
IBM® SecureWay® Policy Director

Programming Guide and Reference
Version 3 Release 0

���

IBM® SecureWay® Policy Director

Programming Guide and Reference
Version 3 Release 0

���

Note
Before using this information and the product it supports, read the general information under “Appendix. Notices” on
page 93.

First Edition (October 1999)

This edition applies to Version 3, release 0, modification 0 of IBM SecureWay Policy Director product and to all
subsequent releases and modifications until otherwise indicated in new editions.

©Copyright DASCOM, Inc. 1999

Contents

About this book v
Who should read this book v
How this book is organized v
What is new in this release v
Year 2000 readiness vi
Service and support. vi
Conventions vii
Web information vii

Chapter 1. IBM SecureWay. 1
What is IBM SecureWay FirstSecure? 1
What is IBM SecureWay Policy Director? 2

Chapter 2. Authorization API 3
Introducing the Authorization API 3

The Open Group Authorization API standard . . 4
Background and references for using Policy
Director authorization 5

Installing the Authorization API components . . . 6
Header files 6
Error codes 6

Building applications with the Authorization API . . 7
Software requirements 7
Library links 7

Understanding the Authorization API functions and
data types 8

API functions 8
Character strings 10
Buffers 10
Attribute lists 11
Credential handles 12
Status codes and error handling 12

Summarizing Authorization API tasks 12
Required tasks 13
Optional tasks 13
Runtime environment 13

Authenticating an API application 13
Logging in using a DCE keytab file 14
Logging in using a password 14

Initializing the authorization service 15
Specifying the type of cache mode. 15
Adding attributes for remote cache mode . . . 16
Adding attributes for local cache mode 16
Adding attributes for LDAP access 19
Starting the authorization service 20

Obtaining an identity for a user 21
Obtaining user authorization credentials 22

Specifying the authorization authority 22
Specifying the authentication user registry type 22
Specifying the user authentication identity . . . 23
Specifying additional user information 23
Placing user information into an API buffer . . 24
Obtaining authorization credentials for the user 25

Obtaining an authorization decision 26

Mapping the user operation to a Policy Director
permission. 26
Mapping the requested resource to a protected
object 26
Assigning the user credentials to a credentials
handle 27
Building an attribute list for additional
application information 27
Obtaining an authorization decision 27

Cleaning up and shutting down 28
Releasing allocated memory 28
Shutting down the Authorization API 29

Handling credentials (optional tasks) 29
Converting credentials to a transportable format 29
Converting credentials to the native format . . . 29
Creating a chain of credentials 30
Determining the number of credentials in a
credentials chain. 30
Obtaining a credential from a chain of credentials 30
Modifying the contents of a credential 31
Obtaining an attribute list from a credential . . 31

Deploying applications with the Authorization API 32
Software requirements 32
DCE client runtime requirements 32
Example program authzn_demo 32

Chapter 3. External authorization
service. 33
Introducing the external authorization service . . . 33
Using the remote procedure call interface 34

Interface Definition Language (IDL):
extern_auth.idl 35
Attribute configuration file 35

Implementing a custom external authorization
server 36

Source files 36
Supported platforms 36
Pre-requirements 36
Build process 36

Configuring a custom external authorization service 37
Reference: interface implementation 38

check_authorization 39

Chapter 4. Credentials Acquisition
Service 41
Introducing the Credentials Acquisition Service . . 41
Using the remote procedure call interface 42

IDL: cas_auth.idl 42
Attribute configuration file 45

Implementing a custom Credentials Acquisition
Service 46

Source files 46
Supported platforms 46
Pre-requirements 46
Build process 46

iii

Deploying a custom Credentials Acquisition Service 47
Reference: interface implementation 47

cdas_get_identity 48
cdas_change_password 49

Chapter 5. Authorization API manual
pages 51
azn_attrlist_add_entry() 52
azn_attrlist_add_entry_buffer() 53
azn_attrlist_create() 54
azn_attrlist_delete() 55
azn_attrlist_entry_get_num(). 56
azn_attrlist_get_entry_buffer_value() 57
azn_attrlist_get_entry_string_value() 58
azn_attrlist_get_names() 59
azn_authdce_t 60
azn_authldap_t 61
azn_creds_combine() 62
azn_creds_create() 63
azn_creds_delete() 64
azn_creds_for_subject() 65
azn_creds_get_attrlist_for_subject() 67
azn_creds_get_pac() 69

azn_creds_modify() 71
azn_creds_num_of_subjects() 73
azn_decision_access_allowed() 74
azn_decision_access_allowed_ext(). 76
azn_error_major() 78
azn_error_minor() 79
azn_id_get_creds() 80
azn_initialize() 82
azn_pac_get_creds() 83
azn_release_buffer() 84
azn_release_string(). 85
azn_release_strings() 86
azn_shutdown() 87
azn_unauth_t 88
azn_util_client_authenticate() 89
azn_util_password_authenticate() 90
azn_util_server_authenticate() 91

Appendix. Notices 93
Trademarks 94

Index 97

iv Policy Director Programming Guide and Reference

About this book

This book contains programming guide and reference information about IBM
®

SecureWay
®

Policy Director. This book documents these Policy Director functions:
v Authorization application programming interface (API)
v External authorization service
v Credentials acquisition service

Who should read this book
Developers who are designing and developing applications for IBM SecureWay
Policy Director should read this book.

Developers should have some knowledge of IBM Distributed Computing
Environment (DCE) and the IBM SecureWay Directory’s lightweight directory
access protocol (LDAP). DCE and LDAP are co-requisite products of Policy
Director. Developers should have basic working knowledge about writing and
configuring DCE and LDAP servers.

This Policy Director Programming Guide and Reference book assumes basic working
knowledge about writing and configuring DCE servers.

How this book is organized
This book contains the following chapters:
v “Chapter 1. IBM SecureWay” on page 1 introduces you to the IBM SecureWay

FirstSecure and IBM SecureWay Policy Director products.
v “Chapter 2. Authorization API” on page 3 guides the application designer or

developer on the use of the Policy Director Authorization API.
v “Chapter 3. External authorization service” on page 33 describes the remote

procedure call (RPC) interface as well as the interface details. This chapter
discusses how to implement and customize a custom external authorization
service. External authorization service-related API reference information is also
provided.

v “Chapter 4. Credentials Acquisition Service” on page 41 describes the Policy
Director Credentials Acquisition Service (Policy Director CAS) remote procedure
call interface and the interface details. This chapter discusses how to implement
and deploy a custom credentials acquisition service. CAS-related API reference
information is also provided.

v “Chapter 5. Authorization API manual pages” on page 51 provides reference
information about the Policy Director Authorization API. The manual pages for
these API are documented in this section.

What is new in this release
The Policy Director Version 3.0 Authorization API is binary compatible, at the
Authorization server remote procedure call (RPC) interface, with applications that
are built with the Policy Director Version 2.1 Authorization API. Applications
developed with the Policy Director Version 2.1 Authorization API library must be
ported before they can be compiled against the Policy Director authorization ADK.

v

The Policy Director Authorization Service fully supports applications that are built
using the Policy Director Version 2.1 Authorization API.

Note that the Policy Director authorization API now requires authentication with
the Authorization server (ivacld) before API functions are called.

Policy Director Version 2.1 API applications are required to be members of the
remote-acl-servers group before they are permitted to query the Policy Director
Authorization Service. Add the application principal to this group to effect this
change. You must log the principal out and log in again to create a security context
with the new group membership.

Other changes since Policy Director Version 2.1 include:
v Addition of local cache mode
v Revision of the Authorization API to reflect the standardized Authorization API

submission made to The Open Group.
v Addition of initialize and shutdown functions to allow optional reconfiguration

of the API.

The following table lists functions and data types that have been deactivated for
Policy Director. It lists the new functions and data types that have replaced them.

Version 2.0 Functions and Data Types Version 3.0 Functions and Data Types

ivAuthznInit() azn_initialize()

ivBuildLocalPrincipal()
ivBuildPrincipalByName()
ivBuildPrincipalFromPAC()
ivBuildUnauthPrincipal()

azn_id_get_creds()
azn_pac_get_creds()

ivCheckAuthorization()
azn_decision_access_allowed()
azn_decision_access_allowed_ext()

ivFreePrincipal() azn_creds_delete()

ivServerLogin() azn_util_server_authenticate()

ivauthzn_init_params_t attribute lists

ivauthzn_service_mode_t attribute lists

In addition, the Policy Director Up and Running book provides information about
what is new for IBM SecureWay Policy Director Version 3.0.

Year 2000 readiness
This product is Year 2000 ready. When used in accordance with its associated
documentation, it is capable of correctly processing, providing, and/or receiving
date data within and between the twentieth and twenty-first centuries, provided
that all products (for example, hardware, software, and firmware) used with the
products properly exchange accurate date data with it.

Service and support
Contact IBM for service and support for all the products included in the IBM
SecureWay FirstSecure offering. Some of these products might refer to non-IBM
support. If you obtain these products as part of the FirstSecure offering, contact
IBM for service and support.

vi Policy Director Programming Guide and Reference

Conventions
This book uses the following typographical conventions:

Convention Meaning

bold
User interface elements such as check boxes, buttons, and items inside
list boxes.

monospace Syntax, sample code, and any text that the user must type.

Italic
Emphasis and first use of special terms that are relevant to Policy
Director.

→
Shows a series of selections from a menu. For example, click
File → Run means click File, and then click Run.

Web information
Information about last-minute updates to Policy Director is available at the
following Web address:
http://www.ibm.com/software/security/policy/library

Information about updates to other IBM SecureWay FirstSecure products is
available by starting at the following Web address:
http://www.ibm.com/software/security/firstsecure/library

About this book vii

viii Policy Director Programming Guide and Reference

Chapter 1. IBM SecureWay

IBM SecureWay Policy Director (Policy Director) is available either as a component
of IBM SecureWay FirstSecure or as a standalone product.

What is IBM SecureWay FirstSecure?
IBM SecureWay FirstSecure (FirstSecure) is part of the IBM integrated security
solution. FirstSecure is a comprehensive set of integrated products that help your
company:
v Establish a secure e-business environment.
v Reduce the total cost of security ownership by simplifying security planning.
v Implement security policy.
v Create an effective e-business environment.

The IBM SecureWay products include:

Policy Director
IBM SecureWay Policy Director (Policy Director) provides authentication,
authorization, data security, and Web resource management.

Boundary Server
IBM SecureWay Boundary Server (Boundary Server) provides:
v The critical firewall functions of filtering, proxy, and circuit level

gateway
v A virtual private network (VPN) connection to the IBM Firewall
v The components for Internet security
v A mobile code security solution

A configuration graphical user interface (GUI) ties together the Policy
Director’s proxy user function with the Boundary Server’s Firewall
product.

Intrusion Immunity
Intrusion Immunity provides intrusion detection and antivirus protection.

Trust Authority
IBM SecureWay Trust Authority (Trust Authority) supports public key
infrastructure (PKI) standards for cryptography and interoperability. Trust
Authority provides support for issuance, renewal, and revocation of digital
certificates. These certificates provide a means to authenticate users and to
ensure trusted communications.

Toolbox
The IBM SecureWay Toolbox (Toolbox) is a set of application programming
interfaces (API) with which application programmers can incorporate
security into their software. You can obtain the Toolbox as part of
FirstSecure. Both Policy Director and the Toolbox include the Policy
Director API library and documentation. The Toolbox README file
contains installation instructions for the Policy Director ADK.

1

Because each IBM SecureWay FirstSecure product can be installed independently,
you can plan a controlled move toward a secure environment. This capability
reduces the complexity and cost of securing your environment and speeds
deployment of Web applications and resources.

See the FirstSecure Planning and Integration documentation for more information
about the FirstSecure components and for a list of all the IBM SecureWay products’
documentation.

What is IBM SecureWay Policy Director?
Policy Director is a standalone authorization and security management solution.
Policy Director provides end-to-end security of resources over geographically
dispersed intranets and extranets. An extranet is a virtual private network (VPN)
that uses access control and security features to restrict the use of one or more
intranets attached to the Internet to selected subscribers.

Policy Director provides authentication, authorization, data security, and
resource-management services. You can use Policy Director in conjunction with
standard Internet-based applications to build secure and well-managed intranets
and extranets.

Policy Director runs on the Windows NT, AIX, and Solaris operating systems.

2 Policy Director Programming Guide and Reference

Chapter 2. Authorization API

This chapter includes:
v “Introducing the Authorization API” on this page.
v “Installing the Authorization API components” on page 6.
v “Building applications with the Authorization API” on page 7.
v “Understanding the Authorization API functions and data types” on page 8.
v “Summarizing Authorization API tasks” on page 12.
v “Authenticating an API application” on page 13.
v “Initializing the authorization service” on page 15.
v “Obtaining an identity for a user” on page 21.
v “Obtaining user authorization credentials” on page 22.
v “Obtaining an authorization decision” on page 26.
v “Cleaning up and shutting down” on page 28.
v “Handling credentials (optional tasks)” on page 29.
v “Deploying applications with the Authorization API” on page 32.

Introducing the Authorization API
Using the Policy Director Authorization Application Programming Interface (API),
you can code Policy Director applications and third-party applications to query the
Policy Director Authorization Service for authorization decisions.

The Policy Director Authorization API is the interface between the server-based
resource manager and the authorization service and provides a standard model for
coding authorization requests and decisions. The Authorization API let you make
standardized calls to the centrally managed authorization service from any legacy
or newly developed application.

The Authorization API supports two implementation modes:
v Remote cache mode

In remote cache mode, you use the Authorization API to call the Policy Director
Authorization server, which performs authorization decisions on behalf of the
application. The Authorization server maintains its own cache of the replica
authorization policy database.

v Local cache mode

In local cache mode, you use the Authorization API to download a local replica
of the authorization policy database. In this mode, the application can perform
all authorization decisions locally.
The Authorization API shields you from the complexities of the authorization
service mechanism. Issues of management, storage, caching, replication,
credentials format, and authentication methods are all hidden behind the
Authorization API.

3

The Authorization API works independently from the underlying security
infrastructure, the credential format, and the evaluating mechanism. The
Authorization API makes it possible to request an authorization check and get a
simple ″yes″ or ″no″ recommendation in return.
The Authorization API is a component of the Policy Director Application
Development Kit (ADK).

The Open Group Authorization API standard
The Policy Director Authorization API implements The Open Group Authorization
API (Generic Application Interface for Authorization Frameworks) standard. This
interface is based on the International Organization for Standardization (ISO)
10181-3 model for authorization. In this model, an initiator requests access to a
target resource. The initiator submits the request to a resource manager, which
incorporates an access enforcement function (AEF). The AEF submits the request,
along with information about the initiator, to an access decision function (ADF).
The ADF returns a decision to the AEF, and the AEF enforces the decision.

Initiator Target

ADF

Submit

Access

Request

Process

Access

Request

Decision
Decision

Request

Resource

Manager

AEF

Policy Director implements the ADF component of this model and provides the
Authorization API as an interface to this function:

Browser Protected

Data

IntraVerse Secure Domain

Initiator

Resource Manager

ADF

Target

IntraVerse

Authorization

Service

Authorization API

Web Application

Server

AEF

In the figure above, a browser (initiator) requests access to a file or other resource
on a protected system (target). The browser submits the request to a Web
application server (the resource manager incorporating the access enforcement
function). The Web application server uses the Authorization API to submit the
request to the Policy Director Authorization Service (the access decision function).

4 Policy Director Programming Guide and Reference

The Policy Director Authorization Service returns an access decision, through the
Authorization API, to the Web application server. The Web application server
processes the request as appropriate.

To implement this model, developers of AEF applications add Authorization API
function calls to their application code.

Note: Developers should refer to The Open Group Authorization API document
for additional information on the standard authorization model.

Background and references for using Policy Director
authorization

The first step in adding authorization to an application is to define the security
policy requirements for your application. Defining a security policy means that you
must determine the business requirements that apply to the application’s users,
operations, and data. These requirements include:
v Objects to be secured
v Operations to be permitted on each object
v Users that are permitted to perform the operations

After your security requirements have been defined, you can use the Authorization
API to integrate your security policy with the Policy Director security model.

Complete the following steps in order to deploy an application into a Policy
Director secure domain:
1. Configure the Policy Director secure domain to recognize and support the

objects, actions, and users that are relevant to your application.
v For an introduction to the Policy Director authorization model, see ″Chapter

3. Understanding authorization″ in the Policy Director Administration Guide.
v For complete information on access control, see Chapter 7. ″Understanding

access control″ in the Policy Director Administration Guide.
2. Use the Authorization API within your application to obtain the needed

authorization decisions.
v For an introduction to the Authorization API, including information on

remote cache mode and local cache mode see ″Chapter 3. Understanding
authorization″ in the Policy Director Administration Guide.

3. Develop your application logic to enforce the security policy.

Chapter 2. Authorization API 5

Installing the Authorization API components
The Authorization API is included as an optional installation package in the Policy
Director distribution. The Authorization API files are installed in the authzn_adk
directory, directly under the Policy Director installation directory.

If you are installing the Authorization API portion of the Policy Director ADK from
the Policy Director CD, the ADK is installed in the subdirectories in the following
table. If you are installing the Authorization API port of the ADK from the IBM
SecureWay Toolbox, refer to the Toolbox README file for installation instructions.

Directory Contents

include C header files

lib

A library that implements the API functions.

v On Solaris
®

systems, the library is libivauthzn.so

v On AIX
®

systems, the library is libivauthzn.a

v On Microsoft® Windows® systems, the library to include at run time
is ivauthzn.dll

v On Windows, the library to link to is ivauthzn.lib

example
An example program that demonstrates usage of the Authorization
API. Source files and a MAKEFILE are provided.

For Policy Director installation instructions, including the Policy Director ADK,
refer to the Policy Director Up and Runningbook for your particular platform.

Header files
The header files are found in the include directory, located directly under the
Policy Director Authorization ADK package installation directory.

File Contents

ogauthzn.h The Authorization API standard functions

aznutils.h Utility functions (extensions to The Authorization API)

Error codes
The Authorization API error codes are defined in the following files, located in the
include directory:

File Contents

ogauthzn.h Major error codes for the standard Authorization API functions.

aznutils.h Major error codes to the Authorization API utility functions.

dceaclmsg.h
Minor error codes for utility functions and the Policy Director
Authorization Service.

6 Policy Director Programming Guide and Reference

Building applications with the Authorization API
The following sections provide information on building an application with the
Authorization API:
v “Software requirements”
v “Library links”

Software requirements
To develop applications by using the Policy Director Authorization API, you must
install and configure a Policy Director secure domain.

If you do not have a Policy Director secure domain installed, install one before
beginning application development. The minimum installation consists of a single
system with the following Policy Director components installed:
v Policy Director Base (IVBase)
v Policy Director Management server (IVMgr)
v Policy Director Authorization server (IVAcld)
v Policy Director Application Development Kit (IVAuthADK)
v Policy Director Management Console (IVConsole)

When the Policy Director secure domain uses an LDAP user registry, the
application development system must have an LDAP client installed.

For Policy Director installation instructions refer to the Policy Director Up and
Running book for your particular platform.

If you already have a Policy Director secure domain installed and you want to add
a development system to the domain, the minimum Policy Director installation
will consist of the following components:
v Policy Director Base (IVBase)
v Policy Director Authorization server (IVAcld)
v Policy Director Application Development Kit (IVAuthADK)

Note: The development environment must include a DCE runtime. The DCE
runtime is installed as a prerequisite to the Policy Director installations
described above.

Library links
In order to compile applications that use the Authorization API, you must install
the Policy Director ADK on the build machine.

When compiling your application, make sure you add the include directory for the
Policy Director ADK to the compiler command line. When linking your
application, specify the directory containing the authorization shared library if it is
not in the default location.

Chapter 2. Authorization API 7

On Solaris systems, you also need to link to the following libraries:

Platform DCE Libraries

Solaris Transarc 2.0 libdce.so, libgssdce.so, libC.so

On AIX and Windows NT systems, you do not need to link to the DCE libraries.

On all platforms, the DCE libraries are needed at application runtime. See
“Deploying applications with the Authorization API” on page 32.

Understanding the Authorization API functions and data types
The Authorization API provides a set of functions and data types. This section lists
the name of each Authorization API construct and the task it accomplishes.

The following structured data types and constants are defined as part of the
Authorization API:
v “API functions”
v “Character strings” on page 10
v “Buffers” on page 10
v “Attribute lists” on page 11
v “Credential handles” on page 12
v “Status codes and error handling” on page 12

API functions
The following tables list the Authorization API functions and provide a reference
to the section in this document that describes each function’s task.

Attribute lists

Function Task

“azn_attrlist_add_entry()” on page 52
“azn_attrlist_add_entry_buffer()” on page 53
“azn_attrlist_create()” on page 54
“azn_attrlist_delete()” on page 55
“azn_attrlist_entry_get_num()” on page 56
“azn_attrlist_get_entry_buffer_value()” on page 57
“azn_attrlist_get_entry_string_value()” on page 58
“azn_attrlist_get_names()” on page 59

“Attribute lists” on page 11

8 Policy Director Programming Guide and Reference

Credentials

Function Task

“azn_creds_combine()” on page 62
“Creating a chain of credentials” on
page 30

“azn_creds_create()” on page 63
“Obtaining user authorization
credentials” on page 22

“azn_creds_delete()” on page 64
“Releasing allocated memory” on
page 28

“azn_creds_for_subject()” on page 65
“Obtaining a credential from a
chain of credentials” on page 30

“azn_creds_get_attrlist_for_subject()” on page 67
“Obtaining an attribute list from a
credential” on page 31

“azn_creds_get_pac()” on page 69
“Converting credentials to a
transportable format” on page 29

“azn_creds_modify()” on page 71
“Modifying the contents of a
credential” on page 31

“azn_creds_num_of_subjects()” on page 73
“Determining the number of
credentials in a credentials chain”
on page 30

“azn_id_get_creds()” on page 80
“Obtaining user authorization
credentials” on page 22

“azn_pac_get_creds()” on page 83
“Converting credentials to the
native format” on page 29

Authorization decisions

Function Task

“azn_decision_access_allowed()” on page 74 “Obtaining an authorization
decision” on page 26“azn_decision_access_allowed_ext()” on page 76

Initialization, shutdown, and error handling

Function Task

“azn_error_major()” on page 78 “Status codes and error handling”
on page 12“azn_error_minor()” on page 79

“azn_initialize()” on page 82
“Initializing the authorization
service” on page 15

“azn_release_buffer()” on page 84
“Releasing allocated memory” on
page 28

“azn_release_string()” on page 85

“azn_release_strings()” on page 86

“azn_shutdown()” on page 87
“Shutting down the Authorization
API” on page 29

Chapter 2. Authorization API 9

API extensions
The following functions are extensions to the Authorization API standard:

Function or Data Type Task

“azn_util_client_authenticate()” on page 89
“Logging in using a password” on
page 14

“azn_util_password_authenticate()” on page 90
“Obtaining an identity for a user”
on page 21

“azn_util_server_authenticate()” on page 91
“Logging in using a DCE keytab
file” on page 14

“azn_authdce_t” on page 60
“Specifying the user authentication
identity” on page 23

“azn_authldap_t” on page 61

“azn_unauth_t” on page 88

Character strings
Many Authorization API functions take character strings as arguments or return
character strings as values. Use the azn_string_t data type to pass character string
data between your application and the Authorization API:
typedef char *azn_string_t;

Use azn_release_string() and azn_release_strings() to release memory that has been
allocated to strings of type azn_string_t.

Buffers
Some Authorization API functions take byte string arguments and return byte
strings as values. Use the data type azn_buffer_t to pass byte string data between
your application and the Authorization API.

The azn_buffer_t data type is a pointer to a buffer descriptor consisting of a length
field and a value field. The length field contains the total number of bytes in the
data. The value field contains a pointer to the data.
typedef struct azn_buffer_desc_struct {

size_t length;
void *value;

} azn_buffer_desc, *azn_buffer_t;

The application must allocate and release the storage necessary for all
azn_buffer_desc objects. The Authorization API allocates the storage needed for the
buffer array referenced by the *value member of the azn_buffer_desc.

Use “azn_release_buffer()” on page 84 to release storage that is allocated for use by
azn_buffer_desc objects.

Parameters of type azn_buffer_t can be assigned and can be compared with the
following constant values:

Name Value Definition

AZN_C_EMPTY_BUFFER NULL Empty data value-buffer.

AZN_C_NO_BUFFER NULL
No value-buffer is supplied or
returned.

10 Policy Director Programming Guide and Reference

Attribute lists
Several Authorization API functions take attribute list handles as input parameters
or return attribute list handles as output parameters. Use the azn_attrlist_h_t data
type to pass attribute list handles between the Authorization API and the calling
application.

Variables of type azn_attrlist_h_t are opaque handles to lists of name and value
pairs. Use Authorization API functions to add or retrieve name-value pairs from
attribute lists.

Many Authorization API functions use attribute lists to store and retrieve values.
Attribute lists are lists of name-value pairs. The values can be stored as either
strings or buffers. A name can have more than one value.

Some names are defined by the Authorization API. You also can define any
additional names needed by your application.

The Authorization API provides functions to create attribute lists, set or get list
entries, and delete attribute lists. The following table summarizes the functions that
operate on attribute lists:

Task Description

Create an attribute list.

Use “azn_attrlist_create()” on page 54 to complete the
following tasks:

v Allocate a new, empty attribute list

v Associate a handle with the attribute list

v Return the handle

Set an entry in an attribute list.

Use “azn_attrlist_add_entry()” on page 52 to add a
string name-value pair of type azn_string_t. Use
“azn_attrlist_add_entry_buffer()” on page 53 to add a
buffer name-value pair of type azn_buffer_t.

Get attribute names from an
attribute list.

Use “azn_attrlist_get_names()” on page 59 to get all the
names in an attribute list, contained in an array of
strings of type azn_string_t.

Get the number of values for a
specified attribute name.

Use “azn_attrlist_entry_get_num()” on page 56 to get
the number, as an integer, of the value attributes for a
specified name in the attribute list.

Get a value.

Use “azn_attrlist_get_entry_string_value()” on page 58
to get the value attribute of a string (azn_string_t) for a
specified name in an attribute list. Use
“azn_attrlist_get_entry_buffer_value()” on page 57 to
get the value attribute of a buffer (azn_buffer_t) for a
specified name in an attribute list. The specified name
can have multiple values. You specify the needed value
by supplying an index (integer) into the list of values.

Delete an attribute list.
Use “azn_attrlist_delete()” on page 55 to delete the
attribute list associated with a specified attribute list
handle.

Chapter 2. Authorization API 11

Credential handles
Several Authorization API functions take credentials handles as input parameters
or return credential handles as output parameters. Use the azn_creds_h_t data type
to pass credential handles between the Authorization API and the calling
application.

Variables of type azn_creds_h_t are opaque handles to credential structures that are
internal to the Policy Director security framework.

Use the function “azn_creds_create()” on page 63 to complete the following tasks:
v Allocate a new, empty credential structure.
v Associate a handle with the credential structure.
v Return the handle.

Call the function “azn_creds_delete()” on page 64 on the handle to release the
memory allocated for the credential structure.

Status codes and error handling
Authorization API functions return a status code of type azn_status_t. The values
in azn_status_t are integers. The return value for successful completion of the
function is AZN_S_COMPLETE, which is defined as zero (0).

The returned status code includes both major and minor error codes. A major error
code of AZN_S_FAILURE indicates that a minor error code contains the error
status.

Use “azn_error_major()” on page 78 to extract major error codes from the returned
status. Major error codes are defined according to The Open Group Authorization
API standard.

Use “azn_error_minor()” on page 79 to extract minor error codes from the returned
status. The minor codes contain error messages from the utility function extensions
to the API as well as from the Policy Director Authorization server.

See the following files for a complete list of error codes:

File Contents

ogauthzn.h Major error codes for the standard Authorization API functions.

aznutils.h Major error codes for the Authorization API utility functions.

dceaclmsg.h
Minor error codes for utility functions and the Policy Director
Authorization Service.

Summarizing Authorization API tasks
The primary task of the Authorization API is to obtain an authorization decision
from the Policy Director Authorization Service.

Use the Authorization API to present information about the user, operation, and
requested resource to the Policy Director Authorization Service. Then use the
Authorization API to receive the authorization decision. Your application is
responsible for enforcing the decision, as appropriate.

12 Policy Director Programming Guide and Reference

Required tasks
To obtain an authorization decision, you must accomplish certain tasks. The
following sections in this document provide a step-by-step guide to completing
each of these required tasks:
v “Authenticating an API application”
v “Initializing the authorization service” on page 15
v “Obtaining an identity for a user” on page 21
v “Obtaining user authorization credentials” on page 22
v “Obtaining an authorization decision” on page 26
v “Cleaning up and shutting down” on page 28

Optional tasks
The Authorization API also provides functions for performing optional tasks on
users credentials. The following section describes the supported optional tasks:
v “Handling credentials (optional tasks)” on page 29

Runtime environment
To determine whether your network environment is configured correctly to
support your application, review the following section:
v “Deploying applications with the Authorization API” on page 32

Authenticating an API application
The API application must establish its own authenticated identity within the Policy
Director secure domain in order to request authorization decisions from the Policy
Director Authorization Service. This authenticated identity is normally separate
from the identity of the user submitting the request for service from the
application.

Before you run the Authorization API application for the first time, you must
create a unique identity for the application in the Policy Director secure domain.

In order for the authenticated identity to perform API checks, the application must
be a member of at least one of the following groups:
v ivacld-servers

This group membership is needed for applications that use local cache mode.
v remote-acl-users

This group membership is needed for applications that use remote cache mode.

When the application wants to contact one of the secure domain services while it is
running, it must first log in to the secure domain.

The Policy Director Authorization API provides two utility functions the
application can use to log in and obtain an authenticated identity. One function
performs a login by using username and password information. The other function
performs a DCE login by using a keytab file.

Use the appropriate API login functions, as described in the following sections:
v “Logging in using a DCE keytab file” on page 14
v “Logging in using a password” on page 14

Chapter 2. Authorization API 13

Logging in using a DCE keytab file
Some application servers are executed non-interactively, such as in response to an
access request from an application client. The application servers must establish an
authenticated identity without manual intervention by an administrator.

To avoid the need for manual intervention, the application developer can create
and store a password in a keytab file.

The Authorization API utility function azn_util_server_authenticate() submits the
user name and the name of the keytab file to the Policy Director authentication
service. The Policy Director authentication service can use the DCE keytab file to
establish an authenticated identity.

For example, the following code logs in a server svrPrin by using a keytab file,
svrKeytab:
status = azn_util_server_authenticate(svrPrin, svrKeytab);
if (status != AZN_S_COMPLETE) {

fprintf(stderr, "Could not perform keytab login\n");
exit(1);

}

Note: You can use azn_util_server_authenticate() in a Policy Director secure
domain that uses an LDAP user registry. However, it can only be used for
DCE principals (as registered in a DCE user registry).

For more information, see “azn_util_server_authenticate()” on page 91 in the
Authorization API manual pages.

Logging in using a password
Some applications might be used by more than one identity in the Policy Director
secure domain. These applications can choose their login identity based on
application requirements. For example, the application can prompt the user,
examine user information contained in an HTTP header, or simply supply a
username and password that denotes a category of user.

The Authorization API provide the utility function azn_util_client_authenticate() to
enable the application to log in as a specific identity with a username and
password.

For example, the following code logs in the application as ″testuser″:
/* Login and start context refresh thread */
status = azn_util_client_authenticate(testuser, testuserpwd);
if (status != AZN_S_COMPLETE) {

fprintf(stderr, "Could not perform client login\n");
exit(1);

}

You can use azn_util_client_authenticate() in an Policy Director secure domain with
a DCE user registry.

For more information, see “azn_util_client_authenticate()” on page 89 in the
Authorization API manual pages.

14 Policy Director Programming Guide and Reference

Initializing the authorization service
To use the Policy Director Authorization API, an application must initialize the
API. Initialization consists of specifying initialization data and calling an
initialization function.

The Authorization API initialization function (“azn_initialize()” on page 82) takes as
an input parameter an attribute list named init_data. To specify initialization data,
you must add the necessary attributes to init_data.

Complete the instructions in the following sections:
v “Specifying the type of cache mode”
v “Adding attributes for remote cache mode” on page 16
v “Adding attributes for local cache mode” on page 16
v “Adding attributes for LDAP access” on page 19
v “Starting the authorization service” on page 20

Specifying the type of cache mode
The cache mode determines whether the Authorization API talks to a Policy
Director Authorization server running in the same process space (local cache
mode) or in a different process space (remote cache mode) in the secure domain.

Local cache mode can increase application performance because authorization
checks can be performed on the same system as the application. Local cache mode,
however, requires additional configuration and maintenance of a replicated
authorization database.
v For more information on remote cache mode, see ″Remote cache mode″ in

Chapter 3 of the Policy Director Administration Guide.
v For more information on local cache mode, see ″Local cache mode″ in Chapter 3

of the Policy Director Administration Guide.

To specify the type of cache mode, complete the following steps:
1. Call “azn_attrlist_create()” on page 54 to create a new attribute list called

init_data. This function returns an attribute list handle.
2. Use “azn_attrlist_add_entry()” on page 52 to add the attribute azn_init_mode

and assign it a value:

Attribute Value Description

azn_init_mode

local
The Policy Director Authorization Service runs in the
same server process as the application using the
Authorization API.

remote
The Policy Director Authorization Service runs as a
different server process from the application using the
Authorization API.

Continue to the appropriate section:
v “Adding attributes for remote cache mode” on page 16
v “Adding attributes for local cache mode” on page 16

Chapter 2. Authorization API 15

Adding attributes for remote cache mode
If you specified remote cache mode, use “azn_attrlist_add_entry()” on page 52 to
add the attribute azn_init_qop and assign it a value:

Attribute Value Description

azn_init_qop

none No protection.

integrity
Data stream integrity. The data can be seen but not
modified or replayed by a third party.

privacy
Data stream privacy. The data cannot be seen,
modified, or replayed by a third party.

For example, the following code shows the creation of a new attribute list. It also
shows the assigning of name-value pairs for cache mode (azn_init_mode) and
quality of protection (azn_init_qop):
azn_attrlist_create(&init_data);

/*** Don't use a local replica, use the authorization server ***/
status = azn_attrlist_add_entry(init_data,

azn_init_mode,
"remote");

if (status != AZN_S_COMPLETE)
return (status);

/* Set quality of protection for communications with ivacld to be privacy. */

status = azn_attrlist_add_entry(init_data,
azn_init_qop,
"privacy");

if (status != AZN_S_COMPLETE)
return (status);

Initialization of remote cache mode is now complete.
v If your secure domain uses an LDAP user registry, refer to “Adding attributes

for LDAP access” on page 19.
v If your secure domain uses a DCE user registry, refer to “Starting the

authorization service” on page 20.

Adding attributes for local cache mode
When you specify local cache mode, you must decide how the local copy of the
authorization database is updated.

Choose one of the following methods to implement updating:
v Set the Authorization API to poll the master authorization service database.
v Register the local (replicated) database with the master database, and enable a

listener process on the local database’s system. This process listens for update
notifications.

v Configure the Authorization API to both poll and listen.
v Configure the Authorization API to neither poll nor listen. This could be useful,

for example, when the local system is not connected to a network.

The above methods are configured by adding attributes to the init_data attribute
list.

16 Policy Director Programming Guide and Reference

Complete all the steps in this section in order to implement your chosen method:
1. Use azn_attrlist_add_entry() to specify pathnames for files used by the

authorization service:

Attribute Value Description

azn_init_db_file filename
Path name to the persistent authorization policy
database replica.

azn_init_audit_file filename
Path and file name for the file that collects
Authorization API audit events.

2. Use azn_attrlist_add_entry() to configure the Authorization API to poll the
master authorization database:

Attribute Value Description

azn_init_cache_refresh_interval

disable
Refreshing of the local authorization policy
database disabled.

default 600 seconds

number of
seconds

Number of seconds between refreshes of the
local authorization policy database. Set
appropriate values to ensure that the replicated
database is updated in a timely manner to reflect
changes made to the master database.

3. Use azn_attrlist_add_entry() to configure the notification listener:

Attribute Value Description

azn_init_listen_flags

disable Disable the notification listener.

enable Enable the notification listener.

When you select enable, you can also specify any combination
of the following values. The values are logically OR’d together.

use_tcp_port
Enable the listener to use
Transmission Control Protocol
(TCP).

use_udp_port
Enable the listener to use the User
Datagram Protocol (UDP).

dynamic_port_selection
Instruct the listener to use
randomly assigned ports.

4. If you enable the notification listener, use the ivadmin command to inform the
Policy Director Management server (ivmgrd) of your location in order to
receive notification of updates. Use the ivadmin server register dbreplica
command to inform the Policy Director Authorization Service (specifically, the
Management server) of the existence and location of applications using the
Authorization API in local cache mode.

Chapter 2. Authorization API 17

The following syntax applies:
ivadmin> server register dbreplica server-name ns-location server-host

Where:

server-name A name (or label) for this application. This is the name that
appears in the display of the object space on the Management
Console and in the ivadmin server list command.

ns-location The RPC entry in the CDS namespace where the application
exports its RPC bindings.

server-principal The name of the DCE principal representing this application
process.

server-host The Domain Name System (DNS) name or IP address of the
machine where this application process resides.

5. If you enabled the notification listener, use azn_attrlist_add_entry() to add the
following attributes.

Note: If you disabled the notification listener, skip this step.

Attribute Value Description

azn_init_tcp_port port number

If you specified use_tcp_port and did not
specify dynamic_port_selection for the
attribute azn_init_listen_flags, use this
value to specify a TCP port.

azn_init_udp_port port number

If you specified use_udp_port and did not
specify dynamic_port_selection for the
attribute azn_init_listen_flags, use this
value to specify an UDP port.

azn_init_namespace_location CDS location
Specify the CDS namespace location for
exporting the RPC endpoints for local
policy cache updates.

For example, the following code shows the creation of a new attribute list
init_data. It also shows the addition of entries to specify configuration settings for
local cache mode:
azn_attrlist_create(&init_data);
status = azn_attrlist_add_entry(initdata,

azn_init_mode,
"local");

if (status != AZN_S_COMPLETE)
return (status);

/*** The file name of the replica policy database ***/

status = azn_attrlist_add_entry(initdata,
azn_init_db_file,
"./auth_demo.db");

if (status != AZN_S_COMPLETE)
return (status);

18 Policy Director Programming Guide and Reference

/*** The file name of the audit file ***/

status = azn_attrlist_add_entry(initdata,
azn_init_audit_file,
"./auth_demo.audit");

if (status != AZN_S_COMPLETE)
return (status);

/*** Enable polled updates at the default interval ***/

status = azn_attrlist_add_entry(initdata,
azn_init_cache_refresh_interval,
"default");

if (status != AZN_S_COMPLETE)
return (status);

/*** Enable the update notification listener ***/

status = azn_attrlist_add_entry(initdata,
azn_init_listen_flags,
"enable");

if (status != AZN_S_COMPLETE)
return (status);

status = azn_attrlist_add_entry(initdata,
azn_init_listen_flags,
"use_tcp_port");

if (status != AZN_S_COMPLETE)
return (status);

status = azn_attrlist_add_entry(initdata,
azn_init_tcp_port,
"6056");

if (status != AZN_S_COMPLETE)
return (status);

status = azn_attrlist_add_entry(initdata,
azn_init_namespace_location,
CDSloc);

if (status != AZN_S_COMPLETE)
return (status);

Adding attributes for LDAP access
When your application runs in a Policy Director secure domain that uses an LDAP
user registry, you must provide the LDAP configuration settings to the
Authorization API. The required LDAP configuration settings match the settings
that were entered when Policy Director was installed on the local system.

Note: When your application runs in a Policy Director secure domain that uses a
DCE user registry, skip this step and go to “Starting the authorization
service” on page 20.

Chapter 2. Authorization API 19

To add attributes for LDAP access:
1. Use azn_attrlist_add_entry() to add the following attributes to the init_data

attribute list:

Attribute Value Description

azn_init_ldap_host hostname Host name of LDAP server.

azn_init_ldap_port port number
Port number for communicating with
the LDAP server.

azn_init_ldap_admin_dn LDAP DN
Distinguished name of the LDAP
administrator.

azn_init_ldap_admin_pwd password Password for the LDAP administrator.

2. If the communication between the Policy Director Authorization server and the
LDAP server is over Secure Sockets Layer (SSL), use azn_attrlist_add_entry() to
add the following attributes to the init_data attribute list:

Attribute Value Description

azn_init_ldap_ssl_keyfile filename Name of the SSL key file.

azn_init_ldap_ssl_keyfile_dn KeyLabel
Key label to identify the client
certificate that is presented to the
LDAP server.

azn_init_ldap_ssl_keyfile_pwd password Password to access the SSL key file.

Starting the authorization service
Complete the following steps:
1. Ensure that the attribute list init_data has been created and filled in, as

described in the preceding sections.
2. Create a new attribute list, init_info, to receive returned information.

For example:
azn_attrlist_create(&init_info);

3. Call azn_initialize() to bind to and initialize the authorization service.
For example:
/* Start the service */
status = azn_initialize(init_data, init_info);
if (status != AZN_S_COMPLETE)

return(status);

In the example code above, azn_initialize() returns the attribute list init_info. This
attribute list is appended with any initialization information attributes that apply.
This includes the AZN_C_VERSION attribute, which contains the version number
of the API implementation.

Note: To re-initialize the API, use azn_shutdown() and then call azn_initialize().

For more information, see “azn_initialize()” on page 82 in the Authorization API
manual pages.

20 Policy Director Programming Guide and Reference

Obtaining an identity for a user
The application must determine the identity of the user who has submitted a
request. The identity can be expressed as one of the following user types:
v Authenticated

In this case, the user’s identity in the secure domain is registered in either an
LDAP or DCE user registry. The user is authenticated, and information about the
user can be obtained. This information includes, for example, the Distinguished
Name (LDAP) or principal (DCE).

v Unauthenticated

In this case, the user’s identity in the secure domain is not specifically registered
in either an LDAP or DCE user registry. The user is defined to be
unauthenticated, and further information about the user’s identity is irrelevant
to the authorization process.

Applications can obtain user identities through a variety of methods. These can
include the use of a Credentials Acquisition Server, or a call to an
application-specific method for querying user registries and establishing a security
(login) context.

Optionally, applications can use the Policy Director Authorization API utility
function azn_util_password_authenticate() to obtain user identity information from
the secure domain.

The function azn_util_password_authenticate() requires the user name and
password as input parameters. Typically, an application receives a user name and
password from the user who initiated the access request.

The function performs a login by using the supplied user name and password. If
the login is successful, the function will return the following information:
v The string mechanism_id that specifies the authentication mechanism (DCE or

LDAP) that was used.
v The buffer authinfo that contains user identity information.

Note: The function azn_util_password_authenticate() does not obtain a security
(login) context for the user.

For more information, see “azn_util_password_authenticate()” on page 90 in the
Authorization API manual pages.

After the application has obtained identity information for the user, you can use
the Authorization API to obtain authorization credentials for the user.

Chapter 2. Authorization API 21

Obtaining user authorization credentials
In order to submit an authorization request to the Policy Director Authorization
Service, an application must obtain authorization credentials for the user making
the request. The authorization credentials contain user identity information that is
needed to make authorization decisions, such as group memberships and a list of
actions or rights that the user can exercise.

To obtain credentials for a user who has submitted an access request, an
application must obtain user identity information from the user registry (DCE or
LDAP) that is used by the Policy Director secure domain.

The Authorization API function “azn_id_get_creds()” on page 80 takes user identity
information as input parameters and returns user authorization credentials.

The credentials can then be submitted to the authorization service for an
authorization decision.

Note: Identity information can also be obtained from a privilege attribute
certificate (PAC). See “Converting credentials to the native format” on
page 29.

To obtain a credential, complete the instructions in the following sections:
v “Specifying the authorization authority”
v “Specifying the authentication user registry type”
v “Specifying the user authentication identity” on page 23
v “Specifying additional user information” on page 23
v “Placing user information into an API buffer” on page 24
v “Obtaining authorization credentials for the user” on page 25

Specifying the authorization authority
Assign the appropriate value for the authorization authority to a string of type
azn_string_t. This string is passed as the parameter authority to azn_id_get_creds().
Set authority to NULL to specify Policy Director authorization.

Specifying the authentication user registry type
Applications must know the type of user registry that is used in the Policy
Director secure domain in order to obtain an authenticated identity for the user.
The type of registry used was determined in “Obtaining an identity for a user” on
page 21.

If the user was not authenticated in a user registry, then the user registry type will
be unauthenticated.

22 Policy Director Programming Guide and Reference

Assign a value for the type of user authentication identity to a string of type
azn_string_t. This string is passed as the parameter mechanism_id to
azn_id_get_creds().

Set mechanism_id to one of the following values:

User Registry Value

DCE User Registry IV_DCE

LDAP User Registry IV_LDAP

Unauthenticated IV_UNAUTH

Specifying the user authentication identity
For each user to be authenticated, information is loaded into a data structure,
which corresponds to the type of user registry used in the secure domain, or
corresponds to a user category of unauthenticated.

If the user is authenticated, load the user’s identity into the appropriate string in
the data structure that corresponds to the user registry type.

User Identity Type Data Structure String Example

DCE User Registry “azn_authdce_t” on page 60 principal cell_admin

LDAP User Registry
“azn_authldap_t” on

page 61
ldap_dn cn=root

Unauthenticated User “azn_unauth_t” on page 88 none none

When the user is unauthenticated, you do not have to load an identity into
azn_unauth_t.

Specifying additional user information
When the application authenticates the user, the application can optionally obtain
additional information about the user. This additional information is for use by the
application as needed. The Policy Director Authorization Service does not use this
information.

The application can store the additional user information in the data structures that
the Authorization API provides for each type of authenticated identity. The data
structures are: azn_authdce_t, azn_authldap_t, and azn_unauth_t.

Chapter 2. Authorization API 23

The elements in each data structure are character strings, with the exception of
ipaddr, which is an integer.

Element Description

auth_method

Indicates that the user was authenticated through either the DCE
user registry or the LDAP user registry. This value can be any
string that is useful to the application. Not available in
azn_unauth_t.

authnmech_info

Additional authentication information. This value can be any
string that is useful to the application.

For example, when the DCE authentication was accomplished
using SSL certificates, the certificate’s Distinguished Name can be
stored here.

Not available in azn_unauth_t.

qop
Quality of protection level for requests made by this user. This
level is set by the application and is specified as an arbitrary
character string.

user_info
Additional user information for auditing purposes. This string can
contain any information that is useful to the application.

browser_info
Information about the type of browser through which the user has
submitted the request, if applicable. This string can contain any
information that is useful to the application.

ipaddr
The IP address of the user. This is optional information for use by
the application.

Placing user information into an API buffer
Place the data structure you filled out in “Specifying the user authentication
identity” on page 23 and “Specifying additional user information” on page 23 into
an Authorization API buffer.

Complete the following steps:
1. Declare a buffer of type azn_buffer_t:

typedef struct azn_buffer_desc_struct {
size_t length;
void *value;
} azn_buffer_desc, *azn_buffer_t;

2. Determine the length of your data structure and assign that value to length.
3. Set the pointer value to point to the address of your data structure.

This buffer is passed as the parameter mechanism_info to azn_id_get_creds().

24 Policy Director Programming Guide and Reference

Obtaining authorization credentials for the user
To obtain authorization credentials, complete the following steps:
1. Call the Authorization API function “azn_creds_create()” on page 63 to create a

new, empty credentials structure.
2. Call “azn_id_get_creds()” on page 80 with the following input parameters:

Parameter Description

authority
The authorization authority, as described in “Specifying the
authorization authority” on page 22.

mechanism_id
The authentication mechanism, as described in “Specifying the
authentication user registry type” on page 22.

mechanism_info

User information, as described in the following sections:

v “Specifying the user authentication identity” on page 23

v “Specifying additional user information” on page 23

v “Placing user information into an API buffer” on page 24

The azn_id_get_creds() function returns a handle to the authorization credentials
for the user. The authorization credentials are contained in an azn_creds_h_t
structure.

For example, the following sample code demonstrates the assigning of identity
information for a user authenticated in an LDAP user registry, and calls
azn_id_get_creds() to obtain authorization credentials:
azn_authldap_t ldap_minfo;
azn_string_t mech = NULL;
azn_buffer_desc buf = { 0, 0 };
azn_creds_h_t creds;

azn_creds_create(&creds);

/* Specify authentication registry type */
mech = IV_LDAP;

/* Specify LDAP user name */
ldap_minfo.ldap_dn = "cn=testuser";

/* Set LDAP user information. Note: these values are just placeholders */
ldap_minfo.auth_method = "ldap_auth_method";
ldap_minfo.authnmech_info = "ldap_authnmech_info";
ldap_minfo.qop = "ldap_qop";
ldap_minfo.user_info = "ldap_user_info";
ldap_minfo.browser_info = "ldap_browser_info";
ldap_minfo.ipaddr = 0x0a000002;

/* Set a buffer to point to the LDAP user information */
buf.length = sizeof(ldap_minfo);
buf.value = (unsigned char *)&ldap_minfo;

/* Obtain an authorization credential. Specify the authority as NULL */

status = azn_id_get_creds(NULL, mech, &buf, &creds);
if (status != AZN_S_COMPLETE) {

fprintf(stderr, "Could not get creds.\n");
continue;

}

Chapter 2. Authorization API 25

For more information, see “azn_id_get_creds()” on page 80 in the Authorization
API manual pages. Refer also to the Authorization API demonstration program
(see “Example program authzn_demo” on page 32).

The application is now ready to submit the authorization request (see“Obtaining
an authorization decision”).

Obtaining an authorization decision
After the application has obtained authorization credentials for the user, the
application passes the requested operation and the requested resource to the
Authorization API function “azn_decision_access_allowed()” on page 74. This
function returns the authorization decision.

To obtain an authorization decision, complete the instructions in each of the
following sections:
v “Mapping the user operation to a Policy Director permission”
v “Mapping the requested resource to a protected object”
v “Assigning the user credentials to a credentials handle” on page 27
v “Building an attribute list for additional application information” on page 27
v “Obtaining an authorization decision” on page 27

Mapping the user operation to a Policy Director permission
The operation requested by the user must correspond to one of the operations for
which a Policy Director permission has been defined. The operation is a standard
action supported in all Policy Director secure domains. Examples operations are
azn_operation_read and azn_operation_traverse.

Note: For a complete list of supported operations, see the aznutils.h file.

Alternatively, the operation can be a custom operation defined by an external
authorization service.
v Assign the operation to the string operation. Pass this string as an input

parameter to azn_decision_access_allowed().

Mapping the requested resource to a protected object
The requested resource to query for must correspond to a resource that has been
defined as a protected object. The protected object must be within the Policy
Director secure domain’s protected object namespace.

The resource can be a standard WebSEAL protected resource, such as a file in the
Web space. Alternatively, the resource can be a custom-protected object.
v Assign the protected object to the string protected_resource. Pass this string as

an input parameter to azn_decision_access_allowed().

26 Policy Director Programming Guide and Reference

Assigning the user credentials to a credentials handle
The authorization credentials for a user obtained in “Obtaining user authorization
credentials” on page 22can be accessed through the handle returned by
azn_id_get_creds().

These credentials contain the user’s identity information and include information,
such as the user’s group membership and permitted operations.
v Pass the handle returned by azn_id_get_creds() as an input parameter to

azn_decision_access_allowed().

Note: Authorization credentials can also be obtained from “azn_pac_get_creds()”
on page 83. See “Converting credentials to the native format” on page 29.

Building an attribute list for additional application information
The Policy Director Authorization API provides the extended function
azn_decision_access_allowed_ext() for obtaining an access decision. This function
extends azn_decision_access_allowed() by providing an additional input parameter
and an additional output parameter.

These parameters can be used to supply additional information as needed by the
application. The Policy Director Authorization Service does not use these
parameters when making the access control decision. However, you can write
external authorization servers to use this information.

The parameters consist of an attribute list. You can build an attribute list of any
length to hold information specific to the application.

To add additional application-specific context, complete the following steps:
1. Use azn_attrlist_create() to create a new, empty attribute list.
2. Use azn_attrlist_add_entry() or azn_attrlist_add_entry_buffer() to add

attributes.
3. After all attributes have been added, assign the input parameter app_context to

point to the attribute list.

For more information, see “azn_decision_access_allowed_ext()” on page 76 in the
Authorization API manual pages.

Obtaining an authorization decision
To obtain an authorization decision, call one of the following functions:
v azn_decision_access_allowed()
v azn_decision_access_allowed_ext()

If the API is operating in remote cache mode, the authorization request will be
forwarded to the Policy Director Authorization server (ivacld). The Authorization
server makes the decision and returns the result.

If the API is operating in local cache mode, the API will use the local authorization
policy database replica to make the authorization decision.

Chapter 2. Authorization API 27

The result of the access request is returned in the following output parameter:

Type Parameter Description

int permission

The result of the access request. Consists of one
of the following constants:
AZN_C_PERMITTED
AZN_C_NOT_PERMITTED

The extended function azn_decision_access_allowed_ext() also returns the
following information:

Type Parameter Description

azn_attrlist_h_t permission_info
Application-specific context information
contained in attribute list.

For more information on the above functions, see these Authorization API manual
pages:
v “azn_decision_access_allowed()” on page 74
v “azn_decision_access_allowed_ext()” on page 76

Cleaning up and shutting down
The Authorization API provides functions to perform these cleanup and shutdown
functions:
v “Releasing allocated memory”
v “Shutting down the Authorization API” on page 29

Releasing allocated memory
The Authorization API provides functions to perform these releasing of memory
functions:
v “azn_attrlist_delete()” on page 55

Use this function to release memory that is allocated for attribute lists.
v “azn_creds_delete()” on page 64

Use this function to release memory that is allocated for the azn_creds_h_t
structure that is returned by a call to azn_creds_create().

v “azn_release_buffer()” on page 84
Use this function to release memory that is allocated for buffers. Buffers of this
type are used by some attribute list functions, and also by some of the
credentials handling functions.

v “azn_release_string()” on page 85
Use this function to release memory that is allocated for any strings. Many
Authorization API functions use this data type to store values in strings.

v “azn_release_strings()” on page 86
Use this function to release memory that is allocated for an array of strings.

28 Policy Director Programming Guide and Reference

Shutting down the Authorization API
See “azn_shutdown()” on page 87.

When an application has obtained an authorization decision and when it does not
need further authorization decisions, use this function to disconnect from and shut
down the Authorization API.

Handling credentials (optional tasks)
The Authorization API provides functions to accomplish the following optional
tasks:
v “Converting credentials to a transportable format”
v “Converting credentials to the native format”
v “Creating a chain of credentials” on page 30
v “Determining the number of credentials in a credentials chain” on page 30
v “Obtaining a credential from a chain of credentials” on page 30
v “Modifying the contents of a credential” on page 31
v “Obtaining an attribute list from a credential” on page 31

Converting credentials to a transportable format
See “azn_creds_get_pac()” on page 69.

Use this function to place user credentials into a format that can be transported
across a network to another application. Use this function when you need to
delegate the authorization decision to an application on another system.

Complete the following steps:
1. Set the input string pac_svc_id to NULL.
2. Set the input credentials handle creds to the credentials handle returned by a

previous call to azn_id_get_creds() or azn_pac_get_creds().
3. Call azn_creds_get_pac().

The privilege attribute certificate (PAC) is returned in an output buffer named pac.
This buffer can be transported to another system, where the function
azn_pac_get_creds() can be used to return the credentials to a native format.

Converting credentials to the native format
See “azn_pac_get_creds()” on page 83.

Use this function when an application receives credentials in a transportable
format from another system on the network. Typically, these credentials are placed
into a buffer by azn_creds_get_pac().

Complete the following steps:
1. Set the input string pac_svc_id to NULL.
2. Set the input buffer pac to the buffer returned by a previous call to

azn_creds_get_pac().
3. Call azn_pac_get_creds().

This function returns a handle to a credentials structure (azn_creds_h_t), for access
by other Authorization API functions.

Chapter 2. Authorization API 29

Creating a chain of credentials
See “azn_creds_combine()” on page 62.

Use this function to combine, or chain, two credentials together. Use this, for
example, when the credentials for a server application must be combined with user
credentials in order to delegate the authorization decision to another application.

Complete the following steps:
1. Assign the credentials handle creds_to_prepend to point to the credentials of the

request’s initiator.
2. Assign the credentials handle creds_to_add to point to the credentials to be

added.
3. Call azn_creds_create() to create a new, empty credentials structure.
4. Call azn_creds_combine().

The combined credentials are placed in a credentials structure that can be
referenced by the credentials handle combined_creds.

Determining the number of credentials in a credentials chain
See “azn_creds_num_of_subjects()” on page 73.

Use this function to determine the number of credentials that are contained in a
credentials chain. Credentials chains are created by the azn_creds_combine()
function.

This functions takes as an input parameter the credentials handle of the credentials
chain, and returns an integer containing the number of credentials.

Obtaining a credential from a chain of credentials
See “azn_creds_for_subject()” on page 65.

Use this function to extract individual credentials from a credentials chain.
Credentials chains are created by the azn_creds_combine() function.

Complete the following steps:
1. Assign the credentials handle creds to point to the credentials chain.
2. Assign the integer subject_index the index of the needed credential within the

credentials chain.
The credentials of the user who made the request are always stored at index 0.
To retrieve the credentials for the initiator (user), you can pass the constant
AZN_C_INITIATOR_INDEX as the value for subject_index.
Use azn_creds_num_of_subjects(), if necessary, to determine the number of
credentials in the chain.

3. Call azn_creds_for_subject().

This function returns the requested credentials in the credentials structure
new_creds.

30 Policy Director Programming Guide and Reference

Modifying the contents of a credential
See “azn_creds_modify()” on page 71.

Use this function to modify a credential by placing additional information,
contained in an attribute list, into the credentials structure. Use this function when
you need to add application-specific information to a user’s credentials.

Complete the following steps:
1. Use the attribute list functions to create an attribute list containing the

information to be added. Assign the attribute list handle mod_info to the new
attribute list.
For more information on attribute lists, see “Attribute lists” on page 11.

2. Set the credential modification service mod_svc_id to NULL.
3. Assign the credentials handle creds to point to the credentials to be modified.
4. Call azn_creds_create() to create a new, empty credentials structure.
5. Call azn_creds_modify().

The modified credentials are placed in the credentials structure new_creds.

Obtaining an attribute list from a credential
See “azn_creds_get_attrlist_for_subject()” on page 67.

Use this function to obtain information, in the form of an attribute list, from a
credential. Attribute lists are added to credentials structures by calls to
azn_creds_modify().

You can use this function to obtain the attribute list for a credential that is part of a
credentials chain.

Complete the following steps:
1. Assign the credentials handle creds to point to the credentials chain.
2. Assign the integer subject_index to the index of the credential within the

credentials chain.
If the credential is not part of a chain, set subject_index to zero (0).
The credentials of the user who made the request are always stored at index 0.
To retrieve the credentials for the initiator (user), you can pass the constant
AZN_C_INITIATOR_INDEX as the value for subject_index.
Use azn_creds_num_of_subjects(), if necessary, to determine the number of
credentials in the chain.

3. Call azn_attrlist_create() to create a new, empty attribute list.
4. Call azn_creds_get_attrlist_for_subject().

The function returns a handle to the attribute list containing the credential’s
attribute information. The handle is named creds_attrlist.

Chapter 2. Authorization API 31

Deploying applications with the Authorization API
To deploy an application with the Authorization API, verify that your environment
contains the necessary supporting software. You can test your environment by
building and running the example program that is provided with the
Authorization API.

See the following sections:
v “Software requirements”
v “Example program authzn_demo”

Software requirements
Applications that have been developed with the Policy Director Authorization API
must be run on systems that are configured into a Policy Director secure domain.
When the Policy Director secure domain uses an LDAP user registry, the
application deployment system must have an LDAP client installed.

The minimum Policy Director installation on a system that runs an application is:
v Policy Director Base (IVBase)
v Policy Director Authorization server (IVAcld)
v Policy Director Application Development Kit (IVAuthADK)

DCE client runtime requirements
The application runtime environment must include a DCE client runtime. The DCE
runtime is installed as a prerequisite to the Policy Director installations described
above.

Note: On Windows NT®, the Policy Director NetSEAT client provides the DCE
client runtime environment.

Example program authzn_demo
The Policy Director Authorization API is provided with an example program called
authzn_demo that demonstrates use of the Authorization API. The example
directory contains source files and a MAKEFILE. Refer to the README file,
located in the same directory, for information regarding the use of this example
program.

32 Policy Director Programming Guide and Reference

Chapter 3. External authorization service

This chapter contains:
v “Introducing the external authorization service” on this page.
v “Using the remote procedure call interface” on page 34.
v “Implementing a custom external authorization server” on page 36.
v “Configuring a custom external authorization service” on page 37.
v “Reference: interface implementation” on page 38.

Introducing the external authorization service

Note: This Policy Director Programming Guide and Reference book assumes basic
working knowledge about writing and configuring DCE servers.

An external authorization service is an optional extension of the Policy Director
Authorization Service that allows you to impose additional authorization controls
and conditions. These additional controls and conditions are dictated by a separate
(external) authorization server program.

External authorization capability is automatically built into the Policy Director
Authorization Service. If you configure an external authorization service, the Policy
Director Authorization Service will simply incorporate the new controls and
conditions into its evaluation process.

Applications that use the Policy Director Authorization Service (such as WebSEAL,
NetSEAL, and any application using the Policy Director Authorization API) benefit
from the additional, but seamless, contribution of a configured external
authorization service. Any addition to the security policy through the use of an
external authorization service is transparent to these applications and requires no
change to the applications.

The external authorization service architecture allows the full integration of an
organization’s existing security service. An external authorization service preserves
a company’s initial investment in security mechanisms by allowing legacy servers
to be incorporated into the Policy Director authorization decision-making process.

Three general steps are required to set up an external authorization service:
1. Write a server program that can be referenced during an authorization decision.
2. Configure the server into a DCE environment.
3. Register the external authorization service with Policy Director.

33

After the service is registered, a new permission that represents this service
appears in the Policy Director Management Console. You can now use this
permission in any access control list (ACL) entry to force the authorization
mechanism to include the external authorization server in the decision-making
process.

When the permission is encountered during an authorization check, the external
authorization service is referenced for additional authorization decisions.

Additional references:

v ″External authorization capability″ in Chapter 3 of the Policy Director
Administration Guide

v ″Chapter 11. Managing the authorization service″ in the Policy Director
Administration Guide

This section includes information on how to register an external authorization
server with Policy Director.

Using the remote procedure call interface
The Policy Director Authorization Service uses the extern_auth IDL interface to
request an authorization decision from an external authorization server.

The extern_auth interface specifies a single remote procedure call (RPC):
v check_authorization

This RPC is called by the Policy Director Authorization Service whenever an
occurrence of the external authorization permission is encountered during an ACL
check.

See the following sections for interface details.

34 Policy Director Programming Guide and Reference

Interface Definition Language (IDL): extern_auth.idl
This IDL specifies a single RPC exported by all external authorization servers.
[

uuid(4df55494-e9b8-11d0-bb97-00c078500253),
pointer_default(ptr),
version(2.0)

]
interface extern_auth {

import "auth_base.idl";
/*
* FUNCTION NAME
* check_authorization
*
* DESCRIPTION
* This function is called by Policy Director as part of the authorization
* check, if required by the appropriate ACL.
*
* ARGUMENTS
* handle Server binding handle.
* principals Authenticated delegation chain.
* obj_name Protected object name.
* req_perm Requested capabilities.
* acl_perm Capabilities granted by the ACL on the protected
* object.
* req_state Opaque protected-object specific state information.
* qop Returns minimum acceptable quality of protection.
* status Returns status. Returns error_status_ok if request is
* authorized.
*
*/
void check_authorization(

[in] handle_t handle,
[in] ivprincipal_chain_t *principals,
[in, string] char *obj_name,
[in] unsigned32 req_perm,
[in] unsigned32 acl_perm,
[in] ivauthzn_state_t *req_state,
[out] ivqop_t *qop,
[out] error_status_t *status

);
}

Attribute configuration file
interface extern_auth {

check_authorization([comm_status,fault_status] status);
}

Chapter 3. External authorization service 35

Implementing a custom external authorization server
The Policy Director product includes the external authorization service interface
and demonstration server source as part of the IVAuthADK installation package.
The demonstration server is designed to be used as a starting point for
implementing your own customized external authorization server.

Source files
The demonstration server source is included as an example and starting point for
building customized external authorization servers. All of the external
authorization service source files are located in the following directory:

UNIX®: /opt/intraverse/eas_adk/

Windows: install-path\eas_adk\

Supported platforms
The external authorization service source files can be compiled on any platform.
The custom built executable must reside on a machine within WebSEAL’s secure
domain.

Pre-requirements
The external authorization service prerequisites include:
v DCE application development tools must be installed on the build machine

These tools are normally included as part of an installation package. Specifically,
you must install DCE header files and the IDL compiler.

v A platform-specific C compiler and development environment

Build process
The external authorization service source directory contains a MAKEFILE that
builds interface files and demonstration files. In most cases, after you install the
required packages on the build machine, you can compile the server files with only
minor modification to the MAKEFILE.

When building a custom external authorization server, you should not modify any
of the interface files, such as the IDL and attribute configuration file (ACF). These
files are used to communicate with the Policy Director Security Manager. Any
changes to the interface files can potentially disrupt the communication process
between the Policy Director Security Manager and the external authorization server
and possibly produce undesired results.

36 Policy Director Programming Guide and Reference

Configuring a custom external authorization service
Perform the following sequence of tasks to configure Policy Director to use an
external authorization service:
1. Write the server program.

This program must be a DCE server that exports the extern_auth IDL interface
(see “Using the remote procedure call interface” on page 34). Additionally, the
server must maintain a DCE login context and be able to accept authenticated
RPCs.

Note: Refer to the DCE Application Development Guide for details about writing
a DCE server.

Refer to “Implementing a custom external authorization server” on page 36.
2. Use the DCE program command dcecp to create a DCE account for the external

authorization server. In general, creating a DCE account requires the following
steps:
a. Create a new principal representing the external authorization server. For

example:
dcecp> principal create eas_server

b. Add the principal to a group. For example:
dcecp> group add none -member eas_server

c. Add the principal to an organization. For example:
dcecp> organization add none -member eas_server

d. Create an account that reflects the above information plus a password. For
example (entered as one line):
dcecp> account create eas_server -group none -organization none -password ibmpw

Note: Refer to the appropriate DCE documentation for detailed information.
3. Create the RPC entry in the CDS namespace where the external authorization

server exports its RPC bindings. For example:
dcecp> rpcentry create /.:/subsys/intraverse/eas_server

This entry is used by the Policy Director Authorization Service to locate the
server.
v The external authorization server must ensure that its bindings are exported

to this CDS entry.
v When the server is replicated, each replica must also export its bindings to

the same CDS location.

Note: Refer to the appropriate DCE documentation for detailed information.

Chapter 3. External authorization service 37

4. Set the correct permissions on the RPC entry so that the server principal has
read (r) and write (w) capabilities. For example (entered as one line):
dcecp> acl modify /.:/subsys/intraverse/eas_server -entry -add {user eas_server rw}

Note: Refer to the appropriate DCE documentation for detailed information.
5. Create a DCE key table (keytab) that the server principal can access when it

logs in. For example (entered as one line):
dcecp> keytab create eas_server -storage /opt/intraverse/eas_adk/eas_server.key

-data {eas_server plain 1 ibm}

Note: Refer to the appropriate DCE documentation for detailed information.
6. Register the service with Policy Director by using the ivadmin server register

command. Use the information created in steps 2 on page 37 and 3 on page 37
as arguments to this command. For example (entered as one line):
ivadmin> server register externauth eas_server /.:/subsys/intraverse/eas_server

none k External_Authorization

Refer to ″Registering an external authorization service″ in Chapter 11 of the
Policy Director Administration Guide for details on registering an external
authorization service.

Reference: interface implementation
“check_authorization” on page 39.

38 Policy Director Programming Guide and Reference

check_authorization
Policy Director calls this function as part of an authorization check, if required by
an external authorization ACL.

Syntax
void check_authorization(

[in] handle_t handle,
[in] ivprincipal_chain_t *principals,
[in, string] char *obj_name,
[in] unsigned32 req_perm,
[in] unsigned32 acl_perm,
[in] ivauthzn_state_t *req_state,
[out] ivqop_t *qop,
[out] error_status_t *status

);

Parameters
handle – input

Server binding handle.

principals – input
Authenticated delegation chain. This data structure might be directly cast into
an azn_creds_h_t for use with the Authorization API.

obj_name – input
Protected object name.

req_perm – input
Requested capabilities.

acl_perm – input
Capabilities that are granted by the ACL on the protected object.

req_state – input
Opaque protected object-specific state information.

qop – output
Minimum acceptable quality of protection.

status – output
Return status. Returns error_status_ok, if the request is authorized.

Remarks
Performs an extended authorization check from an external authorization server.
This call is made only when it is required by the specific ACL that controls access
to an external authorization server.

Return Values
None.

Success or failure status is returned in the status output parameter.Normal,
successful completion.

Chapter 3. External authorization service 39

40 Policy Director Programming Guide and Reference

Chapter 4. Credentials Acquisition Service

This chapter contains:
v “Introducing the Credentials Acquisition Service” on this page.
v “Using the remote procedure call interface” on page 42.
v “Implementing a custom Credentials Acquisition Service” on page 46.
v “Deploying a custom Credentials Acquisition Service” on page 47.
v “Reference: interface implementation” on page 47.

Introducing the Credentials Acquisition Service

Note: This Policy Director Programming Guide and Reference book assumes basic
working knowledge about writing and configuring DCE servers.

The Policy Director Credentials Acquisition Service (Policy Director CAS) extends
the authentication capabilities of Policy Director. A CAS allows authentication and
mapping of non-Policy Director user identity information (such as a non-Policy
Director username and password, or X.509 client-side certificate) to a Policy
Director user (principal). The Policy Director Security Manager (using its default
registry) can then return credentials for this principal. A CAS also provides
password management services.

The specifics of this authentication and mapping service are determined entirely by
the CAS developer or designer. Mapping rules are stored in a database external to
Policy Director.

To allow setup of a CAS, Policy Director provides:
v The IDL interface between WebSEAL and the CAS.
v The general server framework that handles CAS server functions, such as:

startup, server registration, and signal handling.

It is the CAS developer’s responsibility to extend the CAS framework to
implement the identity mapping functions required by the particular application.

Additional references:

v ″Credentials acquisition″ in Chapter 2 of the Policy Director Administration Guide

v ″Credentials acquisition service overview″ in Chapter 2 of the Policy Director
Administration Guide

v ″X.509 certificate mapping mode″ in Chapter 2 of the Policy Director
Administration Guide

v ″Username mapping mode″ in Chapter 2 of the Policy Director Administration
Guide

v ″Policy Director Credentials Acquisition Service″ in Chapter 13 of the Policy
Director Administration Guide

41

Using the remote procedure call interface
WebSEAL uses the cdas IDL interface to request identity mapping or password
management services from a credentials acquisition server.

The cdas interface specifies two remote procedure calls (RPC):
v cdas_get_identity
v cdas_change_password

These RPCs are called by the Policy Director Authorization Service whenever the
CAS is called to perform authentication.

See the following sections for interface details.

IDL: cas_auth.idl
This IDL specifies two RPCs and four data structures that are exported by all
external credentials acquisition servers. The following authentication styles are
currently supported by this interface:
v No Authentication
v Username, Password, or Passticket
v Public Key Certificates
[

uuid(04f8642a-0fae-11d3-b3df-0a0000c6aa77),
pointer_default(ptr),
version(1.0)

]
interface cdas {

/*
* Authentication style constants
*/
const unsigned32 IVAUTHN_STYLE_NONE = (0); /* No authn information */
const unsigned32 IVAUTHN_STYLE_PASSWORD = (1); /* Secret key authn */
const unsigned32 IVAUTHN_STYLE_CERT = (2); /* Public key authn */
const unsigned32 IVAUTHN_STYLE_TOKEN_CARD = (3); /* SecurID-style authn */
const unsigned32 IVAUTHN_STYLE_ANONYMOUS = (4); /* Username only authn */

/*
* cdas_authn_info_t
*
* This data structure conveys all client authentication information
* required by a CDAS.
*/
typedef struct {

union switch (unsigned32 authn_style) data {
case IVAUTHN_STYLE_NONE:
; /* No data */
case IVAUTHN_STYLE_PASSWORD:

struct {
[string] char *username; /* Client username */
[string] char *password; /* Client password */

} password_data;
case IVAUTHN_STYLE_CERT:

struct {
unsigned32 cert_chain_len; /* Length of cert chain */

[size_is(cert_chain_len)]
byte *cert_chain; /* Certificate chain */

} cert_data;

42 Policy Director Programming Guide and Reference

case IVAUTHN_STYLE_TOKEN_CARD:
struct {

[string] char *username; /* Client username */
[string] char *pin; /* Client \PIN number */
[string] char *token; /* Current valid token */

} token_card_data;
case IVAUTHN_STYLE_ANONYMOUS:

struct {
[string] char *username; /* Client username */

} anonymous_data;
} authn_data;
unsigned32 ipaddr; /* Client IP address */
[string] char *qop; /* Client quality of protection */
[string] char *browser_info; /* Client browser type (if present) */

} cdas_authn_info_t;

/*
* Constants that represent how a resulting client identity is conveyed
* by the CDAS.
*/
const unsigned32 IVAUTHN_PRIN_TYPE_NAME = (0); /* Principal name */
const unsigned32 IVAUTHN_PRIN_TYPE_DN = (1); /* Distinguished name */

/*
* cdas_xattr_t
*
* An extended attribute for use in an attribute list.
*
* Fields:
*
* name string name for the attribute.
* value string value for the attribute.
*
*/
typedef struct {

[string] char *name;
[string] char *value;

} cdas_xattr_t;
/*
* cdas_xattr_list_t;
*
* A list of extended attributes
*
* Fields:
*
* count number of attribute structs in list.
* list a list of attribute structs.
*
*/
typedef struct {

unsigned32 count;
[size_is(count)]

cdas_xattr_t *list;
} cdas_xattr_list_t;

/*
* cdas_identity_t
*
* This data structure conveys the resulting client identity
* information returned from a CDAS upon successful authentication.
*/

Chapter 4. Credentials Acquisition Service 43

typedef struct {
union switch (unsigned32 prin_type) data {

case IVAUTHN_PRIN_TYPE_NAME:
[string] char *name; /* Resulting principal name */

case IVAUTHN_PRIN_TYPE_DN:
[string] char *dn; /* Resulting principal DN */

} prin;
[string] char *user_info; /* Audit information */
[string] char *authnmech_info; /* Authn mechanism information */
cdas_xattr_list_t xattrs; /* Extended attributes */

} cdas_identity_t;

/*
* cdas_get_identity()
*
* This function performs client authentication on behalf of WebSEAL
* and returns the resulting client identity upon success. If the
* client has presented a certificate to Policy Director, it is the role of
* the CDAS to perform the relevant client identity mapping.
*
* [in] h:
* RPC binding handle.
*
* [in] authn_info:
* Client authentication information. This will be one of:
* 1) username/password pair
* 2) an ASN1 encoded chain of certificates.
* 3) A tokencard username/pin/token
* NOTE: This is not supported in the current version of WebSEAL.
*
* 4) Anonymous (username only)
* NOTE: This is not supported in the current version of WebSEAL.
*
* Other useful client-related information is also included.
* Please see cas_auth.idl for more details about the
* cdas_authn_info_t structure
*
* [out] client_id:
* The resulting client identity (upon successful authentication).
* Set to point to NULL on failure
*
* [out] st:
* Used for reporting both RPC communication errors and server errors
* processing the request. For now it is assumed that error_status_ok
* will be returned, otherwise another binding/server interface will
* be tried for the same request until one works or none are left.
*/
void cdas_get_identity(

[in] handle_t h,
[in] cdas_authn_info_t *authn_info,
[out] cdas_identity_t **client_id,
[out] error_status_t *st

);

44 Policy Director Programming Guide and Reference

/*
* cdas_change_password()
*
* This function enables the caller to manage a given client's password
* information.
*
* [in] h:
* RPC binding handle.
*
* [in] username:
* Username associated with the client account upon which the password
* modification should be made.
*
* [in] old_password:
* Password associated with the client account that should be changed.
*
* [in] new_password:
* New password to associate with the client account.
*
* [out] st:
* Used for reporting both RPC communication errors and server errors
* processing the request. For now it is assumed that error_status_ok
* will be returned, otherwise another binding/server interface will
* be tried for the same request until one works or none are left.
*/
void cdas_change_password(

[in] handle_t h,
[in, string] char *username,
[in, string] char *old_password,
[in, string] char *new_password,
[out] error_status_t *st

);
}

Attribute configuration file
interface cdas
{

cdas_get_identity(
[comm_status,fault_status] st

);
cdas_change_password(

[comm_status,fault_status] st
);

}

Chapter 4. Credentials Acquisition Service 45

Implementing a custom Credentials Acquisition Service
Policy Director WebSEAL includes the Policy Director CAS interface and the Policy
Director CAS server files. The source files provided with the ADK are a starting
point for implementing your own customized CAS server.

Source files
The CAS server’s source files are located in the following directory:

UNIX: /opt/intraverse/cdas_adk

Windows: install-path\cdas_adk

If you install the Policy Director IVNet package, the Policy Director CAS will be
automatically installed. See the Policy Director README file available on the Web
for information on how to configure it for use.

In addition, source files are included with Policy Director as an example and
starting point for building customized CAS servers.

If you create a customized CAS server from the CAS source files, replace the Policy
Director CAS server binary with your own custom server binary at:

UNIX: /opt/intraverse/cdas_server/bin/cdas_server

Windows: install-path\cdas_server\bin\cdas_server

Supported platforms
The CAS source files can be compiled on any platform. The custom built
executable must reside on a machine within WebSEAL’s secure domain.

Pre-requirements
The Credentials Acquisition Service prerequisites include:
v DCE application development tools must be installed on the build machine

These tools are normally included as part of an installation package. Specifically,
you must install DCE header files and the IDL compiler.

v A platform-specific C compiler and development environment

Build process
The CAS source directory contains a MAKEFILE that builds interface files and
demonstration files. In most cases, after you install the required packages on the
build machine, you can compile the CAS server files with only minor modification
to the MAKEFILE.

When building a custom CAS server, you should not modify any of the interface
files (IDL and ACF). These files are used to communicate with the Policy Director
Security Manager. Any changes to the interface files can potentially disrupt the
communication process between the Policy Director Security Manager and the CAS
server and possibly produce undesired results.

46 Policy Director Programming Guide and Reference

Deploying a custom Credentials Acquisition Service
Perform the following sequence of tasks to deploy a credentials acquisition server
in a Policy Director environment.
1. Install the IVAuthADK package to obtain the CAS source files (located in the

cdas_adk directory).
2. Modify the CAS server source files as needed.
3. Build a new binary server file.

See “Build process” on page 46.
4. Copy this new server file to the cdas_server/bin directory.
5. Configure WebSEAL to point to the appropriate CAS CDS location.

See ″Policy Director Credentials Acquisition Service″ in Chapter 13 of the Policy
Director Administration Guide.

Note: Note that the level of accountability in a many-to-one mapping is not
fine-grained. The auditing services can track only the Policy Director user
(principal), not the individual users mapped to this principal.

Reference: interface implementation
v “cdas_get_identity” on page 48.
v “cdas_change_password” on page 49.

Chapter 4. Credentials Acquisition Service 47

cdas_get_identity
Performs client authentication on behalf of Policy Director and returns the
resulting client identity upon success.

Syntax
void cdas_get_identity(

[in] handle_t h,
[in] cdas_authn_info_t *authn_info,
[out] cdas_identity_t **client_id,
[out] error_status_t *st

);

Parameters
h – input

RPC-binding handle.

authn_info – input
Client authentication information, which can be one of the following:
v Username and password pair
v An ASN1 encoded chain of certificates

client_id – output
The resulting client identity (upon successful authentication).

st – output
Used for reporting both RPC communication errors and server errors when
processing the request. Returns error_status_ok upon success.

Remarks
This remote procedure call performs client authentication on behalf of Policy
Director and returns the resulting client identity upon success. When the client
presents a certificate to Policy Director, it is the role of the CAS to perform the
relevant client identity mapping.

Return Values
None.

Success or failure status is returned in the ″st″ output parameter.

48 Policy Director Programming Guide and Reference

cdas_change_password
Enables the caller to manage a given client’s password information.

Syntax
void cdas_change_password(

[in] handle_t h,
[in, string] char *username,
[in, string] char *old_password,
[in, string] char *new_password,
[out] error_status_t *st

);

Parameters
h – input

RPC binding handle.

username – input
User name associated with the client account upon which the password
modification should be made.

old_password – input
Password associated with the client account that should be changed.

new_password – input
New password to associate with the client account.

st – output
Used for reporting both RPC communication errors and server errors when
processing the request. Returns error_status_ok upon success.

Remarks
This remote procedure call enables the caller to change a given client’s password
information.

Return Values
None.

Success or failure status is returned in the st output parameter.

Chapter 4. Credentials Acquisition Service 49

50 Policy Director Programming Guide and Reference

Chapter 5. Authorization API manual pages

This section discusses the following Authorization API:
v azn_attrlist_add_entry()
v azn_attrlist_add_entry_buffer()
v azn_attrlist_create()
v azn_attrlist_delete()
v azn_attrlist_entry_get_num()
v azn_attrlist_get_entry_buffer_value()
v azn_attrlist_get_entry_string_value()
v azn_attrlist_get_names()
v azn_authdce_t
v azn_authldap_t
v azn_creds_combine()
v azn_creds_create()
v azn_creds_delete()
v azn_creds_for_subject()
v azn_creds_get_attrlist_for_subject()
v azn_creds_get_pac()
v azn_creds_modify()
v azn_creds_num_of_subjects()
v azn_decision_access_allowed()
v azn_decision_access_allowed_ext()
v azn_error_major()
v azn_error_minor()
v azn_id_get_creds()
v azn_initialize()
v azn_pac_get_creds()
v azn_release_buffer()
v azn_release_string()
v azn_release_strings()
v azn_shutdown()
v azn_unauth_t
v azn_util_client_authenticate()
v azn_util_password_authenticate()
v azn_util_server_authenticate()

51

azn_attrlist_add_entry()
Adds a name or string-value entry to an attribute list.

Syntax
azn_status_t
azn_attrlist_add_entry(

azn_attrlist_h_t attr_list,
azn_string_t attr_name,
azn_string_t string_value

);

Parameters
attr_list – input

Handle to an attribute list.

attr_name – input
Name attribute of the entry to be added.

string_value – input
Value (string) attribute of the entry to be added.

Remarks
This call adds an entry to the attribute list attr_list. The added entry has a name
attr_name and value string_value.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_ATTR_NAME
Attribute name is invalid.

AZN_S_INVALID_ATTR_VALUE
Attribute value is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

52 Policy Director Programming Guide and Reference

azn_attrlist_add_entry_buffer()
Adds a name or buffer-value entry to an attribute list.

Syntax
azn_status_t
azn_attrlist_add_entry(

azn_attrlist_h_t attr_list,
azn_string_t attr_name,
azn_buffer_t buffer_value

);

Parameters
attr_list – input

Handle to an attribute list.

attr_name – input
Name attribute of the entry to be added.

buffer_value – input
Value (buffer) attribute of the entry to be added.

Remarks
This call adds an entry to the attribute list, attr_list. The added entry has a name
attr_name and a value buffer_value.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_ATTR_NAME
Attribute name is invalid.

AZN_S_INVALID_ATTR_BUFFER
Attribute buffer is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 53

azn_attrlist_create()
Creates a valid and empty attribute list, assigns it a handle, and returns the handle.

Syntax
azn_status_t
azn_attrlist_create(

azn_attrlist_h_t *new_attr_list
);

Parameters
new_attr_list– output

A reference to the new attribute list handle that is returned.

Remarks
This call creates a new and empty attribute list, assigns it a handle new_attr_list,
and returns the handle.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

54 Policy Director Programming Guide and Reference

azn_attrlist_delete()
Deletes the attribute list associated with the attribute list handle.

Syntax
azn_status_t
azn_attrlist_delete(

azn_attrlist_h_t *attr_list
);

Parameters
attr_list – input

On input, an existing attribute list handle.

old_attr_list – output
On output, an existing attribute list handle.

Remarks
This call deletes the attribute list associated with the handle old_attr_list. The call
can set the input attribute list handle to an invalid value to ensure that it cannot be
used in future calls.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 55

azn_attrlist_entry_get_num()
Returns the number of value attributes in the entry for a specified name attribute
in a specified attribute list.

Syntax
azn_status_t
azn_attrlist_entry_get_num(

azn_attrlist_h_t attr_list,
azn_string_t attr_name,
unsigned int *num_values

);

Parameters
attr_list – input

Handle to an existing attribute list.

attr_name – input
Name attribute for the entry whose number of value attributes is to be
returned.

num_values – output
Reference to an integer through which the number of value attributes (in the
entry whose name attribute is specified by attr_name) is returned.

Remarks
This call returns the number of value attributes in the entry for a specified
attribute in a specified attribute list.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_ATTR_NAME
Attribute name is invalid.

AZN_S_INVALID_ATTR_INTEGER_REF
The integer reference is not valid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

56 Policy Director Programming Guide and Reference

azn_attrlist_get_entry_buffer_value()
Returns one value attribute from an entry in an attribute list whose entries’ value
attributes are buffers.

Syntax
azn_status_t
azn_attrlist_get_entry_buffer_value(

azn_attrlist_h_t attr_list,
azn_string_t attr_name,
unsigned int value_index,
azn_buffer_t buffer_value

);

Parameters
attr_list – input

Handle to an attribute list.

attr_name – input
Name attribute of the entry from which the value attribute is to be returned.

value_index – input
Index within the entry of the value attribute to be returned.

buffer_value – output
Buffer that holds the returned value attribute.

Remarks
This call returns one buffer-type value attribute in buffer_value. The returned value
attribute is the one at position value_index within the entry whose name attribute is
specified by attr_name.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_ATTR_NAME
Attribute name is invalid.

AZN_S_ATTR_INVALID_BUFFER_REF
The buffer reference is not valid.

AZN_S_ATTR_INVALID_INDEX
The index is not valid (no value exists for this index).

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 57

azn_attrlist_get_entry_string_value()
Returns one value attribute from an entry in an attribute list whose entries’ value
attributes are strings.

Syntax
azn_status_t
azn_attrlist_get_entry_string_value(

azn_attrlist_h_t attr_list ,
azn_string_t attr_name,
unsigned int value_index,
azn_string_t *string_value

);

Parameters
attr_list – input

Handle to an existing attribute list.

attr_name – input
Name attribute of the entry from which the value attribute is to be returned.

value_index – input
Index within the entry of the value attribute to be returned.

string_value – output
String that holds the returned value attribute

Remarks
This call returns one string-type value attribute in string_value. The returned value
attribute is the one at position value_index within the entry whose name attribute is
specified by attr_name.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_ATTR_NAME
Attribute name is invalid.

AZN_S_ATTR_INVALID_STRING_REF
The string reference is not valid.

AZN_S_ATTR_VALUE_NOT_STRING_TYPE
The value attributes of this entry are not of type string.

AZN_S_ATTR_INVALID_INDEX
The index is not valid (no value exists for this index).

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

58 Policy Director Programming Guide and Reference

azn_attrlist_get_names()
Returns the list of all name attributes appearing in entries of the attribute list.

Syntax
azn_status_t
azn_attrlist_get_names(

azn_attrlist_h_t attr_list,
azn_string_t *attr_names[]

);

Parameters
attr_list – input

Handle to an existing attribute list.

attr_names – output
Array of NULL-terminated strings to hold the returned list of name attributes.
The last entry in the array is denoted by a NULL azn_string_t.

Remarks
This call returns a list of names attributes as an array of NULL terminated strings.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_ATTRLIST_HANDLE
Attribute list handle is invalid.

AZN_S_INVALID_STRING_REF
The string reference is not valid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 59

azn_authdce_t
Provides authentication information about a user for use by the Authorization API.

Syntax
typedef struct {

char *principal;
char *auth_method;
OM_uint32 ipaddr;
char *qop;
char *user_info;
char *browser_info;
char *authnmech_info;

} azn_authdce_t;

Values
principal

Name of the DCE user (principal).

auth_method
String that indicates use of the DCE authentication method. The content of the
string is defined by the application.

ipaddr
IP address of requesting user.

qop
Quality of protection that is required for requests that are made by this user.

user_info
Additional user information that might be required for auditing.

browser_info
Browser (if any) that is employed by the user.

authnmech_info
Additional authentication mechanism information. Supplied and used as
needed by the application.

Remarks
This base DCE information structure is passed into the azn_id_get_creds()
interface. Values in all fields, except for principal, are specified by the application
for use as needed by the application.

60 Policy Director Programming Guide and Reference

azn_authldap_t
Is used by the Authorization API as an input of credential and other information
for use within the Policy Director secure domain.

Syntax
typedef struct {

char *ldap_dn;
char *auth_method;
OM_uint32 ipaddr;
char *qop;
char *user_info;
char *browser_info;
char *authnmech_info;

} azn_authldap_t;

Values
ldap_dn

LDAP distinguished name.

auth_method
String that indicates use of the LDAP authentication method. The content of
the string is defined by the application.

ipaddr
IP address of requesting user.

qop
Quality of protection that is required for requests that are made by this user.

user_info
Additional user information that might be required for auditing.

browser_info
Browser (if any) that is employed by the user.

authnmech_info
Additional authentication mechanism information. Supplied and used as
needed by the application.

Remarks
This base LDAP information structure is passed into the azn_id_get_creds()
interface. Values in all fields, except for ldap_dn, are specified by the application for
use, as needed, by the application.

Chapter 5. Authorization API manual pages 61

azn_creds_combine()
Combines two credentials and a handle to the resulting combined credential.

Syntax
azn_status_t
azn_creds_combine(

azn_creds_h_t creds_to_add,
azn_creds_h_t creds_to_prepend,
azn_creds_h_t *combined_creds

);

Parameters
creds_to_add – input

Handle to credentials to be added to the existing credentials chain.

creds_to_prepend – input
Handle to the credentials chain where the first indexed entry is the credential
of the request initiator.

combined_creds – output
Handle to the returned new credentials, which includes all the credential chain
referenced by creds_to_prepend, and is followed by the credentials referenced by
creds_to_add.

Remarks
This call takes a credential handle creds_to_add and adds it to the end of a chain of
one or more credentials, which are referenced by another credential handle
creds_to_prepend. The credentials chain referenced by creds_to_prepend must contain
as its first indexed credential the credentials of the initiator. It might contain the
(previously combined) credentials of one or more of the initiator’s proxies. A
handle to the combined credentials is returned through combined_creds.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The handle passed as creds_to_prepend is invalid.

AZN_S_INVALID_ADDED_CREDS_HDL
The credentials handle passed as creds_to_add is invalid.

AZN_S_INVALID_NEW_CREDS_HDL
The credentials handle passed as combined_creds is invalid.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

62 Policy Director Programming Guide and Reference

azn_creds_create()
Creates a new, empty credentials structure, assigns it a handle, and returns the
handle.

Syntax
azn_status_t
azn_creds_create(

azn_creds_h_t *creds
);

Parameters
creds – input

Reference to the new credentials handle that is returned.

Remarks
This call creates a new, empty credentials structure, assigns it a handle, and returns
the handle.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 63

azn_creds_delete()
Deletes the credentials associated with the credential handle.

Syntax
azn_status_t
azn_creds_delete(

azn_creds_h_t *creds
);

Parameters
creds – input

Reference to the handle of the credentials to be deleted.

creds – output
Reference to the handle of the credentials to be deleted.

Remarks
This call deletes the credentials associated with the handle creds. The call sets the
input credentials handle to an invalid value to ensure that it cannot be used in
future calls.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

64 Policy Director Programming Guide and Reference

azn_creds_for_subject()
Returns a handle to a credentials structure. The handle is used to extract individual
credentials from combined credentials.

Syntax
azn_status_t
azn_creds_for_subject(

azn_creds_h_t creds,
unsigned int subject_index,
azn_creds_h_t *new_creds

);

Parameters
creds – input

Handle to a credentials structure representing a credentials chain, which
contains a list of 1 or more individual credentials structures.

subject_index – input
Index of the requested individual credential within the credentials chain. The
index of the first credential in the chain, which should be that of the initiator,
is zero (0).

new_creds – output
Handle to the new credentials structure that is returned.

Remarks
This call returns a handle, new_creds, to a credentials structure for the individual
credential at index subject_index within a credentials structure creds which
represents a credentials chain. Credentials chains are created by the
azn_creds_combine() function. The first credential in a credentials chain is that of
the initiator, and its index is zero (0). Callers can retrieve the credentials of the
initiator by passing the constant AZN_C_INITIATOR_INDEX as the value of
subject_index.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HANDLE
The credentials handle supplied as creds is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_INVALID_SUBJECT_INDEX
The supplied index is not valid.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

Chapter 5. Authorization API manual pages 65

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

66 Policy Director Programming Guide and Reference

azn_creds_get_attrlist_for_subject()
Returns information from a specified credentials structure.

Syntax
azn_status_t
azn_creds_get_attrlist_for_subject (

azn_creds_h_t creds,
unsigned int subject_index,
azn_attrlist_h_t *creds_attrlist

);

Parameters
creds – input

Handle to a credentials structure representing a credentials chain.

subject_index – input
Index of the requested individual credential within the credentials chain. The
index of the first credential in the chain, which should be that of the initiator,
is zero (0). If creds is an individual credential rather than a credentials chain,
the index zero (0) will specify the entire credentials structure.

creds_attrlist – output
Reference to the handle of an attribute list that holds the specified credential’s
attribute information on return.

Remarks
This call returns an attribute list containing information from the credentials
structure for the individual credential at index subject_index within a credentials
structure creds. The structure creds can be a single credential or a credentials chain;
credentials chains are created by the azn_creds_combine() function. The first
credential in a credentials chain is that of the initiator, and its index is zero (0).
Callers can retrieve the credentials of the initiator by passing the constant
AZN_C_INITIATOR_INDEX as the value of subject_index.

The audit identifier associated with the specified credentials structure is present in
the returned attribute list. It is the value attribute of an entry whose name attribute
is AZN_C_AUDIT_ID.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_INVALID_SUBJECT_INDEX
The supplied index is not valid.

AZN_S_INVALID_ATTRLIST_HDL
The attribute list handle supplied is invalid.

Chapter 5. Authorization API manual pages 67

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

68 Policy Director Programming Guide and Reference

azn_creds_get_pac()
Creates and returns a privilege attribute certificate (PAC) by invoking a specified
PAC service on the supplied credentials.

Syntax
azn_status_t
azn_creds_get_pac(

azn_creds_h_t creds,
azn_string_t pac_svc_id,
azn_buffer_t pac

);

Parameters
creds – input

Handle to the credentials whose information is used to build the Privilege
Attribute Certificate (PAC).

pac_svc_id – input
Identification (id) of the PAC service that produces the PAC.

pac – output
The buffer structure that holds the returned PAC.

Remarks
This call uses the PAC service whose identification is supplied as pac_svc_id to
build a new PAC. The PAC service uses the information in the supplied credentials
to build the PAC. Different PAC services might produce PACs with different
formats. Some PAC services can cryptographically protect or sign the PACs they
produce.

This call takes as an input parameter a handle to an existing credentials structure,
and returns the output PAC in an Authorization API buffer.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_INVALID_PAC_SVC
The privilege attribute certificate service identifier is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

Chapter 5. Authorization API manual pages 69

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

70 Policy Director Programming Guide and Reference

azn_creds_modify()
Modifies an existing credential and returns a handle to a new credential that
contains the modifications.

Syntax
azn_status_t
azn_creds_modify(

azn_creds_h_t creds,
azn_string_t mod_svc_id,
azn_attrlist_h_t mod_info,
azn_creds_h_t new_creds

);

Parameters
creds – input

Handle to the authorization credentials to be modified.

mod_svc_id – input
Identification (id) of the credential modification service.

mod_info – input
Attribute list that contains modification service-specific or application-specific
data that describes the desired credential modifications.

new_creds – output
Handle to a credentials structure that contains the modified credentials upon
return.

Remarks
This call modifies an existing credential by adding the attribute list mod_info to the
credentials structure, and assigning the modified credential to a new credentials
structure new_creds.

Before calling this function, you must call azn_creds_create() to create a new and
empty credentials structure new_creds.

This function uses the specified modification service mod_svc_id and (optionally) an
attribute list mod_info, which contains modification information provided by the
caller to modify a copy of the supplied credential. The function returns a handle to
a new credentials structure containing the modified credential. The supplied
credential creds is unchanged.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_INVALID_MOD_FUNCTION
The supplied modification service identifier is not valid.

Chapter 5. Authorization API manual pages 71

AZN_S_INVALID_ATTRLIST_HDL
The attribute list handle supplied is invalid.

AZN_S_INVALID_NEW_CREDS_HDL
The new credentials handle is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

72 Policy Director Programming Guide and Reference

azn_creds_num_of_subjects()
Returns the number of individual credentials in a credentials chain.

Syntax
azn_status_t
azn_creds_num_of_subjects(

azn_creds_h_t creds,
unsigned int *num_of_subjects

);

Parameters
creds – input

Handle to a credentials structure

num_of_subjects – output
Number of credentials in the credentials structure upon return.

Remarks
This call returns the number of individual credentials, num_of_subjects, in a
credentials chain creds. Credentials chains are created by the azn_creds_combine()
function.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_ATTR_INVALID_INTEGER_REF
The integer reference is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 73

azn_decision_access_allowed()
Makes an access control decision.

Syntax
azn_status_t
azn_decision_access_allowed(

azn_creds_h_t creds,
azn_string_t protected_resource,
azn_string_t operation,
int *permission

);

Parameters
creds – input

Handle to the initiator’s credentials.

protected_resource – input
Name of the request’s target.

operation – input
Name of the requested operation.

permission – output
Value of the returned permission. Will be either AZN_C_PERMITTED or
AZN_C_NOT_PERMITTED if the returned status value is AZN_S_COMPLETE.

Calling applications are bound by the decision returned using the permission
argument only when the returned status code is AZN_S_COMPLETE.

When the returned status code is not AZN_S_COMPLETE, the returned
permission might be set to any value.

Remarks
This call decides whether the initiator with credentials creds is authorized to
perform the operation operation on the target protected_resource. The decision is
returned through permission.

azn_decision_access_allowed() is a convenience function for
azn_decision_access_allowed_ext() with app_context=NULL and
permission_info=NULL.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_INVALID_RESOURCE
The target name is invalid.

74 Policy Director Programming Guide and Reference

AZN_S_INVALID_OPERATION
The operation has no meaning for the specified target.

AZN_S_INVALID_PERMISSION_REF
The integer reference to return the permission is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 75

azn_decision_access_allowed_ext()
Makes an access control decision by using application-specific context information;
returns information about why the decision was made.

Syntax
azn_status_t
azn_decision_access_allowed_ext(

azn_creds_h_t creds,
azn_string_t protected_resource,
azn_string_t operation,
azn_attrlist_h_t app_context,
int *permission,
azn_attrlist_h_t *permission_info

);

Parameters
creds – input

Handle to the initiator’s credentials

protected_resource – input
Name of the request’s target.

operation – input
Name of the requested operation

app_context – input
Attribute list that contains application-specific context access control
information (ACI). A NULL value indicates that there is no context ACI.

permission_info – input
Pointer to an attribute list through which the implementation might return
implementation-specific information about the decision. If a NULL value is
passed as input, then no information will be returned.

permission – output
Value of the returned permission. Will be either AZN_C_PERMITTED or
AZN_C_NOT_PERMITTED if the returned status value is AZN_S_COMPLETE.

Calling applications are bound by the decision returned using the permission
argument only when the returned status code is AZN_S_COMPLETE.

When the returned status code is not AZN_S_COMPLETE, the returned
permission can be set to any value.

permission_info – output
Pointer to an attribute list through which the implementation can return
implementation-specific information about the decision. If a NULL value is
passed as input, then no information will be returned.

Remarks
This call decides whether the initiator with credentials creds is authorized to
perform the operation operation on the target protected_resource. Optionally, callers
can supply application-specific context access control information (ACI) by using
the app_context argument. The decision is returned through permission.

Optionally, the implementation can return implementation-specific information
about the decision through permission_info.

76 Policy Director Programming Guide and Reference

The constants AZN_C_REQUEST_TIME, AZN_C_AUTHN_QUALITY,
AZN_C_REQUESTER_LOC, and AZN_C_REQUEST_ROUTE_QOP can be used as
the name attributes of entries in the app_context attribute list to communicate
common types of context.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_INVALID_RESOURCE
The target name is invalid.

AZN_S_INVALID_OPERATION
The operation has no meaning for the specified target.

AZN_S_INVALID_PERMISSION_REF
The integer reference to return the permission is invalid.

AZN_S_INVALID_APP_CONTEXT_HDL
The attribute list handle for the context ACI is invalid.

AZN_S_INVALID_ATTRLIST_HDL
The attribute list handle for the returned permission_info is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 77

azn_error_major()
Returns the major error code that is associated with a returned status code.

Syntax
unsigned int
azn_error_major(

azn_status_t status_code
);

Parameters
status_code – input

Previously returned status code by any of the azn_* routines.

Remarks
This call returns the major error code associated with a previously returned status
code.

Return Values
Any of the defined major error codes, AZN_S_*, is returned.

78 Policy Director Programming Guide and Reference

azn_error_minor()
Returns the implementation-specific minor error code that is associated with a
returned status code.

Syntax
unsigned int
azn_error_minor(

azn_status_t status_code
);

Parameters
status_code – input

Previously returned status code by any of the azn_* routines.

Remarks
This call returns the minor error code associated with a previously returned status
code.

Return Values
An implementation-specific minor error code is returned. For a complete list of
minor error codes, see the dceaclmsg.h file.

Chapter 5. Authorization API manual pages 79

azn_id_get_creds()
Returns a handle to the credentials associated by a specified authorization
authority with a specified identity.

Syntax
azn_status_t
azn_id_get_creds(

azn_string_t authority,
azn_string_t mechanism_id,
azn_buffer_t mechanism_info,
azn_creds_h_t new_creds

);

Parameters
authority – input

Identification (id) of the authorization authority to be used to build the
credential. A NULL input value selects a default.

mechanism_id – input
Authentication mechanism that is used to generate the identity passed through
mechanism_info. A NULL input value selects a default authentication
mechanism.

mechanism_info – input
Buffer containing initiator access control information (ACI), which consists of
identity information obtained from an authentication service. The
authentication service used to produce this information should be identified
using the mechanism_id argument. A NULL input value denotes the default
identity for the selected authentication mechanism from the environment.

new_creds – output
Handle to the credentials structure that holds the returned creds.

Remarks
This call builds an authorization credentials structure, referenced by the returned
handle new_creds, for the identity corresponding to the initiator Access Control
Information mechanism_info produced by an authentication mechanism
mechanism_id.

Specifying a NULL value for authority causes the default authority to be used. The
default authority is Policy Director, which is the only authority supported by this
release of the Policy Director Authorization API.

Specifying NULL values for mechanism_id and for mechanism_info causes the default
authentication mechanism and the default identity to be the authentication
mechanism used in the Policy Director secure domain.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

80 Policy Director Programming Guide and Reference

AZN_S_INVALID_AUTHORITY
The authorization authority identification (id) is invalid.

AZN_S_INVALID_MECHANISM
The security mechanism identification (id) is not supported by the selected
authorization authority.

AZN_S_INVALID_MECHANISM_INFO
The security mechanism information is not valid.

AZN_S_INVALID_NEW_CREDS_HDL
The credentials handle supplied for the new credentials is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 81

azn_initialize()
Initializes the authorization service.

Syntax
azn_status_t
azn_initialize(

azn_attrlist_h_t init_data,
azn_attrlist_h_t init_info

);

Parameters
init_data – input

Handle to an attribute list containing implementation-specific initialization
data.

init_info – output
Handle to an attribute list through which implementation-specific information
is returned from initialization.

Remarks
This function must be called before you call any other standard Authorization API
function.

Before calling this function, an API application must establish a security context in
the Policy Director secure domain. Use either azn_util_server_authenticate() or
azn_util_client_authenticate() to establish this context.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_INIT_DATA_HDL
The attribute list handle for the initialization information is invalid.

AZN_S_INVALID_ATTRLIST_HDL
The attribute list handle for the initialization information is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

82 Policy Director Programming Guide and Reference

azn_pac_get_creds()
Returns a handle to new credentials that are derived from a privilege attribute
certificate (PAC) by a specified PAC service.

Syntax
azn_status_t
azn_pac_get_creds(

azn_buffer_t pac,
azn_string_t pac_svc_id,
azn_creds_h_t *new_creds

);

Parameters
pac – input

Buffer structure that holds the supplied PAC.

pac_svc_id – input
Identification (id) of the PAC service that produces the creds.

new_creds – output
Handle to the credentials structure that holds the returned creds.

Remarks
This call uses the PAC service whose identification (id) is supplied to build a new
credentials structure that uses the information in the supplied PAC. Some PAC
services will cryptographically verify the protection or signature on the received
PAC and will return an error if the PAC cannot be verified.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_PAC
The PAC is invalid or cannot be verified by the PAC service.

AZN_S_INVALID_PAC_SVC
The id of the PAC service is invalid.

AZN_S_INVALID_NEW_CREDS_HDL
The credentials handle supplied is invalid.

AZN_S_AUTHORIZATION_FAILURE
The caller does not possess the authority required to invoke this function.

AZN_S_UNIMPLEMENTED_FUNCTION
This function is not supported by the implementation.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 83

azn_release_buffer()
Frees storage that is associated with a buffer

Syntax
azn_status_t
azn_release_buffer(

azn_buffer_t buffer
);

Parameters
buffer – input

Buffer whose memory is to be released.

Remarks
This call releases azn_buffer_t structures.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_BUFFER_REF
The buffer reference is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

84 Policy Director Programming Guide and Reference

azn_release_string()
Frees storage that is associated with a string.

Syntax
azn_status_t
azn_release_string(

azn_string_t string
);

Parameters
string – input

Pointer to the string to be released.

Remarks
This call releases azn_string_t structures.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_STRING_REF
The string reference is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 85

azn_release_strings()
Frees storage that is associated with an array of strings.

Syntax
azn_status_t
azn_release_strings(

azn_string_t strings[]
);

Parameters
strings – input

Pointer to the array of azn_string_t structures to be released.

Remarks
This call releases a NULL-terminated array of azn_string_t structures.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_INVALID_STRING_REF
The reference to the array of strings is invalid.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

86 Policy Director Programming Guide and Reference

azn_shutdown()
Cleans up internal authorization service state in preparation for shutdown.

Syntax
azn_status_t
azn_shutdown(
);

Remarks
This call is used by an application that has initialized the Authorization API using
the azn_initialize() function. Calls azn_shutdown() to clean up the Authorization
APIÆs memory and other internal implementation state before the application
exits.

Return Values
If successful, the function will return AZN_S_COMPLETE.

If the returned status code is not equal to AZN_S_COMPLETE, the major error
codes will be derived from the returned status code with “azn_error_major()” on
page 78.

AZN_S_COMPLETE
Successful completion.

AZN_S_FAILURE
An error or failure has occurred. Use “azn_error_minor()” on page 79 to derive
specific minor error codes from the returned status code.

Chapter 5. Authorization API manual pages 87

azn_unauth_t
Is used by the Authorization API as an input of credential and other information
for unauthenticated users in the Policy Director secure domain.

Syntax
typedef struct {

OM_uint32 ipaddr;
char *qop;
char *user_info;
char *browser_info;

} azn_unauth_t;

Values
ipaddr

IP address of requesting user.

qop
Quality of protection that is required for requests that are made by this user.

user_info
Additional user information that might be required for auditing.

browser_info
Browser (if any) that is employed by the user.

Remarks
This data structure is used to pass information about an unauthenticated user into
the azn_id_get_creds() interface. The content of each element of this structure is
determined by the application, based on application requirements.

88 Policy Director Programming Guide and Reference

azn_util_client_authenticate()
Performs a login from a username and password.

Syntax
OM_uint32 azn_util_client_authenticate(

const azn_string_t principal_name,
const azn_string_t password

);

Parameters
principal_name – input

Name of the principal (user) to be logged in.

password – input
Text password for the user.

Remarks
This call performs a login from a username and password pair. Starts a
background thread to refresh the login context as necessary.

Return Values
Returns AZN_S_COMPLETE on success, error code on failure.

Chapter 5. Authorization API manual pages 89

azn_util_password_authenticate()
Performs a login for a username and password pair, and returns authentication
information when the login is successful.

Syntax
OM_uint32 azn_util_password_authenticate(

const azn_string_t principal_name,
const azn_string_t password,
azn_string_t mechanism_id,
azn_buffer_t authinfo

);

Parameters
principal_name – input

Name of the user (principal) used to log in.

password – input
Password for the user.

mechanism_id – output
Pointer to a buffer that is loaded with the results of the login when the login
attempt is successful.

authinfo – output
String-identifying authentication mechanism with which the user is
authenticated.

Remarks
This call performs a login for a username and password pair, and returns
authentication information when the login is successful. Does not establish a
security context for the application. The mechanism_id and authinfo returned can
then be appended with data specific to the principal and passed into the
azn_id_get_creds() call.

The authentication mechanism used depends upon the underlying authentication
mechanism that was configured when the Authorization API was installed.

The mechanism_id string is allocated by the utility function and must be freed using
azn_release_string() when no longer needed.

Return Values
Returns AZN_S_COMPLETE on success, error code on failure.

90 Policy Director Programming Guide and Reference

azn_util_server_authenticate()
Performs a login from a keytab file, and starts a background thread to refresh the
login context as necessary.

Syntax
OM_uint32 azn_util_server_authenticate(

const azn_string_t principal_name,
const azn_string_t keytab_path

);

Parameters
principal_name – input

Path to the keytab file containing the principal’s key.

keytab_path – input
Name of the user (principal) to log in.

Remarks
Performs a login from a keytab file, and starts a background thread to refresh the
login context as necessary.

In order to use this utility function, applications that operate in a Policy Director
secure domain that uses an LDAP user registry must use the DCE commands to
create a keytab file.

Return Values
Returns AZN_S_COMPLETE on success, error code on failure.

Chapter 5. Authorization API manual pages 91

92 Policy Director Programming Guide and Reference

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

93

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years._ All rights
reserved.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
FirstSecure
IBM
SecureWay

94 Policy Director Programming Guide and Reference

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

AuthAPI DASCOM, Inc.
DASCOM DASCOM, Inc.
IntraVerse DASCOM, Inc.
NetSEAL DASCOM, Inc.
NetSEAT DASCOM, Inc.
Solaris Sun Microsystems, Inc
WebSEAL DASCOM, Inc.

Appendix. Notices 95

96 Policy Director Programming Guide and Reference

Index

A
about this book v
access, LDAP 19
access control decisions

making 74
making and extending 76

access decision function (ADF) 4
access enforcement function (AEF) 4
ACF (see attribute configuration files) 35
adding

additional application-specific
context 27

attributes for LDAP access 19
attributes for local cache mode 16
attributes for remote cache mode 16
authorization to an application 5
credentials and handle 62
name or buffer value to attribute

list 53
name or value to attribute list 52
principal to a group 37
principal to an organization 37

additional user information 23
address of data structure 24
ADF (access decision function) 4
ADK 4
Administration Guide references

authorization service 34
Policy Director CAS 41

administrator’s distinguished name 20
AEF (access enforcement function) 4
AIX

libivauthzn.a library file 6
library linking 8
Policy Director operating system 2

allocated memory 28
API

attribute lists 8
authorization decisions 9
check_authorization 39
credentials 9
error handling 9
extensions 10
functions 8
Toolbox 1

API functions
azn_attrlist_add_entry() 52
azn_attrlist_add_entry_buffer() 53
azn_attrlist_create() 54
azn_attrlist_delete() 55
azn_attrlist_entry_get_num() 56
azn_attrlist_get_entry_buffer_value() 57
azn_attrlist_get_entry_string_value() 58
azn_attrlist_get_names() 59
azn_creds_combine() 62
azn_creds_create() 63
azn_creds_delete() 64
azn_creds_for_subject() 65
azn_creds_get_attrlist_for_subject() 67
azn_creds_get_pac() 69
azn_creds_modify() 71

API functions (continued)
azn_creds_num_of_subjects() 73
azn_decision_access_allowed() 74
azn_decision_access_allowed_ext() 76
azn_error_major() 78
azn_error_minor() 79
azn_id_get_creds() 80
azn_initialize() 82
azn_pac_get_creds() 83
azn_release_buffer() 84
azn_release_string() 85
azn_release_strings() 86
azn_shutdown() 87
azn_util_client_authenticate() 89
azn_util_password_authenticate() 90
azn_util_server_authenticate() 91
cdas_change_password 49
cdas_get_identity 48

application
authentication 13
Web 2

Application Development Kit (see
ADK) 4

applications
building 7
building an attribute list 27
deploying with the Authorization

API 32
determining user’s authorization

credentials 22
determining user’s identity 21

array of strings
memory, releasing 28
storage, freeing 86

assigning
handle for an empty attribute list 54
handle to empty credentials

structure 63
user credentials to a credentials

handle 27
attribute configuration files

authorization service 35
Policy Director CAS 45

attribute list 16
attribute list functions 8
attribute lists 11

adding name or buffer value 53
adding name or value 52
building for additional application

information 27
creating 11
creating and assigning a handle 54
deleting 11, 55
getting an attribute name 11
getting number of values 11
getting values 11
obtaining from a credetial 31
releasing memory 28
setting an entry 11

attributes
for LDAP access 19

attributes (continued)
for local cache mode 16
for remote cache mode 16

audience of this book v
audit

events 17
identifier 67
user information user_info 24

authenticated user identity 21
authenticating an application 13
authentication

checking 48
identity, user 23
information 24, 48, 60, 90
mechanisms 21
methods 24

authority, authorization 22
authorization

authority 22
check 39
credentials 22, 25, 26
decision 26
decisions 9, 27

Authorization API
audit events 17
buffer 24
buffers 10
building applications 7
changing the credential’s contents 31
character strings 10
converting credentials to a

transportable format 29
converting credentials to the native

format 29
creating a chain of credentials 30
demonstration example 32
deploying applications 32
determining number of

credentials 30
error codes 6
functions and data types 8
handling credentials 29
header files 6
initializing 15, 82
installation runtime requirements 32
installing 6
installing software requirements 32
introducing 3
manual pages 51
obtaining attribute list from a

credential 31
obtaining credential from a chain 30
shutting down 29
software requirements 7
specifying cache mode type 15
tasks 12

Authorization server
customizing 36
introducing vi
specifying cache mode 15

97

authorization service
configuring 37
initializing 15, 82
introducing 33
minor error codes 6
minor errors 12
reference information 38
specifying pathnames 17
starting 20
submitting requests to 4

authzn_demo demonstration
example 32

azn_attrlist_add_entry() 17, 27, 52
azn_attrlist_add_entry_buffer() 27, 53
azn_attrlist_create() 27, 31, 54
azn_attrlist_delete() 55
azn_attrlist_entry_get_num() 56
azn_attrlist_get_entry_buffer_value() 57
azn_attrlist_get_entry_string_value() 58
azn_attrlist_get_names() 59
azn_attrlist_h_t 11, 28
azn_authdce_t 23, 60
azn_authldap_t 23, 61
azn_buffer_desc 10
azn_buffer_t 11
AZN_C_AUDIT_ID 67
AZN_C_AUTHN_QUALITY 77
AZN_C_EMPTY_BUFFER 10
AZN_C_INITIATOR_INDEX 30, 31, 65
AZN_C_NO_BUFFER 10
AZN_C_NOT_PERMITTED 28, 74, 76
AZN_C_PERMITTE 76
AZN_C_PERMITTED 28, 74
AZN_C_REQUEST_ROUTE_QOP 77
AZN_C_REQUEST_TIME 77
AZN_C_REQUESTER_LOC 77
AZN_C_VERSION 20
azn_creds_combine() 30, 62
azn_creds_create() 28, 30, 31, 63
azn_creds_delete() vi, 64
azn_creds_for_subject() 30, 65
azn_creds_get_attrlist_for_subject() 31,

67
azn_creds_get_pac() 29, 69
azn_creds_h_t 12, 28, 39
azn_creds_modify() 31, 71
azn_creds_num_of_subjects() 30, 31, 73
azn_decision_access_allowed(27
azn_decision_access_allowed() vi, 26, 27,

74
azn_decision_access_allowed_ext() vi,

27, 76
azn_error_major() 78
azn_error_minor() 79
azn_id_get_creds(27
azn_id_get_creds() vi, 24, 29, 80
azn_init_audit_file 17
azn_init_cache_refresh_interval 17
azn_init_db_file 17
azn_init_ldap_admin_dn 20
azn_init_ldap_admin_pwd 20
azn_init_ldap_host 20
azn_init_ldap_port 20
azn_init_ldap_ssl_keyfile 20
azn_init_ldap_ssl_keyfile_dn 20
azn_init_ldap_ssl_keyfile_pwd 20
azn_init_listen_flags 17, 18

azn_init_mode 15
azn_init_namespace_location 18
azn_init_qop 16
azn_init_tcp_port 18
azn_init_udp_port 18
azn_initialize() vi, 20, 82
azn_operation_read 26
azn_operation_traverse 26
azn_pac_get_creds() vi, 29, 83
azn_release_buffer() 84
azn_release_string() 10, 85
azn_release_strings() 10, 86
AZN_S_ATTR_INVALID_INTEGER_REF 73
AZN_S_ATTR_VALUE_NOT_STRING_TYPE 58
AZN_S_AUTHORIZATION_FAILURE 65,

72
AZN_S_COMPLETE 12
AZN_S_FAILURE 12
AZN_S_INVALID_ADDED_CREDS_HDL 62
AZN_S_INVALID_APP_CONTEXT_HDL 77
AZN_S_INVALID_ATTR_BUFFER 53
AZN_S_INVALID_ATTR_INTEGER_REF 56
AZN_S_INVALID_ATTR_NAME 52
AZN_S_INVALID_ATTR_VALU 52
AZN_S_INVALID_ATTRLIST_HANDLE 52
AZN_S_INVALID_AUTHORITY 81
AZN_S_INVALID_BUFFER_REF 84
AZN_S_INVALID_CREDS_HDL 62, 64
AZN_S_INVALID_MECHANISM 81
AZN_S_INVALID_MECHANISM_INFO 81
AZN_S_INVALID_MOD_FUNCTION 71
AZN_S_INVALID_NEW_CREDS_HDL 62,

81
AZN_S_INVALID_OPERATION 75
AZN_S_INVALID_PAC 83
AZN_S_INVALID_PAC_SVC 69, 83
AZN_S_INVALID_PERMISSION_REF 75
AZN_S_INVALID_RESOURCE 74
AZN_S_INVALID_STRING_REF 85, 86
AZN_S_INVALID_SUBJECT_INDEX 65
AZN_S_UNIMPLEMENTED_FUNCTION 62,

65
azn_shutdown() 20, 87
azn_status_t 12
azn_string_t 10, 11, 22, 23
azn_unauth_t 23, 88
azn_util_client_authenticate() 14, 89
azn_util_password_authenticate() 21, 90
azn_util_server_authenticate() vi, 14, 91
aznutils.h 6, 12

B
book

audience v
conventions vii
organization v
what is new this release v

Boundary server 1
browser information 24
buffer attribute value 57
buffers

declaration 24
empty 10
introduction to 10
none 10
release of memory 28
storage, freeing 84

build process
for Authorization server 36
for CAS server 46

building
applications 7
attribute lists 27
customized authorization servers 36

C
cache modes 15
CAS (Credentials Acquisition

Service) 41
cas_auth.idl 42
cdas_change_password 42, 49
cdas_get_identity 42, 48
CDS namespace 18, 37
cell_admin 23
chain of credentials 30, 73
changing

contents of a credential 31
existing credential 71

character strings 10
check_authorization 34, 39
checking authorization 39
cleaning up 28, 87
cn=root 23
combining credentials and handle 62
commands

dcecp 37
ivadmin server register 38
ivadmin server register dbreplica 17

components of
ADK 4, 6
FirstSecure 1
Policy Director 7

configuring
Authorization API 16
custom Authorization server 37
network environment 13
Policy Director secure domain 5

contents of the credential 31
conventions vii
converting

credentials to a transportable
format 29

credentials to the native format 29
creating

account plus password 37
attribute lists 11
Authorization server principal 37
chain of credentials 30
empty credentials structure 63
new attribute list 16, 20
privilege attribute certificates 69
RPC entry in the CDS namespace 37
valid or empty attribute list 54

credentials 9
changing 71
changing the credential’s contents 31
combining with a handle 62
converting to a transportable

format 29
converting to the native format 29
creating a chain of credentials 30
creating and assigning a handle 63
deleting 64

98 Policy Director Programming Guide and Reference

credentials 9 (continued)
determining number of

credentials 30
extracting individual credentials 65
getting input information 61
handle 12, 27
invoking a privilege attribute

certificate 69
making access control decisions 74
making extended access control

decisions 76
obtaining attribute list from a

credential 31
obtaining for user authorization 22
obtaining from a chain of

credentials 30
returning handle to new PAC

credentials 83
returning in a chain 73
returning information from 67
user authorization 25
using as input of information 88

credentials acquisition service
customizing 46
deploying 47
reference information 47

Credentials Acquisition Service (see Policy
Director CAS) 41

creds_attrlist 31
custom-protected object 26
customizing

Authorization server 36
credentials acquisition service 46

D
data stream

integrity 16
privacy 16

data type structure
azn_attrlist_h_t 11
azn_buffer_t 10
azn_status_t. 12
azn_string_t 10

data type structures
azn_authdce_t 60
azn_authldap_t 61
azn_unauth_t 88

data types 8
DCE

client runtime requirements 32
library linking 8
login using a keytab file 14
principal 18
runtime 7
user registry 23
user registry identity 23

dceaclmsg.h 6, 12
dcecp command 37
decision, authorization 27
decisions

access control 74, 76
authorization 9, 26

defining
extranet 2
security policy 5

deleting
attribute list 11, 55
credentials 64

demonstration example 32
dentity handle 80
deploying

application into secure domain 5
applications 32
custom CAS server 47

determining
authorization credentials for a

user 22
identity for a user 21
number of credentials in a credentials

chain 30
disabling

notification listener 17
refreshes of local authorization policy

database 17
distinguished name 20
DNS (domain name system) 18
domain name system (DNS) 18
dynamic_port_selection 17

E
empty credentials structure 63
enabling

application to log in 14
caller to manage password

information 49
listener to use ivadmin command 17
listener to use TCP 17
listener to use UDP 17
notification listener 17

environment, runtime 13
error codes 6

aznutils.h 6, 12
dceaclmsg.h 6, 12
ogauthzn.h 6, 12

error handling 9, 12
example of

assigning user identity
information 25

attribute list initialization data 18
creation of a new attribute list 16
declaring a buffer 24
demonstration program

authzn_demo 32
extern_auth.idl 35, 42

extending
API function standard 10
function for obtaining an access

decision 27
extensions, API 10
extern_auth.idl 35
external authorization server (see

Authorization server) 27
external authorization service (see

authorization service) 33
extracting individual credentials 65
extranet 2

F
files

aznutils.h 6, 12

files (continued)
dceaclmsg.h 6, 12
ogauthzn.h 6, 12
source for Authorization server 36
source for CAS server 46

FirstSecure
components 1
documentation 2
introduction to 1
service and support vi
Web information vii

format
credentials, native 29
credentials, transportable 29

freeing
array of strings storage 86
buffer storage 84
string storage 85

G
getting

attribute list name 11
client credentials identity 48
entry string value 58
handle for a specified identity 80
name attributes 59
number of attribute entries 56
number of buffer attribute entries 57
number of values for attribute list

name 11
value attributes 11

H
handle 62, 64, 65, 80

credentials 12, 27, 63
handling credentials 29
header files 6

aznutils.h 6
ogauthzn.h 6

host name, LDAP server 20
HTTP header 14

I
IBM SecureWay

Boundary Server 1
FirstSecure (see FirstSecure) vi
Intrusion Immunity 1
Policy Director (see Policy Director) 1
Toolbox 1, 6
Trust Authority 1

identities, user 21, 23
IDLs

cas_auth.idl 42
extern_auth.idl 35

implementation modes 3
implementing

custom credentials acquisition
service 46

custom external authorization
server 36

initialization 9
initializing

authorization service 15, 82
data 82

Index 99

initializing (continued)
invalid data 82

initiator 4
installing

Authorization API 6
Policy Director 32

integrity 16
interface

cdas 45
extern_auth 35
files 36, 46

interfaces
Authorization API manual pages 51
Toolbox API 1

International Organization for
Standardization (ISO) 4

introduction to
Authorization API 3
authorization service 33
Credentials Acquisition Service 41

Intrusion Immunity, IBM SecureWay 1
IP address 18, 24
ISO (International Organization for

Standardization) 4
IV_DCE 23
IV_LDAP 23
IV_UNAUTH 23
ivacld-servers 13
ivadmin server register command 17, 38
ivauthzn_init_params_t vi
ivauthzn_service_mode_t vi
ivAuthznInit() vi
ivBuildLocalPrincipal() vi
ivBuildPrincipalByName() vi
ivBuildPrincipalFromPAC() vi
ivBuildUnauthPrincipal() vi
ivCheckAuthorization() vi
ivFreePrincipal() vi
ivServerLogin() vi

K
key file, SSL 20
key label, SSL 20
keytab file 14, 91

L
LDAP

adding attributes for access 19
administrator’s distinguished

name 20
administrator’s password 20
distinguished name 61
key file password 20
port number 20
server host name 20
server key label 20
SSL key file 20
user registry 23
user registry identity 23

ldap_dn 23
length

data structure 24
library links 7
listener, notification 17
local cache mode 3, 15, 16

logging in
using a DCE keytab file 14
using a password 14
using keytab file 91
using username and password 89
using username and password

pair 90
login utility functions 13

M
major errors 6, 12, 78
MAKEFILE

for Authorization server 36
for CAS server 46

making
access control decisions 74
extended access control decisions 76

managing password information 49
manual pages, summary 51
mapping

requested resource to a protected
object 26

user operation to a permission 26
memory

credential structure 12
release 28

method of authentication 24
minor errors 6, 12, 79
mod_info 31
mod_svc_id 31
mode

local cache 3
remote cache 3

modes, specifying 15
modifying

contents of a credential 31
existing credential 71

N
name value 59
no protection 16
notices 94
notification listener 17
number for port, LDAP server 20
number of

buffer attribute entries 57
bytes in the data 10
credentials in a credentials chain 30
individual credentials in a chain 73
seconds before refreshing 17
value attributes in the entry 56
values for an attribute name 11

O
obtaining

attribute list from a credential 31
authorization decision 26, 27
credential from a chain of

credentials 30
user authorization credentials 22, 25
user identity 21

ogauthzn.h 6, 12
Open Group 4
optional tasks, Authorization API 13

organization of this book v
organization principal 37
output parameters

authorization decision 28
extended authorization decision 28

overview of Policy Director 1

P
PAC (privilege attribute certificate) 22,

29, 69, 83
pac_svc_id 29
password

accessing the SSL key file 20
authenticating 89, 90
authenticating a user 21
changing 49
creating for an account 37
LDAP administrator 20
managing using cas_auth.idel 42
managing using cdas IDL

interface 42
storing in a keytab file 14
using to log in 14

permissions 26
persistent authorization policy

database 17
PKI (public key infrastructure) 1
placing the data structure into a

buffer 24
platforms

for Authorization server 36
for CAS server 46

policy database replica 17
Policy Director

introduction to 2
overview of 1
Web information vii

Policy Director CAS
customizing 46
deploying a custom version 47
introducing 41

port number
for a TCP port 18, 20
for a UDP port 18

ports, using 17
prerequisities

for Authorization server 36
for CAS server 46

principal 23
privacy 16
privilege attribute certificate (PAC) 22,

29, 69, 83
protected object 26
protected object namespace 26
protection level 24
providing

additional parameters 27
user authentication information 60

public key infrastructure (PKI) 1

Q
quality of protection level 24

R
references, Administration Guide 34, 41

100 Policy Director Programming Guide and Reference

refreshing
local authorization database 17

refreshing the login context 91
registry, user 7, 16, 22
releasing

allocated memory 28
memory allocated 12

remote-acl-users 13
remote cache mode 3, 15, 16
removing

attribute list 55
credentials 64

requested resource 26
required tasks, Authorization API 13
requirements, software 32
returning

access control decision
information 76

entry string value 58
handle 71
handle for a specified identity 80
handle to credentials structure 65
handle to new PAC credentials 83
individual credentials in a chain 73
information from a credentials

structure 67
major error code 78
minor error code 79
name attributes 59
number of buffer attribute entries 57
number of value attributes 56
privilege attribute certificates 69

RPC
cdas_change_password 42
cdas_get_identity 42
check_authorization 34
entry in the CDS namespace 18

RPC entry in the CDS namespace 18, 37
runtime environment 13

S
secure domain 7, 61
Secure Sockets Layer (SSL) 20
SecureWay products (see IBM

SecureWay) 1
security policy 5
server

host name, LDAP 20
implementing custom CAS server 46
implementing custom external

authorization 36
name or label 18

service and support vi
setting an attribute list entry 11
shutdown 9, 28, 29
shutting down 87
software requirements 7, 32
Solaris

libivauthzn.so library file 6
library linking 8
Policy Director operating system 2

source files
for Authorization server 36
for CAS server 46

specify
pathnames for files 17

specifying
additional user information 23

specifying (continued)
authentication user registry type 22
authorization authority 22
type of cache mode 15
user authentication identity 23

SSL
communications 20
key file 20
key file password 20
key label 20

standard, The Open Group 4
starting

authorization service 20
Web addresses vii

status codes 12, 78, 79
storage

array of strings, freeing 86
buffer, freeing 84
string, freeing 85

strings
freeing of storage 85
release of memory 28
see also array of strings 28
value 58

structures
azn_authdce_t 60
azn_authldap_t 61
azn_unauth_t 88

successful login 90
summary of

API extensions 10
API functions 8
attribute list functions 8
attribute list tasks 11
attributes for LDAP access 20
authentication method elements 24
authentication parameters 25
Authorization API manual pages 51
Authorization API optional tasks 13
Authorization API required tasks 13
Authorization API tasks 12
authorization decision functions 9
authorization decision output

parameters 28
buffer names and values 10
cache modes 15
conventions used vii
credentials functions 9
data types 8
error code files 12
initialization, shutdown, and error

handling functions 9
local cache mode attributes and

values 17
notification listening attributes 17
port types and numbers 18
port usage 17
remote cache mode attributes and

values 16
SSL attributes for LDAP access 20
user identity types 21, 23
user registry types 23

supported platforms
for Authorization server 36
for CAS server 46

T
tasks, Authorization API 12
TCP (Transmission Control Protocol) 17
TCP port 17
TCP port number 20
Toolbox, IBM SecureWay 1, 6
tools

DCE application development 36, 46
IBM SecureWay Toolbox (Toolbox) 1,

6
trademarks 94
Transmission Control Protocol (TCP) 17
Trust Authority, IBM SecureWay 1
types of

additional user information 23
authentication parameters 25
authentication supported by IDL

interface 42
cache modes 15
user identifies 23
user identities 21
user registries 22

U
UDP

User Datagram Protocol ports 17
unauthenticated user 23
unauthenticated user identity 21
unauthenticated user registry 23
unauthenticated users 88
use_tcp_port 17
use_udp_port 17
user

additional auditing information 24
assigning credentials to a credentials

handle 27
authentication identity 23
authentication information 60
authorization credentials 22, 25
mapping the user operation 26
obtaining an identity 21
specifying additional information 23
unauthenticated 23

User Datagram Protocol (see UDP) 17
user registry

specifying the type of 16, 22
specifying the user authentication

identity 23
specifyingLDAP 7

username and password 14, 89, 90
using

as input of credentials
information 88

keytab file to log in 91
randomly assigned ports 17
TCP port 17
UDP port 17
username and password to log in 89,

90
utility function error codes

major errors 6
minor errors 6

Index 101

V
value attributes

buffer 57
entry number 56
name 59
string 58

values 10

version number 20

virtual private network (VPN) 1, 2

VPN (virtual private network) 2

W
Web

FirstSecure information vii
Policy Director information vii

what’s new for Policy Director v

Windows NT

DCE client runtime requirements 32
ivauthzn.dll library file 6
library linking 8
Policy Director operating system 2

Y
year 2000 readiness vi

102 Policy Director Programming Guide and Reference

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

