
1

IBM POWER5 and POWER5+ processors do not fully implement cumulative ordering.

Overview:

The following information applies only to IBM
®
 POWER5™ and POWER5+™

processors. All IBM Systems based on IBM POWER4™, POWER6
®
 and POWER7™

processors are unaffected.

If any of the following approaches is used, then either cumulativity is not required, or the

portion of cumulativity that is not fully implemented in POWER5 or POWER5+

processors is not required.

1) Use traditional synchronization primitives such as locking or RCU (Read Copy

Update) that do not require cumulativity.

2) Disable SMT.

3) Enable SMT, but use Operating System processor affinity assignment

mechanisms (for example, the Linux taskset command or the IBM AIX
®

bindprocess command) to ensure that no more than one thread of a multithreaded

program, or of a set of programs that share storage with one another, executes

simultaneously on the same POWER5 or POWER5+ core.

4) Enable SMT, but use Operating System processor affinity assignment

mechanisms to ensure that all threads of a given multithreaded program, or of a

given set of programs that share storage with one another, are confined to execute

on the same POWER5 or POWER5+ core.

If none of the preceding approaches can be used in a particular case, the software changes

described below will prevent a program from depending on the aspect of cumulativity

that is not fully implemented in POWER5 and POWER5+ processors.

Description and workaround

In what follows, the term “processor” is used as defined in the Power ISA Books I and II.

In other words, each thread on a simultaneous multithreaded (SMT) core, such as

POWER5 or POWER5+, is considered to be a “processor.”

In certain rarely occurring cases, the POWER5 and POWER5+ processors do not fully

implement cumulative ordering (Power ISA, Book II, Section 1.7.1) as specified for the

various Memory Barrier instructions in the Power ISA.

Cumulative ordering, or cumulativity, is not necessary for the correct operation of many

multi-processor programming primitives. In particular, if synchronization is

accomplished through a single location in memory, cumulativity is not involved. The

most common example of this case is critical sections (such as locking) that are

synchronized using a single variable in memory that is accessed using the lwarx and

stwcx. instructions. The correct operation of such critical sections is not affected. (In this

2

document, lwarx and stwcx. are used as representatives of Load And Reserve and Store

Conditional instructions. Any other pair of Load And Reserve and Store Conditional

instructions could have been used instead.)

In addition, cumulativity is a property involving a minimum of three processors and

synchronization through a minimum of two different memory locations. In cases in which

a Memory Barrier instruction is used to provide ordering only for storage accesses

performed by a given processor relative to a given other processor, cumulativity is not

involved.

In summary, cumulativity, in certain rare cases, is not fully implemented in POWER5 or

POWER5+ processors. However, ordering of storage accesses between a given pair of

processors, and many multiprocessor programming primitives, most notably critical

sections, are not affected by cumulativity and operate correctly on POWER5 and

POWER5+ processors.

Cumulativity description

Cumulativity involves controlling the ordering of storage accesses across three or more

processors. It is defined in terms of two sets of storage accesses, called “set A” and “set

B,” which are defined relative to a given memory barrier.

Memory barriers have a cumulative and a non-cumulative ordering component, both of

which are defined in terms of sets A and B.

The descriptions in the remainder of this section are provided for illustration only. Please

refer to the Power ISA documents, especially Book II Section 1.7.1, for precise

descriptions of the cumulative and non-cumulative ordering associated with memory

barriers

For non-cumulative ordering, set A consists of the storage accesses that are caused by

instructions that precede the instruction that creates the memory barrier, and set B

consists of the storage accesses that are caused by instructions that follow the instruction

that creates the memory barrier. The non-cumulative ordering done by the memory

barrier ensures that all accesses in set A are performed, with respect to any given

processor, before any access in set B is performed with respect to that given processor.

Non-cumulative ordering orders only accesses that are performed by the processor that

creates the memory barrier.

Cumulative ordering adds, to sets A and B, accesses that are performed by processors

other than the processor that creates the memory barrier.

Added to set A are the storage accesses by other processors that are performed, with

respect to the processor that creates the cumulative memory barrier, before the memory

barrier is created.

3

Added to set B are the storage accesses by other processors that are performed after that

other processor reads a value that was stored by a store that is already in set B. This

definition is recursive. Initially set B consists only of accesses caused by instructions that

follow the instruction that creates the cumulative memory barrier. (These accesses were

performed by the processor that creates the cumulative memory barrier.) Any store by

another processor that is then added to set B can, if observed by another processor, cause

additional accesses to be added to set B.

These augmented sets A and B are ordered, by the (cumulative) memory barrier, as

described above. That is, all accesses in set A are performed, with respect to any given

processor, before any access in set B is performed with respect to that given processor.

The non-cumulative behavior of memory barriers is fully implemented in POWER5

AND POWER5+ processors; only certain aspects of cumulativity are not fully

implemented.

Cumulativity can be considered to consist of two properties. This discussion refers to

these properties as “A-cumulativity” and “B-cumulativity.”

A-cumulativity is the property that ensures that storage accesses, by other processors,

that are in set A are performed, with respect to any given processor, before storage

accesses that are in set B are performed with respect to that given processor.

A-cumulativity is illustrated in Example 1 of the second Programming Note in Section

1.7.1 of Book II. In that example, the store to X by Processor A is in the set A of the

memory barrier created by Processor B (by A-cumulativity), and Processor B’s store to Y

is in the set B. Therefore the fact that Processor C’s load from Y returns the new value

means that Processor C’s load from X must return the value written by Processor A.

Similarly, B-cumulativity is the property that ensures that storage accesses, by other

processors, that are in set B are performed, with respect to any given processor, after

storage accesses that are in set A have been performed with respect to that given

processor.

B cumulativity is illustrated in Example 2 of the second Programming Note in Section

1.7.1 of Book II. In that example, the store to X by processor A is in the set A of the

memory barrier created by Processor A, and the store to Y is in the set B. Because

Processor B stores to Z after reading the new value of Y, Processor B’s store to Z is also

in set B (by B-cumulativity). Therefore the fact that Processor C’s load from Z returns the

new value means that Processor C’s load from X must return the value written by

Processor A.

These examples illustrate that a minimum of three processors and a minimum of two

memory locations are required before a program needs cumulativity. If only two

processors or only one memory location are involved, then cumulative ordering is not

needed.

4

POWER5 AND POWER5+ workarounds

If none of the approaches listed above can be used in a particular case, the following

software changes will prevent a program from depending on the aspect of cumulativity

that is not fully implemented in POWER5 AND POWER5+ processors. In the following

procedures, “hwsync” is used as shorthand for “sync with L = 0,” where L is the operand

of the Synchronize instruction.

1) Replace every lwsync and eieio instruction, that is being used to ensure B-

cumulative ordering of accesses to cacheable storage, with an hwsync instruction.

Only lwsync and eieio instructions that are being used to ensure B-cumulative

ordering, as described above, need be replaced.

2) Replace every Load instruction, that is being used to establish A-cumulative

ordering of accesses to cacheable storage, with a lwarx or ldarx instruction (or a

sequence of lwarx or ldarx instructions, for unaligned loads or loads with a longer

target location).

In the event that it is not practical to analyze the program sufficiently to apply the two

replacements described above, the following software changes can be used instead.

1) Replace every lwsync and eieio instruction that is being used to order accesses to

cacheable storage with an hwsync instruction.

2) Replace every hwsync instruction (including those created in step 1) and every

ptesync instruction with the following code.

r3 contains the address of a scratch location

in cacheable storage

 li r0,8 # prepare to execute loop 8 times

 mtctr r0

 loop: dcbf 0, r3 # flush scratch location from the data cache

 sync/ptesync # this matches the instruction being replaced

 # “sync” is sync with L=0 (“hwsync”)

 std r0, 0(r3) # store to scratch location

(value stored doesn’t matter)

 bdnz loop # execute loop 8 times

