
IBM® SecureWay® Policy Director

Authorization API: Java Reference
Version 3.0.1

IBM® SecureWay® Policy Director

Authorization API: Java Reference

Version 3.0.1

Note
Before using this information and the product it supports, read the general information under "Appendix. Notices" on
page 83.

First Edition (January 2000)

This edition applies to Version 3, release 0, modification 1 of IBM SecureWay Policy Director product and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM 2000

Contents
About this book . vii
Who should read this book. vii
How this book is organized . vii
What is new in this release . vii
Year 2000 readiness .viii
Service and support .viii
Conventions .viii
Web information. .viii

Chapter 1. IBM SecureWay 1
What is IBM SecureWay FirstSecure? 1
What is IBM SecureWay Policy Director?. 2

Chapter 2. Introducing the Authorization
API . 3
Accessing the Policy Director authorization service. . . 3

The Open Group Authorization API standard . . . 4
Policy Director Authorization API version
history . 5
Background and references for using Policy
Director authorization . 5

Installing the Java Authorization API 6
Building applications with the Authorization API 6

Installing required software 6
Setting environment variables 7

Introducing the Java Authorization API classes and
methods . 7

Class com.ibm.pd.Authzn.Azn 8
Class com.ibm.pd.Authzn.AznString 10
Class com.ibm.pd.Authzn.AznStrings 10
Class com.ibm.pd.Authzn.AznInteger 10
Class com.ibm.pd.Authzn.AznBuffer 10
Class com.ibm.pd.Authzn.AznAttrList 11
Class com.ibm.pd.Authzn.AznCreds 12
Class com.ibm.pd.Authzn.AznAuthInfo 13
Status codes and error handling 13

Chapter 3. Using the Authorization API 15
Summarizing Authorization API tasks 15

Required tasks. 15
Optional tasks . 15
Runtime environment . 15

Initializing the authorization service. 16
Specifying the type of cache mode 16
Adding attributes for remote cache mode 17
Adding attributes for local cache mode 17
Adding attributes for LDAP access 20
Starting the authorization service 21

Authenticating an API application 21
Logging in using a DCE keytab file 22
Logging in using a password 22

Obtaining an identity for a user 23
Obtaining user authorization credentials 24

Specifying the authorization authority24
Specifying authentication user registry type24
Specifying user authentication identity 25
Specifying additional user information 25
Obtaining authorization credentials for the
user .26

Obtaining an authorization decision.27
Mapping the user operation to a Policy Director
permission .27
Mapping the requested resource to a protected
object .27
Assigning the user credentials to a credentials
handle. .28
Building an attribute list for additional
application information. .28
Obtaining an authorization decision.28

Cleaning up and shutting down 30
Releasing allocated memory.30
Shutting down the Authorization Api 30

Handling credentials (optional tasks)30
Converting credentials to a transportable
format. .30
Converting credentials to the native format 31
Creating a chain of credentials31
Determining the number of credentials in a
credentials chain. .31
Obtaining a credential from a chain of
credentials .31
Modifying the contents of a credential32
Obtaining an attribute list from a credential32

Chapter 4. Deploying applications with
the Authorization API 33

Software requirements .33
Running the example program AznDemo33

Chapter 5. Authorization API: Java
Reference . 35
Class com.ibm.pd.Authzn.Azn 36

IV_UNAUTH . 38
IV_DCE . 38
IV_LDAP . 38
operation_attach. 38
operation_browse. 39
operation_control . 39
operation_traverse . 39
operation_delegation . 39
operation_view. 39
operation_modify. 39
operation_delete . 40
operation_server_admin . 40
operation_audit . 40
operation_integrity . 40
v

operation_privacy . 40
operation_read . 41
operation_execute . 41
operation_list_directory . 41
operation_connect . 41
operation_forward. 41
init_mode . 42
init_qop . 42
init_db_file . 42
init_audit_file . 42
init_cache_refresh_interval 43
init_listen_flags . 43
init_namespace_location . 43
init_tcp_port . 43
init_udp_port . 44
init_ldap_host. 44
init_ldap_port. 44
init_ldap_admin_dn . 44
init_ldap_admin_pwd . 44
init_ldap_ssl_keyfile . 45
init_ldap_ssl_keyfile_dn. 45
init_ldap_ssl_keyfile_pwd 45
Azn. 45
attrlist_add_entry . 46
attrlist_add_entry_buffer . 46
attrlist_create . 47
attrlist_delete . 47
attrlist_get_entry_buffer_value 48
attrlist_get_entry_string_value 49
attrlist_get_names . 49
attrlist_name_get_num. 50
creds_combine . 50
creds_create . 51
creds_delete . 51
creds_for_subject . 52
creds_get_attrlist_for_subject 53
creds_get_pac . 53
creds_modify . 54
creds_num_of_subjects. 55
decision_access_allowed . 56
decision_access_allowed_ext 57
error_major . 58
error_minor . 58
error_minor_get_string. 59
id_get_creds . 59
initialize. 60
pac_get_creds . 61
set_debug_mode . 61
shutdown . 62
util_client_authenticate. 62
util_password_authenticate. 63
util_server_authenticate . 64

Class com.ibm.pd.Authzn.AznAttrList 65
handle . 65
AznAttrList. 66
AznAttrList(long) . 66

Class com.ibm.pd.Authzn.AznAuthInfo 67
user_identity. 68
auth_method . 68

ipaddr . 68
qop . 68
user_info . 68
browser_info . 69
authnmech_info. 69
AznAuthInfo . 69

Class com.ibm.pd.Authzn.AznBuffer 70
value . 70
AznBuffer . 70

Class com.ibm.pd.Authzn.AznCreds 71
handle . 72
AznCreds . 72
AznCreds(long) . 72

Class com.ibm.pd.Authzn.AznInteger. 73
value . 73
AznInteger . 73

Class com.ibm.pd.Authzn.AznString. 74
value . 74
AznString . 74

Class com.ibm.pd.Authzn.AznStrings 75
value . 75
AznStrings . 75

Index . 77

Appendix. Notices 83
Trademarks . 84
vi Policy Director Authorization API: Java Reference

About this book

This book contains programming guide and reference information about the Java
implementation of the IBM SecureWay Policy Director Authorization application
programming interface (API).

Who should read this book

Developers who are designing and developing applications for IBM SecureWay
Policy Director should read this book.

Developers should have some knowledge of IBM Distributed Computing
Environment (DCE) and the IBM SecureWay Directory’s lightweight directory access
protocol (LDAP). DCE and LDAP are co-requisite products of Policy Director.
Developers should have basic working knowledge about writing and configuring
DCE and LDAP servers.

Developers should also have knowledge of Java programming.

How this book is organized

This book contains the following chapters:

� "Chapter 1. IBM SecureWay" on page 1 introduces you to the IBM SecureWay
FirstSecure and IBM SecureWay Policy Director products.

� "Chapter 2. Introducing the Authorization API" on page 3 introduces the
Authorization API and describes the Policy Director Java implementation.

� "Chapter 3. Using the Authorization API" on page 15 guides the application
designer or developer on the use of the Policy Director Authorization API.

� "Chapter 4. Deploying applications with the Authorization API" on page 33
describes the requirements for deploying applications with the Authorization API.

� "Chapter 5. Authorization API: Java Reference" on page 35 provides reference
information about the Policy Director Authorization Java API.

What is new in this release

On the IBM SecureWay Policy Director Version 3.0.1 CD, you will find:

� Code updates and fixes to the Version 3.0 product released in October 1999.
� A README file, Version 3.0.1, in Hypertext Markup Language (HTML) format

(PD301_csd_readme.html).
� An IBM SecureWay Policy Director Administration Guide: Additions and

Corrections, Version 3.0.1
� An IBM SecureWay Policy Director Programming Guide, Version 3.0.1
� All IBM SecureWay Policy Director documentation for Version 3.0 that was released

in October 1999.
See the Policy Director Up and Running book, which provides information about
what is new for Version 3.0 of IBM SecureWay Policy Director.
 About this book vii

At the IBM SecureWay Policy Director Web site, you will find:

� The IBM SecureWay Policy Director Migration Guide and related migration files for
AIX, Solaris, or Windows NT.

� The IBM SecureWay Policy Director Authorization API: Java Reference software
and documentation.

� The IBM SecureWay Policy Director Quick Installation Guide for Windows NT.

See “Web information” for related Web addresses.

Year 2000 readiness

This product is Year 2000 ready. When used in accordance with its associated
documentation, it is capable of correctly processing, providing, and/or receiving date
data within and between the twentieth and twenty-first centuries, provided that all
products (for example, hardware, software, and firmware) used with the products
properly exchange accurate date data with it.

Service and support

Contact IBM for service and support for all the products included in the IBM
SecureWay FirstSecure offering. Some of these products might refer to non-IBM
support. If you obtain these products as part of the FirstSecure offering, contact IBM
for service and support.

Conventions

This book uses the following typographical conventions:

Web information

Information about last-minute updates to Policy Director is available at the following
Web address:

http://www.ibm.com/software/security/policy/library

Convention Meaning

bold User interface elements such as check boxes, buttons, and items
inside list boxes.

monospace Syntax, sample code, and any text that the user must type.

Italic Emphasis and first use of special terms that are relevant to Policy
Director.

> Shows a series of selections from a menu. For example, click File >
Run means click File, and then click Run.
viii Policy Director Authorization API: Java Reference

You can download the Policy Director Authorization Java API source files and other
Policy Director source files from this Web address:

http: //www.ibm.com/software/security/policy/downloads

Information about updates to other IBM SecureWay FirstSecure products is available
by starting at the following Web address:

http://www.ibm.com/software/security/firstsecure/library
 About this book ix

x Policy Director Authorization API: Java Reference

Chapter 1. IBM SecureWay

IBM SecureWay Policy Director (Policy Director) is available either as a component of
IBM SecureWay FirstSecure or as a standalone product.

What is IBM SecureWay FirstSecure?

IBM SecureWay FirstSecure (FirstSecure) is part of the IBM integrated security
solution. FirstSecure is a comprehensive set of integrated products that help your
company:

� Establish a secure e-business environment.
� Reduce the total cost of security ownership by simplifying security planning.
� Implement security policy.
� Create an effective e-business environment.

The IBM SecureWay products include:

Policy Director
IBM SecureWay Policy Director (Policy Director) provides authentication,
authorization, data security, and Web resource management.

Boundary Server
IBM SecureWay Boundary Server (Boundary Server) provides:

� The critical firewall functions of filtering, proxy, and circuit level gateway
� A virtual private network (VPN) connection to the IBM Firewall
� The components for Internet security
� A mobile code security solution

A configuration graphical user interface (GUI) ties together the Policy Director’s
proxy user function with the Boundary Server’s Firewall product.

Intrusion Immunity
Intrusion Immunity provides intrusion detection and antivirus protection.

Trust Authority
IBM SecureWay Trust Authority (Trust Authority) supports public key
infrastructure (PKI) standards for cryptography and interoperability. Trust
Authority provides support for issuance, renewal, and revocation of digital
certificates. These certificates provide a means to authenticate users and to ensure
trusted communications.

Toolbox
The IBM SecureWay Toolbox (Toolbox) is a set of application programming
interfaces (API) with which application programmers can incorporate security
into their software. You can obtain the Toolbox as part of FirstSecure. Both Policy
Director and the Toolbox include the Policy Director API library and
documentation. The Toolbox README file contains installation instructions for
the Policy Director ADK.
Chapter 1. IBM SecureWay 1

Because each IBM SecureWay FirstSecure product can be installed independently,
you can plan a controlled move toward a secure environment. This capability
reduces the complexity and cost of securing your environment and speeds
deployment of Web applications and resources.

See the FirstSecure Planning and Integration documentation for more information
about the FirstSecure components and for a list of all the IBM SecureWay
products’ documentation.

What is IBM SecureWay Policy Director?

Policy Director is a standalone authorization and security management solution.
Policy Director provides end-to-end security of resources over geographically
dispersed intranets and extranets. An extranet is a virtual private network (VPN) that
uses access control and security features to restrict the use of one or more intranets
attached to the Internet to selected subscribers.

Policy Director provides authentication, authorization, data security, and resource-
management services. You can use Policy Director in conjunction with standard
Internet-based applications to build secure and well-managed intranets and extranets.

Policy Director runs on the Windows NT, AIX, and Solaris operating systems.
2 Policy Director Authorization API: Java Reference

Chapter 2. Introducing the Authorization API

This chapter includes:

� "Accessing the Policy Director authorization service" on page 3
� "Installing the Java Authorization API" on page 6
� "Building applications with the Authorization API" on page 6
� "Introducing the Java Authorization API classes and methods" on page 7

Accessing the Policy Director authorization service

Using the Policy Director Authorization Application Programming Interface (API),
you can code Policy Director applications and third-party applications to query the
Policy Director Authorization Service for authorization decisions.

The Policy Director Authorization API is the interface between the server-based
resource manager and the authorization service and provides a standard model for
coding authorization requests and decisions. The Authorization API lets you make
standardized calls to the centrally managed authorization service from any legacy or
newly developed application.

The Authorization API supports two implementation modes:

� Remote cache mode

In remote cache mode, you use the Authorization API to call the Policy Director
Authorization Server, which performs authorization decisions on behalf of the
application. The Authorization Server maintains its own cache of the replica
authorization policy database.

� Local cache mode

In local cache mode, you use the Authorization API to download a local replica of
the authorization policy database. In this mode, the application can perform all
authorization decisions locally.

The Authorization API shields you from the complexities of the authorization service
mechanism. Issues of management, storage, caching, replication, credentials format,
and authentication methods are all hidden behind the Authorization API.

The Authorization API works independently from the underlying security
infrastructure, the credential format, and the evaluating mechanism. The
Authorization API makes it possible to request an authorization check and get a
simple “yes” or “no” recommendation in return.

The Authorization API is a component of the Policy Director Application
Development Kit (ADK).
Chapter 2. Introducing the Authorization API 3

The Open Group Authorization API standard

The Policy Director Authorization API implements The Open Group Authorization
API (Generic Application Interface for Authorization Frameworks) standard. This
interface is based on the International Organization for Standardization (ISO) 10181-3
model for authorization. In this model, an initiator requests access to a target resource.
The initiator submits the request to a resource manager, which incorporates an access
enforcement function (AEF). The AEF submits the request, along with information
about the initiator, to an access decision function (ADF). The ADF returns a decision
to the AEF, and the AEF enforces the decision.

Policy Director implements the ADF component of this model and provides the
Authorization API as an interface to this function.

In the figure above, a browser (initiator) requests access to a file or other resource on a
protected system (target). The browser submits the request to a Web application
server (the resource manager incorporating the access enforcement function). The
Web application server uses the Authorization API to submit the request to the Policy
Director Authorization Service (the access decision function).

The Policy Director Authorization Service returns an access decision, through the
Authorization API, to the Web application server. The Web application server
processes the request as appropriate.

Resource
Manager

AEF TargetInitiator

ADF

Submit
Access
Request

Present
Access
Request

Decision
Request Decision

Browser Protected
Data

Policy Director Secure Domain

Initiator

Resource Manager

ADF

Target

Policy Director
Authorization

Service

Authorization API

Web Application
Server

AEF
4 Policy Director Authorization API: Java Reference

To implement this model, developers of AEF applications add Authorization API
function calls to their application code.

Note: Developers should refer to the Open Group Authorization API document for
additional information on the standard authorization model.

Policy Director Authorization API version history

This programming guide describes Policy Director Authorization Java API, Version
3.0.1. This is the first release of a Java implementation of the Open Group
Authorization API standard.

Policy Director Version 3.0.1 conforms to the Open Group Authorization API, Version
1.1, published in January 2000. The Open Group Authorization API standard specifies
a programming interface written in the C language. Policy Director provides both a C
and a Java implementation of Version 1.1.

The C implementation of the Policy Director Authorization API is described in the
Policy Director Programming Guide and Reference, Version 3.0.1. This document also lists
the changes made to the C API between the Open Group Authorization API standard
Version 1.0 (September 1999) and Version 1.1.

The previous release of Policy Director (Version 3) provided an Authorization C API
that conformed to Version 1.0 of the Open Group Authorization API standard.
Developers who programmed to the Version 1.0 C API might want to review the
changes made for Version 1.1 before programming to the Authorization Java API.

Prior to the adoption of Version 1.0 of the Open Group Authorization API standard,
IBM provided an Authorization API which was released as part of Policy Director,
Version 2.1. The differences between the Version 1.0 of the Open Group Authorization
and the earlier Policy Director Version 2.1 Authorization API are described in the
Policy Director Programming Guide and Reference, Version 3.0.1.

Background and references for using Policy Director authorization

The first step in adding authorization to an application is to define the security policy
requirements for your application. Defining a security policy means that you must
determine the business requirements that apply to the application’s users, operations,
and data. These requirements include:

� Objects to be secured
� Operations permitted on each object
� Users that are permitted to perform the operations

After your security requirements have been defined, you can use the Authorization
API to integrate your security policy with the Policy Director security model.

Complete the following steps in order to deploy an application into a Policy Director
secure domain:

1. Configure the Policy Director secure domain to recognize and support the objects,
actions, and users that are relevant to your application.

• For an introduction to the Policy Director authorization model, see “Chapter
3, Understanding authorization” in the Policy Director Administration Guide.

• For complete information on access control, see “Chapter 7, Understanding
Access Control” in the Policy Director Administration Guide.
Chapter 2. Introducing the Authorization API 5

2. Use the Authorization API within your application to obtain the needed
authorization decisions.

• For an introduction to the Authorization API, including information on
remote cache mode and local cache mode, see “Chapter 3, Understanding
authorization” in the Policy Director Administration Guide.

3. Develop your application logic to enforce the security policy.

Installing the Java Authorization API

The Policy Director Authorization Java API is included as an optional installation
package for Policy Director. The installation package is available for download on the
following IBM Web site:

http://www.ibm.com/software/security/policy/downloads

The Authorization Java API files can be installed in any directory.

For installation instructions and a list of the files contained in the Authorization Java
API, see the README file that accompanies the installation packages on the IBM Web
site.

Building applications with the Authorization API

The following sections provide information on building an application with the
Authorization API:

� "Installing required software" on page 6
� "Setting environment variables" on page 7

For information on the runtime requirements for applications that use the
Authorization API, see "Deploying applications with the Authorization API" on page
33.

For information on using the AznDemo demonstration program, see "Running the
example program AznDemo" on page 33.

Installing required software

Java Development Kit

Use the Java Development Kit 1.1.7 or later to add Authorization Java APIs to an
application.

Policy Director

To develop applications that use the Policy Director Authorization API, you must
install and configure a Policy Director secure domain.

If you do not have a Policy Director secure domain installed, install one before
beginning application development. The minimum installation consists of a single
system with the following Policy Director components installed:

� Policy Director Base (IVBase)
� Policy Director Management server (IVMgr)
� Policy Director Authorization server (IVAcld)
6 Policy Director Authorization API: Java Reference

� Policy Director Application Development Kit (IVAuthADK)
� Policy Director Management Console (IVConsole)

If the Policy Director secure domain uses an LDAP user registry, the application
development system must have an LDAP client installed.

For Policy Director installation instructions refer to the Policy Director Up and Running
guide.

If you already have a Policy Director secure domain installed, and want to add a
development system to the domain, the minimum Policy Director installation consists
of the following components:

� Policy Director Base (IVBase)
� Policy Director Authorization server (IVAcld)
� Policy Director Application Development Kit (IVAuthADK)

Note: The development environment must include a DCE runtime. The DCE
runtime is installed as a prerequisite to the Policy Director installations
described above.

Setting environment variables

To develop applications with the Authorization Java API, set the necessary
environment variables. Complete the following steps:

1. Add azn.jar to the environment variable CLASSPATH. Be sure to add the full
pathname including the filename azn.jar.

The file azn.jar containing the executable Java class for the AznDemo program.

2. Add the name of the directory containing the Authorization API Java Native
Interface to the appropriate environment variable, as follows:

• On Windows NT only, add to PATH the name of the directory containing the
file aznjni.dll.

• On AIX systems only, add to LIBPATH the name of the directory containing
the file libaznjni.a.

• On Solaris systems only, add to LD_LIBRARY_PATH the name of the
directory containing the file libaznjni.so.

Introducing the Java Authorization API classes and methods

The Policy Director Java Authorization APIs are implemented as JNI native methods
which invoke the corresponding C Authorization APIs. There is a one-to-one
mapping between the Java Authorization APIs (the methods in the Azn class) and the
C Authorization APIs. The C Authorization APIs are fully documented in the Policy
Director Programming Guide and Reference.

The Java Authorization APIs are designed to be as close as possible to the
corresponding C APIs. The function names for the C APIs all begin with azn_. The
corresponding method names for the Java APIs begin with the class name Azn. For
example, the C API azn_initialize corresponds to the static method Azn.initialize in
the Azn class.
Chapter 2. Introducing the Authorization API 7

The parameters to the Java methods are as close as possible to the C API function
parameters. An example of a small difference is where the C APIs specify pointers to
output parameters, such as a pointer to an integer. In this case, an AznInteger object is
passed as input to the Java method so that an integer value can returned as an output
parameter. The AznAttrList, AznBuffer, AznCreds, AznString and AznStrings objects
are used in a similar manner to obtain output parameters.

The following Java classes are defined:

� "Class com.ibm.pd.Authzn.Azn" on page 8
� "Class com.ibm.pd.Authzn.AznString" on page 10
� "Class com.ibm.pd.Authzn.AznStrings" on page 10
� "Class com.ibm.pd.Authzn.AznInteger" on page 10
� "Class com.ibm.pd.Authzn.AznBuffer" on page 10
� "Class com.ibm.pd.Authzn.AznAttrList" on page 11
� "Class com.ibm.pd.Authzn.AznCreds" on page 12
� "Class com.ibm.pd.Authzn.AznAuthInfo" on page 13

Class com.ibm.pd.Authzn.Azn

The Azn class implements static native methods used to invoke the Policy Director
Authorization APIs, which are C based APIs. There is a one-to-one mapping between
the Java methods implemented by this class and the C based Authorization APIs.

Note: The C APIs are fully documented in the Policy Director Programming Guide and
Reference.

The C based APIs all begin with azn_, while the methods in this class are named by
removing the “azn_ “ portion of the C API function name and retaining the remainder
of the name. For example, the C API azn_initialize function corresponds to the
“initialize” method in this class. Since initialize is a static method, it is invoked using
the class name Azn.initialize.

The parameters to the methods in this class correspond as closely to the parameters
for the C APIs.

The following tables list the Authorization API methods and provide a reference to
the section in this document that describes each method’s task.

Attribute lists

Method Task

"Azn.attrlist_add_entry" on page 46
"Azn.attrlist_add_entry_buffer" on page 46
"Azn.attrlist_create" on page 47
"Azn.attrlist_delete" on page 47
"Azn.attrlist_get_entry_buffer_value" on page 48
"Azn.attrlist_get_entry_string_value" on page 49
"Azn.attrlist_get_names" on page 49
"Azn.attrlist_name_get_num" on page 50

"Class
com.ibm.pd.Authzn.AznAttrList"
on page 11
8 Policy Director Authorization API: Java Reference

Credentials

Authorization decisions

Initialization, shutdown, and error handling

Method Task

"Azn.creds_combine" on page 50 "Creating a chain of credentials" on page 31

"Azn.creds_create" on page 51 "Obtaining authorization credentials for the
user" on page 26

"Azn.creds_delete" on page 51 "Releasing allocated memory" on page 30

"Azn.creds_for_subject" on page 52 "Obtaining a credential from a chain of
credentials" on page 31

"Azn.creds_get_attrlist_for_subject" on
page 53

"Obtaining an attribute list from a credential"
on page 32

"Azn.creds_get_pac" on page 53 "Converting credentials to a transportable
format" on page 30

"Azn.creds_modify" on page 54 "Modifying the contents of a credential" on
page 32

"Azn.creds_num_of_subjects" on page 55 "Determining the number of credentials in a
credentials chain" on page 31

"Azn.id_get_creds" on page 59 "Obtaining authorization credentials for the
user" on page 26

"Azn.pac_get_creds" on page 61 "Converting credentials to the native format"
on page 31

Method Task

"Azn.decision_access_allowed" on page
56

"Obtaining an authorization decision" on page
28

"Azn.decision_access_allowed_ext" on
page 57

Method Task

"Azn.error_major" on page 58 "Status codes and error handling" on page 13

"Azn.error_minor" on page 58

"Azn.error_minor_get_string" on page 59

"Azn.initialize" on page 60 "Initializing the authorization service" on page
16

"Azn.shutdown" on page 62 "Cleaning up and shutting down" on page 30
Chapter 2. Introducing the Authorization API 9

API extensions

Class com.ibm.pd.Authzn.AznString

The AznString class implements an object used to return a string value.

An object of this class simply contains the string value which is an output parameter
for the methods that return a string value.

Use the AznString objects to pass character string data between your application and
the Authorization API. For example, to construct a string:

AznString testuser = new AznString();
testuser.value = “user_name”;

Class com.ibm.pd.Authzn.AznStrings

The AznStrings class implements an object used to return an array of string values.

An object of this class simply contains the string array which is an output parameter
for the methods that return an array of string values.

Class com.ibm.pd.Authzn.AznInteger

The AznInteger class implements an object used to return an integer value.

An object of this class simply contains the integer value which is an output parameter
for the methods that return an integer value.

Class com.ibm.pd.Authzn.AznBuffer

The AznBuffer class implements a binary buffer value. The buffer value is represented
in the Authorization C APIs by the data type azn_buffer_t.

An object of this class contains a single data member which is a byte array. The byte
array is used as either an input or output parameter for the Azn methods that require
a buffer value.

AznBuffer objects are used as input parameters to the Azn.pac_get_creds and
Azn.attrlist_add_entry_buffer methods.

An.Buffer objects are used output parameters to the
Azn.attrlist_get_entry_buffer_value and Azn.creds_get_pac methods.

 Method Task

"Azn.util_client_authenticate" on page
62

"Logging in using a password" on page 22

"Azn.util_password_authenticate" on
page 63

"Obtaining an identity for a user" on page 23

"Azn.util_server_authenticate" on page
64

"Logging in using a DCE keytab file" on page 22
10 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznAttrList

The AznAttrList class implements an attribute list. Attribute lists are represented in
the Authorization C APIs by the datatype azn_attrlist_h_t.

An object of this class simply contains the handle to an attribute list and is used as
either an input or output parameter for the methods that create, use, modify or delete
an attribute list.

Several Authorization API methods take AznAttrList objects as input parameters or
return AznAttrList objects as output parameters. Use AznAttrList objects to pass
attribute lists between the Authorization API and the calling application.

Attribute lists are lists of name and value pairs. AznAttrList objects contain handles to
the lists of name and value pairs.

Use Azn methods to add or retrieve name and value pairs from attribute lists. The
values can be stored as either strings (AznString objects) or buffers (AznBuffer
objects). A name can have more than one value.

Some names are defined by the Authorization API. You can also define additional
names as needed by your application.

The Azn class provides methods to create attribute lists, set or get list entries, and
delete attribute lists. The following table summarizes the methods that operate on
attribute lists:

Task Description

Create an attribute list Use "Azn.attrlist_create" on page 47 to complete
the following tasks:
• Allocate a new, empty attribute list.

• Associate a handle with the attribute list.

• Return an AznAttrlist object, set with the handle.

Set an entry in an attribute list Use "Azn.attrlist_add_entry" on page 46 to add a
string name-value pair.
Use "Azn.attrlist_add_entry_buffer" on page 46 to
add a buffer name-value pair (AznBuffer object).

Get attribute names from an attribute
list

Use "Azn.attrlist_get_names" on page 49 to get all
the names in an attribute list. The names are
returned as an array of strings in an AznStrings
object.

Get the number of values for a
specified attribute name

Use "Azn.attrlist_name_get_num" on page 50 to
get the number, as an integer, of the value attributes
for a specified name in the attribute list.
Chapter 2. Introducing the Authorization API 11

Class com.ibm.pd.Authzn.AznCreds

The AznCreds class implements an authorization credentials. The authorization
credentials is represented in the Authorization C APIs by the data type azn_creds_h_t.

An object of this class simply contains the handle to a credentials structure. An
AznCreds object is used as either an input or output parameter for the methods that
create or use authorization credentials.

Credential handles

A credential handle refers to a credentials chain consisting of the credentials of the
initiator and a series of (zero or more) intermediaries through which the initiator’s
request has passed.

Several Azn methods use AznCreds objects, containing credentials handles, as input
parameters or output parameters. Use AznCreds objects to pass credential handles
between the Authorization API and the calling application.

Variables of type AznCreds.handle are opaque handles to credential structures that
are internal the Policy Director security framework.

Use the method "Azn.creds_create" on page 51 to complete the following tasks:

� Allocate a new, empty credential structure.
� Associate a handle with the credential structure.
� Return an AznCreds object, set with the handle.

Call the method "Azn.creds_delete" on page 51 to release the memory allocated for
the credential structure.

Get a value Use "Azn.attrlist_get_entry_string_value" on page
49 to get the value attribute of a string for a
specified name in an attribute list.

Use "Azn.attrlist_get_entry_buffer_value" on page
48 to get the value attribute of a buffer (AznBuffer
object) for a specified name in an attribute list. The
specified name can have multiple values. You
specify the needed value by supplying an index
(integer) into the list of values.

Delete an attribute list Use "Azn.attrlist_delete" on page 47 to delete the
attribute list associated with a specified attribute
list handle.

Task Description
12 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznAuthInfo

The AznAuthInfo class implements the access control information that is passed as
input to the Azn.id_get_creds method within the mechanism_info parameter.

Objects of this class represent one of the data structures used by the Authorization C
APIs for the following data types:

Status codes and error handling

Azn methods return an integer status code. The return value for successful
completion of the method is Azn.S_COMPLETE, which is defined to be 0.

The returned status code includes both major and minor error codes.

Use "Azn.error_major" on page 58 to extract major error codes from the returned
status. Major error codes are defined according to the The Open Group Authorization
API Standard.

Use "Azn.error_minor" on page 58 to extract minor error codes from the returned
status. The minor codes contain error messages from the Azn utility method
extensions to the API, and contain error messages from the Policy Director
authorization server.

Use "Azn.error_minor_get_string" on page 59 to obtain string values for the minor
error codes returned by Azn.error_minor.

The list of error codes are documented in the file com.ibm.pd.Authzn.Azn.html,
which is contained in the docs directory of the Policy Director Authorization Java API
distribution.

C API Data Type Usage

azn_authdce_t For DCE credentials

azn_authldap_t For LDAP credentials

azn_unauth_t For unauthenticated credentials
Chapter 2. Introducing the Authorization API 13

14 Policy Director Authorization API: Java Reference

Chapter 3. Using the Authorization API

This chapter includes:

� "Summarizing Authorization API tasks" on page 15
� "Initializing the authorization service" on page 16
� "Authenticating an API application" on page 21
� "Obtaining an identity for a user" on page 23
� "Obtaining user authorization credentials" on page 24
� "Obtaining an authorization decision" on page 27
� "Cleaning up and shutting down" on page 30
� "Handling credentials (optional tasks)" on page 30

Summarizing Authorization API tasks

The primary task of the Authorization API is to obtain an authorization decision from
the Policy Director Authorization Service.

Use the Authorization API to present information about the user, operation, and
requested resource to the Policy Director Authorization Service. Then use the
Authorization API to receive the authorization decision. Your application is
responsible for enforcing the decision, as appropriate.

Required tasks

To obtain an authorization decision, you must accomplish certain tasks. The following
sections in this document provide a step-by-step guide to completing each of these
required tasks:

� "Initializing the authorization service" on page 16
� "Authenticating an API application" on page 21
� "Obtaining an identity for a user" on page 23
� "Obtaining user authorization credentials" on page 24
� "Obtaining an authorization decision" on page 27
� "Cleaning up and shutting down" on page 30

Optional tasks

The Authorization API Azn class also provides methods for performing optional
tasks on user credentials. The following section describes the supported optional
tasks:

� "Handling credentials (optional tasks)" on page 30

Runtime environment

To determine whether your network environment is configured correctly to support
your application, review the following section:

� "Deploying applications with the Authorization API" on page 33
Chapter 3. Using the Authorization API 15

Initializing the authorization service

To use the Policy Director Authorization API, an application must initialize the API.
Initialization consists of specifying initialization data and calling an initialization
method.

The Authorization API initialization method Azn.initialize takes as an input
parameter an attribute list named init_data. To specify initialization data, you must
add the necessary attributes to init_data.

Complete the instructions in the following sections:

� "Specifying the type of cache mode" on page 16
� "Adding attributes for remote cache mode" on page 17
� "Adding attributes for local cache mode" on page 17
� "Adding attributes for LDAP access" on page 20
� "Starting the authorization service" on page 21

Specifying the type of cache mode

The cache mode determines if the Authorization API talks to a Policy Director
Authorization server running in the same process space (local cache mode) or in a
different process space (remote cache mode) in the secure domain.

Local cache mode can increase application performance because authorization checks
can be performed on the same system as the application. Local cache mode, however,
requires additional configuration and maintenance of a replicated authorization
database.

� For more information on remote cache mode, see “Remote cache mode” in Chapter
3 of the Policy Director Administration Guide.

� For more information on local cache mode, see “Local cache mode” in Chapter 3 of
the Policy Director Administration Guide.

To specify the type of cache mode, complete the following steps:

1. Call "Azn.attrlist_create" on page 47 to obtain a handle to a new attribute list
called initdata. Azn.attrlist_create takes an AznAttrList object as input, and
initializes it with the handle to the attribute list.

2. Use "Azn.attrlist_add_entry_buffer" on page 46 to add the attribute
Azn.init_mode and assign it a value:

Attribute Value Description

Azn.init_mode local The Policy Director Authorization Service
runs in the same server process as the
application using the Authorization API.

remote The Policy Director Authorization Service
runs as a different server process from the
application using the Authorization API.
16 Policy Director Authorization API: Java Reference

Continue to the appropriate section:

� "Adding attributes for remote cache mode" on page 17.
� "Adding attributes for local cache mode" on page 17.

Adding attributes for remote cache mode

If you specified remote cache mode, use "Azn.attrlist_add_entry" on page 46 to add
the attribute Azn.init_qop and assign it a value:

For example, the following code shows the creation of a new attribute list. It also
shows the assigning of name-value pairs for cache mode (Azn.init_mode) and quality
of protection (Azn.init_qop):

/*** Don't use a local replica, use the authorization server ***/
status = Azn.attrlist_add_entry(initdata,

Azn.init_mode,
"remote");

if (status != Azn.S_COMPLETE) return status;

/*
* Set quality of protection for communications with ivacld
* to be privacy (encrypted).
*/
status = Azn.attrlist_add_entry(initdata,

Azn.init_qop,
"privacy");

if (status != Azn.S_COMPLETE) return status;

Initialization of remote cache mode is now complete.

� If your secure domain uses an LDAP user registry, refer to "Adding attributes for
LDAP access" on page 20.

� If your secure domain uses a DCE user registry, refer to "Starting the authorization
service" on page 21.

Adding attributes for local cache mode

When you specify local cache mode, you must decide how the local copy of the
authorization database will be updated.

Choose one of the following methods to implement updating:

� Set the Authorization API to poll the master authorization service database.
� Register the local (replicated) database with the master database, and enable a

listener process on the local database’s system. This process listens for update
notifications.

� Configure the Authorization API to both poll and listen.

Attribute Value Description

Azn.init_qop none No protection.

integrity Data stream integrity. The data can be seen but
not modified or replayed by a third party.

privacy Data stream privacy. The data cannot be seen,
modified, or replayed by a third party.
Chapter 3. Using the Authorization API 17

� Configure the Authorization API to neither poll nor listen. This could be useful, for
example, when the local system is not connected to a network.

The above methods are configured by adding attributes to the init_data attribute list.

Complete all the steps in this section in order to implement your chosen method:

1. Use Azn.attrlist_add_entry to specify pathnames for files used by the
authorization service.

2. Use Azn.attrlist_add_entry to configure the Authorization API to poll the master
authorization database.

3. Use Azn.attrlist_add_entry to configure the notification listener.

Attribute Value Description

Azn.init_db_file filename Path name to the persistent authorization
policy database replica.

Azn.init_audit_file filename Path and file name for the file that collects
Authorization API audit events.

Attribute Value Description

Azn.init_cache_refresh_interval

disable Refreshing of the local authorization
policy database disabled.

default 600 seconds.

number of seconds Number of seconds between refreshes of
the local authorization policy database.
Set appropriate values to ensure that the
replicated database is updated in a timely
manner to reflect changes made to the
master database.

Attribute Value Description

Azn.init_listen_flags disable Disable the notification listener.

enable Enable the notification listener.

When you select enable, you can also specify any combination of
the following values. The values are logically OR’d together.

use_tcp_port Enable the listener to use
Transmission Control Protocol
(TCP).

use_udp_port Enable the listener to use User
Datagram Protocol (UDP).

dynamic_port_selection Instruct the listener to use
randomly assigned ports.
18 Policy Director Authorization API: Java Reference

4. If you enable the notification listener, you must use the ivadmin command to
inform the Policy Director Management server (ivmgrd) of your location in order
to receive notification of updates. Use the ivadmin server register dbreplica
command to inform the Policy Director Authorization Service (specifically, the
Management server) of the existence and location of applications using the
Authorization API in local cache mode.

The following syntax applies:

ivadmin>server register dbreplica server-name ns-location server-host

Where:

5. If you enabled the notification listener, use Azn.attrlist_add_entry to add the
following attributes:

Note: If you disabled the notification listener, skip this step.

For example, the following code shows the creation of a new attribute list init_data,
and also shows the addition of entries to specify configuration settings for local cache
mode:

Azn.attrlist_create(init_data);

/*** Use a local DB replica ***/
status = Azn.attrlist_add_entry(initdata,

Azn.init_mode,
"local");

if (status != Azn.S_COMPLETE)return (status);

Option Description

server-name A name (or label) for this application. This is the name that appears in
the display of the object space on the Management Console and in the
ivadmin server list command.

ns-location The RPC entry in the CDS namespace where the application exports
its RPC bindings.

server-principal The name of the DCE principal representing this application process.

server-host The Domain Name System (DNS) name or IP address of the machine
where this application process resides.

Attribute Value Description

Azn.init_tcp_port port number If you specified use_tcp_port and
did not specify
dynamic_port_selection for the
attribute Azn.init_listen_flags, use
this value to specify a TCP port.

Azn.init_udp_port port number If you specified use_udp_port and
did not specify
dynamic_port_selection for the
attribute Azn.init_listen_flags, use
this value to specify a UDP port.

Azn.init_namespace_location CDS location Specify the CDS namespace location
for exporting the RPC endpoints for
local policy cache updates.
Chapter 3. Using the Authorization API 19

/*** The file name of the replica policy database ***/
status = Azn.attrlist_add_entry(initdata,

Azn.init_db_file,
"./auth_demo.db");

if (status != Azn.S_COMPLETE)return (status);

/*** The file name of the audit file ***/
status = Azn.attrlist_add_entry(initdata,

Azn.init_audit_file,
"./auth_demo.audit");

if (status != Azn.S_COMPLETE)return (status);

/*** Enable polled updates at the default interval ***/
status = Azn.attrlist_add_entry(initdata,

Azn.init_cache_refresh_interval,
"default");

if (status != Azn.S_COMPLETE)return (status);

/*** Enable the update notification listener ***/

status = Azn.attrlist_add_entry(initdata,
Azn.init_listen_flags,
"enable");

if (status != Azn.S_COMPLETE)return (status);

/*** Enable TCP port ****/
status = Azn.attrlist_add_entry(initdata,

Azn.init_listen_flags,
"use_tcp_port");

if (status != Azn.S_COMPLETE)return (status);

/*** Set TCP port number ****/
status = Azn.attrlist_add_entry(initdata,

Azn.init_tcp_port,
"6056");

if (status != Azn.S_COMPLETE) return (status);

/*** Set CDS location ****/
status = Azn.attrlist_add_entry(initdata,

Azn.init_namespace_location,
CDSloc);

if (status != Azn.S_COMPLETE)return (status);

Adding attributes for LDAP access

When your application runs in a Policy Director secure domain that uses an LDAP
user registry, you must provide the LDAP configuration settings to the Authorization
API. The required LDAP configuration settings match the settings that were entered
when Policy Director was installed on the local system.

Note: When your application runs in a Policy Director secure domain that uses a
DCE user registry, skip this step and go to"Starting the authorization service"
on page 21.

1. Use Azn.attrlist_add_entry to add the following attributes to the init_data
attribute list:

Attribute Value Description

Azn.init_ldap_host host name Host name of LDAP server.

Azn.init_ldap_port port number Port number for communicating
with the LDAP server.
20 Policy Director Authorization API: Java Reference

2. If the communication between the Policy Director Authorization server and the
LDAP server is over Secure Sockets Layer (SSL), use Azn.attrlist_add_entry to
add the following attributes to the init_data attribute list:

Starting the authorization service

Complete the following steps:

1. Ensure that the attribute list initdata has been created and filled in, as described in
the preceding sections.

2. Call Azn.initialize to bind to and initialize the authorization service.

For example:

/* Start the service */
status = Azn.initialize(initdata, initinfo);
if (status != Azn.S_COMPLETE) return(status);

In the example code above, Azn.initialize returns the attribute list initinfo. This
attribute list is appended with any initialization information attributes that apply.
This includes the Azn.C_VERSION attribute, which contains the version number of
the API implementation.

Note: To re-initialize the API, use Azn.shutdown and then call Azn.initialize.

For more information, see "Azn.initialize" on page 60.

Authenticating an API application

The API application must establish its own authenticated identity within the Policy
Director secure domain, in order to request authorization decisions from the Policy
Director Authorization Service.

Before you run the Authorization API application for the first time, you must create a
unique identity for the application in the Policy Director secure domain.

In order for the authenticated identity to perform API checks, the application must be
a member of at least one of the following groups:

Azn.init_ldap_admin_dn LDAP DN Distinguished Name of the
LDAP administrator.

Azn.init_ldap_admin_pwd password Password for the LDAP
administrator.

Attribute Value Description

Azn.init_ldap_ssl_keyfile filename Name of the SSL key file.

Azn.init_ldap_ssl_keyfile_dn KeyLabel Key label to identify the
client certificate that is
presented to the LDAP
server.

Azn.init_ldap_ssl_keyfile_pwd password Password to access the SSL
key file.

Attribute Value Description
Chapter 3. Using the Authorization API 21

� ivacld-servers
This group membership is needed for applications using local cache mode.

� remote-acl-users

This group membership is needed for applications using remote cache mode.

When the application wants to contact one of the secure domain services, it must first
log in to the secure domain.

The Policy Director Authorization API provides two utility methods the application
can use to log in and obtain an authenticated identity. One method performs a login
by using username and password information. The other method performs a DCE
login by using a keytab file.

Use the appropriate API login methods, as described in the following sections:

� "Logging in using a DCE keytab file" on page 22
� "Logging in using a password" on page 22

Logging in using a DCE keytab file

Some application servers are executed non-interactively, such as in response to an
access request from an application client. These application servers must establish an
authenticated identity without manual intervention by an administrator.

To avoid the need for manual intervention, the application developer can create and
store a password in a keytab file.

The Authorization API utility method Azn.util_server_authenticate submits the user
name and the name of the keytab file to the Policy Director authentication service. The
Policy Director authentication service can use the DCE keytab file to establish an
authenticated identity.

For example, the following code logs in a server svrPrin using a keytab file svrKeytab:

status = Azn.util_server_authenticate(svrPrin, svrKeytab);
if (status != Azn.S_COMPLETE) {

{
System.out.println("\nCould not perform keytab login.\n");
System.exit(1);

}

Note: You can use Azn.util_server_authenticate in a Policy Director secure domain
that uses an LDAP user registry, but it can only be used for DCE principals (as
registered in a DCE user registry).

For more information, see "Azn.util_server_authenticate" on page 64.

Logging in using a password

Some applications might be used by more than one identity in the Policy Director
secure domain. These applications can choose their login identity based on
application requirements. For example, the application can prompt the user, or
examine user information contained in an HTTP header, or simply supply a username
and password that denotes a category of user.

The Authorization API provides the utility method Azn.util_client_authenticate to
enable the application to log in as a specific identity with a user name and password.
22 Policy Director Authorization API: Java Reference

For example, the following code logs in the application as “testuser”:

/* Login and start context refresh thread */
status = Azn.util_client_authenticate(“testuser”,“testuserpwd”);

if (status != Azn.S_COMPLETE)
{

System.out.println("\nCould not perform client login\n");
System.exit(1);

}

You can use Azn.util_client_authenticate in a Policy Director secure domain with a
DCE user registry.

For more information, see "Azn.util_client_authenticate" on page 62.

Obtaining an identity for a user

The application must determine the identity of the user who has submitted a request.
The identity can be expressed as one of the following types of users:

� Authenticated

In this case, the user’s identity in the secure domain is registered in either an LDAP
or DCE user registry. The user is authenticated, and information about the user can
be obtained. This information includes, for example, the Distinguished Name
(LDAP) or principal (DCE).

� Unauthenticated

In this case, the user’s identity in the secure domain is not specifically registered in
either an LDAP or DCE user registry. The user is defined to be unauthenticated,
and further information about the user’s identity is irrelevant to the authorization
process.

Applications can obtain user identities through a variety of methods. These can
include the use of a Credentials Acquisition Server, or a call to an application-specific
method for querying user registries and establishing a security (login) context.

Optionally, applications can use the Policy Director Authorization API utility method
Azn.util_password_authenticate to obtain user identity information from the secure
domain.

The method Azn.util_password_authenticate requires the user name and password as
input parameters. Typically, an application receives a user name and password from
the user who initiated the access request.

The method performs a login using the supplied user name and password. If the login
is successful, the method returns the following information:

� An AznString object named mechanism_id, set with the authentication mechanism
(DCE or LDAP) that was used.

� An AznAuthInfo object named authinfo, set with the user identity information.

Note: The method Azn.util_password_authenticate does not obtain a security
(login) context for the user.

For more information, see "Azn.util_password_authenticate" on page 63.
After the application has obtained identity information for the user, you can use the
Authorization API to obtain authorization credentials for the user.
Chapter 3. Using the Authorization API 23

Obtaining user authorization credentials

In order to submit an authorization request to the Policy Director Authorization
Service, an application must obtain authorization credentials for the user making the
request. The authorization credentials contain user identity information that is needed
to make authorization decisions, such as group memberships and a list of actions or
rights that the user can exercise.

To obtain credentials for a user who has submitted an access request, an application
must obtain user identity information from the user registry (DCE or LDAP) that is
used by the Policy Director secure domain.

The Authorization API method Azn.id_get_creds takes user identity information as
input parameters and returns user authorization credentials.

The credentials can then be submitted to the authorization service for an
authorization decision.

Note: Identity information can also be obtained from a privilege attribute certificate
(PAC). See "Converting credentials to the native format" on page 31.

To obtain a credential, complete the instructions in each of the following sections:

1. "Specifying the authorization authority" on page 24

2. "Specifying authentication user registry type" on page 24

3. "Specifying user authentication identity" on page 25

4. "Specifying additional user information" on page 25

5. "Obtaining authorization credentials for the user" on page 26

Specifying the authorization authority

Assign the appropriate value for the authorization authority to a string. This string is
passed as the parameter authority to Azn.id_get_creds. Set authority to null to specify
Policy Director authorization.

Specifying authentication user registry type

Applications must know the type of user registry used in the Policy Director secure
domain, in order to obtain an authenticated identity for the user. The type of registry
used was determined in "Obtaining an identity for a user" on page 23.

If the user was not authenticated in a user registry, then the user registry type is
unauthenticated.

Assign a value for the type of user authentication identity to a string. This string is
passed as the parameter mechanism_id to Azn.id_get_creds.

Set mechanism_id to one of the following values:
24 Policy Director Authorization API: Java Reference

Specifying user authentication identity

For each user to be authenticated, information is loaded into the data structure that
corresponds to the type of user registry used in the secure domain, or is loaded into a
data structure corresponds to a user category of “unauthenticated”.

If the user is authenticated, you must load the user’s identity into a user_identity
variable in an AznAuthInfo object.

If the user is unauthenticated, you do not have to load an identity into
AznAuthInfo.user_identity.

Specifying additional user information

When the application authenticates the user, the application can optionally obtain
additional information about the user. This additional information is for use by the
application as needed. The Policy Director Authorization Service does not use this
information.

The application can store the additional user information as variables in an
AznAuthInfo object, as described in the table below.

User Registry Value

DCE User Registry Azn.IV_DCE

LDAP User Registry Azn.IV_LDAP

Unauthenticated Azn.IV_UNAUTH

User Identity Type Variable String Example

DCE User Registry AznAuthInfo.user_identity principal cell_admin

LDAP User Registry AznAuthInfo.user_identity ldap_dn cn=root

Unauthenticated User none none none

Variable Description

auth_method Indicates that the user was authenticated through either the DCE
user registry or the LDAP user registry. This value can be any string
that is useful to the application. Not used for unauthenticated users.

authnmech_info Additional authentication information. This value can be any string
that is useful to the application. For example, if the DCE
authentication was accomplished using SSL certificates, the
certificate’s Distinguished Name could be stored here. Not used for
unauthenticated users.

qop Quality of protection level for requests made by this user. This level
is set by the application and is specified as an arbitrary character
string.

user_info Additional user information for auditing purposes. This string can
contain any information that is useful to the application.
Chapter 3. Using the Authorization API 25

The AznAuthInfo object that contains all of the above user information will be passed
as an input parameter to Azn.id_get_creds.

Obtaining authorization credentials for the user

To obtain authorization credentials, call Azn.id_get_creds with the following input
parameters:

The Azn.id_get_creds method returns an AznCreds object set to the authorization
credentials for the user.

For example, the following sample code demonstrates the assigning of identity
information for a user authenticated in an LDAP user registry, and calls
Azn.id_get_creds to obtain authorization credentials:

AznAuthInfo ldap_minfo = new AznAuthInfo();
String mech = null;
AznAuthInfo mech_info = null;

/*** Create new credentials object ***/
AznCreds creds = new AznCreds();

/* Specify authentication registry type */
mech = IV_LDAP;

/* Specify LDAP user name */
ldap_minfo.user_identity = “cn=testuser”;

/* Set LDAP user information. Note: these values are just placeholders
*/
ldap_minfo.auth_method = "ldap_auth_method";
ldap_minfo.authnmech_info = "ldap_authnmech_info";
ldap_minfo.qop = "ldap_qop";
ldap_minfo.user_info = "ldap_user_info";
ldap_minfo.browser_info = "ldap_browser_info";
ldap_minfo.ipaddr = 0x0a000002;

mech_info = ldap_info;

/* Obtain an authorization credential. Specify the authority as NULL */

browser_info Information about the type of browser through which the user has
submitted the request, if applicable. This string can contain any
information that is useful to the application.

ipaddr The IP address of the user. This integer is optional information for
use by the application.

Parameter Description

authority The authorization authority, as described in "Specifying the
authorization authority" on page 24.

mechanism_id The authentication mechanism, as described in "Specifying
authentication user registry type" on page 24.

mechanism_info An AznAuthInfo object containing user information, as
described in the following sections:
• "Specifying user authentication identity" on page 25.

• "Specifying additional user information" on page 25

Variable Description
26 Policy Director Authorization API: Java Reference

status = Azn.id_get_creds(null, mech, mech_info, creds);
if (status != Azn.S_COMPLETE)
{

System.out.println("Could not get creds.");
continue;

}

For more information, see "Azn.id_get_creds" on page 59. Refer also to the
Authorization API demonstration program. See "Running the example program
AznDemo" on page 33.

The application is now ready to submit the authorization request. See "Obtaining an
authorization decision" on page 27.

Obtaining an authorization decision

After the application has obtained authorization credentials for the user, the
application passes the requested operation and the requested resource to the
Authorization API method Azn.decision_access_allowed. This method returns the
authorization decision.

To obtain an authorization decision, complete the instructions in each of the following
sections:

� "Mapping the user operation to a Policy Director permission" on page 27
� "Mapping the requested resource to a protected object" on page 27
� "Assigning the user credentials to a credentials handle" on page 28
� "Building an attribute list for additional application information" on page 28
� "Obtaining an authorization decision" on page 28

Mapping the user operation to a Policy Director permission

The operation requested by the user must correspond to one of the operations for
which a Policy Director permission has been defined. The operation is a standard
action supported in all Policy Director secure domains. Examples operations are
Azn.operation_read and Azn.operation_traverse.

Note: For a complete list of supported operations, see "Class
com.ibm.pd.Authzn.Azn" on page 36.

Alternatively, the operation can be a custom operation defined by an external
authorization service.

Pass the operation as a string to Azn.decision_access_allowed.

Mapping the requested resource to a protected object

The requested resource to query for must correspond to a resource that has been
defined as a protected object in the secure domain’s protected object namespace.

The resource can be a standard WebSEAL protected resource, such as a file in the Web
space. Alternatively, the resource can be a custom protected object.

The following code places a value for a resource named “/example-object” into an
AznString object.

Pass the requested resource as a string to Azn.decision_access_allowed.
Chapter 3. Using the Authorization API 27

Assigning the user credentials to a credentials handle

The authorization credentials for a user obtained in "Obtaining user authorization
credentials" on page 24 can be accessed through the AznCreds object returned by
Azn.id_get_creds.

These credentials contain the user’s identity information and include information
such as the user’s group membership and permitted operations.

Pass the AznCreds object as an input parameter to Azn.decision_access_allowed.

Note: Authorization credentials can also be obtained from Azn.pac_get_creds. See
"Converting credentials to the native format" on page 31.

Building an attribute list for additional application information

The Policy Director Authorization API provides the extended method
Azn.decision_access_allowed_ext for obtaining an access decision. This method
extends Azn.decision_access_allowed by providing an additional input parameter
and an additional output parameter.

These parameters can be used to supply additional information as needed by the
application. The Policy Director Authorization Service does not use these parameters
when making the access control decision. However, you can write external
authorization servers to use this information.

The parameters consist of an attribute list. You can build an attribute list of any length
to hold information specific to the application.

To add additional application-specific context, complete the following steps:

1. Use Azn.attrlist_create to create a new, empty attribute list named app_context.

2. Use Azn.attrlist_add_entry or Azn.attrlist_add_entry_buffer to add attributes.

3. When all attributes have been added, pass app_context as an input parameter to
Azn.decision_access_allowed_ext.

For more information, see "Azn.decision_access_allowed_ext" on page 57.

Obtaining an authorization decision

To obtain an authorization decision, call one of the following methods:

� Azn.decision_access_allowed
� Azn.decision_access_allowed_ext

For example:

AznInteger permitted;

/* Perform authorization check */
28 Policy Director Authorization API: Java Reference

status = Azn.decision_access_allowed(creds,
obj_name.value,
operation.value,
permitted);

if (status == Azn.S_COMPLETE)
{

System.out.print("\n\nResult: ");
if (permitted.value == Azn.PERMITTED)
{

System.out.println("Permitted.\n");
}
else
{

System.out.println("Not permitted.\n");
}

}

If the API is operating in remote cache mode, the authorization request will be
forwarded to the Policy Director Authorization server (ivacld). The Authorization
Server makes the decision and returns the result.

If the API is operating in local cache mode, the API uses the local authorization policy
database replica to make the authorization decision.

The result of the access request is returned in the following object::

The extended method Azn.decision_access_allowed_ext also returns the following
information:

For more information on the above methods, see:

� "Azn.decision_access_allowed" on page 56
� "Azn.decision_access_allowed_ext" on page 57

 Type Parameter Description

AznInteger permission The result of the access request. Consists
of one of the following constants:

Azn.C_PERMITTED
Azn.C_NOT_PERMITTED

 Type Parameter Description

AznAttrList permission_info Application-specific context information
contained in attribute list.
Chapter 3. Using the Authorization API 29

Cleaning up and shutting down

Releasing allocated memory
The Authorization API provides the following methods to perform the releasing of
memory:

� "Azn.attrlist_delete" on page 47
Use this method to delete the attribute list referenced by the handle contained in
AznAttrList objects. This releases memory allocated by the corresponding
Authorization C API.

� "Azn.creds_delete" on page 51
Use this method to delete the credentials referenced by the handle contained in
AznCreds objects. This releases memory allocated by the corresponding
Authorization C API.

Shutting down the Authorization Api
When an application has obtained an authorization decision and when it does not
need further authorization decisions, use "Azn.shutdown" on page 62 to disconnect
from and shut down the Authorization API.

For example:

status = Azn.shutdown();

Handling credentials (optional tasks)

The Authorization API provides methods to accomplish the following optional tasks:

� "Converting credentials to a transportable format" on page 30
� "Converting credentials to the native format" on page 31
� "Creating a chain of credentials" on page 31
� "Determining the number of credentials in a credentials chain" on page 31
� "Obtaining a credential from a chain of credentials" on page 31
� "Modifying the contents of a credential" on page 32
� "Obtaining an attribute list from a credential" on page 32

Converting credentials to a transportable format
Use the method "Azn.creds_get_pac" on page 53 to place user credentials into a
format that can be transported across a network to another application. Use this
method when you need to delegate the authorization decision to an application on
another system.

Complete the following steps:

1. Set the input string pac_svc_id to null.

2. Set the input credentials AznCreds object creds to the AznCreds object returned
by a previous call to Azn.id_get_creds or Azn.pac_get_creds.

3. Call Azn.creds_get_pac.

The privilege attribute certificate (PAC) is returned in an AznBuffer object named pac.
This buffer can be transported to another system, where the method
Azn.pac_get_creds can be used to return the credentials to a native format.
30 Policy Director Authorization API: Java Reference

Converting credentials to the native format

Use the method "Azn.pac_get_creds" on page 61 when an application receives
credentials from another system on the network. Typically, these credentials are
placed into a buffer by Azn.creds_get_pac.

Complete the following steps:

1. Set the input parameter string pac_svc_id to null.

2. Set the input parameter AznBuffer pac to the AznBuffer object returned by a
previous call to Azn.creds_get_pac.

3. Call Azn.pac_get_creds.

This method returns an AznCreds object, for access by other Authorization API
methods.

Creating a chain of credentials

Use the method "Azn.creds_combine" on page 50 to combine, or chain, two
credentials together. Use this, for example, when the credentials for a server
application must be combined with user credentials in order to delegate the
authorization decision to another application.

Complete the following steps:

1. Set an AznCreds object “creds” with the credentials of the initiator of the request.

2. Set an AznCreds object “creds_to_add” with the credentials to be added.

3. Call Azn.creds_create to create a new, empty credentials structure.

4. Call Azn.creds_combine.

The combined credentials are placed in a credentials structure that can be referenced
by the AznCreds object named ‘combined_creds”.

Determining the number of credentials in a credentials chain

Use the method "Azn.creds_num_of_subjects" on page 55 to determine the number of
credentials that are contained in a credentials chain. Credentials chains are created by
the Azn.creds_combine method.

This methods takes as an input parameter an AznCreds object set with the credentials
chain, and returns an AznInteger object containing the number of credentials.

Obtaining a credential from a chain of credentials

Use the method "Azn.creds_for_subject" on page 52 to extract individual credentials
from a credentials chain. Credentials chains are created by the Azn.creds_combine
method.

Complete the following steps:

1. Set an AznCreds object “creds” with the credentials chain.

2. Set an AznInteger object “subject_index” with the index number of the needed
credential within the credentials chain.

The credentials of the user who made the request are always stored at index 0. To
retrieve the credentials for the initiator (user), you can pass the constant
Azn.C_INITIATOR_INDEX as the value for subject_index.
Chapter 3. Using the Authorization API 31

Use Azn.creds_num_of_subjects, if necessary, to determine the number of
credentials in the chain.

3. Call Azn.creds_for_subject.

This method returns the requested credentials in the AznCreds object new_creds.

Modifying the contents of a credential

Use the method "Azn.creds_modify" on page 54 to modify a credential by placing
additional information, which is contained in an attribute list, into the credentials
structure. Use this method when you need to add application-specific information to
a user’s credentials.

Complete the following steps:

1. Use the AznAttrList methods to create an attribute list containing the information
to be added. Set an AznAttrList object named “mod_info” to the new attribute
list.

For more information on attribute lists, see "Class
com.ibm.pd.Authzn.AznAttrList" on page 11.

2. Set the credential modification service string “mod_svc_id” to null.

3. Set an AznCreds object “creds” to the credentials to be modified.

4. Call Azn.creds_create to create a new, empty credentials structure.

5. Call Azn.creds_modify.

The modified credentials are placed in the AznCreds object new_creds.

Obtaining an attribute list from a credential

Use the method "Azn.creds_get_attrlist_for_subject" on page 53 to obtain
information, in the form of an attribute list, from a credential. Attribute lists are added
to credentials structures by calls to Azn.creds_modify.

You can use this method to obtain the attribute list for a credential that is part of a
credentials chain.

Complete the following steps:

1. Set an AznCreds object named “creds” to the credentials chain.

2. Set an AznInteger object named “subject_index” to the index of the credential
within the credentials chain.

If the credential is not part of a chain, set subject_index to 0.

The credentials of the user who made the request are always stored at index 0. To
retrieve the credentials for the initiator (user), you can pass the constant
Azn.C_INITIATOR_INDEX as the value for subject_index.

Use Azn.creds_num_of_subjects, if necessary, to determine the number of
credentials in the chain.

3. Call Azn.attrlist_create to create a new, empty attribute list.

4. Call Azn.creds_get_attrlist_for_subject.

The method returns an AznAttrList object named “creds_attrlist” containing the
credential’s attribute information.
32 Policy Director Authorization API: Java Reference

Chapter 4. Deploying applications with the Authorization API

To deploy an application with the Authorization API, verify that your environment
contains the necessary supporting software. You can test your environment by
building and running the example program that is provided with the Authorization
API.

See the following sections:

� "Software requirements" on page 33
� "Running the example program AznDemo" on page 33

Software requirements

1. Install a Java runtime environment in order to run Java programs.

2. Applications that have been developed with the Policy Director Authorization
Java API must be run on systems that are configured into a Policy Director secure
domain. The minimum Policy Director installation on a system that will run an
application is:

• Policy Director Base (IVBase)

• Policy Director Authorization server (IVAcld)

• Policy Director Application Development Kit (IVAuthADK)

Note: When the Policy Director secure domain uses an LDAP user
registry, the application deployment system must have an
LDAP client installed.

The application runtime environment must include a DCE client runtime. The DCE
runtime is installed as a prerequisite to the Policy Director installations described
above.

Note: On Windows NT, Policy Director NetSEAT client provides the DCE client
runtime environment.

Running the example program AznDemo

The Policy Director Authorization API is provided with an example program called
AznDemo that demonstrates use of the Authorization Java API.

See the README file for instructions on running the AznDemo program. The
README file is located in the same installation directory as the AznDemo program.
Chapter 4. Deploying applications with the Authorization API 33

34 Policy Director Authorization API: Java Reference

Chapter 5. Authorization API: Java Reference

The Java implementation of the Authorization API consists of objects that are
extensions to class java.lang.Object.

This section contains a reference section for each of the following classes:

�

� "Class com.ibm.pd.Authzn.Azn" on page 36
� "Class com.ibm.pd.Authzn.AznAttrList" on page 65
� "Class com.ibm.pd.Authzn.AznAuthInfo" on page 67
� "Class com.ibm.pd.Authzn.AznBuffer" on page 70
� "Class com.ibm.pd.Authzn.AznCreds" on page 71
� "Class com.ibm.pd.Authzn.AznInteger" on page 73
� "Class com.ibm.pd.Authzn.AznString" on page 74
� "Class com.ibm.pd.Authzn.AznStrings" on page 75
Chapter 5. Authorization API: Java Reference 35

Class com.ibm.pd.Authzn.Azn

public class Azn extends Object

Description
The Azn class implements static native methods used to invoke the Policy Director
Authorization APIs which are C based APIs. The C APIs are fully documented in the
Policy Director Programming Guide and Reference. There is a one-to-one mapping
between the Java methods implemented by this class and the C based Authorization
APIs.

The C based APIs all begin with azn_ whereas the methods in this class are named by
what follows the azn_ in the C API function name. For example, the C API
azn_initialize function corresponds to the initialize method in this class and since it is
a static method it is invoked using the class name Azn.initialize.

The parameters to the methods in this class correspond as closely as possible to the
parameters for the C APIs.

Variable Index
� "IV_UNAUTH" on page 38
� "IV_DCE" on page 38
� "IV_LDAP" on page 38
� "operation_attach" on page 38
� "operation_browse" on page 39
� "operation_control" on page 39
� "operation_traverse" on page 39
� "operation_delegation" on page 39
� "operation_view" on page 39
� "operation_modify" on page 39
� "operation_delete" on page 40
� "operation_server_admin" on page 40
� "operation_audit" on page 40
� "operation_integrity" on page 40
� "operation_privacy" on page 40
� "operation_read" on page 41
� "operation_execute" on page 41
� "operation_list_directory" on page 41
� "operation_connect" on page 41
� "operation_forward" on page 41
� "init_mode" on page 42
� "init_qop" on page 42
� "init_db_file" on page 42
� "init_audit_file" on page 42
� "init_cache_refresh_interval" on page 43
36 Policy Director Authorization API: Java Reference

� "init_listen_flags" on page 43
� "init_namespace_location" on page 43
� "init_tcp_port" on page 43
� "init_udp_port" on page 44
� "init_ldap_host" on page 44
� "init_ldap_port" on page 44
� "init_ldap_admin_dn" on page 44
� "init_ldap_admin_pwd" on page 44
� "init_ldap_ssl_keyfile" on page 45
� "init_ldap_ssl_keyfile_dn" on page 45
� "init_ldap_ssl_keyfile_pwd" on page 45

Constructor Index
� "Azn" on page 45

Method Index
� "attrlist_add_entry" on page 46
� "attrlist_add_entry_buffer" on page 46
� "attrlist_create" on page 47
� "attrlist_delete" on page 47
� "attrlist_get_entry_buffer_value" on page 48
� "attrlist_get_entry_string_value" on page 49
� "attrlist_get_names" on page 49
� "attrlist_name_get_num" on page 50
� "creds_combine" on page 50
� "creds_create" on page 51
� "creds_delete" on page 51
� "creds_for_subject" on page 52
� "creds_get_attrlist_for_subject" on page 53
� "creds_get_pac" on page 53
� "creds_modify" on page 54
� "creds_num_of_subjects" on page 55
� "decision_access_allowed" on page 56
� "decision_access_allowed_ext" on page 57
� "error_major" on page 58
� "error_minor" on page 58
� "error_minor_get_string" on page 59
� "id_get_creds" on page 59
� "initialize" on page 60
� "pac_get_creds" on page 61
� "set_debug_mode" on page 61
� "shutdown" on page 62
� "util_client_authenticate" on page 62
� "util_password_authenticate" on page 63
� "util_server_authenticate" on page 64
Chapter 5. Authorization API: Java Reference 37

Variables

IV_UNAUTH

Syntax
public static String IV_UNAUTH

Remarks
Mechanism ID for an unauthenticated user which is passed to the Azn.id_get_cred
method to indicate the type of AznAuthInfo object that also passed to id_get_cred.

IV_DCE

Syntax
public static String IV_DCE

Remarks
Mechanism ID for a DCE authenticated user which is passed to the id_get_cred
method to indicate the type of AznAuthInfo object that also passed to id_get_cred.

IV_LDAP

Syntax
public static String IV_LDAP

Remarks
Mechanism ID for an LDAP authenticated user which is passed to the id_get_cred
method to indicate the type of AznAuthInfo object that also passed to id_get_cred.

operation_attach

Syntax
public static String operation_attach

Remarks
Operation string for attach.

Operation string declarations are parameters to the Azn.decision_access_allowed and
Azn.decision_access_allowed_ext methods. The actual string values of these
operations are an internal implementation detail and should not be relied upon.

The operations can be concatenated together to form complex operation strings. For
example, to request a read/modify operation, concatenate the strings operation_read
and operation_modify.
38 Policy Director Authorization API: Java Reference

operation_browse

Syntax
public static String operation_browse

Remarks
Operation string for browse.

operation_control

Syntax
public static String operation_control

Remarks
Operation string for control.

operation_traverse

public static String operation_traverse

Remarks
Operation string for traverse.

operation_delegation

Syntax
public static String operation_delegation

Remarks
Operation string for delegation.

operation_view

Syntax
public static String operation_view

Remarks
Operation string for view.

operation_modify

Syntax
public static String operation_modify

Remarks
 Operation string for modify.
Chapter 5. Authorization API: Java Reference 39

operation_delete

Syntax
public static String operation_delete

Remarks
Operation string for delete.

operation_server_admin

Syntax
public static String operation_server_admin

Remarks
Operation string for server admin.

operation_audit

Syntax
public static String operation_audit

Remarks
Operation string for audit.

operation_integrity

Syntax
public static String operation_integrity

Remarks
Operation string for integrity.

operation_privacy

Syntax
public static String operation_privacy

Remarks
Operation string for privacy.
40 Policy Director Authorization API: Java Reference

operation_read

Syntax
public static String operation_read

Remarks
Operation string for read.

operation_execute

Syntax
public static String operation_execute

Remarks
Operation string for execute.

operation_list_directory

Syntax
public static String operation_list_directory

Remarks
Operation string for list directory.

operation_connect

Syntax
public static String operation_connect

Remarks
Operation string for connect.

operation_forward

Syntax
public static String operation_forward

Remarks
Operation string for forward.
Chapter 5. Authorization API: Java Reference 41

init_mode

Syntax
public static String init_mode

Remarks
Attribute name for the Authorization API initialization mode. Values are:

� local
Specifies the use of policy cache replica of the authorization database.

� remote
Specifies communication with the master copy of the authorization database, by
making RPC requests to the Policy Director Authorization Server.

init_qop

Syntax
public static String init_qop

Remarks
Attribute name for the quality of protection for communications with IVAcld. Values
are "none", "integrity" or "privacy".

init_db_file

Syntax
public static String init_db_file

Remarks
Attribute name for the path and filename used to contain cached authorization policy.

init_audit_file

Syntax
public static String init_audit_file

Remarks
Attribute name for the audit path and filename to collect Authorization API audit
events.
42 Policy Director Authorization API: Java Reference

init_cache_refresh_interval

Syntax
public static String init_cache_refresh_interval

Remarks
Attribute name of the interval in seconds for local policy cache polled updates. Values
can be "disable", "default" or a string time in seconds.

init_listen_flags

Syntax
public static String init_listen_flags

Remarks
Attribute name for flags to enable the reception of policy cache update notifications.
Values can be a combination of: "disable", "enable", "use_tcp_port", "use_udp_port"
and "dynamic_port_selection". Multiple values are accepted for this attribute name
and are logically OR'd together. A "disable" value overrides all others and disables the
notification listener.

init_namespace_location

Syntax
public static String init_namespace_location

Remarks
Attribute name for the CDS namespace location for exporting the RPC endpoints for
local policy cache updates.

init_tcp_port

Syntax
public static String init_tcp_port

Remarks
Attribute name for the TCP port upon which policy cache updates are received.
Chapter 5. Authorization API: Java Reference 43

init_udp_port

Syntax
public static String init_udp_port

Remarks
Attribute name for the UDP port upon which policy cache updates are received.

init_ldap_host

Syntax
public static String init_ldap_host

Remarks
Attribute name for the LDAP server host name.

init_ldap_port

Syntax
public static String init_ldap_port

Remarks
Attribute name for the LDAP server host port (a numerical string).

init_ldap_admin_dn

Syntax
public static String init_ldap_admin_dn

Remarks
Attribute name for the LDAP server administrator's distinguished name.

init_ldap_admin_pwd

Syntax
public static String init_ldap_admin_pwd

Remarks
Attribute name for the LDAP server administrator's password.
44 Policy Director Authorization API: Java Reference

init_ldap_ssl_keyfile

Syntax
public static String init_ldap_ssl_keyfile

Remarks
Attribute name for the LDAP server's SSL keyfile.

init_ldap_ssl_keyfile_dn

Syntax
public static String init_ldap_ssl_keyfile_dn

Remarks
Attribute name for the LDAP server's SSL keyfile distinguished name.

init_ldap_ssl_keyfile_pwd

Syntax
public static String init_ldap_ssl_keyfile_pwd

Remarks
Attribute name for the LDAP server's SSL keyfile password.

Constructor

Azn

Syntax
Azn()

Remarks
Constructor
Chapter 5. Authorization API: Java Reference 45

Methods

attrlist_add_entry

Adds a name or string-value entry to an attribute list.

Syntax
public static native int attrlist_add_entry(AznAttrList attr_list,

String attr_name,
String string_value)

Parameters
attr_list - input

AznAttrList object.

attr_name - input
Name attribute of the entry to be added.

string_value - input
Value (string) attribute of the entry to be added.

Remarks
This method adds an entry to the attribute list attr_list. The added entry will have
name attr_name and value string_value.

This call can be issued multiple times with the same attr_list and the same attr_name
but with different string values. When this is done, attr_list contains multiple values
for the specified name.

The attr_name and string_value input parameters are copied into a new attribute list
entry.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_add_entry_buffer

Adds a name/buffer value entry to an attribute list.

Syntax
public static native int attrlist_add_entry_buffer(

AznAttrList attr_list,
String attr_name,
AznBuffer buffer_value)

Parameters
attr_list - input

AznAttrList object.

attr_name - input
Name attribute of the entry to be added.

buffer_value - input
AznBuffer object with the binary value for the new attribute.
46 Policy Director Authorization API: Java Reference

Remarks
This method adds an entry to the attribute list, attr_list. The added entry will have
name attr_name and value buffer_value.

This method can be issued multiple times with the same attr_list and the same
attr_name, but with different buffer_values. When this is done, attr_list contains
multiple values for the specified name.

The attr_name and buffer_value input parameters are copied into a new attribute list
entry.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_create

Creates an attribute list.

Syntax
public static native int attrlist_create(AznAttrList attr_list)

Parameters
attr_list - input /output

AznAttrList object.

Remarks
This method creates a new and empty attribute list. Pass a new AznAttrList object
attr_list as the input parameter. The attr_list object is also an output parameter.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_delete

Deletes an attribute list.

Syntax
public static native int attrlist_delete(AznAttrList attr_list)

Parameters
attr_list - input /output

AznAttrList object.

Remarks
This method deletes an attribute list. The attr_list object passed to this method is both
an input and output parameter. The attribute names and values in the attribute list are
released. The attr_list object is set to an invalid attribute list.
Chapter 5. Authorization API: Java Reference 47

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_get_entry_buffer_value

Returns a single specified-value attribute for a name attribute that has multiple values
that are contained in buffers.

Syntax
public static native int attrlist_get_entry_buffer_value(

AznAttrList attr_list,
String attr_name,
int value_index,
AznBuffer buffer_value)

Parameters
attr_list - input

AznAttrList object.

attr_name - input
Name attribute of the entry from which the value attribute is to be returned.

value_index - input
Index within the entry of the string attribute value o be returned.

buffer_value - input /output
AznBuffer object for the returned string attribute value.

Remarks
This method returns a binary value associated with an attribute name in the specified
attribute list. The returned value attribute is the one at position value_index within the
entry whose name attribute is specified by attr_name.

The value_index parameter is the index within the attribute entry for the specified
binary value. The first value attribute for any particular name attribute within an
attribute list has index 0.

The buffer_value object is both an input and output parameter. The returned binary
value is set in this object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
48 Policy Director Authorization API: Java Reference

attrlist_get_entry_string_value

Returns a single specified value attribute for a name attribute that has multiple values
that are strings.

Syntax
public static native int attrlist_get_entry_string_value(

AznAttrList attr_list,
String attr_name,
int value_index,
AznString string_value)

Parameters
attr_list - input

AznAttrList object.

attr_name - input
Name attribute of the entry from which the value attribute is to be returned.

value_index - input
Index within the entry of the string attribute value o be returned.

string_value - input /output
AznString object for the returned string attribute value.

Remarks
This method returns one string-type value attribute in string_value. The returned
value attribute is the one at position value_index within the set of value attributes
belonging to the name attribute that is specified by attr_name.The first value attribute
for a specified name attribute within an attribute list has index 0.

The string_value object is both an input and output parameter. The returned string
value will be set in this object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_get_names

Returns the list of all name attributes appearing in entries of the attribute list.

Syntax
public static native int attrlist_get_names(AznAttrList attr_list,

AznStrings attr_names)

Parameters
attr_list - input

AznAttrList object.

attr_names - output
AznStrings object for the returned array of attribute names.
Chapter 5. Authorization API: Java Reference 49

Remarks
This method returns the set of all attribute names in the specified attribute list. The
attr_names object is both an input and output parameter. The returned array of
attribute names is set in this object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

attrlist_name_get_num

Returns the number of value attributes for a specified name attribute in a specified
attribute list.

Syntax
public static native int attrlist_name_get_num(AznAttrList attr_list,

String attr_name,
AznInteger num_values)

Parameters
attr_list - input

AznAttrList object.

attr_name - input
Name attribute for the entry whose number of value attributes is to be returned.

num_values - input /output
AznInteger object for the number of value attributes returned.

Remarks
This method returns the number of value attributes for a specified name attribute in a
specified attribute list. The num_values object is both an input and output parameter.
The returned number of values is set in this object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_combine

Combines two authorization credentials chains and a returns the resulting combined
credentials chain.

Syntax
public static native int creds_combine(AznCreds creds,

AznCreds creds_to_add,
AznCreds combined_creds)

Parameters
 creds - input

AznCreds object for the credentials chain whose first indexed entry is the
credential of the initiator of the request.
50 Policy Director Authorization API: Java Reference

creds_to_add - input
AznCreds object for the credentials to be added to an existing credentials chain.

combined_creds - output
AznCreds object for the new credentials chain, which consists of the credentials
chain referenced by creds followed by the credentials chain referenced by
creds_to_add.

Remarks
This method takes a AznCreds object creds_to_add, which refers to a credentials chain,
and adds it to the end of a chain of one or more credentials, which are referenced by
the AznCreds object creds. The credentials chain referenced by creds must contain as its
first indexed credential the credentials of the initiator. The credentials chain
referenced by creds might also contain the (previously combined) credentials of one or
more of the initiator's proxies.

The combined credentials is returned through the AznCreds object combined_creds.The
combined_creds object is both an input and output parameter. The handle to the
resulting combined credentials chain is e set in this object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_create

Creates a new, empty credentials chain.

Syntax
public static native int creds_create(AznCreds creds)

Parameters
creds - input /output

AznCreds object for the new empty credentials structure that is returned.

Remarks
This method creates a new, empty credentials chain The creds object is both an input
and output parameter. The handle to the new empty credentials structure is set in this
object.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_delete

Deletes a credentials chain.

Syntax
public static native int creds_delete(AznCreds creds)
Chapter 5. Authorization API: Java Reference 51

Parameters
creds - input /output

AznCreds object.

Remarks
This method deletes a credentials chain. The creds object is both an input and output
parameter. The handle to credentials structure is in this object to an invalid value to
ensure that it cannot be used in future calls.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_for_subject

Obtains a specified credentials chain from a combined credentials chain.

Syntax
public static native int creds_for_subject(AznCreds combined_creds,

int subject_index,
AznCreds new_creds)

Parameters
combined_creds - input

AznCreds object representing a credentials chain which contains one or more
individual credentials structures. When this method returns, the structure
referred to by combined_creds is unchanged.

subject_index - input
Index of the requested individual credentials chain within the combined
credentials chain. The index of the first credentials chain in the combined
credentials chain, which should be that of the initiator, is zero (0).

new_creds - input/output
AznCreds object for the returned credentials structure.

Remarks
This method sets the object new_creds to a credentials chain for the individual
credential at index subject_index within the credentials chain combined_creds. The chain
combined_creds contains the combined credentials of several subjects.

This method does not modify the combined_creds credentials chain.

The new_creds object is both an input and output parameter which will be set with the
handle to the requested credentials structure.

Combined credentials chains are created by Azn.creds_combine. The first credential
chain in a combined credentials chain is that of the initiator, and its index is zero (0).

Use Azn.creds_num_of_subjects to determine the total number of credentials chains
in a combined credentials chain.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
52 Policy Director Authorization API: Java Reference

creds_get_attrlist_for_subject

Returns attribute information from a specified subject’s credentials chain within a
specified (and possibly combined) credentials chain.

Syntax
public static native int creds_get_attrlist_for_subject(

AznCreds creds,
int subject_index,
AznAttrList creds_attrlist)

Parameters
creds - input

AznCreds object representing a credentials chain which contains one or more
individual credentials structures.

subject_index - input
Index of the requested individual subject within the credentials chain. The index
of the first credential in the combined credentials chain, which should be that of
the initiator, is zero (0).

creds_attrlist - input /output
AznAttrList object for the returned attribute list.

Remarks
This method returns an attribute list containing privilege attribute information from
the credentials chain for the individual subject at index subject_index within a
credentials chain creds.

The first credential chain in a combined credentials chain is that of the initiator, and its
index will be zero (0).

The creds_attrlist object is both an input and output parameter which is set with the
handle to an attribute list containing the attribute information from the specified
credentials structure.

Use the Azn.attrlist* methods to retrieve individual attribute values from creds_attrlist.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_get_pac

Creates and returns a privilege attribute certificate (PAC) by invoking a specified PAC
service on the supplied credentials chain.

Syntax
public static native int creds_get_pac(AznCreds creds,

String pac_svc_id,
AznBuffer pac)
Chapter 5. Authorization API: Java Reference 53

Parameters
creds - input

AznCreds object for the credentials whose information is used to build the PAC.

pac_svc_id - input
Identification (id) of the PAC service that produces the PAC.

pac - input /output
AznBuffer object for the returned PAC.

Remarks
Create a privilege attribute certificate (PAC) by invoking a specified PAC service on
the supplied credentials.

This method uses the PAC service whose identification is supplied as pac_svc_id to
build a new PAC. The PAC service uses the information in the supplied credentials
chain to build the PAC. Different PAC services might produce PACs with different
formats. Some PAC services can cryptographically protect or sign the PACs they
produce.

When pac_svc_id is NULL, the default PAC service returns an architecture-
independent and network-independent encoding of the specified credentials chain.
This PAC can be safely transmitted. The receiver of the PAC can use
Azn.pac_get_creds to decode the PAC and obtain a valid copy of the original
credentials chain.

The pac object is both an input and output parameter which will be set to contain the
new PAC.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_modify

Modifies an existing credentials chain and returns an object containing a pointer to the
handle to a new credentials chain containing the modifications.

Syntax
public static native int creds_modify(AznCreds creds,

String mod_svc_id,
AznAttrList mod_info,
AznCreds new_creds)

Parameters
creds - input

AznCreds object for the credentials to be modified.

mod_svc_id - input
Identification (id) of the credential modification service.

mod_info - input
AznAttrList object for the attribute list containing modification service-specific or
application-specific data that describes the desired credential modifications.

new_creds - input /output
AznCreds object for the modified credentials structure handle.
54 Policy Director Authorization API: Java Reference

Remarks
This method uses the specified modification service mod_svc_id, and optionally an
attribute list mod_info which contains modification information provided by the caller,
to modify a copy of the supplied credentials chain creds. The method returns a pointer
to a handle to a new credentials chain new_creds containing the requested
modifications. The supplied credentials chain is unchanged.

When mod_svc_id is NULL, this method modifies an existing credential chain creds by
adding the attribute list mod_info to the credentials chain, and returning the modified
credential in new_creds.

If the input creds handle references a combined credentials chain with more than one
element, only the first element will be modified. This is the default behavior when
mod_svc_id is NULL. In this case, the output chain consists of the modified first
element followed by unmodified copies of the remaining elements in the input
combined credentials chains. The elements in the output credentials chain are kept in
the same order as their counterparts in the input credentials chain.

The new_creds object is both an input output parameter which will be set to contain
the handle to the new credentials structure.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

creds_num_of_subjects

Returns the number of individual subjects’ credentials chains in a combined
credentials chain.

Syntax
public static native int creds_num_of_subjects(

AznCreds creds,
AznInteger num_of_subjects)

Parameters
creds - input

AznCreds object for the credentials chain.

num_of_subjects - input /output
AznInteger object which is set with the number of subjects whose credentials
appear in the input credentials chain creds.

Remarks
This method returns the number of individual subjects, num_of_subjects, whose
credentials appear in a credentials chain creds. The num_of_subjects object is both an
input and output parameter which is set to contain the number of individual
credentials.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
Chapter 5. Authorization API: Java Reference 55

decision_access_allowed

Makes an access control decision.

Syntax
public static native int decision_access_allowed(

AznCreds creds,
String protected_resource,
String operation,
AznInteger permission)

Parameters
creds - input

AznCreds object for the initiator's credential chain.

protected_resource - input
Name of the target resource of the request.

operation - input
Name of the requested operation.

permission - input /output
AznInteger object where the decision result is returned. If the returned status
value is Azn.S_COMPLETE, the returned permission will be Azn.PERMITTED or
Azn.NOT_PERMITTED.

If additional information beyond a boolean result is needed, use
Azn.decision_access_allowed_ext.

Remarks
This method decides whether the initiator specified by credentials creds is authorized
to perform the operation operation on the target protected_resource. The decision is
returned through permission.

The permission object is both an input and output parameter which is set to contain the
decision result of Azn.PERMITTED or Azn.NOT_PERMITTED. Calling application
are bound by the decision result only when the returned status value is
Azn.S_COMPLETE. When the returned status value is not Azn.S_COMPLETE, the
permission object does not contain a valid decision result.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
56 Policy Director Authorization API: Java Reference

decision_access_allowed_ext

Makes an access control decision using application-specific context information;
returns information about why the decision was made.

Syntax
public static native int decision_access_allowed_ext(

AznCreds creds,
String protected_resource,
String operation,
AznAttrList app_context,
AznInteger permission,
AznAttrList permission_info)

Parameters
creds - input

AznCreds object for the initiator's credentials chain.

protected_resource - input
Name of the target of the request.

operation - input
Name of the requested operation.

app_context - input
AznAttrList object for an attribute list containing application-specific context
access control information. A NULL value indicates there is no context access
control information.

permission - input /output
AznInteger object that contains the decision result. If the returned status value is
Azn.S_COMPLETE, the returned permission will be Azn.PERMITTED or
Azn.NOT_PERMITTED.

permission_info - input /output
AznAttrList object for an attribute list where implementation specific information
about the decision can be returned. A null object indicates that no information
about the decision is returned.

The parameter permission_info can be used to return implementation-specific
qualifiers to Azn.NOT_PERMITTED. The qualifiers can be used to assist the
calling application or the initiator in formulating a request which will be
authorized. Examples of such qualifiers might include: “not permitted yet,”
“requires additional privilege attributes,” or “permissible with restrictions.”

Return Values
This method decides whether the initiator specified by the credentials chain creds is
authorized to perform the operation operation on the target protected_resource.
Optionally, callers can supply application-specific context access control information
using the app_context argument. The decision is returned through permission.

Optionally, the implementation can return implementation-specific information about
the decision through permission_info. For example, the information can indicate which
rule was responsible for granting or denying access.

The permission object is both an input and output parameter which is set to contain the
decision result of Azn.PERMITTED or Azn.NOT_PERMITTED. Calling application
are bound by the decision result only if the returned status value is
Chapter 5. Authorization API: Java Reference 57

Azn.S_COMPLETE. When the returned status value is not Azn.S_COMPLETE, the
permission object does not contain a valid decision result.

The permission_info object is both an input and output parameter which is used to
return implementation specific attribute names and values indicating the reason why
the decision was made.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

error_major

Obtains the major error code associated with a status code that is returned by one of
the methods in this class.

Syntax
public static native int error_major(int azn_status)

Parameters
azn_status - input

Previously returned status code by any of the Azn.* methods.

Remarks
This method obtains the major error code associated with a status code that is
returned by one of the methods in this class.

Return Values
Major error code for the specified status code.

error_minor

Returns the implementation-specific minor error code that is associated with a status
code that was returned by one of the methods in this class.

Syntax
public static native int error_minor(int azn_status)

Parameters
azn_status - input

An Azn status code.

Remarks
This method returns the implementation-specific minor error code that is associated
with a status code that was returned by one of the methods in this class.

Return Values
Minor error code for the specified status code.
58 Policy Director Authorization API: Java Reference

error_minor_get_string

Returns an object containing the string value for the implementation-specific minor
error code that is associated with a status code that was returned by one of the
methods in this class.

Syntax
public static native int error_minor(int azn_status,

AznString string)

Parameters
azn_status - input

An Azn status code.

string - output
An AznString object containing the string that describes the condition that
triggered the generation of the azn_status code.

Remarks
This method returns a string that describes the error corresponding to a previously
returned minor error status code.

Return Values
String value of the minor error code for the specified status code.

id_get_creds

Returns an object set to the handle to the credentials chain associated by a specified
authorization authority with a specified identity.

Syntax
public static native int id_get_creds(String authority,

String mechanism_id,
AznAuthInfo mechanism_info,
AznCreds new_creds)

Parameters
authority - input

Identification (id) of the authorization authority to be used to build the credential.
A null input value selects a default.

mechanism_id - input
Authentication mechanism that is used to generate the identity passed through
the mechanism_info object. A null input value selects a default authentication
mechanism.

mechanism_info - input
AznAuthInfo object containing initiator access control information, which
consists of identity information obtained from an authentication service. The
authentication service used to produce this information should be identified
using the mechanism_id parameter. A null input value denotes the default identity
for the selected authentication mechanism from the environment.
Chapter 5. Authorization API: Java Reference 59

new_creds - input /output
AznCreds object which is set with the handle to a new, empty credentials chain.

Remarks
This method builds an authorization credentials chain, referenced by the returned
handle new_creds, for the identity corresponding to the initiator access control
information mechanism_info produced by an authentication mechanism mechanism_id.

Specifying a null value for authority causes the default authority to be used. The
default authority is Policy Director, which is the only authority supported by this
release of the Policy Director Authorization API.

Specifying null values for mechanism_id and mechanism_info causes the default
authentication mechanism and the default identity to be the authentication
mechanism used in the Policy Director secure domain.

The new_creds object is both an input and output parameter which is set to contain the
handle to the credentials structure.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

initialize

Initializes the authorization service.

Syntax
public static native int initialize(AznAttrList init_data,

AznAttrList init_info)

Parameters
init_data - input

AznAttrList object for the attribute list containing implementation-specific
initialization data.

init_info - input /output
AznAttrList object for the attribute list used to return implementation specific
information about the initialization.

Remarks
This method must be called before calling most other Authorization API methods.
The exceptions to this rule are the attribute list methods (Azn.attrlist_*) and the error
handling methods (Azn.error_*).

The init_info object is both an input and output parameter which is set to contain
implementation specific information about the initialization.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
60 Policy Director Authorization API: Java Reference

pac_get_creds

Returns a handle to new credentials chain that is derived from a privilege attribute
certificate (PAC) by a specified PAC service.

Syntax
public static native int pac_get_creds(AznBuffer pac,

String pac_svc_id,
AznCreds new_creds)

Parameters
pac - input

AznBuffer object that holds the supplied PAC.

pac_svc_id - input
Identification (id) of the PAC service that produces the new credentials chain.

new_creds - output
AznCreds object to be set with the handle to the new credentials chain.

Remarks
This method uses the identified PAC service (pac_svc_id) to build a new credentials
chain using the information in the supplied PAC (pac). Some PAC services will
cryptographically verify the protection or signature on the received PAC, and will
return an error if the PAC cannot be verified.

The new_creds object is both an input and output parameter which will be set to with
the handle to the new credentials.

This method decodes PACs that are built by Azn.creds_get_pac.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

set_debug_mode

Sets the debug mode for the native method implementation.

Syntax
public static native void setDebugMode(int mode)

Remarks
When the debug mode is set to 1, the native methods write debug trace information to
standard output.

The default is 0 which disables the native method debug trace.

Parameters
mode - input

Debug mode
Chapter 5. Authorization API: Java Reference 61

shutdown

Cleans up internal authorization service state in preparation for shutdown.

Syntax
public static native int shutdown()

Remarks
Use Azn.shutdown to clean up the Authorization API’s memory and other internal
implementation state before the application exits. This method shuts down the
implementation state created by Azn.initialize.

The only authorization API methods that can be used after calling Azn.shutdown,
prior to calling Azn.initialize again, are the attribute list methods (Azn.attrlist_*) and
the error handling methods (Azn.error_*), and the memory release methods
(Azn.*_delete).

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.

util_client_authenticate

Performs authentication from a user name and password.

Syntax
public static native int util_client_authenticate(

String principal_name,
String password)

Parameters
principal_name - input

Name of the principal (user) to be authenticated.

password - input
The password for the user.

Remarks
Performs a login from a user name and password pair. Starts a background thread to
refresh the login context as necessary.

The Authorization API must be initialized before this method is called. Use
Azn.initialize to initialize the Authorization API.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
62 Policy Director Authorization API: Java Reference

util_password_authenticate

Performs authentication for a user name and password pair, and returns
authentication information when the authentication is successful.

Syntax
public static native int util_password_authenticate(

String principal_name,
String password,
AznString mechanism_id,
AznAuthInfo authinfo)

Parameters
principal_name - input

Name of the user (principal) used to log in. If LDAP authentication is used, this
will be a DN string.

password - input
Password for the user.

mechanism_id - input /output
AznString object set with the mechanism ID identifying the authentication
mechanism.

authinfo - input /output
AznAuthInfo object set with the results of the authentication when the
authentication is successful.

Remarks
This method performs authentication for a user name and password pair, and returns
authentication information when authentication is successful.

The authentication mechanism used depends upon the underlying authentication
mechanism that was configured when the Authorization API was installed. Policy
Director supports DCE and LDAP authentication. For LDAP Authorization API
authentication, the Azn.initialize method must have completed successfully.

This method does not establish a security context for the application.

The mechanism_id object is both an input and output parameter that is set with the
mechanism ID for the authentication mechanism.

The authinfo object is both an input and output parameter that is set with the results of
a successful authentication.

The mechanism_id and authinfo returned can be appended with data specific to the
principal and passed into the Azn.id_get_creds method.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
Chapter 5. Authorization API: Java Reference 63

util_server_authenticate

Performs authentication from a keytab file, and starts a background thread to refresh
the login context as necessary.

Syntax
public static native int util_server_authenticate(

String principal_name,
String keytab_path)

Parameters
principal_name - input

Name of the user (principal) to be authenticated.

keytab_path - input
Path to the keytab file containing the principal's key.

Remarks
This method performs authentication from a keytab file, and starts a background
thread to refresh the login context as necessary.

In order to use this utility method, applications that operate in a Policy Director
secure domain that uses an LDAP user registry must use DCE commands to create a
keytab file.

The Authorization API must be initialized before this method is called. Use
Azn.initialize to initialize the Authorization API.

Return Values
Status return code which can be passed to the error_major and error_minor methods
to retrieve the Azn major and minor error code values.
64 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznAttrList

public class AznAttrList extends Object

Description
The AznAttrList class implements an attribute list. Attribute lists are represented in
the Authorization C APIs by the datatype azn_attrlist_h_t). An object of this class
simply contains the handle to an Attribute List and is used as either an input or
output parameter for the methods that create, use, modify or delete an attribute list.

Variable Index
� "handle" on page 65

Attribute list handle

Constructor Index
� "AznAttrList" on page 66

A constructor for an AznAttrList which initializes the attribute list handle to 0.

� "AznAttrList(long)" on page 66
A constructor for an AznAttrList object which takes the Attribute List handle as a
parameter.

Variable

handle

Syntax
public long handle

Remarks
Attribute list handle.
Chapter 5. Authorization API: Java Reference 65

Constructors

AznAttrList

Syntax
public AznAttrList()

Remarks
Constructor for an AznAttrList object. This constructor initializes the Attribute List
handle to 0.

AznAttrList(long)

Syntax
public AznAttrList(long)

Remarks
Constructor for an AznAttrList object. This constructor takes the Attribute List handle
as a parameter.
66 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznAuthInfo

public class AznAuthInfo extends Object

Description
The AznAuthInfo class implements the access control information that is passed as
input to the Azn.id_get_creds method within the mechanism_info parameter.

Objects of this class represent one of the data structures used by the Authorization C
APIs for the following data types:

Variable Index
� "user_identity" on page 68

DCE principal name or LDAP distinguished name

� "auth_method" on page 68
Authentication method identification for DCE or LDAP credentials

� "ipaddr" on page 68
IP address of the user that sent the request.

� "qop" on page 68
Quality of protection level

� "user_info" on page 68
Optional user information.

� "browser_info" on page 69
Optional browser information.

� "authnmech_info" on page 69
Optional authentication information; not used for unauthenticated credentials.

Constructor Index
� "AznAuthInfo" on page 69

C API Data Type Usage

azn_authdce_t For DCE credentials

azn_authldap_t For LDAP credentials

azn_unauth_t For unauthenticated credentials
Chapter 5. Authorization API: Java Reference 67

Variables

user_identity

Syntax
public String user_identity

Remarks
DCE principal name or LDAP distinguished name. This variable is not used for
unauthenticated credentials.

auth_method

Syntax
public String auth_method

Remarks
A string containing authentication method identification for DCE or LDAP
credentials. The content of the string is defined by the application. This variable is not
used for unauthenticated credentials.

ipaddr

Syntax
public long ipaddr

Remarks
IP address of requesting user.

qop

Syntax
public String qop

Remarks
Quality of protection that is required for requests that are made by this user.

user_info

Syntax
public String user_info

Remarks
Additional user information that might be required for auditing.
68 Policy Director Authorization API: Java Reference

browser_info

Syntax
public String browser_info

Remarks
Browser (if any) that is employed by the user.

authnmech_info

Syntax
public String authnmech_info

Remarks
Additional authentication mechanism information. Supplied and used as needed by
the application. This variable is not used for unauthenticated credentials.

Constructor

AznAuthInfo

Syntax
public AznAuthInfo()

Remarks
Constructor for an AznAuthInfo object which initializes all the data members to 0 or
null.
Chapter 5. Authorization API: Java Reference 69

Class com.ibm.pd.Authzn.AznBuffer

public class AznBuffer extends Object

Description
The AznBuffer class implements a binary buffer value. The buffer value is represented
in the Authorization C APIs by the data type azn_buffer_t.

An object of this class contains a single data member which is a byte array. The byte
array is used as either an input or output parameter for the Azn methods that require
a buffer value.

Variable Index
� "value" on page 70

The byte array containing the buffer value.

Constructor Index
� "AznBuffer" on page 70

Variable

value

Syntax
public byte value[]

Remarks
The byte array containing the buffer value.

Constructor

AznBuffer

Syntax
public AznBuffer()

Remarks
Constructor for an AznBuffer object which initializes the byte array value to null.
70 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznCreds

public class AznCreds extends Object

Description
The AznCreds class implements an authorization credentials. The authorization
credentials is represented in the Authorization C APIs by the data type azn_creds_h_t.

An object of this class simply contains the handle to a credentials structure. An
AznCreds object is used as either an input or output parameter for the methods that
create or use authorization credentials.

Variable Index
� "handle" on page 72

Credentials structure handle

Constructor Index
� "AznCreds" on page 72

Constructor for an AznCreds object which initializes the credentials structure
handle to 0.

� "AznCreds(long)" on page 72
Constructor for an AznCreds object which takes the credentials structure handle as
a parameter.
Chapter 5. Authorization API: Java Reference 71

Variable

handle

Syntax
public long handle

Remarks
Credentials structure handle.

Constructors

AznCreds

Syntax
public AznCreds()

Remarks
Constructor for an AznCreds object which initializes the credentials structure handle
to 0.

AznCreds(long)

Syntax
public AznCreds(long value)

Remarks
Constructor for an AznCreds object which takes the credentials structure handle as a
parameter.

Parameters
handle - output

Credentials structure handle.
72 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznInteger

public class AznInteger extends Object

Description
The AznInteger class implements an object used to return an integer value.

An object of this class simply contains the integer value which is an output parameter
for the methods that return an integer value.

Variable Index
� "value" on page 73

Integer value.

Constructor Index
� "AznInteger" on page 73

Constructor for an AznInteger object which initializes the integer value to 0.

Variable

value

Syntax
public int value

Remarks
Integer value.

Constructor

AznInteger

Syntax
public AznInteger()

Remarks
Constructor for an AznInteger object which initializes the integer value to 0.
Chapter 5. Authorization API: Java Reference 73

Class com.ibm.pd.Authzn.AznString

public class AznString extends Object

Description
The AznString class implements an object used to return a string value.

An object of this class simply contains the string value which is an output parameter
for the methods that return a string value.

Variable Index
� "value" on page 74

String value.

Constructor Index
� "AznString" on page 74

Constructor for an AznString object which initializes the string value to null.

Variable

value

Syntax
public String value

Remarks
String value.

Constructor

AznString

Syntax
public AznString()

Remarks
Constructor for an AznString object which initializes the string value to null.
74 Policy Director Authorization API: Java Reference

Class com.ibm.pd.Authzn.AznStrings

public class AznStrings extends Object

Description
The AznStrings class implements an object used to return an array of string value.

An object of this class simply contains the string array which is an output parameter
for the methods that return an array of string values.

Variable Index
� "value" on page 75

Array of string values.

Constructor Index
� "AznStrings" on page 75

Constructor for an AznStrings object which initializes the string array to null.

Variable

value

Syntax
public String value[]

Remarks
Array of string values.

Constructor

AznStrings

Syntax
public AznStrings()

Remarks
Constructor for an AznString object which initializes the string array to null.
Chapter 5. Authorization API: Java Reference 75

76 Policy Director Authorization API: Java Reference

Index
IndexA
about this book vii
access control decisions

making 56
making and extending 57

access decision function (ADF) 4
access enforcement function (AEF) 4
access, LDAP 20
adding

additional application-specific context 28
attributes for LDAP access 20
attributes for local cache mode 17
attributes for remote cache mode 17
authorization to an application 5
credentials and handle 50

additional user information 25
ADF (access decision function) 4
ADK 3
administrator’s distinguished name 21
AEF (access enforcement function) 4
AIX

Policy Director operating system 2
API

attribute lists 8
authorization decisions 9
credentials 9
error handling 9
extensions 10
Toolbox 1

application
authentication 21
Web 2

Application Development Kit (ADK) 3
applications

building 6
building an attribute list 28
deploying with the Authorization API 33
determining user’s authorization credentials 24
determining user’s identity 23

assigning
handle for an empty attribute list 47
handle to empty credentials structure 51
user credentials to a credentials handle 28

attribute list 17
attribute list functions 8
attribute lists

building for additional application information 28
creating 11
deleting 12
getting an attribute name 11
getting the number of values 11
getting values 12
obtaining a credential 31
setting an entry 11

attributes
for LDAP access 20
for local cache mode 17

for remote cache mode 17
audience of this book vii
audit

user information user_info 25
authenticated user identity 23
authenticating an application 21
authentication

identity, user 25
information 25, 63
mechanism 23
methods 25

authority, authorization 24
authorization

authority 24
credentials 24, 26
decisions 9, 27

Authorization API
building applications 6
changing the credential’s contents 32
character strings 10
converting credentials to a transportable format 30
converting credentials to the native format 31
creating a chain of credentials 31
demonstration example 33
deploying applications 33
determining the number of credentials in a chain 31
handling credentials 30
initializing 16, 60
installing software requirements 33
introducing 3
manual pages 35
obtaining a credential from a chain 31
obtaining credential from a chain 31
shutting down 30
software requirements 6
specifying cache mode type 16

Authorization server
specifying cache mode type 16

authorization service
initializing 16, 60
minor errors 13
starting 21
submitting requests to 4

Azn
attrlist_add_entry 18, 28, 46
attrlist_add_entry_buffer 28, 46
attrlist_create 28, 32, 47
attrlist_delete 47
attrlist_get_entry_buffer_value 48
attrlist_get_entry_string_value 49
attrlist_get_names 49
attrlist_name_get_num 50
azn constructor 45
C_INITIATOR_INDEX 31, 32
C_NOT_PERMITTED 29
C_PERMITTED 29
C_VERSION 21

creds_combine 31, 50
creds_create 31, 32, 51
creds_delete 51
creds_for_subject 32, 52
creds_get_attrlist_for_subject 32, 53
creds_get_pac 30, 53
creds_modify 32, 54
creds_num_of_subjects 31, 32, 55
decision_access_allowed 27, 28, 56
decision_access_allowed_ext 28, 57
error_major 58
error_minor 58
error_minor_get_string 59
id_get_creds 28, 30, 59
init_audit_file 18, 42
init_cache_refresh_interval 18, 43
init_db_file 18, 42
init_ldap_admin_dn 21, 44
init_ldap_admin_pwd 21, 44
init_ldap_host 20, 44
init_ldap_port 20, 44
init_ldap_ssl_keyfile 21, 45
init_ldap_ssl_keyfile_dn 21, 45
init_ldap_ssl_keyfile_pwd 21, 45
init_listen_flags 18, 20, 43
init_mode 42
init_namespace_location 19, 43
init_qop 17, 42
init_tcp_port 19, 43
init_udp_port 19, 44
initialize 60
IV_DCE 38
IV_LDAP 38
IV_UNAUTH 38
operation_attach 38
operation_audit 40
operation_browse 39
operation_connect 41
operation_control 39
operation_delete 40
operation_execute 41
operation_forward 41
operation_integrity 40
operation_list_directory 41
operation_modify 39
operation_privacy 40
operation_read 41
operation_server_admin 40
operation_traverse 39
operation_view 39
operaton_delegation 39
pac_get_creds 61
S_COMPLETE 13
set_debug_mode 61
shutdown 21, 62
util_client_authenticate 23, 62
util_password_authenticate 23, 63
util_server_authenticate 22, 64

AznAttrList 11, 29
AznAttrList constructor 66
handle 65

AznAuthInfo 13
auth_method 25, 68
authnmech_info 69
AznAuthInfo constructor 69

browser_info 69
ipaddr 68
qop 68
user_identity 25, 68
user_info 68

AznBuffer 10
AznBuffer constructor 70
value 70

AznCreds 12
AznCreds constructor 72
AznCreds(long) constructor 72
handle 72

AznDemo demonstration example 33
AznInteger 10

AznInteger constructor 73
value 73

AznString 10
AznString constructor 74
value 74

AznStrings 10
AznStrings constructor 75
value 75

B
book

audience vii
conventions viii
organization vii
what is new in this release 5

Boundary server 1
browser information 26
building

applications 6
attribute lists 28

C
cache modes 16
CDS namespace 19
cell_admin 25
chain of credentials 31, 55
changing

contents of a credential 32
existing credential 54

character strings 10
Class

com.ibm.pd.Authzn.Azn 8, 36
com.ibm.pd.Authzn.AznAttrList 11, 65
com.ibm.pd.Authzn.AznAuthInfo 13, 67
com.ibm.pd.Authzn.AznBuffer 10, 70
com.ibm.pd.Authzn.AznCreds 12, 71
com.ibm.pd.Authzn.AznInteger 10, 73
com.ibm.pd.Authzn.AznString 10, 74
com.ibm.pd.Authzn.AznStrings 10, 75

cleaning up 30, 62
cn=root 25
combining credentials and handle 51
commands

ivadmin server register dbreplica 19
components of

ADK 6
FirstSecure 1
Policy Director 6

configuring
Authorization API 16
78 Policy Director Authorization API: Java Reference

network environment 15
Policy Director secure domain 5

contents of the credential 32
conventions viii
converting

credentials to a transportable format 30
creating

attribute lists 11
chain of credentials 31
empty credentials structure 51
new attribute lists 16, 28
privilege attribute certificates 53

credentials 9
changing 54
changing the credential’s contents 32
combining with a handle 50
converting to a transportable format 30
converting to the native format 31
creating a chain of credentials 31
creating and assigning a handle 51
deleting 51
determining number of credentials 31
invoking a privilege attribute certificate service 53
making access control decisions 56
making extended access control decisions 57
obtaining attribute list from a credentia 32
obtaining for user authorization 24, 26
obtaining from a chain of credentials 31
returning handle to new PAC credentials 61
returning in a chain 55
returning information from 53
user authorization 26

custom-protected object 27

D
data stream

integrity 17
privacy 17

DCE
linking libraries 7
login using a keytab file 22
principal 19
runtime 7
user registry 25
user registry identity 25

decision 57
authorization 28

decisions
access control 56, 57
authorization 9

defining
extranet 2
security policy 5

deleting
attribute list 12
credentials 51

demonstration example 33
deploying

applications 33
applications into secure domain 5

determining
authorization credentials for a user 26
identity for a user 25
number of credentials in a credentials chain 31

disabling
notification listener 18
refreshes of local authorization policy database 18

distinguished name 21
DNS (domain name system) 19
domain name system (DNS) 19
dynamic_port_selection 18

E
empty credentials chain 51
enabling

application to log in 22
listener to use ivadmin command 19
listener to use TCP 18
listener to use UDP 18
notification listener 18

environment variables
setting 7

environment, runtime 15
error handling 9, 13
example of

assigning user identity information 26
attribute list initialization data 19
creation of a new attribute list 17
demonstration program authzn_demo 33

extending
API function standard 10

extensions, API 10
external authorization server (see Authorization server) 28
extranet 2

F
FirstSecure

components 1
documentation 2
introduction to 1
service and support viii
Web information ix

format
credentials, transportable 30

G
getting

attribute list name 11
entry string value 49
handle for a specified identity 59
name attributes 49
number of attribute entries 50
number of values for attribute list name 11
value attributes 12

H
handle 50, 51, 59

credentials 12, 28, 51
handling credentials 30
host name, LDAP server 20
HTTP header 22

I
IBM SecureWay

Boundary Server 1
FirstSecure (see FirstSecure) ix
Index 79

Intrusion Immunity 1
Policy Director (see Policy Director) 1
Toolbox 1
Trust Authority 1

identities, user 24, 25
implementation modes 3
initialization 9
initializing

authorization service 16, 60
initiator 4
installing

Policy Director 33
integrity 17
interfaces

Authorization API manual pages 35
Toolbox API 1

International Organization for Standardization (ISO) 4
introduction to

Authorization API 3
Intrustion Immunity, IBM SecureWay 1
IP address 19, 26
ISO (International Organization for Standardization) 4
IV_DCE 25
IV_LDAP 25
IV_UNAUTH 25
ivacld-servers 22
ivadmin server register command 19

K
key file, SSL 21
key label, SSL 21
keytab file 22, 64

L
LDAP

adding attributes for access 20
administrator’s distinguished name 21
administrator’s password 21
key file password 21
port number 20
server host name 20
server key label 21
SSL key file 21
user registry 25
user registry identity 25

ldap_dn 25
library links 7
listener, notification 18
local cache mode 3, 16, 17
logging in

using a DCE keytab file 22
using a keytab file 64
using a password 22
using username and password 62
using username and password pair 63

login utility functions 22

M
major errors 13
making

access control decisions 56
extended access control decisions 57

mapping
requested resource to protected object 27

user operation to a permission 27
memory

credential structure 12
method of authentication 24
minor errors 13, 58
mod_info 32
mod_svc_id 32
mode

local cache 3
remote cache 3

modes, specifying 16
modifying

contents of a credential 32
existing credential 54

N
name value 49
no protection 17
notices 83
notification listener 17
number of

individual credentials in a chain 55
seconds before refreshing 18
value attributes in the entry 50
values for an attribute name 11

number of port, LDAP server 20

O
obtaining

credential from a chain of credentials 31
user authorization credentials 24, 26
user identity 23

Open Group 4
optional tasks, Authorization API 15
organization of this book vii
output parameters

authorization decision 29
extended authorization decision 29

overview of Policy Director 1

P
PAC (privilege attribute certificate) 24, 30, 53, 61
password

accessing the SSL key file 21
authenticating 62, 63
authenticating a user 22
LDAP administrator 21
storing in a keytab file 22
using to log in 22

permissions 27
persistent authorization policy database 18
PKI (public key infrastructure) 1
policy database replica 18
Policy Director

introduction to 2
overview of 1
Web information viii

port number
for a TCP port 19, 20
for a UDP port 19

ports, using 18
principal 25
privacy 17
privilege attribute certificate (PAC) 24, 30, 53, 61
80 Policy Director Authorization API: Java Reference

protected object 27
protected object namespace 27
protection level 25
providing

additional parameters 28
public key infrastructure (PKI) 1

Q
quality of protection level 25

R
refreshing

local authorization database 18
refreshing the login context 64
registry, user 7, 17, 23
releasing

memory allocated 12
remote cache mode 3, 16, 17
remote-acl-users 22
removing

credentials 51
requested resource 27
required tasks, Authorization API 15
requirements, software 33
returning

entry string value 49
handle 54
handle for a specified identity 59
handle to credentials structure 52
handle to new PAC credentials 61
individual credentials in a chain 55
information from a credentials structure 53
minor error code 58, 59
name attributes 49
number of value attributes 50
privilege attribute certificate 53

RPC
entry in the CDS namespace 19

runtime environment 15

S
secure domain 6
Secure Socket Layer (SSL) 21
SecureWay products (see IBM SecureWay) 1
security policy 5
server

host name, LDAP 20
name or label 19

service and support viii
setting an attribute list entry 11
shudown 9
shutting down 9, 30, 62
software requirements 6, 33
Solaris

Policy Director operation system 2
specifying

additional user information 25
authentication user registry type 24
authorization authority 24
pathnames for file 18
type of cache mode 16
user authentication identity 25

SSL

communications 21
key file password 21
key label 21

standard, The Open Group 4
starting

authorization service 21
Web addresses viii

status codes 13, 58, 59
strings

value 49
successful login 63
summary of

API extensions 10
attribute list functions 8
attribute list tasks 11
attributes for LDAP access 20
authentication method elements 25
authentication parameters 26
Authorization API optional tasks 15
Authorization API required tasks 15
authorization decision functions 9
authorization decision output parameters 29
buffer names and values 10
cache modes 16
conventions used viii
credentials functions 9
error code files 13
initialization, shutdown, and error handling functions 9
local cache mode attributes and values 18
notification listening attributes 18
port types and numbers 19
port usage 19
remote cache mode attributes and values 17
SSL attributes for LDAP access 21
user identity types 23
user registry types 24

T
tasks, Authorization API 15
TCP (Transmission Control Protocol) 18
TCP port 18
TCP port number 19
Toolbox, IBM SecureWay 1
tools

IBM SecureWay Toolbox (Toolbox) 1
trademarks 84
Transmission Control Protocol (TCP) 18
Trust Authority, IBM SecureWay 1
types of

additional user information 25
authentication parameters 26
cache modes 16
user identities 23
user registries 24

U
UDP

User Datagram Protocol ports 18
unauthenticated user 23
unauthenticated user identity 25
unauthenticated user registry 25
use_tcp_port 18
use_udp_port 18
Index 81

user
additional auditing information 25
assigning credentials to a credentials handle 28
authentication identity 25
authorization credentials 24, 26
mapping the user operation 27
obtaining an identity 23
specifying additional information 25
unauthenticated 25

User Datagram Protocol (see UDP) 18
user registry

specifying LDAP 7
specifying the type of 17, 24
specifying the user authentication identity 25

username and password 22, 62, 63
using

keytab file to log in 64
randomly assigned ports 18
TCP port 18
UDP port 18
username and password to log in 62

V
value attributes

string 49
version number 21
virtual private network (VPN) 1
VPN (virtual private network) 1, 2

W
Web

FirstSecure information ix
Policy Director information viii

what’s new for Policy Director 5
Windows NT

DCE client runtime requirements 33
Policy Director operating system 2

Y
year 2000 readiness viii
82 Policy Director Authorization API: Java Reference

Appendix. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The
materials at those Web sites are not part of the materials for this IBM product and use
of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.
 Appendix. Notices 83

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years._ All rights reserved.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AIX
FirstSecure
IBM
SecureWay
84 Policy Director Authorization API: Java Reference

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks of
others.
 Appendix. Notices 85

86 Policy Director Authorization API: Java Reference

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	About this book
	Who should read this book
	How this book is organized
	What is new in this release
	Year 2000 readiness
	Service and support
	Conventions
	Web information

	Chapter 1. IBM SecureWay
	What is IBM SecureWay FirstSecure?
	What is IBM SecureWay Policy Director?

	Chapter 2. Introducing the Authorization API
	Accessing the Policy Director authorization service
	The Open Group Authorization API standard
	Policy Director Authorization API version history
	Background and references for using Policy Director authorization

	Installing the Java Authorization API
	Building applications with the Authorization API
	Installing required software
	Setting environment variables

	Introducing the Java Authorization API classes and methods
	Class com.ibm.pd.Authzn.Azn
	Class com.ibm.pd.Authzn.AznString
	Class com.ibm.pd.Authzn.AznStrings
	Class com.ibm.pd.Authzn.AznInteger
	Class com.ibm.pd.Authzn.AznBuffer
	Class com.ibm.pd.Authzn.AznAttrList
	Class com.ibm.pd.Authzn.AznCreds
	Class com.ibm.pd.Authzn.AznAuthInfo
	Status codes and error handling

	Chapter 3. Using the Authorization API
	Summarizing Authorization API tasks
	Required tasks
	Optional tasks
	Runtime environment

	Initializing the authorization service
	Specifying the type of cache mode
	Adding attributes for remote cache mode
	Adding attributes for local cache mode
	Adding attributes for LDAP access
	Starting the authorization service

	Authenticating an API application
	Logging in using a DCE keytab file
	Logging in using a password

	Obtaining an identity for a user
	Obtaining user authorization credentials
	Specifying the authorization authority
	Specifying authentication user registry type
	Specifying user authentication identity
	Specifying additional user information
	Obtaining authorization credentials for the user

	Obtaining an authorization decision
	Mapping the user operation to a Policy Director permission
	Mapping the requested resource to a protected object
	Assigning the user credentials to a credentials handle
	Building an attribute list for additional application information
	Obtaining an authorization decision

	Cleaning up and shutting down
	Releasing allocated memory
	Shutting down the Authorization Api

	Handling credentials (optional tasks)
	Converting credentials to a transportable format
	Converting credentials to the native format
	Creating a chain of credentials
	Determining the number of credentials in a credentials chain
	Obtaining a credential from a chain of credentials
	Modifying the contents of a credential
	Obtaining an attribute list from a credential

	Chapter 4. Deploying applications with the Authorization API
	Software requirements
	Running the example program AznDemo

	Chapter 5. Authorization API: Java Reference
	Class com.ibm.pd.Authzn.Azn
	IV_UNAUTH
	IV_DCE
	IV_LDAP
	operation_attach
	operation_browse
	operation_control
	operation_traverse
	operation_delegation
	operation_view
	operation_modify
	operation_delete
	operation_server_admin
	operation_audit
	operation_integrity
	operation_privacy
	operation_read
	operation_execute
	operation_list_directory
	operation_connect
	operation_forward
	init_mode
	init_qop
	init_db_file
	init_audit_file
	init_cache_refresh_interval
	init_listen_flags
	init_namespace_location
	init_tcp_port
	init_udp_port
	init_ldap_host
	init_ldap_port
	init_ldap_admin_dn
	init_ldap_admin_pwd
	init_ldap_ssl_keyfile
	init_ldap_ssl_keyfile_dn
	init_ldap_ssl_keyfile_pwd
	Azn
	attrlist_add_entry
	attrlist_add_entry_buffer
	attrlist_create
	attrlist_delete
	attrlist_get_entry_buffer_value
	attrlist_get_entry_string_value
	attrlist_get_names
	attrlist_name_get_num
	creds_combine
	creds_create
	creds_delete
	creds_for_subject
	creds_get_attrlist_for_subject
	creds_get_pac
	creds_modify
	creds_num_of_subjects
	decision_access_allowed
	decision_access_allowed_ext
	error_major
	error_minor
	error_minor_get_string
	id_get_creds
	initialize
	pac_get_creds
	set_debug_mode
	shutdown
	util_client_authenticate
	util_password_authenticate
	util_server_authenticate

	Class com.ibm.pd.Authzn.AznAttrList
	handle
	AznAttrList
	AznAttrList(long)

	Class com.ibm.pd.Authzn.AznAuthInfo
	user_identity
	auth_method
	ipaddr
	qop
	user_info
	browser_info
	authnmech_info
	AznAuthInfo

	Class com.ibm.pd.Authzn.AznBuffer
	value
	AznBuffer

	Class com.ibm.pd.Authzn.AznCreds
	handle
	AznCreds
	AznCreds(long)

	Class com.ibm.pd.Authzn.AznInteger
	value
	AznInteger

	Class com.ibm.pd.Authzn.AznString
	value
	AznString

	Class com.ibm.pd.Authzn.AznStrings
	value
	AznStrings

	Index
	Appendix. Notices
	Trademarks

