere between being set to NULL and being very complex (e.g., based on
parameters such as time of day). Enterprises are allowed total flexibility with respect to the enterprise key recovery policy.
The enterprise policy is implemented within the KeyWorks by invoking a key recovery policy function that is defined by the
enterprise administrator. The key recovery API provides a function that allows an administrator to specify the name of a file
that contains the enterprise key recovery policy function. The first time this function is used, the administrator can establish
a passphrase for subsequent calls on this function. This mechanism assures a level of access control on the enterprise
policy, once a policy function has been established. It goes without saying that the file containing the policy function should
be protected using the maximal possible protection afforded by the operating system platform. The actual structure of the
policy function file is operating system platform-specific.

Every time a cryptographic context handle is returned to application layer code, the KeyWorks enforces the law
enforcement and enterprise key recovery policies. For the law enforcement policy, the KeyWorks policy enforcement
function and the law enforcement policy table are used. For the enterprise policy, the enterprise policy function file is
invoked in an operating system platform-specific way. If the policy check determines that key recovery enablement is
required for either law enforcement or enterprise scenarios, then the context is flagged as unusable, otherwise the context is

Version 1.1.3.0 Key Recovery Service Provider Page 11

flagged as usable. An unusable context handle becomes flagged as usable only after the appropriate key recovery
enablement operation is completed using that context handle. A usable context handle can then be used to perform
cryptographic operations.

2.6.5 Key Recovery Enablement Operations

The KeyWorks key recovery enablement operations comprise the generation and processing of KRFs. Within a
cryptographic association, KRF generation is performed by the sending side. KRF processing is performed on
the receiving side to ensure that the integrity of the KRFs have been maintained in transmission between the
sending and receiving sides. These two vital operations are performed via the KR_GenerateRecoveryFields and
the KR_ProcessRecoveryFields functions, respectively. These functions are discussed in Chapter 3.

The KRFs generated by the KeyWorks potentially comprises three subfields: law enforcement, enterprise, and individual
key recovery scenarios, respectively. The law enforcement and enterprise key recovery subfields are generated when the
law enforcement and enterprise usability flags are appropriately set in the cryptographic context used to generate the KRFs.
The individual key recovery subfields are generated when a certain flag value is set while invocation of the API function to
generate the KRFs. The processing of the KRFs only applies to the law enforcement and enterprise key recovery subfields;
the individual key recovery subfields are ignored by the KRFs processing function.

2.6.6 Key Recovery Registration and Request Operations

The KeyWorks also supports the operations of registration and recovery requests. The KRSP exchanges messages with the
appropriate KRA and KRS to obtain the results required. If additional inputs are required for the completion of the
operation, the supplied callback may be used by the KRS. The recovery request operation can be used to request of batch of
recoverable keys. The result of the registration operation is a key recovery profile data structure, while the results of a
recovery request operation are a set of recovered keys.

Version 1.1.3.0 Key Recovery Service Provider Page 12

2.7 Extensions to the Cryptographic Module Manager

The Cryptographic Module Manager of the IBM KeyWorks is responsible for handling the cryptographic functions of the
KeyWorks. In order to introduce the necessary dependencies between the cryptographic operations and the key recovery
enablement operations, the Cryptographic Module Manager is extended with conditional behavior.

The cryptographic context data structure, which holds the many parameters that must be specified as input to a
cryptographic function, has been augmented to include the following key recovery extension fields:

• Usability field for key recovery
• Workfactor field for law enforcement key recovery

The usability field denotes whether a cryptographic context needs to have key recovery enablement
operations (either for law enforcement or enterprise needs) performed before it can be used for
cryptographic operations such as encryption or decryption. The workfactor field holds the allowable
workfactor value for law enforcement key recovery. These two additional fields of the cryptographic
context are not available to the API for modification. They are set by the Key Recovery Module Manager
when the latter makes the key recovery policy enforcement decision for law enforcement and enterprise
policies.

The behavior of some of the cryptographic functions of the KeyWorks API are designed to accommodate
the above mentioned extensions to the cryptographic context, as follows:

•• Invoke key recovery policy enforcement functions for cryptographic context creation and update
operations.

•• Set the usability field in the cryptographic context to render the context unusable if key recovery
enablement operations are mandated.

•• Check the cryptographic context usability field before allowing encryption/decryption operations to
occur.

Whenever a cryptographic context is created or updated using the KeyWorks API functions, the
Cryptographic Module Manager invokes a Key Recovery Module Manager policy enforcement function
module; the latter checks the law enforcement and enterprise policies to determine whether the
cryptographic context defines an operation where key recovery is mandated. If so, the usability field value
is set in the cryptographic context data structure to signify that the context is unusable until key recovery
enablement operations are performed on this context. The usability field is essentially a bitmap that
signifies whether key recovery is required by the law enforcement or enterprise key recovery policies.
When the appropriate key recovery enablement operations are performed on this context, the bits in the
usability field are appropriately toggled so that the cryptographic context becomes usable for the intended
operations.

When the encryption/decryption operations are invoked through the KeyWorks API, and the Key Recovery Module
Manager is present in KeyWorks, the Cryptographic Module Manager checks the key recovery usability field in the
cryptographic context to determine whether the context is usable for encryption/decryption operations. If the context is
flagged as unusable, the Cryptographic Module Manager does not dispatch the call to the Cryptographic Service Provider
(CSP) and returns an error to the caller. When the appropriate key recovery enablement operations are performed on that
context, the Key Recovery Module Manager resets the context flags making that context usable for encryption/decryption.

Version 1.1.3.0 Key Recovery Service Provider Page 13

Chapter 3. Key Recovery Service Provider Interface

The generic KeyWorks module management functions are used to install and attach a Key Recovery Service (KRS)
module. These functions are specified in detail in the IBM KeyWorks Application Programming Interface Specification.
The applicable generic management functions include the following:

• CSSM_ModuleInstall

• CSSM_ModuleUninstall

• CSSM_ListModules

• CSSM_ModuleAttach

• CSSM_ModuleDetach

• CSSM_GetModuleInfo

• CSSM_FreeModuleInfo

The new management function, CSSM_KR_SetEnterpriseRecoveryPolicy, is directly supported by the Key Recovery
Module Manager in the IBM KeyWorks Framework.

CSSM_KR_SetEnterpriseRecoveryPolicy
This call establishes the filename that contains the enterprise-based key recovery policy
function for use by the Key Recovery Module Manager in KeyWorks.

3.1 Key Recovery Registration Functions

KRSP_RegistrationRequest
Performs a recovery registration request operation. A callback may be supplied to allow
the registration operation to query for additional input information, if necessary. The
result of the registration request operation is a reference handle that may be used to
invoke the KRSP_RegistrationRetrieve function.

KRSP_RegistrationRetrieve
Completes a recovery registration operation. The result of the registration operation is
returned in the form of a key recovery profile.

3.2 Key Recovery Enablement Functions

KRSP_GenerateKRFields
Accepts as input the key recovery context handle, the session-based recovery parameters,
the cryptographic context handle, and several other parameters of relevance to the Key
Recovery Service Provider (KRSP). Outputs a buffer of the appropriate mechanism-
specific Key Recovery Fields (KRFs) in a format defined and interpreted by the specific
KRSP involved. On successful completion, the input cryptographic context handle may
now be used for the encryption APIs in the cryptographic framework.

KRSP_ProcessKRFields
Accepts as input the key recovery context handle, cryptographic context handle, several
other parameters of relevance to a KRSP, and the unparsed buffer of KRFs. On
successful return, the input cryptographic context handle can be used for the decryption
APIs in the cryptographic framework.

Version 1.1.3.0 Key Recovery Service Provider Page 14

3.3 Key Recovery Request Functions

KRSP_RecoveryRequest
Performs a recovery request operation for one or more recoverable keys. A callback may
be supplied to allow the recovery request operation to query for additional input
information, if necessary. The result of the recovery request operation is a results
handle that may be used to obtain each recovered key and its associated meta
information using the KRSP_GetRecoveredObject function.

KRSP_RecoveryRetrieve
Completes a recovery request operation for one or more recoverable keys. The result of
the recovery operation is that the results handle may be used to obtain each recovered
key and its meta information using the KRSP_GetRecoveredObject function.

KRSP_GetRecoveredObject
Retrieves a single recovered key and its associated meta information.

KRSP_RecoveryRequestAbort
Terminates a recovery request operation and releases any state information associated
with it.

3.4 Privilege Functions

KR_PassPrivFunc
This function supports a privileged mode of the KRSP with respect to the policies
enforced by the framework.

3.5 Data Structures

This section describes the data structures that may be passed to or returned from a KRSP function.
Applications use these data structures to prepare and then pass input parameters into KeyWorks API
function calls, which are passed without modification to the appropriate key recovery. The key recovery is
responsible for interpreting them and returning the appropriate data structure to the calling application via
the KeyWorks Framework. These data structures are defined in the header file, cssmtype.h, which is
distributed with the IBM KeyWorks Toolkit.

3.5.1 CSSM_BOOL

typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

3.5.2 CSSM_CERTGROUP

This data structure contains a set of certificates that are based on cosignaturing. This certificate group is a
syntactic representation of a trust model.

Version 1.1.3.0 Key Recovery Service Provider Page 15

typedef struct cssm_certgroup {
 uint32 NumCerts;
 CSSM_DATA_PTR CertList;
 void* reserved;
} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts - Count of the number of certificates in the list.

CertList - Pointer to a list of certificate items.

Reserved - Reserved for future use.

3.5.3 CSSM_CONTEXT_ATTRIBUTE

The key recovery context creation operations return key recovery context handles that are represented as
cryptographic context handles. In order to use the CSSM_CONTEXT data structure to implement key
recovery contexts, the CSSM_CONTEXT will be used to hold new types of attributes, as shown below:

typedef struct cssm_context_attribute {
uint32 AttributeType;
uint32 AttributeLength;
union {

char *String;
uint32 Uint32;
CSSM_CRYPTO_DATA_PTR Crypto;
CSSM_KEY_PTR Key;
CSSM_DATA_PTR Data;
CSSM_DATE_PTR Date;
CSSM_RANGE_PTR Range;
CSSM_VERSION_PTR Version;
CSSM_KR_PROFILE_PTR KRProfile;

} Attribute;
} CSSM_CONTEXT_ATTRIBUTE, *CSSM_CONTEXT_ATTRIBUTE_PTR;

All but the last member of the union above are part of the core IBM KeyWorks Application Programming
Interface Specification. The descriptions of these basic fields and members are in the KeyWorks API
document. The KRProfile member of the union has been added specifically to support key recovery
contexts, which is described below.

Definitions:
AttributeType - One of the defined CSSM_ATTIBUTE_TYPE values.

AttributeLength - The length of the attribute.

KRProfile - A pointer to the key recovery profile structure that defines the user parameters with
respect to the key recovery process.

Several new attribute types were defined to support the key recovery context attributes. The following
definitions are added to the enumerated type CSSM_ATTRIBUTE_TYPE:

 CSSM_ATTRIBUTE_KRPROFILE_LOCAL = (CSSM_ATTRIBUTE_LAST + 1),
 CSSM_ATTRIBUTE_KRPROFILE_REMOTE = (CSSM_ATTRIBUTE_LAST + 2)

Version 1.1.3.0 Key Recovery Service Provider Page 16

3.5.4 CSSM_KRC_HANDLE

This data structure represents the key recovery context handle.

typedef uint32 CSSM_KRC_HANDle

3.5.5 CSSM_KR_NAME

This data structure contains a typed name. The namespace type specifies what kind of name is contained
in the third parameter.

typedef struct cssm_kr_name {
uint8 Type; /* namespace type */
uint8 Length; /* name string length */
char *Name; /* name string */

} CSSM_KR_NAME *CSSM_KR_NAME_PTR;

Definitions:
Type - The type of the key recovery name space.

Length - The length of the name (in bytes).

Name - The name represented in a string.

3.5.6 CSSM_KR_PROFILE

This data structure encapsulates the key recovery profile for a given user and a given key recovery
mechanism.

typedef struct cssm_kr_profile {
 CSSM_KR_NAME UserName;
 CSSM_DATA_PTR UserCertificate;
 uint8 LE_KRANum;
 CSSM_CERTGROUP_PTR LE_KRACertChainList;
 uint8 enterprise_KRANum;
 CSSM_CERTGROUP_PTR ENT_KRACertChainList;
 uint8 INDIV_KRANum;
 CSSM_CERTGROUP_PTR INDIV_KRACertChainList;
 CSSM_DATA_PTR INDIV_AuthenticationInfo;
 uint32 KRSPFlags;
 CSSM_DATA_PTR KRSPExtensions;
} CSSM_KR_PROFILE, *CSSM_KR_PROFILE_PTR;

Definitions:
UserName - Name of the entity using this profile.

UserCertificate - The X.509 Version 3 ASN.1 DER-encoded public key certificate of the user. It is
used for identity and authentication when performing policy evaluation.

LE_KRANum - The number of law enforcement KRAs in LE_KRACertChainList.

LE_KRACertChainList - A list of certificates chains, one per KRA, authorized for law enforcement
key recovery.

ENT_KRANum - The number of enterprise KRAs in ENT_KRACertChainList.

Version 1.1.3.0 Key Recovery Service Provider Page 17

ENT_KRACertChainList - A list of certificates chains, one per KRA, authorized for enterprise key
recovery.

INDIV_KRANum - The number of individual KRAs in LE_KRACertChainList.

INDIV_KRACertChainList - A list of certificates chains, one per KRA, authorized for individual key
recovery.

INDIVAuthenticationInfo - Authentication Information (AI) to be used for individual key recovery.

KRSPFlags - A bit-mask specifying the user's selected service options specific to the selected KRS
module.

KRSPExtensions - Reserved for future use.

3.5.7 CSSM_KRSP_HANDLE

This data structure represents the key recovery module handle. The handle value is a unique pairing
between a key recovery module and an application that has attached that module. Key recovery handles
can be returned to an application as a result of the CSSM_ModuleAttach function.

typedef uint32 CSSM_KRSP_HANDLE

3.5.8 CSSMKRSPI

typedef CSSMAPI CSSMKRSPI

3.5.9 CSSM_PRIV_FUNC_PTR

This defines the prototype for the privileged entry point to the IBM KeyWorks Framework that allows the
toggling of the privileged mode of a specified cryptographic context.

typedef CSSM_RETURN (* CSSM_PRIV_FUNC_PTR) (
 CSSM_CC_HANDLE hContext,
 CSSM_BOOL Priv)

Definitions:
hContext - The context whose privilege mode will be set/reset.

Priv - The Boolean that denotes whether the context will be made privileged or regular. If Priv is
TRUE, the hContext will be made privileged.

3.5.10 CSSM_KRSPINFO

Two structures are used to contain all of the static information that describes a key recovery module: the
krspinfo structure and the krspsubservice structure. This descriptive information is securely stored in the
KeyWorks registry when the key recovery module is installed with the KeyWorks Framework. A key
recovery module may implement multiple types of services and organize them as subservices. For
example, a key recovery module supporting two mechanisms: an encapsulation mechanism and an escrow
mechanism, may organize its implementation as two subservices.

Version 1.1.3.0 Key Recovery Service Provider Page 18

The descriptive information stored in these structures can be queried using the function
CSSM_GetModuleInfo and specifying the key recovery module Globally Unique ID (GUID).

typedef struct cssm_krspinfo {
 CSSM_VERSION Version;
 char *Vendor;
 char *Description;
 char *Jurisdiction;
 CSSM_BOOL ThreadSafe;
 uint32 NumberOfSubServices;
 CSSM_KRSPSUBSERVICE_PTR SubServices;
} CSSM_KRSPINFO, *CSSM_KRSPINFO_PTR;

Definitions:
Version - The major and minor version number of the service provider module.

Vendor - A character string containing the name of the vendor who implemented and manufactured
the key recovery module.

Description - A character string containing a general description of the key recovery module.

Jurisdiction - A character string describing the geographical region where the key recovery module is
installed.

NumberOfSubservices - The number of subservices implemented by the key recovery module. Every
key recovery module implements at least one subservice.

Threadsafe - A Boolean that indicates whether the KRSP module is enabled for multitasking. This
field should be set to either CSSM_TRUE or CSSM_FALSE.

Subservices - A pointer to an array of subservice structures. Each structure contains detailed
information about that subservice.

3.5.11 CSSM_KRSPSUBSERVICE

Two structures are used to contain all of the static information that describes a key recovery module: the
krspinfo structure and the krspsubservice structure. This descriptive information is securely stored in the
KeyWorks registry when the key recovery module is installed with the KeyWorks Framework. A key
recovery module may implement multiple types of services and organize them as subservices. For
example, a key recovery module supporting two mechanisms: an encapsulation mechanism and an escrow
mechanism, may organize its implementation as two subservices.

The descriptive information stored in these structures can be queried using the function CSSM_GetModuleInfo
and specifying the key recovery module GUID.

typedef struct cssm_krspsubservice {
 uint32 SubServiceId;
 CSSM_STRING Description;
 CSSM_STRING Jurisdiction;
} CSSM_KRSPSUBSERVICE, *CSSM_KRSPSUBSERVICE_PTR;

Definitions:
SubServiceId - A unique, identifying number for the subservice described in this structure.

Description - A string containing a descriptive name or title for this subservice.

Version 1.1.3.0 Key Recovery Service Provider Page 19

Jurisdiction - A character string describing the geographical region where the key recovery module is
installed.

3.5.12 CSSM_KR_WRAPPEDPRODUCTINFO

typedef struct cssm_kr_wrappedproductinfo {
 CSSM_VERSION StandardVersion;/
 CSSM_STRING StandardDescription;
 CSSM_VERSION ProductVersion;
 CSSM_STRING ProductDescription;
 CSSM_STRING ProductVendor;
 uint32 ProductFlags;
} CSSM_KR_WRAPPEDPRODUCT_INFO, *CSSM_KR_WRAPPEDPRODUCT_INFO_PTR;

Definitions:
StandardVersion - Version of the standard to which the wrapped product complies.

StandardDescription - A NULL-terminated character string containing a text description of the standard
to which the wrapped product complies.

ProductVersion - Version of the product wrapped by the KRSP.

ProductDescription - A NULL-terminated character string containing a text description of the product
wrapped by the KRSP.

ProductVendor - A NULL-terminated character string containing the name of the wrapped product's
vendor.

ProductFlags - This version of CSSM has no flags defined. The field must be set to zero.

3.5.13 CSSM_RETURN

typedef enum cssm_return {
 CSSM_OK = 0,
 CSSM_FAIL = -1
} CSSM_RETURN;

Version 1.1.3.0 Key Recovery Service Provider Page 20

3.6 Key Recovery Registration Functions

3.6.1 KRSP_RegistrationRequest

CSSM_RETURN CSSMKRSPI KRSP_RegistrationRequest
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_CC_HANDLE KRRegistrationContextHandle,
const CSSM_CONTEXT_PTR KRRegistrationContext,
CSSM_DATA_PTR KRInData,
CSSM_CRYPTO_DATA_PTR UserCallback,
unit32 *EstimatedTime
CSSM_HANDLE_PTR ReferenceHandle)

This function performs a key recovery registration operation. The KRInData contains known
input parameters for the recovery registration operation. A UserCallback function may be
supplied to allow the registration operation to interact with the user interface, if necessary. When
this operation is successful, a ReferenceHandle and an EstimatedTime parameter are returned.
The ReferenceHandle will be used to invoke the CSSM_KR_RegistrationRetrieve function after
the EstimatedTime in seconds.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

KRRegistrationContextHandle (input)
The handle that describes the context of this key recovery operation used to link to the KRSP-
managed information.

KRRegistrationContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this key recovery
context.

KRInData(input)
Input data for key recovery registration.

UserCallback (input)
A callback function that may be used to collect further information from the user interface.

EstimatedTime (output)
The estimated time after which the KR_RegistrationRetrieve call should be invoked to
obtain registration results.

ReferenceHandle (output)
The handle to use to invoke the KR_RegistrationRetrieve function.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 21

3.6.2 KRSP_RegistrationRetrieve

CSSM_RETURN CSSMKRSPI KRSP_RegistrationRetrieve
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE ReferenceHandle,
unit32 *EstimatedTime,
CSSM_KR_PROFILE_PTR KRProfile)

This function completes a key recovery registration operation. The results of a successful
registration operation are returned through the KRProfile parameter, which may be used with the
profile management API functions.

If the results are not available when this function is invoked, the KRProfile parameter is set to
NULL, and the EstimatedTime parameter indicates when this function should be repeated with
the same ReferenceHandle.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

ReferenceHandle (input)
The handle to the key recovery registration request that will be completed.

EstimatedTime (output)
The estimated time after which this call should be repeated to obtain registration results. This is
set to a non-zero value only when the KRProfile parameter is NULL.

KRProfile (output)
Key recovery profile that is filled in by the registration operation.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 22

3.7 Key Recovery Enablement Functions

3.7.1 KRSP_GenerateKRFields

CSSM_RETURN CSSMKRSPI KRSP_GenerateKRFields
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_KRC_HANDLE KRContextHandle,
const CSSM_CONTEXT_PTR KRContext,
CSSM_CC_HANDLE CryptoContextHandle,
const CSSM_CONTEXT_PTR CryptoContext,
CSSM_DATA_PTR KRAlgAttributes,
uint32 KRFlags,
CSSM_DATA_PTR KRFields)

This function generates the KRFs for a cryptographic association given the key recovery context,
and the cryptographic context containing the key that will be made recoverable. The session
attribute and the flags are interpreted by the KRSP. A set of KRFs (KRFields) is returned if the
function is successful. The KRFlags parameter may be used to fine tune the contents of the
KRFields produced by this operation. On successful return, the cryptographic context handle
may be used with the encryption operations of the KeyWorks.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

KRContextHandle (input)
The handle that describes the context of this key recovery operation used to link to the KRSP-
managed information.

KRContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this key recovery
context.

CryptoContextHandle (input)
The handle that describes the cryptographic context used to link to the Cryptographic Service
Provider (CSP)-managed information.

CryptoContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes of the cryptographic context.

KRAlgAttributes (input)
The KRSP specific options. These options are not interpreted by the KeyWorks Framework, but
are passed on to the KRSP.

KRFlags (input)
Flag values for KRFs generation. Defined values include the following:

KR_IND - Signifies that only the individual KRFs should be generated.

KR_ENT - Signifies that only the enterprise KRFs should be generated.

KR_LE - Signifies that only the law enforcement KRFs should be generated.

Version 1.1.3.0 Key Recovery Service Provider Page 23

KR_ALL - Signifies that law enforcement, enterprise, and individual KRFs should be
generated.

KR_OPTIMIZE - Signifies that performance optimization options will be adopted by a
KRSP while implementing this operation

KR_DROP_WORKFACTOR - Signifies that the KRFs should be generated without using
the key size work factor.

KRFields (output)
The KRFs in the form of a data blob.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 24

3.7.2 KRSP_ProcessKRFields

CSSM_RETURN CSSMKRSPI KRSP_ProcessKRFields
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_KRC_HANDLE KRContextHandle,
const CSSM_CONTEXT_PTR KRContext,
CSSM_CC_HANDLE CryptoContextHandle,
const CSSM_CONTEXT_PTR CryptoContext,
CSSM_DATA_PTR KRAlgAttributes,
uint32 KRFlags,
CSSM_DATA_PTR KRFields)

This call processes a set of KRFs given the key recovery context, and the cryptographic context
for the encryption operation. On successful return, the cryptographic context handle may be used
for the decryption API calls of the KeyWorks.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

KRContextHandle (input)
The handle that describes the context of this key recovery operation used to link to the KRSP-
managed information.

KRContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this key recovery
context.

CryptoContextHandle (input)
The handle that describes the cryptographic context used to link to the CSP-managed
information.

CryptoContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes of the cryptographic context.

KRAlgAttributes (input)
The KRSP specific options. These options are uninterpreted by KeyWorks, but passed on to the
KRSP.

KRFlags (input)
Flag values for KRFs generation. Defined values include the following:

KR_ENT - Signifies that only the enterprise KRFs should be processed.

KR_LE - Signifies that only the law enforcement KRFs should be processed.

KR_ALL - Signifies that law enforcement and enterprise KRFs should be processed.

KR_OPTIMIZE - Signifies that available optimization options will be adopted.

KRFields (input)
The KRFs to be processed in the form of a data blob.

Version 1.1.3.0 Key Recovery Service Provider Page 25

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 26

3.8 Key Recovery Request Functions

3.8.1 KRSP_GetRecoveredObject

CSSM_RETURN CSSMKRSPI KRSP_GetRecoveredObject
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE_PTR ResultsHandle,
unit32 IndexInResults,
CSSM_CRYPTO_DATA_PTR PassPhrase,
CSSM_KEY_PTR RecoveredKey,
uint32 Flags,
CSSM_DATA_PTR OtherInfo)

This function is used to step through the results of a recovery request operation in order to
retrieve a single recovered key at a time, along with its associated meta information. The
reference handle from a successful CSSM_KR_RecoveryRetrieve operation is used as the results
handle in this operation. When multiple keys are recovered by a single recovery request
operation, the index parameter indicates which item to retrieve through this function.

The RecoveredKey parameter serves as an input template for the key to be returned. If a private
key will be returned by this operation, the PassPhrase parameter is used to inject the private key
into the CSP indicated by the RecoveredKey template. The corresponding public key is returned
in the RecoveredKey parameter. Subsequently, the PassPhrase and the public key may be used to
reference the private key when operations using the private key are required. The OtherInfo
parameter may be used to return other meta data associated with the recovered key.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

ResultsHandle (input)
The handle used in a successful KR_RecoveryRequest function.

IndexInResults (input)
The index into the results that are referenced by the ResultsHandle parameter.

PassPhrase (input)
This parameter is only relevant if the recovered key is a private key. It is used to protect the
private key when it is inserted into the CSP specified by the RecoveredKey template.

RecoveredKey (output)
This parameter serves as an input template and contains the recovered key.

Flags (input)
Flag values relevant for recovery of a key. Possible values include the following:

CERT_RETRIEVE - If the recovered key is a private key, return the corresponding public
key certificate in the OtherInfo parameter.

OtherInfo (output)
This parameter is used if there is additional information associated with the recovered key (such
as the public key certificate when recovering a private key) that will be returned.

Version 1.1.3.0 Key Recovery Service Provider Page 27

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 28

3.8.2 KRSP_RecoveryRequest

CSSM_RETURN CSSMKRSPI KRSP_RecoveryRequest
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_CC_HANDLE KRRequestContextHandle,
const CSSM_CONTEXT_PTR KRRequestContext,
CSSM_DATA_PTR KRInData,
CSSM_CRYPTO_DATA_PTR UserCallback,
unit32 *EstimatedTime,
CSSM_HANDLE_PTR ReferenceHandle)

This function performs a key recovery request operation. The KRInData contains known input
parameters for the recovery request operation. A UserCallback function may be supplied to allow
the recovery operation to interact with the user interface, if necessary. If the recovery request
operation is successful, a ReferenceHandle and an EstimatedTime parameter are returned. The
ReferenceHandle will be used to invoke the KR_RecoveryRetrieve function after the
EstimatedTime in seconds.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

KRRequestContextHandle (input)
The handle that describes the context of this key recovery operation used to link to the KRSP-
managed information.

KRRequestContext (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this key recovery
context.

KRInData(input)
Input data for key recovery requests. For encapsulation schemes, the KRFs are included in this
parameter.

UserCallback (input)
A callback function that may be used to collect further information from the user interface.

EstimatedTime (output)
The estimated time after which this call should be repeated to obtain recovery results. This is set
to a non-zero value only when the ResultsHandle parameter is NULL.

ReferenceHandle (output)
Handle returned when recovery request is successful. This handle may be used to invoke the
KR_RecoveryRetrieve function.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 29

3.8.3 KRSP_RecoveryRequestAbort

CSSM_RETURN CSSMKRSPI KRSP_RecoveryRequestAbort
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE ResultsHandle)

This function terminates a recovery request operation and releases any state information related
to the recovery request.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

ResultsHandle (input)
The handle used in a successful KR_RecoveryRequest function.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 30

3.8.4 KRSP_RecoveryRetrieve

CSSM_RETURN CSSMKRSPI KRSP_RecoveryRetrieve
(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE_PTR ReferenceHandle,
unit32 *EstimatedTime, uhnit32 *NumberOfResults)

This function completes a key recovery request operation. The ReferenceHandle parameter
indicates which outstanding recovery request will be completed. On successful return of this
function, the results of the recovery operation are now referenced by the ReferenceHandle
parameter, which may be used with the CSSM_KR_GetRecoveredObject function to retrieve the
recovered keys one at a time.

If the results are not available at the time this function is invoked, the EstimatedTime parameter
indicates when this operation should be repeated with the same ReferenceHandle.

Parameters
KRSPHandle (input)
The handle that describes the KRSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

ReferenceHandle (input)
Handle that indicates which key recovery request operation will be completed.

EstimatedTime (output)
The estimated time after which this call should be repeated to obtain recovery results. This is set
to a non-zero value only when the the results are not yet available, and the ReferenceHandle
parameter needs to be used to repeat this call.

NumberOfResults (output)
The number of recovered key objects that may be obtained using the ReferenceHandle.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 31

3.9 Key Recovery Privilege Functions

3.9.1 KRSP_PassPrivFunc

CSSM_RETURN CSSMKRSPI KRSP_PassPrivFunc
(CSSM_PRIV_FUNC_PTR SetContextPriv)

This function supports a privileged mode of the KRSP with respect to the policies enforced by the
framework. The framework uses this SPI to pass down a privileged framework entry point in the
form of the SetContextPriv function. When the KRSP needs to bypass the policy enforcement
performed by the framework, the KRSP uses this privileged entry point (SetContextPriv()) to
make an encryption context privileged. This privileged context can be used by the KRSP and the
framework will not enforce its policies on this context. As soon as the KRSP has finished using
the privileged context, it is expected that the KRSP will use the SetContextPriv() entry point to
reset the privileged mode of the context.

Parameters
SetContextPriv (input)
The privileged entry point to the framework that can be used to set a context to a privileged
mode.

Return Values
A CSSM return value. This function returns CSSM_OK if successful, and returns CSSM_FAIL
if an error has occurred. Use CSSM_GetError to determine the exact error.

Version 1.1.3.0 Key Recovery Service Provider Page 32

Appendix A. List of Acronyms

AI Authentication Information

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DL Data Storage Library

DLL Dynamically Linked Library

GUID Globally Unique ID

ISV Independent Software Vendor

KRA Key Recovery Agent

KRF Key Recovery Field

KRPT Key Recovery Policy Table

KRS Key Recovery Server

KRSP Key Recovery Service Provider

SPI Service Provider Interface

TP Trust Policy

Version 1.1.3.0 Key Recovery Service Provider Page 33

Appendix B. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. Rivest-
Shamir-Adelman (RSA) is the most commonly used public-key algorithm. It
can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA's certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries
of executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Providers storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

• Bulk encryption and decryption
• Digital signing

Version 1.1.3.0 Key Recovery Service Provider Page 34

• Cryptographic hash
• Random number generation
• Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents
other non-involved parties from understanding the stored information or
accessing and understanding the communication. The encryption process takes
understandable text and transforms it into the unintelligible piece of data
(called ciphertext); the decryption process restores the understandable text from
the unintelligible data. Both involve a mathematical formula or algorithm and
a secret sequence of data called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing data from being
modified), authentication (proving the identity of a resource or a user), and
non-repudiation (providing proof that a message or transaction was sent and/or
received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
a shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: public key and a private
key. The two keys are mathematically related, but is virtually impossible to
derive the private key from the public key. A message this encrypted with
someone's public key (obtained from some public directory) can only be
decrypted with the associated private key. Alternately, the private key can
be used to "sign" a document; the public key can be used as verification of
the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NIST) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

• Authenticate the source of a message, data, or document

Version 1.1.3.0 Key Recovery Service Provider Page 35

• Verify that the contents of a message has not been modified since it was
signed by the sender

• Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and
DSS, the proposed Digital Signature Standard defined as part of the U.S.
Government Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of
an enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published
by the U.S. Government, produces a 160-bit hash value from a variable-size
input stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

• Cryptographic Module Manager
• Key Recovery Module Manager
• Trust Policy Module Manager
• Certificate Library Module Manager
• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of a loss or destruction of the key.

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered

Version 1.1.3.0 Key Recovery Service Provider Page 36

outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box
containing the key. The authorized parties (i.e., enterprise or law enforcement)
have the freedom to choose the number of specific KRAs that they want to use.
The authorized party requests that each KRA decrypt its section of the Key
Recovery Fields (KRFs) that is associated with the transmission. Then those
pieces of information are used in the process that derives the session key. The
KRA will only be able to recover a portion of the key, and reading the original
message will require searching the remaining key space in order to find the key
that will decrypt the message. The number of KRAs on each end of the
communication does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom KRBs were generated (i.e., username, hostname, IP address).
The KRC has the ability to check credentials and derive the original encryption
key from the KRB with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives
the on-line request and services it by interacting with the appropriate set of
KRAs as specified within the KRB. The recovered key is then sent back to the
KRO by the KRC using an on-line protocol. The KRC consists of one main
application which, when started, behaves as a server process. The system,
which serves as the KRC, may be configured to start the KRC application as
part of system services; alternatively, the KRC operator can start up the KRC
application manually. The KRC application performs the following operations:

• Listens for on-line recovery requests from KRO

• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data that is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) is invoked from the IBM KeyWorks framework to create the KRFs.
There are two major pieces of the KRFs: block 1 contains information that is
unrelated to the session key of the transmitted message, and encrypted with the
public keys of the selected key recovery agents; block 2 contains information
that is related to the session key of the transmission. The KRSP generates the
KRFs for the session key. This information is not the key or any portion of the
key, but is information that can be used to recover the key. The KRSP has
access to location-unique jurisdiction policy information that controls and

Version 1.1.3.0 Key Recovery Service Provider Page 37

modifies some of the steps in the generation of the KRFs. Only once the KRFs
are generated, and both the client and server sides have access to them, can the
encrypted message flow begin. KRFs are generated so that they can be used by
a KRA to recover the original symmetric key, either because the user who
generated the message has lost the key, or at the warranted request of law
enforcement agents.

Key Recovery Module The Key Recovery Module Manager enables key recovery for cryptographic
Manager services obtained through the IBM KeyWorks. It mediates all cryptographic

services provided by the IBM KeyWorks and applies the appropriate key
recovery policy on all such operations. The Key Recovery Module Manager
contains a Key Recovery Policy Table (KRPT) that defines the applicable key
recovery policy for all cryptographic products. The Key Recovery Module
Manager routes the KR-API function calls made by an application to the
appropriate KR-SPI functions. The Key Recovery Module Manager also
enforces the key recovery policy on all cryptographic operations that are
obtained through the IBM KeyWorks. It maintains key recovery state in the
form of key recovery contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) that can be used to
authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of
the cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Version 1.1.3.0 Key Recovery Service Provider Page 38

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS
interacts with one or more local or remote KRAs to reconstruct the secret key
that can be used to decrypt the ciphertext.

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities, ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating
system with security features (Microsoft NT Workstation 4.0), NTFS (Windows
NT Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key recovery
Provider enablement functions. The cryptographic functions provided may include:

• Key recovery field generation
• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional
law enforcement authorities in the interest of national security and law
enforcement. In the law enforcement scenario, the Key Recovery Block (KRB)
is presented on a 3.5-inch diskette, and the credentials are in the physical form
of a legal warrant. This warrant will specify any information available to the
law enforcement agents which can be used to tie the warrant to the identity of
the user for whom KRBs were generated (i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Owned certificate A certificate whose associated secret or private key resides in a local
Cryptographic Service Provider (CSP). Digital-signing algorithms require
using owned certificates when signing data for purposes of authentication and
non-repudiation. A system may use certificates it does not own for purposes
other than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Version 1.1.3.0 Key Recovery Service Provider Page 39

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

 Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchased on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information,
ensuring message integrity, and authenticating the parties involved in a
transaction.

The significance of SET, over existing Internet Security protocols, is found in
the use of digital certificates. Digital certificates will be used to authenticate all
the parties involved in a transaction. SET will provide those in the virtual
world with the same level of trust and confidence a consumer has today when
making a purchase at any of the 13 million Visa-acceptance locations in the
physical world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Version 1.1.3.0 Key Recovery Service Provider Page 40

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that
adds digital signatures and encryption to Internet MIME messages. MIME is
the official proposed standard format for extended Internet electronic mail.
Internet e-mail messages consist of two parts, the header and the body. The
header forms a collection of field/value pairs structured to provide information
essential for the transmission of the message. The body is normally
unstructured unless the
e-mail is in MIME format. MIME defines how the body of an e-mail message
is structured. The MIME format permits e-mail to include enhanced text,
graphics, audio, and more in a standardized manner via MIME-compliant mail
systems. However, MIME itself does not provide any security services.

The purpose of S/MIME is to define such services, following the syntax given
in PKCS #7 for digital signatures and encryption. The MIME body part carries
a PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-known
symmetric functions include DES (Data Encryption Standard) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal
Computer Memory Card International Association (PCMCIA) cards.

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the
same, it shows or proves there was no tampering of the message contents by a
third party (between the sender and the receiver).

Version 1.1.3.0 Key Recovery Service Provider Page 41

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

