
Macehiter Ward-Dutton is a specialist IT advisory firm which focuses exclusively on issues
concerning IT-business alignment. We use our significant industry experience,
acknowledged expertise, and a flexible approach to advise businesses on IT
architecture, integration, management, organisation and culture.

www.mwdadvisors.com

© Macehiter Ward-Dutton 2005

Application delivery and SOA:
a lifecycle approach
Neil Ward-Dutton and Neil Macehiter, Partners
November 2005

Software services have the potential to provide a common unit of design in both the
development of software, and its management and monitoring. What’s more, a service-
oriented to application delivery approach “done right” can significantly improve
software reuse, flexibility and comprehensibility, and also improve the visibility of
software’s value to the business. As a result, SOA can help address the needs of both
business and IT stakeholders: acting as a unifying force in IT-business alignment.

However, realising that potential requires an end-to-end approach to software
development and management based around a clearly-structured application delivery
lifecycle which recognises the roles and responsibilities of the key stakeholders; managed
by a well-defined governance framework; and supported by tools and technologies
which promote collaboration across the lifecycle.

This paper explains the key issues which organisations pursuing SOA initiatives need to
tackle in order to establish fit-for-purpose application delivery capabilities.

mwd
macehiterward-dutton

Application delivery and SOA: a lifecycle approach 2

© Macehiter Ward-Dutton 2005

Why SOA?
Today’s business environment demands an evolved IT
approach
Globalisation of markets is driving customer choice to a point where competition for
custom can be extreme; driving overall business success to depend not only on internal
performance, but on performance of actions coordinated throughout complex value
chains. Stiff competition also means that business success is often highly dependent on
consistent customer service excellence – and therefore a customer-centric perspective
which depends on the overall performance of the service delivered to the customer,
which spans organisational functions.

Meanwhile, the growing adoption of the outsourcing of IT, and increasingly of entire
business processes, together with accelerating use of offshore service providers,
demands the integration of these outsourced services with the rest of the organisation. At
the same time, long-term successful relationships with outsourcers demand that it must
be possible to measure and enforce the quality-of-service and commercial aspects of
their service provision.

Furthermore, the ongoing harmonisation of regulation, which is occurring against a
backdrop of local regulatory demands, increases the burden of compliance, which is
driving IT and business practices to become further intertwined. To efficiently alleviate the
burden for the long term, it is best to assess compliance implications in the context of
business processes, and only then enhance the IT capabilities which underpin those
processes. Efficiently implementing automated support for regulatory compliance
demands flexibility to increase responsiveness and localise the impact of change,
together with automation of compliance status monitoring and reporting.

SOA can enable the needed business-driven balance between
IT flexibility, efficiency
Whilst the details vary, all these broad business challenges point to an increased focus on
service orientation within the business, and on service-oriented IT which is optimised to
serve the needs of key business processes end-to-end. However where commercial
pressures demand a business-driven balance between flexibility and efficiency from IT,
the reality for most organisations is that their IT portfolios are currently incapable of
responding to the challenges which this brings. Information to support decision making is
abundant, but it is often difficult to access; new IT systems and applications are difficult
to integrate; resource utilisation is sub-optimal, with significant redundant capacity; and
IT solutions are too inflexible to support business change. In short, it seems that very few
enterprises’ IT portfolios, strategies or delivery capabilities are well-aligned with the
requirements of their business units.

Improving “IT-business alignment” requires an evolution both in technology and
technology thinking, which makes it easier for organisations to more effectively exploit
their existing IT assets; and re-prioritise IT investment, delivery and strategy so that IT assets
can be more readily directed to deal with business change. This is where SOA comes in,
because the overall approach described here is most effectively supported by a service-

Application delivery and SOA: a lifecycle approach 3

© Macehiter Ward-Dutton 2005

oriented model for enterprise software.

Application delivery and SOA: a lifecycle approach 4

© Macehiter Ward-Dutton 2005

How can SOA improve IT-business alignment?
A simple IT-business alignment model
In our work, we have come to see IT-business alignment as an ongoing process, through
which IT delivery organisations and businesspeople work together towards a situation
where IT capabilities and limitations are influenced by, and influence in return, business
priorities and strategies – see figure 1.

Figure 1: The elements of IT-business alignment

IT

Business

Change
implications

Change
capabilities,
limitations

Investment

Service
delivery

IT

Business

Change
implications

Change
capabilities,
limitations

Investment

Service
delivery

There are three important elements in IT-business alignment: investment, service delivery,
and collaboration in change management.

Our model of IT-business alignment is based around three aspects of the ideal
relationship between an IT delivery organisation, and its “customer”. The three
relationship aspects are:

• Investment. IT is now integral to the way that businesses operate – but historically, IT
has been viewed by the business as somewhat of a “black art”, best left to IT
practitioners, with the result that investment in IT has been treated as a special case.
With IT now playing such a critical role, this position is no longer tenable. Investment in
IT must be subject to the same priorities which govern investment in other assets –
people, facilities, production lines etc. – on which the continued operation of the
business depends

• Service delivery. The way in which the IT delivery organisation provides services to the
business must be governed by the same business priorities as is IT investment. This
extends to encompass the way that IT service delivery is measured. Only then will it
be possible for businesspeople to assess the business return on their investment in IT

• Change. With IT now so integral to the way that business operates, it is no longer
feasible for business decisions to be taken without a clear understanding of the IT

Application delivery and SOA: a lifecycle approach 5

© Macehiter Ward-Dutton 2005

implications of those decisions. Business leaders and the IT delivery organisation must
participate as peers in the business change management process and adopt a
systematic approach to assessing the IT implications of any change. Such
collaboration will put the IT delivery organisation in a position where it can actually
influence business change by highlighting the challenges and opportunities arising
from technology change.

SOA can support all aspects within the model…
A service-oriented approach to delivery of IT solutions has the potential to significantly
boost all three key aspects of the IT-business relationship described above. There are four
major technology-related benefits of SOA that have the potential to play here:

• Large-scale reuse. This is one of the most-talked about benefits of SOA. With effective
service-based software reuse programs in place, IT delivery organisations can build
up libraries of business-meaningful functionality that are not tied to particular usage
scenarios, and (crucially, unlike previous attempts at object-based reuse) are easily
composable and re-composable to meet new business requirements. With these
libraries, organisations can reduce the investment required to address new business
software requirements; make delivery of new solutions quicker and more reliable; and
also improve the accuracy and speed with which solutions can be changed

• Improved flexibility. Along with reuse, flexibility is the other commonly talked-about
SOA benefit. Flexibility of course concerns the ability of solutions to be altered in the
face of changing business and technology requirements, and is boosted by the
loosely-coupled nature of the services which are composed to meet solution
requirements in a SOA environment. Flexibility is a key to the change management
element of IT-business alignment – but other aspects of SOA are important here too

• Improved comprehensibility. Successful SOA implementations create groups of
services which can be clearly linked to individual tasks within business processes, as
well as lower-level technical services. In other words, strong service portfolios have
many key elements which are easily comprehensible to business audiences
(examples might include services which manage customer information, or which
validate orders). Software comprehensibility is not often talked about as a benefit of
SOA, but it has a massive impact on the ability of a SOA initiative to improve IT-
business alignment. When software functionality is easily comprehensible, it is much
easier to build a common language between business and IT – which makes it easier
to engage business stakeholders in real investment discussions and solution design
work; and to show how particular “pieces” of software contribute to business activity

• Improved visibility. Beyond providing more comprehensible software solutions,
successful SOA implementations also have the potential to increase the visibility of IT’s
value to the business. At the heart of this possibility is the fact that the idea of a
“service” is both a business-meaningful unit of software design when a solution is
being conceived and built; and a business-meaningful unit of reporting when a
solution design is in production. For the first time, with SOA, we have the ability to
clearly relate the production of solutions in an IT environment, to the operation of
solutions in a business environment. Together with the promise of comprehensibility,
the visibility that comes with SOA enables business stakeholders, administrators,
designers and developers to share a common view of solutions which makes sense to

Application delivery and SOA: a lifecycle approach 6

© Macehiter Ward-Dutton 2005

all of them. This has clear implications for more “business-aligned” IT investment and IT
service delivery, and also in the cooperative management of change.

…but only if you implement a lifecycle approach
Maximising the reuse, flexibility, comprehensibility and visibility of software in business
solutions are all possible within SOA initiatives – but making any of them possible will be
very difficult indeed for an organisation that does not take steps to understand, formalise
and manage the end-to-end lifecycle of services and the applications into which they
are composed. Without a “joined up” approach to the analysis of requirements, and the
design, deployment and management of application solutions, services made available
for reuse will not be effectively located, understood or used; and the need to flex those
solutions in line with changing requirements will not be clearly transmitted to the right
people at the right time. Just as importantly, though, the visibility and comprehensibility of
value of solutions both rely on effective collaboration between a range of people, roles
and technologies throughout the lifecycle of solutions.

Application delivery and SOA: a lifecycle approach 7

© Macehiter Ward-Dutton 2005

An application delivery lifecycle model for SOA
Here, we first discuss the high-level structure of the application delivery lifecycle model,
the roles within it, and the capabilities which must support it. Following that are five
sections, each of which examines a phase of the lifecycle in more detail – with an
emphasis on the main steps involved, the roles which contribute, and the capabilities
which support it.

Five main phases, with many contributing roles and capabilities
Our model of an application delivery lifecycle for SOA contains four main “doing”
phases: design, build, deploy, and assure (as shown in figure 2). However SOA is an
architectural approach which works well where change is a fact of life. This means that in
addition to these main phases, there is a fifth, and central, element of the lifecycle which
cannot be ignored: change management.

Figure 2: Phases in the SOA application delivery lifecycle

Design

Business analyst
Enterprise architect

Infrastructure architect
Application designer

Build

Enterprise architect
Application designer

Coder
Infrastructure architect

User representative
Tester

Change

Change manager
Architects

Deploy

Application designer
Coder
Tester

Infrastructure architect
Administrator

User representative

Assure

Business analyst
Administrator

Infrastructure architect

Design

Business analyst
Enterprise architect

Infrastructure architect
Application designer

Build

Enterprise architect
Application designer

Coder
Infrastructure architect

User representative
Tester

Change

Change manager
Architects

Deploy

Application designer
Coder
Tester

Infrastructure architect
Administrator

User representative

Assure

Business analyst
Administrator

Infrastructure architect

An application delivery lifecycle model for SOA involves resources playing a large
number of roles. Management of change must be at the core of the lifecycle.

The architect role is the linchpin in the lifecycle
As figure 2 also shows, each phase in the lifecycle requires cooperative contributions
from people in a variety of roles, from the business as well as across IT delivery functions.
The key roles throughout the lifecycle, though, are the architect roles.

An IT architect’s job is to work with a range of stakeholders to bring IT and business needs

Application delivery and SOA: a lifecycle approach 8

© Macehiter Ward-Dutton 2005

together in the development and implementation of IT solutions. In this, the architect’s
natural value is to balance the need for good short-term business outcomes with the
need for long-term high-quality IT value. In the context of a delivery lifecycle influenced
by SOA principles, given the goals of maximising reuse, flexibility, visibility and
comprehensibility and through these, improving IT-business alignment – this means that
the role of the architect is absolutely crucial. It is the architect roles which are best
placed to take responsibility for the effectiveness of the overall delivery lifecycle: helping
ensure that information flows from one phase to another, and also ensuring effective
communication between business stakeholders and the various IT roles.

We identify two types of architect in the SOA application delivery lifecycle: the enterprise
architect role, which is responsible for maintaining a broad view that maps the
organisation’s business processes and priorities and relates these to the organisation’s
overall IT portfolio; and the infrastructure architect, which is primarily focused on
formalising a view of, and rationalising, the organisation’s overall investments in software,
hardware and network infrastructure.

Supporting capabilities have to be integrated and intuitive to
access
Software reuse, flexibility, comprehensibility and visibility can be improved through a SOA
initiative, but none of these come from technology alone: the unfortunate truth is that all
these require cultural adjustment, and focused effort to achieve. With a poorly supported
delivery lifecycle, it will seem quicker and easier to create software solutions with no
consideration of reuse, flexibility, comprehensibility and visibility, than it will to create
solutions which reflect those goals. The multitude of technology capabilities that are
needed to support the different phases of the SOA application delivery lifecycle – from
requirements management and design environments, through to monitoring tools and
optimisation feedback mechanisms – will only increase the natural inertia to process and
architecture change, unless the tools which provide those capabilities:

• are integrated, in that they can pass key process artefacts between them intact

• are intuitive and easy to use

• facilitate collaboration between the different roles taking part in the lifecycle

• promote design, development, deployment and operations behaviour which
supports reuse, flexibility, comprehensibility and visibility by providing guidance and
structured assistance – making such behaviour the “path of least resistance”.

Application delivery and SOA: a lifecycle approach 9

© Macehiter Ward-Dutton 2005

Designing solutions
In our model the design phase comprises a wide range of activities – from requirements
analysis through to service design and test specification, as shown in figure 3. A wide
range of capabilities is required from tools – and in order to minimise the inertia which will
inhibit designing for reuse, flexibility and so on, it is vital that access to common design
and requirements artefacts is possible across the set of tools in use.

Figure 3: Roles, activities and capabilities in the design phase

Ro
le

s

Required capabilitiesBu
sin

es
s

an
aly

st

En
te

rp
ris

e
ar

ch
ite

ct

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

A
pp

lic
at

io
n

de
sig

ne
r

Formalise requirement

Get business context for requirement

Identify existing assets, services

Define functional, QoS contracts for
new services; define schemas

Identify new reuse opportunities, factor
design accordingly

Define use cases, user interaction flows

Identify required infrastructure services

Define application, service
test specifications

Requirements management

Business process modelling

D
esign artefact m

anagem
ent

Application,
interaction, service
modelling

Test management

Ro
le

s

Required capabilitiesBu
sin

es
s

an
aly

st

En
te

rp
ris

e
ar

ch
ite

ct

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

A
pp

lic
at

io
n

de
sig

ne
r

Formalise requirement

Get business context for requirement

Identify existing assets, services

Define functional, QoS contracts for
new services; define schemas

Identify new reuse opportunities, factor
design accordingly

Define use cases, user interaction flows

Identify required infrastructure services

Define application, service
test specifications

Requirements management

Business process modelling

D
esign artefact m

anagem
ent

Application,
interaction, service
modelling

Test management

In the design phase, architects help to balance conflicting requirements using
knowledge of the business in order to maximise future reuse possibilities.

A key challenge in the design phase is to align the flexibility and reuse requirements of
solutions with business needs; but to balance those against efficiency and openness
requirements. The challenge of this balance in the SOA context is likely to be felt
particularly keenly, because openness and flexibility are often considered to be “done
deals” - but in general maximising these qualities increases the complexity of software –
which of course impacts efficiency.

“Design for reuse” is a crucial element of this phase of the lifecycle if the benefits of SOA
are to be realised, but it is a complicated process that cannot be applied blindly.
Balancing these conflicting requirements can be achieved by an understanding of the
business processes and priorities which are driving service design. “Efficiency first” will be
the most worthwhile strategy in cases where the usage scenarios for supporting services
are likely to be well-understood and stable. By contrast, “flexibility first” will make most
sense where the service will be used over time in multiple contexts, and/or where there
will be significant demand for change.

Application delivery and SOA: a lifecycle approach 10

© Macehiter Ward-Dutton 2005

Requirements documentation and software modelling tools used in the design phase
should encourage analysts, architects and designers to express these tradeoffs, along
with other key quality-of-service and functional requirements, in well-formed service
contract definitions which can form a consistent service and application design
reference throughout the lifecycle.

Application delivery and SOA: a lifecycle approach 11

© Macehiter Ward-Dutton 2005

Building solutions
As shown in figure 4, in our model the build phase comprises activities that look very
similar to those found in “traditional” software build processes, with three important
additions.

Figure 4: Roles, activities and capabilities in the build phase

Ro
le

s

C
od

er

En
te

rp
ris

e
ar

ch
ite

ct

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

A
pp

lic
at

io
n

de
sig

ne
r

Expose existing assets as services

Define deployment configurations

Define service
orchestrations

Create new
service

implementations

Harvest newly-built
services for later reuse

Create UI forms, interaction logic

Create/reuse
infrastructure

services

Test, refine service and application functionality

Code editing, compiling,
debugging (various)

D
evelopm

ent artefact m
anagem

ent

Test management, automation

U
se

r
re

pr
es

en
ta

tiv
e

Te
st

er

Required capabilities

Deployment modelling

Ro
le

s

C
od

er

En
te

rp
ris

e
ar

ch
ite

ct

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

A
pp

lic
at

io
n

de
sig

ne
r

Expose existing assets as services

Define deployment configurations

Define service
orchestrations

Create new
service

implementations

Harvest newly-built
services for later reuse

Create UI forms, interaction logic

Create/reuse
infrastructure

services

Test, refine service and application functionality

Code editing, compiling,
debugging (various)

D
evelopm

ent artefact m
anagem

ent

Test management, automation

U
se

r
re

pr
es

en
ta

tiv
e

Te
st

er

Required capabilities

Deployment modelling

Asset integration, deployment modelling and harvesting for reuse all increase the
complexity of the build phase.

The first addition is the explicit inclusion of “asset integration”. In the context of a SOA
initiative, the line between development and integration is very blurred, so the
application delivery lifecycle cannot consider integration as something that happens just
before deployment – it is an integral (no pun intended) part of service development.
Tools providing supporting capabilities in this phase must help developers, architects and
managers understand the composite application as a whole, as well as letting them drill
down into service implementation development and asset integration development
activities.

The second addition is the creation or reuse of infrastructure services. Core to SOA is the
idea of composite applications which are built on shared service foundations. If this
approach is followed, the infrastructure underpinning those shared services must by
definition also be shared – which in turn means that the benefits of SOA initiatives cannot
be wholly realised unless you pursue application infrastructure investment and
implementation as a “horizontal” platform proposition. Consequently the build phase
needs deployment modelling tools which can help infrastructure architects discover the
services provided by available infrastructure, and specify links between application

Application delivery and SOA: a lifecycle approach 12

© Macehiter Ward-Dutton 2005

services and those infrastructure services.

The third addition is the harvesting of newly-built service definitions and implementations
for later potential reuse. In order to maximise the quality of the build phase, the process
of harvesting services for later reuse should use the relevant artefacts (code, interface
descriptions, and so on) from the design phase as a key information source. This of course
requires that artefact management capabilities from the design phase should be easily
accessible from the development tools used within this phase.

Application delivery and SOA: a lifecycle approach 13

© Macehiter Ward-Dutton 2005

Deploying solutions
Figure 5 outlines the deploy phase of our model.

Figure 5: Roles, activities and capabilities in the deploy phase

Ro
le

s

A
dm

in
ist

ra
to

r

Te
st

er

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

U
se

r
re

pr
es

en
ta

tiv
e

Capacity planning, runtime
configuration

Service contract m
anagem

ent

Test management,
automation

C
od

er

A
pp

lic
at

io
n

de
sig

ne
r

Tune application

Tune services

Install, configure
runtime

environment

Configure
monitoring tools

Test functionality, performance of application

Provision /
de-provision

users

Test functionality, performance of services

Identity management,
directory management,
security infrastructure

Core service infrastructure

Monitoring agents, mediation
framework

Problem diagnosis

Required capabilities

Ro
le

s

A
dm

in
ist

ra
to

r

Te
st

er

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

U
se

r
re

pr
es

en
ta

tiv
e

Capacity planning, runtime
configuration

Service contract m
anagem

ent

Test management,
automation

C
od

er

A
pp

lic
at

io
n

de
sig

ne
r

Tune application

Tune services

Install, configure
runtime

environment

Configure
monitoring tools

Test functionality, performance of application

Provision /
de-provision

users

Test functionality, performance of services

Identity management,
directory management,
security infrastructure

Core service infrastructure

Monitoring agents, mediation
framework

Problem diagnosis

Required capabilities

The specialised nature of the SOA runtime platform is the key issue in the deploy phase.
Tools to help configure the platform and associated monitoring and diagnosis tools are
crucial, as is the ready availability of information concerning service contracts from the
design phase.

The specialised nature of SOA runtime platform elements is the primary differentiating
factor in the deploy phase. Applications built within SOA initiatives require specialised
runtime platforms – application servers which provide advanced facilities for publishing
service interfaces and hosting their implementations; Enterprise Service Bus (ESB)
implementations which can transparently apply quality-of-service policies,
transformations and so on to service requests and replies through “mediations”; service
orchestration engines; and so on.

The distributed, specialised, and shared/horizontal nature of SOA runtime infrastructure
brings a challenge to the deploy phase. Developer and administrator productivity are
easily compromised (and the overall ROI of SOA projects significantly weakened) if a
great deal of effort is required to deploy services which have completed development
and testing. Consequently the deploy phase will benefit a lot from tools which help
infrastructure architects and administrators automate the packaging of code,
deployment descriptors, policies, and other associated configuration information, and
the remote installation of the resulting packages.

Another important factor which improves the productivity and quality of the deploy

Application delivery and SOA: a lifecycle approach 14

© Macehiter Ward-Dutton 2005

phase is the ability of infrastructure architects and administrators to refer back to
requirements documentation, design documents – and the service contract definitions
which should be modelled within them – when installing and configuring runtime platform
elements and the monitoring and problem diagnosis frameworks which need to plug into
them.

Application delivery and SOA: a lifecycle approach 15

© Macehiter Ward-Dutton 2005

Assuring the quality of solutions
Figure 6 outlines the assure phase of the lifecycle.

Figure 6: Roles, activities and capabilities in the assure phase

Ro
le

s

Bu
sin

es
s

an
aly

st

A
dm

in
ist

ra
to

r

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

Optimise runtime environment

Monitor service
levels

Diagnose problems

Analyse, report on service levels

Manage updates,
patches

Monitor, report on usage
(billing optional)

Infrastructure monitoring

Service level monitoring,
reporting

Service level m
anagem

ent

Infrastructure
optimisation

Diagnosis

Auditing, usage
tracking

Software delivery,
patch management

Required capabilities

Ro
le

s

Bu
sin

es
s

an
aly

st

A
dm

in
ist

ra
to

r

In
fra

st
ru

ct
ur

e
ar

ch
ite

ct

Optimise runtime environment

Monitor service
levels

Diagnose problems

Analyse, report on service levels

Manage updates,
patches

Monitor, report on usage
(billing optional)

Infrastructure monitoring

Service level monitoring,
reporting

Service level m
anagem

ent

Infrastructure
optimisation

Diagnosis

Auditing, usage
tracking

Software delivery,
patch management

Required capabilities

The ability to capture health and performance information at the level of services and
inter-service information flows, as well as at the level of the encompassing composite
applications – and the ability to analyse these in the context of established quality-of-
service thresholds described in the design phase – are vital to achieving software
comprehensibility and visibility.

As described earlier in this report, in SOA, the unit of software design – the service – also
provides an appropriate and (if designed properly) business-meaningful unit of
measurement at runtime. In addition, systems built from open service networks provide
an environment where the tracking and logging of business-meaningful events is
potentially straightforward. Taking advantage of these facts will improve the quality of
the SOA lifecycle, and will also help to demonstrate the quality and value of SOA
implementations to all stakeholders.

In order to do maximise the comprehensibility and visibility of software solutions, SOA
initiatives will need to employ infrastructure software platforms which can monitor request
and reply streams, and collect operational statistics about service response time and
availability, and overall round-trip request processing. These need to be complemented
by tools which store these monitoring statistics, and provide reporting and analysis
facilities against the statistics and stored quality-of-service thresholds, and which can
alert administrators and managers about potential or actual policy breaches.

Application delivery and SOA: a lifecycle approach 16

© Macehiter Ward-Dutton 2005

Closing the loop: managing change
Mastery of version and change management is critical in any non-trivial SOA initiative.
The nature of SOA is that it should be considered and pursued when change is to be not
only expected, but encouraged. As groups of networked, shared services evolve and
grow over time, and the promise of reuse materialises, individual services are likely to
become dependent on each other to an ever greater extent. This increases the
potential impact of change – and, more importantly, the complexity of assessing and
managing its impact.

Moreover, as a SOA initiative becomes established and the IT delivery organisation
improves its execution, multiple instances of the processes within each phase of the
application delivery lifecycle are likely be running at any one time – with each instance
probably utilising some assets (people as well as software) which are also used within
other instances. This is difficult enough – but when you consider that solution requirements
are likely to be evolving continually and driving change through multiple instances of the
delivery lifecycle, it becomes clear that a razor-sharp focus on change management is
paramount to avoid the risk of application quality degradation.

In order for the inevitable swirling vortex of change surrounding an ongoing SOA initiative
to be managed effectively, change has to be pinpointed, analysed and enacted with
reference to a “single point of truth” which gives change implementers reliable
information about the demands and capabilities of other services which interacts with
the service to be changed. The good news is that SOA’s very nature can give us this
information, in the form of service contract definitions which encompass not only key
information about functional service interface specifications, but also information about
non-functional behaviour – such as quality-of-service commitments, security
requirements, and so on. Change management will be much easier if, as we describe
above, contract definitions are made a primary output of the design phase, and then
made a primary reference point for staff playing roles in the build, deploy and assure
phases.

Any broad SOA governance framework you put in place therefore needs to mandate a
lifecycle methodology that doesn’t just provide a clear structure for directing design and
development strategies towards reuse, flexibility, comprehensibility and visibility of
applications and the services within them. It must also drive the people playing key roles
in the application delivery lifecycle to manage change effectively through rigorous
application of, and reference to, service contract designs.

