
Switch Network Interface for eServer

pSeries High Performance Switch Guide

and Reference

SC23-4869-03

���

Switch Network Interface for eServer

pSeries High Performance Switch Guide

and Reference

SC23-4869-03

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 35.

Fourth Edition (August 2005)

This edition applies to Switch Network Interface for eServer pSeries High Performance Switch.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department H6DS-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . v

Who Should Use This Book . v

Highlighting . v

Case-Sensitivity in AIX . v

ISO 9000 . v

Related Information . v

Chapter 1. Overview of Switch Network Interface . 1

Switch Network Interface and Multi-Link Support Overview 1

User Space Job Support . 2

Technical Large Pages Overview . 2

Shutdown a Partition . 3

Remote Direct Memory Access (RDMA) Overview . 3

Network Table Services Overview . 4

SNI Filesets . 4

Chapter 2. Configuring Switch Network Interface . 5

Configuration Prerequisites . 5

Setting Up the NIM Server . 6

Configuring SNI and Multi-Link Interface . 10

Tuning SNI . 11

Chapter 3. Error Messages . 13

chgsni Error Messages . 13

Chapter 4. SNI Commands . 15

chgmlt Command . 15

chgsni Command . 16

defmlt Command . 18

ntblclean Command . 19

ntblstatus Command . 21

Chapter 5. SNI Subroutines . 23

ntbl_adapter_resources Subroutine . 23

ntbl_clean_window Subroutine . 24

ntbl_disable_window Subroutine . 26

ntbl_enable_window Subroutine . 27

ntbl_load_table Subroutine . 28

ntbl_query_window Subroutine . 29

ntbl_status_adapter Subroutine . 30

ntbl_unload_window Subroutine . 32

ntbl_version Subroutine . 33

Appendix. Notices . 35

Trademarks . 36

Index . 37

© Copyright IBM Corp. 2003, 2005 iii

iv Switch Network Interface for eServer pSeries HPS Guide and Reference

About This Book

This book provides information about concepts, tools, and techniques for using switch network interface

(SNI) for eServer pSeries High Performance Switch (HPS). In addition, it includes the reference

information for subroutines and commands specific to SNI. Use the information in this book if you plan to

use an HPS or are managing an HPS on your system.

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise

indicated in new editions.

Who Should Use This Book

This book is intended for network administrators, enterprise system administrators, experienced system

administrators, system engineers, and system programmers who are configuring or managing one or more

eServer pSeries High Performance Switches.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items

whose names are predefined by the system. Also identifies graphical objects such as buttons,

labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a

programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

Case-sensitive file names on AIX can also cause problems for personal computer clients running Windows

operating systems because these operating systems normally treat file names as caseless. AIX file names

that differ only in case would be perceived as the same file name from a PC client.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Information

See the following books for additional information:

v pSeries High Performance Switch Planning, Installation, and Service

v eServer Hardware Management Console Installation and Operations Guide

v RS/6000 SP System Performance Tuning Update, an IBM Redbook

v AIX 5L Version 5.3 System Management Guide: Communications and Networks

v AIX 5L Version 5.3 Commands Reference

© Copyright IBM Corp. 2003, 2005 v

v AIX 5L Version 5.3 Performance Management Guide

v AIX 5L Version 5.3 Installation Guide and Reference

vi Switch Network Interface for eServer pSeries HPS Guide and Reference

Chapter 1. Overview of Switch Network Interface

This section contains information about the following topics:

v “Switch Network Interface and Multi-Link Support Overview”

v “User Space Job Support” on page 2

v “Technical Large Pages Overview” on page 2

v “Remote Direct Memory Access (RDMA) Overview” on page 3

v “Network Table Services Overview” on page 4

v “SNI Filesets” on page 4

Switch Network Interface and Multi-Link Support Overview

Switch network interface (SNI) and multi-link support are the AIX components that provide support for the

eServer pSeries High Performance Switch (HPS). The HPS is a network data transfer system using

technology based on the architecture of SP Switch and SP Switch2. This technology is available for the

IBM eServer p5 590/595 and 575 clustered servers. It can be used to help increase the communication

bandwidth between servers and partitions within the cluster. Some additional benefits of implementing this

communication subsystem include the following:

v Parallel, interconnected communication channels that form a unified switch network

v Opportunity to improve communication bandwidth and reductions in latency

v Option to use either fiber optic cables or copper cables for switch-to-switch network connections

v Improved reliability, availability, and serviceability (RAS)

SP Switch technology used several types of switch adapters to connect system components to the switch

network. With the HPS, all network connections pass through an interface card packaged as either a

2-Link SNI or a 1-Link SNI. Each link on the SNI allows messages to pass between the server bus and the

switch.

For example, using the SP Switch2, a Cluster 1600 switch network could be configured with two SP

Switch2 adapters at each communication point. With the SP Switch2, the two switch adapters formed two

independent switch networks. If one of the adapters developed a fault, the network experienced reduced

performance.

In a similar manner, the HPS can also use SNIs with two or four links at each communication point.

However, with the HPS, when one of the interfaces develops a fault, its load is automatically directed to

the other links through the software. Although there might be reduced performance at the failed interface

component, the overall performance of the HPS network remains unchanged.

For detailed information about the HPS, see pSeries High Performance Switch Planning, Installation, and

Service, order number GA22-7951.

SNI Support on AIX

Support for HPS on AIX consists of two logical device names: snix and mlt0, where x is the device’s

minor number. The logical device snix refers to the logical device name of one of the external links on a

2-link or 1-link SNI. The 2-linkSNI has multiple links, and AIX considers each external link a distinct device.

For example, the 2-link SNI for HPS will present 2 devices, sni0 and sni1. Each device will be

administered independently. Attributes of the SNI can be changed using the chgsni command. For

information about changing the attributes using the chgsni command, see “chgsni Command” on page 16.

The corresponding IP interface for each snix logical device is snx. The snx IP network interface is

configured like any other IP network interface, and it functions like any other IP network interface.

© Copyright IBM Corp. 2003, 2005 1

The multilink interface consists of the mlt0 logical device. Only one multilink support interface occurs per

operating system instance. The related IP network interface for this device is ml0. The ml0 interface

distributes all its network traffic over the switch network interfaces. The ml0 IP network interface is

configured like any other IP network interface, and it functions like any other IP interface. Sending network

traffic over the m10 interface is not necessary, but it can help improve performance by distributing the traffic

over the underlying snx interfaces. Sending network traffic over the ml0 interface also improves the

Reliability and Serviceability characteristics. If one of the underlying snx interfaces suffers a fault, the ml0

interface automatically transfers its load to the other interfaces. When the fault is removed, normal

operations resume automatically.

User Space Job Support

The term user space means that communication on the link is done by the user application directly,

without having to copy the message from or to the kernel. SNI supports the running of user space jobs.

User space jobs are parallel applications started by a job scheduler using the network table subroutines.

The supported message-passing APIs are Message Passing Interface (MPI) and the Low Level API

(LAPI). Each SNI supports up to 64 windows for running parallel applications. A window is a virtual port or

connection that allows applications to perform message passing over the HPS.

For more information about network table subroutines, see Chapter 5, “SNI Subroutines,” on page 23.

Technical Large Pages Overview

SNI supports Technical Large Pages (TLP), which help provide high performance by decreasing the

amount of address translation while copying, sending, or receiving large blocks of data. The SNI’s IP

interface can use TLP for backing its send and receive pools. SNI also supports parallel applications that

choose to use TLP for communications data areas. Such applications can send and receive data directly

to and from TLP.

Note: If the required number of TLP is not available, the SNI devices do not configure.

Use the following equation to determine how large to make your TLP pool:

number of large pages = A + B + C + D

Where:

v A = 1 + (number_of_sni * 2)

v B = (number_of_sni * total_num_windows)

v C = (num_adpt * ((num_windows * 0x40000 + 0xFFFFFF) / 0x1000000));

v D = (send pool size + receive pool size) / 0x1000000

v total_num_windows = num_windows + 7

In the equation, the number_of_sni refers to the number of snix logical interfaces present in the partition.

You can determine the num_windows, send pool size, and receive pool size for the AIX partition by using

the following command:

lsattr -El snix

Where x is the device minor number. For example, 0, 1, 2 or 3.

For more information about using large pages, see Large Page Support in AIX 5L Version 5.3

Performance Management Guide.

2 Switch Network Interface for eServer pSeries HPS Guide and Reference

Shutdown a Partition

Use the shutdown command to reboot a partition. This command can be issued from the AIX partition,

the Hardware Management Console (HMC) GUI, or the Cluster Systems Management (CSM) server.

Remote Direct Memory Access (RDMA) Overview

SNI support software contains RDMA capability. RDMA is the transport capability that allows processes

running on one node to directly access (read or write against) the memory of processes running on a

different node connected by an RDMA-capable network. The SNI adapters at both ends affect the transfer

of data without any protocol processing on the target end point of the transport operation. The target end

point is the one that does not initiate the transport.

RDMA can be used to:

v To remove processors from the movement of data. This allows for better overlap of computation and

communication.

v To reduce the stress on the memory subsystems by reducing the number of bus crossings. There is one

IO bus crossing instead of the traditional two memory buses and one IO bus crossing.

v To give users a one-sided programming model.

v To allow the protocols to efficiently stripe a message or different messages from a single task across

multiple SNI to make use of the available communication bandwidth in parallel.

v To provide improved raw transport performance. If the transport bottleneck is the copy rate (memory

bandwidth), the processor capacity, or the matching and early arrival buffering overhead, use of RDMA

might provide better transport bandwidth.

Using RDMA

By default, the RDMA capability of the SNI adapters is turned off. Use the chgsni command to turn on

RDMA by setting the rdma_xlat_limit attribute for the SNI to a value greater than 0x0. 0x0 is the default

value. The rdma_xlat_limit attribute controls the maximum amount of memory allowed for RDMA on an

operating system instance (OSI).

Note: When RDMA is enabled by changing rdma_xlat_limit to a value greater than 0, it is possible for an

RDMA-enabled job to exceed the AIX pin limit and to hang the system. If the pin limit is exceeded

slowly enough the parallel application will catch a SIGDANGER signal and kill the job. However, if

the pin limit is exceeded too rapidly, AIX may resort to killing processes, including systems

processes, which may cause the system to appear to be hung. This situation may be prevented by

setting the rdma_xlat_limit to a number that is smaller than 4096 times the sum of the number of

large and small pages on the system.

When RDMA is turned on, the IP protocol automatically uses the RDMA capability. For user space jobs, an

additional LoadLeveler keyword (bulkxfer=yes) must be set in the LoadLeveler job control file to indicate

that this job is requesting RDMA. This ensures that users are able to run both RDMA and non-RDMA jobs

on the system. For more information, please see the LoadLeveler Using and Administration Guide.

Note: The RDMA option must be turned on or off for the entire cluster. If this option is not set

homogeneously across the entire cluster, SNI adapters cannot communicate because there are

version mismatch failures.

Chapter 1. Overview of Switch Network Interface 3

Network Table Services Overview

The network table services provide an application programming interface that is necessary to start

applications that use the HPS. The network table describes all the information required for the tasks in a

job to communicate with each other. The network table services provide a thread-safe shared library (with

both 32-bit and 64-bit objects) and a set of commands to interact with the device’s ioctl subroutines, which

manipulate network tables and SNI device windows.

Job schedulers interact with the network table services in order to load, unload, and query network tables

for parallel applications running over the HPS. The network table services also provide job schedulers with

SNI device information needed for scheduling. The new network table services are similar to the job switch

resource table (JSRT) services provided for SP Switch systems.

For more information about network table subroutines, see Chapter 5, “SNI Subroutines,” on page 23. For

more information about network table commands, see “ntblclean Command” on page 19 and “ntblstatus

Command” on page 21.

SNI Filesets

The following filesets are shipped with SNI:

 Table 1. SNI filesets and their descriptions

Fileset Fileset description

devices.common.IBM.sni.rte Switch Network Interface Runtime

devices.common.IBM.sni.ml Multi Link Interface Runtime

devices.common.IBM.sni.ntbl Network Table Runtime

devices.chrp.IBM.HPS.rte IBM eServer pSeries High Performance Switch (HPS)

Runtime

devices.chrp.IBM.HPS.hpsfe IBM pSeries HPS Functional

devices.msg.en_US.common.IBM.sni.rte Switch Network Interface Messages

devices.msg.en_US.common.IBM.sni.ml Multi Link Interface Runtime

devices.msg.en_US.common.IBM.sni.ntbl Network Table Runtime Messages

devices.msg.en_US.chrp.IBM.HPS.rte pSeries HPS Runtime Messages

devices.msg.en_US.chrp.IBM.HPS.hpsfe pSeries HPS Functional Utility Messages

4 Switch Network Interface for eServer pSeries HPS Guide and Reference

Chapter 2. Configuring Switch Network Interface

This section contains information about preparing your system to use an HPS and configuring SNI. Certain

hardware and software requirements must be met to be able to use an HPS. In addition, a NIM server

may to be configured to perform the proper installation and initial configuration of the SNI and multilink

interface. After configuration, AIX commands can be used to manage and tune the SNIs and multilink

interfaces.

This sections contains the following topics:

v “Configuration Prerequisites”

v “Setting Up the NIM Server” on page 6

v “Configuring SNI and Multi-Link Interface” on page 10

v “Tuning SNI” on page 11

Configuration Prerequisites

Before proceeding with the configuration, make sure that your system meets the following hardware and

software requirements. For additional information, see pSeries High Performance Switch Planning,

Installation, and Service, order number GA22-7951.

Hardware Requirements

Clustered servers configured with the HPS must have the following hardware components:

v pSeries HPS

– All HPSs that you will be using

Note: It is not required to have one switch per frame. Some frames can be attached to a switch in

another frame. However, only one switch can be attached to a single frame.

– Additional switches must be mounted in a separate machine type 7040-W42 frame

v 2-Link or 1-Link switch network interface cards

– 1-Link Switch Network Interface

- Supported on IBM eServer p5 590 and IBM eServer p5 595 servers

- Configured for fiber optic switch cables

Note: This SNI feature must be ordered in pairs.

– 2-Link Switch Network Interface

- Non-interchangeable features designed for IBM eServer p5 575 servers.

- All feature types configured for copper switch cables.

v IBM eServer p5 590 and 595 servers – 1 to 16 servers per pSeries HPS cluster with the required

Hardware Management Consoles (HMC) and management server

v IBM eServer p5 575 server – 1 to 128 servers per pSeries HPS cluster with the required Hardware

Management Consoles (HMC) and management server

v Switch cables

– Server-to-switch: 1 m, 3 m or 10 m copper cables or 3.5 m, 10 m or 30 m fiber optic cables

– Switch-to-switch: up to 40 m fiber-optic cables or 10 m copper cables (maximum lengths)

v HMC

v CMS Management Server

v Administrative LAN Ethernet cables connecting all servers (including the management server) and all

HMCs in the cluster

© Copyright IBM Corp. 2003, 2005 5

Software Requirements

The following software is required:

v AIX 5.2 with 5200-06

v High Performance Switch Network Manager (HPSNM) – Switch management software (located on CSM

MS)

v IBM Cluster Systems Management for AIX 5L (CSM)

v IBM Web-based System Manager GUI

– Cluster-Ready Hardware Server

v Diagnostic software including:

– Service Focal Point (SFP) – Problem management software (located on HMC)

– Service Agent – Service Gateway function between IBM and customer

– Inventory Scout Services – Vital Product Data and Microcode Management software

Optional AIX 5.2 with 5200-06 fileset:

v Reliable Scalable Cluster Technology (RSCT) – Components include:

– HATS

– HAGS

– configRM

– IBM Virtual Shared Disk

– Low-level communications application (LAPI)

Recommended software packages:

v Cluster Systems Management for AIX 5L (CSM)

v Web-based System Manager

v General Parallel File System (GPFS)

v LoadLeveler for AIX 5L

v Parallel Environment (PE)

Setting Up the NIM Server

Initial configuration of the HPS is performed through the NIM Network Installation Management server.

This section describes the steps needed to configure NIM so that it can properly install the HPS

environment and configure SNI and multi-link interface on the target LPAR nodes. This section assumes

that you have knowledge of how to use NIM. For more detailed or introductory information about NIM, see

Network Installation in AIX 5L Version 5.3 Installation Guide and Reference.

Update the NIM Server

Follow these steps to update your NIM server:

1. Install the AIX 5.2 with 5200-06 maintenance package.

2. Place required APARs and HPS filesets in the AIX52I LPPSOURCE directory using the gencopy

command. For a list of filesets to copy, see “SNI Filesets” on page 4.

3. Create a new AIX52 NIM SPOT resource, or update your current AIX52 NIM SPOT resource after you

have copied all required APARs and HPS filesets into your AIX52I LPPSOURCE directory..

Create a Stanza File

After the NIM server has been updated, create a stanza file, which will include configuration information for

the HPS. Each stanza begins with the name of the node and is followed by a series of lines in an

attribute=value format. The stanza file will contain a stanza for each SNI device being configured.

6 Switch Network Interface for eServer pSeries HPS Guide and Reference

Some of the attributes required in the stanza file can be gathered using the getadapters command. Other

attributes, such as netaddr and subnet_mask must be entered manually. In addition, if there are ml0

devices, the stanzas must be added manually. The getadapters command gathers all possible attributes,

but the remaining required attributes must be added manually to the stanza file.

For a list of required attributes, see “Stanza Attributes” on page 8.

Gathering Attributes Using the getadapters Command

The getadapters command can be used to gather some of the required information and to create an initial

version of the stanza file. For example, running the following command would gather information from the

clstrn01 node and, with the data collected, create a stanza file named mystanzafile:

getadapters -z mystanzafile -n clstrn01

If a stanza file does not exist, the getadapters command will create one. If a stanza file with the specified

name already exists when you run the getadapters command, the file will be updated with any additional

information that is gathered from the nodes. Updates to the stanza file will be made according to the

following guidelines. Consider these guidelines if you are planning to use the getadapters command to

update your stanza file.

For Ethernet adapters, the following guidelines are used:

v The MAC address value is used to identify a unique Ethernet adapter stanza. This value is always

returned for Ethernet adapters. The MAC address is unique across the cluster.

v If the stanza does not already exist for a particular MAC address, a new stanza will be created.

v If a stanza with the MAC address already exists and the location code is also the same as the newly

gathered location code, a new stanza will not be created and the existing stanza will not be updated.

v If a stanza with the MAC address already exists but the location code is different from the newly

gathered value, the existing stanza will be updated with the new location code.

For SNI devices, the following guidelines are used:

v The location code attribute value will be used to identify a unique SNI stanza. This value is always

returned for SNI devices. The location code is only unique for a node in a Central Electronics Complex

(CEC).

v If a stanza does not already exist for a particular location code, a new stanza will be created.

v If a stanza file already exists containing a particular location code, no new stanza will be created.

No stanza will be automatically removed from a stanza file when it is being updated. For example, if some

adapters or SNI devices have been removed, either the stanza will have to be edited manually or a new

stanza file will have to be created.

Gathering Information Manually

Some of the attributes that are required for configuration cannot be gathered by the getadapters

command and must be entered manually. These attributes include the IP address and subnet mask. For

those attributes that must be added manually, gather the necessary values and add them to the stanza file

according to the format given in “Stanza File Format.”

Stanza File Format

The format of the stanza file must be consistent with the format required by the nimadapters command.

Each stanza will contain the attributes and values needed by NIM, along with some additional attributes

that will be used by CSM. After the stanza file has been completed, it will be used by the getadapters

command to store installation adapter information in the CSM database. It is also used by the

nimadapters command to create adapter and SNI device configuration files and store them in the NIM

adapter resource directory. Each command extracts the information it needs and ignores what it does not

need.

Chapter 2. Configuring Switch Network Interface 7

The following are examples of an Ethernet adapter stanza, two SNI device stanzas, and a multi-link

stanza. These examples include what would be created by the getadapters command in addition to other

information that would have to be added manually.

clstrn01:

 machine_type=secondary

 network_type = en

 netaddr=10.10.1.4

 cable_type=N/A

 location=P1-I1/E2

 MAC_address=0003AC6E05E2

 subnet_mask=255.255.255.0

clstrn01:

 machine_type=secondary

 network_type=sn

 netaddr=192.169.0.4

 location=UP1.18-P1-H4/W3

 subnet_mask=255.255.255.0

clstrn01:

 machine_type=secondary

 network_type=sn

 netaddr=192.169.1.4

 location=UP1.18-P1-H4/W4

 subnet_mask=255.255.255.0

clstrn01:

 machine_type=secondary

 network_type = ml

 netaddr = 10.10.11.4

 subnet_mask=255.255.255.0

Stanza Attributes

The following sections contain lists of the valid stanza attributes. The descriptions also indicate which ones

will be created automatically by the getadapters command. In some cases, the attribute only is added to

the initial stanza and in some cases, both the attribute and value are added. Additional attributes and

values may be added manually as needed.

Required NIM attributes: The following NIM attributes are required in the stanza file

machine_type

Should be set to secondary for SNI devices that need to be configured and install for the install

adapter. This attribute is always created and a value is always provided.

network_type

The type of the network interface. The possible values are en, et, sn, and ml. This attribute is

always created, but the value is only filled in if it can be determined by the getadapters command.

netaddr

The IP address of the link or interface. This attribute is always created, but no value is provided.

subnet_mask

The subnet mask used for the interface. This attribute is always created, but no value is provided.

cable_type

Required if the network_type attribute is en or et. This attribute and default value will be added to

the stanza.

Required CSM attributes: The following CSM attributes are required in the stanza file.

MAC_address

This attribute is created and the value is provided if it can be determined by the getadapters

command.

8 Switch Network Interface for eServer pSeries HPS Guide and Reference

ping_status

Indicates if this SNI device can be used to ping the CSM management server. An ok value

indicates that it can be used. If the getadapters command can determine a value, the attribute

and value will be added.

adapter_duplex

The duplex value of the SNI device. If the value is provided on the getadapters command line, it

will be added to any stanza with a ping_status of ok.

install_server

The machine that will be used to install the node. If the value is provided on the getadapters

command line, it will be added to any stanza with a ping_status of ok.

install_gateway

The gateway to use for the node to contact the management server. If the value is provided on the

getadapters command line, it will be added to any stanza with a ping_status of ok.

adapter_speed

The SNI device speed. If the value is provided on the getadapters command line, it will be added

to any stanza with a ping_status of ok.

Optional NIM Attributes: The following attributes are optional.

location

Physical location of this SNI device, or location code. This attribute is always created, and the

value is provided if it can be determined by the getadapters command.

interface_name

The name of the network interface. If the getadapters can determine a value, the attribute and

value will be added.

attributes

Blank-separated list of additional network attributes. This attribute will not be added to the initial

stanza.

secondary_hostname

The hostname to be saved in the /etc/hosts directory along with the netaddr value. This attribute

will not be added to the stanza.

media_speed

Optional if network_type is en or et. This attribute will not be added to the stanza.

comments

Optional descriptive text. This attribute will not be added to the stanza.

Create a NIM adapter_def resource

The NIM adapter_def resource represents a directory that contains SNI device configuration files that may

be used during a NIM bos_inst or cust operation. These configuration files are created when you use the

nimadapters command with the stanza file that was created previously. To create the adapter_def

resource, you must select a directory location and use the NIM define operation.

For example, running the following command will create the /export/nim/adapt_defs directory for storing

configuration files and also create an adapter_def resource called my_adapter_res:

nim -o define -t adapter_def -a server=master -a location=/export/nim/adapt_defs my_adapter_res

Run the nimadapters command

The nimadapters command takes the information from your stanza file and creates SNI device

configuration files in the directory you specified when you created the adapter_def resource.

For example, using the stanza file called mystanzafile and the adapter_def resource called

my_adapter_res, you could issue the following command.

Chapter 2. Configuring Switch Network Interface 9

nimadapters -d -f mystanzafile my_adapter_res

This will create a configuration file for each node mentioned in the stanza file. The files will be created in

the /export/nim/adapt_defs directory.

Configure the adapters

To configure the additional SNI devices during the initial installation of the node, you may include the

adapter_def resource on the command line when you issue the NIM bos_inst operation. This operation is

one of the last steps in the installation process described in the CSM Planning and Installation guide.

Refer to this documentation for more information on the installation process. The SNI device configuration

tasks described previously should be completed after the CSM management server has been installed, the

nodes have been defined, and the NIM objects and resources have been defined.

The following example assumes an rte type installation, using the resources contained in the resource

group node_res_grp. Because this is an initial installation of the node, the boot_client value is set to no.

In this case the network boot of the node must be initiated manually or by using the CSM netboot

command:

nim -o bos_inst -a source=rte -a adapter_def=my_adapter_res -a group=node_res_grp -a accept_licenses=yes -a boot_client=no clstrn01

Note: The my_adapter_res resource could also have been added to the node_res_grp resource group

before running this command, in which case it would not have to be included on the command line.

If the nodes are already installed you can use the NIM cust operation to configure the SNI devices. For

example, using the my_adapter_res resource, you could issue the following command to configure the

SNI devices on node clstrn01:

nim -o cust -a adapter_def=my_adapter_res clstrn01

After the cust operation has completed, the node must be rebooted in order for the configuration to take

effect.

Configuring SNI and Multi-Link Interface

Follow these instructions to configure SNI and add an IP address to the multi-link interface. In this

procedure, SNI must be configured before the multi-link interface, which allows IP packets to be distributed

across the SNI interfaces.

Subnet Considerations

When configuring SNI and the multi-link interface, the multi-link interface needs to be configured on a

different subnet from any of the switch network interfaces. The switch network interfaces can be

configured on the same subnet or on separate subnets, but they cannot be configured on the same subnet

as the multi-link interface.

Because an operating system instance can have multiple SNIs, it is good practice to put them on as many

subnets as possible. Having as many different subnets as operating-system instances allows the Reliable

Scalable Cluster Technology (RSCT) peer domains to more accurately detect the availability of SNIs.

Configure SNI

To configure an SNI interface, follow these steps:

1. At the command line, type smit chsn.

2. Select the interface you want to configure.

3. Enter values for the attributes. Press Enter.

4. At the command line, type smit mtu.

5. Change the MTU size to the desired value.

10 Switch Network Interface for

Configure Multi-link interface

To configure a multi-link interface, follow these steps.

1. At the command line, type smit ibm-ml.

2. Select Change/Show Characteristics of a Multi-Link Device.

Note: The multi-link interface must be configured on a different subnet from any of the SNIs.

3. Change the desired attributes.

4. Select Change/Show Characteristics of a Multi-Link Interface.

5. Change the desired attributes and press Enter.

Tuning SNI

The following are SNI tuning recommendations.

Number of Windows

The SNI device support code was restructured to deliver higher communication performance in terms of

higher bandwidth and lower latency. Most of the restructuring is only surfaced through better performance

but some changes do have implications for the administrator.

The number of MPI and LAPI windows is now a tunable parameter with a default of 16 windows and a

maximum of 64 windows. To display the current settings use the following command:

lsattr -El snix

Where x is the device minor number. For example, 0, 1, 2, or 3.

To change this setting, see “chgsni Command” on page 16.

Note: During the SNI device configuration, the SNI device driver uses this setting to calculate the number

of Technical Large Pages (TLP) needed. If the required number of TLP is not available, the SNI

devices do not configure.

The size of the buffers allocated by the SNI device driver starts at 4096 bytes, and increases to 65536

bytes in values of 2.

If the size of the data being sent is just slightly larger than 4 K, 8 K, 16 K, 32 K, or 64 K, for example, the

buffer allocated from the pool is the next larger size. This can cause as low as 50 percent efficiency in

usage of the buffer pools because more than half of the pool can go unused in certain circumstances.

When assembling packets, there is always one mbuf from the IP mbuf pool used to assemble the packet

header information in addition to any data buffers from the spool. If the mbuf pool size is too small, and

the system runs out of mbufs, the packet is dropped. The mbuf pool is used globally for all IP traffic, and is

set using thewall tunable with the no command. For more information about the no command, see AIX 5L

Version 5.3 Commands Reference.

When you are sending 4 KB of data over the switch, an mbuf from the mbuf pool will be used, as well as

one 4 KB spool buffer for the data. If the amount of data being sent is less than 200 bytes, no buffer from

the spool is allocated, because there is space in the mbuf used for assembling the headers to stage the

data. However, if sending 256 bytes of data, one mbuf for the IP headers and one 4 KB send pool buffer

for the data, will be used. In this situation, 15/16 of the buffer space in the send pool is wasted. These

same scenarios apply to the receive pool when a packet is received on a node.

The key for peak efficiency of the spool and rpool buffers is to send messages that are at or just below the

buffer allocation sizes, or less than 200 bytes.

Chapter 2. Configuring Switch Network Interface 11

When tuning the rpool and spool, it is important to know the expected network traffic. If the size of the

buffers for the applications is not optimum, much of the spool and rpool are wasted. This inefficient usage

requires the need to increase the rpool and spool sizes. When allocating the rpool and spool, realize that

this space is pinned kernel space in physical memory. This takes space away from user applications and

is particularly important.

If there is a small number of active sockets, there is usually enough rpool and spool space that can be

allocated. A system in which a node has a large number of sockets opened can easily run out of spool

space when all the sockets transmit at once.

On the receive side of a parallel or client/server implementation, where one node acts as a collector for

several other nodes, the rpool has the same problem. Four nodes, each with 600 sockets, each sending to

one node two 1 KB packets, will exceed the rpool limit, but those same sockets, each sending twice as

much data, 4 KB in one 4 KB packet, will work correctly. The solution is sending a single larger packet

rather than several smaller ones.

12 Switch Network Interface for eServer pSeries HPS Guide and Reference

Chapter 3. Error Messages

This section contains the following error message information:

v “chgsni Error Messages”

chgsni Error Messages

 Table 2. Message numbers, message text, and recovery information.

Message Number Message Text Recovery Information

2506-100 No attributes requested to change! Request changes to one or more

attributes.

2506-101 Attributes out of range! Ensure the attributes requested are

in-range.

2506-102 Error during odm_initialize Try again later or contact system

administrator about insufficient

storage.

2506-103 Error during odm_lock Try again later if the ODM is locked

by another process, or contact

system administrator about insufficient

storage.

2506-104 get_odm_vals failed with ret =%d Ensure specified attributes are valid.

2506-105 change_driver failed with ret = %d Ensure specified logical name is

valid.

2506-106 update_odm failed with ret = %d Ensure specified attributes are valid.

2506-107 No spaces found in -a arg. Exiting Supply the -a option with the

attributes you want modified.

2506-108 Badly formed -a parameter. Follow correct command option

syntax.

2506-109 malloc failed! Returning E_MALLOC Contact system administrator about

insufficient storage.

2506-116 CuDv odm_get_first(CuDv) failed with

odmerrno %d

Ensure specified attributes are valid.

2506-117 Invalid attribute: %s Ensure specified attributes are valid.

2506-118 Failed to open device %s Ensure specified logical name is

valid.

2506-119 ioctl to change %s failed with errno =

%d

Ensure specified logical name or

attribute and attribute values are

valid.

2506-120 Failed to open device %s Ensure specified logical name is

valid.

2506-121 (%s) ioctl %d failed with errno = %d Ensure specified logical name or

attribute/attribute values are valid.

2506-122 odm_add_obj for %s failed with

odmerrno = %d

Contact your ODM administrator.

2506-123 Failed to terminate the ODM session

with odmerrno = %d

Contact your ODM administrator.

© Copyright IBM Corp. 2003, 2005 13

Table 2. Message numbers, message text, and recovery information. (continued)

Message Number Message Text Recovery Information

2506-124 Failed to execute the savebase

command in a subshell with errno =

%d. Any updated attribute will be lost

after rebooting the system. You

should try to run the

/usr/sbin/savebase command.

Manually run /usr/sbin/savebase

command.

2560-125 No device name supplied. Specify a valid device name.

2560-126 Invalid num_windows, val = %lld Specify a number between 1 and 64.

14 Switch Network Interface for eServer pSeries HPS Guide and Reference

Chapter 4. SNI Commands

This section contains reference information for the following SNI commands:

v “chgmlt Command”

v “chgsni Command” on page 16

v “defmlt Command” on page 18

v “ntblclean Command” on page 19

v “ntblstatus Command” on page 21

chgmlt Command

Purpose

Changes the attributes of a multi-link device.

Syntax

chgmlt -l DeviceName { -a Attribute=Value } [-a Attribute=Value] . . .

Description

The chgmlt command changes one or more attributes of the Switch Network Interface’s multi-link driver.

Flags

 -a Attribute=Value Changes the value of the specified device attribute.

Attribute can be one of the following:

agg_list=List

The list of native network interfaces of type

Switch Networks (SN) that the multi-link device

can use. If the agg_list is not specified, the

multi-link device will create an agg_list of all

network interfaces of type Switch Network that

are defined each time the multi-link driver is

configured.

agg_interval=Seconds

The number of seconds between connectivity

probes.

agg_threshold=Threshold

The number of connectivity probes before route

times out.

-l DeviceName Specifies the device logical name in the Customized

Devices object class whose attribute values should be

changed.

Exit Status

 0 The command completed successfully.

>0 An error occurred.

Security

You must have root authority to run this command.

© Copyright IBM Corp. 2003, 2005 15

Examples

1. To change the switch network interfaces that are included in the multi-link interface, type:

chgmlt -l mlt0 -a agg_list="sn0,sn1,sn2,sn3,sn4"

Location

/etc/methods/chgmlt

Standard Error

This command writes error messages to standard error.

Related Information

The lsattr command.

chgsni Command

Purpose

Applies configuration changes to a Switch Network Interface device.

Syntax

chgsni -l Name -a ’Attribute=Value [Attribute=Value]’ [-v]

Description

The chgsni command changes the device memory or window resource allocations for the Switch Network

Interface device.

The Switch Network Interface device multiplexes between independent data streams, where a data stream

is represented by an SNI device window. A subset of SNI device windows are for system use only. For

example, the IP window. Windows that are neither held for system use nor otherwise reserved may be

allocated dynamically for large-scale parallel applications.

16 Switch Network Interface for eServer pSeries HPS Guide and Reference

Flags

 -a Attribute=Value Specifies the device attribute pairs used for changing specific attribute values.

The Attribute=Value parameter can use one attribute value pair or multiple

attribute value pairs for one -a flag. If you use a -a flag with multiple attribute

value pairs, the list of pairs must be enclosed in quotation marks with spaces

between the pairs. For example, entering -a Attribute=Value lists one attribute

value pair per flag, while entering -a ’Attribute1=Value1 Attribute2=Value2’ lists

more than one attribute value pair.

num_windows=number

The number of user space windows available for MPI and LAPI

applications.

 Default value: 16

 Minimum value: 1

 Maximum value: 64

rpoolsize=size

Size of the IP receive buffer pool (in bytes). This attribute is modified

for all existing devices. Any user-supplied -l option is ignored.

 Default value: 67108864 (64 megabytes)

 Minimum value: 16777216 (16 megabytes)

 Maximum value: 1073741824 (1 gigabyte)

spoolsize=size

Size of the IP send buffer pool (in bytes). This attribute is modified for

all existing devices. Any user-supplied -l option is ignored.

 Default value: 67108864 (64 megabytes)

 Minimum value: 16777216 (16 megabytes)

 Maximum value: 1073741824 (1 gigabyte)

rdma_xlat_limit=size

Maximum amount of memory allowed for RDMA (in bytes). This

attribute is modified for all existing devices. Any user supplied -l option

is ignored.

 Default value: 0x0 (Implies RDMA is turned off)

 Minimum value: 0x0

 Maximum value: 0xFFFFFFFFFFFFFFFF

 Recommended value: 0x8000000000000000

Note: Device memory attribute sizes can be specified in either decimal or

hexadecimal. Hexadecimal values must be preceded by ″0x″ or ″0X″.

-l Specifies the device logical name in the Customized Devices object class whose

attribute values should be changed.

-v Specifies the verbose output option.

Standard Output

This command writes informational messages to standard output whenever a device memory attribute is

changed.

Standard Error

This command writes error messages to standard error.

Chapter 4. SNI Commands 17

Exit Status

 0 The command completed successfully.

>0 An error occurred.

Security

You must have root authority to run this command.

Examples

1. To change the number of windows to 32, type:

chgsni -l sni0 -a num_windows=32

2. To change the size of the IP send and receive buffers to 1 megabyte, type:

chgsni -a ’rpoolsize=1048576 spoolsize=1048576’

Location

/etc/methods/chgsni

Related Information

The lsattr command.

The “chgsni Error Messages” on page 13.

defmlt Command

Purpose

Defines the multi-link device and its attributes.

Syntax

defmlt -l DeviceName { -a Attribute=Value } [-a Attribute=Value] . . .

Description

The defmlt command defines the Switch Network (SN) multi-link driver and its attributes.

18 Switch Network Interface for eServer pSeries HPS Guide and Reference

Flags

 -a Attribute=Value Identifies the device attribute to be changed and the value

to which it should be changed. Attribute can be one of the

following:

agg_list=List

The list of native network interfaces of type

Switch Networks (SN) that the multi-link device

can use. If the agg_list is not specified, the

multi-link device will create an agg_list of all

network interfaces of type Switch Network that

are defined each time the multi-link driver is

configured.

agg_interval=Seconds

The number of seconds between connectivity

probes.

agg_threshold=Threshold

The number of connectivity probes before route

times out.

-l DeviceName Specifies the device logical name in the Customized

Devices object class whose attribute values should be

changed.

Exit Status

 0 The command completed successfully.

>0 An error occurred.

Security

You must have root authority to run this command.

Examples

1. To define the multi-link driver, type:

defmlt -l mlio -a ’agglist="sn0,sn1,sn1,sn3,sn4" agginterval=3 aggthreshold=10’

Location

/etc/methods/defmlt

Standard Error

This command writes error messages to standard error.

Related Information

The lsattr command.

ntblclean Command

Purpose

Forces the unload of the network table window for a specified SNI device.

Chapter 4. SNI Commands 19

Syntax

ntblclean -h | -? | [[-k] -w WindowID -a Adapter]

Description

The ntblclean command overrides the job key checking and unloads the network table window on the SNI

device specified. Normal unloading of the network table window by the ntbl_unload_window API checks

that the job_key of the unload matches the job_key specified during the load. The ntblclean command

ignores this check and allows the administrator to unload the window from a node. Use this command for

error recovery and not for normal unloading. Use this command when a parallel job has left a process in

use and the window failed to unload with the ntbl_unload_window API.

The WindowID parameter must be a window found in the list of available window IDs returned from the

ntbl_adapter_resources API.

If the -k flag is not specified, the unload of the window will only be processed when the window is in the

NTBL_LOADED_STATE or NTBL_DISABLED_STATE.

If the -k flag is specified, and the window is in the NTBL_ACTIVE_STATE or NTBL_BUSY_STATE state,

the process using the window will be sent a SIGKILL signal. It is not guaranteed that the process will

receive the signal. The unload of the window will be processed without the SIGKILL signal when the

window is in the NTBL_LOADED_STATE or NTBL_DISABLED_STATE state.

A single job’s network table may contain more than one window. Run this command for every window

within the table. Use the ntblstatus command to obtain the current state of the windows.

Flags

 -? Displays the usage statement for the command.

-a Adapter Specifies the SNI device device name upon which the

window to be unloaded resides.

-h Displays a description of each flag.

-k Sends the process that is currently using the network

table window a SIGKILL signal and unloads the window.

The -k flag has the same function as the ALWAYS_KILL

option of the ntbl_clean_window API.

-w WindowID Specifies the window ID for which the unload will be done.

Exit Status

 0 The command completed successfully.

>0 An error occurred.

Security

You must have root authority to run this command.

Standard Output

After the network table window is successfully unloaded, the status should be NTBL_UNLOADED_STATE.

Related Information

The “ntblstatus Command” on page 21.

20 Switch Network Interface for eServer pSeries HPS Guide and Reference

The “ntbl_adapter_resources Subroutine” on page 23, the “ntbl_clean_window Subroutine” on page 24,

and the “ntbl_unload_window Subroutine” on page 32.

ntblstatus Command

Purpose

Displays the current status of a network table window. This command may display a single window, all

windows on an SNI device or, all windows on all SNI devices.

Syntax

ntblstatus [-h | -? | -w WindowID -a Adapter | -a Adapter]

Description

The ntblstatus command reports the current status of a network table window. If the -w and -a flags are

specified, status will be returned for a single window on the SNI device specified. If the -a flag is specified

without a -w flag, status will be returned for all network windows on that SNI device. If no -a flag is

specified, status is returned for all network windows on all switch SNI devices on the machine where the

command is invoked.

Flags

 -? Displays the usage statement for the command.

-a Adapter Specifies the SNI device name for which status of all

windows will be returned. If used with the -w flag, status is

returned only for the specified window on the SNI device.

-h Displays a description of each flag.

-w WindowID Specifies the window ID for which status will be returned.

This flag requires the -a flag to specify the SNI device.

Exit Status

 0 The command completed successfully.

>0 An error occurred.

Security

Any user can run the ntblstatus command.

Examples

1. To display the status of window 1 on the SNI device sni0, type:

ntblstatus -w 1 -a sni0

Output similar to the following is displayed window when the window’s state is

NTBL_LOADED_STATE, NTBL_DISABLED_STATE, NTBL_BUSY_STATE or NTBL_ACTIVE_STATE.

**

User: loadl Uid: 1064 Pid: 45228

Job Description: c97n01.ppd.pok.ibm.com.8.0

Time of request: Tue_Dec_11_17:27:52_EST_2001

Memory Requested: 1048576 Memory Allocated: 1048576

Adapter: sni0 Window id: 1 State: NTBL_LOADED_STATE

2. To display the status of window 5 on SNI device sni0, type:

ntblstatus -w 5 -a sni0

Chapter 4. SNI Commands 21

Output similar to the following is displayed per window when a window’s state is

NTBL_UNLOADED_STATE or an error occurred:

**

Adapter sni0 window 5 returned NTBL_UNLOADED_STATE.

Standard Output

The output of this command reports the following data when a network table window is loaded, disabled,

active or busy:

User User name corresponding to the user ID.

Job Description

String specified upon load request for the job using the network table.

Time of request

Timestamp of the time that the load request was processed.

Window id

Window for which the data is being reported.

Pid ID of the process which issued the load request, most likely a job management application.

Uid User ID loaded onto the network table.

Memory Requested

Window memory requested for use by the task per window.

Memory Allocated

Window memory allocated for use by the task per window.

State Current state of the window.

Adapter

SNI device for which the status is being reported.

Related Information

The “ntblclean Command” on page 19.

22 Switch Network Interface for eServer pSeries HPS Guide and Reference

Chapter 5. SNI Subroutines

This section contains reference information for the following SNI subroutines:

v “ntbl_adapter_resources Subroutine”

v “ntbl_clean_window Subroutine” on page 24

v “ntbl_disable_window Subroutine” on page 26

v “ntbl_enable_window Subroutine” on page 27

v “ntbl_load_table Subroutine” on page 28

v “ntbl_query_window Subroutine” on page 29

v “ntbl_status_adapter Subroutine” on page 30

v “ntbl_unload_window Subroutine” on page 32

v “ntbl_version Subroutine” on page 33

ntbl_adapter_resources Subroutine

Purpose

Returns the resources of a specified SNI device to the node from which it is invoked.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_adapter_resources (version,adapter,resources)

int version;

char *adapter;

struct ADAPTER_RESOURCES *resources;

Description

The ntbl_adapter_resources subroutine obtains the configured resources of an SNI device specified on

the node from which it is invoked. The ADAPTER_RESOURCES structure contains the following:

v Number of windows available on the SNI device for job scheduling

v List of window IDs available on the SNI device for job scheduling

v Maximum and minimum DMA memory available for request per window

v Aggregate amount of device memory available for all windows to request

v FIFO slot size

v Device type of the SNI device

v Logical ID of the SNI device

v Network ID of the SNI device.

All memory data is represented in bytes. Memory is allocated dynamically by the ntbl_adapter_resources

subroutine for the window_list member of the ADAPTER_RESOURCES structure based on the

window_count member’s size. The caller is responsible for releasing the memory allocated for the

window_list member using the free subroutine for each entry in the array.

The ntbl_adapter_resources subroutine can be used to obtain information needed by the

ntbl_load_table subroutine.

© Copyright IBM Corp. 2003, 2005 23

Parameters

 version Specifies the version of header file used. This value is the NTBL_VERSION, which is defined in

the ntbl.h file.

adapter Specifies the SNI device name for which the configured resources are obtained.

resources Specifies the address of the ADAPTER_RESOURCES structure that contains the configured

resources.

Return Values

Upon successful completion, the ntbl_adapter_resources subroutine returns a value of

NTBL_SUCCESS.

The following data members are returned within the ADAPTER_RESOURCES structure when

NTBL_SUCCESS is returned:

 unsigned int device_type Integer containing an LED value that represents the device type.

unsigned short lid Logical ID of the SNI device.

unsigned short network_id Network the SNI device resides on.

unsigned long long

max_window_memory

Maximum memory allowed per window.

unsigned long long

min_window_memory

Guaranteed minimum memory per window.

unsigned long long

avail_adapter_memory

Aggregate amount of DMA device memory available for windows.

unsigned short *window_list Array of window IDs that are available for use.

unsigned int window_count Count of the windows. Size of the window_list member.

unsigned long long fifo_slot_size Size of the FIFO slot. Used by the LoadLeveler to calculate job_max.

If unsuccessful, the ntbl_adapter_resources subroutine returns an integer value defined in the NTBL_RC

enumerator found in the ntbl.h file.

 NTBL_SUCCESS Resources were obtained.

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

NTBL_EMEM Failed to allocate memory.

NTBL_EIO SNI device reported down state.

ntbl_clean_window Subroutine

Purpose

Overrides the job-key checking of the ntbl_unload_window subroutine and unloads the network table

window on the node from which it is invoked.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_clean_window (version, adapter, option, window_id)

24 Switch Network Interface for eServer pSeries HPS Guide and Reference

int version;

char *adapter;

enum CLEAN_OPTION option;

unsigned short window_id;

Description

The ntbl_clean_window subroutine overrides the job-key checking, sends a SIGKILL signal to the

process using the window, and unloads the network table window on the node from which it is invoked.

Normal unloading of the network table window by the ntbl_unload_window subroutine verifies that the job

key of the unload matches the job key specified during the load. The ntbl_clean_window subroutine

ignores this verification and allows the caller to unload the window from a node. Use this subroutine for

error recovery and not for normal network table unloading. For example, when a parallel job has left a

process in use and the window failed to unload by the ntbl_unload_window subroutine, the caller can

use the ntbl_clean_window subroutine to clean up that node. This subroutine should be called even

when the SNI device reports NTBL_EIO. The resources held by the window will be released regardless of

the state of the SNI device.

The window_id parameter must be a window found in the list of available window IDs returned from the

ntbl_adapter_resources subroutine. If the ntbl_adapter_resources subroutine is reporting an NTBL_EIO

state, window checking will be bypassed and the unload will be attempted.

If the LEAVE_INUSE option is specified, the unload of the window will only be processed when the

window is in the NTBL_LOADED_STATE state or NTBL_DISABLED_STATE state.

If the ALWAYS_KILL option is specified, and the window is in the NTBL_ACTIVE_STATE state or the

NTBL_BUSY_STATE state, the process using the window will be sent a SIGKILL signal, but the process

might not receive the signal. The unload of the window will be processed without the SIGKILL signal when

the window is in the NTBL_LOADED_STATE state or NTBL_DISABLED_STATE state.

You must have root user authority to invoke the ntbl_clean_window subroutine.

Parameters

 version Specifies the version of header file used. This value should be NTBL_VERSION, which is

defined in the ntbl.h file.

adapter Specifies the SNI device device name to be opened. This is where the window resides.

option Contains the CLEAN_OPTION enumeration value. This value indicates the following action:

LEAVE_INUSE

If a process is currently using the network table window, do not send a signal to the

process or try to unload the window. If no process is using the window, issue an

unload.

ALWAYS_KILL

If a process is currently using the network table window, this option sends a SIGKILL

signal to the process and unloads the window.

window_id Specifies the window ID for the window that will be unloaded.

Return Values

Upon successful completion, the ntbl_clean_window subroutine returns a value of NTBL_SUCCESS.

Otherwise, it returns an error value defined by the NTBL_RC enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Window was successfully unloaded.

NTBL_EPERM Caller does not have root authority.

Chapter 5. SNI Subroutines 25

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

NTBL_BUSY_STATE Window within the table was in use.

NTBL_UNLOADED_STATE Window is not loaded.

NTBL_ACTIVE_STATE Window is active.

NTBL_EMEM Failed to allocate memory.

tab(is)Tj
0.0028 0 0 0.002 2912467560.763448 Tm
()T3597028 0 3597029.166..86560.763448 Tm
(the)Tj
0.0028 0 0 0.0028 1131677560.763448 Tm
()T3597028 0 359702918.63497560.763448 TmspecifiiledWindow

inthe

NTBL_EIOCTL The ioctl call failed.

NTBL_EIO SNI device reported down state.

NTBL_BUSY_STATE The ioctl indicated the window was not in the correct state.

ntbl_enable_window Subroutine

Purpose

Enables the specified window on the specified SNI device.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_enable_window (version, adapter, window_id)

int version;

char *adapter;

unsigned short window_id;

Description

The ntbl_enable_window subroutine enables a network table window for the specified SNI device on the

node from which it is invoked. The state of the window must be NTBL_DISABLED_STATE in order to

enable it. The state of the window will be changed from the NTBL_DISABLED_STATE state to the

NTBL_LOADED_STATE state. The requested state change is not atomic. Use the ntbl_query_window

subroutine to verify the change has occurred.

You must have root user authority to invoke this subroutine.

Parameters

 version Specifies the version of header file used. This value should be NTBL_VERSION, which is defined

in the ntbl.h file.

adapter Specifies the SNI device device name to be opened. This is where the window resides.

window_id Specifies the window ID of the window that will be enabled.

Return Values

Upon successful completion, the ntbl_enable_window subroutine returns a value of NTBL_SUCCESS.

Otherwise, it returns an error value defined by the NTBL_RC enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Enable was successful.

NTBL_EPERM Caller does not have root user authority.

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

NTBL_EIO SNI device reported down state.

NTBL_BUSY_STATE The ioctl indicated the window is not in correct state.

Chapter 5. SNI Subroutines 27

ntbl_load_table Subroutine

Purpose

Loads a network table on the node from which it is invoked.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_load_table (version, adapter, network_id, uid, pid, job_key, job_desc, window_memory, table_size, table)

int version;

char *adapter;

unsigned short network_id;

uid_t uid;

pid_t pid;

unsigned short job_key;

char *job_desc;

unsigned long long *window_memory;

int table_size;

NTBL **table;

Description

The ntbl_load_table subroutine loads the network table on the node from which it is invoked. This

network table is used by parallel jobs running user space over the switch.

An NTBL structure must be defined for every task in the parallel job. Each structure defines the task,

window, and SNI device relationship. The array of structures defines how the tasks of the parallel job will

communicate. The windows specified must be valid and in the NTBL_UNLOADED_STATE state.

Valid window_memory ranges can be obtained from the ntbl_adapter_resources subroutine. The

window_memory requested is not guaranteed to be satisfied by the device driver, thus this parameter will

record the allocated memory upon return. A window_memory input value of 0 indicates that the device

driver will determine the window memory size. This value will be the value of the win_min_size member

set by the administrator using the chgsni command.

You must have root user authority to invoke this subroutine.

Parameters

 version Specifies the version of header file used. This value should be NTBL_VERSION, which is

defined in the ntbl.h header file.

adapter Specifies the SNI device name to be opened.

network_id Specifies the network ID for the SNI device.

uid Specifies the real user ID of the user for whom the table is being loaded and who will be

authenticated to run the user space job.

pid Specifies the process ID (pid) of the calling process, typically a job scheduler.

job_key Specifies a globally unique job key. This job key is used later by the user space job to access

the table. It must be greater than 0 and less than 0xFFF0.

job_desc Specifies the string that describes the job that is using the network table. It has a maximum

length of 50 characters that is truncated after the maximum. This string may contain blanks. It

defaults to no_job_description_given.

28 Switch Network Interface for eServer pSeries HPS Guide and Reference

window_memory The input specifies the requested device memory to be allocated for each window in the

network table. The value is represented in bytes.

This parameter returns the actual memory value allocated to each of the windows in the

network table.

table_size Specifies the number of entries in the network table.

table Specifies the pointer to the network table structure array that was allocated and defined by the

caller. The number of network table structures defined must be equal to table_size. The network

table structure members are the following:

unsigned short task_id

Specifies a non-negative identifier that represents this task.

unsigned short window_id

Specifies the window ID to be loaded and used by the corresponding task ID.

unsigned short lid

Specifies the logical identifier of the SNI device upon which the window resides.

Return Values

Upon successful completion, the ntbl_load_table subroutine returns a value of NTBL_SUCCESS.

Otherwise, it returns an integer value defined by the NTBL_RC enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Table was successfully loaded.

NTBL_EPERM Caller does not have root user authority.

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

NTBL_ELID No lid was specified in the NTBL structure for the SNI device.

NTBL_EMEM Failed to allocate memory.

NTBL_EIO SNI device reported down state.

NTBL_BUSY_STATE Window within the table was in use.

NTBL_LOADED_STATE Window is already loaded.

NTBL_DISABLED_STATE Window is disabled.

NTBL_ACTIVE_STATE Window is active.

ntbl_query_window Subroutine

Purpose

Returns the current state of the network table window.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_query_window (version, adapter, window_id, status)

int version;

char *adapter;

unsigned short window_id;

int *status;

Chapter 5. SNI Subroutines 29

Description

The ntbl_query_window subroutine queries the current state of a network table window on the node from

which it is invoked.

Parameters

 version Specifies the version of header file used. This value should be NTBL_VERSION, which is defined

in the ntbl.h header file.

adapter Specifies the SNI device device name to be opened.

window_id Specifies the window ID for which the query will be done.

status The output contains the current state of the window specified. The state will be one of the

following:

NTBL_UNLOADED_STATE

Window is not loaded and available.

NTBL_LOADED_STATE

Window is loaded but not opened yet.

NTBL_DISABLED_STATE

Window has been disabled.

NTBL_BUSY_STATE

Window is in a transitional state and cannot be enabled or disabled until it reaches a

defined state.

NTBL_ACTIVE_STATE

Window is fully active and can process window disable requests.

Return Values

Upon successful completion, the ntbl_query_window subroutine returns a value of NTBL_SUCCESS.

Otherwise, it returns an error value defined by the NTBL_RC enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Query was successful.

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

NTBL_EIO SNI device reported down state

ntbl_status_adapter Subroutine

Purpose

Returns the status of all network table windows on a specified SNI device.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_status_adapter (version, adapter, window_count, status_info)

int version;

char *adapter;

int *window_count;

NTBL_STATUS **status_info;

30 Switch Network Interface for eServer pSeries HPS Guide and Reference

Description

The ntbl_status_adapter subroutine returns the status of all network table windows on a specified SNI

device on the node from which it is invoked. It will allocate all NTBL_STATUS structures depending on the

number of windows defined for the SNI device. These structures will be linked to the first NTBL_STATUS

pointer by the next pointer. The caller is responsible for releasing the NTBL_STATUS-linked list using the

free subroutine.

A null next pointer indicates the end of the list. The window_count parameter indicates the number of

NTBL_STATUS structures in the linked list. If a window is loaded, the corresponding NTBL_STATUS

structure will contain information about who made the load request, which user was designated to use the

table, and when the request was made. If a window is not loaded or an error occurred, the return_code

structure member contains the corresponding error value.

Parameters

 version Specifies the version of header file used. This value should be NTBL_VERSION, which is

defined in the ntbl.h header file.

adapter Specifies the SNI device device name for which status will be returned.

window_count The output of the window_count parameter specifies the number of entries in the status_info

linked list.

status_info Specifies the address of a NTBL_STATUS pointer. This pointer will become the first entry in

the linked list.

Return Values

Upon successful completion, the ntbl_status_adapter subroutine returns a value of NTBL_SUCCESS.

The following NTBL_STATUS data members are returned when the network table window is loaded,

disabled, active, or busy:

 user_name Name corresponding to the user ID given during the load request.

description String given during the load request describing the job that is using the network table.

time_loaded Timestamp of when the load request was processed.

client_pid Process ID of the process that made the load request.

uid User ID given during the load request for the user who will be using the network table.

adapter SNI device that the window resides on.

window_id Window ID for which the data is being reported.

memory_requested Window memory requested during the ntbl_load_table call for use by the task.

memory_allocated Window memory allocated during the ntbl_load_table call for use by the task.

state Current state of the window.

The following NTBL_STATUS data members are returned when the network table window is unloaded:

 adapter SNI device that the window resides on.

window_id Window for which the data is being reported.

state Current state of the window.

Otherwise, the ntbl_status_adapter subroutine returns an integer value defined by the NTBL_RC

enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Query was successful.

NTBL_EINVAL Invalid input parameter.

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_EIOCTL The ioctl call failed.

Chapter 5. SNI Subroutines 31

NTBL_EMEM Failed to allocate memory.

NTBL_EIO SNI device reported down state.

ntbl_unload_window Subroutine

Purpose

Unloads the network table window on the node from which it is invoked.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_unload_window (version, adapter, job_key, windown_id)

int version;

char *adapter;

unsigned short job_key;

unsigned short window_id;

Description

The ntbl_unload_window subroutine unloads the network table window on the node from which it is

invoked. This network table is used by parallel jobs running user space over the switch. The

ntbl_unload_window subroutine checks that the job_key parameter value matches the job key value that

was stored during the ntbl_load_table subroutine call.

If the job_key parameter does not match, the ntbl_unload_window subroutine returns an NTBL_EPERM

value. Each window within the network table must be unloaded individually. The ntbl_unload_window

subroutine should be called even when the SNI device reports NTBL_EIO. The resources held by a

window will be released regardless of the state of the SNI device.

You must have root user authority to invoke this subroutine.

Parameters

 version Specifies the version of header file used. This value is the NTBL_VERSION version, which is

defined in the ntbl.h header file.

adapter Specifies the SNI device device name to be opened.

job_key Specifies the globally unique job key that was provided when the ntbl_load_table subroutine was

invoked. The job_key parameter must match this value in order to unload the window, and must

be greater than 0 and less than 0xFFF0.

window_id Specifies the window ID to be unloaded.

Return Values

Upon successful completion, the ntbl_unload_window subroutine returns a value of NTBL_SUCCESS.

Otherwise, it returns an integer value defined by the NTBL_RC enumerator found in the ntbl.h header file.

 NTBL_SUCCESS Window was successfully unloaded.

NTBL_EPERM The caller did not have root user authority. The job_key parameter

did not match.

NTBL_EINVAL Invalid input parameter.

32 Switch Network Interface for eServer pSeries HPS Guide and Reference

NTBL_EADAPTER Open failed on the adapter parameter.

NTBL_ESYSTEM System error.

NTBL_EIOCTL The ioctl call failed.

NTBL_BUSY_STATE Window is in use.

NTBL_UNLOADED_STATE Window is not loaded.

NTBL_ACTIVE_STATE Window is active.

ntbl_version Subroutine

Purpose

Returns the NTBL_VERSION value.

Library

Network Table Library (libntbl.a)

Syntax

#include <ntbl.h>

int ntbl_version (void);

Description

The ntbl_version subroutine gets the value of the NTBL_VERSION value from the libntbl.a library. This

represents the version of the interfaces for the libntbl.a library. This subroutine can be used to check the

version of the library and determine if any interfaces have changed between versions.

Return Values

The ntbl_version subroutine returns the NTBL_VERSION value.

Chapter 5. SNI Subroutines 33

34 Switch Network Interface for eServer pSeries HPS Guide and Reference

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

Any performance data contained herein was determined in a controlled environment. Therefore, the results

obtained in other operating environments may vary significantly. Some measurements may have been

made on development-level systems and there is no guarantee that these measurements will be the same

on generally available systems. Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 AIX 5L

Eserver

 IBM

 LoadLeveler

 pSeries

 Redbooks

Other company, product, or service names may be the trademarks or service marks of others.

36 Switch Network Interface for eServer pSeries HPS Guide and Reference

Index

A
adapter_def resource 9

adapter_duplex attribute 9

adapter_speed attribute 9

attributes attribute 9

C
cable_type attribute 8

chgmlt command 15

chgsni command 16

chgsni error messages 13

commands
chgmlt 15

chgsni 16

defmlt 18

getadapters 7

nimadapters 7

ntblclean 19

ntblstatus 21

comments attribute 9

configuring
multi-link interface 10

NIM server 6

prerequisites 5

SNI 10

D
defmlt command 18

E
error messages

chgsni 13

F
filesets 4

G
getadapters command 7

H
hardware requirements 5

I
install_gateway attribute 9

install_server attribute 9

interface_name attribute 9

ISO 9000 v

J
job schedulers 4

L
large pages 2

location attribute 9

M
MAC_address attribute 8

machine_type attribute 8

media_speed attribute 9

N
netaddr attribute 8

Network Installation Management (NIM) 6

network table services 4

network_type attribute 8

NIM 6

nimadapters 9

nimadapters command 7

ntbl_adapter_resources subroutine 23

ntbl_clean_window subroutine 24

ntbl_disable_window subroutine 26

ntbl_enable_window subroutine 27

ntbl_load_table subroutine 28

ntbl_query_window subroutine 29

ntbl_status_adapter subroutine 30

ntbl_unload_window subroutine 32

ntbl_version subroutine 33

ntblclean command 19

ntblstatus command 21

O
overview

multi-link support 1

network table services 4

Remote Direct Memory Access 3

switch network interface 1

Technical Large Pages 2

P
ping_status attribute 9

prerequisites 5

R
RDMA 3

related information v

Remote Direct Memory Access 3

© Copyright IBM Corp. 2003, 2005 37

S
secondary_hostname attribute 9

SNI
support on AIX 1

software requirements 6

stanza file
attributes 8

create 6

format 7

gathering attributes for 7

subnet 10

subnet_mask attribute 8

subroutines
ntbl_adapter_resources 23

ntbl_clean_window 24

ntbl_disable_window 26

ntbl_enable_window 27

ntbl_load_table 28

ntbl_query_window 29

ntbl_status_adapter 30

ntbl_unload_window 32

ntbl_version 33

T
Technical Large Pages 2

text highlighting v

tuning 11

U
using

Remote Direct Memory Access 3

38 Switch Network Interface for eServer pSeries HPS Guide and Reference

Readers’ Comments — We’d Like to Hear from You

Switch Network Interface for eServer pSeries High Performance Switch Guide and Reference

 Publication No. SC23-4869-03

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

���

Printed in U.S.A.

SC23-4869-03

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Information

	Chapter 1. Overview of Switch Network Interface
	Switch Network Interface and Multi-Link Support Overview
	SNI Support on AIX

	User Space Job Support
	Technical Large Pages Overview
	Shutdown a Partition
	Remote Direct Memory Access (RDMA) Overview
	Using RDMA

	Network Table Services Overview
	SNI Filesets

	Chapter 2. Configuring Switch Network Interface
	Configuration Prerequisites
	Hardware Requirements
	Software Requirements

	Setting Up the NIM Server
	Update the NIM Server
	Create a Stanza File

	Configuring SNI and Multi-Link Interface
	Subnet Considerations
	Configure SNI
	Configure Multi-link interface

	Tuning SNI
	Number of Windows

	Chapter 3. Error Messages
	chgsni Error Messages

	Chapter 4. SNI Commands
	chgmlt Command
	Purpose
	Syntax
	Description
	Flags
	Exit Status
	Security
	Examples
	Location
	Standard Error
	Related Information

	chgsni Command
	Purpose
	Syntax
	Description
	Flags
	Standard Output
	Standard Error
	Exit Status
	Security
	Examples
	Location
	Related Information

	defmlt Command
	Purpose
	Syntax
	Description
	Flags
	Exit Status
	Security
	Examples
	Location
	Standard Error
	Related Information

	ntblclean Command
	Purpose
	Syntax
	Description
	Flags
	Exit Status
	Security
	Standard Output
	Related Information

	ntblstatus Command
	Purpose
	Syntax
	Description
	Flags
	Exit Status
	Security
	Examples
	Standard Output
	Related Information

	Chapter 5. SNI Subroutines
	ntbl_adapter_resources Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_clean_window Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_disable_window Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_enable_window Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_load_table Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_query_window Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_status_adapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_unload_window Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	ntbl_version Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

