
IBM
®

SecureWay
®

X.509 Public Key Infrastructure
for Multiplatforms

Programming Guide and Reference
Version 1 Release 1

IBM

IBM
®

SecureWay
®

X.509 Public Key Infrastructure
for Multiplatforms

Programming Guide and Reference
Version 1 Release 1

IBM

Note
Before using this information and the product it supports, read the general information under “Notices” on page 221.

First Edition (October 1999)

This edition applies to IBM SecureWay X.509 Public Key Infrastructure for Multiplatforms, program 5697–F93,
version 1 release 1 modification 3, and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book . vii
Who should read this book . vii
How this book is organized . vii
Year 2000 readiness . viii
Service and support . viii
Conventions . viii
Web information . viii
Related information . viii

Chapter 1. About Secureway X.509 Public Key Infrastructure for
Multiplatforms . 1

Certificate authority . 1
Registration authority . 1
End entity . 1
Control objects . 1
Object store . 2

Chapter 2. PKIX certificates . 3
Certificate life cycle. 3
Setting fields in a certificate request 4
Certificate extensions . 5

Extension identifiers and values 5
Parameter format . 7
Writing a certificate extension program 8

Chapter 3. Writing applications for server components 9
Initializing servers . 9
Registering API callbacks . 10

Chapter 4. Writing applications for the end entity 13
Creating and submitting certificate requests 13

Creating a certificate request 13
Submitting a certificate request to the registration authority. 14
Creating a certificate authority certificate request 15

Creating a revocation request 15

Chapter 5. Writing applications for the registration authority 17
Pre-registering end entities . 17
Processing certificate requests 17
Processing revocation requests 18

Chapter 6. Writing applications for the certificate authority 21
Approving and rejecting certificate requests 21
Revoking certificates . 21

Approving a revocation request 21
Rejecting a revocation request 22
Creating a certificate revocation list (CRL) 22

Chapter 7. Application Programming Interfaces 25
JNH_add_certreq_extension . 31
JNH_authorize_registration . 34
JNH_authorize_revocation. 35
JNH_BootStrap. 36

© Copyright IBM Corp. 1999 iii

JNH_CA_list_RAs . 37
JNH_CA_list_signing_keys . 38
JNH_CA_nonpkix_user_check 39
JNH_CA_nonpkix_user_done 40
JNH_CA_nonpkix_user_get_cert 41
JNH_CA_preregister_nonpkix_user 42
JNH_CA_register_nonpkix_user 43
JNH_CA_write_info . 44
JNH_cancel_revreq . 45
JNH_cert_inquire_endDate . 46
JNH_cert_inquire_issuer . 48
JNH_cert_inquire_keyUsage . 49
JNH_cert_inquire_serialNumber. 51
JNH_cert_inquire_startDate . 52
JNH_cert_inquire_subject . 54
JNH_cleanup_BootStrap . 55
JNH_confirm_msg. 56
JNH_create_BootStrap . 57
JNH_create_certificate . 58
JNH_create_CRL . 59
JNH_create_enrollment_request 60
JNH_create_revreq . 61
JNH_create_revreq_from_certificate 62
JNH_delete_object . 63
JNH_enroll . 64
JNH_enroll_RA . 65
JNH_export_credential . 66
JNH_get_CA_info . 68
JNH_get_error . 69
JNH_get_fingerprint . 70
JNH_get_IniMyName . 71
JNH_get_IniLdapAuthName . 72
JNH_get_IniLdapAuthPwd. 73
JNH_get_IniLdapServer . 74
JNH_get_IniTcpHost . 75
JNH_get_IniTcpPort . 76
JNH_get_self_serial_number . 77
JNH_get_self_subjectKeyInfo 78
JNH_get_object_state . 79
JNH_GetStatus. 80
JNH_INI_deleteKey . 81
JNH_INI_deleteSection . 82
JNH_INI_Initialize . 83
JNH_INI_readKeys . 84
JNH_INI_readSections . 86
JNH_INI_readString . 87
JNH_INI_writeFile . 89
JNH_INI_writeString . 90
JNH_initialize_UI . 91
JNH_inquire_certreq_basicConstraints 92
JNH_inquire_certreq_enddate 94
JNH_inquire_certreq_issuer . 95
JNH_inquire_certreq_keyUsage. 96
JNH_inquire_certreq_privkey_EE 98
JNH_inquire_certreq_serialnumber 99
JNH_inquire_certreq_startdate. 100

iv Programming Guide and Reference

JNH_inquire_certreq_status. 101
JNH_inquire_certreq_subject 102
JNH_inquire_certreq_subjectkey_algorithm 103
JNH_inquire_revreq_certIssuer 104
JNH_inquire_revreq_certserialnumber 105
JNH_inquire_revreq_certserialnumbers 106
JNH_inquire_revreq_hold_instruction_code 108
JNH_inquire_revreq_invalidityDate 109
JNH_inquire_revreq_reason . 111
JNH_inquire_revreq_requests 113
JNH_Keypair_Selected . 114
JNH_keystore_inquire_cert . 115
JNH_List_Existing_Keypairs. 117
JNH_list_objects . 118
JNH_list_SC_certs . 119
JNH_list_surrogates . 121
JNH_modify_certreq_extension 122
JNH_new_revreq . 124
JNH_pkcs12scExportFile . 125
JNH_pkcs12UserExportFile . 130
JNH_pkcs12ImportFile . 133
JNH_preregister_crosscert . 136
JNH_preregister_user . 137
JNH_publish_certificate . 139
JNH_publish_CRL . 140
JNH_RA_nonpkix_create_revreq 141
JNH_RA_nonpkix_request_revocation 142
JNH_RA_nonpkix_user_check 143
JNH_RA_nonpkix_user_done 144
JNH_RA_nonpkix_user_get_cert 145
JNH_RA_preregister_crosscert 146
JNH_RA_preregister_nonpkix_user 148
JNH_RA_preregister_user . 149
JNH_RA_register_nonpkix_user 151
JNH_register_callbacks . 152
JNH_register_user . 154
JNH_reject_registration . 155
JNH_reject_revocation . 156
JNH_release_object . 158
JNH_release_octetString . 159
JNH_remove_certreq_extension 160
JNH_request_CRL . 161
JNH_request_revocation . 162
JNH_reserve_object . 163
JNH_revoke_certificate . 164
JNH_save_object . 165
JNH_server_login_pwd . 166
JNH_Set_CCert_VerificationKey 167
JNH_set_certreq_basicConstraints 168
JNH_set_certreq_endDate . 170
JNH_set_certreq_issuer . 172
JNH_set_certreq_keyUsage 173
JNH_set_certreq_privkey_EE 175
JNH_set_certreq_startDate . 177
JNH_set_certreq_subject. 179
JNH_set_certreq_subjectKeyInfo 180

Contents v

JNH_set_IniLdapAuthName. 181
JNH_set_IniLdapAuthPwd . 182
JNH_set_IniLdapServer . 183
JNH_set_IniTcpHost . 184
JNH_set_IniTcpPort. 185
JNH_set_MyName . 186
JNH_set_RA_URL . 187
JNH_set_revreq_certIssuer . 189
JNH_set_revreq_certserialnumber 191
JNH_set_revreq_hold_instruction_code 193
JNH_set_revreq_invalidityDate 194
JNH_set_revreq_reason . 196
JNH_set_server_location . 198
JNH_shutdown_UI . 199
JNH_start_server . 200
JNH_stop_server . 201
JNH_store_RA_URL . 202
JNH_subject_submit_crosscert 203
JNH_validate_registration . 204

Appendix A. Using the ASN.1 class library 205
ASN.1 data types . 205
PKIX interface data types . 206
BER and DER encoding . 206
ASN.1 class library hierarchy 207
Abstract classes . 207
ASN.1 header files . 208

Appendix B. PKIX programming model 209
Introduction. 209
Programming the CA and RA bootstraps 211
Sample bootstrap C++ sequence calls 212
Enrolling the RA with the CA 213
Sample RA enrollment code 214

Initiating the RA enrollment request 214
CA processing of the RA enrollment request 216

Programming to the end entity. 216
Sample EE certificate life cycle code 217

Performing user preregistration at the RA. 217
Requesting a certificate . 218

Programming to the registration authority 219
Programming to the certificate authority 219
Header and library files . 220

Notices . 221
Trademarks. 223

Glossary . 225

Index . 235

vi Programming Guide and Reference

About this book

This book provides information for programmers developing applications using the
IBM® SecureWay® X.509 Public Key Infrastructure for Multiplatforms, hereafter
referred to as PKIX. The topics discussed include:

v An overview of the product.

v Guidelines for developing applications for the PKIX certificate authority (CA) and
registration authority (RA), and end entitiy, or client, components.

v Public Key Infrastructure (PKI) for X.509 certificates, certificate extensions, and
certificate life cycle.

v Application program interface (API) that enable you to access and manipulate
PKI functions.

v Abstract Syntax Notation One (ASN.1) data types

Who should read this book
This book is for application developers familiar with C, C++, and Java™

programming languages. You should be knowledgeable about the following
concepts:

v Internet communications protocols

v Public key infrastructure technology, including Directory schemas, the X.509
version 3 standard, and Lightweight Directory Access Protocol (LDAP)

v Cryptography

How this book is organized
This book is organized as follows:

v Chapter 1. About Secureway X.509 Public Key Infrastructure for
Multiplatforms gives a brief description of PKIX and some its key components.

v Chapter 2. PKIX certificates discusses certificates and certificate life cycle,
certificate extensions and how to write one, and parameter formats.

v Chapter 3. Writing applications for server components explains how to
initialize the server components and register API callbacks.

v Chapter 4. Writing applications for the end entity discusses creating and
submitting certificate requests for the end entity. A discussion on creating
revocation requests is also included.

v Chapter 5. Writing applications for the registration authority describes how
to write some common tasks for the RA, which include preregistering the end
entity, and processing revocation requests.

v Chapter 6. Writing applications for the certificate authority shows to how
approve or reject certificate requests, process revocations, and create certificate
revocation lists.

v Chapter 7. Application Programming Interfaces contains reference information
on the APIs available along with coding examples to assist you during
development.

v Appendix A. Using the ASN.1 class library explains the Abstract Syntax
Notation One (ASN.1) coding notation and data types, and shows examples of
how to use this notation.

v Appendix B. PKIX programming model describes an overall approach, with
narratives and coding examples, to developing a PKIX application.

© Copyright IBM Corp. 1999 vii

A glossary of terms and an index are also provided.

Year 2000 readiness
These products are Year 2000 ready. When used in accordance with their
associated documentation, they are capable of correctly processing, providing,
and/or receiving date data within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with the products properly exchange accurate date data with them.

Service and support
Contact IBM for service and support for all the products included in the IBM
SecureWay FirstSecure offering. Some of these products may refer to non-IBM
support. If you obtain these products as part of the FirstSecure offering, contact
IBM for service and support.

Conventions
The following conventions are used in this book:

Convention Meaning

monospace Syntax, sample code.

italic Variable values the user must supply.

Web information
Information about updates to IBM SecureWay FirstSecure products is available at
the following Web address:
http://www.ibm.com/software/security/firstsecure/library

Related information
The IBM SecureWay X.509 Public Key Infrastructure for Multiplatforms Installation
Guide contains information about the PKIX architecture, installation, and
configuration.

viii Programming Guide and Reference

Chapter 1. About Secureway X.509 Public Key Infrastructure
for Multiplatforms

IBM SecureWay X.509 Public Key Infrastructure for Multiplatforms (PKIX) provides
a set of software that enables you to create, manage, store, and revoke certificates.
Its support for Public Key Infrastructure for X.509 version 3 standard and Common
Data Security Architecture (CDSA) allows for flexible application development and
vendor interoperability. PKIX provides the following components:

v Certificate authority (CA)

v Registration authority (RA)

v Support for a client system, also referred to as an end entity (EE)

v Control objects

v Object stores

Certificate authority
The certificate authority (CA) is a server application trusted by one or more users to
create, manage, and revoke certificates.

The CA is responsible for the following:

v Enforcing security policies (such as a certificate validity period or key revocation
policy)

v Creating certificates

v Revoking certificates

v Maintaining lists of trusted RAs and cross-certified CAs

Registration authority
The registration authority (RA) is a server application entity given responsibility for
performing some of the administrative tasks necessary in the registration of
subjects, including the following tasks:

v Confirming the subject’s identity

v Validating that the subject is entitled to have the attributes requested in a
certificate

v Verifying that the subject has possession of the private key associated with the
public key requested for a certificate

v Approving certificate creation and revocation requests

End entity
The end entity (EE) initiates certificate creation and revocation requests and
maintains the private keys and certificates issued by PKIX for a user.

Control objects
PKIX uses two objects to control the processes of creating and revoking certificates:
the certificate request and the revocation request. Each of these objects contain
information needed by the RA or CA to create or revoke certificates. The objects
are primarily created at the EE (although the RA and CA can also create them) and
sent from the EE to the RA to the CA and back again. The RA and CA can modify
these requests to add their own constraints (such as a specific length of time for

© Copyright IBM Corp. 1999 1

certificate validity). The CA converts a certificate request into a certificate and one
or more revocation requests into a certificate revocation list (CRL).

Once a certificate request has been issued, a copy of that certificate is placed in
the certificate store, where the CA can retrieve information about the certificate
during its lifetime. The certificate store contains copies of each certificate created by
the CA, indexed by serial number. These copies can be queried using the
JNH_inquire_certreq_xxx set of APIs. Issued certificates are also stored in the
requesting EE’s key store and can be accessed using the JNH_cert_xxx set of
APIs. Certificates are also published to the LDAP directory.

Object store
Each PKIX component has an object store used to track certificate request and
revocation request transactions. Objects in this store are either active control
objects (certificates, requests, CRLs) or surrogates. A surrogate is a place holder for
a control object that has passed through the object store and is expected to return.
Any information or state of the control object can be stored in the surrogate until the
control object’s return. When an active control object returns to the object store, the
surrogate is deleted.

Objects in the object store are flagged with a state, such as “Active” or “Revreq
Submitted”. As objects move into and out of the object store their states change,
reflecting any action that has occurred. For example, while a certificate request is in
the EE’s object store, it is flagged as “Active”. When it is sent onto the RA,
however, the remaining surrogate object is flagged “Submitted”. To find out the state
of a request, perform an “and” (&) operation of the status and 0xffff0000, then
compare the results with the states defined in the ObjStates.h file.

The object store is indexed using “request identifiers”, ASN.1-encoded integers.
Each object is assigned a request identifier, which is used in future API calls on the
object. The request identifier corresponds with the “reqId” parameter of the PKIX
APIs.

Note: After a surrogate object is deleted, its request identifier is reused for the next
surrogate object created in the object store.

2 Programming Guide and Reference

Chapter 2. PKIX certificates

This chapter provides information about PKIX certificates. It includes the certificate
life cycle and information about certificate fields and extensions.

Certificate life cycle
The certificate life cycle consists of two components: certificate creation and
certificate revocation.

Certificate creation:

1. The RA creates a preregistration record for the EE.

The preregistration record contains a transaction identifier for the EE. This
record must be communicated to the EE through electonic mail or some other
means.

Optionally, the RA, using delayed authentication, can create a preregistration
record without specifying a subject name. An EE can then fill in the name and
use the record to register. However, the RA will have to validate the user.

To create a certificate request that uses delayed authentication, the RA checks
the Authenticate User box on the GUI.

2. The EE uses the preregistration record to request a certificate.

The EE creates a certificate request and submits it to the RA.

3. The RA approves the request and sends it to the CA.

The RA reviews the request to determine if all necessary security criteria are
met and that all the required fields are completed and accurate. It is the
responsibility of the RA to verify the identity of an applicant prior to approving a
registration request.

4. The CA approves the certificate request and creates the certificate.

5. The RA periodically polls the CA to determine if the certificate request has been
processed. If the CA has approved the request, it will return the issued
certificate to the RA as part of the poll response. The CA converts the certificate
request in its object store to an issued certificate.

6. The EE periodically polls the RA to determine if the RA has completed
processing the certificate request. If the RA has received the issued certificate
from the CA, the RA returns the issued certificate to the EE as part of the poll
response.

7. After the EE has successfully received the certificate from the RA and
successfully stored it in a smart card or exported it, the EE sends a confirmation
message to the RA to indicate that it has successfully received the certificate.

8. When the RA receives the confirmation message from the EE, the RA posts the
issued certificate to an LDAP directory, making it publicly available.

Certificate revocation:

1. The EE creates a revocation request and sends it to the RA.

Certificates can be revoked for a number of reasons, such as the following:

v The private key has been compromised.

v The CA has been compromised.

v The certificate holder’s affiliation has changed.

v The certificate is never used.

2. The RA approves the revocation request and sends it to the CA.

© Copyright IBM Corp. 1999 3

The RA reviews the request to ensure the identity of the requester and the
reason for the revocation.

3. The CA approves the request, revokes the certificate, and adds it to a certificate
revocation list (CRL). The CA periodically sends updated certificate revocation
lists to the RA. The RA will then publish the CRL to the LDAP directory.

Note: The revocation does not take affect until the RA publishes the CRL.

Setting fields in a certificate request
Certificates contain several fields, which provide information about the subject of the
certificate, as well as the privileges that accompany the certificate. These fields
include start date and expiration date, subject name, certificate issuer, and the
subject’s public key. You can add, modify, and remove these fields using the PKIX
APIs.

Note: Any changes to the fields must either be made before you submit the
certificate request or be approved by the RA or CA.

For example, you can set the validity period for a certificate with calls to
JNH_set_certreq_startdate and JNH_set_certreq_enddate. (If you do not specify a
validity period, the period will begin when the certificate is issued and continue for
the default lifetime specified in the .ini files.)

Note: Before you run any JNH_set_xxx routine against an object, you must first
lock that object with a call to JNH_reserve_object.

The following code shows an EE setting the starting and ending dates of the validity
period for a certificate:
#include <jonah.h>
uint32 id = 1; // Request Id
uint32 status;

utcDateTime sdStruct; //Start date
utcDateTime edStruct; //End date

sdStruct.year = 1999; //Sample start date information
sdStruct.month = 6;
sdStruct.day = 23;
sdStruct.hour = 0;
sdStruct.min = 0;
sdStruct.sec = 0;
sdStruct.msec = 0;

edStruct.year = 1999; //Sample end date information
edStruct.month = 8;
edStruct.day = 23;
edStruct.hour = 0;
edStruct.min = 0;
edStruct.sec = 0;
edStruct.msec = 0;

if (status = JNH_reserve_object(id))
{

printf("Error calling reserve object with returned status = %d\n", status);
}

if (status = JNH_set_certreq_startDate(id, sdStruct))
{

printf("Error calling JNH_set_certreq_startDate with returned status = %d\n", status);

4 Programming Guide and Reference

}

if (status = JNH_set_certreq_endDate(id, edStruct))
{

printf("Error calling JNH_set_certreq_endDate with returned status = %d\n", status);
}

For information about other APIs that can be used to modify certificate fields, see
“Chapter 7. Application Programming Interfaces” on page 25.

Certificate extensions
Certificate extensions are attributes that are associated with the certificate. There
are three types of extensions:

standard extensions
Extensions such as Key Usage and Subject Alternate Name, which are
needed for the SSL and S/MIME protocols.

common extensions
Extensions known to PKIX, such as host identity mapping, which associates
the subject of a certificate with a corresponding identity on a host system.

private extensions
Extensions that are user-defined and whose purpose is specific to a
particular security implementation.

The EE requests extensions, but the CA (or an RA acting on the CA’s behalf) must
validate those requests. The process is as follows:

1. The EE, through the GUI or an API call, requests an extension and supplies
information for the extension, including a unique extension identifier and value,
and specifies whether or not the extension is critical.

If a system encounters an extension it does not recognize, such as a private
extension, the system accepts the extension as long as it is not marked critical.

2. The extension request and information become part of a certificate request in
the object store. From there the request is sent to the RA.

3. The RA or CA, while processing the certificate request, validates the extension
against the organization’s certificate policy and modifies or overrides the
extension request. If the extension is validated, the CA certifies it.

For more detailed information about certificate extensions, including definitions of
the different extensions, see the IETF’s RFC 2459 at http://www.ietf.org.

Extension identifiers and values
Extension identifiers are unique strings followed by a named OID specific to the
extension. Extension values define the purpose of an extension (such as Key
Usage). The following table shows the ASN.1 notations of different extension
identifiers and values:

Chapter 2. PKIX certificates 5

Extension Identifier Value

Key Usage 2.5.29.15 KeyUsage ::= BIT STRING(
digitalSignature (0),
nonRepudiation (1),
keyEncipherment (2),
dataEncipherment (3),
keyAgreement (4),
keyCertSign (5),
cRLSign (6),
encipherOnly (7),
decipherOnly (8)

Subject
Alternative
Name

2.5.29.17 SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName := CHOICE {
otherName [0] OtherName,
rfc822Name [1] IA5String,
dNSName [2] IA5String,
x400Address [3] ORAddress,
directoryName [4] Name,
ediPartyName [5] EDIPartyName,
uniformResourceIdentifier [6] IA5String,
iPAddress [7] OCTET STRING,
registerID [8] OBJECT IDENTIFIER}

EDIPartyName ::= SEQUENCE {
nameAssigner [0] DirectoryString OPTIONAL,
partyName [1] DirectoryString }

Host identity
mapping

1.3.18.0.2.18.1 HostIdMappings ::= SET OF Mapping

where Mapping is defined below.

Private user-provided numeric
OID

PrivateValue ::= OCTET STRING

Notes:

1. For non-CA certificate requests that use RSA keys, the following key usages are
available:

v digitalSignature

v nonRepudiation

v keyEncipherment

v dataEncipherment

CA certificates may contain all of the key usages that are specified for the
non-CA certificate key usages. However, a CA key cannot be used for both
certificate or CRL signing and enciphering.

2. PKIX supports the use of IPAddress and e-mail address (for the rfc822Name
field) for the Subject Alternative Name extension.

3. The value for the Host identity mapping extension allows one certificate
extension to contain multiple Host-Id mappings. Because of this, you can
associate a certificate holder with multiple identities on multiple hosts, as
defined below:
HostIdMappings ::= SET OF Mapping, and
Mapping ::= SEQUENCE { hostName IMPLICIT[1] IA5String,

subjectId IMPLICIT[2] IA5String,
id_pop IdProof }, and

IdProof ::= SEQUENCE { secret OCTET STRING,
encryptionAlgorithm AlgorithmIdentifier }

6 Programming Guide and Reference

AlgorithmIdentifier is defined in the x509.h header file.

4. The private extension must not be critical.

5. Only one extension of each type can be added to each certificate. A host
identity mapping can be included in the Host Identity Mapping extension for
each unique host name, and a private extension can be added for each unique
extension identifier.

Parameter format
This section discusses the parameter format for distinguished names and object
identifiers.

Distinguished names
Among the most common features of a certificate are distinguished names, or DNs.
A DN consists of a sequence of relative distinguished names, or RDNs, and an
RDN consists of a set of attribute value assertions (AVAs) which are essentially
name/value pairs. All DNs are represented in the APIs in a string format known as
the OSF syntax.

In the OSF syntax, an AVA is represented by a standard keyword for a directory
attribute, an equal sign, and then the value as a UTF-8 string. For example, C=US
represents “Country Name” is “US” (for the United States of America). The common
attributes supported within the DNs are listed in Table 1.

UTF-8 is a string format representing Unicodes in which all IA5 characters (IA5 is
an international character set very similar to US ASCII) have the same
representation as they do in IA5, while other characters consist of multiple bytes, all
of which have values in the range 128–253. A more detailed definition of UTF-8 can
be found in the IETF’s RFC 2279.

In the OSF syntax, an RDN is represented by a solidus (“/”) character followed by a
series of AVA representations separated by commas. A DN is represented by a
series of RDNs, with the most general RDN coming first. In a typical example, the
first RDN will contain the “Country Name” attribute and no others, while the last
RDN will contain the “Common Name” attribute.

Table 1. Common attributes supported within Distinguished Names

Parameter Description Comments

C Country Name Two ASCII upper-case letters

Common Name User’s full name

O Organization Name

OU Organizational Unit There may up to four of these.

ST State or province name

L Locality name

MAIL E-mail address Must be in IA5, in user@domain format

PC Postal code

T Title

Object identifiers
Most object identifiers (OIDs) are represented in this API in “numeric OID
dot-format”. This format consists of a sequence of non-negative integers separated
by periods. The first number in the sequence should always be 0, 1, or 2.

Chapter 2. PKIX certificates 7

Some object identifier parameters are represented in the standard ASN.1 binary
representation for OIDs. In this format, any number in the dot-format which is
between 0–127 inclusive is represented by a single byte with that value. Any
number in that format which is between 128–16383 inclusive is represented by two
bytes, the first of which is that number divided by 128 added to 128, and the
second of which is that number modulo 128; while any number in that format
between 16384–2097151 inclusive is represented by three bytes. The first byte is
that number divided by 16384 added to 128. The second byte is that number
divided by 128 modulo 128 added to 128. The third byte is that number modulo
128. The general form is that a number between 2**7n and 2**7(n+1) is encoded as
n+1 bytes, with each (right-justified and zero-filled) group of 7 bits in a separate
byte, with the high-order byte first and with all bytes other than the last one having
the high-order bit set.

Writing a certificate extension program
The following code shows how to add a certificate extension to the request and
modify the extension.

Note: Before you add, modify, or remove an extension from a certificate, you need
to determine the corresponding request identifier from the EE’s object store.

#include <x509.h>
#include <Jonah.h>

octetString value;
int critical= 0
xtype = SUBJECT_ALT_NAME;
utf8String extId = "2.5.29.17";
value.data = (unsigned char *)strdup("127.0.0.1");
value.length = strlen((char *)value.data);
uint32 rc = JNH_add_certreq_extension(xtype, reqId, extId, value, critical);
JNH_release_octetString(value); // Release octetString associated with value

octetString newValue = ;
uint32 new_critical = ...;
status = JNH_modify_certreq_extension (extn_type,

req_id,
extn_id,
new_value,
new_critical);

8 Programming Guide and Reference

Chapter 3. Writing applications for server components

This chapter provides information about writing applications that run on all three
server components (CA, RA, and EE). It includes information about initializing
servers and registering callbacks. Refer to “Appendix B. PKIX programming model”
on page 209 for additional information on developing applications.

Initializing servers
Each PKIX server must initialize itself using JNH_start_server. This initialization
connects the server to the appropriate object stores and restricts functions on
certificate requests and revocation requests. When starting an RA or CA server, you
must log in to the smart card by using JNH_server_login_pwd.

Note: JNH_start_server passes one parameter, serverType, which specifies the
type of server being initialized. Optionally, you can specify a second
parameter indicating the path to the .ini file. In the following code samples,
the servers are specified with the following parameters, which are literals
defined in jonah.h:

EE server svrType_EE

RA server svrType_RA

CA server svrType_CA

The following code is an example of initializing an EE server:
void start_ee ()
{
JNH_start_server(svrType_EE, (char *) "EE_file.ini");
}

The following code is an example of initializing an RA server:
uint32 start_RA()
{
uint32 status;
utf8String passWord[] = "RApass"; //Password created when initializing RA

JNH_start_server(svrType_RA, (char *) "RA_file.ini");
status = JNH_server_login_pwd(passWord);

return status;
}

The following code is an example of initializing a CA server:
uint32 start_CA()
{
uint32 status;
utf8String passWord[] = "CApass"; //Password created when initializing CA

if (status = JNH_start_server(svrType_CA, (char *) "CA_file.ini") return status;
status = JNH_server_login_pwd(passWord);

return status;
}

© Copyright IBM Corp. 1999 9

Registering API callbacks
To register API callbacks in the PKIX servers, you use a call to
JNH_register_callbacks. JNH_register_callbacks allows applications to react to
events occurring on the PKIX servers.

JNH_register_callbacks() uses two arguments: a pointer to a user-defined
JNH_Notify function, and a pointer to a user-defined JNH_Display function. These
APIs allow you to define how your application reacts to events and debug
messages. JNH_register_callbacks() stores the addresses of these functions, which
are invoked whenever an event occurs or there is a debug message to display on
the screen.

JNH_Notify returns the state of an event, using three arguments: request id,
requester name, and status of a certificate. JNH_Notify uses the status to determine
the state of a certificate.

JNH_Display displays error and debug messages by using two arguments:
message type and debug message. JNH_Display uses the message type to sort,
log, or print out the messages. To determine a message type, see the Jonah.h file.

The following code shows how to register callbacks:
//display function
void display(uint32 type, const utf8String message)
{

switch(type) {
case DISPLAY_STATUSBAR:
fprintf(stderr, "bar -> ");
break;

case DISPLAY_LOGERROR:
fprintf(stderr, "log error -> ");
break;

case DISPLAY_LOGINFO:
fprintf(stderr, "log info -> ");
break;

case DISPLAY_LOGDEBUG:
fprintf(stderr, "log debug -> ");
break;

case DISPLAY_URGENTERROR:
fprintf(stderr, "urg error -> ");
break;

case DISPLAY_URGENTINFO:
fprintf(stderr, "urg info -> ");
break;

case DISPLAY_URGENTDEBUG:
fprintf(stderr, "urg debug -> ");
break;

default:
fprintf(stderr, "unk type -> ");
break;

}
fprintf(stderr, "%s\n", message);

}

void notify(uint32 id, const utf8String name, uint32 status)
{

uint32 foo;

foo = status & 0xffff0000;
if (foo == ObjStEECertReqActive)

{
fprintf(stderr, "createCertReq: NAME=%s\tID=%d\tSTATUS=%x\n", name,

10 Programming Guide and Reference

id, status);
}

}

void main(int argc, char *argv[])
{

if (status = JNH_start_server(svrType_EE, (char *)"EE_file.ini")) return status;
if (status = JNH_register_callbacks(¬ify, &display)) return status;

}

Chapter 3. Writing applications for server components 11

12 Programming Guide and Reference

Chapter 4. Writing applications for the end entity

This chapter provides information for developing applications that run on the EE
component. It includes sample programs for the different EE tasks and discusses
special considerations for EE application development.

Creating and submitting certificate requests
The EE uses two APIs to create and submit a certificate request:
JNH_preregister_user and JNH_register_user.

Creating a certificate request
The EE creates a certificate request through a call to JNH_preregister_user, which
retrieves information from the preregistration request that was created by the RA.
After a request is created, it is flagged “Active” and stored in the EE’s object store
until it is submitted to the RA.

The following code is an example of an EE creating a certificate request:
// This file name represents a file where the preregistration record is found
char filename[] = "c:\temp\test.reg";

char tempFile[80];
FILE *fp = NULL;
int size = 0;
unsigned char *prereginfo = NULL;
utf8String password = "pass";...

if (status = JNH_start_server (svrType_EE, (char *) "EE_file.ini")) return status;

//Example of reading the preregistration record created by the RA out of a file
if ((fp = fopen(filename, "rb")) == NULL) {
{

fprintf(stderr, "Can not open %s\n", filename);
exit (-1);

}
// Find the length of the file to use allocate memory
fseek(fp, 0L, SEEK_END);
size = ftell(fp);
rewind(fp);
if (size < 2)
{

fprintf(stderr, "Message too small\n");
exit (-1);

}
if ((fp = (unsigned char *) malloc(size)) == NULL)
{

fprintf(stderr, "Out of memory\n");
exit (-1);

}
memset(prereginfo, 0, size);
if (fread(prereginfo, size, 1, fp) != 1)
{

fprintf(stderr, "Read Error!\n");
exit (-1);

}
fclose(fp);

/* Call JNH_pregregister_user with the preregistration record information.
** The second parameter is for a password. It returns a RequestID
** for use in continuing with the certificate lifecycle.

© Copyright IBM Corp. 1999 13

*/
if((status = JNH_preregister_user(prereginfo, password, &id)))
{

printf("prereg status = %d\n", status);
exit (-1);

} ...

Submitting a certificate request to the registration authority
Once the certificate request is created and any modifications to the certificate fields
complete, the EE submits the request through a call to JNH_register_user.
However, before submitting the certificate, the EE must perform the following steps:

1. Use JNH_reserve_object to reserve the certificate request in the object store.

2. Set the private key with JNH_set_certreq_privkey_EE.

3. Save the changes to the certificate request with JNH_save_object.

4. Export the information to the smart card, using JNH_export_credential.

Once the certificate request is submitted to the RA, it is stored in the RA’s object
store and is flagged “Active”. The corresponding surrogate object in the EE’s object
store is flagged “Submitted”.

The following code is an example of an EE submitting a certificate request:
//Get object store ID for your ACTIVE certificate
uint32 status;
uint32 id = 1; //Request identifier...

if((status = JNH_reserve_object(id)))
{

printf("reserve returned %d\n", status);
exit (-1); // or return to calling routine

}

if ((status = JNH_set_certreq_privkey_EE(id, (utf8String) "id-dsa", 512)))
{

printf("set ee generated status = %d", status);
exit (-1); // or return to calling routine

}

if ((status = JNH_save_object(id)))
{

printf("save returned %d\n", status);
return status;

}

/* Get EE virtual smart card password and device information
* Device is one of:
*
* "VSC:fileName"
* "TOK:readerName"
*
* where VSC indicates the virtual smart card and TOK indicates
* a real smart-card.
*/

char ECpwd[] = "ee1234"; //EE smart card password
char tokenFile[] = "VSC:c:\token.fil";

if ((status = JNH_export_credential(id, (utf8String) ECpwd,(utf8String) tokenFile)))
{

printf("export credential status = %d\n", status);
return status;

14 Programming Guide and Reference

}

if ((status = JNH_register_user(id)))
{

printf("register user status = %d\n", status);
return status;

} ...

Note: The RA server must be running to receive this request.

Creating a certificate authority certificate request
To create a certificate request for a CA, specify in the certificate request a basic
constraint that indicates that the certificate’s subject is a CA. You can do this
through a call to JNH_set_certreq_basicConstraints.

The following code is an example of this:
//certificate type is CA
uint32 status;
uint32 id = 1; // Request identifier
bool isCaCert = true;
int maxPathLen = 150;...

if (isCaCert)
if ((status = JNH_set_certreq_basicConstraints(id, isCaCert, maxPathLen,0)))
{

printf("Error setting basicConstraints with status = %d", status);
return status;

}...

Creating a revocation request
If an EE believes that a certificate has been compromised or if the certificate is no
longer needed, the EE can request that the certificate be revoked. The EE creates
a revocation request with a call to JNH_create_revreq and submits it to the RA with
a call to JNH_request_revocation.

Once the request is submitted to the RA, it is stored in the RA’s object store and
flagged “Revreq Active”. The corresponding surrogate object in the EE’s object
store is flagged “Revreq Submitted”.

The following code is an example of an EE creating a revocation request:
uint32 rc;
uint32 reqid = 3; // Request identifier...

rc = JNH_create_revreq (reqid);...

The following code is an example of an EE submitting the revocation request to the
RA:
uint32 reqid = 3; // Request identifier...

rc = JNH_request_revocation (reqid);

Chapter 4. Writing applications for the end entity 15

...

Note: The RA server must be running to receive this request.

16 Programming Guide and Reference

Chapter 5. Writing applications for the registration authority

This chapter provides information for developing applications that run on the RA
component. It includes sample programs for the different RA tasks and discusses
special considerations for RA application development.

Pre-registering end entities
The RA preregisters end entities with JNH_RA_preregister_user, which creates a
preregistration record that is stored in the RA’s object store. The RA forwards this
record to the EE through a secure channel (such as electronic mail), and the EE
uses it to create and submit a certificate request. The surrogate for this
preregistration record in the RA’s object store is flagged “Preregistered”.

The following code is an example of an RA preregistering an EE:

char name[] = "user"; // name of user to preregister
char pwd[] = "pass"; // password for user
utf8String CAName = NULL; // Certificate Authority name - from ini file
uint32 status; // return value
int expire_secs = 120; // number in seconds to complete registration
utf8String buf; // buffer to hold Preregistration record returned

// from JNH_RA_preregister_user...

if (status = JNHstart_server (svrType_RA, (char *) "RA_file.ini")) return status;

// This gets the name of the CA from the INI file
if (status = JNH_INI_readString((unsigned char *const)"General",

(unsigned char *const)"Issuer1", (unsigned char **) &CAName,
(unsigned char *const)""))

{
printf("PreregisterUsers: Cannot call JNH_INI_readString() with status =

%d.\n", status);
return status;

}
if ((status = JNH_RA_preregister_user(CAName, (utf8String) name, expire_secs,

(utf8String) pwd, &buf)))
{

printf("PreregisterUsers: Cannot call JNH_RA_preregister_user() with status =
%d.\n", status);

return status;
} ...

Processing certificate requests
When the EE sends a certificate request to the RA, the RA’s notify function is called
to notify the RA of the new request. The RA can then either authorize or reject the
request. If the RA authorizes the request (with a call to JNH_authorize_registration),
it is forwarded to the CA and stored as an “Active” object in the CA’s object store.
The surrogate object in the RA’s object store is flagged “Waiting for CA”.

The following code shows an RA authorizing a certificate request:

uint32 id = 1; //Request identifier
uint32 keyid = 0; //Key ID
uint32 status;.

© Copyright IBM Corp. 1999 17

..

status = JNH_authorize_registration(id, keyid);
return status;...

Note: The CA server must be running to receive this request.

If the RA rejects a certificate request (with a call to JNH_reject_registration), either
because it is not complete or is invalid, the request is returned to the EE with a
reason for the rejection. The object in the RA’s object store that corresponds to the
certificate request is flagged “Rejected” and is removed from the object store when
the EE receives the request.

The following code is an example an RA rejecting a certificate request:

uint32 id = 1; //Request identifier
uint32 status;
utf8String reason = "Invalid data"; //Reason for rejecting request...

status = JNH_reject_registration(id, reason);
return status;...

Processing revocation requests
When the EE sends the RA a request to revoke a certificate, the RA’s notify
function is called to notify the RA of the new request. The RA authenticates the
identity of the requestor and can then authorize the revocation with
JNH_authorize_revocation or reject it with JNH_reject_revocation.

If the RA authorizes the revocation request, the request is forwarded to the CA and
stored in the CA’s object store with a state of “Revreq Active”. The surrogate object
in the RA’s object store is flagged “Revreq Waiting for CA”. The following code is an
example of an RA authorizing a revocation request:

uint32 id = 1; //Request identifier
uint32 status;...

status = JNH_authorize_revocation(id);
return status;

...

Note: The CA server must be running to receive this request.

If the RA rejects the revocation request, a message is sent back to the EE with the
reason for the rejection. The following code is an example of this:

uint32 id = 1; //Request identifier
uint32 status;
utf8String reason = "Invalid entry"; //Reason for rejecting request...

status = JNH_reject_revocation(id, reason);
return status;

18 Programming Guide and Reference

...

The object in the RA’s object store that corresponds to the revocation request is
now flagged as “Revreq rejecting” and is removed when the EE receives the
message.

Chapter 5. Writing applications for the registration authority 19

20 Programming Guide and Reference

Chapter 6. Writing applications for the certificate authority

This chapter provides information for developing applications that run on the CA
component. It includes sample code for the different CA tasks and discusses
special considerations for CA application development.

Approving and rejecting certificate requests
The CA issues a certificate in response to a certificate request from an EE. The CA
approves a certificate request with a call to JNH_create_certificate and rejects it
with JNH_reject_registration.

After the CA approves a certificate request through a call to JNH_create_certificate,
the certificate request information is passed to the RA and then to the EE. The
surrogate object in the CA’s object store is flagged “Signed” and is removed from
the object store when the RA receives the information.

The following code is an example of a CA approving a certificate request and
creating a certificate:
uint32 id = 1; //Request identifier
uint32 KeyID = 1; //CA Key ID
uint32 status;...

status = JNH_create_certificate(id, KeyID);
return status;...

If a CA rejects a certificate request, the certificate request information and the
reason for rejection are passed to the RA and then to the EE. The surrogate object
in the CA’s object store is flagged “Rejected” and is removed from the object store
when the RA receives the information.

The following code is an example of a CA rejecting a certificate request:

uint32 id = 1; //Request identifier
utf8String rejectReason[] = "Invalid data"; //Reason for the rejection
uint32 status;...

status = JNH_reject_registration(id, rejectReason);
return status;...

Revoking certificates
Certificates are revoked when their validity period is over or if the administrator
suspects they have been compromised. After an RA approves and forwards a
revocation request to the CA, the CA can either approve the request with
JNH_revoke_certificate or reject it with JNH_reject_revocation. If a CA approves a
revocation request and revokes the certificate, the certificate is added to a
certificate revocation list (CRL).

Approving a revocation request
The CA approves a revocation request through a call to JNH_revoke_certificate,
which revokes the certificate, adds the certificate to the CRL, and passes the

© Copyright IBM Corp. 1999 21

information back to the RA. After this occurs, the surrogate object in the CA’s object
store is flagged “Revreq Accepted” and is removed from the object store when the
RA receives the information.

The following example shows a CA approving a revocation request and revoking a
certificate:
uint32 id = 1; //Request identifier
uint32 status;...

status = JNH_revoke_certificate(id);
return status;...

Rejecting a revocation request
A CA rejects a revocation request using JNH_reject_revocation, which passes to the
RA the information from the request and a reason for its rejection. The surrogate
object in the CA’s object store is flagged “Revreq Rejected” and is removed from
the object store when the RA receives the information.

The following code is an example of a CA rejecting a revocation request:
uint32 id = 1; //Request identifier
utf8String rejectReason[] = "Invalid data"; //Reason for the rejection
uint32 status;...

status = JNH_reject_registration(id, rejectReason);
return status;...

Creating a certificate revocation list (CRL)
Although JNH_revoke_certificate adds a certificate and its information to the CRL,
no revocation is final until the CRL is issued. CRLs are published on a regular
basis, determined by the security policies of the organization, and list the version
number, issuing CA name, number of revoked certificates, a CRL number, and a list
of the revoked certificates. The list of revoked certificates contains the serial
number of each certificate and the time and date the certificate was revoked.

Using the sample test program, testcrl, the following example displays the contents
of a CRL:
----- CRL Printout ------

* CRL successfully constructed

*
* Version Number: 1 (v2)
* Issuer Name: /C=us/O=IBM/OU=Jonah
* Number of Revoked Certs: 9

--*
* Serial Number: 1
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:25:45

--*
Serial Number: 2
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:25:45

--*
Serial Number: 3

22 Programming Guide and Reference

* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:25:45

--*
Serial Number: 4
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:50:21

--*
Serial Number: 5
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:48:56

--*
Serial Number: 6
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:48:58

--*
Serial Number: 7
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:49:3

--*
Serial Number: 8
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:49:1

--*
Serial Number: 9
* CRT Revoked on (Y/M/D/H:Min:Sec) GMT: 1999/4/23/21:49:6
*

If a CA processes a revocation request prior to the next scheduled CRL, the CA can
create a CRL through a call to JNH_create_CRL. The following code is an example
of a CA creating a CRL:
uint32 status;...

status = JNH_create_CRL();
return status;...

Chapter 6. Writing applications for the certificate authority 23

24 Programming Guide and Reference

Chapter 7. Application Programming Interfaces

The following section contains descriptions of the PKIX interfaces used to create
and manage certificates.

Note: Many of the APIs are available in both C++ and Java interfaces. In the
programming reference information, the syntax of both interfaces is shown,
where applicable. In cases where only one interface syntax is shown, the
API information is available for only the C++ interface.

The following APIs are used to register users and create certificates:

API Name Purpose

JNH_authorize_registration Authorizes a user registration request.

JNH_create_certificate Creates a certificate for a user.

JNH_preregister_user Prepares for a user registration.

JNH_publish_certificate Publishes a certificate to an LDAP directory.

JNH_RA_preregister_user Creates a preregistration record for an
end-user registration.

JNH_register_user Submits a user registration request.

JNH_reject_registration Rejects a user registration request.

JNH_validate_registration Validates that the version and signing
algorithm are present in a certificate request.

The following APIs are used for revoking certificates and creating Certificate
Revocation Lists (CRLs).

API Name Function

JNH_authorize_revocation Approves a revocation request for a
certificate.

JNH_cancel_revreq Cancels a revocation request.

JNH_create_CRL Creates a certificate revocation list.

JNH_create_revreq Creates a revocation request.

JNH_create_revreq_from_certificate Creates a revocation request for a certificate
on a smart card.

JNH_new_revreq Creates a new revocation request.

JNH_publish_CRL Publishes a certificate revocation list to the
RA.

JNH_reject_revocation Rejects a revocation request.

JNH_request_CRL Requests a CRL.

JNH_request_revocation Creates a revocation request.

JNH_revoke_certificate Revokes a certificate.

The following APIs are used to obtain information about certificate requests in the
object store:

API Name Function

JNH_inquire_certreq_basicConstraints Retrieves the basic constraints.

© Copyright IBM Corp. 1999 25

API Name Function

JNH_inquire_certreq_enddate Retrieves the expiration date.

JNH_inquire_certreq_issuer Retrieves the issuer name.

JNH_inquire_certreq_KeyUsage Retrieves the key-usage information.

JNH_inquire_certreq_privkey_EE Returns the key length and algorithm of the
EE-generated private key.

JNH_inquire_certreq_serialnumber Retrieves the serial number.

JNH_inquire_certreq_startDate Retrieves the starting date.

JNH_inquire_certreq_status Retrieves the status of a certificate request.

JNH_inquire_certreq_subject Retrieves the subject name of a certificate
request.

JNH_inquire_certreq_subjectkey_algorithm Retrieves the subject key algorithm.

The following APIs are used to obtain information about certificates in the EE’s key
store.

API Name Function

JNH_cert_inquire_enddate Retrieves the expiration date.

JNH_cert_inquire_issuer Retrieves the issuer name.

JNH_cert_inquire_keyUsage Retrieves the key usage information.

JNH_cert_inquire_serialNumber Retrieves the certificate serial number.

JNH_cert_inquire_startDate Retrieves the starting date.

JNH_cert_inquire_subject Retrieves the subject name.

JNH_Keypair_Selected Selects a key pair from a list of key pairs.

JNH_keystore_inquire_cert Retrieves a certificate from the key store.

JNH_List_Existing_Keypairs Lists any existing key pairs.

JNH_list_SC_certs Returns the subject names and key
identifiers for all the certificates in the key
store.

The following APIs are used to modify certificate requests.

API Name Function

JNH_add_certreq_extension Adds an unsupported extension to a
certificate request.

JNH_modify_certreq_extension Modifies certificate extensions.

JNH_remove_certreq_extension Removes an extension from a certificate
extension.

JNH_set_certreq_basicConstraints Sets the basic constraints.

JNH_set_certreq_endDate Sets the expiration date.

JNH_set_certreq_issuer Sets the issuer name.

JNH_set_certreq_keyUsage Sets the key-usage.

JNH_set_certreq_privkey_EE Sets the private key algorithm and key length
of an EE.

JNH_set_certreq_startDate Sets the starting date.

JNH_set_certreq_subject Sets the subject name.

26 Programming Guide and Reference

The following APIs are used to retrieve information about revocation requests.

API Name Function

JNH_inquire_revreq_certIssuer Returns the name of the certificate issuer.

JNH_inquire_revreq_certserialnumber Returns one of the certificate serial numbers
from the revocation request.

JNH_inquire_revreq_certserialnumbers Returns a list of the certificate serial
numbers for the certificates in a revocation
request.

JNH_inquire_revreq_hold_instruction_code Returns the hold_instruction_code from one
of the certificates being revoked.

JNH_inquire_revreq_invalidityDate Returns the invalidity date from one of the
certificates being revoked.

JNH_inquire_revreq_reason Returns the reason a certificate is being
revoked.

JNH_inquire_revreq_requests Determines how many certificates are being
revoked in a revocation request.

The following APIs are used to modify revocation requests.

API Name Function

JNH_set_revreq_certIssuer Sets the name of the certificate issuer in the
CertDetails section of the revocation request.

JNH_set_revreq_certserialnumber Sets the certificate serial number of a
certificate being revoked.

JNH_set_reverq_hold_instruction_code Sets the hold_instruction_code for a
certificate being revoked.

JNH_set_revreq_invalidityDate Sets the invalidity date for a certificate being
revoked.

JNH_set_revreq_reason Sets the reason a certificate is being
revoked.

The following APIs are used to create and manage browser-based certificate
requests:

API Name Function

JNH_CA_nonpkix_user_check Checks the status of a certificate request
submitted by
JNH_CA_register_nonpkix_user.

JNH_CA_nonpkix_user_done Removes from the object store the certificate
request created by
JNH_CA_preregister_nonpkix_user.

JNH_CA_nonpkix_user_get_cert Retrieves the certificate for a non-PKIX end
entity.

JNH_CA_preregister_nonpkix_user Creates an initialization request for a
non-PKIX end entity.

JNH_CA_register_nonpkix_user Submits a certificate request for a non-PKIX
end entity.

JNH_RA_nonpkix_create_revreq Creates a revocation request object for a
non-PKIX end entity.

JNH_RA_nonpkix_request_revocation Requests a revocation for a certificate for a
non-PKIX end entity.

Chapter 7. Application Programming Interfaces 27

API Name Function

JNH_RA_nonpkix_user_check Checks the status of a certificate request
submitted by a non-PKIX end entity.

JNH_RA_nonpkix_user_done Removes from the object store the certificate
request created by
JNH_RA_preregister_nonpkix_user.

JNH_RA_nonpkix_user_get_cert Retrieves the certificate for a non-PKIX end
entity.

JNH_RA_preregister_nonpkix_user Creates an initialization request for a
non-PKIX end entity.

JNH_RA_register_nonpkix_user Submits a certificate request for a non-PKIX
end entity.

The following APIs are used to work with .ini files.

API Name Function

JNH_INI_deleteKey Deletes a key and section from an .INI file.

JNH_INI_deleteSection Deletes a section from an .INI file.

JNH_INI_initialize Opens an .INI object for use.

JNH_INI_readKeys Returns a list of the keys in an .INI file
section.

JNH_INI_readSections Returns a list of the sections in an .INI file.

JNH_INI_readString Reads a string from the Jonah.INI file.

JNH_INI_writeFile Writes an .INI file to the medium.

JNH_INI_writeString Writes a string into the Jonah.INI file.

The following APIs are used to import and export private keys and public
certificates, in the form of PKCS #12 files.

Note: When using the PKCS #12 APIs, you must save the PKCS #12 file as
binary.

API Name Function

JNH_pkcs12scExportFile Exports a private key and public certificate
from the smart card.

JNH_pkcs12UserExportFile Exports a private key and public certificate
from the object store.

JNH_pkcs12ImportFile Imports a private key and public certificate to
the smart card.

The following APIs are used for cross-certification of a CA.

API Name Function

JNH_CA_list_signing_keys Lists the subject CA’s signing key.

JNH_preregister_crosscert Creates a cross-certification record for a CA,
using the preregistration record created by
JNH_RA_preregister_crosscert.

JNH_RA_preregister_crosscert Creates a preregistration record for a subject
CA. This record is used for cross-certification
with another CA.

28 Programming Guide and Reference

API Name Function

JNH_Set_CCert_VerificationKey Sets the subject CA’s signing key for
cross-certification.

JNH_subject_submit_crosscert Submits a subject CA’s request for
cross-certification.

The following APIs are used to perform various other tasks, including bootstrap and
RA enrollment, related to objects and certificates.

API Name Function

JNH_BootStrap Performs a bootstrap on an RA or CA.

JNH_CA_list_RAs Lists the RAs trusted by a CA.

JNH_CA_write_info Creates a file in which to store a CA
self-signed certificate.

JNH_confirm_msg Send confirmation message to the specified
object.

JNH_create_BootStrap Creates a bootstrap request for an RA or
CA.

JNH_create_enrollment_request Creates an enrollment request.

JNH_delete_object Deletes an object.

JNH_enroll Sends an RA enrollment request to the CA.

JNH_enroll_RA Sends enrollment request from a CA to an
RA.

JNH_export_credential Exports a certificate or key to a PKCS#12
file, virtual smart card, or a real smart card.

JNH_get_CA_info Finds a CA’s URL, certificate subject name,
and serial number.

JNH_get_error Retrieves text associated with a message
code.

JNH_get_fingerprint Returns an RA or CA’s fingerprint.

JNH_get_object_state Retrieves the status for an object.

JNH_get_self_serial_number Returns an array of serial numbers needed
for JNH_get_fingerprint.

JNH_get_self_subjectKeyInfo Returns key information, public key, and
algorithms from a self-signed certificate.

JNH_GetStatus Returns the current status of a server.

JNH_initialize_UI Sets up communication with a background
server.

JNH_list_objects Causes all active objects to announce
themselves.

JNH_list_surrogates Causes all surrogate objects to announce
themselves.

JNH_register_callbacks Registers the callbacks for user-written
JNH_Notify and JNH_Display routines..

JNH_release_object Unlocks an object in the object store without
first saving it.

JNH_release_octetString Releases the memory associated with an
octet string.

Chapter 7. Application Programming Interfaces 29

API Name Function

JNH_reserve_object Locks an object in the object store.

JNH_save_object Saves and unlocks an object in the object
store.

JNH_server_login_pwd Unlocks a server’s credentials by directly
supplying a PIN.

JNH_set_RA_URL Sets the RA URL, subject, and password in
a revocation request.

JNH_set_server_location Sets the background server location and
checks that the server is running in that
location.

JNH_shutdown_UI Allows the server to clean up resources
associated with a background server user
interface session.

JNH_start_server Initializes a server and opens or creates an
object store.

JNH_stop_server Shuts down a server in an orderly fashion.

JNH_store_RA_URL Extracts the RA URL from the object store
and stores it in an .ini file.

30 Programming Guide and Reference

JNH_add_certreq_extension
Adds an extension to a certificate request.

Syntax
C++

uint32 JNH_add_certreq_extension(uint32 xtype,
uint32 reqId,
utf8String extId,
octetString value,
int critical)

Java
int JAVA_add_certreq_extension(int xtype,

int reqId,
String extId,
String value,
int critical)

Parameters
xtype – input

The type of extension to add:

1 HOST_ID_MAPPING

2 KEY_USAGE

3 SUBJECT_ALT_NAME

4 PRIVATE

reqId – input
The identifier of the certificate request.

extId – input
The identifier of the extension to add to the certificate request. This parameter
is primarily used for private extensions, where it is provided in a dot string
format (such as 1.4.5.12).

value – input
The octetString value of the extension.

The syntax for the certificate extension’s value parameter follows:

HOST_ID_MAPPING
The value parameter should point to a character string. This string will
contain a host name, a user name, and optionally a password, all
separated by ’/’ characters.

KEY_USAGE
The value parameter should point to a character string which is nine
bytes long. Each character should have the value 1 or 0, representing
the setting of the corresponding bit in the actual extension. The offsets
for each flag are as follows:

0 digitalSignature

1 nonRepudiation

2 keyEncipherment

3 dataEncipherment

Chapter 7. Application Programming Interfaces 31

4 keyAgreement

5 keyCertSign

6 cRLSign

7 encipherOnly

8 decipherOnly

EE programs should never set keyCertSign or cRLSign. The offsets
match those given for bits in this extension in RFC 2459 and X.509.

SUBJECT_ALT_NAME
The value parameter should point to a character string. If the character
string is a legal IP address, it is interpreted as an IP address. If the
character string is a legal RFC-822 e-mail address (for example,
name@domain), it is interpreted as one. If the character string is a legal
internet domain name, it is interpreted as one. If the character string is
a legal URI (including a legal URL), it is interpreted as one. If the
character string is in OSF syntax for a DN, it is interpreted as a DN.

PRIVATE
The value parameter should be a DER-encoded binary object, whose
ASN.1 definition matches the SYNTAX parameter of the extension
definition. DER (Distinguished Encoding Rules) is one of the standard
encodings used for ASN.1 objects, and it is defined in ITU standard
X.690 (formerly X.209) and in ISO standard 8825. It differs from the
more familiar BER (Basic Encoding Rules) in that constructed strings
and indefinite lengths are not permitted.

critical – input
Determines whether or not the extension is critical:

0 no

1 yes

Note: Private extensions must not be critical.

Usage
RA, CA, EE

Remarks
Only one Key Usage and Subject Alternative Name extension identifier can be
added to each certificate. A host id mapping extension can be added for each
unique host name, and a private extension can be added for each unique extension
identifier.

Return Values
0 Normal, successful completion

> 0
An error has occurred. See the apimsg.h file for details.

Related Functions
v JNH_modify_certreq_extension

32 Programming Guide and Reference

Example
C++

octetString value;
int critical= 0
xtype = SUBJECT_ALT_NAME;
utf8String extId = "2.5.29.17";
value.data = (unsigned char *)strdup("127.0.0.1");
value.length = strlen((char *)value.data);
uint32 rc = JNH_add_certreq_extension(xtype, reqId, extId, value, critical);
JNH_release_octetString(value); // Release octetString associated with value

Java
int retVal;
int xtype = 1;
int reqId; // id of certificate request
String extId= "2.5.29.17";
String value= "127.0.0.1";
int critical = 0;
retVal = jonahInterface.JAVA_add_certreq_extension(xtype,

reqId, extId, value, critical);

Chapter 7. Application Programming Interfaces 33

JNH_authorize_registration
Used by the RA to approve a certificate request and send it to the CA.

Syntax
C++

uint32 JNH_authorize_registration(uint32 reqId, uint32 keyId)

Java
int JAVA_Authorize_Registration(int reqId, int keyId)

Parameters
reqId – input

The identifier of the registration request

keyId – input
The identifier of the key.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_reject_registration

v JNH_register_user

Example
C++

uint32 ret;
uint32 status;
uint32 reqid; // id of the certificate request
if(status == objstRACertReqActive)

ret = JNH_authorize_registration(reqId, 0);

Java
int reqId; //id of certificate request
int retVal = jonahInterface.JAVA_Authorize_Registration(reqId, 0);
if (retVal != 0)
{

jonahInterface.JAVA_get_error (retVal);
System.out.println ("Authorize Registration Error= " +

jonahInterface.retStr);
}

34 Programming Guide and Reference

JNH_authorize_revocation
Authorizes a revocation request for a certificate and sends the request on to the
CA. This routine also sets the status of the revocation request.

Syntax
C++

uint32 JNH_authorize_revocation(uint32 reqId)

Java
int JAVA_authorize_revocation(int reqId)

Parameters
reqId – input

The identifier of the revocation request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_request_revocation

Example
C++

uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_authorize_revocation(reqId);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_authorize_revocation(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
system.out.println("Authorize_revocation error= " +

jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 35

JNH_BootStrap
Performs a bootstrap on an RA or CA using an object created by the bootstrap.

Syntax
uint32 JNH_BootStrap(uint32 reqId,

const utf8String uPin)

Parameters
reqId – input

The identifier of the bootstrap request.

uPin – input
The user PIN specified to initsc for the RA or CA.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The following example shows a high-level flow of the sequence in which example
JNH_Bootstrap is issued:
JNH_start_server(server_type) // start up entity
JNH_GetStatus(&serverstatus) // get status of entity
if (serverstatus == svrSt_BootStrap) // if the entity requires Bootstrap,

status = JNH_create_Bootstrap(&objid) // then create the Bootstrap request
if (status == OK) // if create Bootstrap request was successful,
JNH_BootStrap // then Bootstrap

Related Functions
v JNH_create_BootStrap

Example
uint32 status;
uint32 reqId; // Bootstrap request identifier
status = JNH_BootStrap(reqId, (utf8String) "yourPin");

36 Programming Guide and Reference

JNH_CA_list_RAs
Returns the names of the RAs currently trusted by the CA.

Syntax
uint32 JNH_CA_list_RAs(uint32 * numRAs,

utf8String ** raNames,
utf8String ** tags)

Parameters
numRAs – output

The number of RAs trusted by the CA.

raNames – output
The names of the RAs trusted by the CA.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
utf8String * raNames;
uint32 numRAs;
utf8String * tags
int rc;
rc = JNH_CA_list_RAs(&numRAs, &raNames, &tags);

Chapter 7. Application Programming Interfaces 37

JNH_CA_list_signing_keys
Lists the subject CA’s signing key for cross-certification.

Syntax
uint32 JNH_CA_list_signing_keys(uint32* numKeys,

utf8String** algoNames,
utf8String** keyLens,
utf8String**serialNums)

Parameters
numKeys – output

The number of signing keys.

algoNames – output
An array containing the algorithm name.

keyLens – output
An array containing the length of the signing key.

serialNums – output
An array containing the serial number of the signing key.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_CA_list_RAs

Example
uint32 numKey;
utf8String* algoName;
utf8String* serialNum;
utf8String* keyLen;
status = JNH_CA_list_signing_keys(&numKey, &algoName, &keyLen, &serialNum);
cout << "JNH_CA_list_signing_keys returns " << status << " and numKey
" << numKey << endl;

if (status == 0) {
for (int i = 0; i < numKey; i++) {

cout << "i = " << i << "\n";
cout << "algoName = " << algoName[i] << "\n";
cout << "keyLength = " << keyLen[i] << "\n";
cout << "serialN = " << serialNum[i] << "\n" << endl;

}
} else {

return -1;
}

38 Programming Guide and Reference

JNH_CA_nonpkix_user_check
Checks on the status of the certificate request submitted by
JNH_CA_register_nonpkix_user.

Syntax
uint32 JNH_CA_nonpkix_user_check(uint32 reqId,

octetString * RequestStatus)

Parameters
reqId – input

The identifier of the certificate request.

RequestStatus – output
The status of the registration request:

1 JNH_CertRequestSubmitted

2 JNH_CertRequestApproved

3 JNH_CertRequestRejected

4 JNH_CertRequestError

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details

Remarks
This API is primarily used in response to a request from the non-PKIX end entity for
status and is used for browser-based certificates.

Related Functions
v JNH_CA_register_nonpkix_user

Example
uint32 reqId; // request identifier
uint32 RequestStatus // request status
uint32 status;
status = JNH_CA_nonpkix_user_check(reqId, &RequestStat);

Chapter 7. Application Programming Interfaces 39

JNH_CA_nonpkix_user_done
Removes from the object store the certificate request created by
JNH_CA_preregister_nonpkix_user.

Syntax
uint32 JNH_CA_nonpkix_user_done(uint32 reqId)

Parameters
reqId – input

The identifier of the certificate request to be removed from the object store.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_CA_preregister_nonpkix_user

Example
uint32 reqId; // request identifier
uint32 status;
status = JNH_CA_nonpkix_user_done(reqId);

40 Programming Guide and Reference

JNH_CA_nonpkix_user_get_cert
Retrieves the certificate for a non-PKIX end entity.

Syntax
uint32 JNH_CA_nonpkix_user_get_cert(uint32 reqId,

octetString ** Certificate)

Parameters
reqId – input

The identifier of the certificate request created by
JNH_CA_preregister_nonpkix_user.

Certificate – output
A pointer to where the certificate (as an octetString) is stored.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_CA_preregister_nonpkix_user

Example
uint32 reqId; // request identifier
octetString Certificate; // pointer to where the certificate is stored
uint32 status;
status = JNH_CA_nonpkix_user_get_cert(reqId, &Certificate);

Chapter 7. Application Programming Interfaces 41

JNH_CA_preregister_nonpkix_user
Creates a certificate request for a non-PKIX end entity.

Syntax
uint32 JNH_CA_preregister_nonpkix_user(const utf8String UserName,

uint32 * reqId)

Parameters
UserName – input

The Distinguished Name of the non-PKIX end entity. UserName is a
Distinguished Name in OSF syntax as described in “Parameter format” on
page 7.

reqId – output
A pointer to where the identifier of the new certificate request is written.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_CA_register_nonpkix_user

Example
uint32 reqId;
uint32 status;
status = JNH_CA_preregister_nonpkix_user("/C=US:, "CN=A_USER", 0)

42 Programming Guide and Reference

JNH_CA_register_nonpkix_user
Submits a certificate request for a non-PKIX end entity.

Syntax
uint32 JNH_CA_register_nonpkix_user(const uint32 reqId)

Parameters
reqId – input

The identifier of the certificate request created with
JNH_CA_preregister_nonpkix_user.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_CA_preregister_nonpkix_user

Example
uint32 status;
uint32 reqId; // request identifier
status = JNH_CA_register_nonpkix_user(reqId);

Chapter 7. Application Programming Interfaces 43

JNH_CA_write_info
Creates a file in which to store a CA self-signed certificate.

Syntax
C++

uint32 JNH_CA_write_info(const utf8String filename)

Java
int JAVA_CA_write_info (String filename)

Parameters
filename – input

The name of the file to create.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_enroll

Example
C++

uint32 status;
const utf8String outfile = "out.file";

status = JNH_CA_write_info(outfile);

Java
String outfile = "out.file";
int retval;
retval = jonah.Interface.JAVA_CA_write_info (outfile);

44 Programming Guide and Reference

JNH_cancel_revreq
Cancels a revocation request.

Syntax
C++

uint32 JNH_cancel_revreq(uint32 reqId)

Java
int JAVA_cancel_revreq(int reqId)

Parameters
reqId – input

The identifier of the revocation request to cancel.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_revreq

Example
C++

uint32 status;
status = JNH_cancel_revreq(uint32 reqId);

Java
int retVal;
retVal = jonahInterface.JAVA_cancel_revreq(element.elemId);

Chapter 7. Application Programming Interfaces 45

JNH_cert_inquire_endDate
Returns the ending date for the supplied certificate.

Syntax
C++

uint32 JNH_cert_inquire_endDate(const octetString cert_buffer,
utcDateTime * endDate);

Java
int JAVA_cert_inquire_endDate(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate to be queried.

endDate – output
The ending date of the certificate.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_cert_inquire_startdate

Example
C++

uint32 retVal;
utcDateTime end_date;
octetString cert_buffer;

retVal = JNH_cert_inquire_endDate(cert_buffer, &endDate);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_endDate(certBuffer);

if (retVal == 0)
{

year = frameMain.jonahInterface.year;
month = frameMain.jonahInterface.month;

46 Programming Guide and Reference

day = frameMain.jonahInterface.day;

endDate = month + "/" + day + "/" + year;
}

Chapter 7. Application Programming Interfaces 47

JNH_cert_inquire_issuer
Returns the certificate issuer for the supplied certificate.

Syntax
C++

uint32 JNH_cert_inquire_issuer(const octetString cert_buffer,
utf8String * issuer);

Java
int JAVA_cert_inquire_issuer(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate being queried.

issuer – output
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_cert_inquire_subject

Example
C++

uint32 retVal;
utf8String issuer;
octetString cert_buffer;

retVal = JNH_cert_inquire_issuer(cert_buffer, &issuer);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_issuer(certBuffer);

if (retVal == 0)
//Issuer Name.
issuer = frameMain.jonahInterface.retStr;

48 Programming Guide and Reference

JNH_cert_inquire_keyUsage
Returns the key usage extension information for the supplied certificate.

Syntax
C++

uint32 JNH_cert_inquire_keyUsage(const octetString cert_buffer,
keyUsage_t * usages);

Java
int JAVA_cert_inquire_keyUsage(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate to be queried.

usages – output
The key usage extension information:

Extension
Usage

1 Digital Signature

2 Non-repudiation

4 Key Encipherment

8 Data Encipherment

16 Key Agreement

32 Key Cert Sign

64 CRL Sign

128 Encipher Only

256 Decipher Only

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_keystore_inquire_cert

Example
C++

Chapter 7. Application Programming Interfaces 49

uint32 retVal;
keyUsage_t usages;
octetString cert_buffer;

retVal = JNH_cert_inquire_keyUsage(cert_buffer, &usages);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_keyUsage(certBuffer);

if (retVal == 0)
keyUsage = frameMain.jonahInterface.retInt;

50 Programming Guide and Reference

JNH_cert_inquire_serialNumber
Returns the serial number for the supplied certificate.

Syntax
C++

uint32 JNH_cert_inquire_serialNumber(const octetString cert_buffer,
octetString * serialNumber);

Java
int JAVA_cert_inquire_serialNumber(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate to be queried.

serialNumber – output
The serial number of the certificate, a long integer stored in the octetString data
buffer. This buffer needs to be cast to long before it can be used.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_cert_inquire_subject

Example
C++

uint32 retVal;
octetString serial_number;
octetString cert_buffer;

retVal = JNH_cert_inquire_serialNumber(cert_buffer, &serial_number);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_serialNumber(certBuffer);

if (retVal == 0)
serialNumber = frameMain.jonahInterface.retStr;

Chapter 7. Application Programming Interfaces 51

JNH_cert_inquire_startDate
Returns the starting date for the supplied certificate.

Syntax
C++

uint32 JNH_cert_inquire_startDate(const octetString cert_buffer,
utcDateTime * start_date);

Java
int JAVA_cert_inquire_startDate(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate being queried.

start_date – output
The starting date of the certificate.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_cert_inquire_endDate

Example
C++

uint32 retVal;
utcDateTime start_date;
octetString cert_buffer;

retVal = JNH_cert_inquire_startDate(cert_buffer, &start_date);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_startDate(certBuffer);

if (retVal == 0)
{

year = frameMain.jonahInterface.year;
month = frameMain.jonahInterface.month;

52 Programming Guide and Reference

day = frameMain.jonahInterface.day;

startDate = month + "/" + day + "/" + year;
}

Chapter 7. Application Programming Interfaces 53

JNH_cert_inquire_subject
Parses the subject name of a DER-encoded certificate buffer.

Syntax
C++

uint32 JNH_cert_inquire_subject(const octetString cert_buffer,
utf8String * subject);

Java
int JAVA_cert_inquire_subject(byte[] cert_buffer)

Parameters
cert_buffer – input

The buffer containing the certificate being queried.

subject – output
The subject of the certificate, which is a Distinguished Name in OSF syntax as
described in “Parameter format” on page 7.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_keystore_inquire_cert

Example
C++

uint32 retVal;
utf8String subject;
octetString cert_buffer;

retVal = JNH_cert_inquire_subject(cert_buffer, &subject);

Java
retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,

keyIDVector,
pin);

byte[] certBuffer;

certBuffer = frameMain.jonahInterface.retByteArr;

retVal = frameMain.jonahInterface.JAVA_cert_inquire_subject(certBuffer);

if (retVal == 0)
// String object that contains the certificates subject name.
subject = frameMain.jonahInterface.retStr;

54 Programming Guide and Reference

JNH_cleanup_BootStrap
Cleans up the information allocated for bootstrap. This call is used to abort the
bootstrap operation.

Syntax
uint32 JNH_cleanup_BootStrap(uint32* reqId)

Parameters
reqId – input

The identifier of the bootstrap request. If you’ve not created a bootstrap request
yet, pass in NULL.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_bootstrap

v JNH_BootStrap

Example
status = JNH_cleanup_BootStrap(&reqId)

Chapter 7. Application Programming Interfaces 55

JNH_confirm_msg
Send a confirmation message for the specified object.

Syntax
C++

uint32 JNH_confirm_msg (uint32 reqId)

Java
int JAVA_confirm_msg (int reqId)

Parameters
reqId – input

The identifier of the object for which a confirmation message is being sent.

Usage
EE, RA, CA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Example
C++

uint32 status;
uint32 reqId
status = JNH_confirm_msg (reqId);

Java
int status;
int reqId;
status = JAVA_confirm_msg (reqId);

56 Programming Guide and Reference

JNH_create_BootStrap
Creates a bootstrap request for an RA or CA.

Syntax
uint32 JNH_create_BootStrap(uint32 * reqId)

Parameters
reqId – output

The identifier of the bootstrap request.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_BootStrap

Example
uint32 status;
uint32 reqId;

status = JNH_create_BootStrap(&reqId);

Chapter 7. Application Programming Interfaces 57

JNH_create_certificate
Creates a certificate using the data in the specified request. The certificate will be
signed and returned to the RA.

Syntax
C++

uint32 JNH_create_certificate(uint32 reqId,
uint32 CAkeyId)

Java
int JAVA_Create_Certificate(int reqId,

int KeyId)

Parameters
reqId – input

The identifier of the request.

CAkeyId – input
The identifier of the CA key to be used to sign the certificate.

Note: This parameter is not currently used.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_register_user

Example
C++

uint32 status;
uint32 reqId; // id of the certificate request
if (status== ObjStCACertReqActive)
{

JNH_create_certificate(reqId,0);
}

Java
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_Create_Certificate (reqId, 0);
if (retVal != 0)
{

jonahInterface.JAVA_get_error (retVal);
System.out.println("Create Certificate error= " +

jonahInterface.retStr);
}

58 Programming Guide and Reference

JNH_create_CRL
Creates a certificate revocation list.

Syntax
C++

uint32 JNH_create_CRL()

Java
int JAVA_create_CRL()

Parameters
None

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
Any revocation request objects that are bound into the CRL will be completed. The
CRL will be sent to the RA for publication.

Related Functions
v JNH_authorize_revocation

Example
C++

uint32 rc;
rc = JNH_create_CRL();

Java
int retVal = jonahInterface.JAVA_create_CRL();
if (retVal != 0)
{
System.out.println("Create CRL error= " + jonahInterface.retStr);

Chapter 7. Application Programming Interfaces 59

JNH_create_enrollment_request
Checks the fingerprint against the certificate in either the file or the LDAP entry,
then creates an enrollment request.

Syntax
uint32 JNH_create_enrollment_request(utf8String nameOrFile,

IBOOL isFile,
utf8String caFingerprint,
uint32 * reqId)

Parameters
nameOrFile – input

The location (either a file or an LDAP entry) where the certificate is stored.

isFile – input
Specifies whether the certificate location is a file or LDAP entry:

true File

false LDAP entry

caFingerprint – input
A string of characters known to the CA runtime that can be queried by the CA
GUI and communicated to the user. This parameter is used to verify that a CA
is legitimate.

reqId – output
The identifier of the enrollment request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_enroll

Example
uint32 reqId;
buffer_t buff;
uint32 status;
status = JNH_create_enrollment_request(

(unsigned char *) "c:\\ca.info", true,
buff.data, &reqId);

60 Programming Guide and Reference

JNH_create_revreq
Creates a certificate revocation request.

Syntax
C++

uint32 JNH_create_revreq(uint32 reqId)

Java
int JAVA_create_revreq(int reqId)

Parameters
reqId – input

The identifier of the existing message, most often a certificate response,
containing the certificate to be revoked.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_request_revocation

Example
C++

uint32 reqId; // id of certificate request
JNH_create_revreq(reqId);

Java
int retVal;
int reqId; // id of certificate request
retVal = jonahInterface.JAVA_create_revreq(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println("Error in create revreq= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 61

JNH_create_revreq_from_certificate
Creates a revocation request for the given certificate.

Syntax
C++

uint32 JNH_create_revreq_from_certificate(const octetString certBuffer,
uint32 * reqId)

Java
int JAVA_create_revreq_from_certificate(byte[] cert_buffer)

Parameters
certBuffer – input

An octet string containing the DER encoding of the certificate to be revoked.

reqId – output
The identifier of the new revocation request.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This call creates a revocation request in the EE’s object store. The revocation
request accessor functions can then be used to modify parameters of the request
and JNH_request_revocation can then be used to submit the revocation request to
the RA.

Related Functions
v JNH_create_revreq

v JNH_request_revocation

Example
C++

uint32 status;
octetString certBuffer;
uint32 reqID;
status = JNH_create_revreq_from_certificate(certBuffer, &reqID)

Java
int retVal = -1;
byte[] cert_buffer;
int reqID;

retVal = JAVA_create_revreq_from_certificate(cert_buffer);

62 Programming Guide and Reference

JNH_delete_object
Deletes an object from the object store.

Syntax
C++

uint32 JNH_delete_object(uint32 reqId)

Java
int JAVA_delete_object(int reqId)

Parameters
reqId – input

The identifier of the object to be deleted.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
For a certificate or revocation request, this should only be done by the original
requestor once the certificate has been issued or the revocation accepted. Deleting
the request earlier will prevent the operation from completing.

Related Functions
v JNH_save_object

Example
C++

uint32 rc;
uint32 reqId; // id of object
rc = JNH_delete_object(reqId);

Java
int retVal;
int reqId; // id of request object
retVal = jonahInterface.JAVA_delete_object(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println("delete object error= " + jonahInterface.retStr);

}

Chapter 7. Application Programming Interfaces 63

JNH_enroll
Used to send the RA enrollment request to the CA.

Syntax
C++

uint32 JNH_enroll(uint32 objId)

Java
int JAVA_enroll (int objId)

Parameters
objId – input

The identifier of the RA enrollment request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_enrollment_request

v JNH_enroll_RA

Example
C++

uint32 status;
uint32 objId;
status = JNH_enroll(objId);

Java
int status;
int objId
status = JAVA_enroll(objId);

64 Programming Guide and Reference

JNH_enroll_RA
Used by the CA to enroll an RA.

Syntax
C++

uint32 JNH_enroll_RA(uint32 reqId,
const utf8tring raURL, const utf8String raFingerprint)

Java
int JAVA_enroll_RA (int reqId, String raURL String raFingerprint)

Parameters
reqId – input

The identifier of the object to receive the message.

raURL – input
The RA’s URL.

raFingerprint – input
The RA’s fingerprint information.

Usage
CA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_enroll

Example
C++

utf8String rafgPrint;
status = JNH_enroll_RA(objId, (const utf8String) x://localhost:829,

(utf8String) rafgPrint);

Java
int status;
status = JAVA_enroll_RA (reqId, raURL, raFingerprint);

Chapter 7. Application Programming Interfaces 65

JNH_export_credential
Exports the certificate or the private key to either a PKCS#12 file, virtual smart card,
or real smart card (for end entity only).

Syntax
C++

uint32 JNH_export_credential(uint32 reqId,
const utf8String password,
const utf8String device,
IBOOL reuse_key=0)

Java
int JAVA_export_credential(int reqId,

String password,
String device)

Parameters
reqId – input

The identifier of the request.

password – input
The password to be associated with the credential.

device – input
Specifies the device to which the certificate is being exported. Must be one of
the following:

VSC[:fileName] virtual smart card

TOK[:readerName] real smart card

PKCS12:fileName PKCS#12 file

reuse_key – input
When true, the existing key pair from the smart card is to be reused. The
default is set to false.

Usage
EE, RA, CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
C++

uint32 reqId; // id of request object
uint32 rc;
rc = JNH_export_credential(reqId,

(utf8String) "foo",
(utf8String) "VSC:c://token.fil");

Java

66 Programming Guide and Reference

String device= "PKCS12:c:\\PKCS12.OUT";
String password= "foo";
int retVal;
int reqId; // id of request object
retVal = jonahInterface.JAVA_export_credential(reqId, password, device);

Chapter 7. Application Programming Interfaces 67

JNH_get_CA_info
Using the Distinguished Name or CA file name, finds the CA URL and the subject
name and serial number for a certificate.

Syntax
uint32 JNH_get_CA_info(const utf8String nameOrFile,

IBOOL isFile,
utf8String * caURL,
utf8String * subjectName,
octetString * serialNumber)

Parameters
nameOrFile – input

The location (either a file or an LDAP entry) where the certificate is stored.

isFile – input
Specifies whether the certificate location is a file or LDAP entry:

true File

false LDAP entry

caURL – output
The URL of the CA.

subjectName – output
The subject name in a CA’s certificate. subjectName is a Distinguished Name in
OSF syntax as described in “Parameter format” on page 7.

serialNumber – output
The serial number in a CA’s certificate.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
utf8String caURL, subjectName;
octetString serialNumber;
uint32 status;
status = JNH_get_CA_info((unsigned char *) "c:\\ca.info,

true, &caURL, &subjectName, &serialNumber);

68 Programming Guide and Reference

JNH_get_error
Retrieves text associated with an error code (returned by a JNH_xxx

routine).

Syntax
C++

uint32 JNH_get_error(uint32 errorCode,
utf8String * errorText)

Java
int JAVA_get_error(int msgId)

Parameters
errorCode – input

Specifies the error code for which the text is being returned.

errorText – output
The text associated with the error code.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_register_callbacks

Example
C++

utf8String errorText=NULL;
uint32 status = API_INVALID_ARGUMENT;
uint32 rc;
rc = JNH_get_error (status, &errorText);

Java
int retVal;
retVal = jonahInterface.JAVA_create_CRL():
if (retVal != 0)
{

jonahInterface.JAVA_get)_error(retval);
System.out.println("Create CRL error= " + jonahInterface.retStr);

}

Chapter 7. Application Programming Interfaces 69

JNH_get_fingerprint
Returns an RA or CA’s fingerprint.

Syntax
uint32 JNH_get_fingerprint(const octetString serialNumber,

utf8String * fingerprint)

Parameters
serialNumber – input

The serial number returned by JNH_get_self_serial_numbers.

fingerprint – output
The fingerprint of the CA or RA.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_enrollment_request

v JNH_get_self_serial_numbers

Example
uint32 status;
octetString serialNum;
uff8String fingerprint;
status = JNH_get_fingerprint(*serialNum, &fingerprint);

70 Programming Guide and Reference

JNH_get_IniMyName
Retrieves the value for the MyName field in the .ini file’s General section.

Syntax
uint32 JNH_get_IniMyName(utf8String* name)

Parameters
name – output

The MyName value.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_MyName

Example
utf8String myName;
status = JNH_get_IniMyName (&myName);

Chapter 7. Application Programming Interfaces 71

JNH_get_IniLdapAuthName
Retrieves the LDAP AuthName information from the .ini file.

Syntax
uint32 JNH_get_IniLdapAuthName(utf8String* authname)

Parameters
authname – output

The LDAP AuthName.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_IniLdapAuthName

v JNH_get_IniLdapServer

Example
utf8String ldapserveran;
status = JNH_get_IniLdapAuthName(&ldapserveran);

72 Programming Guide and Reference

JNH_get_IniLdapAuthPwd
Retrieves the LDAP server password information from the .ini file.

Syntax
uint32 JNH_get_IniLdapAuthPwd(utf8String* pwd)

Parameters
pwd – output

The LDAP server password.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_IniLdapAuthPwd

v JNH_get_IniLdapAuthName

Example
utf8String passwd;
status = JNH_get_IniLdapAuthPwd(&passwd);

Chapter 7. Application Programming Interfaces 73

JNH_get_IniLdapServer
Retrieves the LDAP server information from the .ini file.

Syntax
uint32 JNH_get_IniLdapServer(utf8String* server)

Parameters
server – output

The LDAP server information.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_IniLdapServer

v JNH_get_IniTcpPort

Example
utf8String ldapserver;
status = JNH_get_IniLdapServer(&ldapserver);

74 Programming Guide and Reference

JNH_get_IniTcpHost
Retrieves the TCP host information from the .ini file.

Syntax
uijnt32 JNH_get_IniTcpHost(utf8String* host)

Parameters
host – output

The TCP host name from the .ini file.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_IniTcpHost

v JNH_get_IniMyName

Example
utf8String tcphost;
status = JNH_get_IniTcpHost(&tcphost);

Chapter 7. Application Programming Interfaces 75

JNH_get_IniTcpPort
Retrieves the TCP port information from the .ini file.

Syntax
uint32 JNH_get_IniTcpPort(utf8String* port)

Parameters
port – output

The TCP port information.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_IniTcpPort

v JNH_get_IniTcpHost

Example
utf8String tcpport;
status = JNH_get_IniTcpPort(&tcpport);

76 Programming Guide and Reference

JNH_get_self_serial_number
Returns an array of serial numbers needed to call JNH_get_fingerprint.

Syntax
uint32 JNH_get_self_serial_number(uint32 *monuments,

octetString **serialNumbers)

Parameters
numElements – output

The number of serial numbers returned in the array.

serialNumbers – output
The array of serial numbers. The first serial number in the array is the
self-signed serial number.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_get_fingerprint

Example
uint32 status;
uint32 numElements;
octetString * serialNum;
status = JNH_get_self_serial_numbers(&numElements, &serialNum);

Chapter 7. Application Programming Interfaces 77

JNH_get_self_subjectKeyInfo
Returns key information, public key, and algorithms from a self-signed certificate.

Syntax
uint32 JNH_get_self_subjectKeyInfo(uint32 *numElements,

octetString **serialNumbers,
utf8String **keyAlgorithms,
uint32 **keyLengths)

Parameters
numElements – output

The number of elements returned.

serialNumber – output
An array of serial numbers, the first of which is the serial number of the
self-signed certificate.

keyAlgorithms – output
An array of key algorithms.

keyLengths – output
An array of key lengths.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_subjectKeyInfo

Example
uint32 status;
uint32 numElements;
octetString * serialNum;
utf8String *keyAlgorithms = NULL;
uint32 *keyLenghts = 0;

status = JNH_get_self_subjectKeyInfo(&numElements, &serialNum,
&keyAlgorithms, &keyLengths);

78 Programming Guide and Reference

JNH_get_object_state
Returns the state of a specified object.

Syntax
uint32 JNH_get_object_state(uint32 objId,

uint32 * state)

Parameters
objId – input

The identifier of the object.

state – output
The state of the object.

Usage
EE, RA, CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The specified object must be locked with JNH_reserve_object before
JNH_get_object_state can be used.

Related Functions
v JNH_register_callbacks

Example
uint32 objId; //id of the object
uint32 state
uint32 rc;
rc = JNH_get_object_state(objId, &state);

Chapter 7. Application Programming Interfaces 79

JNH_GetStatus
Returns the current status of a server.

Syntax
uint32 JNH_GetStatus(uint32 * status)

Parameters
status – output

The status of the server:

svrSt_Recovery
Recovery

svrSt_UnEnroll
Unenrolled

svrSt_Bootstrap
Bootstrap

svrSt_Running
Running

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_get_object_state

Example
uint32 status;
uint32 serverstatus;

status = JNH_GetStatus(&serverstatus);

80 Programming Guide and Reference

JNH_INI_deleteKey
Deletes the entry with the specified key and section from an .ini object.

Syntax
C++

uint32 JNH_INI_deleteKey(const utf8String section,
const utf8String key)

Java
int JAVA_INI_deleteKey(String section,

String key)

Parameters
section – input

The name of the section for the defined key.

key – input
The name of the key to be deleted.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_deleteSection

Example
C++

uint32 retVal;
utf8String section = "OIDs";
utf8String key = "C";

retVal = JNH_INI_deleteKey(section, key);

Java
int retVal = 0;
String section = "OIDs";
String key = "C";

retVal = jonahInterface.JAVA_INI_deleteKey(section, key);

Chapter 7. Application Programming Interfaces 81

JNH_INI_deleteSection
Deletes a specified section from an .ini object.

Syntax
C++

uint32 JNH_INI_deleteSection(const utf8String sectionName)

Java
int JAVA_INI_deleteSection(String sectionName)

Parameters
sectionName – input

The name of the section to be deleted.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_deleteKey

Example
C++

uint32 retVal;
utf8String section = "OIDs";

retVal = JNH_INI_deleteSection(section);

Java
int retVal = 0;
String section = "OIDs";

retVal = jonahInterface.JAVA_INI_deleteSection(section);

82 Programming Guide and Reference

JNH_INI_Initialize
Opens an .ini object for use.

Syntax
C++

uint32 JNH_INI_Initialize(const utf8String iniName)

Java
int JAVA_INI_Initialize(String iniName)

Parameters
iniName – input

The name of the .ini object to open.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_readSection

v JNH_INI_deleteSection

Example
C++

uint32 retVal;
retVal = JNH_INI_Initialize("c:\\pkix\\templ\\caserver.ini");

Java
int retVal = jonahInterface.JAVA_INI_Initialize("c:\\pkix\\templ\\caserver.ini");

Chapter 7. Application Programming Interfaces 83

JNH_INI_readKeys
Returns a list of the keys found in a specified .ini object section.

Syntax
C++

uint32 JNH_INI_readKeys(const utf8String section,
utf8String ** plist,
uint32 * numKeys)

Java
int JAVA_INI_readKeys(String section)

Parameters
section – input

The name of the .ini section from which to retrieve the keys.

plist –
A pointer to a utf8String array to return the keys.

numKeys – output
The number of keys found in the specified section.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_writeFile

v JNH_INI_readSections

v JNH_INI_readString

Example
C++

utf8String * str;
uint32 numKeys;
uint32 retValInt;
utf8String section = "OIDs";

retValInt = JNH_INI_readKeys(section, &str, &numSections);

Java
String section = "OIDs";
int retVal = 0;

retVal = jonahInterface.JAVA_INI_readKeys(section);
if (retVal == 0)
{

84 Programming Guide and Reference

numKeys = jonahInterface.retStrArr.length;
String iniKeys[] = new String[numKeys];
System.arraycopy(jonahInterface.retStrArr, 0, iniKeys, 0, numKeys);

}

Chapter 7. Application Programming Interfaces 85

JNH_INI_readSections
Returns a list of the sections found in the .ini object.

Syntax
C++

uint32 JNH_INI_readSections(utf8String ** plist,
uint32 * numSections)

Java
int JAVA_INI_readSections()

Parameters
plist –input

A pointer to a utf8String array to return the section names.

numSections – output
The number of sections found in the .ini file.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_readString

v JNH_INI_readKeys

Example
C++

utf8String * str;
uint32 numSections;
uint32 retValInt;

retValInt = JNH_INI_readSections(&str, &numSections);

Java
int retVal = jonahInterface.JAVA_INI_readSections();
if (retVal == 0)
{

int numSections = jonahInterface.retStrArr.length;
String iniSections[] = new String[numSections];

System.arraycopy(jonahInterface.retStrArr, 0, iniSections, 0, numSections);
}

86 Programming Guide and Reference

JNH_INI_readString
Reads a string from the Jonah.ini file.

Syntax
C++

uint32 JNH_INI_readString(const utf8String section,
const utf8String key,
utf8String * value,
const utf8String defaultValue)

Java
int JAVA_INI_readString(String section,

String key)

Parameters
section – input

The section of the file from which to read the string.

key – input
The key to read in the specified section.

value – output
The value associated with the key.

defaultValue – input
The value to use if the key is not found.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_writeString

v JNH_INI_readKeys

v JNH_INI_readSections

Example
C++

utf8String value;
int rc;
rc = JNH_INI_readString(

"Object Store",
"Name",
&value,
"jonahee");

Java

Chapter 7. Application Programming Interfaces 87

int retVal = jonahInterface.JAVA_INI_readString("General", "TempPath");
if (retVal != 0)
{

String TempPath = jonahInterface.retSt);
}

88 Programming Guide and Reference

JNH_INI_writeFile
Writes an .ini object to the medium.

Syntax
C++

uint32 JNH_INI_writeFile()

Java
int JAVA_INI_writeFile()

Parameters
None

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_writeString

Example
C++

uint32 retVal;
retVal = JNH_INI_writeFile();

Java
int retVal = 0;
retVal = jonahInterface.JAVA_INI_writeFile();

Chapter 7. Application Programming Interfaces 89

JNH_INI_writeString
Writes the string to the .ini object.

Syntax
C++

uint32 JNH_INI_writeString(const utf8String section,
const utf8String key,
const utf8String value)

Java
int JAVA_INI_writeString(String section,

String key,
String value)

Parameters
section – input

The section of the file to write the string in.

key – input
The key to be added or updated in the defined section of the .ini object.

value – input
The value string assigned to the key.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_INI_readString

v JNH_INI_writeFile

Example
C++

uint32 rc;
rc = JNH_INI_writeString

("Object Store",
"Name",
"jonahee");

Java
int retVal = 0;
String section = "OIDs";
String key = "C";
String value = "1.2.3.4";

retVal = jonahInterface.JAVA_INI_writeString(section, key, value);

90 Programming Guide and Reference

JNH_initialize_UI
Sets up communication with a background server.

Syntax
uint32 JNH_initialize_UI(octetString *certBuff,

const char * userPin)

Parameters
certBuff – input

The DER encoding of the certificate associated with an administrator.

userPin – input
The password for the local keystore. This parameter allows the smart card
(virtual or real) to be used to sign messages to the server.

Usage
RA, CA

Return Values
REMJNH_OK

Normal, successful completion

REMJNH_NOCONNECTION
Unable to connect to a server at the given address and port.

Related Functions
v JNH_shutdown_UI

Example
octetString certBuff;
utf8String scPIN;

status = JNH_initialize_UI(&certBuff, scPIN);

if (status != 0) {
//handle error conditions

}

Chapter 7. Application Programming Interfaces 91

JNH_inquire_certreq_basicConstraints
Retrieves the basic constraints from a certificate request.

Syntax
C++

uint32 JNH_inquire_certreq_basicConstraints(uint32 reqId,
IBOOL * isCaCert,
uint32 * maxPathLen,
IBOOL * isMaxPathLenUnlimited)

Java
int JAVA_inquire_certreq_basicConstraints(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

isCaCert – output
Determines if the certificate request is from a CA.

maxPathLen – output
Returns the maximum path length allowed. The default length is 0. A
maxPathLen value of –1 means that the path length is unconstrained.

isMaxPathLenUnlimited – output
Specifies whether or not the maximum path length is unlimited.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_basicConstraints

Example
C++

uint32 reqId; // id of certificate request
uint32 rc;
bool isCaCert;
uint32 maxPathLen
IBOOL isMaxPathLenUnlimited;
rc = JNH_inquire_certreq_basicConstraints(reqId, &isCaCert,

&maxPathLen, &isMaxPathLenUnlimited);

Java
int retVal;
int reqId; // id of certificate request
retVal = jonahInterface.JAVA_inquire_certreq_basicContraints(reqId);
if (retVal != 0)

92 Programming Guide and Reference

{
int maxPathLen = jonahInterface.retInt;
boolean isCaCert = jonahInterface.retBool;

}

Chapter 7. Application Programming Interfaces 93

JNH_inquire_certreq_enddate
Retrieves the expiration date from a certificate request.

Syntax
C++

uint32 JNH_inquire_certreq_enddate(uint32 reqId,
utcDateTime * enddate)

Java
int JAVA_inquire_certreq_enddate(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

enddate – output
The expiration date of the certificate request.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_startdate

v JNH_set_certreq_endDate

Example
C++

utcDateTime enddate;
uint32 reqId; // id of certificate request
rc = JNH_inquire_certreq_enddate(reqId, &enddate);

Java
int reqId; // id of certificate request
Date enddate;
int retVal = jonahInterface.JAVA_inquire_certreq_enddate(reqId);
if (retVal ==0)
{

enddate.year = jonahInterface.year;
enddate.month = jonahInterface.month;
enddate.day = jonahInterface.day;

}

94 Programming Guide and Reference

JNH_inquire_certreq_issuer
Retrieves the issuer name from a certificate request.

Syntax
C++

uint32 JNH_inquire_certreq_issuer(uint32 reqId,
utf8String * issuer)

Java
int JAVA_inquire_certreq_issuer(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

issuer – output
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_issuer

Example
C++

uint32 reqId; // id of certificate request
utf8String issuer;
rc = JNH_inquire_certreq_issuer(reqId, &issuer);

Java
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_inquire_certreq_issuer(reqId);
if (retVal == 0)
{

String issuerName = jonahInterface.retStr;
}

Chapter 7. Application Programming Interfaces 95

JNH_inquire_certreq_keyUsage
Retrieves the key usage extension information from a certificate request.

Syntax
C++

uint32 JNH_inquire_certreq_keyUsage(uint32 reqId,
keyusage_t * usages)

Java
int JAVA_inquire_certreq_keyUsage(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

usages – output
The key usage extension information:

Extension
Usage

1 Digital Signature

2 Non-repudiation

4 Key Encipherment

8 Data Encipherment

16 Key Agreement

32 Key Cert Sign

64 CRL Sign

128 Encipher Only

256 Decipher Only

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_keyUsage

Example
C++

uint32 rc;
uint32 reqId; // id of certificate request
keyUsage_t usages;
rc = JNH_inquire_certreq_keyUsage(reqId, &usages);

96 Programming Guide and Reference

Java
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_inquire_certreq_keyUsage(reqId);
if (retVal == 0)
{

int KeyUsage = jonahInterface.retInt;
}

Chapter 7. Application Programming Interfaces 97

JNH_inquire_certreq_privkey_EE
Returns the key length and algorithm of the EE-generated private key for the
specified certificate request.

Syntax
uint32 JNH_inquire_certreq_privkey_EE(uint32 reqId,

utf8String * algorithm,
uint32 * length)

Parameters
reqId – input

The identifier of the certificate request.

algorithm – output
The algorithm associated with the private key, either id_dsa or id_rsa.

length – output
The length of the private key in bits, typically 1024.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_privkey_EE

Example
uint32 length;
uint32 reqId; // id of certificate request
utf8String algorithm;
retVal = JNH_inquire_certreq_privkey_EE (reqId, &algorithm, &length);

98 Programming Guide and Reference

JNH_inquire_certreq_serialnumber
Retrieves the serial number from a certificate request.

Syntax
uint32 JNH_inquire_certreq_serialnumber(uint32 reqId,

octetString * serialNumber)

Parameters
reqId – input

The identifier of the certificate request.

serialNumber – output
The serial number of the certificate, a long integer stored in the octetString data
buffer. This buffer needs to be cast to long before it can be used.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The serial number for a request is only available after a certificate has been created
from the request.

Related Functions
v JNH_set_revreq_certserialnumber

Example
uint32 reqId; // id of certificate request
uint32 rc;
octetString serialNumber
serialNumber.data = NULL;
rc = JNH_inquire_certreq_serialNumber(reqId, &serialNumber);
if (serialNumber.data !=NULL)
printf("Serial Number was %x\n", * (uint32*)(serialNumber.data));

Chapter 7. Application Programming Interfaces 99

JNH_inquire_certreq_startdate
Retrieves the starting date (the ″valid not before″ attribute) from a certificate
request.

Syntax
C++

uint32 JNH_inquire_certreq_startdate(uint32 reqId,
utcDateTime * startdate)

Java
int JAVA_inquire_certreq_startdate(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

startdate – output
The starting date of the request.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_enddate

v JNH_set_certreq_startDate

Example
C++

uint32 reqId; // id of certificate request
utcDateTime startdate;
uint32 rc;
rc = JNH_inquire_certreq_startdate(reqId, &startdate);

Java
Date StartDate;
int retVal;
int reqId; // id of certificate request
retVal = jonahInterface.JAVA_inquire_certreq_startdate(reqId);
if (retVal == 0)
{

startdate.year = jonahInterface.year;
startdate.month = jonahInterface.month;
startdate.day = jonahInterface.day;

}

100 Programming Guide and Reference

JNH_inquire_certreq_status
Retrieves the status of a certificate request.

Syntax
uint32 JNH_inquire_certreq_status(uint32 reqId, uint32 * status)

Parameters
reqId – input

The identifier of the certificate request.

status – output
The status of the certificate request. See the Objstates.h file for the status
definition.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_get_object_state

Example
uint32 reqId; // id of certificate request
uint32 status
uint32 rc;
rc = JNH_inquire_certreq_status(reqId, &status);

Chapter 7. Application Programming Interfaces 101

JNH_inquire_certreq_subject
Retrieves the subject name from a certificate request.

Syntax
C++

uint32 JNH_inquire_certreq_subject(uint32 reqId,
utf8String * subject)

Java
int JAVA_inquire_certreq_subject(int reqId)

Parameters
reqId – input

The identifier of the certificate request.

subject – output
The subject name of the certificate request, which is a Distinguished Name in
OSF syntax as described in “Parameter format” on page 7.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_certreq_subject

Example
C++

utf8String subject;
uint32 rc;
uint32 reqId; // id of certificate request
rc = JNH_inquire_certreq_subject(reqId, &subject);
if (rc == 0)
{

printf ("Subject Name = %s\n", subject);
}

Java
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_inquire_certreq_subject(reqId);
if (retVal == 0)
{

String subjName = jonahInterface.retStr;
}

102 Programming Guide and Reference

JNH_inquire_certreq_subjectkey_algorithm
Retrieves the subject key algorithm from a certificate request.

Syntax
uint32 JNH_inquire_certreq_subjectkey_algorithm(uint32 reqId,

octetString * algorithm)

Parameters
reqId – input

The identifier of the certificate request.

algorithm – output
The certificate request’s subject key algorithm in the numeric OID dot-format.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
uint32 reqId; // id of certificate request
octetString algorithm;
algorithm.data = NULL;
algortihm.length = 0;
uint32 rc;
rc = JNH_inquire_certreq_subjectKey_algorithm(reqId, &algorithm);

Chapter 7. Application Programming Interfaces 103

JNH_inquire_revreq_certIssuer
Returns the name of the issuer of a specified revocation request.

Syntax
C++

uint32 JNH_inquire_revreq_certIssuer(uint32 reqId,
uint32 index,
utf8String * certIssuer)

Java
int JAVA_inquire_revreq_certIssuer(int reqId)

Parameters
reqId – input

The identifier of the revocation request being queried. This identifier must be
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

certIssuer – output
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7. This parameter must be
passed in as NULL. On output, the field will point to malloc’ed memory, which
the caller is responsible for freeing.

Usage
CA, EE, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_revreq_certIssuer

Example
C++

utf8String resultIssuer = NULL;
uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_inquire_revreq_certIssuer(reqId, (uint32)0, resultIssuer);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_inquire_revreq_certIssuer(reqId);
if (retVal == 0)
{

String issuerName = jonahInterface.retStr;
}

104 Programming Guide and Reference

JNH_inquire_revreq_certserialnumber
Returns one of the certificate serial numbers from a revocation request.

Syntax
C++

uint32 JNH_inquire_revreq_certserialnumber(uint32 reqId,
uint32 index,
octetString * serialNumber)

Java
int JAVA_inquire_revreq_certserialnuamber(int reqId)

Parameters
reqId – input

The identifier of the revocation request being queried. This identifier must be of
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

serialNumber – output
The serial number of the certificate, a long integer stored in the octetString data
buffer. This buffer needs to be cast to long before it can be used.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_revreq_certserialnumber

Example
C++

octetString ser;
ser.data = NULL;
ser.length = 0;
uint32 rc;
uint32 reqId; // id of the revocation request to be queried
rc = JNH_inquire_revreq_certserialnumber(reqId, (uint32)0, &ser);

Java
int reqId; // id of the revocation request to be queried
int retVal;
retVal = jonahInterface.JAVA_inquire_revreq_certserialnumber(reqId);
if (retVal == 0)
{

String ser = jonahInterface.retStr;
}

Chapter 7. Application Programming Interfaces 105

JNH_inquire_revreq_certserialnumbers
Returns a list of the certificate serial numbers for all the certificates being revoked
by this request.

Syntax
uint32 JNH_inquire_revreq_certserialnumbers(uint32 reqId,

uint32 * num_of_certs,
octetString serialNumber[])

Parameters
reqId – input

The identifier of the revocation request being queried. This identifier must be of
type ObjClTypeRev.

num_of_certs – input/output
The number of certificates in the revocation request.

If the serialNumber parameter is set to NULL, the number of certificates will be
written to num_of_certs. If the serialNumber parameter is not NULL, set the
num_of_certs input parameter to represent the size of the serialNumber array.

On output, this parameter contains the number of certificate serial numbers that
were written to the array.

serialNumber[] – output
The array of certificate serial numbers whose revocation is being requested, in
the standard ASN.1 binary format for integers. These are variable-length,
highest-order-first (big-endian) binary integers with redundant leading 0 or FF
bytes removed. A leading 0 byte is considered redundant if the next byte’s value
is less than 128. A leading FF byte is considered redundant if the next byte’s
value is greater than or equal to 128.

On input, set the data fields of the octetString to NULL.

On output, the data fields point to malloc’ed storage, which the caller is
responsible for freeing.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_revreq_certserialnumber

v JNH_set_revreq_certserialnumber

106 Programming Guide and Reference

Example
octetString * a = NULL;
uint32 asize = 0;
uint32 numberofRequest = 6;
asize = numberofRequests * sizeof(octetString);
octetString a = (octetString *) malloc (asize);
uint32 tempnum = numberOfRequests;
uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_inquire_revreq_certserialnumbers(reqId, &tempNum, a);

Chapter 7. Application Programming Interfaces 107

JNH_inquire_revreq_hold_instruction_code
Returns the hold_instruction_code from one of the certificates being revoked in a
revocation request.

Syntax
uint32 JNH_inquire_revreq_hold_instruction_code(uint32 reqId,

uint32 index,
octetString * code)

Parameters
reqId – input

The identifier of the revocation request being queried. This identifier must be of
type ObjClTypeRev.

Index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

code – output
The object ID of the hold instruction code, in the standard ASN.1 binary format
for object identifiers.

Note: Since hold_instruction_code is only properly used when a certificate has
been placed in “certificateHold” status, it is common for no
hold_instruction_code to be present in a revocation request. In such
cases, no code is returned despite a successful return value (0), the data
pointer is set to NULL and the length set to 0.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_revreq_hold_instruction_code

Example
octetString outHold;
outHold.data = NULL;
outHold.length = 0;
uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_inquire_revreq_hold_instruction_code(reqId, (uint32)0, &outHold);

108 Programming Guide and Reference

JNH_inquire_revreq_invalidityDate
Returns the invalidity date from one of the certificates being revoked in a revocation
request.

Syntax
C++

uint32 JNH_inquire_revreq_invalidityDate(uint32 reqId,
uint32 index,
utcDateTime * invalidityDate)

Java
int JAVA_inquire_revreq_invalidityDate(int reqId)

Parameters
reqId or reqId – input

The identifier of the revocation request being queried. The identifier must be of
type ObjClTypeRev.

Index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

invalidityDate – output
The invalidity date of the requested certificate.

Note: This is an optional extension to the CRL entry. Because of this, it is
possible for no data to return, despite a successful return value (0). In
such a case, all fields will be set to 0.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The invalidity date is the date that the certificate is suspected to have been
compromised and might be earlier than the actual revocation date.

Related Functions
v JNH_set_revreq_invalidityDate

Example
C++

uint32 rc;
uint32 reqId; // id of revocation request
utcDateTime invalidDate;
rc = JNH_inquire_revreq_invalidityDate(reqId, (uint32)0, &invalidDate);

Java

Chapter 7. Application Programming Interfaces 109

int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_inquire_revreq_invalidityDate(reqId);
if (retVal == 0)
{

System.out.println ("Invalidity date= " + jonahInterface.month + "/"
+ jonahInterface.day + "/" + jonahInterface.year);

}

110 Programming Guide and Reference

JNH_inquire_revreq_reason
Returns the reason code from one of the certificates being revoked in a revocation
request.

Syntax
C++

uint32 JNH_inquire_revreq_reason(uint32 reqId,
uint32 index,
int * reasonFlags)

Java
int JAVA_inquire_revreq_reason(int reqId)

Parameters
reqId – input

The identifier of the revocation request being queried. The identifier must be of
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

reasonFlags – output
The reason code from the requested certificate.

The reason codes are as follows:

0 REV_REASON_NONE

1 REV_REASON_UNUSED

2 REV_REASON_KEY_COMPROMISE

4 REV_REASON_CA_COMPROMISE

8 REV_REASON_AFFILIATION_CHANGED

16 REV_REASON_SUPERSEDED

32 REV_REASON_CESSATION_OF_OPERATION

64 REV_REASON_CERTIFICATE_HOLD

For a complete list of the revocation reason codes and their definitions, see
Include\ASN1\X509.h REASON_*.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_set_revreq_reason

Chapter 7. Application Programming Interfaces 111

Example
C++

int outReasons = 0;
uint32 reqId; // id of revocation request
uint32 rc;
rc = JNH_inquire_revreq_reason(reqId, (uint32) 0, &outReasons);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_inquire_revreq_reason(reqId);
if (retVal == 0)
{

int outReasons = jonahInterface.retInt;
}

112 Programming Guide and Reference

JNH_inquire_revreq_requests
Determines how many certificates are being revoked by the revocation request.

Syntax
uint32 JNH_inquire_revreq_requests(uint32 reqId,

uint32 * nReqs)

Parameters
reqId – input

The identifier of the revocation request. The identifier must be of type
ObjClTypeRev.

nReqs – output
Returns the number of certificates being revoked by this revocation request.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
uint32 nReqs;
uint32 rc;
uint32 reqId; // id of the revocation request
rc = JNH_inquire_revreq_requests(reqId, &nReqs);

Chapter 7. Application Programming Interfaces 113

JNH_Keypair_Selected
Allows the EE to select a key pair from the list returned by
JNH_List_Existing_Keypairs and use that key pair in a new certificate request.

Syntax
uint32 JNH_Keypair_Selected(const char * ppin,

char * pjkeyID)

Parameters
ppin – input

A pointer to the smart card user PIN.

pjKeyID – input
The identifier of the key pair to be used in the new certificate request.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_List_Existing_Keypairs

Example
const char * ppin;
char * pjkeyID;

rv = JNH_KeyPair_Selected(ppin, pjkeyID);

114 Programming Guide and Reference

JNH_keystore_inquire_cert
Retrieves a certificate from the key store.

Syntax
C++

uint32 JNH_keystore_inquire_cert(const utf8String entryName,
const utf8String pin,
const octetString keyID,
octetString * cert_buffer);

Java
int JAVA_keystore_inquire_cert(String entryName,

Vector keyID,
String pin)

Parameters
entryName – input

The subject name of the certificate to retrieve from the key store.

pin – input
The security person identification number to access the key store.

keyID – input
The key identifier of the certificate to retrieve from the key store.

cert_buffer – output
A buffer containing the DER encoding of the certificate retrieved from the key
store.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_list_SC_certs

Example
C++

uint32 retVal;
octetString keyID;
utf8String entryName;
utf8String pin;
octetString cert_buffer;
retVal = JNH_keystore_inquire_cert(entryName, pin, keyID, cert_buffer);

Java
String pin = "SOPIN";
retVal = jonahInterface.JAVA_list_SC_certs(pin);

if (retVal != 0)

Chapter 7. Application Programming Interfaces 115

{

//KEYSTORE Error Occurred retrieving the certs list.
}
//Return Vector object with all the certs info.
jonahInterface.retVector;

entryName = (String) jonahInterface.retVector.elementAt(1);

keyIDVector = (java.util.Vector) jonahInterface.retVector.elementAt(1);

retVal = frameMain.jonahInterface.JAVA_keystore_inquire_cert(entryName,
keyIDVector,
pin);

//byte[] that contains the DER Encoding of the certificate.
frameMain.jonahInterface.retByteArr;

116 Programming Guide and Reference

JNH_List_Existing_Keypairs
Lists any existing public and private key pairs stored on a smart card.

Syntax
uint32 JNH_List_Existing_Keypairs(const char * ppin,

uint32 & retNumKeys,
octetString * keyIDs,
uint32 * algorithmID,
uint32 * keyUsage)

Parameters
ppin – input

A pointer to the smart card user PIN.

retNumKey – output
The number of keys found on the smart card.

keyIDs – output
The unique identifier of the key pair.

algorithm – output
The algorithm supported by the key pair.

keyUsage – output
The key pair’s intended usage.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API allows the EE to use a pre-existing key when generating a new certificate
request.

Related Functions
v JNH_Keypair_Selected

Example
const char * ppin;
uint32 * retNumKeys;
octetString * keyIDs;
uint32 * pAlgorithmID;
uint32 * pKeyUsage;

rv = JNH_List_Existing_Keypairs(ppin, retNumKeys, keyIDs, pAlgorithmID, pKeyUsage);

Chapter 7. Application Programming Interfaces 117

JNH_list_objects
Causes all active objects to announce themselves.

Syntax
C++

uint32 JNH_list_objects()

Java
int JAVA_list_objects()

Parameters
None.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This routine allows the GUI to synchronize any records it maintains with the actual
contents of the active object store. Since objects in the object store might persist
across server invocations, the GUI should call this routine on initialization to
determine the state of the object store.

Related Functions
v JNH_list_surrogates

Example
C++

JNH_list_objects();

Java
int retVal = jonahInterface.JAVA_list_objects();

118 Programming Guide and Reference

JNH_list_SC_certs
Returns the subject names and key identifiers for all the certificates in the key store.

Syntax
C++

uint32 JNH_list_SC_certs(const char *pin,
uint32 & numCerts,
unsigned char *** keyIds,
uint32 ** keyIdLengths,
unsigned char *** certNames,
uint32 ** certNameLengths)

Java
int JAVA_list_SC_certs(String pin)

Parameters
pin – input

The security officer or user private identification number (PIN) to access the key
store.

numCerts – output
The number of certificates in the key store.

keyIds – output
An array of the key identifiers for each certificate in the key store.

keyIdLengths – output
An array of the lengths of each certificate’s key identifier.

certNames – output
An array of the subject names for all the certificates in the key store.

certNameLengths – output
An array of the length of each certificate’s subject name.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_keystore_inquire_cert

Example
C++

uint32 retVal;
uint32 retNumCerts;
char * pin;
unsigned char ** keyIds;
uint32 * keyIdLengths;
unsigned char ** certNames;

Chapter 7. Application Programming Interfaces 119

uint32 * certNameLengths;

retVal = JNH_list_SC_certs(pin, retNumCerts, &keyIds, &keyIdLengths, &certNames,
&certNameLengths);

Java
String pin = "SOPIN";
retVal = jonahInterface.JAVA_list_SC_certs(pin);

if (retVal != 0)
{

//KEYSTORE Error Occurred retrieving the certs list.
}
//Return Vector object with all the certs info.
jonahInterface.retVector

120 Programming Guide and Reference

JNH_list_surrogates
Causes all surrogate objects to announce themselves.

Syntax
uint32 JNH_list_surrogates()

Parameters
None.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This routine allows the GUI to synchronize any records it maintains with the actual
contents of the active object store. Since objects in the object store might persist
across server invocations, the GUI should call this routine on initialization to
determine the current state of the object store.

Related Functions
v JNH_list_objects

Example
uint32 rc;
rc = JNH_list_surrogates();

Chapter 7. Application Programming Interfaces 121

JNH_modify_certreq_extension
Modifies an extension in a certificate request.

Syntax
C++

uint32 JNH_modify_certreq_extension(uint32 xtype,
uint32 reqId,
utf8String extId,
octetString value,
IBOOL critical)

Java
int JAVA_modify_certreq_extension(int xtype,

int reqId,
String extId,
String value,
int critical)

Parameters
xtype – input

The type of extension to be modified:

1 HOST_ID_MAPPING

2 KEY_USAGE

3 SUBJECT_ALT_NAME

4 PRIVATE

reqId – input
The identifier of the certificate request.

extId – input
The identifier of the extension to modified in the certificate request. This
parameter is primarily used for private extensions, where it is provided in a dot
string format (such as 1.4.5.12).

value – input
The octetstring value of the extension.

critical – input
Determines whether or not the extension is critical:

0 no

1 yes

Note: Private extensions must not be marked critical.

Usage
RA, CA, EE

Remarks
Only one Key Usage and Subject Alternative Name extension identifier can be
added to each certificate. A host id mapping extension can be added for each
unique host name, and a private extension can be added for each unique extension
identifier.

122 Programming Guide and Reference

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_add_certreq_extension

Example
C++

uint32 rc;
uint32 xtype;
uint32 reqId; // id of certificate request
uint32 critical= 0;
octetString value; // specify the new value for the extension
utf8String extId = "host1";
xtype = HOST_ID_MAPPING;
status = JNH_modify_certreq_extension(xtype, reqId, extId, value, critical);

Java
int retVal;
int xtype = HOST_ID_MAPPING;
int reqId; // id of certificate request
String extId= "host1";
String value= "/host1/id1/";
int critical = 1;
retVal = jonahInterface.JAVA_modify_certreq_extension(xtype,

reqId, extId, value, critical);

Chapter 7. Application Programming Interfaces 123

JNH_new_revreq
Creates a new revocation request and returns the revocation request’s identifier.

Syntax
uint32 JNH_new_revreq(const octetString *serialNumber,

const utf8String issuer,
uint32 * reqId)

Parameters
serialNumber – input

The serial number of the certificate to be revoked.

issuer – input
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

reqId – output
The identifier of the new revocation request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_revreq

Example
char sN[]= "7777";
octetString serialNumber;
uint32 rc;
serial.data = (unsigned char*) &sN;
serial.length = strlen(sN);
uint32 reqId; // id of revocation request
rc = JNH_new_revreq(&serialNumber, (utf8String) "/CN=ISSUER", &reqId);

124 Programming Guide and Reference

JNH_pkcs12scExportFile
Exports a private key and public certificate from a smart card.

Syntax
C++

JNH_pkcs12scExportFile(const octetString &key_id.
const octetString &extdShortName,
const utf8String p12_password,
const utf8String sc_password,
const octetString &algorithmId,
octetString * exportfile,
uint32 iteration_count,
const uint32 slot_id)

Java
public native int JAVA_PKCS12_Export_from_Keystore(String entryName,

Vector keyID,
String filePassword,
String keystorePassword,
int algorithmID,
int iterationCount)

Parameters
key_id – input

The identifier of the private key to export.

extdShortName – input
The extended short name from the smart card’s certificate structure.

p12_password – input
A password for the exported file. This password should be known by both the
sender and receiver of the file.

sc_password – input
The password to the slot on the smart card where the file is stored.

algorithmId – input
The identifier of the type of algorithm used to encrypt the file. Can be one of the
following:

RC2_40BIT_KEY 40-bit encryption algorithm

RC2_128BIT_KEY RSA 128-bit encryption algorithm

DES3_3KEY 192-bit triple Data Encryption Standard (DES)
encryption.

exportfile – output
A flat file containing DER encodings of the private key and public certificate.

This file must be saved as binary.

You must free the export file after this call.

iteration_count – input
The number of times to encrypt the file. The default and lowest valid value is 1.

slot_id – input
The identifier for the smart card slot that contains the private key and public
certificate.

Chapter 7. Application Programming Interfaces 125

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h and crmsg.h files for details.

Remarks
PKCS #12 specifies a portable format for storing or transporting personal
information. The Trust Authority version of PKCS #12 restricts the information that
can be exported to private keys and public certificates. Under the current
implementation, certificate chains cannot be exported.

To use the PKCS #12 APIs, you must include in your application, using the #include
statement, the Jonah.h and JonahAlg.h files.

The key_id, extdShortName, p12_password, sc_password, and algorithmId
parameters must not be NULL.

Related Functions
v JNH_pkcs12UserExportFile

v JNH_pkcs12ImportFile

Example
C++

uint32 status;
int serverType; //0 ->EE, 1 ->RA, 2 ->CA
int algType; //algorithm type: 1 -> for RC2_40BIT_KEY
char uPin[128]; //user pin
char p12Pin[128]; //pksc12 pin to export the file.
//When this file is imported, it need this pin again
char Path[128]; //file name to save the cert exported from the smartcard

.

.

.

int exportToFile(int keyIdLength, unsigned char *keyId, int certNameLength,
unsigned char *certName)
{
octetString key, n, file, alg;
char t[128]= "";
strcat(t, Path); //prepare a file to store the export file
strcat(t, (char *)certName);
strcat(t, ".cert");

key.data = keyId;
key.length = keyIdLength;
n.data = certName;
n.length = certNameLength; // strlen((char *)n.data);

//algType = 1 -> for RC2_40BIT_KEY
if (algType == 1)
{
// alg.data = new unsigned char[strlen((char *) RC2_40BIT_KEY)];

126 Programming Guide and Reference

alg.length = strlen((char *) RC2_40BIT_KEY);
alg.data = RC2_40BIT_KEY;

}

status = JNH_pkcs12ScExportFile(key, n, (utf8String) p12Pin, (utf8String) uPin,
(octetString) alg, &file, 1, 1);

if (status)
{
printf("Error calling JNH_pkcs12scExportFile() with status = %d\n",status);
return -1;
}

if ((fp = fopen(t, "wb")) == NULL)
{
printf("Can not open file %s to store the cert.\n",t);
return -1;
}
//write the cert to a file
fwrite((char *)file.data, (int)file.length, 1, fp);
fclose(fp);

return 0;
}

.

.

.

int performExport()
{

uint32 retNumCerts;
unsigned char ** keyIds;
uint32 * keyIdLengths;
unsigned char ** certNames;
uint32 * certNameLengths;

//start the server
status = JNH_start_server(serverType);
if (status)
{
printf("Error calling JNH_start_server() with status = %d\n",status);
return -1;
}
status = JNH_server_login_pwd((utf8String) uPin);
if (status)
{
printf("\nError calling JNH_server_login_pwd() with status %d\n", status);
return -1;
}
status = JNH_register_callbacks(¬ify, &display);
if (status)
{
printf("\nError calling JNH_register_callbacks() with status %d\n", status);
return -1;
}

status = JNH_list_SC_certs(uPin,retNumCerts,&keyId,&keyIdLengths,&certNames,
&certNameLengths);

if (status)
{
printf("Error calling JNH_list_SC_certs() with status = %d\n",status);
return -1;
}

Chapter 7. Application Programming Interfaces 127

if (retNumCerts < 1)
{
printf("There is no cert in the smartcart.\n");
return -1;
}
printf("==================\n");
printf("\nNumber of cert is %d\n",retNumCerts);
for (int i = 0; i < (int)retNumCerts; i++)
{
printf("\nCert %d:\n",i);
// printf("Key Id is %s\n",keyIds[i]);
printf("CertName is %s\n\n",certNames[i]);
}
printf("==================\n");

{
int start, stop, j;
bool valid = false;
while (!valid)
{
printf("With a list of certs above, enter a START number of the cert you

want to export: ");
cin >> start;
cout << endl;
printf("With a list of certs above, enter a STOP number of the cert you

want to export: ");
cin >> stop;
cout << endl;
if (((start < (int)retNumCerts) && (start >= 0)) && ((stop < (int)retNumCerts)

&& (stop >= start)))
valid = true;
else
printf("\nInvalid value!!! Try again.\n");

}

for (j = start; j <= stop; j++)
{
if (exportToFile(keyIdLengths[j], keyIds[j], certNameLengths[j], certNames[j])

== -1)
{
printf("Error calling exportToFile()\n");
return -1;
}
}

//------------

return 0;
}

...

Java
String entryName ; //Entry name for the Certificate to be Exported.
Vector keyID; //Vector that contains the Key Id for the Certificate

//to be Exported.

String keystorePassword = "PIN";
String filePassword = "filePW";
int algorithmID = 1;
int iterationCount = 1;

frameMain.jonahInterface.JAVA_PKCS12_Export_from_Keystore(entryName,
keyID,
filePassword,

128 Programming Guide and Reference

keystorePassword,
algorithmID,
iterationCount);

if (retVal == 0) {

byte[] fileBuffer = frameMain.jonahInterface.retByteArr;

}

Chapter 7. Application Programming Interfaces 129

JNH_pkcs12UserExportFile
Exports a private key and public certificate without first retrieving them from the
smart card.

Syntax
JNH_pkcs12UserExportFile(const octetString &key_id.

const utf8String p12_password,
octetString &priv_key,
octetString &pub_cert,
const octetString &algorithmId,
octetString * exportfile,
uint32 iteration_count)

Parameters
key_id – input

The identifier of the private key to export to the smart card.

p12_password – input
A password for the exported file. This password should be known by both the
sender and receiver of the file.

priv_key – input
The flattened DER encoding of the private key. Create the octetString.data
structure by performing a privateKeyInfo.write on the private key.

pub_cert – input
The flattened DER encoding of the public certificate. Create the octetString.data
structure by performing an x.509.write on the public certificate.

algorithmId – input
The identifier of the type of algorithm used to encrypt the file. Can be one of the
following:

RC2_40BIT_KEY 40-bit encryption algorithm

RC2_128BIT_KEY RSA 128-bit encryption algorithm

DES3_3KEY 192-bit triple Data Encryption Standard (DES)
encryption

exportfile – output
A flat file containing DER encodings of the private key and public certificate.

This file must be saved as binary.

You must free the export file after this call.

iteration_count – input
The number of times to encrypt the file. The default and lowest value is 1.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h and crmsg.h files for details.

130 Programming Guide and Reference

Remarks
PKCS #12 specifies a portable format for storing or transporting personal
information. The Trust Authority version of PKCS #12 restricts the information that
can be exported to private keys and public certificates. Under the current
implementation, certificate chains cannot be exported.

To use the PKCS #12 APIs, you must include in your application, using the #include
statement, the Jonah.h and JonahAlg.h files.

The key_id, p12_password, priv_key, pub_cert, and algorithmId parameters must
not be NULL.

Related Functions
v JNH_pkcs12scExportFile

v JNH_pkcs12ImportFile

Example
x509_certificate publicCert; // A complete public certificate
octetString flat_privKeyInfo, // DER encoded private key info structure

flat_cert, // DER encoded public certificate
algorithmId, // Well known IDs are found in JonahAlg.h
key_id, // Key ID that associates the private key

// with the corresponding public certificate.
flatp12_exportfile; // PFX PDU DER encoded file

utf8String p12_password; // Password that is used to encrypt data
// of the PKCS12 exportfile.

uint32 status = 0, // API return status code
iteration_count = 1; // Number of encryption iterations on each

// encryption call.
buffer_t certBuf; // Temp output buffer for flatting the x509 certificate

.

.

/* This example leaves the environment initialization to the sample code user */

.

.

.

.

/*This example leaves the retrival of input parameters to the user. (i.e. private
key, public cert, keypair keyid, etc. */

.

.

.

.

algorithmId.data = RC2_40BIT_KEY;
algorithmId.length = strlen((char *)RC2_40BIT_KEY);

status = publicCert.write(certBuf);
if(status) return status;

flat_publicCert.data = certBuf.data;
flat_publicCert.length = certBuf.data_len;

Chapter 7. Application Programming Interfaces 131

status = JNH_pkcs12UserExportFile(temp_key_id,
p12_password,
flat_privKeyInfo,
flat_publicCert,
algorithmId,
&flatp12_exportfile,
iteration_count);

if(status) return status;

.

.

.

132 Programming Guide and Reference

JNH_pkcs12ImportFile
Imports a private key and public certificate to the smart card.

Syntax
C++

uint32 JNH_pkcs12ImportFile(const octetString importFile,
const utf8String p12_password,
const utf8String sc_password,
octetString * keypair_id,
octetString * extd_shortName,
const uint32 slot_id)

Java
public native int JAVA_PKCS12_Import_to_Keystore(byte[] importFile,

String filePassword,
String keystorePassword)

Parameters
importFile – input

The identifier of the file to import.

p12_password – input
A password for the imported file. This password should be known by both the
sender and receiver of the file.

sc_password – input
The password to the slot on the smart card where the file will be stored.

keypair_id – output
The identifier of the private key and public certificate successfully imported.

After the call, you must free the keypair_id.

extd_shortName – output
The extended short name of the certificate imported to the smart card.

After the call, you must free the extd_shortName.

slot_id – input
The smart card slot where the file will be stored.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h and crmsg.h files for details.

Remarks
PKCS #12 specifies a portable format for storing or transporting personal
information. The Trust Authority version of PKCS #12 restricts the information that
can be exported to private keys and public certificates. You can import a certificate
chain to Trust Authority; however, Trust Authority will only store the user’s certificate
(the leaf certificate).

Chapter 7. Application Programming Interfaces 133

To use the PKCS #12 APIs, you must include in your application, using the #include
statement, the Jonah.h and JonahAlg.h files.

Related Functions
v JNH_pkcs12scExportFile

v JNH_pkcs12UserExportFile

Example
C++

uint32 status;
int serverType; //0 ->EE, 1 ->RA, 2 ->CA
int algType; //algorithm type: 1 -> for RC2_40BIT_KEY
char uPin[128]; //user pin
char p12Pin[128]; //pksc12 pin to export the file.

//When the file is imported, it needs this pin again
char fileName[128];
char Path[128];
FILE *fp;

.

.

.

int performImport()
{
char buf[128];
//start the server
status = JNH_start_server(serverType);
if (status)
{
printf("Error calling JNH_start_server() with status = %d\n",status);
return -1;
}
status = JNH_server_login_pwd((utf8String) uPin);
if (status)
{
printf("\nError calling JNH_server_login_pwd() with status %d\n", status);
return -1;
}
status = JNH_register_callbacks(¬ify, &display);
if (status)
{
printf("\nError calling JNH_register_callbacks() with status %d\n", status);
return -1;
}

//----------
//try to read the extented shortname out from the file
ifstream inf(fileName);

if (!inf)
{
cout << "Cannot open file " << fileName << endl;
return -1;

}

while(!inf.eof())
{
char f[256];
unsigned char *info;
int len;
octetString importinfo, keypair, esname;

134 Programming Guide and Reference

inf.getline(buf, sizeof(buf));
if (strcmp(buf, "") == 0)
break;

cout << "\nExtended short name is " << buf << endl;
//prepare the file to go get the cert info from the corresponding file
strcpy(f, ""); //clear buffer f before strcat with any other string
strcat(f, Path);
strcat(f, buf);
strcat(f, ".cert");

//Read the cert info from the exported file
if (ReadMessage(f, &info, &len) != 0)
{
printf("Error calling ReadMessage()\n");
return -1;
}

//set up parameter to import the file
importinfo.data = info;
importinfo.length =len;

status = JNH_pkcs12ImportFile(importinfo, (unsigned char *)p12Pin,
(unsigned char *)uPin, &keypair, &esname, 1);

if (status)
{
printf("Error calling JNH_pkcs12ImportFile() with status = %d\n",status);
return -1;
}
if (esname.data != NULL)
{
// cout << "Extended short name value return from inport file is"
// << esname.data <
// cout << "Extended short name value return from inport file is"
// << esname.data <

Java
byte [] bytesBuffer = {...};

String keystorePassword = "PIN";
String filePassword = "filePW";

int retVal = frameMain.jonahInterface.JAVA_PKCS12_Import_to_Keystore
(bytesBuffer,filePassword,keystorePassword);

if (retVal == 0){
// Import Action was successfull.
}

Chapter 7. Application Programming Interfaces 135

JNH_preregister_crosscert
Creates a cross-certification record for a CA, using the preregistration record
created by JNH_RA_preregister_crosscert.

Syntax
uint32 JNH_preregister_crosscert(const utf8String PreRegistrationRecord,

const utf8String passwd,
uint32 *ReqId)

Parameters
PreRegistrationRecord – input

A record that contains the template information set by the RA, including the CA
name, RA name, and RA URL. This template record is created by the RA by a
call to JNH_RA_preregister_crosscert and is stored in a file that the subject CA
can open while cross-certifiying.

passwd – input
″0″

ReqId – output
The identifier of the cross-certification request created in the CA’s object store.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_RA_preregister_crosscert

Example
if (ReadMessage("c:/ccertreg.reg", &buf, &bufLen) != 0) {

exit(-1);
}

msg = (utf8String) malloc(bufLen +1);
memset(msg, 0, bufLen + 1);
memcpy(msg, buf, bufLen);

if ((status = JNH_preregister_crosscert(msg, (utf8String) "TEST", &id))) {
printf("objid = %d\n", id);
printf("prereg status = %d\n", status);
return -1;

}

136 Programming Guide and Reference

JNH_preregister_user
Validates a preregistration record and creates the object store entry for the
certificate.

Syntax
C++

uint32 JNH_preregister_user(const utf8String PreRegistrationRecord,
const utf8String Password,
uint32 * reqId)

Java
int JAVA_preregister_user(String CAName,

String UserName,
int Expires,
String Password)

Parameters
PreRegistrationRecord – input

A record that contains the template information set by the RA, including the CA
name, RA name, and RA URL. This template record is created by the RA by a
call to JNH_RA_preregister_user and is stored in a file that the EE can open
while pre-registering.

Password – input
″0″

ReqID – output
The object identifier created for this request in the object store.

CAName – input
The name of the CA to which the request will be sent.

UserName – input
The name of the EE.

Expires – input
The expiration date of the certificate.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_RA_preregister_User

Example
C++

uint32 reqId;
uint32 status;
utf8String PreRegistrationRecord;

Chapter 7. Application Programming Interfaces 137

status = JNH_RA_preregister_user("/C=US", "CN=A_USER",0,
(utf8String) "rd_pw", &PreRegistrationRecord);

status = JNH_preregister_user(PreRegistrationRecord,
(utf8String) "user_pw", &reqId);

Java
jonahInterface.JAVA_RA_preregister_user("/C=US", "CN=A_USER",0, "rc_pw");
String PreRegistration Record = jonahInterface.retStr;
int retVal = jonahInterface.JAVA_preregister_user

(PreregistrationRecord, "user_pw");
int reqId = jonahInterface.retInt;

138 Programming Guide and Reference

JNH_publish_certificate
Publishes the certificate.

Syntax
uint32 JNH_publish_certificate(uint32 reqID)

Parameters
reqID – input

The identifier of the certificate request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
Depending on the configuration, publication may involve storing the certificate in a
directory, returning it to the requester, or both.

Related Functions
v JNH_create_certificate

Example
uint32 rc;
uint32 reqId;

rc = JNH_publish_certificate(reqId);

Chapter 7. Application Programming Interfaces 139

JNH_publish_CRL
Publishes a CRL to the RA.

Syntax
uint32 JNH_publish_CRL(uint32 crlId)

Parameters
crlId – input

The identifier of the CRL to publish.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_CRL

v JNH_request_CRL

Example
uint32 JNH_publish_CRL(uint32 crlId)
{

jnh_api_call apiCall;
jnh_api_ret apiRet;
uint32 rc;
long lrc;

apiCall.apiIndex.set_value(JNH_PUBLISH_CRL);
apiCall.params.int1.value.set_value(crlId);
apiCall.params.int1.set_optional(false);

if(getReturn(apiCall,apiRet)) return API_NO_RESPONSE;

apiRet.ret.returnCode.get_value(lrc);
rc = lrc;

return rc;
}

140 Programming Guide and Reference

JNH_RA_nonpkix_create_revreq
Creates a revocation request object for a non-PKIX end entity.

Syntax
uint32 JNH_RA_nonpkix_create_revreq(const octetString *serialNumber,

const utf8String issuer,
uint32 *reqId));

Parameters
serialNumber – input

A pointer to an octetString structure that contains the serial number of the
certificate to be revoked.

issuer – input
The Certificate Authority that issued this certificate, which is a Distinguished
Name in OSF syntax as described in “Parameter format” on page 7.

reqId – input/output
A pointer to the integer where the request ID (also known as object store ID) of
the certification request being revoked is returned.

Usage
RA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_nonpkix_request_revocation

Example
char sn[] = "1234";
uint32 reqId;
uint32 status=0;
octetString serialNumber;
serialNumber.data = &sn;
serialNumber.length = strlen(sn);
utf8String issuer="/C=us/O=IBM/OU=MyOrg";
uint32 JNH_RA_nonpkix_create_revreq(&serialNumber, issuer, &reqId);

Chapter 7. Application Programming Interfaces 141

JNH_RA_nonpkix_request_revocation
Requests a revocation for a certificate for a non-PKIX end entity.

Syntax
uint32 JNH_RA_nonpkix_request_revocation(uint32 reqId));

Parameters
reqId – input

The request ID (also known as object store ID) of the certificate being revoked.

Usage
RA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_nonpkix_create_revreq

Example
uint32 reqId;
unit32 status = 0;
status = JNH_RA_nonpkix_request_revocation(reqId);

142 Programming Guide and Reference

JNH_RA_nonpkix_user_check
Checks on the status of a registration request for a non-PKIX end entity.

Syntax
uint32 JNH_RA_nonpkix_user_check(uint32 reqId,

uint32 * RequestStatus)

Parameters
reqId – input

The identifier of the initialization record created by
JNH_RA_preregister_nonpkix_user.

RequestStatus – output
The status of the registration request:

1 JNH_CertRequestSubmitted

2 JNH_CertRequestApproved

3 JNH_CertRequestRejected

4 JNH_CertRequestError

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_preregister_nonpkix_user

Example
uint32 reqId; // request identifier
uint32 RequestStatus // request status
uint32 status;
status = JNH_CA_nonpkix_user_check(reqId, &RequestStat);

Chapter 7. Application Programming Interfaces 143

JNH_RA_nonpkix_user_done
After the non-PKIX user registration is complete, this routine cleans up the object
store entry.

Syntax
uint32 JNH_RA_nonpkix_user_done(uint32 reqId)

Parameters
reqId – input

The identifier of the initialization request (created by
JNH_RA_register_nonpkix_user) to be removed from the object store.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_preregister_nonpkix_user

Example
uint32 reqId; // request identifier
uint32 status;
status = JNH_RA_nonpkix_user_done(reqId);

144 Programming Guide and Reference

JNH_RA_nonpkix_user_get_cert
Retrieves the certificate for a non-PKIX end entity.

Syntax
uint32 JNH_RA_nonpkix_user_get_cert(uint32 reqId,

octetString ** Certificate)

Parameters
reqId – input

The identifier of the initialization request created by
JNH_RA_preregister_nonpkix_user.

Certificate – output
A pointer to where the certificate (as an octetString) is written.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_register_nonpkix_user

v JNH_RA_nonpkix_user_check

Example
uint32 reqId; // request identifier
octetString Certificate; // pointer to where the certificate is stored
uint32 status;
status = JNH_RA_nonpkix_user_get_cert(reqId, &Certificate);

Chapter 7. Application Programming Interfaces 145

JNH_RA_preregister_crosscert
Creates a preregistration record for a subject CA. This record is used for
cross-certification with another CA.

Syntax
uint32 JNH_RA_preregister_crosscert(const utf8String CAName,

const utf8String UserName,
uint32 ExpirationSeconds,
const utf8String password,
utf8String *PreRegistrationRecord)

Parameters
CAName – input

The name of the CA with which the subject CA is seeking to cross-certify.
CAName a Distinguished Name in OSF syntax as described in “Parameter
format” on page 7.

UserName – input
The name of the subject CA, which is a Distinguished Name in OSF syntax as
described in “Parameter format” on page 7.

ExpirationSeconds – input
The timeout length for the preregistration data.

password – input
The password to be used to encrypt the record.

PreRegistrationRecord – output
A record to be used by the subject CA to create a cross-certification request
using JNH_preregister_crosscert.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_preregister_crosscert

v JNH_subject_submit_crosscert

Example
CAName = (utf8String) malloc(BUFSIZ);
IniReadString("General", "Issuer1", (char *) CAName, BUFSIZ, NULL);
if ((status = JNH_RA_preregister_crosscert(CAName,
(utf8String)"/C=us/O=Iris Associates/OU=Subject CA", 0, (utf8String)"TEST",
&buf))) {

return(status);
}
if ((fp = fopen("c:/ccertreg.reg", "w")) == NULL) {

fprintf(stderr, "Cannot open out file\n");
return(-1);

146 Programming Guide and Reference

}
status = fwrite(buf, strlen((char *) buf), 1, fp);
fputc('\n', fp);
fclose(fp);

Chapter 7. Application Programming Interfaces 147

JNH_RA_preregister_nonpkix_user
Creates an initialization request (similar to the preregistration record) for a non-PKIX
end entity.

Syntax
uint32 JNH_RA_preregister_nonpkix_user(const utf8String CAName,

const utf8String UserName,
uint32 * reqId)

Parameters
CAName – input

The Distinguished Name of the CA who will process the request. CAName is a
Distinguished Name in OSF syntax as described in “Parameter format” on
page 7.

UserName – input
The Distinguished Name of the non-PKIX end entity. Username is a
Distinguished Name in OSF syntax as described in “Parameter format” on
page 7.

reqId – output
A pointer to where the identifier of the initialization request is stored.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_register_nonpkix_user

v JNH_CA_preregister_nonpkix_user

Example
uint32 reqId;
uint32 status;
status = JNH_RA_preregister_nonpkix_user("/C=US:, "CN=A_USER", 0)

148 Programming Guide and Reference

JNH_RA_preregister_user
Creates a preregistration record in preparation for a user registration.

Syntax
C++

uint32 JNH_RA_preregister_user(const utf8String CAName,
const utf8String UserName,
uint32 expirationSeconds,
const utf8String passwd,
utf8String * preregistrationRecord)

Java
int JAVA_RA_preregister_user(String CAName,

String UserName,
int expirationSeconds,
String passwd)

Parameters
CAName – input

The name of the CA to receive this request. CAName is a Distinguished Name
in OSF syntax as described in “Parameter format” on page 7.

UserName – input
Entity requesting the certificate. UserName is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

expirationSeconds – input
Timeout length for the pre-registration data.

Note: This parameter is not currently used.

passwd – input
Password to be used to encrypt the record.

preregistrationRecord – output
A record to be used by the user to register through JNH_register_user. This
record contains key and transaction identifiers.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
A surrogate object will be created to preserve the security state associated with the
preregistration record.

Related Functions
v JNH_preregister_user

v JNH_register_user

Chapter 7. Application Programming Interfaces 149

Example
C++

uint32 reqId;
uint32 status;
utf8String PreRegistrationRecord;
status = JNH_RA_preregister_user("/C=US", "CN=A_USER", 0,

(utf8String) "rd_pw", &preregistrationRecord)

Java
int retVal;
retVal = JAVA_RA_preregister_user("/c=us", "cn=a_user", 0, "ra_pw");
if (retVal == 0)
{

String PreRegistrationRecord = jonahInterface.retStr;
}

150 Programming Guide and Reference

JNH_RA_register_nonpkix_user
Submits a registration request for a non-PKIX end entity.

Syntax
uint32 JNH_RA_register_nonpkix_user(const uint32 reqId)

Parameters
reqId – input

The identifier of the initialization request created by
JNH_RA_preregister_nonpkix_user.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used for browser-based certificates.

Related Functions
v JNH_RA_preregister_nonpkix_user

Example
uint32 status;
uint32 reqId; // request identifier
status = JNH_RA_register_nonpkix_user(reqId);

Chapter 7. Application Programming Interfaces 151

JNH_register_callbacks
Allows applications to react to events occurring on the PKIX servers, using two
user-written API calls, JNH_Notify and JNH_Display.

Syntax
C++

uint32 JNH_register_callbacks
(void (* JNH_Notify)(uint32 eventId,

const utf8String name,
uint32 eventStatus),

void (* JNH_Display)(uint32 displayType,
const utf8String message))

Java
int JAVA_register_callbacks()

Parameters
JNH_Notify parameters:

eventId – input
The identifier of the certificate request.

name – input
The name of the requestor.

eventStatus – input
The status of the certificate.

JNH_Display parameters:

displayType – input
The type of message being displayed.

message – input
The text of the message.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
All server GUIs must invoke JNH_register_callbacks at startup.

For more information about this API, see “Registering API callbacks” on page 10.

Example
C++

//display function
void display(uint32 type, const utf8String message)
{

152 Programming Guide and Reference

switch(type) {
case DISPLAY_STATUSBAR:
fprintf(stderr, "bar -> ");
break;

case DISPLAY_LOGERROR:
fprintf(stderr, "log error -> ");
break;

case DISPLAY_LOGINFO:
fprintf(stderr, "log info -> ");
break;

case DISPLAY_LOGDEBUG:
fprintf(stderr, "log debug -> ");
break;

case DISPLAY_URGENTERROR:
fprintf(stderr, "urg error -> ");
break;

case DISPLAY_URGENTINFO:
fprintf(stderr, "urg info -> ");
break;

case DISPLAY_URGENTDEBUG:
fprintf(stderr, "urg debug -> ");
break;

default:
fprintf(stderr, "unk type -> ");
break;

}
fprintf(stderr, "%s\n", message);

}

void notify(uint32 id, const utf8String name, uint32 status)
{

uint32 foo;

foo = status & 0xffff0000;
if (foo == ObjStEECertReqActive)

{
fprintf(stderr, "createCertReq: NAME=%s\tID=%d\tSTATUS=%x\n", name,

id, status);
}

}

void main(int argc, char *argv[])
{

int EeServer = 0;

JNH_start_server(EeServer);
JNH_register_callbacks(¬ify, &display);

}

Java
int retVal;
retVal = jonahInterface.JAVA_register_callbacks();

Chapter 7. Application Programming Interfaces 153

JNH_register_user
Submits a user registration request to the RA and processes the return reply.

Syntax
C++

uint32 JNH_register_user(uint32 reqId)

Java
int JAVA_register_user(int reqId)

Parameters
reqId – input

The identifier of the registration request.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The user information must have previously been established with a call to
JNH_preregister_User.

Related Functions
v JNH_preregister_user

Example
C++

uint32 status;
uint32 reqId; // id of registration request
status = JNH_register_user(reqId);

Java
int reqId; // id of registration request
int retVal = jonahInterface.JAVA_register_user(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println("register user error= " + jonahInterface.retStr);

}

154 Programming Guide and Reference

JNH_reject_registration
Rejects a registration request.

Syntax
C++

uint32 JNH_reject_registration(uint32 reqId,
utf8String message)

Java
int JAVA_reject_registration(int reqId, String message)

Parameters
reqId – input

The identifier of the registration request.

message – input
The reason for rejecting the registration request.

Usage
RA, CA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_authorize_registration

Example
C++

uint32 status;
uint32 reqId; // id of registration request
status = JNH_reject_registration(reqId, "Bad Key");

Java
// specify reason for rejection and select list item to reject
int reqId; // id of registration request
int retVal;
String reason= "Bad Key";
retVal = jonahInterface.JAVA_reject_registration(reqId, reason);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println("RA Deny Certificate Error= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 155

JNH_reject_revocation
Rejects a revocation request.

Syntax
C++

uint32 JNH_reject_revocation(uint32 reqId,
utf8String reason)

Java
int JAVA_reject_revocation(int reqId, String reason)

Parameters
reqId – input

The identifier of the revocation request being rejected.

reason – input
The reason the revocation request is rejected.

Usage
RA, CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
Certificates can be revoked for a number of reasons, including the following:

v The private key has been compromised.

v The CA has been compromised.

v The certificate holder’s affiliation has changed.

v The certificate is never used.

Related Functions
v JNH_authorize_revocation

Example
C++

uint32 rc;
uint32 reqId; // id of revocation request to be rejected
rc = JNH_reject_revocation(reqId, (utf8String) "Found smart card");

Java
int reqId; // id of revocation request to be revoked
int retVal = jonahInterface.JAVA_reject_revocation(reqId,

"Found smart card");
if (retVal != 0)
{

156 Programming Guide and Reference

jonahInterface.JAVA_get_error(retval);
System.out.println ("Reject Revocation error= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 157

JNH_release_object
Unlocks an object in the object store without saving any changes.

Syntax
C++

uint32 JNH_release_object(uint32 reqId)

Java
int JAVA_release_object(int reqId)

Parameters
reqId – input

The identifier of the object

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
You must unlock objects using either this routine of JNH_save_object after you run
inquire or set routines on them.

Related Functions
v JNH_reserve_object

v JNH_save_object

Example
C++

uint32 reqId; // id of object
uint32 rc;
rc = JNH_release_object(reqId);

Java
int reqId; // id of object
int retVal;
retVal = jonahInterface.JAVA_release_object(reqId);

158 Programming Guide and Reference

JNH_release_octetString
Releases the memory associated with an octet string.

Syntax
uint32 JNH_release_octetString(octetString string)

Parameters
string – input

The string to be released.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_release_object

Example
octetString string;
status = JNH_release_octetString(serialNumber);

Chapter 7. Application Programming Interfaces 159

JNH_remove_certreq_extension
Removes an extension from a certificate request.

Syntax
uint32 JNH_remove_certreq_extension(uint32 xtype,

uint32 reqId,
const utf8String extID)

Parameters
xtype – input

The type of extension to be removed from the certificate request.

reqId – input
The identifier of the certificate request.

extID – input
The identifier of the extension to be removed from the certificate request. For
private extensions, the identifier must be a numeric string in the dot format,
such as 1.4.7.19.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_add_certreq_extension

Example
uint32 rc;
uint32 reqId; // request identifier
uint32 xtype; // extension type to be removed
utf8String extID; // identifier of extension to be removed
status = JNH_remove_certreq_extension(reqId, xtype, extID);

160 Programming Guide and Reference

JNH_request_CRL
Retrieves the CRL from the CA’s BinBin.

Syntax
C++

uint32 JNH_request_CRL(utf8String issuer)

Java
int JAVA_request_CRL(String issuer)

Parameters
issuer – input

The name of the CRL issuer, which is a Distinguished Name in OSF syntax as
described in “Parameter format” on page 7.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_create_CRL

Example
C++

uint32 rc; // return code
utf8String issuer; // CRL issuer
rc = JNH_create_CRL(issuer);

Java
int jonahInterface.JAVA_request_CRL(String issuer)

Chapter 7. Application Programming Interfaces 161

JNH_request_revocation
Submits a revocation request.

Syntax
C++

uint32 JNH_request_revocation(uint32 reqId)

Java
int JAVA_request_revocation(int reqId)

Parameters
reqId – output

The identifier of the revocation request being submitted.

Usage
EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_authorize_revocation

v JNH_revoke_certificate

Example
C++

uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_request_revocation(reqId);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_request_revocation(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("Request revocation error= "

+ jonahInterface.retStr);
}

162 Programming Guide and Reference

JNH_reserve_object
Reserves an object in the object store for inquire/set access.

Syntax
C++

uint32 JNH_reserve_object(uint32 reqid)

Java
int JAVA_reserve_object(reqId)

Parameters
reqId

The identifier of the object.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The object is read into memory, if necessary, and locked.

Objects must be locked with this routine before you can use inquire or set routines
on them.

Related Functions
v JNH_save_object

v JNH_release_object

Example
C++

uint32 reqId; // id of object
uint32 rc;
rc = JNH_reserve_object(reqId);

Java
int retVal;
int reqId; // id of object
retVal = jonahInterface.JAVA_reserve_object(reqId);

Chapter 7. Application Programming Interfaces 163

JNH_revoke_certificate
Revokes the certificate.

Syntax
C++

uint32 JNH_revoke_certificate(uint32 reqId)

Java
int JAVA_revoke_certificate(int reqId)

Parameters
reqId – input

The identifier of the revocation request.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
A revocation record for this certificate will appear in the next CRL the CA creates
with the specified key.

Related Functions
v JNH_create_CRL

Example
C++

uint32 rc;
uint32 reqId; // id of the revocation request
rc = JNH_revoke_certificate(reqId);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_revoke_certificate(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval)
System.out.println ("Revoke certificate error= "

+ jonahInterface.retStr);
}

164 Programming Guide and Reference

JNH_save_object
Updates the on-disk object store’s record of the object to match the in-memory
record and unlocks the object.

Syntax
uint32 JNH_save_object(uint32 reqId)

Parameters
reqId – input

The identifier of the object

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_reserve_object

v JNH_release_object

Example
uint32 rc;
uint32 reqId; // id of object
rc = JNH_save_object(reqId);

Chapter 7. Application Programming Interfaces 165

JNH_server_login_pwd
Unlocks the server’s credentials by directly supplying a user PIN.

Syntax
uint32 JNH_server_login_pwd(const utf8String pwd)

Parameters
pwd – input

The password to be used.

Usage
RA, CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This call is used during RA and CA initialization to log into the smart card.

Related Functions
v JNH_export_credential

Example
uint32 status;
utf8String passWord[] = "RApass"; //Password created when initializing RA

JNH_start_server(svrType_RA);
status = JNH_server_login_pwd(passWord);

return status;

166 Programming Guide and Reference

JNH_Set_CCert_VerificationKey
Sets the subject CA’s signing key for cross-certification.

Syntax
uint32 JNH_Set_CCert_VerificationKey(uint32 objId,

utf8String serialNum)

Parameters
objId – input

The identifier of the cross-certification request created by
JNH_preregister_crosscert.

serialNum – input
The serial number returned by JNH_CA_list_signing_key.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_preregister_crosscert

v JNH_CA_list_signing_key

Example
if (numKey > 0) {

cout << "Setting the key info in certreq.." << endl;
status = JNH_Set_CCert_VerificationKey(id, serialNum[0]);
cout << "JNH_Set_CCert_VerificationKey returns " << status << endl;
if (status) {

return -1;
}

}

Chapter 7. Application Programming Interfaces 167

JNH_set_certreq_basicConstraints
Sets the CA certificate indicator and the maximum path length values for a
certificate request.

Syntax
C++

uint32 JNH_set_certreq_basicConstraints(uint32 reqId,
IBOOL isCaCert,
uint32 maxPathLen,
IBOOL isMaxPathLenUnlimited)

Java
int JAVA_set_certreq_basicConstraints(int reqId,

boolean isCaCert,
int maxPathLen)

Parameters
reqId – input

The identifier of the certificate request.

isCaCert – input
Sets the CA certificate indicator. Set to true if this is a CA certificate.

maxPathLen – input
Sets the maximum path length allowed. A maxPathLen value of –1 means the
path length is unconstrained.

isMaxPathLenUnlimited – input
Specifies whether or not the maximum path length is unlimited.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
If isCaCert is false (the certificate is an EE certificate), this routine removes any
basic constraints extension from the certificate request.

Related Functions
v JNH_inquire_certreq_basicConstraints

Example
C++

uint32 rc = 0
uint32 reqId; // id of certificate request
boolean isCaCert = TRUE;
uint32 maxPathLen = 27;
rc = JNH_set_certreq_basicConstraints(reqId, isCaCert, maxPathLen);

168 Programming Guide and Reference

Java
int reqId; // id of certificate request
int maxPathLen = 27;
boolean isCaCert = TRUE;
int retVal = jonahInterface.JAVA_set_certreq_basicConstraints(reqId,

isCaCert, maxPathLen);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("SetCertBasicConstraints failed, = "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 169

JNH_set_certreq_endDate
Sets the expiration date in a certificate request.

Syntax
C++

uint32 JNH_set_certreq_endDate(uint32 reqId,
utcDateTime notAfter)

Java
int JAVA_set_certreq_endDate(int reqId,

int year,
int month,
int day)

Parameters
reqId – input

The identifier of the certificate request.

notAfter – input
The expiration date for the certificate request.

year – input
The year of the expiration date.

month – input
The month of the expiration date.

day – input
The day of the expiration date.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_endDate

Example
C++

uint32 reqId; // id of certificate request
uint32 rc;
utcDateTime notAfter;
notAfter.year = 2001;
notAfter.month = 11;
notAfter.day = 10;
notAfter.hour = 9;
notAfter.min = 8;
notAfter.sec = 7;
rc = JNH_set_certreq_endDate(reqId, notAfter);

Java

170 Programming Guide and Reference

int reqId; // id of certificate request
int yr = 1999;
int month = 5;
int day = 12;
int retVal = jonahInterface.JAVA_set_certreq_endDate(reqId, yr,

month, day);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("SetEndDate Error= " + jonahInterface.retStr);

}

Chapter 7. Application Programming Interfaces 171

JNH_set_certreq_issuer
Sets the issuer name in a certificate request.

Syntax
C++

uint32 JNH_set_certreq_issuer(uint32 reqId,
const utf8String issuer)

Java
int JAVA_set_certreq_issuer(int reqId,

String issuer)

Parameters
reqId – input

The identifier of the certificate request.

issuer – input
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_issuer

Example
C++

uint32 reqId; // id of certificate request
uint32 rc;
utf8String SISSUER= "/C=UK";
rc = JNH_set_certreq_issuer(reqId, SISSUER)

Java
String issuerName= "/C=UK";
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_set_certreq_issuer(reqId, issuer);
if (retVal != 0)
{

System.out.println ("SetIssuer Error= " + jonahInterface.retStr);
}

172 Programming Guide and Reference

JNH_set_certreq_keyUsage
Sets the key usage in a certificate request.

Syntax
C++

uint32 JNH_set_certreq_keyUsage(uint32 reqId,
keyUsage_t keyUsage)

Java
int JAVA_set_certreq_keyUsage(int reqId, int KeyUsage)

Parameters
reqId – input

The identifier of the certificate request.

keyUsage – input
The sum of the numeric values (from the table below) for each usage flag being
requested.

Extension
Usage

1 Digital Signature

2 Non-repudiation

4 Key Encipherment

8 Data Encipherment

16 Key Agreement

32 Key Cert Sign

64 CRL Sign

128 Encipher Only

256 Decipher Only

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_keyUsage

Example
C++

uint32 rc;
uint32 reqId; // id of certificate request
KeyUsage_t KeyUsage;

Chapter 7. Application Programming Interfaces 173

KeyUsage = USAGE_digitalSignature |
USAGE_nonRepudiation;

rc = JNH_set_certreq_keyUsage(reqId, keyUsage);

Java
int keyUsageVal = jonahInterface.usageDigitalSignature |

jonahInterface.usageNonRepudiation;
int reqId; // id of certificate request
int retVal = jonahInterface.JAVA_set_certreq_keyUsage(reqId, keyUsageVal);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("Set Certificate Request Key Usage Error= "

+ jonahInterface.retstr);
}

174 Programming Guide and Reference

JNH_set_certreq_privkey_EE
Sets the key length and algorithm for the EE-generated private key for the
certificate request.

Syntax
C++

uint32 JNH_set_certreq_privkey_EE(uint32 reqId,
const utf8String algorithm,
uint32 keylength)

Java
int JAVA_set_certreq_privkey_EE(int reqId,

String algorithm,
int keyLength)

Parameters
reqId – input

The identifier of the certificate request.

algorithm – input
The algorithm to use (such as RSA or DSA).

keyLength – input
The keyLength for the private key in bits. The choices for this length vary
depending on the algorithm used to create the certificate.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_privkey_EE

Example
C++

uint32 rc;
uint32 reqId; // id of certificate request
utf8String alg= "id_dsa";
uint32 keyLength = 512;
rc = JNH_set_certreq_privkey_EE(reqId, alg, keylength);

Java
int retVal;
int keyLength = 512
String alg= "id_dsa";
int reqId; // id of certificate request
retVal = jonahInterface.JAVA_set_certreq_privkey_EE(reqId, algorithm, keyLength);
if (retVal != 0)
{

Chapter 7. Application Programming Interfaces 175

jonahInterface.JAVA_get_error(retval);
System.println.out("Set Certificate Request Private Key Error= "

+ jonahInterface.retStr);
}

176 Programming Guide and Reference

JNH_set_certreq_startDate
Sets the starting date in a certificate request.

Syntax
C++

uint32 JNH_set_certreq_startDate(uint32 reqId,
utcDateTime notBefore)

Java
int JAVA_set_certreq_startDate(int reqId, int year, int month, int day)

Parameters
reqId – input

The identifier of the certificate request.

notBefore – input
The starting date for the certificate request.

year – input
The year of the starting date.

month – input
The month of the starting date.

day – input
The day of the starting date.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_startdate

Example
C++

uint32 rc;
uint32 reqId; // id of certificate request
utcDateTime notBefore;
notBefore.year = 2002;
notBefore.month = 5;
notBefore.day = 12;
notBefore.hr = 8;
notBefore.min = 7;
notBefore.sec = 6;
rc = JNH_set_certreq_startDate(reqId, notBefore);

Java

Chapter 7. Application Programming Interfaces 177

int reqId; // id of certificate request
int retVal;
retVal = jonahInterface.JAVA_set_certreq_startDate(reqId, 1999, 5, 12);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("StartDate error= " + jonahInterface.retStr);

}

178 Programming Guide and Reference

JNH_set_certreq_subject
Sets the subject name in a certificate request.

Syntax
C++

uint32 JNH_set_certreq_subject(uint32 reqId,
const utf8String subject)

Java
int JAVA_set_certreq_subject(int reqId, String subject)

Parameters
reqId – input

The identifier of the certificate request.

subject – input
The subject name of the certificate request, which is a Distinguished Name in
OSF syntax as described in “Parameter format” on page 7.

Usage
RA, CA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_certreq_subject

Example
C++

uint32 rc;
uint32 reqId; // id of certificate request
rc = JNH_set_certreq_subject(reqId, (utf8String)

"/OU=Company /CN=S_user");

Java
int retVal;
int reqId; // id of certificate request
retVal = jonahInterface.JAVA_set_certreq_subject(reqId,

"/OU=Company /CN=S_user);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("Error in set_certreq_subject= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 179

JNH_set_certreq_subjectKeyInfo
Copies the subject public key and algorithm from a specified self-signed certificate
into a certificate request.

Syntax
uint32 JNH_set_certreq_subjectKeyInfo(uint32 reqId,

const octetString serialNumber)

Parameters
reqId – input

The identifier of the certificate request.

serialNumber – input
The serial number of the self-signed certificate. This number is created by a call
to JNH_get_self_subjectKeyInfo.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_get_self_subjectKeyInfo

Example
uint32 status;
uint32 reqId;
octetString serialNum;
/* Using value from JNH_get_self_subjectKeyInfo assuming first value
/* is self-signed certificate
/*
status = JNH_set_certreq_subjectKeyInfo(reqId, serialNum[0]);

180 Programming Guide and Reference

JNH_set_IniLdapAuthName
Sets the LDAP AuthName information for bootstrap in the .ini file.

Syntax
uint32 JNH_set_IniLdapAuthName(const utf8String authname)

Parameters
authname – input

The LDAP AuthName to set in the .ini file.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniLdapAuthName

v JNH_set_IniLdapServer

Example
char authname[100];
cout << "enter ldap authname" << endl;
cin.getline(authname, sizeof(authname));
status = JNH_set_IniLdapAuthName(objid, (utf8String)authname);

Chapter 7. Application Programming Interfaces 181

JNH_set_IniLdapAuthPwd
Sets the LDAP server password information in the .ini file.

Syntax
uint32 JNH_set_IniLdapAuthPwd(const utf8String pwd)

Parameters
pwd – input

The LDAP server password to set in the .ini file.

Usage
CA. RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniLdapAuthPwd

v JNH_set_IniLdapAuthName

Example
char password[100];
cout << "enter ldap password" << endl;
cin.getline(password, sizeof(password));
status = JNH_set_MyName(objid, (utf8String)password);

182 Programming Guide and Reference

JNH_set_IniLdapServer
Sets the LDAP server name for bootstrap in the .ini file.

Syntax
uint32 JNH_set_IniLdapServer(const utf8String server)

Parameters
server – input

The name of the LDAP server.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniLdapServer

v JNH_set_IniTcpPort

Example
char server[100];
cout << "enter ldap server" << endl;
cin.getline(server, sizeof(server));
status = JNH_set_MyName(objid, (utf8String)server);

Chapter 7. Application Programming Interfaces 183

JNH_set_IniTcpHost
Sets the TCP host information for bootstrap in the .ini file.

Syntax
uint32 JNH_set_IniTcpHost(const utf8String host)

Parameters
host – input

The name of the TCP host.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniTcpHost

v JNH_set_MyName

Example
char host[100];
cout << "enter my host" << endl;
cin.getline(host, sizeof(host));
status = JNH_set_MyName(objid, (utf8String)host);

184 Programming Guide and Reference

JNH_set_IniTcpPort
Sets the TCP port information for bootstrap in the .ini file.

Syntax
uint32 JNH_set_IniTcpPort(const utf8String port)

Parameters
port – input

The TCP port information.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniTcpPort

v JNH_set_IniTcpHost

v JNH_set_MyName

Example
char port[100];
cout << "enter my port" << endl;
cin.getline(port, sizeof(port));
status = JNH_set_MyName(objid, (utf8String)port);

Chapter 7. Application Programming Interfaces 185

JNH_set_MyName
Sets the MyName field in the .ini file, as well as in the certificate for bootstrap.

Syntax
uint32 JNH_set_MyName(uint32 reqId,

const utf8String name)

Parameters
reqId – input

The identifier of the bootstrap request created by JNH_create_BootStrap.

name – input
The name to be set in the MyName field.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The information from this call is not added to the .ini file until after JNH_BootStrap
is successfully called.

Related Functions
v JNH_get_IniMyName

v JNH_BootStrap

Example
char myname[100];
cout << "enter my name " << endl;
cin.getline(myname, sizeof(myname));
status = JNH_set_MyName(objid, (utf8String)myname);

186 Programming Guide and Reference

JNH_set_RA_URL
Sets the RA’s URL, subject, and password in a revocation request.

Syntax
C++

uint32 JNH_set_RA_URL(uint32 reqId,
const utf8String url,
const utf8String subject,
const utf8String passwd)

Java
int JAVA_set_RA_URL(int reqId,

String url,
String subject,
String passwd)

Parameters
reqId – input

The identifier of the revocation request.

url – input
The RA’s URL.

subject – input
The name of the subject, which is a Distinguished Name in OSF syntax as
described in “Parameter format” on page 7.

passwd – input
The smart card’s user password.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
The URL is not stored in a certificate, so it cannot be added to the revocation
request from the certificate. The URL must be obtained by some other means (such
as, prompting for it). The typical scenario is to call:

1. JNH_create_revreq_from_certificate to create a revocation request,

2. JNH_set_RA_URL to set the RA’s URL and other required information into the
request,

3. JNH_request_revocation to send the revocation request to the RA.

Related Functions
v JNH_create_revreq_from_certificate

v JNH_request_revocation

Chapter 7. Application Programming Interfaces 187

Example
C++

uint32 retVal;
uint32 reqId; // rev req ID
utf8String url = "pkix://localhost:829"; // RA's URL
utf8String subject = "/C=US/O=IBM/OU=Test/CN=One";// subject DN
utf8String passwd = "passwd"; // password

retVal = JNH_set_RA_URL(reqId,
url,
subject,
passwd);

Java
int retVal;
int reqId = 3; // rev req ID
String url = "pkix://localhost:829"; // RA's URL
String subject = "/C=US/O=IBM/OU=Test/CN=One"; // subject DN
String passwd = "passwd"; // password

retVal = jonahInterface.JAVA_set_RA_URL(reqId,
url,
subject,
passwd);

188 Programming Guide and Reference

JNH_set_revreq_certIssuer
Sets the name of the certificate issuer in the CertDetails section of one of the
revocations in the revocation request.

Syntax
C++

uint32 JNH_set_revreq_certIssuer(uint32 reqId,
uint32 index,
const utf8String certIssuer)

Java
int JAVA_set_revreq_certIssuer(int reqId, String certIssuer)

Parameters
reqId – input

The identifier of the revocation request being queried. The identifier must be of
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

certIssuer – input
The name of the certificate issuer, which is a Distinguished Name in OSF
syntax as described in “Parameter format” on page 7.

This parameter must not be null, nor a zero-length string.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_revreq_certIssuer

Example
C++

uint32 reqId; // id of revocation request
char issuername2[]= "/C=US/0=Iris /OU=Test/CN=CSPTest2";
utf8String issuer = (unsigned char*) &issuername2;
uint32 rc;
rc = JNH_set_revreq_certIssuer(reqId, (uint32)0, issuer);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_set_revreq_certIssuer(reqId,

"/C=US/0=Iris/OU=Test/CN=Test2");
if (retVal != 0)

Chapter 7. Application Programming Interfaces 189

{
jonahInterface.JAVA_get_error(retval);
System.out.println ("Set Certificate Issuer error= "

+ jonahInterface.retStr;
}

190 Programming Guide and Reference

JNH_set_revreq_certserialnumber
Sets the certificate serial number for one of the revocations in the revocations
request.

Syntax
C++

uint32 JNH_set_revreq_certserialnumber(uint32 reqId,
uint32 index,
octetString * serialNumber)

Java
int JAVA_set_revreq_certserialnumber(int reqId,

String serialNumber)

Parameters
reqId – input

The identifier of the revocation request being queried. The identifier must be of
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

serialNumber – input
The serial number of the certificate whose revocation is being requested, in
standard ASN.1 binary format for integers.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_revreq_certserialnumber

v JNH_inquire_revreq_certserialnumbers

Example
C++

#define test4serialnum 5432
Serialnum = test4serialnum;
SerialNumber.data = (unsigned char*) &Serialnum;
SerialNumber.length = sizeof(Serialnum);
uint32 reqId; // id of revocation request
uint32 rc;
rc = JNH_set_revreq_certserialnumber(reqId, (uint32)0, &serialNumber);

Java
int retVal;
int reqId; // id of revocation request
retVal = jonahInterface.JAVA_set_revreq_certserialnumber(reqId, "5432");

Chapter 7. Application Programming Interfaces 191

if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval)
System.out.println ("Set CertSerialNumber error= "

+ jonahInterface.retStr);
}

192 Programming Guide and Reference

JNH_set_revreq_hold_instruction_code
Sets the hold_instruction_code for a certificate being revoked in a revocation
request.

Syntax
uint32 JNH_set_revreq_hold_instruction_code(uint32 reqId,

uint32 index,
const octetString code)

Parameters
reqId – input

The identifier of the revocation request being queried. The identifier must be of
type ObjClTypeRev.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

code – input
The object ID of the hold instruction code, in the standard ASN.1 binary format
for object identifiers.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API should only be used for revocations whose reason is
CERTIFICATE_HOLD.

Related Functions
v JNH_inquire_revreq_hold_instruction_code

Example
char inst1[]= "instruction1";
octetString inHold;
inHold.data = (unsigned char *) &inst1;
inHold.length = strlen(inst1);
int rc;
int reqId; // id of revocation request
rc = JNH_set_revreq_hold_instruction_code(reqId, (uint32)0,

&inHold);

Chapter 7. Application Programming Interfaces 193

JNH_set_revreq_invalidityDate
Sets the invalidity date in a certificate being revoked by a revocation request.

Syntax
C++

uint32 JNH_set_revreq_invalidityDate(uint32 reqId,
uint32 index,
utcDateTime InvalidityDate)

Java
int JAVA_set_revreq_invalidityDate(int reqId,

int year,
int month,
int day)

Parameters
reqId – input

The identifier of the revocation request being queried. The identifier must be
type ObjClTypeRev.

Index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

InvalidityDate – input
A utcDate time structure containing the invalidity date.

year – input
The year of the invalidity date.

month – input
The month of the invalidity date.

day – input
The day of the invalidity date.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_inquire_revreq_invalidityDate

Example
C++

utcDateTime inTime;
inTime.year = 2000;
inTime.month = 5;
inTime.day = 13;
inTime.min = 0;

194 Programming Guide and Reference

inTime.sec = 0;
inTime.msec = 0;
int reqId; // id of revocation request
int rc;
rc = JNH_set_revreq_invalidityDate(reqId, (uint32)0, inTime);

Java
int retVal;
int reqId; // id of revocation request
int year = 1999;
int month = 5;
int day = 13;
retVal = jonahInterface.JAVA_set_invalidityDate(reqId, year, month,day);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("Set Invalidity Date error= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 195

JNH_set_revreq_reason
Sets the reason code for a certificate being revoked in a revocation request.

Syntax
C++

uint32 JNH_set_revreq_reason(uint32 reqId,
uint32 index,
int * reasonFlags)

Java
int JAVA_set_revreq_reason(int reqId,

int reason)

Parameters
reqId – input

The identifier of the revocation request being queried.

index – input
The zero-based index of the certificate, within the list of certificates being
revoked by this request, from which the caller wants to extract information.

reasonFlags – input
The reason code to be set.

The reason codes are as follows:

0 REV_REASON_NONE

1 REV_REASON_UNUSED

2 REV_REASON_KEY_COMPROMISE

4 REV_REASON_CA_COMPROMISE

8 REV_REASON_AFFILIATION_CHANGED

16 REV_REASON_SUPERSEDED

32 REV_REASON_CESSATION_OF_OPERATION

64 REV_REASON_CERTIFICATE_HOLD

For a complete list of the revocation reason codes and their definitions, see
Include\ASN1\X509.h REASON_*.

Notes:

1. This parameter must not be null.

2. The reasonFlags are not modified by calling JNH_set_revreq_reason and
can be reused or freed after the call.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

196 Programming Guide and Reference

Related Functions
v JNH_inquire_revreq_reason

Example
C++

int inReasons = REV_REASON_KEY_COMPROMISE;
uint32 rc;
uint32 reqId; // id of revocation request
rc = JNH_set_revocation_request(reqId, (uint32)0, &inReasons);

Java
int reqId; // id of revocation request
int retVal;
int reasonBinary = jonahInterface.REV_REASON_KEY_COMPROMISE;
retVal = jonahInterface.JAVA_set_revreq_reason(reqId, reasonBinary);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println ("Set revreq reason error= "

+ jonahInterface.retStr);
}

Chapter 7. Application Programming Interfaces 197

JNH_set_server_location
Sets the background server location and checks that the server is running in that
location.

Syntax
uint32 JNH_set_server_location(utf8String address,

uint32 adminPort)

Parameters
address – input

The TCP/IP name of the CA or RA background server machine.

adminPort – input
The administrative port number for the port on which the server is listening.

Usage
CA, RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_shutdown_UI

Example
utf8String server; // TCP/IP name of server machine
uint32 adminPort; // Admin port number server is listening to
uint32 status;

status = JNH_set_server_location(server, adminPort);

198 Programming Guide and Reference

JNH_shutdown_UI
Allows the server to clean up resources associated with a background server user
interface session.

Syntax
uint32 JNH_shutdown_UI()

Parameters
none

Usage
RA, CA, EE

Return Values
REMJNH_OK

Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_initialize_UI

Example
JNH_shutdown_UI();

Chapter 7. Application Programming Interfaces 199

JNH_start_server
Initializes a server and opens or creates an object store.

Syntax
C++

uint32 JNH_start_server(int serverType,
char * inifile = "")

Java
int JAVA_start_server(int serverType, String inifile)

Parameters
serverType – input

Specifies which server is being started:

EE Init_EE 0

RA Init_RA 1

CA Init_CA 2

RA client
Init_RC 3

CA client
Init_CC 4

inifile – input
The fully-qualified name of the server’s .ini file. If omitted, the default .ini file
name for that entity is assumed.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Example
C++

JNH_start_server(0);

Java
jonahInterface.JAVA_start_server(0);

200 Programming Guide and Reference

JNH_stop_server
Shuts down a server in an orderly fashion.

Syntax
C++

uint32 JNH_stop_server(int serverType)

Java
int JAVA_stop_server (int serverType)

Parameters
serverType – input

The type of server to be shut down. Specify one of the following:

init_EE
End entity.

init_RA
Registration authority.

init_CA
Certificate authority.

Usage
EE, RA, CA

Return Values
0 Normal, successful completion

>0 An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_start_server

Example
C++

uint32 status=0;

uint32 JNH_stop_server(serverType);

Java
uint32 status=0;

status = JAVA_stop_server(serverType);

Chapter 7. Application Programming Interfaces 201

JNH_store_RA_URL
Extracts the RA’s URL from the object store and stores it in the
RenewRevokeCertList section of the .ini file. The URL is stored in the following
format:

serialNumber:IssuerDn=RA’s URL

Syntax
C++

uint32 JNH_store_RA_URL(uint32 reqId)

Java
int JAVA_store_RA_URL(int reqId)

Parameters
reqId – input

The identifier of the request in the object store from which the RA URL is being
extracted.

Usage
CA, RA, EE

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Remarks
This API is used to maintain a list of the issuing RAs of certificates on a smart card
so that a renewal or revocation request can be sent to the same RA. The API is
called after a certificate has been issued and is being returned to the EE to export
to a smart card.

Example
C++

uint32 retVal;
uint32 reqId;
retVal = JNH_store_RA_URL(reqId);

Java
int retVal = JAVA_store_RA_URL(reqId);

202 Programming Guide and Reference

JNH_subject_submit_crosscert
Submits a subject CA’s request for cross-certification.

Syntax
uint32 JNH_subject_submit_crosscert(uint32 objId)

Parameters
objId – input

The identifier of the cross-certification request created by
JNH_preregister_crosscert.

Usage
CA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_preregister_crosscert

Example
status = JNH_subject_submit_crosscert(id);
cout << "JNH_subject_submit_crosscert returns " << status << endl;

Chapter 7. Application Programming Interfaces 203

JNH_validate_registration
Validates a certificate registration request for authenticity, ensures that the version
equals 2, the signing algorithm is present, and that the incoming certificate policy
values are allowed to be set by the caller. Also sets the algorithm name from the .ini
file.

Syntax
C++

uint32 JNH_validate_registration(uint32 reqId)

Java
int JAVA_validate_registration(int reqId)

Parameters
reqId – input

The identifier of the registration request.

Usage
RA

Return Values
0 Normal, successful completion

> 0
An error occurred. See the apimsg.h file for details.

Related Functions
v JNH_authorize_registration

v JNH_reject_registration

Example
C++

uint32 reqId; // id of registration request
uint32 status;
status = JNH_validate_registration(reqId);

Java
int reqId; // id of registration request
int retVal = jonahInterface.JAVA_validate_registration(reqId);
if (retVal != 0)
{

jonahInterface.JAVA_get_error(retval);
System.out.println("RA Validate Certificate Error= "

+ jonahInterface.retStr);
}

204 Programming Guide and Reference

Appendix A. Using the ASN.1 class library

PKIX constructs use Abstract Syntax Notation One (ASN.1), an industry standard
for the formal notation of abstract data types and structures. ASN.1 is a data
definition language that uses simple syntax and lexical rules with a small set of
keywords and is recursively defined.

This chapter briefly describes how ASN.1 is used in PKIX and presents some code
samples to help you understand its function. More information on ASN.1, in a
number of viewable formats, can be found at
http://www.rsa.com/rsalabs/pubs/PKCS/.

ASN.1 data types
ASN.1 notation provides the following base data types listed below. PKIX uses
these base ASN.1 data types to build a set of its own data types, which are listed
separately.

ANY An arbitrary value of an arbitrary type.

CHOICE A union of one or more alternatives.

INTEGER An arbitrary integer whose value can be positive,
negative, zero, or any magnitude.

BOOLEAN A boolean value.

NULL Null value.

OBJECT IDENTIFIER An object identifier, sequence of integer
components that identify an object, attribute type, or
registration authority identifying other object
identifiers.

BIT STRING An arbitrary string of bits (ones and zeroes).

OCTET STRING A string of octets (eight values).

PrintableString An arbitrary string of printable characters.

T61String A arbitrary string of T.61 characters. T.61 is an 8-bit
extension to the ASCII character set.

IA5String An arbitrary string of ASCII characters.

SEQUENCE An ordered collection of one or more types.

SEQUENCE OF An ordered collection of zero or more occurrences
of a given type.

SET An unordered collection of one or more types.

SET OF An unordered collection of zero or more
occurrences of a given type.

UTCTime A coordinated universal time or Greenwich Mean
Time (GMT) value.

The following example shows how an X.509 certificate is defined in ASN.1 notation:
Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithIdentifier,
signatureValue BIT STRING }

© Copyright IBM Corp. 1999 205

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version Default v1
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name
validity Validity,
subject Name
subjectPublickKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

--If present, version shall be v2 or v3
subjectUniqID [2] IMPLICIT UniqueIdentifier OPTIONAL,

--If present, version shall be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL,

--If present, version shall be v3
}
Version ::= INTEGER { v1(0), v2(1), v3(2)

PKIX interface data types
The following data types, built from the ASN.1 data types defined above, are used
in PKIX:

uint32 A 32-bit integer.

utf8String A UTF-8 encoded, null-terminated string.

octetString An array of bytes.

IBOOL A boolean value.

utcDateTime A date, represented as an octetstring containing the
value part of the BER encoding of a
GeneralizedTime value representing the date.

keyUsage_t A set of bits that represent the possible functions
for which a key can be used.

Bits Key Function

0 DigitalSignature

1 NonRepudiation

2 KeyEncipherment

3 DataEncipherment

4 KeyAgreement

5 KeyCertSign

6 CRLSign

7 EncipherOnly

8 DecipherOnly

BER and DER encoding
ASN.1 notation provides rules for encoding values. The Basic Encoding Rules
(BER) enable you to represent any ASN.1 type and the value associated with it as
an octet string. A subset of BER encoding is the Distinguished Encoding Rules
(DER). DER encoding allows only one method for representing an ASN.1 value and
is used when you require unique encoding of an octet string, such as a computed
digital signature.

206 Programming Guide and Reference

ASN.1 class library hierarchy
Illustrated below is the ASN.1 class library hierarchy. The indentation represents the
inheritance relationship.
ans_object

asn_primitive
asn_null
asn_integer
asn_bitstring

asn_namedbits
asn_boolean
asn_octetstring

asn_charstring
asn_ia5string
asn_directorystring
asn_UTF8string
asn_teletexstring
asn_printablestring

asn_composite
asn_sequence
asn_sorted

asn_set
asn_choice

asn_any

Abstract classes
ASN.1 uses two abstract classes: asn_object and asn_composite. These classes
are abstract because they define pure virtual functions.
class asn_object { encode_value(buffer_t & buf) const=0;

decode_value(r_buffer_t & buf,
uint32 value_length)=0;;};

class asn_composite { ... };

These virtual methods are implemented at the lower level of ASN.1 classes
corresponding to concrete ASN.1 data types.

The following code segments illustrate manipulating ASN.1 objects:
class x509_Extension : public asn_sequence {
asn_oid extrnID;
asn_boolean critical;
asn_octetstring extnValue;..... // other definitions

};
class x509_Extensions : public
asn_sequenceof<x509_Extension> {...};

CertReqMsg certReqMsg= ...
x509_Extensions * pextensions;
pextensions=&(certreqmsg->certReq.certTemplate.extensions);

x509_Extension * this_ext; // delete an extension
asn_oid undesired_oid;;
uint32 num_ext= pextensions->get_child_count();
for (uint32 ext_index = 0; ext_index < num_ext; ext_index++)
{

this_ext = pextensions->get_child(ext_index);
if (undesired_oid == this_ext->extnID) {

status = pextensions->delete_child (ext_index);
break; }}

// add a new extension
this_ext = pextensions->add_child(); // add a new member to the

Appendix A. Using the ASN.1 class library 207

// sequence of extensions

// set named oid
status = this_ext->extnID.set_value("testId",strlen("testId"));

buffer_t buf;
status = buff.clear();
status = my_octets.write(buf);

asn_octetstring my_octets;
status = my_octets.set_value("test"),strlen("test"));

status = this_ext->extnValue.set_value(buf.data,
buf.data_len);

status = this_ext->critical.set_value(false);

The following example shows how to ″flatten″ an ASN.1 value:
buffer_t this_buff;
this_buf.clear();
status = this_ext->extnID.write(this_buff);
status = this_ext->extnValue.write(this_buff);
status = this_ext->critical.write(this_buff);

this_buf.clear();
// or simply to flatten the whole extension object

status = this_ext->write(this_buff);

Notes:

1. Use the read method to reconstruct an asn_object given its encoded buffer.

2. Use the write method to encode or flatten an ASN.1 object.

ASN.1 header files
To access the basic ASN.1 capabilities, you must include in your application (using
#include statements) the asnbase.h header file. In addition, the asnstrng.h header
file provides the support for various character string types including codeset
conversions for the following:

v PrintableString

v Teletex/T.61

v IA5

v 16- and 32-bit encodings of Unicode

The asnnames.h header file defines a class representing X.500 names and
supports both the X.500 printable syntax (/C=us/O=. . .) and the RFC 1779 syntax
(CN=Myname; OU=Security; O=. . .).

208 Programming Guide and Reference

Appendix B. PKIX programming model

This section describes the IBM SecureWay X.509 Public Key Infrastructure for
Multiplatforms (PKIX) programming model. Information in this section includes:

v An introduction to the IBM SecureWay X.509 Public Key Infrastructure for
Multiplatforms and its components

v Programming the certificate authority (CA) and registration authority (RA)
bootstraps

v Sample bootstrap C++ sequence calls

v Enrolling the RA with the CA

v Sample RA enrollment code

v Programming to the end entity (EE)

v Sample EE certificate life cycle code

v Programming to the RA

v Programming to the CA

Introduction
The IBM SecureWay X.509 Public Key Infrastructure for Multiplatforms (PKIX)
certificates consist of the following interactive components:

v End entity (EE)

v Registration authority (RA)

v Certificate authority (CA)

The EE component presents an interface to a programming entity or to a human
entity to initiate certificate life cycle requests targeted to the RA, such as initiating a
certificate request or a revocation request. The EE also generates the private and
public key pairs for a prospective certificate holder.

The RA supports administrative functions, such as the registration of subjects
(prospective holders of X.509 certificates), in preparation for subjects to issue
certificate requests. The RA also validates that a subject is entitled to have the
attributes being requested in a certificate, and the RA securely verifies the
authenticity of a certificate request being appropriately associated with a previous
registration record for the subject.

The CA is the PKIX trusted authority for issuing and certifying X.509 certificates.

The interactions among the PKIX components as illustrated in Figure 1 on page 210
start at the EE, extend to the RA, and then move to the CA. Replies are propagated
back from the CA to the RA and then to the EE.

© Copyright IBM Corp. 1999 209

The functions of these three components, as exposed through their respective
human graphic interfaces, are also exposed to application developers through a set
of application programming interfaces (APIs). The object store associated with each
of the PKIX components is central to these APIs. However, the object store remains
transparent, so programmers will need to refer to object store elements using only
the numeric identifiers. Each of these identifiers is assigned when the object is first
created. The latter step is also exposed to programming through its own interface.

Figure 2 on page 211 illustrates the main programming steps that a PKIX
programmer needs to adopt. They include the following:

1. Performing a manual initialization step by running the initsc program for the
three components EE, RA, and CA, whereby a respective virtual smart card key
store is initialized.

2. Bootstrapping the CA and the RA.

3. Enrolling the RA with the CA.

4. Programming the certificate life cycle and manipulation with the EE, RA, and
CA.

CA

RA

EE

Figure 1. Hierarchical relationship among the PKIX components

210 Programming Guide and Reference

Programming the CA and RA bootstraps
The outcome of the bootstrap programming steps is the generation of a self-signed
certificate for the CA (also known as a certificate for the root CA) and a certificate
for the RA. The CA certificate may get posted to the LDAP directory server when
applicable and desirable. Additionally, these certificates are stored in the object
store attached to the CA and to the RA respectively, while associated private keys
are stored in their respective virtual smart cards. Figure 3 on page 212 illustrates
the overall CA and RA bootstrap programming sequence.

1

3

2

4

Initialization
initsc

Enroll RA
with CA

Perform CA and
RA bootstrap

Program to EE,
RA, and CA for

certificate life cycle

Figure 2. Overall PKIX programming steps

Appendix B. PKIX programming model 211

Sample bootstrap C++ sequence calls

Note: Calls to JNH APIs below will need to be converted into corresponding C++
invocations.

int server_type = svrType_CA; // or svrType_RA
uint32 status;
if (status = JNH_start_server(server_type),(char*) "c:\pkix\myRA.ini") return status;
if (serverstatus != svrSt_Bootstrap) return serverstatus;

// Set up .ini file bootstrap information.
if (status = JNH_set_IniTcpHost((utf8String)"9.53.91.93")) return status;

Initialize the CA or RA
run-time environment

(start server)

Set up RA or CA .ini file
with information needed

by the bootstrap
(see sample below)

Create a bootstrap object
(objid)

Lock objid

Save objid

Inquire the state of
the RA or CA and verify

that it is in bootstrap

Set values in objid as desired
e. g., name of your entity,

public/private key info, and
LDAP information for the RA

Invoke the
bootstrap interface

on objid

Perform other functions such as
output of CA info, CA/RA fingerprint

Figure 3. Overall CA and RA bootstrap programming steps

212 Programming Guide and Reference

if (status = JNH_set_IniTcpPort((utf8String)"1829") return status;

// The following sets up LDAP authentication information that
// the RA uses when connecting to a configured LDAP server.

if (server_type == svrType_RA) { // RA only

status = JNH_set_IniLdapServer((utf8String)"myLDAPserver.mydomain.com:371");
if (status) return status;

status = JNH_set_IniLdapAuthName((utf8String)"/C=us/O=MYCOMPANY/CN=mb");
if (status) return status;

status = JNH_set_IniLdapAuthPwd((utf8String)"/C=us/O=MYCOMPANY/CN=mb");
if (status) return status;
}

uint32 objid;
status = JNH_create_BootStrap(&objid);
if (status) return status;

if (status = JNH_reserve_object(objid)) return status;
status = JNH_set_MyName(objid, (utf8String)"/C=us/O=IBM/OU=Test/CN=Issuer CA"); // CA case
if (status) return status;

status = JNH_set_certreq_privkey_EE(objid, (utf8String)"id-dsa", 512);
if (status) return status;

if (status = JNH_BootStrap(objid, (utf8String)"MYPIN"));
return status;

// Now verify that the server has status of svrSt_Bootstrap
// and, if it does, dump the CA info to a file so that
// it can be used during RA enrollment with the CA.

octetString *serialNumber;
utf8String *fingerprint;
status = JNH_GetStatus(&serverstatus);
if (serverstatus == svrSt_Bootstrap) {
if (IniAmICA()) // output CA info

if (status = JNH_CA_write_info(utf8String"ca.info")) return status;

if (status = JNH_get_fingerprint(serialNumber, fingerprint)) return status;
// Output fingerprint to a file, such as cafingerprint.out or rafingerprint.out.

}
....

Enrolling the RA with the CA
This process establishes a trust relationship between the CA and its client RA. This
is necessary to avoid having a masquerading RA interacting with the CA. Similarly,
the RA verifies that it is enrolling with the legitimate CA server. RA enrollment
consists of programming to both the RA and the CA. An enrollment request is
initiated by the RA, which then gets approved or rejected by the CA. Figure 4 on
page 214 illustrates the flow sequence of programming the RA enrollment with the
CA.

Appendix B. PKIX programming model 213

Sample RA enrollment code
This section contains code samples showing the RA issuing an enrollment request
and the CA processing an enrollment request.

Initiating the RA enrollment request
int server_type = svrType_RA; // Initialize the RA run-time.
uint32 status;
if (status = JNH_start_server(server_type),(char*) "c:\pkix\myRA.ini") return status;

if ((status = Init(svrType_RA)) != 0)
return status;

// Log in to RA server.
status = JNH_server_login_pwd((utf8String)"raPin");

// Register a callback function to handle events triggered
// by state changes of an enrollment request object.

1 RA 2 CA

Initialize your RA server Initialize your CA server

Register a callback function
to process events from

change of state for pending
enrollment request

Register a callback function
to process pending requests

Create an enrollment request
and set its values accordingly

(JNH_create_enrollment_request)

Retrieve CA fingerprint
and CA info

Process the pending
RA enrollment request
using JNH_enroll_RA

Invoke JNH_enroll
to send request to the CA

Take actions based on
triggered events in your

callback function

Figure 4. Overall steps for completing the RA enrollment with the CA

214 Programming Guide and Reference

if ((status = JNH_register_callbacks(¬ify, &display))) return status;

buffer_t buf;

// Read in CA fingerprint file (cafinger.out) into buf.

fp = fopen("c:\\cafingerprint", "rb");
if (fp == NULL)

return API_FILE_NOT_OPENED;

c = getc(fp);
while ((c != EOF) && (status == 0)){

status = buff.append(c);
if (status != 0) return status;
c = getc(fp);

}
fclose(fp);

// Get CA info in order to set enrollment request fields.
status = JNH_get_CA_info((unsigned char *)filename, true, &caURL,

&subjName, &serialNumber);

// Create the enrollment record.
// It then computes a hash over the CA certificate and checks it against
// the input CA fingerprint.

uint32 reqId;
status = JNH_create_enrollment_request((unsigned char *)"c:\\ca.info", true,

buf.data, &reld)
if (status) return status;

if ((status = JNH_reserve_object(reqId))) return status;
if ((status = JNH_set_certreq_issuer(objId, subjName))) return status;
status = JNH_set_certreq_privkey_EE(objId, (utf8String)"rsaEncryption",512);
if (status) return status;

if (status = JNH_get_self_subjectKeyInfo(&numElements, &serialNumbers,
&keyAlgorithms, &keyLengths))

return status;
if (numElements == 0)

return API_INVALID_ARGUMENT;
if (status = JNH_set_certreq_subjectKeyInfo(reqId, serialNumbers[0]))

return status;

status = JNH_save_object(objId);

// Issue the enrollment.
// Returns 10061 if it can't send the message to the CA.
if ((status = JNH_enroll(reqId)))

return status;
...;

void notify(uint32 id, const utf8String name, uint32 status)
{

uint32 foo;

foo = status & 0xffff0000;

if (foo == ObjStRAEnrollWaitingForCAS)
cout << "ra_enroll : RA enrollment request with ID = " << id << " is
waiting for CA to approve"<< endl;

else if (foo == ObjStRAEnrollActive)

Appendix B. PKIX programming model 215

cout << "ra_enroll : RA enrollment request is active with ID = " << id
<< endl;

}

CA processing of the RA enrollment request
// Start the CA server, perform server login steps,
// and register a notify callback function as in above sample code.
// Also, retrieve the RA fingerprint by reading it from an input
// file, such as into a buffer rafgPrint visible to the notify function.

utf8String rafgPrint;

...;

// The notify function will process the enrollment request
// as in the sample below.

status = JNH_enroll_RA(objId, (const utf8String) x://localhost:829,
(utf8String) rafgPrint);

void notify(uint32 id, const utf8String name, uint32 status)
{
uint32 foo = status & 0xffff0000;
uint32 status;

if (foo == ObjStCAEnrReqActive) {
fprintf(stderr, "Enrollment Request is active, enrolling ra\n");
utf8String fprint = NULL; // not checked until message protection task

status = JNH_enroll_RA(id, (utf8String)"pkix://localhost:829", fprint);
if (status) fprintf(stderr, "enroll RA failed with %d\n", status);

}
else {// perform other functions }

...;
return;

}

Programming to the end entity
Certificate life cycle operations are generally initiated by the EE component of PKIX.
A typical PKIX environment consists of one CA server, one RA server, and multiple
EE images interacting with the RA. A preregistration process of subjects that are
potential certificate holders needs to be performed early in the process. The
resulting piece of information is a preregistration record that becomes the basis for
an EE requesting a certificate. The preregistration step provides for a secure and a
reliable means of verifying that the EE is acting in behalf of a legitimate subject and
is requesting a certificate from a legitimate RA server.

An operation initiated at the EE might include an object store inquiry, a certificate
request (for a new certificate), or a request to revoke an existing certificate.

The process of requesting a certificate by an EE is shown in Figure 5 on page 217
and is detailed in the sample code below. Although the preregistration process is
programmed to the RA component, it is illustrated here as an integral part to such a
process.

216 Programming Guide and Reference

Sample EE certificate life cycle code
This section contains code samples showing preregistration at the RA and
requesting a certificate.

Performing user preregistration at the RA
utf8String passwd = (unsigned char *) "myRapass";
if (status = JNH_start_server(svrType_RA),(char *) "c:\pkix\myRA.ini") return status;
if (status = JNH_server_login_pwd(passwd)) return status;

1 RA 2 EE

Initialize and login
the EE server

Lock the request object

Save the request object

Initialize and login
the RA server

Register a callback function
to monitor state

of the certificate request

Create a preregistration
record for the subject

(JNH_RA_preregister_user)

Set the certificate request
object fields as desired

Preregister the subject with the
EE using the RA preregistration
record (JNH_preregister_user)
and acquire a request object

Output the
preregistration

record

Export credentials to
the smart card store

Invoke JNH_register_user
to send request to the RA

Monitor states of the certificate
request within the notify

callback function

Figure 5. Programming steps for a certificate initial request

Appendix B. PKIX programming model 217

utf8String CAName = NULL;
if (status = JNH_INI_readString((unsigned char *const)"General",

(unsigned char *const)"Issuer1",
(unsigned char **) &CAName,
(unsigned char *const)"")) return status;

utf8String name = (unsigned char *) "/C=us/O=myCo/OU=myName"; // Set to the subject name.
utf8String pwd = (unsigned char *) "mypreregpass"; // Set to the preregistration password.

utf8String buf;

// Any value can be used instead of 0 in the following call.
if (status = JNH_RA_preregister_user(CAName, name, 0, pwd, &buf)) return status;

// Output buf into a file, such as preregrec.out.

Requesting a certificate
uint32 status;
utf8String PreRegistrationRecord;
// Read in from preregrec.out into PreRegistrationRecord.

if (status = JNH_start_server(svrType_EE)) return status;
if (status = JNH_register_callbacks(¬ify, &display)) return status;
uint32 *req_id;
utf8String pwd = "mypreregpass";

if (status = JNH_preregister_user(PreRegistrationRecord, pwd, &req_id)) return status);
if (status = JNH_reserve_object(req_id)) return status;

utf8String extn_id = ...;
utf8String extn_value = "myName@myDomain.com";

status = JNH_add_certreq_extension(SUBJECT_ALT_NAME, req_id, extn_id, extn_value, false);
if (status) return status;

if (status = JNH_set_certreq_privkey_EE(req_id, (utf8String)"id-dsa", 512))
if (status) return status;

if (status = JNH_save_object(id)) return status;

utf8String tokenFile = "VSC:c:\\pkix\\data\\eetoken.fil"; // for example
utf8String ecPwd;

// In the following API, verify which VSC pin # is needed for the user/security officer.
if (status = JNH_export_credential(req_id, ecPwd, tokenFile)) return status;
if (status = JNH_register_user(req_id)) return status;
// This sends a certificate request message to the RA.

void notify(uint32 id, const utf8String name, uint32 status)
{

uint32 foo;
bool found = false;

foo = status & 0xffff0000;

if (foo == ObjStEECertReqSubmittedS)
{
// Certificate request is submitted to the RA.
...;

}

if (foo == ObjStEECertIssued)
{

// A certificate was issued; take action accordingly.

218 Programming Guide and Reference

...;
}
...;

}

Programming to the registration authority
Direct interactions with the RA are intended to approve or disapprove of a certificate
request/revocation request or to inquire and modify the RA’s object store. In
addition, the RA handles the programming of subject registration. The following
example demonstrates a way of programming to the RA during a certificate life
cycle.
if (status = JNH_start_server(svrType_RA), (utf8String) "MyInifile" return status;
if (status = JNH_server_login_pwd((utf8String)"myRApass")) return status;
if (status = JNH_register_callbacks(¬ify, &display)) return status;
if (status = JNH_list_object()) return status;
...;

void notify(uint32 id, const utf8String name, uint32 status)
{

uint32 foo;

foo = status & 0xffff0000;

if (foo == ObjStRACertReqActive)
status = JNH_authorize_registration(id, 0); // Authorizes the certificate.

if (foo == ObjStRACertCAApproved)
printStatus(id, name, status, "RA_CERT_CA_APPROVED");

if (foo == ObjStRACertCARejected)
printStatus(id, name, status, "RA_CERT_CA_REJECTED");

if (foo == ObjStRARevReqActive)
printStatus(id, name, status, "RA_REV_ACTIVE");

if (foo == ObjStRARevReqWaitingForCAS)
printStatus(id, name, status, "RA_REV_WAITING_FOR_CA");

if (foo == ObjStRARevReqCAApproved)
printStatus(id, name, status, "RA_REV_CA_APPROVED");

if (foo == ObjStRACertReqRejecting)
printStatus(id, name, status, "RA_CERT_REQ_REJECTING");

}

Programming to the certificate authority
The paradigm here is similar to what occurs with the RA. Programming to the CA is
centered around retrieving CA active objects from the CA’s object store when the
objects arrive, and then processing them according to the message type that they
represent. The following example shows how a certificate request is processed by
the CA into an issued certificate.
status = JNH_start_server(svrType_CA, (utf8String) "MyInifile"));
status = JNH_server_login_pwd((utf8String) password);
status = JNH_register_callbacks(¬ify, &display);
if (status = JNH_list_object()) return status;

void notify(uint32 id, const utf8String name, uint32 status)
{

Appendix B. PKIX programming model 219

uint32 foo;

foo = status & 0xffff0000;

// States for CA.
if (foo == ObjStCACertReqActive)
if (status = JNH_create_certificate(id, 0)) return status;

...;
}

Header and library files
When compiling the JNH APIs, you must include one or more of the following
header files:

asn1.h

asn1msg.h

asnbase.h

asnnames.h

asnstrng.h

jonah.h

jtime.h

objstates.h

platform.h

utctime.h

x509.h

jonahalg.h

When linking, you must include one or more of the following library files:

jonah.lib

ObjStore.lib

Asn1.lib

Misc.lib

JnhComms.lib

Policy.lib

wsock32.lib

BinBin.lib

jdl.lib

Note: Do not link with remJonah.lib

220 Programming Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1999 221

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between
us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form
without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

222 Programming Guide and Reference

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AIX
IBM
SecureWay

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

This program contains Standard Template Library (STL) software from
Hewlett-Packard Company. Copyright (c) 1994.

v Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. Hewlett-Packard
Company makes no representations about the suitability of this software for any
purpose. It is provided “as is” without express or implied warranty.

This program contains Standard Template Library (STL) software from Silicon
Graphics Computer Systems, Inc. Copyright (c) 1996–1999.

v Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. Silicon Graphics
makes no representations about the suitability of this software for any purpose. It
is provided “as is” without express or implied warranty.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 223

224 Programming Guide and Reference

Glossary

This glossary defines the terms and abbreviations
in this book that may be new or unfamiliar and
terms that may be of interest. It includes terms
and definitions from:

v The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

v The American National Standard Dictionary for
Information Systems, ANSI X3.172–1990,
American National Standards Institute (ANSI),
1990.

v The Answers to Frequently Asked Questions,
Version 3.0, California: RSA Data Security, Inc.,
1998.

Numbers
4758 PCI Cryptographic Coprocessor. A
programmable, tamper-resistant cryptographic PCI-bus
card offering high performance DES and RSA
cryptographic processing. The cryptographic processes
occur within a secure enclosure on the card. The card
meets the stringent requirements of the FIPS PUB
140-1 level 4 standard. Software can run within the
secure enclosure. For example, credit card transaction
processing can use the SET standard.

A
Abstract Syntax Notation One (ASN.1). An ITU
notation that is used to define the syntax of information
data. It defines a number of simple data types and
specifies a notation for identifying these types and for
specifying values of these types. These notations can
be applied whenever it is necessary to define the
abstract syntax of information without curbing how the
information is encoded for transmission.

access control list (ACL). A mechanism for limiting
the use of a specific resource to authorized users.

ACL. Access control list.

action history. Accumulated events in the life cycle of
a credential.

American National Standard Code for Information
Interchange (ASCII). The standard code that is used
for information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set uses a coded character set
that consists of 7-bit coded characters (8 bits including
a bit for parity checking). The character set consists of
control characters and graphic characters.

American National Standards Institute (ANSI). An
organization that establishes the procedures by which

accredited organizations create and maintain voluntary
industry standards in the United States. It consists of
producers, consumers, and general interest groups.

ANSI. American National Standards Institute.

API. Application program interface.

applet. A computer program that is written in Java and
runs inside a Java-compatible Web browser. Also known
as a Java applet.

application program interface (API). In PKIX, a
functional interface that allows an application program
that is written in a high-level language to use specific
PKIX functions.

ASCII. American National Standard Code for
Information Interchange.

ASN.1. Abstract Syntax Notation One.

asymmetric cryptography. Cryptography that uses
different, asymmetric keys for encryption and
decryption. Each user receives a pair of keys: a public
key accessible to all, and a private key known only to
the user. A secure transaction can occur when the
public key and the corresponding private key match,
enabling the decryption of the transaction. This is also
known as key pair cryptography. Contrast with
symmetric cryptography.

asynchronous communication. A mode of
communication that does not require the sender and
recipient to be present simultaneously.

audit trail. Data, in the form of a logical path, that
links a sequence of events. An audit trail enables
tracing of transactions or the history of a given activity.

authentication. The process of reliably determining
the identity of a communicating party.

authorization. Permission to access a resource.

B
base64 encoding. A common means of conveying
binary data with MIME.

Basic Encoding Rules (BER). The rules specified in
ISO 8825 for encoding data units described in abstract
syntax notation 1 (ASN.1). The rules specify the
encoding technique, not the abstract syntax.

BER. Basic Encoding Rules.

© Copyright IBM Corp. 1999 225

business process objects. A set of code used to
accomplish a specific registration operation, such as
checking the status of an enrollment request or verifying
that a public key was sent.

business process template. A set of business
process objects that are run in a specified order.

browser. See Web browser.

browser certificate. A digital certificate is also known
as a client-side certificate. It is issued by a CA through
an SSL-enabled Web server. Keys in an encrypted file
enable the holder of the certificate to encrypt, decrypt,
and sign data. Typically, the Web browser stores these
keys. Some applications permit storage of the keys on
smart cards or other media. See also digital certificate.

bytecode. Machine-independent code that is
generated by the Java compiler and run by the Java
interpreter.

C
CA. Certificate authority.

CA certificate. A certificate your Web browser
accepts, at your request, from a CA it does not
recognize. The browser can then use this certificate to
authenticate communications with servers that hold
certificates issued by that CA.

CAST-64. A block cipher algorithm that uses a 64-bit
block size and a 6-bit key. It was designed by Carlisle
Adams and Stafford Tavares.

CCA. IBM Common Cryptographic Architecture.

CDSA. Common Data Security Architecture.

Common Data Security Architecture (CDSA). An
initiative to define a comprehensive approach to security
service and security management for computer-based
security applications. It was designed by Intel, to make
computer platforms more secure for applications.

certificate authority (CA). The software responsible
for following an organization’s security policies and
assigning secure electronic identities in the form of
certificates. The CA processes requests from RAs to
issue, renew, and revoke certificates. The CA interacts
with the RA to publish certificates and CRLs in the
Directory. See also digital certificate.

certificate extension. An optional feature of the
X.509v3 certificate format that provides for the inclusion
of additional fields in the certificate. There are standard
extensions and user-defined extensions. Standard
extensions exist for various purposes, including key and
policy information, subject and issuer attributes, and
certification path constraints.

certificate policy. A named set of rules that indicates
the applicability of a certificate to a particular class of
applications that have common security requirements.
For example, a certificate policy might indicate whether
a particular certification type allows a user to conduct
transactions for goods within a given price range.

certificate profile. A set of characteristics that define
the type of certificate wanted (such as SSL certificates
or IPSec certificates). The profile aids in managing
certificate specification and registration. The issuer can
change the names of the profiles and specify
characteristics of the desired certificate, such as the
validity period, key usage, DN constraints, and so forth.

certificate revocation list (CRL). A digitally signed,
time-stamped list of certificates that the certificate
authority has revoked. The certificates in this list should
be considered unacceptable. See also digital certificate.

certification. The process during which a trusted third
party issues an electronic credential that vouches for an
individual, business, or organizational identity.

CGI. Common Gateway Interface.

chain validation. The validation of all CA signatures in
the trust hierarchy through which a given certificate was
issued. For example, if a CA was issued its signing
certificate by another CA, both signatures are validated
during validation of the certificate that the user presents.

class. In object-oriented design or programming, a
group of objects that share a common definition and
therefore share common properties, operations, and
behavior.

cleartext. Data that is not encrypted. Synonym for
plaintext.

client. (1) A functional unit that receives shared
services from a server. (2) A computer or program that
requests a service of another computer or program.

client/server. A model in distributed processing in
which a program at one site sends a request to a
program at another site and waits for a response. The
requesting program is called a client; the answering one
is called a server.

code signing. A technique for signing executable
programs with digital signatures. Code signing is
designed to improve the reliability of software that is
distributed over the Internet.

Common Cryptographic Architecture (CCA). IBM
software that enables a consistent approach to
cryptography on major IBM computing platforms. It
supports application software that is written in a variety
of programming languages. Application software can call
on CCA services to perform a broad range of
cryptographic functions, including DES and RSA
encryption.

226 Programming Guide and Reference

Common Gateway Interface (CGI). Standard method
of transmitting information between Web pages and
Web servers.

confidentiality. The property of not being divulged to
unauthorized parties.

credential. Confidential information used to prove
one’s identity in an authentication exchange. In
environments for network computing, the most common
type of credential is a certificate that a CA has created
and signed.

CRL. Certificate revocation list.

CRL publication interval. Set in the CA configuration
file, the interval of time between periodic publications of
the CRL to the Directory.

cross-certification. A trust model whereby one CA
issues to another CA a certificate that contains the
public key associated with its private signature key. A
cross-certified certificate allows client systems or end
entities in one administrative domain to communicate
securely with client systems or end entities in another
domain.

cryptographic. Pertaining to the transformation of
data to conceal its meaning.

cryptography. In computer security, the principles,
means, and methods for encrypting plaintext and
decrypting encrypted text.

D
daemon. A program that carries out tasks in the
background. It is implicitly called when a condition
occurs that requires its help. A user need not be aware
of a daemon, because the system usually spawns it
automatically. A daemon might live forever or the
system might regenerate it at intervals.

The term (pronounced demon) comes from mythology.
Later, it was rationalized as the acronym DAEMON:
Disk And Execution MONitor.

Data Encryption Standard (DES). An encryption
block cipher, defined and endorsed by the U.S.
government in 1977 as an official standard. IBM
developed it originally. DES has been extensively
studied since its publication and is a well-known and
widely used cryptographic system.

DES is a symmetric cryptographic system. When it is
used for communication, both the sender and receiver
must know the same secret key. This key is used to
encrypt and decrypt the message. DES can also be
used for single-user encryption, such as to store files on
a hard disk in encrypted form. DES has a 64-bit block
size and uses a 56-bit key during encryption. It is was
originally designed for implementation in hardware.

NIST has recertified DES as an official U.S. government
encryption standard every five years.

Data Storage Library (DL). A module that provides
access to persistent data stores of certificates, CRLs,
keys, policies, and other security-related objects.

decrypt. To undo the encryption process.

DEK. Document encrypting key.

DER. Distinguished Encoding Rules.

DES. Data Encryption Standard.

Diffie-Hellman. A method of establishing a shared key
over an insecure medium, named after the inventors
(Diffie and Hellman).

digital certificate. An electronic credential that is
issued by a trusted third party to a person or entity.
Each certificate is signed with the private key of the CA.
It vouches for an individual, business, or organizational
identity.

Depending on the role of the CA, the certificate can
attest to the authority of the bearer to conduct
e-business over the Internet. In a sense, a digital
certificate performs a similar role to a driver’s license or
a medical diploma. It certifies that the bearer of the
corresponding private key has authority to conduct
certain e-business activities.

A certificate contains information about the entity it
certifies, whether person, machine, or computer
program. It includes the certified public key of that
entity.

digital certification. See certification.

digital signature. A coded message added to a
document or data that guarantees the identity of the
sender.

A digital signature can provide a greater level of security
than a physical signature. The reason for this is that a
digital signature is not an encrypted name or series of
simple identification codes. Instead, it is an encrypted
summary of the message that is being signed. Thus,
affixing a digital signature to a message provides solid
identification of the sender. (Only the sender’s key can
create the signature.) It also fixes the content of the
message that is being signed (the encrypted message
summary must match the message content or the
signature is not valid). Thus, a digital signature cannot
be copied from one message and applied to another
because the summary, or hash, would not match. Any
alterations to the signed message would also invalidate
the signature.

Digital Signature Algorithm (DSA). A public key
algorithm that is used as part of the Digital Signature
Standard. It cannot be used for encryption, only for
digital signatures.

Glossary 227

Directory. A hierarchical structure intended as a global
repository for information related to communications
(such as e-mail or cryptographic exchanges). The
Directory stores specific items that are essential to the
PKI structure, including public keys, certificates, and
certificate revocation lists.

Data in the Directory is organized hierarchically in the
form of a tree, with the root at the top of the tree. Often,
higher level organizations represent individual countries,
governments, or companies. Users and devices are
typically represented as leaves of each tree. These
users, organizations, localities, countries, and devices
each have their own entry. Each entry consists of typed
attributes. These provide information about the object
that the entry represents.

Each entry in the Directory is bound with an associated
distinguished name (DN). This is unique when the entry
includes an attribute that is known to be unique to the
real world object. Consider the following example DN. In
it, the country (C) is US, the organization (O) is IBM, the
organizational unit (OU) is Trust, and the common name
(CN) is CA1.

C=US/O=vnet/OU=Trust/CN=CA1

Distinguished Encoding Rules (DER). Provides
constraints on the BER. DER selects just one type of
encoding from those that the encoding rules allow,
eliminating all of the sender’s options.

distinguished name (DN). The unique name of a data
entry that is stored in the Directory. The DN uniquely
identifies the position of an entry in the hierarchical
structure of the Directory.

DL. Data Storage Library.

DN. Distinguished name.

document encrypting key (DEK). Typically, a
symmetric encryption/decryption key, such as DES.

domain. See security domain and registration domain.

DSA. Digital Signature Algorithm.

E
e-business. Business transactions over networks and
through computers. It includes buying and selling goods
and services. It also includes transferring funds through
digital communications.

e-commerce. Business-to-business transactions. It
includes buying and selling goods and services (with
customers, suppliers, vendors, and others) on the
Internet. It is a primary element of e-business.

end entity. The subject of a certificate that is not a
CA.

encrypt. To scramble information so that only
someone who has the appropriate decryption code can
obtain the original information through decryption.

encryption/decryption. Using the public key of the
intended recipient to encipher data for that person, who
then uses the private key of the pair to decipher the
data.

enrollment attribute. An enrollment variable that is
contained in an enrollment form. Its value reflects the
information that is captured during the enrollment. The
value of the enrollment attribute remains the same
throughout the lifetime of the credential.

enrollment variable. See enrollment attribute.

extranet. A derivative of the Internet that uses similar
technology. Companies are beginning to apply Web
publishing, electronic commerce, message transmission,
and groupware to multiple communities of customers,
partners, and internal staff.

F
File Transfer Protocol (FTP). An Internet client/server
protocol for use in transferring files between computers.

firewall. A gateway between networks that restricts the
flow of information between networks. Typically, the
purpose of a firewall is to protect internal networks from
unauthorized use from the outside.

FTP. File Transfer Protocol.

G
gateway. A functional unit that allows incompatible
networks or applications to communicate with each
other.

H
HTML. Hypertext Markup Language.

HTTP. Hypertext Transaction Protocol.

HTTP server. A server that handles Web-based
communications with browsers and other programs in a
network.

hypertext. Text that contains words, phrases, or
graphics that the reader can click with the mouse to
retrieve and display another document. These words,
phrases, or graphics are known as hyperlinks.
Retrieving them is known as linking to them.

Hypertext Markup Language (HTML). A markup
language for coding Web pages. It is based on SGML.

228 Programming Guide and Reference

Hypertext Transaction Protocol (HTTP). An Internet
client/server protocol for transferring hypertext files
across the Web.

I
ICL. Issued certificate list.

IETF (Internet Engineering Task Force). A group that
focuses on engineering and developing protocols for the
Internet. It represents an international community of
network designers, operators, vendors, and researchers.
The IETF is concerned with the development of the
Internet architecture and the smooth use of the Internet.

integrity. A system protects the integrity of data if it
prevents unauthorized modification (as opposed to
protecting the confidentiality of data, which prevents
unauthorized disclosure).

integrity checking. The checking of audit records that
result from transactions with external components.

internal structure. See schema.

International Standards Organization (ISO). An
international organization tasked with developing and
publishing standards for everything from wine glasses to
computer network protocols.

International Telecommunication Union (ITU). An
international organization within which governments and
the private sector coordinate global telecommunication
networks and services. It is the leading publisher of
telecommunication technology, regulatory, and
standards information.

Internet. A worldwide collection of networks that
provide electronic connection between computers. This
enables them to communicate with each other via
software devices such as electronic mail or Web
browsers. For example, some universities are on a
network that in turn links with other similar networks to
form the Internet.

intranet. A network within an enterprise that usually
resides behind firewalls. It is a derivative of the Internet
and uses similar technology. Technically, intranet is a
mere extension of the Internet. HTML and HTTP are
some of the commonalties.

IPSec. An Internet Protocol Security standard,
developed by the IETF. IPSec is a network layer
protocol, designed to provide cryptographic security
services that flexibly support combinations of
authentication, integrity, access control, and
confidentiality. Because of its strong authentication
features, it has been adopted by many VPN product
vendors as the protocol for establishing secure
point-to-point connections over the Internet.

ISO. International Standards Organization.

issued certificate list (ICL). A complete list of the
certificates that have been issued and their current
status. Certificates are indexed by serial number and
state. This list is maintained by the CA and stored in the
CA database.

ITU. International Telecommunication Union.

J
Java. A set of network-aware, non-platform-specific
computer technologies developed by Sun Microsystems,
Incorporated. The Java environment consists of the
Java OS, the virtual machines for various platforms, the
object-oriented Java programming language, and
several class libraries.

Java applet. See applet. Contrast with Java
application.

Java application. A stand-alone program that is
written in the Java language. It runs outside the context
of a Web browser.

Java class. A unit of Java program code.

Java language. A programming language, developed
by Sun Microsystems, designed specifically for use in
applet and agent applications.

Java Virtual Machine (JVM). The part of the Java
run-time environment responsible for interpreting
bytecodes.

K
key. A quantity used in cryptography to encipher or
decipher information.

key pair. Corresponding keys that are used in
asymmetric cryptography. One key is used to encrypt
and the other to decrypt.

L
LDAP. Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol (LDAP). A
protocol used to access the Directory.

M
MAC. Message authentication code.

MIME (Multipurpose Internet Mail Extensions). A
freely available set of specifications that allows the
interchange of text in languages with different character
sets. it also allows multimedia e-mail among many
different computer systems that use Internet mail

Glossary 229

standards. For example, the e-mail messages may
contain character sets other than US-ASCII, enriched
text, images, and sounds.

modulus. In the RSA public key cryptographic system,
the product (n) of two large primes: p and q. The best
size for an RSA modulus depends on one’s security
needs. The larger the modulus, the greater the security.
The current RSA Laboratories–recommended key sizes
depend on the planned use for the key: 768 bits for
personal use, 1024 bits for corporate use, and 2048 bits
for extremely valuable keys like the key pair of a CA. A
768-bit key is expected to be secure until at least the
year 2004.

N
National Language Support (NLS). Support within a
product for differences in locales, including language,
currency, date and time format, and numeric
presentation.

National Security Agency (NSA). The official security
body of the U.S. government.

NIST. National Institute of Standards and Technology,
formerly known as NBS (National Bureau of Standards).
It promotes open standards and interoperability in
computer-based industries.

NLS. National language support.

nonce. A string that is sent down from a server or
application, requesting user authorization. The user that
is asked for authentication signs the nonce with a
private key. The user’s public key and the signed nonce
are sent back to the server or application that requested
authentication. The server then attempts to decipher the
signed nonce with the user’s public key. If the
deciphered nonce is the same as the original nonce that
was sent, the user is authenticated.

non-repudiation. The use of a digital private key to
prevent the signer of a document from falsely denying
having signed it.

NSA. National Security Agency.

O
object. In object-oriented design or programming, an
abstraction encapsulating data and the operations
associated with that data. See also class.

object identifier (OID). An administratively assigned
data value of the type defined in abstract syntax
notation 1 (ASN.1).

object type. The kind of object that can be stored in
the Directory. For example, an organization, meeting
room, device, person, program, or process.

ODBC. Open Database Connectivity.

Open Database Connectivity (ODBC). A standard for
accessing different database systems.

Open Systems Interconnect (OSI). The name of the
computer networking standards that the ISO approved.

OSI. Open Systems Interconnect.

P
PC card. Similar to a smart card, and sometimes
called a PCMCIA card. This card is somewhat larger
than a smart card and usually has a greater capacity.

PEM. Privacy-enhanced mail.

PKCS. Public Key Cryptography Standards.

PKCS #1. See Public Key Cryptography Standards.

PKCS #7. See Public Key Cryptography Standards.

PKCS #10. See Public Key Cryptography Standards.

PKCS #11. See Public Key Cryptography Standards.

PKCS #12. See Public Key Cryptography Standards.

PKI. Public key infrastructure.

PKIX. An X.509v3-based PKI.

PKIX certificate management protocol (CMP). A
protocol that enables connections with PKIX-compliant
applications. PKIX CMP uses TCP/IP as its primary
transport mechanism, but an abstraction layer over
sockets exists. This enables support for additional
polling transports.

PKIX CMP. PKIX certificate management protocol.

plaintext. Unencrypted data. Synonym for cleartext.

policy exit. In a registration application, an
organization-defined program that is called by the
application. The rules specified in a policy exit apply the
organization’s business and security preferences to the
enrollment process.

privacy. Protection from the unauthorized disclosure of
data.

privacy-enhanced mail (PEM). The Internet
privacy-enhanced mail standard, that the Internet
Architect Board (IAB) adopted to provide secure
electronic mail over the Internet. The PEM protocols
provide for encryption, authentication, message integrity,
and key management.

private key. The key in a public/private key pair that is
available only to its owner. It enables the owner to
receive a private transaction or make a digital signature.

230 Programming Guide and Reference

Data signed with a private key can be verified only with
the corresponding public key. Contrast with public key.
See also public/private key pair.

protocol. An agreed-on convention for inter-computer
communication.

proxy server. An intermediary between the computer
that is requesting access (computer A) and the
computer that is being accessed (computer B). Thus, if
an end user makes a request for a resource from
computer A, this request is directed to a proxy server.
The proxy server makes the request, gets the response
from computer B, and then forwards the response to the
end user. Proxy servers are useful for accessing World
Wide Web resources from inside a firewall.

public key. The key in a public/private key pair that is
made available to others. It enables them to direct a
transaction to the owner of the key or verify a digital
signature. Data encrypted with the public key can be
decrypted only with the corresponding private key.
Contrast with private key. See also public/private key
pair.

Public Key Cryptography Standards (PKCS).
Informal inter-vendor standards developed in 1991 by
RSA Laboratories with representatives from various
computer vendors. These standards cover RSA
encryption, the Diffie-Hellman agreement,
password-based encryption, extended-certificate syntax,
cryptographic message syntax, private-key information
syntax, and certification syntax.

v PKCS #1 describes a method for encrypting data by
using the RSA public key cryptosystem. Its intended
use is in the construction of digital signatures and
digital envelopes.

v PKCS #7 specifies a general format for cryptographic
messages.

v PKCS #10 specifies a standard syntax for certification
requests.

v PKCS #11 defines a technology-independent
programming interface for cryptographic devices such
as smart cards.

v PKCS #12 specifies a portable format for storing or
transporting a user’s private keys, certificates,
miscellaneous secrets, and so forth.

public key infrastructure (PKI). A standard for
security software that is based on public key
cryptography. The PKI is a system of digital certificates,
certificate authorities, registration authorities, certificate
management services, and distributed directory
services. It is used to verify the identity and authority of
each party involved in any transaction over the Internet.
These transactions might involve operations where
identity verification is required. For example, they might
confirm the origin of proposal bids, authors of e-mail
messages, or financial transactions.

The PKI achieves this by making the public encryption
keys and certificates of users available for
authentication by a valid individual or organization. It
provides online directories that contain the public
encryption keys and certificates that are used in
verifying digital certificates, credentials, and digital
signatures.

The PKI provides a means for swift and efficient
responses to verification queries and requests for public
encryption keys. It also identifies potential security
threats to the system and maintains resources to deal
with security breaches. Lastly, the PKI provides a digital
timestamping service for important business
transactions.

public/private key pair. A public/private key pair is
part of the concept of key pair cryptography (introduced
in 1976 by Diffie and Hellman to solve the key
management problem). In their concept, each person
obtains a pair of keys, one called the public key and the
other called the private key. Each person’s public key is
made public while the private key is kept secret. The
sender and receiver do not need to share secret
information: all communications involve only public keys,
and no private key is ever transmitted or shared. It is no
longer necessary to trust some communications channel
to be secure against eavesdropping or betrayal. The
only requirement is that public keys must be associated
with their users in a trusted (authenticated) manner (for
instance, in a trusted directory). Anyone can send a
confidential message by using public information.
However, the message can be decrypted only with a
private key, which is in the sole possession of the
intended recipient. Furthermore, key pair cryptography
can be used not only for privacy (encryption), but also
for authentication (digital signatures).

R
RA. Registration authority.

RA administrator. A user who has been authorized to
access the RA Desktop, to administer certificates and
requests for certificates.

RC2. A variable key-size block cipher, designed by
Ron Rivest for RSA Data Security. RC stands for Ron’s
Code or Rivest’s Cipher. It is faster than DES and is
designed as a drop-in replacement for DES. It can be
made more secure or less secure against exhaustive
key search than DES by using appropriate key sizes. It
has a block size of 64 bits and is about two to three
times faster than DES in software. RC2 can be used in
the same modes as DES.

An agreement between the Software Publishers
Association (SPA) and the United States government
gives RC2 special status. This makes the export
approval process simpler and quicker than the usual
cryptographic export process. However, to qualify for
quick export approval a product must limit the RC2 key

Glossary 231

size to 40 bits with some exceptions. An additional
string can be used to thwart attackers who try to
precompute a large look-up table of possible
encryptions.

registration authority (RA). The software that
administers digital certificates to ensure that an
organization’s business policies are applied from the
initial receipt of an enrollment request through certificate
revocation.

registration database. Contains information about
certificate requests and issued certificates. The
database stores enrollment data and all changes to the
certificate data throughout its life cycle. The database
can be updated by RA processes and policy exits, or by
RA administrators.

registration domain. A set of resources, policies, and
configuration options related to specific certificate
registration processes. The domain name is a subset of
the URL that is used to run the registration application.

repudiate. To reject as untrue; for example, to deny
that you sent a specific message or submitted a specific
request.

request ID. A 24- to 32-character ASCII value that
uniquely identifies a certificate request to the RA. This
value can be used on the certificate request transaction
to retrieve the status of the request or the certificate that
is associated with it.

RSA. A public key cryptographic algorithm that is
named for its inventors (Rivest, Shamir, and Adelman).
It is used for encryption and digital signatures.

S
schema. As relates to the Directory, the internal
structure that defines the relationships between different
object types.

Secure Electronic Transaction (SET). An industry
standard that facilitates secure credit card or debit card
payment over untrusted networks. The standard
incorporates authentication of cardholders, merchants,
and card-issuing banks because it calls for the issuance
of certificates.

Secure Sockets Layer (SSL). An IETF standard
communications protocol with built-in security services
that are as transparent as possible to the end user. It
provides a digitally secure communications channel.

An SSL-capable server usually accepts SSL connection
requests on a different port than requests for standard
HTTP requests. SSL creates a session during which the
exchange signals to set up communications between
two modems need to occur only once. After that,
communication is encrypted. Message integrity checking
continues until the SSL session expires.

security domain. A group (a company, work group or
team, educational or governmental) whose certificates
have been certified by the same CA. Users with
certificates that are signed by a CA can trust the identity
of another user that has a certificate signed by the
same CA.

server. (1) In a network, a data station that provides
functions to other stations; for example, a file server. (2)
In TCP/IP, a system in a network that handles the
requests of a system at another site, called a
client/server.

server certificate. A digital certificate, issued by a CA
to enable a Web server to conduct SSL-based
transactions. When a browser connects to the server by
using the SSL protocol, the server sends the browser its
public key. This enables authentication of the identity of
the server. It also enables encrypted information to be
sent to the server. See also CA certificate, digital
certificate, and browser certificate.

servlet. A server-side program that gives Java-enabled
servers additional functionality.

SET. Secure Electronic Transaction.

SGML. Standard Generalized Markup Language.

SHA-1 (Secure Hash Algorithm). An algorithm that
was designed by NIST and NSA for use with the Digital
Signature Standard. The standard is the Secure Hash
Standard; SHA is the algorithm that the standard uses.
SHA produces a 160-bit hash.

sign. To use your private key to generate a signature.
The signature is a means of proving that you are
responsible for and approve of the message you are
signing.

signing/verifying. To sign is to use a private digital
key to generate a signature. To verify is to use the
corresponding public key to verify the signature.

Simple Mail Transfer Protocol (SMTP). A protocol
that transfers electronic mail over the Internet.

site certificate. Similar to a CA certificate, but valid
only for a specific Web site. See also CA certificate.

smart card. A piece of hardware, typically the size of
a credit card, for storing a user’s digital keys. A smart
card can be password-protected.

S/MIME. A standard that supports the signing and
encryption of e-mail transmitted across the Internet. See
MIME.

SMTP. Simple Mail Transfer Protocol.

SSL. Secure Sockets Layer.

232 Programming Guide and Reference

Standard Generalized Markup Language (SGML). A
standard for describing markup languages. HTML is
based on SGML.

symmetric cryptography. Cryptography that uses the
same key for both encryption and decryption. Its
security rests in the key — revealing the key means that
anyone could encipher and decipher messages. The
communication remains secret only as long as the key
remains secret. Contrast with asymmetric cryptography.

symmetric key. A key that can be used for both
encryption and decryption. See also symmetric
cryptography.

T
target. A designated or selected data source.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

top CA. The CA at the top of a PKI CA hierarchy.

TP. Trust Policy.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for local and
wide area networks.

triple DES. A symmetric algorithm that encrypts the
plaintext three times. Although many ways exist to do
this, the most secure form of multiple encryption is
triple-DES with three distinct keys.

trust domain. A set of entities whose certificates have
been certified by the same CA.

trusted computer base (TCB). The software and
hardware elements that collectively enforce an
organization’s computer security policy. Any element or
part of an element that can effect security policy
enforcement is security-relevant and part of the TCB.
The TCB is an object that is bounded by the security
perimeter. The mechanisms that carry out the security
policy must be non-circumventable, and must prevent
programs from gaining access to system privileges to
which they are not authorized.

trust model. A structuring convention that governs
how certificate authorities certify other certificate
authorities.

tunnel. In VPN technology, an on-demand virtual
point-to-point connection made through the Internet.
While connected, remote users can use the tunnel to
exchange secure, encrypted, and encapsulated
information with servers on the corporate private
network.

type. See object type.

U
Unicode. A 16-bit character set that is defined by ISO
10646. The Unicode character encoding standard is an
international character code for information processing.
The Unicode standard encompasses the principal
scripts of the world and provides the foundation for the
internationalization and localization of software. All
source code in the Java programming environment is
written in Unicode.

Uniform Resource Locator (URL). A scheme for
addressing resources on the Internet. The URL specifies
the protocol, host name or IP address. It also includes
the port number, path, and resource details needed to
access a resource from a particular machine.

URL. Uniform Resource Locator.

user authentication. The process of validating that
the originator of a message is the identifiable and
legitimate owner of the message. It also validates that
you are communicating with the end user or system you
expected to.

UTF-8. A transformation format. It enables information
processing systems that handle only 8-bit character sets
to convert 16-bit Unicode to an 8-bit equivalent and
back again without loss of information.

V
VPN. Virtual Private Network.

Virtual Private Network (VPN). A private data network
that uses the Internet rather than phone lines to
establish remote connections. Because users access
corporate network resources through an Internet Service
Provider (ISP) rather than a telephone company,
organizations can significantly reduce remote access
costs. A VPN also enhances the security of data
exchanges. In traditional firewall technology, message
content can be encrypted, but the source and
destination addresses are not. In VPN technology, users
can establish a tunnel connection in which the entire
information packet (content and header) is encrypted
and encapsulated.

W
Web browser. Client software that runs on a desktop
PC and enables the user to browse the World Wide
Web or local HTML pages. It is a retrieval tool that
provides universal access to the large collection of
hypermedia material available in the Web and Internet.
Some browsers can display text and graphics, and
some can display only text. Most browsers can handle
the major forms of Internet communication, such as FTP
transactions.

Glossary 233

Web server. A server program that responds to
requests for information resources from browser
programs. See also server.

World Wide Web (WWW). That part of the Internet
where a network of connections is established between
computers that contain hypermedia materials. These
materials provide information and can provide links to
other materials in the WWW and Internet. WWW
resources are accessed through a Web browser
program.

X
X.500. A standard for putting into effect a
multipurpose, distributed and replicated directory service
by interconnecting computer systems. Jointly defined by
the International Telecommunications Union (ITU),
formerly known as CCITT, and the International
Organization for Standardization and International
Electro-Chemical Commission (ISO/IEC).

X.509 certificate. A widely-accepted certificate
standard designed to support secure management and
distribution of digitally signed certificates across secure
Internet networks. The X.509 certificate defines data
structures that accommodate procedures for distributing
public keys that are digitally signed by trusted third
parties.

X.509 Version 3 certificate. The X.509v3 certificate
has extended data structures for storing and retrieving
certificate application information, certificate distribution
information, certificate revocation information, policy
information, and digital signatures.

X.509v3 processes create time-stamped CRLs for all
certificates. Each time a certificate is used, X.509v3
capabilities allow the application to check the validity of
the certificate. It also allows the application to determine
whether the certificate is on the CRL. X.509v3 CRLs
can be constructed for a specific validity period. They
can also be based on other circumstances that might
invalidate a certificate. For example, if an employee
leaves an organization, their certificate would be put on
the CRL.

234 Programming Guide and Reference

Index

A
Abstract Syntax Notation One (ASN.1)

abstract classes 207
BER encoding 206
class library hierarchy 207
data types 205
definition 205
DER encoding 206
header files 208
PKIX data types 206
X.509 certificate definition 205

application programming interfaces (APIs) 10
authorize registration request 34

B
background server 199

initializing 91
location, setting 198
shutting down 199

basic constraints
inquire 92
set 168

BER encoding 206
boolean data type 206
bootstrap 36

aborting 55
MyName field, setting 186
request 57

browser-based certificates
certificate, retrieving 41, 145
certificate request, removing 40, 144
create revocation request object 141
pre-registering a user 42, 148
request revocation 142
status 39, 143
submitting a certificate request 43, 151

C
callbacks, register 152

registering 10
certificate 3

create 58
creation 3
customizing 4
extensions 5
life cycle 3
publish 139
revocation 3
revoke 164
setting fields 4
storing 1
validity period, setting 4

certificate authority (CA) 1
certificate request, creating 15
certificate requests, processing 21
certificate store 1

certificate authority (CA) 1 (continued)
CRL, creating 22
definition 1
description 21
fingerprint, returning 70
initializing 9
list RAs 37
responsibilities 1
retrieving information about 68
revocation requests, approving 21
revocation requests, rejecting 22
revoking certificates 21
signing key, listing 38

certificate issuer
inquire 95, 104
set 172
set in revocation request 189

certificate request 1
basic constraints 92, 168
CA certificate request, creating 15
certificate subject 179
definition 1
end-user private key 98, 175
expiration date 94, 170
extensions 30, 122, 160
issuer 95, 172
key usage 96, 173
selecting a key pair 114
serial number 99
starting date 100, 177
status 101
subject key algorithm 103
subject name 102

certificate revocation list (CRL)
create 59
creating 22
description 22
publishing to the RA 140
retrieving 161

certificate serial number
inquire 99, 105
inquire all 106
set in revocation request 191

certificate starting date
inquire 100
set 177

certificate status
inquire 101

certificate store 1
certificate subject name

inquire 102
set 179

control objects
certificate requests 1
certificate store 1
revocation requests 1

create certificate 58

© Copyright IBM Corp. 1999 235

credentials
exporting 66
unlocking with password 166

cross certification
CA signing key, listing 38
CA signing key, setting 167
cross-certification request, creating 136
preregistration record, creating 146
submitting a request 203

D
DER encoding 206
distinguished name, syntax 7
DN syntax 7

E
end entity

applications 13
certificate requests, creating 13
certificate requests, submitting 14
definition 1
initializing 9
key store 1
revocation request, creating 15

end-user private key
inquire 98
set 175

error
message 69

expiration date
inquire 94
set 170

export
from a smart card 125
private key and public certificate 130

extensions
add 30
adding to a certificate 8
definition 5
identifiers 5
modifying 122
removing 160
requesting 5
types 5
values 5

F
fingerprint, returning CA or RA 70

H
hold instruction

inquire 108
set 193

I
importing to smart card 133

ini files
initializing 83
key and section, deleting 81
keys, reading 84
LDAP AuthName, retrieving 72
LDAP AuthName, setting 181
LDAP server information, retrieving 74
LDAP server information, setting 183
LDAP server password, retrieving 73
LDAP server password, setting 182
MyName field, retrieving value 71
MyName field, setting 186
RA URL, storing 202
section, deleting 82
sections, reading 86
string, reading 87
string, writing 90
TCP host, retrieving 75
TCP host, setting 184
TCP port, retrieving 76
TCP port, setting 185
writing to a file 89

invalidity date
inquire 109
set 194

K
key pairs

listing 117
specifying in certificate request 114

key store 1
key store certificates

expiration date 46
issuer 48
key usage 49
retrieving from key store 115
serial number 51
starting date 52
subject 54

key usage
inquire 96
set 173

key usage data type 206
keystore

certificates 46
description 2
key identifiers 119
subject names 119

N
naame syntax, distinguished 7

O
object

deleting 63
listing 118
lock 163
release 158

236 Programming Guide and Reference

object (continued)
reserve 163
save 165
state 79
surrogates, listing 121
unlock 158, 165

object identifier syntax 7
object store

active objects 2
indexing 2
request identifiers 2
states 2
surrogate objects 2

octet string, releasing 159
octetString data type 206
OID syntax 7

P
preregister user 137
preregistration record

create 149
private key

inquire end-user private key 98
set end-user private key 175

private keys, listing 117
Public Key Infrastructure

ASN.1 data types 206
components 1
overview 1
server applications, writing 9

public keys, listing 117
publish certificate 139

R
RA enrollment

creating a request 60
submitting a request 64

registration authority (RA) 1, 17
certificate requests, processing 17
definition 1
fingerprint, returning 70
initializing 9
pre-registering users 17
responsibilities 1
revocation requests, processing 18
URL, storing in .ini file 202

registration request 13
authorize 34
reject 155
submit 154

reject registration 155
revocation 15

authorize 35
certificate 164
reject 156
request 162

revocation reason
inquire 111
set 196

revocation request
canceling 45

revocation request (continued)
certificate issuer, inquire 104
certificate issuer, set 189
certificate serial number, inquire 105
certificate serial number, inquire all 106
certificate serial number, set 191
creating 15, 61
creating for smart card certificate 62
definition 1
hold instruction, inquire 108
hold instruction, set 193
invalidity date, inquire 109
invalidity date, set 194
new 124
requests, number of 113
revocation reason, inquire 111
revocation reason, set 196

S
self-signed certificate

key information, returning 78
key information, setting 180
serial number, returning 77
storing 44

server
initializing 9
request bootstrap 57
starting 200
status 80

service and support viii
smart card

exporting from 125
importing to 133
listing key pairs 117
revocation request 62

subject key algorithm
inquire 103

U
uint32 data type 206
user registration 154

preregister 137
reject 155
validate 204

utcDateTime data type 206
utf8String data type 206

V
validate registration 204

Y
year 2000 readiness viii

Index 237

238 Programming Guide and Reference

IBMR

Program Number: 5697–F93

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

