
IBM KeyWorks Toolkit
Data Storage Library Interface (DLI) Specification

June 11, 1999

Copyright© 1999 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication, or
disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only for
explanation and to the owner’s benefit, without intent to infringe.
001.001.004

Version 1.1.3.0 IBM KeyWorks Toolkit Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ... 1

1.1 SERVICE PROVIDER MODULES.. 1
1.2 INTENDED AUDIENCE... 2
1.3 DOCUMENTATION SET ... 2
1.4 REFERENCES ... 3

CHAPTER 2.DATA STORAGE LIBRARY INTERFACE.. 5

2.1 CATEGORIES OF OPERATIONS ... 6
2.2 DATA STORAGE LIBRARY OPERATIONS .. 7
2.3 DATA STORAGE OPERATIONS... 7
2.4 DATA RECORD OPERATIONS .. 8
2.5 EXTENSIBILITY FUNCTIONS.. 9
2.6 DATA STRUCTURES ... 9

2.6.1 CSSM_BOOL .. 9
2.6.2 CSSM_DATA... 9
2.6.3 CSSM_DB_ACCESS_TYPE... 9
2.6.4 CSSM_DB_ATTRIBUTE_DATA .. 10
2.6.5 CSSM_DB_ATTRIBUTE_INFO... 10
2.6.6 CSSM_DB_ATTRIBUTE_NAME_FORMAT... 11
2.6.7 CSSM_DB_CERTRECORD_SEMANTICS ... 11
2.6.8 CSSM_DB_CONJUNCTIVE.. 11
2.6.9 CSSM_DB_HANDLE .. 11
2.6.10 CSSM_DB_INDEX_INFO ... 11
2.6.11 CSSM_DB_INDEX_TYPE ... 12
2.6.12 CSSM_DBINFO .. 12
2.6.13 CSSM_DB_OPERATOR.. 13
2.6.14 CSSM_DB_PARSING_MODULE_INFO ... 14
2.6.15 CSSM_DB_RECORD_ATTRIBUTE_DATA ... 14
2.6.16 CSSM_DB_RECORD_ATTRIBUTE_INFO .. 14
2.6.17 CSSM_DB_RECORD_INDEX_INFO .. 15
2.6.18 CSSM_DB_RECORD_PARSING_FNTABLE ... 15
2.6.19 CSSM_DB_RECORDTYPE ... 16
2.6.20 CSSM_DB_UNIQUE_RECORD.. 16
2.6.21 CSSM_DL_DB_HANDLE.. 16
2.6.22 CSSM_DL_DB_LIST ... 16
2.6.23 CSSM_DL_CUSTOM_ATTRIBUTES... 17
2.6.24 CSSM_DL_FFS_ATTRIBUTES ... 17
2.6.25 CSSM_DL_HANDLE... 17
2.6.26 CSSM_DL_LDAP_ATTRIBUTES... 17
2.6.27 CSSM_DL_ODBC_ATTRIBUTES.. 17
2.6.28 CSSM_DL_PKCS11_ATTRIBUTES... 17
2.6.29 CSSM_DLSUBSERVICE ... 18
2.6.30 CSSM_DLTYPE .. 19
2.6.31 CSSM_DL_WRAPPEDPRODUCTINFO.. 20
2.6.32 CSSM_NAME_LIST... 20
2.6.33 CSSM_QUERY.. 20
2.6.34 CSSM_QUERY_LIMITS .. 21
2.6.35 CSSM_SELECTION_PREDICATE .. 21

2.7 DATA STORAGE OPERATIONS... 22
2.7.1 DL_Authenticate.. 22
2.7.2 DL_DbClose ... 23
2.7.3 DL_DbCreate.. 24

Version 1.1.3.0 IBM KeyWorks Toolkit Page iv

2.7.4 DL_DbDelete .. 25
2.7.5 DL_DbExport.. 26
2.7.6 DL_GetDbNameFromHandle .. 27
2.7.7 DL_DbGetRecordParsingFunctions... 28
2.7.8 DL_DbImport.. 29
2.7.9 DL_DbOpen.. 31
2.7.10 DL_DbSetRecordParsingFunctions ... 32

2.8 DATA RECORD OPERATIONS .. 33
2.8.1 DL_DataAbortQuery ... 33
2.8.2 DL_DataDelete ... 34
2.8.3 DL_DataGetFirst .. 35
2.8.4 DL_DataGetNext... 37
2.8.5 DL_DataInsert .. 38
2.8.6 DL_FreeUniqueRecord ... 39

2.9 EXTENSIBILITY FUNCTIONS.. 40
2.9.1 DL_PassThrough... 40

CHAPTER 3.DATA STORAGE LIBRARY FUNCTION EXAMPLES.. 41

3.1 ATTACH/DETACH EXAMPLE... 41
3.1.1 AddInAuthenticate ... 41

3.2 DATA STORE OPERATIONS EXAMPLE.. 43

APPENDIX A. IBM KEYWORKS ERRORS.. 44

APPENDIX B. LIST OF ACRONYMS.. 47

APPENDIX C. GLOSSARY... 48

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture .. 2

List of Tables

Table 1. DL Module Error Numbers .. 44
Table 2. Data Storage Errors.. 45

Version 1.1.3.0 IBM KeyWorks Toolkit Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services, IBM
KeyWorks Framework, and Service Providers. The IBM KeyWorks Framework is the core of this
architecture. It provides a means for applications to directly access security services through the
KeyWorks security application programming interface (API), or to indirectly access security services via
layered security services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework
manages the service provider security modules and directs application calls through the KeyWorks API to
the selected service provider module that will service the request. The KeyWorks API defines the interface
for accessing security services. The KeyWorks service provider interface (SPI) defines the interface for
service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs), which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic manipulation
of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data Storage Library
(DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. These service providers
will be provided by Independent Software Vendors (ISVs) and hardware vendors. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using a KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that perform
a security operation such as encrypting data, inserting a CRL into a data source, or verifying that a
certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is defined
by the service provider module developer.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic
Service

Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery
Service

Provider

KRSPI

KRSP

Manager

System
Security
Services

Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces is provided in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

This document should be used by ISVs who want to develop their own TP service provider modules.
These ISVs can be highly experienced software and security architects, advanced programmers, and
sophisticated users. The intended audience of this document must be familiar with high-end cryptography
and digital certificates. They must also be familiar with local and foreign government regulations on the
use of cryptography, and the implication of those regulations for their applications and products. We
assume that this audience is familiar with the basic capabilities and features of the protocols they are
considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the IBM
KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the IBM
KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 3

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document Filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 4

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March
1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,
CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication
Framework, 1988. CCITT stands for Comite Consultatif Internationale
Telegraphique et Telephonique (International Telegraph and Telephone
Consultative Committee)

Version 1.1.3.0 IBM KeyWorks Toolkit Page 5

Chapter 2. Data Storage Library Interface

A module with Data Storage Library (DL) services provides access to persistent data stores of certificates,
Certificate Revocation Lists (CRLs), keys, policies, and other security-related objects. Stable storage can
be provided by a:

• Commercially available database management system (DBMS) product

• Directory service

• Custom hardware-based storage device

• Native file system

The implementation of DL operations should be semantically free. For example, a DL operation that
inserts a trusted X.509 certificate into a data store should not be responsible for verifying the trust on that
certificate. The semantic interpretation of security objects should be implemented in Trust Policy (TP)
services, layered services, and applications.

The DL provides access to persistent stores of security-related objects by translating calls from the Data
Storage Library Interface (DLI) into the native interface of the data store. The native interface of the data
store may be that of a DBMS package, a directory service, a custom storage device, or a traditional local or
remote file system. Applications are able to obtain information about the available DL services by using
the CSSM_GetModuleInfo function to query the IBM KeyWorks registry. The information about the DL
service includes the following:

• Vendor information - Information about the module vendor, a text description of the DL and the
module version number.

• Types of supported data stores - The module may support one or more types of persistent data stores as
separate subservices. For each type of data store, the DL provides information on the supported query
operators and optionally provides specific information on the accessible data stores.

The DL may choose to provide information about the data stores that it has access to. Applications can
obtain information about these data stores by using the CSSM_GetModuleInfo function call. The
information about the data store includes the following:

• Types of persistent security objects - The types of security objects that may be stored include
certificates, CRLs, keys, policy objects, and generic data objects. A single data store can contain a
single object type in one format, a single object type in multiple formats, or multiple object types.

• Attributes of persistent security objects - The stored security object may have attributes which must be
included by the calling application on data insertion, and which are returned by the DL on data
retrieval.

• Data store indexes - These indexes are high-performance query paths constructed as part of data store
creation and maintained by the data store.

• Secure access mechanisms - A data store may restrict a user’s ability to perform certain actions on the
data store or on the data store’s contents. This structure exposes the mechanism required to
authenticate to the data store.

• Record integrity capabilities - Some data stores will insure the integrity of the data store’s contents. To
insure the integrity of the data store’s contents, the data store is expected to sign and verify each
record.

• Data store location - The persistent repository can be local or remote.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 6

To build indexes or to satisfy an application’s request for record retrieval, the data store may need to parse
the stored security objects. If the application has invoked CSSM_DL_DbSetRecordParsingFunctions for a
given security object type, those functions will be used to parse that security object as the need arises. If
the application has not explicitly set record-parsing functions, the default service provider modules set by
the data store creator will be used for parsing.

Secured access to the data store and to the data store’s contents may be enforced by the DL, the data store,
or both. The partitioning of authentication responsibility is exposed via the DL and data store
authentication mechanisms.

Data stores may be added to a DL in one of three ways:

• Using DL_DbCreate - This creates and opens a new, empty data store with the specified schema.

• Using DL_DbImport with information and data - If the specified data store does not exist, a new data
store is created with the specified schema and the exported data records.

• Using DL_DbImport with information only - In this case, the data store’s native format is the same as
that managed by the DL service. Importing its information makes it accessible via this DL service.

In all cases, it is the responsibility of the DL service to update the KeyWorks registry with information
about the new data store. This can be accomplished by making use of the CSSM_GetModuleInfo and
CSSM_SetModuleInfo functions.

2.1 Categories of Operations

The DL service provider interface (SPI) defines four categories of operations:

• DL operations
• Data store operations
• Data record operations
• Extensibility operations.

DL operations are used to control access to the DL library. They include:

• Authentication to the DL Module - A user may be required to present valid credentials to the DL prior
to accessing any of the data stores embedded in the DL module. The DL module will be responsible
for insuring that the access privileges of the user are not exceeded.

The data store functions operate on a data store as a single unit. These operations include:

• Opening and closing data stores - A DL service manages the mapping of logical data store names to
the storage mechanisms it uses to provide persistence. The caller uses logical names to reference
persistent data stores. The open operation prepares an existing data store for future access by the
caller. The close operation terminates current access to the data store by the caller.

• Creating and deleting data stores - A DL creates a new, empty data store and opens it for future access
by the caller. An existing data store may be deleted. Deletion discards all data contained in the data
store.

• Importing and exporting data stores - Occasionally a data store must be moved from one system to
another, or a DL service may need to provide access to an existing data store. The import and export
operations may be used in conjunction to support the transfer of an entire data store. The export
operation prepares a snapshot of a data store. (Export does not delete the data store it snapshots.)

Version 1.1.3.0 IBM KeyWorks Toolkit Page 7

The import operation accepts a snapshot (generated by the export operation) and includes it in a new or
existing data store managed by a DL. Alternately, the import operation may be used independently to
register an existing data store with a DL.

The data record operations operate on a single record of a data store. They include:

• Adding new data objects - A DL adds a persistent copy of data object to an open data store. This
operation may or may not include the creation of index entries. The mechanisms used to store and
retrieve persistent data objects are private to the implementation of a DL module.

• Deleting data objects - A DL removes single data object from the data store.

• Retrieving data objects - A DL provides a search mechanism for selectively retrieving a copy of
persistent security objects. Selection is based on a selection criterion.

Data store extensibility operations include:

• Pass through for unique, module-specific operations - A passthrough function is included in the DLI to
allow data store libraries to expose additional services beyond what is currently defined in the
KeyWorks API. KeyWorks passes an operation identifier and input parameters from the application to
the appropriate DL. Within the DL_PassThrough function in the DL, the input parameters are
interpreted and the appropriate operation performed. The DL developer is responsible for making
known to the application the identity and parameters of the supported passthrough operations.

2.2 Data Storage Library Operations

DL_Authenticate
This function authenticates a user’s ability to use this DL for accessing the underlying
data stores.

2.3 Data Storage Operations

DL_DbOpen
For authorized users, this opens a data store with the specified logical name in the
requested access mode. Returns a handle to the data store.

DL_DbClose
Closes a previously opened data store.

DL_DbCreate
This function creates a new, empty data store with the specified logical name and the
specified schema. A DL may implement this function by opening the data store if it
already exists, or creating the data store if it does not exist. The DL may also create the
data store schema as part of the implementation of this function. The data store should be
opened after this operation. As a side effect, the DL updates the KeyWorks Registry to
expose information about the new data store.

DL_DbDelete
For authorized users, this deletes all records from the specified data store and removes current state
information associated with that data store.

DL_DbImport

Accepts as input a flag for what to import, a filename, a logical name, and a schema for a data
store. If information about the data store is being imported, then the DL updates its list of
accessible data stores to include this new data store with the specified schema.
If the contents of the data store are being imported, then the file contains an exported copy of an
existing data store. The data records contained in the file must be in the native format of a data

Version 1.1.3.0 IBM KeyWorks Toolkit Page 8

store. The DL imports all security objects in the file (such as certificates and CRLs), creating a
new data record for each. If the specified logical name is that of an existing data store, the new
records will be added to the data store. Otherwise, a new data store will be created with the
specified schema to hold the new records.
Note: This mechanism can be used to copy data stores among systems or to restore a persistent
data store from a backup copy. It could also be used to import data stores that were created and
managed by other DLs, but this is not the typical implementation and use of this interface.

DL_DbExport
Accepts as input the logical name of a data store and the name of a target output file. The specified
data store contains persistent data records. A representation of the schema for the data store being
exported is written to the file, along with a copy of each data record in the data store.
Note: This mechanism can be used to copy data stores among systems or to create a backup of
persistent data stores.

DL_DbSetRecordParsingFunctions
Sets the functions to be used for parsing the specified type of security object.

DL_DbGetRecordParsingFunctions
Returns the function pointers in use for parsing the specified type of security object.

DL_GetDbNameFromHandle
Retrieves the data source name corresponding to an opened database handle.

2.4 Data Record Operations

DL_DataInsert
Accepts as input a handle to a data store, the type of the security object, the attributes of
the object and the object itself. The data object and its attributes are made persistent in
the specified data store. This may or may not include the creation of index entries, etc.
The DL module will return to the calling application a unique identifier for the input
record, which may be used to rapidly retrieve the security object. The mechanisms used
to store and retrieve persistent security objects are private to the implementation of the
DL.

DL_DataDelete
Accepts as input a handle to a data store and a unique identifier of the security object.
The object is removed from the data store. If the object is not found in the specified data
store, or if the user does not have deletion permissions, the operation fails.

DL_DataGetFirst
Accepts as input a handle to a data store and a query. The query is composed of the type
of data record to be retrieved, a selection predicate, and any limits on the query.
Selection predicates are represented as a set of (relational operator, attribute) pairs that
are connected by a conjunctive operator. Query limits provide a mechanism for the user
to specify upper bounds on the search time and/or the number of records retrieved. Not
all DL modules will support query limits. The specified data store is searched for data
objects of the specified type that match the selection criteria. This function returns the
first data object matching the criteria together with its attributes and a unique identifier
for use in future references. If additional objects are matched, a selection handle is
returned that may be used to retrieve the subsequent objects. A DL may limit the number
of concurrently managed selection handles to exactly one. The library developer must
document all such restrictions and application developers should proceed accordingly.

DL_DataGetNext
Accepts as input a selection results handle that was returned by an invocation of the
function CSSM_DL_DataGetFirst. In response, a DL module returns the next data
record, its attributes, and its unique identifier from the set specified by the selection
results handle. If this is the last data record, the EndOfDataStore flag is set to
CSSM_TRUE. A DL may limit the number of concurrently managed selection result

Version 1.1.3.0 IBM KeyWorks Toolkit Page 9

handles to exactly one. The library developer must document such restrictions and
application developers should proceed accordingly.

DL_DataAbortQuery
Cancels the query initiated by CSSM_DL_DataGetFirst function and resets the selection
results handle.

DL_FreeUniqueRecord
Frees the memory associated with the input unique record structure.

2.5 Extensibility Functions

DL_PassThrough
Accepts as input an operation ID and a set of arbitrary input parameters. The operation
ID may specify any type of operation a DL wishes to export for use by an application or
by another module. Such operations may include queries or services that are specific to
certain types of security objects or specific types of data stores managed by a DL module.
It is the responsibility of the DL developer to make information on the availability and
usage of passthrough operations available to application developers.

2.6 Data Structures

This section describes the data structures that may be passed to or returned from a DL function.
Applications use these data structures to prepare and then pass input parameters into KeyWorks API
function calls, which are passed without modification to the appropriate DL. The DL is responsible for
interpreting them and returning the appropriate data structure to the calling application via KeyWorks.
These data structures are defined in the header file, cssmtype.h, which is distributed with KeyWorks.

2.6.1 CSSM_BOOL

typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

2.6.2 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via KeyWorks.

typedef struct cssm_data {
 uint32 Length;
 uint8 Data[0];
} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length - The length, in bytes, of the memory block pointed to by Data.

Data - A byte array of size 0. Acts as a placeholder for a contiguous block of memory.

2.6.3 CSSM_DB_ACCESS_TYPE

This structure indicates a user’s desired level of access to a data store.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 10

typedef struct cssm_db_access_type {
 CSSM_BOOL ReadAccess;
 CSSM_BOOL WriteAccess;
 CSSM_BOOL PrivilegedMode; /* versus user mode */
 CSSM_BOOL Asynchronous; /* versus synchronous */
} CSSM_DB_ACCESS_TYPE, *CSSM_DB_ACCESS_TYPE_PTR;

Definitions:
ReadAccess - A Boolean indicating that the user requests read access.

WriteAccess - A Boolean indicating that the user requests write access.

PrivilegedMode - A Boolean indicating that the user requests privileged operations.

Asynchronous - A Boolean indicating that the user requests asynchronous access.

2.6.4 CSSM_DB_ATTRIBUTE_DATA

This data structure holds an attribute value that can be stored in an attribute field of a persistent record. The
structure contains a value for the data item and a reference to the meta-information (typing information and
schema information) associated with the attribute.

typedef struct cssm_db_attribute_data {
 CSSM_DB_ATTRIBUTE_INFO Info;
 CSSM_DATA Value;
} CSSM_DB_ATTRIBUTE_DATA, *CSSM_DB_ATTRIBUTE_DATA_PTR;

Definitions:
Info - A reference to the meta-information (schema) describing this attribute in relationship to the data
store at large.

Value - The data-present value assigned to the attribute.

2.6.5 CSSM_DB_ATTRIBUTE_INFO

This data structure describes an attribute of a persistent record. The description is part of the schema
information describing the structure of records in a data store. The description includes the format of the
attribute name and the attribute name itself. The attribute name implies the underlying data type of a value
that may be assigned to that attribute.

typedef struct cssm_db_attribute_info {
 CSSM_DB_ATTRIBUTE_NAME_FORMAT AttributeNameFormat;
 union {
 char * AttributeName; /* eg. "record label" */
 CSSM_OID AttributeID; /* eg. CSSMOID_RECORDLABEL */
 uint32 AttributeNumber;
 };
} CSSM_DB_ATTRIBUTE_INFO, *CSSM_DB_ATTRIBUTE_INFO_PTR;

Definitions:
AttributeNameFormat - Indicates which of the three formats was selected to represent the attribute name.

AttributeName - A character string representation of the attribute name.

AttributeID - A DER-encoded Object Identifier (OID) representation of the attribute name.

AttributeNumber - An unsigned integer representation of the attribute name.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 11

2.6.6 CSSM_DB_ATTRIBUTE_NAME_FORMAT

This enumerated list defines three formats used to represent an attribute name. The name can be
represented by a character string in the native string encoding of the platform, by a number, or the name
can be represented by an opaque OID structure that is interpreted by the DL module.

typedef enum cssm_db_attribute_name_format {
 CSSM_DB_ATTRIBUTE_NAME_AS_STRING = 0,
 CSSM_DB_ATTRIBUTE_NAME_AS_OID = 1,
 CSSM_DB_ATTRIBUTE_NAME_AS_NUMBER = 2
} CSSM_DB_ATTRIBUTE_NAME_FORMAT, *CSSM_DB_ATTRIBUTE_NAME_FORMAT_PTR;

2.6.7 CSSM_DB_CERTRECORD_SEMANTICS

These bit-masks define a list of usage semantics for how certificates may be used. It is anticipated that
additional sets of bit-masks will be defined listing the usage semantics of how other record types can be
used, such as CRL record semantics, key record semantics, policy record semantics, etc.

#define CSSM_DB_CERT_USE_ROOT 0x00000001 /* a self-signed root cert */
#define CSSM_DB_CERT_USE_TRUSTED 0x00000002 /* re-issued locally */
#define CSSM_DB_CERT_USE_SYSTEM 0x00000004 /* contains CSSM system cert */
#define CSSM_DB_CERT_USE_OWNER 0x00000008 /* private key is owned by the
 system user */
#define CSSM_DB_CERT_USE_REVOKED 0x00000010 /* revoked cert - used w\ CRL APIs */
#define CSSM_DB_CERT_SIGNING 0x00000011 /* use cert for signing only */
#define CSSM_DB_CERT_PRIVACY 0x00000012 /* use cert for encryption only */

2.6.8 CSSM_DB_CONJUNCTIVE

These are the conjunctive operations that can be used when specifying a selection criterion.

typedef enum cssm_db_conjunctive{
 CSSM_DB_NONE = 0,
 CSSM_DB_AND = 1,
 CSSM_DB_OR = 2
} CSSM_DB_CONJUNCTIVE, *CSSM_DB_CONJUNCTIVE_PTR;

2.6.9 CSSM_DB_HANDLE

typedef uint32 CSSM_DB_HANDLE /* data store Handle */

2.6.10 CSSM_DB_INDEX_INFO

This structure contains the meta-information or schema description of an index defined on an attribute.
The description includes the type of index (e.g., unique key or nonunique key), the logical location of the
indexed attribute in the KeyWorks record (e.g., an attribute, a field within the opaque object in the record,
or unknown), and the meta-information on the attribute itself.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 12

typedef struct cssm_db_index_info {
 CSSM_DB_INDEX_TYPE IndexType;
 CSSM_DB_INDEXED_DATA_LOCATION IndexedDataLocation;
 CSSM_DB_ATTRIBUTE_INFO Info;
} CSSM_DB_INDEX_INFO, *CSSM_DB_INDEX_INFO_PTR;

Definitions:
IndexType - A CSSM_DB_INDEX_TYPE.

IndexedDataLocation - A CSSM_DB_INDEXED_DATA_LOCATION.

Info - The meta-information description of the attribute being indexed.

2.6.11 CSSM_DB_INDEX_TYPE

This enumerated list defines two types of indexes: indexes with unique values (i.e., primary database keys)
and indexes with non-unique values. These values are used when creating a new data store and defining
the schema for that data store.

typedef enum cssm_db_index_type {
 CSSM_DB_INDEX_UNIQUE = 0,
 CSSM_DB_INDEX_NONUNIQUE = 1
} CSSM_DB_INDEX_TYPE;

2.6.12 CSSM_DBINFO

This structure contains the meta-information about an entire data store. The description includes the types
of records stored in the data store, the attribute schema for each record type, the index schema for all
indexes over records in the data store, the type of authentication mechanism used to gain access to the data
store, and other miscellaneous information used by the DL module to manage the data store in a secure
manner.

typedef struct cssm_dbInfo {
 uint32 NumberOfRecordTypes;
 CSSM_DB_PARSING_MODULE_INFO_PTR DefaultParsingModules;
 CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR RecordAttributeNames;
 CSSM_DB_RECORD_INDEX_INFO_PTR RecordIndexes;

 /* access restrictions for opening this data store */
 CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;

 /* transparent integrity checking options for this data store */
 CSSM_BOOL RecordSigningImplemented;
 CSSM_DATA SigningCertificate;
 CSSM_GUID SigningCsp;

 /* additional information */
 CSSM_BOOL IsLocal;
 char *AccessPath; /* URL, dir path, etc */
 void *Reserved;
} CSSM_DBINFO, *CSSM_DBINFO_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 13

Definitions:
NumberOfRecordTypes - The number of distinct record types stored in this data store.

DefaultParsingModules - A pointer to a list of pairs (record-type, GUID) which define the default-
parsing module for each record type.

RecordAttributeNames - The meta-information (schema) about the attributes associated with each
record type that can be stored in this data store.

RecordIndexes - The meta- information (schema) about the indexes that are defined over each of the
record types that can be stored in this data store.

AuthenticationMechanism - Defines the authentication mechanism required when accessing this data
store.

RecordSigningImplemented - A flag indicating whether or not the DL module provides record integrity
service based on digital signaturing of the data store records.

SigningCertificate - The certificate used to sign data store records when the transparent record integrity
option is in effect.

SigningCsp - The GUID for the Cryptographic Service Provider (CSP) to be used to sign data store
records when the transparent record integrity option is in effect.

IsLocal - Indicates whether the physical data store is local.

AccessPath - A character string describing the access path to the data store, such as a Universal
Resource Locator (URL), a file system path name, a remote directory service name, etc.

Reserved - Reserved for future use.

2.6.13 CSSM_DB_OPERATOR

These are the logical operators that can be used when specifying a selection predicate.

typedef enum cssm_db_operator {
 CSSM_DB_EQUAL = 0,
 CSSM_DB_NOT_EQUAL = 1,
 CSSM_DB_APPROX_EQUAL = 2,
 CSSM_DB_LESS_THAN = 3,
 CSSM_DB_GREATER_THAN = 4,
 CSSM_DB_EQUALS_INITIAL_SUBSTRING = 5,
 CSSM_DB_EQUALS_ANY_SUBSTRING = 6,
 CSSM_DB_EQUALS_FINAL_SUBSTRING = 7,
 CSSM_DB_EXISTS = 8
} CSSM_DB_OPERATOR, *CSSM_DB_OPERATOR_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 14

2.6.14 CSSM_DB_PARSING_MODULE_INFO

This structure aggregates the GUID of a default-parsing module with the record type that it parses. A parsing module
can parse multiple record types. The same GUID would be repeated with each record type parsed by the module.

typedef struct cssm_db_parsing_module_info {
 CSSM_DB_RECORDTYPE RecordType;
 CSSM_GUID Module;
} CSSM_DB_PARSING_MODULE_INFO, *CSSM_DB_PARSING_MODULE_INFO_PTR;

Definitions:
RecordType - The type of record parsed by the module specified by GUID.

Module - A GUID identifying the default parsing module for the specified record type.

2.6.15 CSSM_DB_RECORD_ATTRIBUTE_DATA

This structure aggregates the actual data values for all of the attributes in a single record.

typedef struct cssm_db_record_attribute_data {
 CSSM_DB_RECORDTYPE DataRecordType;
 uint32 SemanticInformation;
 uint32 NumberOfAttributes;
 CSSM_DB_ATTRIBUTE_DATA_PTR AttributeData;
} CSSM_DB_RECORD_ATTRIBUTE_DATA, *CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR;

Definitions:
DataRecordType - A CSSM_DB_RECORDTYPE.

SemanticInformation - A bit-mask of type CSSM_XXXRECORD_SEMANTICS defining how the
record can be used. Currently, these bit-masks are defined only for certificate records
(CSSM_CERTRECORD_SEMANTICS). For all other record types, a bit-mask of zero must be used
or a set of semantically meaningful masks must be defined.

NumberOfAttributes - The number of attributes in the record of the specified type.

AttributeData - A list of attribute name/value pairs.

2.6.16 CSSM_DB_RECORD_ATTRIBUTE_INFO

This structure contains the meta-information or schema information about all of the attributes in a particular
record type. The description specifies the record type, the number of attributes in the record type, and a
type information for each attribute.

typedef struct cssm_db_record_attribute_info {
 CSSM_DB_RECORDTYPE DataRecordType;
 uint32 NumberOfAttributes;
 CSSM_DB_ATTRIBUTE_INFO_PTR AttributeInfo;
} CSSM_DB_RECORD_ATTRIBUTE_INFO, *CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR;

Definitions:
DataRecordType - A CSSM_DB_RECORDTYPE.

NumberOfAttributes - The number of attributes in a record of the specified type.

AttributeInfo - A list of pointers to the type information (schema) for each of the attributes.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 15

2.6.17 CSSM_DB_RECORD_INDEX_INFO

This structure contains the meta-information or schema description of the set of indexes defined on a single
record type. The description includes the type of the record, the number of indexes and the meta-
information describing each index.

typedef struct cssm_db_record_index_info {
 CSSM_DB_RECORDTYPE DataRecordType;
 uint32 NumberOfIndexes;
 CSSM_DB_INDEX_INFO_PTR IndexInfo;
} CSSM_DB_RECORD_INDEX_INFO, *CSSM_DB_RECORD_INDEX_INFO_PTR;

Definitions:
DataRecordType - A CSSM_DB_RECORDTYPE.

NumberOfIndexes - The number of indexes defined on the records of the given type.

IndexInfo - An array of pointer to the meta-description of each index defined over the specified record
type.

2.6.18 CSSM_DB_RECORD_PARSING_FNTABLE

This structure defines the three prototypes for functions that can parse the opaque data object stored in a
record. It is used in the CSSM_DbSetRecordParsingFunctions function to override the default-parsing
module for a given record type. The DL module developer designates the default-parsing module for each
record type stored in the data store.

typedef struct cssm_db_record_parsing_fntable {
 CSSM_DATA_PTR (CSSMAPI *RecordGetFirstFieldValue)
 (CSSM_HANDLE Handle,
 CSSM_DB_RECORDTYPE RecordType,
 const CSSM_DATA_PTR Data,
 const CSSM_OID_PTR DataField,
 CSSM_HANDLE_PTR ResultsHandle,
 uint32 *NumberOfMatchedFields);
 CSSM_DATA_PTR (CSSMAPI *RecordGetNextFieldValue)
 (CSSM_HANDLE Handle,
 CSSM_HANDLE ResultsHandle);
 CSSM_RETURN (CSSMAPI *RecordAbortQuery)
 (CSSM_HANDLE Handle,
 CSSM_HANDLE ResultsHandle);
} CSSM_DB_RECORD_PARSING_FNTABLE, *CSSM_DB_RECORD_PARSING_FNTABLE_PTR;

Definitions:
*RecordGetFirstFieldValue - A function to retrieve the value of a field in the opaque object. The field
is specified by attribute name. The results handle holds the state information required to retrieve
subsequent values having the same attribute name.

*RecordGetNextFieldValue - A function to retrieve subsequent values having the same attribute name
from a record parsed by the first function in this table.

*RecordAbortQuery - Stop subsequent retrieval of values having the same attribute name from within
the opaque object.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 16

2.6.19 CSSM_DB_RECORDTYPE

This enumerated list defines the categories of persistent security-related objects that can be managed by a
DL module. These categories are in one-to-one correspondence with types of records that can be managed
by a DL module.

typedef enum cssm_db_recordtype {
 CSSM_DL_DB_RECORD_GENERIC = 0,
 CSSM_DL_DB_RECORD_CERT = 1,
 CSSM_DL_DB_RECORD_CRL = 2,
 CSSM_DL_DB_RECORD_PUBLIC_KEY = 3,
 CSSM_DL_DB_RECORD_PRIVATE_KEY = 4,
 CSSM_DL_DB_RECORD_SYMMETRIC_KEY = 5,
 CSSM_DL_DB_RECORD_POLICY = 6
} CSSM_DB_RECORDTYPE;

2.6.20 CSSM_DB_UNIQUE_RECORD

This structure contains an index descriptor and a module-defined value. The index descriptor may be used
by the module to enhance the performance when locating the record. The module-defined value must
uniquely identify the record. For a DBMS, this may be the record data. For a Public-Key Cryptographic
Standard (PKCS#11) DL, this may be an object handle. Alternately, the DL may have a module-specific
scheme for identifying data that has been inserted or retrieved.

typedef struct cssm_db_unique_record {
 CSSM_DB_INDEX_INFO RecordLocator;
 CSSM_DATA RecordIdentifier;
} CSSM_DB_UNIQUE_RECORD, *CSSM_DB_UNIQUE_RECORD_PTR;

Definitions:
RecordLocator -The information describing how to locate the record efficiently.

RecordIdentifier - A module-specific identifier which will allow the DL to locate this record.

2.6.21 CSSM_DL_DB_HANDLE

This data structure holds a pair of handles, one for a DL and another for a data store opened and being
managed by the DL.

typedef struct cssm_dl_db_handle {
 CSSM_DL_HANDLE DLHandle;
 CSSM_DB_HANDLE DBHandle;
} CSSM_DL_DB_HANDLE, *CSSM_DL_DB_HANDLE_PTR;

Definitions:
DLHandle - Handle of an attached module that provides DL services.

2.6.22 CSSM_DL_DB_LIST

This data structure defines a list of handle pairs (DL handle, data store handle).

typedef struct cssm_dl_db_list {
 uint32 NumHandles;
 CSSM_DL_DB_HANDLE_PTR DLDBHandle;
} CSSM_DL_DB_LIST, *CSSM_DL_DB_LIST_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 17

Definitions:
NumHandles - Number of (DL handle, data store handle) pairs in the list.

DLDBHandle - List of (DL handle, data store handle) pairs.

2.6.23 CSSM_DL_CUSTOM_ATTRIBUTES

This structure can be used by DL module developers to define a set of attributes for a custom data store
format.

typedef void *CSSM_DL_CUSTOM_ATTRIBUTES;

2.6.24 CSSM_DL_FFS_ATTRIBUTES

This structure can be used by DL module developers to define a set of attributes for a flat file system data
store format.

typedef void *CSSM_DL_FFS_ATTRIBUTES;

2.6.25 CSSM_DL_HANDLE

A unique identifier for an attached module that provides DL services.

typedef uint32 CSSM_DL_HANDLE/* Data Storage Library Handle */

2.6.26 CSSM_DL_LDAP_ATTRIBUTES

This structure can be used by DL module developers to define a set of attributes for an Lightweight
Directory Access Protocol (LDAP) data store format.

typedef void *CSSM_DL_LDAP_ATTRIBUTES;

2.6.27 CSSM_DL_ODBC_ATTRIBUTES

This structure can be used by DL module developers to define a set of attributes for an Open Database
Connectivity (ODBC) data store format.

typedef void *CSSM_DL_ODBC_ATTRIBUTES;

2.6.28 CSSM_DL_PKCS11_ATTRIBUTES

Each type of DL module can define its own set of type-specific attributes. This structure contains the
attributes that are specific to a PKCS#11-compliant data storage device.

typedef struct cssm_dl_pkcs11_attributes {
 uint32 DeviceAccessFlags;
} *CSSM_DL_PKCS11_ATTRIBUTES;

Definitions:
DeviceAccessFlags - Specifies the PKCS#11-specific access modes applicable for accessing persistent
objects in a PKCS#11 data store.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 18

2.6.29 CSSM_DLSUBSERVICE

Three structures are used to contain all of the static information that describes a DL module:
cssm_moduleinfo, cssm_serviceinfo, and cssm_dlsubservice. This descriptive information is securely
stored in the KeyWorks registry when the DL module is installed with KeyWorks. A DL module may
implement multiple types of services and organize them as subservices. For example, a DL module
supporting two types of remote directory services may organize its implementation into two subservices:
one for an X.509 certificate directory and a second for custom enterprise policy data store. Most DL
modules will implement exactly one subservice.

Not all DL modules can maintain a summary of managed data stores. In this case, the DL module reports
its number of data stores as CSSM_DB_DATASTORES_UNKNOWN. Data stores can (and probably do)
exist, but the DL module cannot provide a list of them.

#define CSSM_DB_DATASTORES_UNKNOWN (-1)

The descriptive information stored in these structures can be queried using the function CSSM_GetModuleInfo
and specifying the DL module GUID.

typedef struct cssm_dlsubservice {
 uint32 SubServiceId;
 CSSM_STRING Description;
 CSSM_DLTYPE Type;
 union {
 CSSM_DL_CUSTOM_ATTRIBUTES CustomAttributes;
 CSSM_DL_LDAP_ATTRIBUTES LdapAttributes;
 CSSM_DL_ODBC_ATTRIBUTES OdbcAttributes;
 CSSM_DL_PKCS11_ATTRIBUTES Pkcs11Attributes;
 CSSM_DL_FFS_ATTRIBUTES FfsAttributes;
 } Attributes;

 CSSM_DL_WRAPPEDPRODUCT_INFO WrappedProduct;
 CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
 /* meta-information about the query support provided by the module */
 uint32 NumberOfRelOperatorTypes;
 CSSM_DB_OPERATOR_PTR RelOperatorTypes;
 uint32 NumberOfConjOperatorTypes;
 CSSM_DB_CONJUNCTIVE_PTR ConjOperatorTypes;
 CSSM_BOOL QueryLimitsSupported;

 /* meta-information about the encapsulated data stores (if known) */
 uint32 NumberOfDataStores;
 CSSM_NAME_LIST_PTR DataStoreNames;
 CSSM_DBINFO_PTR DataStoreInfo;

 /* additional information */
 void *Reserved;
} CSSM_DLSUBSERVICE, *CSSM_DLSUBSERVICE_PTR;

Definitions:
SubServiceId - A unique, identifying number for the subservice described in this structure.

Description - A string containing a descriptive name or title for this subservice.

Type - An identifier for the type of underlying data store the DL module uses to provide persistent
storage.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 19

Attributes - A structure containing attributes that define additional parameter values specific to the DL
module type.

WrappedProduct - Pointer to a CSSM_DL_WRAPPEDPRODUCT_INFO structure describing a
product that is wrapped by the DL module.

AuthenticationMechanism - Defines the authentication mechanism required when using this DL
module. This authentication mechanism is distinct from the authentication mechanism (specified in a
cssm_dbInfo structure) required to access a specific data store.

NumberOfRelOperatorTypes - The number of distinct relational operators the DL module accepts in
selection queries for retrieving records from its managed data stores.

RelOperatorTypes - The list of specific relational operators that can be used to formulate selection
predicates for queries on a data store. The list contains NumberOfRelOperatorTypes operators.

NumberOfConjOperatorTypes - The number of distinct conjunctive operators the DL module accepts
in selection queries for retrieving records from its managed data stores.

ConjOperatorTypes - A list of specific conjunctive operators that can be used to formulate selection
predicates for queries on a data store. The list contains NumberOfConjOperatorTypes operators.

QueryLimitsSupported - A Boolean indicating whether query limits are effective when the DL module
executes a query.

NumberOfDataStores - The number of data stores managed by the DL module. This information may not be
known by the DL module, in which case this value will equal CSSM_DB_DATASTORES_UNKNOWN.

DataStoreNames - A list of names of the data stores managed by the DL module. This information
may not be known by the DL module and hence may not be available. The list contains
NumberOfDataStores entries.

DataStoreInfo - A list of pointers to the meta-information (schema) for each data store managed by the
DL module. This information may not be known in advance by the DL module and hence may not be
available through this structure. The list contains NumberOfDataStores entries.

Reserved - Reserved for future use.

2.6.30 CSSM_DLTYPE

This enumerated list defines the types of underlying DBMSs that can be used by the DL module to provide
services. It is the option of the DL module to disclose this information.
typedef enum cssm_dltype {
 CSSM_DL_UNKNOWN = 0,
 CSSM_DL_CUSTOM = 1,
 CSSM_DL_LDAP = 2,
 CSSM_DL_ODBC = 3,
 CSSM_DL_PKCS11 = 4,
 CSSM_DL_FFS = 5,/* flat file systemor fast file system */
 CSSM_DL_MEMORY = 6,
 CSSM_DL_REMOTEDIR = 7
} CSSM_DLTYPE, *CSSM_DLTYPE_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 20

2.6.31 CSSM_DL_WRAPPEDPRODUCTINFO

This structure lists the set of data store services used by the DL module to implement its services. The DL
module vendor is not required to provide this information, but may choose to do so. For example, a DL
module that uses a commercial DBMS can record information about that product in this structure. Another
example is a DL module that supports certificate storage through an X.500 certificate directory server. The
DL module can describe the X.500 directory service in this structure.

typedef struct cssm_dl_wrappedproductinfo {
 CSSM_VERSION StandardVersion;
 CSSM_STRING StandardDescription;
 CSSM_VERSION ProductVersion;
 CSSM_STRING ProductDescription;
 CSSM_STRING ProductVendor;
 uint32 ProductFlags;
} CSSM_DL_WRAPPEDPRODUCT_INFO, *CSSM_DL_WRAPPEDPRODUCT_INFO_PTR;

Definitions:
StandardVersion - If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription - If this product conforms to an industry standard, this is a description of that
standard.

ProductVersion - Version number information for the actual product version used in this version of the
DL module.

ProductDescription - A string describing the product.

ProductVendor - The name of the product vendor.

ProductFlags - A bit-mask enumerating selectable features of the database service that the DL module
uses in its implementation.

2.6.32 CSSM_NAME_LIST

typedef struct cssm_name_list {
 uint32 NumStrings;
 char** String;
} CSSM_NAME_LIST, *CSSM_NAME_LIST_PTR;

2.6.33 CSSM_QUERY

This structure holds a complete specification of a query to select records from a data store.

typedef struct cssm_query {
 CSSM_DB_RECORDTYPE RecordType;
 CSSM_DB_CONJUNCTIVE Conjunctive;
 uint32 NumSelectionPredicates;
 CSSM_SELECTION_PREDICATE_PTR SelectionPredicate;
 CSSM_QUERY_LIMITS QueryLimits;
 CSSM_QUERY_FLAGS QueryFlags;
} CSSM_QUERY, *CSSM_QUERY_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 21

Definitions:
RecordType - Specifies the type of record to be retrieved from the data store.

Conjunctive - The conjunctive operator to be used in constructing the selection predicate for the query.

NumSelectionPredicates - The number of selection predicates to be connected by the specified
conjunctive operator to form the query.

SelectionPredicate - The list of selection predicates to be combined by the conjunctive operator to
form the data store query.

QueryLimits - Defines the time and space limits for processing the selection query. The constant
values CSSM_QUERY_TIMELIMIT_NONE and CSM_QUERY_SIZELIMIT_NONE should be used
to specify no limit on the resources used in processing the query.

QueryFlags - An integer that indicates the return format of the key data. This integer is represented by
CSSM_QUERY_RETURN_DATA. When CSSM_QUERY_RETURN_DATA is 1, the key record is
returned in KeyWorks format. When CSSM_QUERY_RETURN_DATA is 0, the information is
returned in raw format (a format native to the individual module, BSAFE, or PKCS11).

2.6.34 CSSM_QUERY_LIMITS

This structure defines the time and space limits a caller can set to control early termination of the execution of a data
store query. The constant values CSSM_QUERY_TIMELIMIT_NONE and CSM_QUERY_SIZELIMIT_NONE
should be used to specify no limit on the resources used in processing the query. These limits are advisory. Not all
DL modules recognize and act upon the query limits set by a caller.

#define CSSM_QUERY_TIMELIMIT_NONE 0
#define CSSM_QUERY_SIZELIMIT_NONE 0

typedef struct cssm_query_limits {
 uint32 TimeLimit;
 uint32 SizeLimit;
} CSSM_QUERY_LIMITS, *CSSM_QUERY_LIMITS_PTR;

Definitions:
TimeLimit - Defines the maximum number of seconds of resource time that should be expended
performing a query operation. The constant value CSSM_QUERY_TIMELIMIT_NONE means no
time limit is specified.

SizeLimit - Defines the maximum number of records that should be retrieved in response to a single
query. The constant value CSSM_QUERY_SIZELIMIT_NONE means no space limit is specified.

2.6.35 CSSM_SELECTION_PREDICATE

This structure defines the selection predicate to be used for database queries.

typedef struct cssm_selection_predicate {
 CSSM_DB_OPERATOR DbOperator;
 CSSM_DB_ATTRIBUTE_DATA Attribute;
} CSSM_SELECTION_PREDICATE, *CSSM_SELECTION_PREDICATE_PTR;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 22

Definitions:
DbOperator - The relational operator to be used when comparing a value to the values stored in the
specified attribute in the data store.

Attribute - The meta-information about the attribute to be searched and the attribute value to be used
for comparison with values in the data store.

2.7 Data Storage Operations

This section describes the function prototypes and error codes defined for the data source operations in the
DLI. The functions are exposed to KeyWorks through a function table, so the function names may vary at
the discretion of the DL developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications.

2.7.1 DL_Authenticate

CSSM_RETURN DL_Authenticate (const CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR
UserAuthentication)

This function allows the caller to provide authentication credentials to the DL module at a time
other than data store creation, deletion, open, import, and export. AccessRequest defines the type
of access to be associated with the caller. If the authentication credential applies to access and use
of a DL module in general, then the data store handle specified in the DLDBHandle must be
NULL. When the authorization credential is to applied to a specific data store, the handle for that
data store must be specified in the DLDBHandle pair.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module used to perform this function and the data store to
which access is being requested. If the form of authentication being requested is authentication to
the DL module in general, then the data store handle must be NULL.

AccessRequest (input)
An indicator of the requested access mode for the data store or DL module in general.

UserAuthentication (input)
The caller’s credential as required for obtaining authorized access to the data store or to the DL
module in general.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 23

2.7.2 DL_DbClose

CSSM_RETURN DL_DbClose (CSSM_DL_DB_HANDLE DLDBHandle)

This function closes an open data store.

Parameters
DLDBHandle (input)
A handle structure containing the DL handle for the attached DL module and the database (DB)
handle for an open data store managed by the DL. This specifies the open data store to be closed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DbOpen

Version 1.1.3.0 IBM KeyWorks Toolkit Page 24

2.7.3 DL_DbCreate

CSSM_DB_HANDLE DL_DbCreate
(CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_DBINFO_PTR DBInfo,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void *OpenParameters)

This function creates a new, empty data store with the specified logical name.

Parameters
DLHandle(input)
The handle that describes the DL module to be used to perform this function.

DBInfo (input)
A pointer to a structure describing the format/schema of each record type that will be stored in the
new data store.

AccessRequest (input)
An indicator of the requested access mode for the data store, such as read-only or read/write.

UserAuthentication (input/optional)
The caller’s credential as required for obtaining access to the data store. If no credentials are
required for the specified data store, then user authentication must be NULL.

OpenParameters (input/optional)
A pointer to a module-specific set of parameters required to open the data store.

Return Value
Returns the CSSM_DB_HANDLE of the newly created data store. If the handle is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DbOpen, DL_DbClose, DL_DbDelete

Version 1.1.3.0 IBM KeyWorks Toolkit Page 25

2.7.4 DL_DbDelete

CSSM_RETURN DL_DbDelete
(CSSM_DL_HANDLE DLHandle,
 const char *DbName,
 const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

This function deletes all records from the specified data store and removes all state information
associated with that data store.

Parameters
DLHandle(input)
The handle that describes the DL module to be used to perform this function.

DbName(input)
A pointer to the string containing the logical name of the data store.

UserAuthentication (input/optional)
The caller’s credential as required for obtaining access (and consequently deletion capability) to
the data store. If no credentials are required for the specified data store, then user authentication
must be NULL

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DbCreate, DL_DbOpen, DL_DbClose

Version 1.1.3.0 IBM KeyWorks Toolkit Page 26

2.7.5 DL_DbExport

CSSM_RETURN DL_DbExport (CSSM_DL_HANDLE DLHandle,
const char *DbDestinationName,
const char *DbSourceName,
const CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR
UserAuthentication)

This function exports a copy of the data store records from the source data store to a data container
that can be used as the input data source for the DL_DbImport function. The DL module may
require additional user authentication to determine authorization to snapshot a copy of an existing
data store.

Parameters
DLHandle(input)
The handle that describes the DL module to be used to perform this function.

DbSourceName (input)
The name of the data store from which the records are to be exported.

DbDestinationName (input)
The name of the destination data container which will contain a copy of the source data store’s
records.

InfoOnly (input)
A Boolean value indicating what to export. If CSSM_TRUE, export only the DBInfo that
describes the data store. If CSSM_FALSE, export both the DBInfo and all of the records in the
specified data store.

UserAuthentication (input/optional)
The caller’s credential as required for authorization to snapshot/copy a data store. If the DL
module requires no additional credentials to perform this operation, then user authentication can
be NULL.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also

DL_DbImport

Version 1.1.3.0 IBM KeyWorks Toolkit Page 27

2.7.6 DL_GetDbNameFromHandle

char * DL_GetDbNameFromHandle (CSSM_DL_DB_HANDLE DLDBHandle)

This function retrieves the data source name corresponding to an opened database handle. A DL
module is responsible for allocating the memory required for the list.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module used to perform this function and the data store to
which access is being requested.

Return Value
Returns a string that contains a data store name. If the pointer is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 28

2.7.7 DL_DbGetRecordParsingFunctions

CSSM_DB_RECORD_PARSING_FNTABLE_PTR DL_DbGetRecordParsingFunctions
(CSSM_DL_HANDLE DLHandle,
const char* DbName,
CSSM_DB_RECORDTYPE RecordType)

This function gets the records parsing function table, that operates on records of the specified type,
in the specified data store. Three record-parsing functions can be returned in the table. The
functions can be implemented to parse multiple record types. In this case, multiple calls to
DL_DbGetRecordParsingFunctions must be made, once for each record type whose parsing
functions are required by the caller. The DL module uses these functions to parse the opaque data
object stored in a data store record. If no parsing function table has been set for a given record
type, then a NULL value is returned.

Parameters
DLHandle (input)
The handle that describes the DL module to be used to perform this function.

DbName (input)
The name of the data store with which the parsing functions are associated.

RecordType (input)
The record type whose parsing functions are requested by the caller.

Return Value
A pointer to a function table for the parsing function appropriate to the specified record type.
When CSSM_NULL is returned, either no function table has been set for the specified record type
or an error has occurred. Use CSSM_GetError to obtain the error code and determine the reason
for the NULL result.

See Also
DL_SetRecordParsingFunctions

Version 1.1.3.0 IBM KeyWorks Toolkit Page 29

2.7.8 DL_DbImport

CSSM_RETURN DL_DbImport
(CSSM_DL_HANDLE DLHandle,
const char *DbDestinationName,
const char *DbSourceName,
const CSSM_DBINFO_PTR DBInfo,
const CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

This function creates a new data store, or adds to an existing data store, by importing records from
the specified data source. It is assumed that the data source contains records exported from a data
store using the function DL_DbExport.

The DbDestinationName specifies the name of a new or existing data store. If a new data store is
being created, the DBInfo structure provides the meta-information (schema) for the new data store.
This structure describes the record attributes and the index schema for the new data store. If the
data store already exists, then the existing meta-information (schema) is used. (Dynamic schema
evolution is not supported.)

Typically, user authentication is required to create a new data store or to write to an existing data
store. An authentication credential is presented to the DL module in the form required by the
module. The required form is documented in the capabilities and feature descriptions for this
module. The resulting data store is not opened as a result of this operation.

Parameters
DLHandle(input)
The handle that describes the DL module to be used to perform this function.

DbDestinationName (input)
The name of the destination data store in which to insert the records.

DbSourceName (input)
The name of the data source from which to obtain the records that are added to the data store.

DBInfo (input/optional)
A data structure containing a detailed description of the meta-information (schema) for the new
data store. If a new data store is being created, then the caller must specify the meta-information
(schema), or the data source must include the meta-information required for proper import of the
records. If meta-information is supplied by the caller and specified in the data source, then the
meta-information provided by the caller overrides the meta-information recorded in the data
source. If the data store exists and records are being added, then this pointer must be NULL. The
existing meta-information will be used and the schema cannot be evolved.

InfoOnly (input)
A Boolean value indicating what to import. If CSSM_TRUE, import only the DBInfo that
describes the a data store. If CSSM_FALSE, import both the DBInfo and all of the records
exported from a data store.

UserAuthentication (input/optional)
The caller’s credential as required for authorization to create a data store. If the DL module
requires no additional credentials to create a new data store, then user authentication can be
NULL.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 30

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DbExport

Version 1.1.3.0 IBM KeyWorks Toolkit Page 31

2.7.9 DL_DbOpen

CSSM_DB_HANDLE DL_DbOpen (CSSM_DL_HANDLE DLHandle,
const char *DbName
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR
UserAuthentication,
const void *OpenParameters)

This function opens the data store with the specified logical name under the specified access
mode. If user authentication credentials are required, they must be provided. In addition,
additional open parameters may be required to open a given data store and are supplied in the
OpenParameters.

Parameters
DLHandle(input)
The handle that describes the DL module to be used to perform this function.

DbName(input)
A pointer to the string containing the logical name of the data store.

AccessRequest (input)
An indicator of the requested access mode for the data store, such as read-only or read/write.

UserAuthentication (input/optional)
The caller’s credential as required for obtaining access to the data store. If no credentials are
required for the specified data store, then user authentication must be NULL.

OpenParameters (input/optional)
A pointer to a module-specific set of parameters required to open the data store.

Return Value
Returns the CSSM_DB_HANDLE of the opened data store. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DbClose

Version 1.1.3.0 IBM KeyWorks Toolkit Page 32

2.7.10 DL_DbSetRecordParsingFunctions

CSSM_RETURN DL_DbSetRecordParsingFunctions
(CSSM_DL_HANDLE DLHandle,
const char* DbName,
CSSM_DB_RECORDTYPE RecordType,
const
CSSM_DB_RECORD_PARSING_FNTABLE_PTR
FunctionTable)

This function sets the records parsing function table, overriding the default-parsing module for
records of the specified type in the specified data store. Three record-parsing functions can be
specified in the table. The functions can be implemented to parse multiple record types. In this
case, multiple calls to DL_DbSetRecordParsingFunctions must be made, once for each record type
that should be parsed using these functions. The DL module uses these functions to parse the
opaque data object stored in a data store record. If no parsing function table has been set for a
given record type, then the default-parsing module is invoked for that record type.

Parameters
DLHandle (input)
The handle that describes the DL module to be used to perform this function.

DbName (input)
The name of the data store with which to associate the parsing functions.

RecordType (input)
One of the record types parsed by the functions specified in the function table.

FunctionTable (input)
The function table referencing the three parsing functions to be used with the data store specified
by DbName.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_GetRecordParsingFunctions

Version 1.1.3.0 IBM KeyWorks Toolkit Page 33

2.8 Data Record Operations

2.8.1 DL_DataAbortQuery

CSSM_RETURN DL_DataAbortQuery (CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CSSM_DL_DataGetFirst or
CSSM_DL_DataGetNext, and allows a DL to release all intermediate state information associated
with the query.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store from which records were selected by the initiating query.

ResultsHandle (input)
The selection handle returned from the initial query function.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

See Also
DL_DataGetFirst, DL_DataGetNext

Version 1.1.3.0 IBM KeyWorks Toolkit Page 34

2.8.2 DL_DataDelete

CSSM_RETURN DL_DataDelete
(CSSM_DL__DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_UNIQUE_RECORD_PTR UniqueRecordIdentifier)

This function removes from the specified data store the data record specified by the unique record
identifier.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store from which to delete the specified data record.

RecordType (input/optional)
An indicator of the type of record to be deleted from the data store. The UniqueRecordIdentifier
may be unique only among records of the same type. If the data store contains only one record
type or the unique identifiers managed are globally unique, then the record type need not be
specified.

UniqueRecordIdentifier (input)
A pointer to a CSSM_DB_UNIQUE_RECORD identifier containing unique identification of the
data record to be deleted from the data store. The identifier may be unique only among records of
a given type. Once the associated record has been deleted, this unique record identifier cannot be
used in future references.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DataInsert

Version 1.1.3.0 IBM KeyWorks Toolkit Page 35

2.8.3 DL_DataGetFirst

CSSM_DB_UNIQUE_RECORD_PTR DL_DataGetFirst
(CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_QUERY_PTR Query,
CSSM_HANDLE_PTR ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

This function retrieves the first data record in the data store that matches the selection criteria.
The selection criteria (including selection predicate and comparison values) is specified in the
Query structure. The DL module can use internally managed indexing structures to enhance the
performance of the retrieval operation. This function returns the first record, satisfying the query
in the list of Attributes and the opaque Data object. This function also returns a flag indicating
whether additional records also satisfied the query, and a results handle to be used when retrieving
subsequent records satisfying the query. Finally, this function returns a unique record identifier
associated with the retrieved record. This structure can be used in future references to the
retrieved data record.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store to search for records satisfying the query.

Query (input/optional)
The query structure specifying the selection predicates used to query the data store. The structure
contains meta-information about the search fields and the relational and conjunctive operators
forming the selection predicate. The comparison values to be used in the search are specified in
the Attributes and Data parameter. If no query is specified, the DL module can return the first
record in the data store (i.e., perform sequential retrieval) or return an error.

ResultsHandle (output)
This handle should be used to retrieve subsequent records that satisfied this query.

EndOfDataStore (output)
A flag indicating whether a record satisfying this query was available to be retrieved in the current
operation. If CSSM_TRUE, then a record was available and was retrieved unless an error
condition occurred. If CSSM_FALSE, then all records satisfying the query have been previously
retrieved and no record has been returned by this operation.

Attributes (output)
A list of attributes values (and corresponding meta-information) from the retrieved record.

Data (output)
The opaque object stored in the retrieved record.

Return Value
If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to a
CSSM_UNIQUE_RECORD structure containing a unique record locator and the record. If the
pointer is NULL and EndOfDataStore is CSSM_TRUE, then a normal termination condition has
occurred. If the pointer is NULL and EndOfDataStore is CSSM_FALSE, then an error has
occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 36

See Also
DL_DataGetNext, DL_DataAbortQuery.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 37

2.8.4 DL_DataGetNext

CSSM_DB_UNIQUE_RECORD_PTR DL_DataGetNext
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_HANDLE ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

This function returns the next data record referenced by the ResultsHandle. The ResultsHandle
parameter references a set of records selected by an invocation of the DL_DataGetFirst function.
The record values are returned in the Attributes and Data parameters. A flag indicates whether
additional records satisfying the original query remain to be retrieved. The function also returns a
unique record identifier for the return record.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store from which records were selected by the initiating query.

ResultsHandle (output)
The handle identifying a set of records retrieved by a query executed by the DL_DataGetFirst
function.

EndOfDataStore (output)
A flag indicating whether a record satisfying this query was available to be retrieved in the current
operation. If CSSM_TRUE, then a record was available and was retrieved unless an error
condition occurred. If CSSM_FALSE, then all records satisfying the query have been previously
retrieved and no record has been returned by this operation.

Attributes (output)
A list of attributes values (and corresponding meta-information) from the retrieved record.

Data (output)
The opaque object stored in the retrieved record.

Return Value
If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to a
CSSM_UNIQUE_RECORD structure containing a unique record locator and the record. If the
pointer is NULL and EndOfDataStore is CSSM_TRUE, then a normal termination condition has
occurred. If the pointer is NULL and EndOfDataStore is CSSM_FALSE, then an error has
occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DataGetFirst, DL_DataAbortQuery

Version 1.1.3.0 IBM KeyWorks Toolkit Page 38

2.8.5 DL_DataInsert

CSSM_DB_UNIQUE_RECORD_PTR DL_DataInsert
(CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
const CSSM_DATA_PTR Data)

This function creates a new persistent data record of the specified type by inserting it into the
specified data store. The values contained in the new data record are specified by the Attributes
and the Data parameters. The attribute value list contains zero or more attribute values. The DL
modules can assume default values for unspecified attribute values or can return an error condition
when required attributes values are not specified by the caller. The Data parameter is an opaque
object to be stored in the new data record.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store in which to insert the new data record.

RecordType (input)
Indicates the type of data record being added to the data store.

Attributes (input/optional)
A list of structures containing the attribute values to be stored in that attribute and the meta-
information (schema) describing those attributes. The list contains, at most, one entry per attribute
in the specified record type. The DL module can assume default values for those attributes that
are not assigned values by the caller or may return an error. If the specified record type does not
contain any attributes, this parameter must be NULL.

DataRecord (input/optional)
A pointer to the CSSM_DATA structure that contains the opaque data object to be stored in the
new data record. If the specified record type does not contain an opaque data object, this
parameter must be NULL.

Return Value
A pointer to a CSSM_DB_UNIQUE_RECORD_POINTER containing a unique identifier
associated with the new record. This unique identifier structure can be used in future references to
this record. When NULL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

See Also

DL_DataDelete

Version 1.1.3.0 IBM KeyWorks Toolkit Page 39

2.8.6 DL_FreeUniqueRecord

CSSM_RETURN DL_FreeUniqueRecord
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord)

This function frees the memory associated with the data store unique record structure.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function.

UniqueRecord (input)
The pointer to the memory that describes the data store unique record structure.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
DL_DataInsert, DL_DataGetFirst, DL_DataGetNext

Version 1.1.3.0 IBM KeyWorks Toolkit Page 40

2.9 Extensibility Functions

The DL_PassThrough function is provided to allow DL developers to extend the certificate and CRL
format-specific storage functionality of the KeyWorks API. Because it is exposed to KeyWorks as only a
function pointer, its name internal to the DL can be assigned at the discretion of the DL module developer.
However, its parameter list and return value must match what is shown below. The error codes listed in
this section are the generic codes all data storage libraries may use to describe common error conditions.

2.9.1 DL_PassThrough

void * DL_PassThrough (CSSM_DL_DB_HANDLE DLDBHandle,
uint32 PassThroughId,
const void *InputParams)

This function allows applications to call additional module-specific operations that have been
exported by the DL. Such operations may include queries or services specific to the domain
represented by the DL module.

Parameters
DLDBHandle (input)
The handle pair that describes the DL module to be used to perform this function and the open
data store upon which the function is to be performed.

PassThroughId (input)
An identifier assigned by a DL module to indicate the exported function to be performed.

InputParams (input)
A pointer to a module, implementation-specific structure containing parameters to be interpreted
in a function-specific manner by the requested DL module. This parameter can be used as a
pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the
passthrough function. The output data must be interpreted by the calling application based on
externally available information. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 41

Chapter 3. Data Storage Library Function Examples

3.1 Attach/Detach Example

The DL module is responsible for performing certain operations when KeyWorks attaches to and detaches
from it. These operations should be performed in a function called AddInAuthenticate, which must be
exported by the DL module. The AddInAuthenticate function will be called by the framework when the
module is loaded. The steps in Section 3.1.1 must be performed in order for the attach process to work
properly.

In the code in Section 3.1.1, it is assumed that the CSSM entry points, such as CSSM_RegisterServices,
have been resolved at link time. If not, the module may call GetProcAddress to resolve the entry points.

3.1.1 AddInAuthenticate

#include “cssm.h”
CSSM_GUID dl_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d } };
CSSM_FUNCTIONTABLE FunctionTable;
CSSM_SPI_FUNC_TBL_PTR UpcallTable;

/* global variables used for registration */
CSSM_REGISTRATION_INFO reg_info;
CSSM_SPI_DL_FUNCS dl_jmp_tbl;
CSSM_SPI_MEMORY_FUNCS upcall_tbl = {NULL, NULL, NULL, NULL};
CSSM_MODULE_FUNCS module_funcs;

CSSM_RETURN CSSMAPI AddInAuthenticate(char* cssmCredentialPath, char*
cssmSection) {

CSSM_RETURN ret_code;

/* first set up the DL jump table */
memset(&dl_jmp_tbl, 0, sizeof(dl_jmp_tbl));

/* Fill in FunctionTable with function pointers */
FunctionTable.Authenticate = DL_Authenticate;
FunctionTable.DbOpen = DL_DbOpen;
FunctionTable.DbClose = DL_DbClose;
FunctionTable.DbCreate = DL_DbCreate;
FunctionTable.DbDelete = DL_DbDelete;
FunctionTable.DbImport = DL_DbImport;
FunctionTable.DbExport = DL_DbExport;
FunctionTable.DbSetRecordParsingFunctions =

DL_DbSetRecordParsingFunctions;
FunctionTable.DbGetRecordParsingFunctions =

 DL_DbGetRecordParsingFunctions;
FunctionTable.GetDbNameFromHandle = DL_GetDbNameFromHandle;
FunctionTable.DataInsert = DL_DataInsert;
FunctionTable.DataDelete = DL_DataDelete;
FunctionTable.DataGetFirst = DL_DataGetFirst;
FunctionTable.DataGetNext = DL_DataGetNext;
FunctionTable.DataAbortQuery = DL_DataAbortQuery;
FunctionTable.FreeUniqueRecord = DL_FreeUniqueRecord;
FunctionTable.PassThrough = DL_PassThrough;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 42

/* set up the module specific info for CSSM */
memset(&module_funcs, 0, sizeof(module_funcs));
module_funcs.ServiceType = CSSM_SERVICE_DL;
module_funcs.DlFuncs = &FunctionTable;

/* ok, now set up the registration structure for CSSM */
memset(®_info, 0, sizeof(reg_info));

reg_info.Initialize = Initialize;
reg_info.Terminate = Uninitialize;
reg_info.ThreadSafe = CSSM_FALSE;
reg_info.ServiceSummary = CSSM_SERVICE_DL;
reg_info.NumberOfServiceTables = 1;
reg_info.Services = &module_funcs;

/* Register services with CSSM */
ret_code = CSSM_RegisterServices(&dl_guid, ®_info, &upcall_tbl, NULL);

return ret_code;

}

Version 1.1.3.0 IBM KeyWorks Toolkit Page 43

3.2 Data Store Operations Example

This section contains a template for the DL_DbOpen function.

/*---
 * Name: DL_DbOpen
 *
 * Description:
 * This function opens a Data store and returns a handle back to the
 * caller which should be used for further access to the data store.
*
 * Parameters:
 * DLHandle(input) : Handle identifying the DL module.
 * DbName : String containing the logical Data store name.
 * AccessRequest : Requested access mode for the data store
 * UserAuthentication : Caller’s credentials
 * OpenParameters : Module-specific parameters
 *
 * Return value:
 * Handle to the Opened Data store.
 * If NULL, use CSSM_GetError to get the follwing return codes
 *
 * Error Codes:
* CSSM_DL_INVALID_DL_HANDLE
* CSSM_DL_DATASTORE_NOT_EXISTS
* CSSM_DL_INVALID_AUTHENTICATION
* CSSM_DL_MEMORY_ERROR
* CSSM_DL_DB_OPEN_FAIL
---/

CSSM_DB_HANDLE DL_DbOpen (CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void * OpenParameters)

{
if(DLHandle == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DL_HANDLE);

return NULL;
}
if(DbName == NULL)
{
 CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DATASTORE_NAME);

return NULL;
}
if(!dl_IfDataStoreExists(DLHandle, DbName))
{

CSSM_SetError(&dl_guid, CSSM_DL_DATASTORE_NOT_EXISTS);
return NULL;

}

/*DL specific internal implementation of DbOpen*/

CSSM_DB_Handle Handle = dl_OpenDataStore(DbName);
 return Handle;
}

Version 1.1.3.0 IBM KeyWorks Toolkit Page 44

Appendix A. IBM KeyWorks Errors

This section describes the error handling features in KeyWorks that provide a consistent mechanism across
all layers of KeyWorks for returning errors to the caller. All Data Storage Library (DL) service provider
interface (SPI) functions return one of the following:

• CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM_GetError.

• CSSM_BOOL - KeyWorks functions returning this data type return either CSSM_TRUE or
CSSM_FALSE. If the function returns CSSM_FALSE, an error code may be available (but not
always) by calling CSSM_GetError.

• A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return.
An error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return:

• Errors defined by KeyWorks that are common to a particular type of service provider module

• Errors reserved for use by individual service provider modules

Since some errors are predefined by KeyWorks, those errors have a set of predefined numeric values that
are reserved by KeyWorks, and cannot be redefined by modules. For errors that are particular to a module,
a different set of predefined values has been reserved for their use. Table 1 lists the range of error numbers
defined by KeyWorks for DL modules and those available for use individual DL modules.

Table 1. DL Module Error Numbers

Error Number Range Description

5000 – 5999 DL errors defined by KeyWorks

6000 – 6999 DL errors reserved for individual DL modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it
may choose to pass the error to its caller.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 45

A.1 Data Storage Library Module Errors

Table 2. Data Storage Errors

Error Code Error Name
5001 CSSM_DL_NOT_LOADED
5002 CSSM_DL_INVALID_DL_HANDLE
5003 CSSM_DL_DATASTORE_NOT_EXISTS
5004 CSSM_DL_MEMORY_ERROR
5005 CSSM_DL_DB_OPEN_FAIL
5006 CSSM_DL_INVALID_DB_HANDLE
5007 CSSM_DL_DB_CLOSE_FAIL
5008 CSSM_DL_DB_CREATE_FAIL
5009 CSSM_DL_DB_DELETE_FAIL
5010 CSSM_DL_INVALID_PTR
5011 CSSM_DL_DB_IMPORT_FAIL
5012 CSSM_DL_DB_EXPORT_FAIL
5013 CSSM_DL_INVALID_CERTIFICATE_PTR
5014 CSSM_DL_CERT_INSERT_FAIL
5015 CSSM_DL_CERTIFICATE_NOT_IN_DB
5016 CSSM_DL_CERT_DELETE_FAIL
5017 CSSM_DL_CERT_REVOKE_FAIL
5018 CSSM_DL_INVALID_SELECTION_PTR
5019 CSSM_DL_NO_CERTIFICATE_FOUND
5020 CSSM_DL_CERT_GETFIRST_FAIL
5021 CSSM_DL_NO_MORE_CERTS
5022 CSSM_DL_CERT_GET_NEXT_FAIL
5023 CSSM_DL_CERT_ABORT_QUERY_FAIL
5024 CSSM_DL_INVALID_CRL_PTR
5025 CSSM_DL_CRL_INSERT_FAIL
5026 CSSM_DL_CRL_NOT_IN_DB
5027 CSSM_DL_CRL_DELETE_FAIL
5028 CSSM_DL_NO_CRL_FOUND
5029 CSSM_DL_CRL_GET_FIRST_FAIL
5030 CSSM_DL_NO_MORE_CRLS
5031 CSSM_DL_CRL_GET_NEXT_FAIL
5032 CSSM_DL_CRL_ABORT_QUERY_FAIL
5033 CSSM_DL_GET_DB_NAMES_FAIL
5034 CSSM_DL_INVALID_PASSTHROUGH_ID
5035 CSSM_DL_PASS_THROUGH_FAIL
5036 CSSM_DL_INVALID_POINTER
5037 CSSM_DL_NO_DATASOURCES
5038 CSSM_DL_INCOMPATIBLE_VERSION
5039 CSSM_DL_INVALID_FIELD_INFO
5040 CSSM_DL_INVALID_ATTRIBUTE_NAME_FORMAT
5041 CSSM_DL_CONJUNCTIVE_NOT_SUPPORTED
5042 CSSM_DL_OPERATOR_NOT_SUPPORTED
5043 CSSM_DL_NO_MORE_OBJECT
5044 CSSM_DL_INVALID_RESULTS_HANDLE
5045 CSSM_DL_INVALID_ATTRIBUTE_NAME
5046 CSSM_DL_INVALID_ATTRIBUTE
5047 CSSM_DL_UNKNOWN_KEY_TYPE
5048 CSSM_DL_BUFFER_TOO_SMALL
5100 CSSM_DL_INVALID_DATA_POINTER

Version 1.1.3.0 IBM KeyWorks Toolkit Page 46

Error Code Error Name
5101 CSSM_DL_INVALID_DLINFO_POINTER
5102 CSSM_DL_INSTALL_FAIL
5103 CSSM_DL_INVALID_GUID
5104 CSSM_DL_UNINSTALL_FAIL
5105 CSSM_DL_LIST_MODULES_FAIL
5107 CSSM_DL_ATTACH_FAIL
5108 CSSM_DL_DETACH_FAIL
5109 CSSM_DL_GET_INFO_FAIL
5110 CSSM_DL_FREE_INFO_FAIL
5111 CSSM_DL_INVALID_DLINFO_PTR
5112 CSSM_DL_INVALID_CL_HANDLE
5113 CSSM_DL_INVALID_CERTIFICATE_PTR
5114 CSSM_DL_INVALID_CRL
5115 CSSM_DL_INVALID_CRL_POINTER
5116 CSSM_DL_INVALID_RECORD_TYPE
5117 CSSM_DL_DATA_INSERT_FAIL
5118 CSSM_DL_DATA_GETFIRST_FAIL
5119 CSSM_DL_DATA_GETNEXT_FAIL
5120 CSSM_DL_NO_DATA_FOUND
5121 CSSM_DL_INVALID_AUTHENTICATION
5122 CSSM_DL_DATA_ABORT_QUERY_FAIL
5123 CSSM_DL_DATA_DELETE_FAIL

Version 1.1.3.0 IBM KeyWorks Toolkit Page 47

Appendix B. List of Acronyms

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DB Database

DBMS Database Management System

DES Data Encryption Standard

DL Data Storage Library

DLI Data Storage Library Interface

DLL Dynamically Linked Library

DSA Digital Signature Algorithm

GUID Globally Unique ID

ISV Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Code

ODBC Open Database Connectivity

OID Object Identifier

PKCS Public-Key Cryptographic Standard

SDSI Simple Distributed Security Infrastructure

SPI Service Provider Interface

TP Trust Policy

URL Universal Resource Locator

Version 1.1.3.0 IBM KeyWorks Toolkit Page 48

Appendix C. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm.
It can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA’s certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries of
executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Provider storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

• Bulk encryption and decryption
• Digital signing
• Cryptographic hash

Version 1.1.3.0 IBM KeyWorks Toolkit Page 49

• Random number generation
• Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents
other non-involved parties from understanding the stored information or
accessing and understanding the communication. The encryption process takes
understandable text and transforms it into an unintelligible piece of data (called
ciphertext); the decryption process restores the understandable text from the
unintelligible data. Both involve a mathematical formula or algorithm and a
secret sequence of data called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing data from being
modified), authentication (proving the identity of a resource or a user), and non-
repudiation (providing proof that a message or transaction was sent and/or
received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a private
key. The two keys are mathematically related, but it is virtually impossible
to derive the private key from the public key. A message that is encrypted
with someone's public key (obtained from some public directory) can only
be decrypted with the associated private key. Alternately, the private key
can be used to "sign" a document; the public key can be used as
verification of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NIST) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

• Authenticate the source of a message, data, or document

Version 1.1.3.0 IBM KeyWorks Toolkit Page 50

• Verify that the contents of a message has not been modified since it was
signed by the sender

• Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and DSS,
the proposed Digital Signature Standard defined as part of the U.S. Government
Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of an
enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published by
the U.S. Government, produces a 160-bit hash value from a variable-size input
stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

• Cryptographic Module Manager
• Key Recovery Module Manager
• Trust Policy Module Manager
• Certificate Library Module Manager
• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of loss or destruction of the key.

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered
outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box containing
the key. The authorized parties (i.e., enterprise or law enforcement) have the
freedom to choose the number of specific KRAs that they want to use. The

Version 1.1.3.0 IBM KeyWorks Toolkit Page 51

authorized party requests that each KRA decrypt its section of the Key Recovery
Fields (KRFs) that is associated with the transmission. Then those pieces of
information are used in the process that derives the session key. The KRA will
only be able to recover a portion of the key, and reading the original message
will require searching the remaining key space in order to find the key that will
decrypt the message. The number of KRAs on each end of the communication
does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom KRBs were generated (i.e., username, hostname, IP address).
The KRC has the ability to check credentials and derive the original encryption
key from the KRB with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives the
on-line request and services it by interacting with the appropriate set of KRAs as
specified within the KRB. The recovered key is then sent back to the KRO by
the KRC using an on-line protocol. The KRC consists of one main application
which, when started, behaves as a server process. The system, which serves as
the KRC, may be configured to start the KRC application as part of system
services; alternatively, the KRC operator can start up the KRC application
manually. The KRC application performs the following operations:

• Listens for on-line recovery requests from KRO

• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data which is created from a
symmetric key and key recovery profile information. The Key Recovery
Service Provider (KRSP) is invoked from the IBM KeyWorks framework to
create KRFs. There are two major pieces of the KRFs: block 1 contains
information that is unrelated to the session key of the transmitted message, and
encrypted with the public keys of the selected key recovery agents; block 2
contains information that is related to the session key of the transmission. The
KRSP generates the KRFs for the session key. This information is not the key
or any portion of the key, but is information that can be used to recover the key.
The KRSP has access to location-unique jurisdiction policy information that
controls and modifies some of the steps in the generation of the KRFs. Only
once the KRFs are generated, and both the client and server sides have access to
them, can the encrypted message flow begin. KRFs are generated so that they
can be used by a KRA to recover the original symmetric key, either because the
user who generated the message has lost the key, or at the warranted request of
law enforcement agents.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 52

Key Recovery Module The Key Recovery Module Manager enables key recovery for cryptographic
Manager services obtained through the IBM KeyWorks. It mediates all cryptographic

services provided by the KeyWorks and applies the appropriate key recovery
policy on all such operations. The Key Recovery Module Manager contains a
Key Recovery Policy Table (KRPT) that defines the applicable key recovery
policy for all cryptographic products. The Key Recovery Module Manager
routes the KR-API function calls made by an application to the appropriate KR-
SPI functions. The Key Recovery Module Manager also enforces the key
recovery policy on all cryptographic operations that are obtained through the
KeyWorks. It maintains key recovery state in the form of key recovery
contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) information that can be
used to authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of the
cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS interacts
with one or more local or remote KRAs to reconstruct the secret key that can be
used to decrypt the ciphertext.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 53

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities, ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating system
with security features (Microsoft NT Workstation 4.0), NTFS (Windows NT
Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key ecovery
Provider enablement functions. The cryptographic functions provided may include:

• Key recovery field generation
• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authorities in the interest of national security and law enforcement.
In the law enforcement scenario, the KRB is presented on a 3.5-inch diskette,
and the credentials are in the physical form of a legal warrant. This warrant will
specify any information available to the law enforcement agents which can be
used to tie the warrant to the identity of the user for whom KRBs were generated
(i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Owned certificate A certificate whose associated secret or private key resides in a local
Cryptographic Service Provider (CSP). Digital-signing algorithms require using
owned certificates when signing data for purposes of authentication and non-
repudiation. A system may use certificates it does not own for purposes other
than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 54

Secure Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networking using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information, ensuring
message integrity, and authenticating the parties involved in a transaction.

The significance of SET, over existing Internet security protocols, is found in
the use of digital certificates. Digital certificates will be used to authenticate all
the parties involved in a transaction. SET will provide those in the virtual world
with the same level of trust and confidence a consumer has today when making
a purchase at any of the 13 million Visa-acceptance locations in the physical
world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 55

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that adds
digital signatures and encryption to Internet MIME messages. MIME is the
official proposed standard format for extended Internet electronic mail. Internet
e-mail messages consist of two parts, the header and the body. The header
forms a collection of field/value pairs structured to provide information essential
for the transmission of the message. The body is normally unstructured unless
the e-mail is in MIME format. MIME defines how the body of an e-mail
message is structured. The MIME format permits e-mail to include enhanced
text, graphics, audio, and more in a standardized manner via MIME-compliant
mail systems. However, MIME itself does not provide any security services.

The purpose of MIME is to define such services, following the syntax given in
PKCS #7 for digital signatures and encryption. The MIME body part carries a
PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smartcards and Personal Computer
Memory Card International Association (PCMCIA) cards.

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the same,
it shows or proves there was no tampering of the message contents by a third
party (between the sender and the receiver).

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

