
IBM KeyWorks Toolkit
Trust Policy Interface (TPI) Specification

June 11, 1999

Copyright© 1999 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication,
or disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.
001.001.004

Version 1.1.3.0 IBM KeyWorks Toolkit Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ..1
1.1 SERVICE PROVIDER MODULES ...1
1.2 INTENDED AUDIENCE ..2
1.3 DOCUMENTATION SET...2
1.4 REFERENCES ...3

CHAPTER 2.TRUST POLICY INTERFACE...5
2.1 TRUST POLICY SERVICES API ..6
2.2 TRUST OPERATIONS ..7
2.3 EXTENSIBILITY FUNCTIONS ...7
2.4 DATA STRUCTURES ...8

2.4.1 Basic Data Types ...8
2.4.2 CSSM_BOOL ...8
2.4.3 CSSM_CERTGROUP...8
2.4.4 CSSM_DATA..9
2.4.5 CSSM_DL_DB_HANDLE...9
2.4.6 CSSM_DL_DB_LIST ..9
2.4.7 CSSM_FIELD ..10
2.4.8 CSSM_OID ..10
2.4.9 CSSM_RETURN...10
2.4.10 CSSM_REVOKE_REASON ..11
2.4.11 CSSM_TP_ACTION ...11
2.4.12 CSSM_TP_HANDLE..11
2.4.13 CSSM_TP_STOP_ON...11

2.5 TRUST POLICY OPERATIONS ..12
2.5.1 TP_CertSign...12
2.5.2 TP_CertRevoke ..14
2.5.3 TP_CrlVerify..16
2.5.4 TP_CrlSign ..18
2.5.5 TP_ApplyCrlToDb..19
2.5.6 TP_CertGroupConstruct ..20
2.5.7 TP_CertGroupPrune ..21
2.5.8 TP_CertGroupVerify ..22

2.6 EXTENSIBILITY FUNCTIONS ...25
2.6.1 TP_PassThrough ..25

CHAPTER 3.ATTACH/DETACH EXAMPLE...26
3.1 ADDINAUTHENTICATE ..26

APPENDIX A. IBM KEYWORKS ERRORS ..27
A.1. TRUST POLICY MODULE ERRORS ...28

APPENDIX B. LIST OF ACRONYMS ..29

APPENDIX C. GLOSSARY..30

Version 1.1.3.0 IBM KeyWorks Toolkit Page iv

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture...2

List of Tables

Table 1. CSSM_TP_STOP_ON Values ..23
Table 2. Trust Policy Module Error Numbers ...27
Table 3. Trust Policy Errors ...28

Version 1.1.3.0 IBM KeyWorks Toolkit Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services, IBM
KeyWorks Framework, and Service Providers. The IBM KeyWorks Framework is the core of this
architecture. It provides a means for applications to directly access security services through the
KeyWorks security application programming interface (API), or to indirectly access security services via
layered security services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework
manages the service provider security modules and directs application calls through the KeyWorks API to
the selected service provider module that will service the request. The KeyWorks API defines the
interface for accessing security services. The KeyWorks service provider interface (SPI) defines the
interface for service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs), which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic
manipulation of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data
Storage Library (DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. Independent Software
Vendors (ISVs) and hardware vendors will provide these service providers. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using a KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that
perform a security operation such as encrypting data, inserting a CRL into a data source, or verifying that
a certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is
defined by the service provider module developer.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic
Service

Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery
Service

Provider

KRSPI

KRSP

Manager

System
Security
Services

 Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces can be found in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

This document should be used by ISVs who want to develop their own TP service provider modules.
These ISVs can be highly experienced software and security architects, advanced programmers, and
sophisticated users. The intended audience of this document must be familiar with high-end cryptography
and digital certificates. They also must be familiar with local and foreign government regulations on the
use of cryptography, and the implication of those regulations for their applications and products. We
assume that this audience is familiar with the basic capabilities and features of the protocols they are
considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the
IBM KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the
IBM KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 3

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order
to be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 4

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March
1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,
CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication
Framework, 1988. CCITT stands for Comite Consultatif Internationale
Telegraphique et Telephonique (International Telegraph and Telephone
Consultative Committee)

Version 1.1.3.0 IBM KeyWorks Toolkit Page 5

Chapter 2. Trust Policy Interface

A digital certificate is the binding of some identification to a public key in a particular domain. When a
trust domain authority issues (creates and signs) a certificate to a subject, it binds the subject's public key
to the identity. This binding obviously can be verified through the signature verification process. The
issuing authority also associates a level of trust with the certificate. The actions of the user, whose identity
is bound to the certificate, are constrained by the Trust Policy (TP) governing the usage domain of the
certificate.
A digital certificate is a subject's credential in cyberspace that cannot be forged.

The use of digital certificates is the basic premise of KeyWorks design. The KeyWorks assumes the
concept of digital certificates in its broadest sense. Applications use digital certificates as credential for:

• Identification
• Authentication
• Authorization

The applications interpret and manipulate the contents of certificates to achieve these ends based on the
real-world trust model they chose as their model for trust and security. The primary purpose of a TP
module is to answer the question, “Is this certificate trusted for this action”? The KeyWorks TP
application programming interface (API) determines the generic operations that should be defined for
certificate-based trust in every application domain. The specific semantics of each operation is defined by
the following:

• Application domain
• Trust model
• Policy statement for a domain
• Certificate type
• Real-world operation the user is trying to perform within the application domain

The trust model is expressed as an executable policy that is used by all applications that ascribe to that
policy and the trust model it represents. As an infrastructure, KeyWorks is policy neutral; it does not
incorporate any single policy. For example, the verification procedure for a credit card certificate should
be defined and implemented by the credit company issuing the certificate. Employee access to a lab
housing a critical project should be defined by the company whose intellectual property is at risk. Rather
than defining policies, KeyWorks provides the infrastructure for installing and managing policy-specific
modules. This ensures complete extensibility of certificate-based trust on every platform hosting
KeyWorks.

Different TPs define different actions that an application may request. Some of these actions are common
to every TP, and are operations on objects that all trust models use. The objects common to all trust
models are certificates and Certificate Revocation Lists (CRLs). The basic operations on these objects are
sign, verify, and revoke.

KeyWorks defines a set of API calls that should be implemented by TP modules. These calls allow an
application to perform basic operations such as verify, sign-on certificates, and CRLs. More extensible
operations can be embedded in the implementation of these APIs.

Application developers and trust domain authorities benefit from the ability to define and implement
policy-based modules. Application developers are freed from the burden of implementing a policy
description and certifying that their implementation conforms. Instead, the application needs only to
build in a list of the authorities and certificate issuers it uses.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 6

Trust domain authorities also benefit from an infrastructure that supports TP modules. Trust domain
authorities are ensured that applications using their modules adhere to the policies of the domain. In
addition, dynamic download of trust modules (possibly from remote systems) ensures timely and accurate
propagation of policy changes. Individual functions within the module may combine local and remote
processing. This flexibility allows the module developer to implement policies based on the ability to
communicate with a remote authority system. This also allows the policy implementation to be
decomposed in any convenient distributed manner.

Implementing a TP module may or may not be tightly coupled with one or more Certificate Library (CL)
modules or one or more Data Storage Library (DL) modules. The TP embodies the semantics of the
domain. The CL and the DL embody the syntax of a certificate format and operations on that format. A
TP can be completely independent of certificate format, or it may be defined to operate with one or a small
number of certificate formats. A TP implementation may invoke a CL module and/or a DL module to
manipulate certificates.

2.1 Trust Policy Services API

KeyWorks defines eight API calls that TP modules can implement. These calls implement various
categories of operations that can be performed on trust objects.

Signing Certificates and Certificate Revocation Lists. Every system should be capable of being a
Certificate Authority (CA), if so authorized. CAs are applications that issue and validate certificates and
CRLs. Issuing certificates and CRLs include initializing their attributes and digitally signing the result
using the private key of the issuing authority. The private key used for signing is associated with the
signer's certificate. The TP module must evaluate the trustworthiness of the signer's certificate before
performing this operation. Some policies may require that multiple authorities sign an issued certificate.
If the TP trusts the signer's certificate, then the TP module may perform the cryptographic signing
algorithm by invoking the signing function in a CL module, or by directly invoking the data signing
function in a Cryptographic Service Provider (CSP) module. The CL functions that can be used to carry
out some of the TP operations are documented in the IBM KeyWorks Toolkit Certificate Library Interface
Specification.

Verifying Certificates and Certificate Revocation Lists. The TP module determines the
trustworthiness of a CRL received from a remote system. The test focuses on the trustworthiness of the
agent who signed the CRL. The TP module may need to perform operations on the certificate or CRL to
determine trustworthiness. If these operations depend on the data format of the certificate or CRL, the TP
module uses the services of a CL module to perform these checks.

Revoking Certificates. When revoking a certificate, the identity of the revoking agent is presented in the
form of another certificate. The TP module must determine trustworthiness of the revoking agent's
certificate to perform revocation. If the requesting agent's certificate is trustworthy, the TP module carries
out the operation directly by invoking a CL module to add a new revocation record to a CRL, marking the
certificate as revoked. The KeyWorks API also defines a reason parameter that is passed to the TP
module. The TP may use this parameter as part of its trust evaluation.

PassThrough Function. For operations not defined in the TPI, the passthrough function allows the TP
module to provide support for these services to clients. These private services are identified by operation
identifiers. TP module developers must provide documentation of these services.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 7

2.2 Trust Operations

TP_CertSign
Determines whether the signer's certificate is authorized to perform the signing
operation. If so, the TP module carries out the operation. The scope of a signature may
be used to identify which certificate field should be signed. An example is the case of
multiple signatures on a certificate. Should signatures be applied to just the certificate,
or to the certificate and all currently existing signatures, as a notary public would do?

TP_CertRevoke
Determines whether the revoker's certificate is trusted to perform/sign the revocation.
If so, the TP module carries out the operation by adding a new revocation record to the
CRL.

TP_CrlVerify
Determines whether the CRL is trusted. This test may include verifying the correctness
of the signature associated with the CRL, determining whether the CRL has been
tampered with, and determining if the agent who signed the CRL was trusted to do so.

TP_CrlSign
Determines whether the certificate is trusted to sign the CRL. If so, the TP module
carries out the operation.

TP_ApplyCrlToDb
Determines whether the memory-resident CRL is trusted and should be applied to a
persistent database, which could result in designating certificates as revoked.

TP_CertGroupConstruct
Constructs a collection of certificates that forms a semantically related trust-relationship.

TP_CertGroupPrune
Removes from a collection of certificates those that do not participate in a semantically
related trust-relationship outside of the local system.

TP_CertGroupVerify
Verifies the signatures on each certificate in a group of certificates.

2.3 Extensibility Functions

TP_PassThrough
Executes TP module custom operations. This function accepts as input an operation ID
and an arbitrary set of input parameters. The operation ID may specify any type of
operation the TP wishes to export. Such operations may include queries or services
specific to the domain represented by the TP module.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 8

2.4 Data Structures

This section describes the data structures that may be passed to or returned from a TP function. They will
be used by applications to prepare data to be passed as input parameters into KeyWorks API function calls
that will be passed without modification to the appropriate TP. The TP is then responsible for interpreting
them and returning the appropriate data structure to the calling application through KeyWorks. These
data structures are defined in the header file, cssmtype.h, which is distributed with KeyWorks.

2.4.1 Basic Data Types

typedef unsigned char uint8;
typedef unsigned short uint16;
typedef short sint16;
typedef unsigned int uint32;
typedef int sint32;

#define CSSM_MODULE_STRING_SIZE 64
typedef char CSSM_STRING [CSSM_MODULE_STRING_SIZE + 4];

2.4.2 CSSM_BOOL

This data type is used to indicate a true or false condition.

typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
define CSSM_FALSE 0

Definitions:
CSSM_TRUE - Indicates a true result or a true value.

CSSM_FALSE - Indicates a false result or a false value.

2.4.3 CSSM_CERTGROUP

This structure contains a set of certificates. It is assumed that the certificates are related based on the
signature hierarchy. A typical group is a chain of certificates. The certificate group is a syntactic
representation of a trust model. All certificates in the group must be of the same type and issued for the
same trust domain.

typedef struct cssm_certgroup{
 uint32 NumCerts;
 CSSM_DATA_PTR CertList;
 void *reserved;
} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts - Number of certificates in the group.

CertList - List of certificates.

reserved - Reserved for future use.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 9

2.4.4 CSSM_DATA

The CSSM_DATA structure associates a length, in bytes, with an arbitrary block of contiguous memory.
This memory must be allocated and freed using the memory management routines provided by the calling
application via KeyWorks.

typedef struct cssm_data {
 uint32 Length;
 uint8* Data;
} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length - The length, in bytes, of the memory block pointed to by Data.

Data - A pointer to a contiguous block of memory.

2.4.5 CSSM_DL_DB_HANDLE

This data structure holds a pair of handles, one for a DL and another for a data store opened and being
managed by the DL.

typedef struct cssm_dl_db_handle {
 CSSM_DL_HANDLE DLHandle;
 CSSM_DB_HANDLE DBHandle;
} CSSM_DL_DB_HANDLE, *CSSM_DL_DB_HANDLE_PTR;

Definitions:
DLHandle - Handle of an attached module that provides DL services.

DBHandle - Handle of an open data store that is currently under the management of the DL module
specified by the DLHandle.

2.4.6 CSSM_DL_DB_LIST

This data structure defines a list of handle pairs (DL handle, data store handle).

typedef struct cssm_dl_db_list {
 uint32 NumHandles;
 CSSM_DL_DB_HANDLE_PTR DLDBHandle;
} CSSM_DL_DB_LIST, *CSSM_DL_DB_LIST_PTR;

Definitions:
NumHandles - Number of pairs in the list (DL handle, data store handle).

DLDBHandle - List of pairs (DL handle, data store handle).

Version 1.1.3.0 IBM KeyWorks Toolkit Page 10

2.4.7 CSSM_FIELD

This structure contains the tag/data pair for a single field of a certificate or CRL.

This structure contains the object identifier (OID)/value pair for any item that can be identified by an OID.
A CL module uses this structure to hold an OID/value pair for a field in a certificate or CRL.

typedef struct cssm_field {
 CSSM_OID FieldOid;
 CSSM_DATA FieldValue;
}CSSM_FIELD, *CSSM_FIELD_PTR

Definitions:
FieldOid - The OID that identifies the certificate or CRL data type or data structure.

FieldValue - A CSSM_DATA type which contains the value of the specified OID in a contiguous
block of memory.

2.4.8 CSSM_OID

The OID is used to hold an identifier for the data types and data structures that comprise the fields of a
certificate or CRL. The underlying representation and meaning of the identifier is defined by the CL
module. For example, a CL module can choose to represent its identifiers in any of the following forms:

• A character string in a character set native to the platform

• A DER-encoded X.509 OID that must be parsed

• An S-expression that must be evaluated

• An enumerated value that is defined in header files supplied by the CL module

typedef CSSM_DATA CSSM_OID, *CSSM_OID_PTR

2.4.9 CSSM_RETURN

This data type is used to indicate whether a function was successful.

typedef enum cssm_return {
CSSM_OK = 0,
CSSM_FAIL = -1
} CSSM_RETURN

Definitions:
CSSM_OK - Indicates operation was successful.

CSSM_FAIL - Indicates operation was unsuccessful.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 11

2.4.10 CSSM_REVOKE_REASON

This structure represents the reason a certificate is being revoked.

typedef enum cssm_revoke_reason {
 CSSM_REVOKE_CUSTOM = 0,
 CSSM_REVOKE_UNSPECIFIC = 1,
 CSSM_REVOKE_KEYCOMPROMISE = 2,
 CSSM_REVOKE_CACOMPROMISE = 3,
 CSSM_REVOKE_AFFILIATIONCHANGED = 4,
 CSSM_REVOKE_SUPERCEDED = 5,
 CSSM_REVOKE_CESSATIONOFOPERATION = 6,
 CSSM_REVOKE_CERTIFICATEHOLD = 7,
 CSSM_REVOKE_CERTIFICATEHOLDRELEASE = 8,
 CSSM_REVOKE_REMOVEFROMCRL = 9
} CSSM_REVOKE_REASON;

2.4.11 CSSM_TP_ACTION

This data structure represents a descriptive value defined by the TP module. A TP can define application-
specific actions for the application domains over which the TP applies. Given a set of credentials, the TP
module verifies authorizations to perform these actions.

typedef uint32 CSSM_TP_ACTION

2.4.12 CSSM_TP_HANDLE

This data structure represents the TP module handle. The handle value is a unique pairing between a TP
module and an application that has attached that module. TP handles can be returned to an application as
a result of the CSSM_ModuleAttach function.

typedef uint32 CSSM_TP_HANDLE/* Trust Policy Handle */

2.4.13 CSSM_TP_STOP_ON

This enumerated list defines the conditions controlling termination of the verification process by the TP
module when a set of policies/conditions must be tested.

typedef enum cssm_tp_stop_on {
 CSSM_TP_STOP_ON_POLICY = 0,/* use the pre-defined stopping criteria */
 CSSM_TP_STOP_ON_NONE = 1,/* evaluate all condition whether T or F */
 CSSM_TP_STOP_ON_FIRST_PASS = 2, /* stop evaluation at first TRUE */
 CSSM_TP_STOP_ON_FIRST_FAIL = 3/* stop evaluation at first FALSE */
} CSSM_TP_STOP_ON;

Version 1.1.3.0 IBM KeyWorks Toolkit Page 12

2.5 Trust Policy Operations

2.5.1 TP_CertSign

CSSM_DATA_PTR CSSMTPI TP_CertSign (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CertToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

The TP module decides first whether the signer certificate is trusted to sign the subject certificate.
Once the trust is established, the TP signs the certificate when given the signer's certificate and
the scope of the signing process.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input)
The handle that describes the CL module used to perform this function.

CCHandle (input)
The cryptographic context specifies the handle of the CSP that must be used to perform the
operation.

DBList (input)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores can be used to store or retrieve objects (such as certificate and CRLs) related to the
signer's certificate or a data store for storing a resulting signed CRL.

CertToBeSigned (input)
A pointer to the CSSM_DATA structure containing a certificate to be signed.

SignerCertGroup (input)
A pointer to the CSSM_CERTGROUP structure containing one or more related certificates used
to sign the certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the certificate fields to be included in
the signing process.

ScopeSize (input)
The number of entries in the sign scope list. If the signing scope is not specified, the input
parameter value for scope size must be zero.

Return Values
A pointer to a CSSM_DATA structure containing the signed certificate. If the pointer is NULL,
an error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 13

See Also
CSSM_TP_CertVerify, CSSM_CL_CertSign

Version 1.1.3.0 IBM KeyWorks Toolkit Page 14

2.5.2 TP_CertRevoke

CSSM_DATA_PTR CSSMTPI TP_CertRevoke
(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR OldCrl,
const CSSM_CERTGROUP_PTR CertGroupToBeRevoked,
const CSSM_CERTGROUP_PTR RevokerCertGroup,
CSSM_REVOKE_REASON Reason)

The TP module determines whether the revoking certificate can revoke the subject certificate.
The revoker certificate group is first authenticated and its applicability to perform this operation
is determined. Once the trust is established, the TP revokes the subject certificate by adding it to
the CRL. The revoker certificate and passphrase is used to sign the resultant CRL.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input)
The handle that describes the CL module that can be used to manipulate the certificates targeted
for revocation and the revoker’s certificates. If no CL module is specified, the TP module uses an
assumed CL module, if required.

CCHandle (input)
The handle that describes the context for a cryptographic operation. The cryptographic context
specifies the handle of the CSP that must be used to perform the operation.

DBList (input)
A list of certificate databases containing certificates that may be used to construct the trust
structure of the subject and revoker certificate group.

OldCrl (input)
A pointer to the CSSM_DATA structure containing an existing CRL. If this input is NULL, a
new list is created.

CertGroupToBeRevoked (input)
A group of one or more certificates that partially or fully represent the certificate to be revoked by
this operation. The first certificate in the group is the target certificate. The use of subsequent
certificates is specific to the trust domain. For example, in a hierarchical trust model subsequent
members are intermediate certificates of a certificate chain.

RevokerCertGroup (input)
A group of one or more certificates that partially or fully represent the revoking entity for this
operation. The first certificate in the group is the target certificate representing the revoker. The
use of subsequent certificates is specific to the trust domain.

Reason (input)
The reason for revoking the target certificates.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 15

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_CL_CrlAddCert

Version 1.1.3.0 IBM KeyWorks Toolkit Page 16

2.5.3 TP_CrlVerify

CSSM_BOOL CSSMTPI TP_CrlVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeVerified,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies the integrity of the CRL and determines whether it is trusted. Some of the
checks that may be performed include verifying the signatures on the signer’s certificate group,
establishing the authorization of the signer to issue CRLs, verification of the signature on the
CRL, verifying validity period of the CRL and the date the CRL was issued, etc.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input/optional)
The handle that describes the CL module that can be used to manipulate the certificates to be
verified. If no CL module is specified, the TP module uses an assumed CL module, if required.

CSPHandle (input)
The handle referencing a CSP to be used to verify signatures on the signer's certificate and on the
CRL. The TP module is responsible for creating the cryptographic context structure required to
perform the verification operation. If no CSP is specified, the TP module uses an assumed CSP
to perform the operations.

DBList (input)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores can be used to store or retrieve objects (such as certificate and CRLs) related to the
signer's certificate. If no DL and database (DB) handle pairs are specified, the TP module can
use an assumed DL module and an assumed data store, if required.

CrlToBeVerified (input)
A pointer to the CSSM_DATA structure containing a signed CRL to be verified.

SignerCertGroup (input)
A group of one or more certificates that partially or fully represent the signer of the CRL. The
first certificate in the group is the target certificate representing the CRL signer. Use of
subsequent certificates is specific to the trust domain. For example, in a hierarchical trust model
subsequent members are intermediate certificates of a certificate chain.

VerifyScope (input)
A pointer to the CSSM_FIELD array indicating the CRL fields to be included in the CRL
signature verification process. A NULL input verifies the signature assuming the module's
default set of fields was used in the signaturing process (this can include all fields in the CRL).

ScopeSize (input)
The number of entries in the verify scope list. If the verification scope is not specified, the input
parameter value for scope size must be zero.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 17

Return Value
A CSSM_TRUE return value means the CRL can be trusted. If CSSM_FALSE is returned, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_CL_CrlVerify

Version 1.1.3.0 IBM KeyWorks Toolkit Page 18

2.5.4 TP_CrlSign

CSSM_DATA_PTR CSSMTPI TP_CrlSign (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

The TP module decides whether the signer certificate is trusted to sign CRL. The signer
certificate group is first authenticated and its applicability to perform this operation is
determined. Once the trust is established, this operation signs the CRL.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input)
The handle that describes the CL module used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

DBList (input)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores can be used to store or retrieve objects (such as certificate and CRLs) related to the
signer's certificate or a data store for storing a resulting signed CRL. If no DL and DB handle
pairs are specified, the TP module can use an assumed DL module and an assumed data store, if
required.

CrlToBeSigned (input)
A pointer to the CSSM_DATA structure containing a CRL to be signed.

SignerCertGroup (input)
A group of one or more certificates that partially or fully represent the signer for this operation.
The first certificate in the group is the target certificate representing the signer. Use of
subsequent certificates is specific to the trust domain. For example, in a hierarchical trust model
subsequent members are intermediate certificates of a certificate chain.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tags of the fields to be signed. A NULL
input signs a default set of fields in the CRL.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also

CSSM_CL_CrlSign

Version 1.1.3.0 IBM KeyWorks Toolkit Page 19

2.5.5 TP_ApplyCrlToDb

CSSM_RETURN CSSMTPI TP_ApplyCrlToDb (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR Crl)

This function first determines whether the memory-resident CRL is trusted. The CRL is
authenticated, its signer is verified, and its authority to update the data sources is determined. If
trust is established, this function updates persistent storage to reflect entries in the CRL. This
results in designating persistent certificates as revoked.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input/optional)
The handle that describes the certificate library module that can be used to manipulate the CRL
as it is applied to the data store and to manipulate the certificates effected by the CRL, if
required. If no certificate library module is specified, the TP module uses an assumed CL
module, if required. If optional, the caller will set this value to 0.

CSPHandle (input/optional)
The handle referencing a Cryptographic Service Provider to be used to verify signatures on the
CRL determining whether to trust the CRL and apply it to the data store. The TP module is
responsible for creating the cryptographic context structures required for verification operation.
If no CSP is specified, the TP module uses an assumed CSP to perform these operations. If
optional, the caller will set this value to 0.

DBList (input/optional)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores can contain certificates that might be effected by the CRL, they may contain CRLs, or
both. If no DL and DB handle pairs are specified, the TP module must use an assumed DL
module and an assumed data store for this operation. If optional, the caller will set this value to
NULL.

Crl (input)
A pointer to the CSSM_DATA structure containing the CRL.

Return Value
A CSSM_TRUE return value means the CRL has been used to update the revocation status of
certificates in the specified database. If CSSM_FALSE is returned, an error has occurred. Use
CSSM_GetError to obtain the error code.

See Also
CSSM_CL_CrlGetFirstItem, CSSM_CL_CrlGetNextItem, CSSM_DL_CertRevoke

Version 1.1.3.0 IBM KeyWorks Toolkit Page 20

2.5.6 TP_CertGroupConstruct

CSSM_CERTGROUP_PTR CSSMTPI TP_CertGroupConstruct
 (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle
CSSM_CERTGROUP_PTR CertGroupFrag,
CSSM_DL_DB_LIST_PTR DBList)

This function builds a collection of certificates that together make up a meaningful credential for
a given trust domain. For example, in a hierarchical trust domain, a certificate group is a chain
of certificates from an end entity to a top-level CA. The constructed certificate group format
(such as ordering) is implementation-specific. However, the subject or end-entity is always the
first certificate in the group.

A partially constructed certificate group is specified in CertGroupFrag. The first certificate is
interpreted to be the subject or end-entity certificate. Subsequent certificates in the
CertGroupFrag structure may be used during the construction of a certificate group in
conjunction with certificates found in DBList. The TP defines the certificates that will be
included in the resulting set.

The constructed certificate group can be consistent locally or globally. Consistency can be
limited to the local system if locally defined anchor certificates are inserted into the group.

Parameters
TPHandle (input)
The handle to the TP module to perform this operation.

CLHandle (input)
The handle to the CL module that can be used to manipulate and parse values in stored in the
certgroup certificates. If no CL module is specified, the TP module uses an assumed CL module.

CSPHandle (input)
The handle referencing a CSP to be used to perform this operation.

CertGroupFrag (input)
The first certificate in the group represents the target certificate for which a group of semantically
related certificates will be assembled. Subsequent intermediate certificates can be supplied by the
caller. They need not be in any particular order.

DBList (input)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores should contain certificates (and possibly, other security object also). The data stores
should be searched to complete construction of a semantically related certificate group.

Return Value
A list of certificates that form a complete certificate group based on the original subset of
certificates and the certificate data stores. A NULL list indicates an error.

See Also
CSSM_TP_CertGroupPrune, CSSM_TP_CertGroupVerify

Version 1.1.3.0 IBM KeyWorks Toolkit Page 21

2.5.7 TP_CertGroupPrune

CSSM_CERTGROUP_PTR CSSMTPI TP_CertGroupPrune
(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLECLHandle,
CSSM_CERTGROUP_PTR OrderedCertGroup,
CSSM_DL_DB_LIST_PTR DBList)

This function removes certificates from a certificate group. The prune operation can remove
those certificates that have been signed by any local CA, as it is possible that these certificates
will not be meaningful on other systems.

This operation can also remove additional certificates that can be added to the certificate group,
again using the CertGroupConstruct operation. The pruned certificate group should be suitable
for transmission to external hosts, which can in turn reconstruct and verify the certificate group.

Parameters
TPHandle (input)
The handle to the TP module used to perform this operation.

CLHandle (input/optional)
The handle to the CL module that can be used to manipulate and parse the certgroup certificates
and the certificates in the specified data stores. If no CL module is specified, the TP module uses
an assumed CL module.

OrderedCertGroup (input)
The initial, complete set of certificates from which certificates will be selectively removed.

DBList (input)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores should contain certificates (and possibly, other security object also). The data stores
are searched for certificates semantically related to those in the certificate group to determine
whether they should be removed from the certificate group.

Return Value
Returns a certificate group containing those certificates which are verifiable credentials outside of
the local system. If the list is NULL, an error has occurred.

See Also
CSSM_TP_CertGroupConstruct, CSSM_TP_CertGroupVerify

Version 1.1.3.0 IBM KeyWorks Toolkit Page 22

2.5.8 TP_CertGroupVerify

CSSM_BOOL CSSMTPI TP_CertGroupVerify (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_DB_LIST_PTR DBList,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_FIELD_PTR PolicyIdentifiers,
uint32 NumberofPolicyIdentifiers,
CSSM_TP_STOP_ON VerificationAbortOn,
const CSSM_CERTGROUP_PTR CertToBeVerified,
const CSSM_DATA_PTR AnchorCerts,
uint32 NumberofAnchorCerts,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize,
CSSM_TP_ACTION Action,
const CSSM_DATA_PTR Data,
CSSM_DATA_PTR *Evidence,
uint32 *EvidenceSize)

This function verifies the signatures on each certificate in the group. Each certificate in the
group has an associated signing certificate that was used to sign the subject certificate.
Determination of the associated signing certificate is implied by the certificate model. For
example, when verifying an X.509 certificate chain, the signing certificate for a certificate C is
known to be the certificate of the issuers of certificate C. In a multisignature, web-of-trust model,
the signing certificates can be any certificates in the CertGroup or unknown certificates.

Signature verification is performed on the VerifyScope fields for all certificates in the CertGroup.
Additional validation tests can be performed on the certificates in the group depending on the
certificate model supported by the TP. For example, certificate expiration dates can be checked
and appropriate CRLs can be searched as part of the verification process.

Parameters
TPHandle (input)
The handle to the TP module to perform this operation.

CLHandle (input/optional)
The handle to the CL module that can be used to manipulate and parse the certgroup certificates
and the certificates in the specified data stores. If no CL module is specified, the TP module uses
an assumed CL module.

DBList (input/optional)
A list of handle pairs specifying a DL module and a data store managed by that module. These
data stores should contain zero or more trusted certificates. If no data stores are specified, the TP
module can assume a default data store, if required.

CSPHandle (input)
The handle referencing a CSP to be used to perform this operation.

PolicyIdentifiers (input/optional)
The policy identifier is an OID/value pair. The CSSM_OID structure contains the name of the
policy and the value is an optional caller-specified input value for the TP module to use when
applying the policy.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 23

NumberofPolicyIdentifiers (input)
The number of policy identifiers provided in the PolicyIdentifiers parameter.

VerificationAbortOn (input/optional)
When a TP module verifies multiple conditions or multiple policies, the TP module can allow the
caller to specify when to abort the verification process. If supported by the TP module, this
selection can effect the evidence returned by the TP module to the caller. The default stopping
condition is to stop evaluation according to the policy defined in the TP Module. The specifiable
stopping conditions and their meaning are defined as follows in Table 1.

Table 1. CSSM_TP_STOP_ON Values

Value Definition

CSSM_STOP_ON_POLICY Stop verification whenever the policy dictates it.

CSSM_STOP_ON_NONE Stop verification only after all conditions have been tested
(ignoring the pass-fail status of each condition).

CSSM_STOP_ON_FIRST_PASS Stop verification on the first condition that passes.

CSSM_STOP_ON_FIRST_FAIL Stop verification on the first condition that fails.

The TP module may ignore the caller's specified stopping condition and revert to the default of
stopping according to the policy embedded in the module.

CertToBeVerified (input)
A pointer to the CSSM_CERTGROUP structure containing a certificate containing at least one
signature for verification. An unsigned certificate template cannot be verified.

AnchorCerts (input/optional)
A pointer to the CSSM_DATA structure containing one or more certificates to be used in order
to validate the subject certificate. These certificates can be root certificates, cross-certified
certificates, and certificates belonging to locally designated sources of trust.

NumberofAnchorCerts (input)
The number of anchor certificates provided in the AnchorCerts parameter.

VerifyScope (input/optional)
A pointer to the CSSM_FIELD array containing the OID indicators specifying the certificate
fields to be used in the verification process. If VerifyScope is not specified, the TP module must
assume a default scope (portions of each certificate) when performing the verification process.

ScopeSize (input)
The number of entries in the verify scope list. If the verification scope is not specified, the input
scope size must be zero.

Action (input/optional)
An application-specific and application-defined action to be performed under the authority of the
input certificate. If no action is specified, the TP module defines a default action and performs
verification assuming that action is being requested. Note that it is possible that a TP module
verifies certificates for only one action.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 24

Data (input/optional)
A pointer to the CSSM_DATA structure containing the application-specific data or a reference to
the application-specific data upon which the requested action should be performed. If no data is
specified, the TP module defines one or more default data objects upon which the action or
default action would be performed.

Evidence (output/optional)
A pointer to a list of CSSM_DATA objects containing an audit trail of evidence constructed by
the TP module during the verification process. Typically, this is a list of certificates and CRLs
that were used to establish the validity of the CertToBeVerified, but other objects may be
appropriate for other types of trust policies.

EvidenceSize (output)
The number of entries in the Evidence list. The returned value is zero if no evidence is produced.
Evidence may be produced even when verification fails. This evidence can describe why and
how the operation failed to verify the subject certificate.

Return Value
CSSM_TRUE if the certificate group is verified. CSSM_FALSE if the certificate did not verify
or an error condition occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_TP_CertGroupConstruct, CSSM_TP_CertGroupPrune

Version 1.1.3.0 IBM KeyWorks Toolkit Page 25

2.6 Extensibility Functions

2.6.1 TP_PassThrough

CSSM_DATA_PTR CSSMTPI TP_PassThrough (CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void * InputParams)

The TP module allows clients to call TP module-specific operations that have been exported.
Such operations may include queries or services specific to the domain represented by the TP
module.

Parameters
TPHandle (input)
The handle that describes the TP module used to perform this function.

CLHandle (input)
The handle that describes the CL module used to perform this function.

DLHandle (input)
The handle that describes the DL module used to perform this function.

DBHandle (input)
The handle that describes the data storage used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughId (input)
An identifier assigned by the TP module to indicate the exported function to perform.

InputParams (input)
A pointer to the CSSM_DATA structure containing parameters to be interpreted in a function-
specific manner by the TP module.

Return Value
A pointer to the CSSM_DATA structure containing the output from the passthrough function.
The output data must be interpreted by the calling application based on externally available
information. If the pointer is NULL, an error has occurred.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 26

Chapter 3. Attach/Detach Example

The Trust Policy (TP) module performs certain operations when KeyWorks attaches to or detaches from it
These operations should be performed in a function called AddInAuthenticate, which must be exported by
the module. The AddInAuthenticate function will be called by the framework when the module is loaded.
The steps in Section 3.1 must be performed in order for the attach process to work properly.

In the code in Section 3.1, it is assumed that the CSSM entry points, such as CSSM_RegisterServices,
have been resolved at link time. If not, the module may call GetProcAddress to resolve the entry points.

3.1 AddInAuthenticate

#include “cssm.h”

/* global variables used for registration */
CSSM_REGISTRATION_INFOreg_info;
CSSM_SPI_TP_FUNCStp_jmp_tbl;
CSSM_SPI_MEMORY_FUNCSupcall_tbl = {NULL, NULL, NULL, NULL};
CSSM_MODULE_FUNCSmodule_funcs;
CSSM_GUID tp_guid =
{ 0x83badc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd }
};

CSSM_RETURN CSSMAPI AddInAuthenticate(char* cssmCredentialPath, char*
cssmSection) {

CSSM_RETURN ret_code;

/* first set up the TP jump table */
TRACE(ibmtp_trace_info, FNCODE_AddInAuthenticate);

memset(&tp_jmp_tbl, 0, sizeof(tp_jmp_tbl));

/* This is the only API function supported in this module */
tp_jmp_tbl.CertGroupVerify = CertGroupVerify;

/* set up the module specific info that CSSM needs */
memset(&module_funcs, 0, sizeof(module_funcs));
module_funcs.ServiceType = CSSM_SERVICE_TP;
module_funcs.TpFuncs = &tp_jmp_tbl;

/* ok, now set up the registration structure that CSSM understands */
memset(®_info, 0, sizeof(reg_info));

reg_info.Initialize = Initialize;
reg_info.Terminate= Uninitialize;
reg_info.ThreadSafe = CSSM_FALSE;
reg_info.ServiceSummary = CSSM_SERVICE_TP;
reg_info.NumberOfServiceTables = 1;
reg_info.Services= &module_funcs;

/* Register services with CSSM */
ret_code = CSSM_RegisterServices(&tp_guid, ®_info, &upcall_tbl,
NULL);

return ret_code;

}

Version 1.1.3.0 IBM KeyWorks Toolkit Page 27

Appendix A. IBM KeyWorks Errors

The error codes given in this section constitute the generic error codes that are defined by KeyWorks for
use by all Certificate Libraries (CLs) in describing common error conditions. A CL may also define and
return vendor-specific error codes. The error codes defined by KeyWorks are considered to be
comprehensive and few if any vendor-specific codes should be required. Applications must consult
vendor-supplied documentation for the specification and description of any error codes defined outside of
this specification.

All Trust Policy service provider interface (TP SPI) functions return one of the following:

• CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM_GetError.

• CSSM_BOOL - KeyWorks functions returning this data type return either CSSM_TRUE or
CSSM_FALSE. If the function returns CSSM_FALSE, an error code may be available (but not
always) by calling CSSM_GetError.

• A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return.
An error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return:

• Errors defined by KeyWorks that are common to a particular type of service provider module

• Errors reserved for use by individual service provider modules

Since some errors are predefined by KeyWorks, those errors have a set of predefined numeric values that
are reserved by KeyWorks, and cannot be redefined by modules. For errors that are particular to a
module, a different set of predefined values has been reserved for their use. Table 2 lists the range of error
numbers defined by KeyWorks for TP modules and those available for use individual Cryptographic
Service Provider (CSP) modules.

Table 2. Trust Policy Module Error Numbers

Error Number Range Description

7000 – 7999 TP errors defined by KeyWorks

8000 – 8999 TP errors reserved for individual TP modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it
may choose to pass the error to its caller.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 28

A.1. Trust Policy Module Errors

Table 3. Trust Policy Errors

Error Code Error Name

7001 CSSM_TP_NOT_LOADED
7002 CSSM_TP_INVALID_TP_HANDLE
7003 CSSM_TP_INVALID_CL_HANDLE
7004 CSSM_TP_INVALID_DL_HANDLE
7005 CSSM_TP_INVALID_DB_HANDLE
7006 CSSM_TP_INVALID_CC_HANDLE
7007 CSSM_TP_INVALID_CERTIFICATE
7008 CSSM_TP_NOT_SIGNER
7009 CSSM_TP_NOT_TRUSTED
7010 CSSM_TP_CERT_VERIFY_FAIL
7011 CSSM_TP_CERTIFICATE_CANT_OPERATE
7012 CSSM_TP_MEMORY_ERROR
7013 CSSM_TP_CERT_SIGN_FAIL
7014 CSSM_TP_INVALID_CRL
7015 CSSM_TP_CERT_REVOKE_FAIL
7016 CSSM_TP_CRL_VERIFY_FAIL
7017 CSSM_TP_CRL_SIGN_FAIL
7018 CSSM_TP_APPLY_CRL_TO_DB_FAIL
7019 CSSM_TP_INVALID_GUID
7020 CSSM_TP_UNISTALL_FAIL
7021 CSSM_TP_INCOMPATIBLE_VERSION
7022 CSSM_TP_INVALID_ACTION
7023 CSSM_TP_VERIFY_ACTION_FAIL
7024 CSSM_TP_INVALID_DATA_POINTER
7025 CSSM_TP_INVALID_ID
7026 CSSM_TP_PASS_THROUGH_FAIL
7027 CSSM_TP_INVALID_CSP_HANDLE
7028 CSSM_TP_ANCHOR_NOT_SELF_SIGNED
7029 CSSM_TP_ANCHOR_NOT_FOUND

Version 1.1.3.0 IBM KeyWorks Toolkit Page 29

Appendix B. List of Acronyms

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DB Database

DL Data Storage Library

DLL Dynamically Linked Library

GUID Globally Unique ID

ISV Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

OID Object Identifier

SPI Service Provider Interface

TP Trust Policy

Version 1.1.3.0 IBM KeyWorks Toolkit Page 30

Appendix C. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm.
It can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA's certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries
of executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Provider storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

•• Bulk encryption and decryption
•• Digital signing

Version 1.1.3.0 IBM KeyWorks Toolkit Page 31

•• Cryptographic hash
•• Random number generation
•• Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents
other non-involved parties from understanding the stored information or
accessing and understanding the communication. The encryption process takes
understandable text and transforms it into an unintelligible piece of data (called
ciphertext); the decryption process restores the understandable text from the
unintelligible data. Both involve a mathematical formula or algorithm and a
secret sequence of data called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing data from being
modified), authentication (proving the identity of a resource or a user), and
non-repudiation (providing proof that a message or transaction was sent and/or
received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
a shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a
private key. The two keys are mathematically related, but it is virtually
impossible to derive the private key from the public key. A message that is
encrypted with someone's public key (obtained from some public directory)
can only be decrypted with the associated private key. Alternately, the
private key can be used to "sign" a document; the public key can be used as
verification of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, National Institute of Standards and Technology (NIST)
Standard Data Encryption Standard (DES), adopted by the U.S. Government as Federal

Information Processing Standard (FIPS) Publication 46, which allows the
hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

•• Authenticate the source of a message, data, or document

Version 1.1.3.0 IBM KeyWorks Toolkit Page 32

•• Verify that the contents of a message has not been modified since it was
signed by the sender

•• Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and
DSS, the proposed Digital Signature Standard defined as part of the U.S.
Government Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of
an enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published
by the U.S. Government, produces a 160-bit hash value from a variable-size
input stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

•• Cryptographic Module Manager
•• Key Recovery Module Manager
•• Trust Policy Module Manager
•• Certificate Library Module Manager
•• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of loss or destruction of the key.

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered

Version 1.1.3.0 IBM KeyWorks Toolkit Page 33

outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box
containing the key. The authorized parties (i.e., enterprise or law enforcement)
have the freedom to choose the number of specific KRAs that they want to use.
The authorized party requests that each KRA decrypt its section of the Key
Recovery Fields (KRFs) that is associated with the transmission. Then those
pieces of information are used in the process that derives the session key. The
KRA will only be able to recover a portion of the key, and reading the original
message will require searching the remaining key space in order to find the key
that will decrypt the message. The number of KRAs on each end of the
communication does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom KRBs were generated (i.e., username, hostname, IP address).
The KRC has the ability to check credentials and derive the original encryption
key from the KRB with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives
the on-line request and services it by interacting with the appropriate set of
KRAs as specified within the KRB. The recovered key is then sent back to the
KRO by the KRC using an on-line protocol. The KRC consists of one main
application which, when started, behaves as a server process. The system,
which serves as the KRC, may be configured to start the KRC application as
part of system services; alternatively, the KRC operator can start up the KRC
application manually. The KRC application performs the following operations:

•• Listens for on-line recovery requests from KRO

•• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

•• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data that is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) is invoked from the IBM KeyWorks framework to create the KRFs.
There are two major pieces of the KRFs: block 1 contains information that is
unrelated to the session key of the transmitted message, and encrypted with the
public keys of the selected key recovery agents; block 2 contains information
that is related to the session key of the transmission. The KRSP generates the
KRFs for the session key. This information is not the key or any portion of the
key, but is information that can be used to recover the key. The KRSP has
access to location-unique jurisdiction policy information that controls and

Version 1.1.3.0 IBM KeyWorks Toolkit Page 34

modifies some of the steps in the generation of the KRFs. Only once the KRFs
are generated, and both the client and server sides have access to them, can the
encrypted message flow begin. KRFs are generated so that they can be used
either by a KRA to recover the original symmetric key, because the user who
generated the message has lost the key, or at the warranted request of law
enforcement agents.

Key Recovery Module The Key Recovery Module Manager enables key recovery for cryptographic
Manager services obtained through the IBM KeyWorks. It mediates all cryptographic

services provided by the IBM KeyWorks and applies the appropriate key
recovery policy on all such operations. The Key Recovery Module Manager
contains a Key Recovery Policy Table (KRPT) that defines the applicable key
recovery policy for all cryptographic products. The Key Recovery Module
Manager routes the KR-API function calls made by an application to the
appropriate KR-SPI functions. The Key Recovery Module Manager also
enforces the key recovery policy on all cryptographic operations that are
obtained through the IBM KeyWorks. It maintains key recovery state in the
form of key recovery contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) information that can be
used to authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of
the cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 35

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS
interacts with one or more local or remote KRAs to reconstruct the secret key
that can be used to decrypt the ciphertext.

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities, ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating
system with security features (Microsoft NT Workstation 4.0), NTFS (Windows
NT Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key recovery
Provider enablement functions. The cryptographic functions provided may include:

•• Key recovery field generation
•• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authorities in the interest of national security and law
enforcement. In the law enforcement scenario, the Key Recovery Block (KRB)
is presented on a 3.5-inch diskette, and the credentials are in the physical form
of a legal warrant. This warrant will specify any information available to the
law enforcement agents which can be used to tie the warrant to the identity of
the user for whom KRBs were generated (i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Owned certificate A certificate whose associated secret or private key resides in a local CSP.
Digital-signing algorithms require using owned certificates when signing data
for purposes of authentication and non-repudiation. A system may use
certificates it does not own for purposes other than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 36

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

Secure Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information,
ensuring message integrity, and authenticating the parties involved in a
transaction.

The significance of SET, over existing Internet security protocols, is found in
the use of digital certificates. Digital certificates will be used to authenticate all
the parties involved in a transaction. SET will provide those in the virtual
world with the same level of trust and confidence a consumer has today when
making a purchase at any of the 13 million Visa-acceptance locations in the
physical world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Version 1.1.3.0 IBM KeyWorks Toolkit Page 37

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that
adds digital signatures and encryption to Internet MIME messages. MIME is
the official proposed standard format for extended Internet electronic mail.
Internet e-mail messages consist of two parts, the header and the body. The
header forms a collection of field/value pairs structured to provide information
essential for the transmission of the message. The body is normally
unstructured unless the
e-mail is in MIME format. MIME defines how the body of an e-mail message
is structured. The MIME format permits e-mail to include enhanced text,
graphics, audio, and more in a standardized manner via MIME-compliant mail
systems. However, MIME itself does not provide any security services.

The purpose of S/MIME is to define such services, following the syntax given
in PKCS #7 for digital signatures and encryption. The MIME body part carries
a PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal
Computer Memory Card International Association (PCMCIA) cards.

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the
same, it shows or proves there was no tampering of the message contents by a
third party (between the sender and the receiver).

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

