
Service oriented architecture solutions
White paper

Providing a messaging backbone
for SOA connectivity.

March 2007

http://www.ibm.com/us/
http://www-306.ibm.com/software/websphere/

Providing a messaging backbone for SOA connectivity.
Page �

2	 Executive summary

4	 Messaging backbone: 	

A first step to SOA

8	 Messaging concepts

16	 Meeting enterprise demands

23	 Connecting virtually anything

24	 Interfaces and standards

26	 Messaging for Web services

27	 Transferring files reliably

29	 Foundation for your ESB

31	 Summary

31	 For more information

Contents
Executive summary

Today, you likely have a disparate, widely distributed, increasingly complex,

enterprise-computing infrastructure. One that’s made of different kinds of

systems — located in and managed through different departments and

geographic locations. A flexible, robust messaging backbone can enable you to

quickly connect new applications and use existing ones cost-effectively, while

minimizing risks to business data. And you can integrate these applications

across your entire organization and with those of key trading partners, suppliers

and customers.

To stay competitive, you can’t continue to rely on manual processes to

manage information that’s distributed through a wide range of disconnected

systems. It’s expensive to maintain, more prone to human error and doesn’t

accommodate future growth. A strong messaging backbone can provide you

with the security-rich foundation to provide your goods and services over the

Web, facilitate more-effective interactions, streamline critical processes and

enhance productivity across your value chain. So the flow of transactions,

information and ideas can ripple immediately through your enterprise —

 and beyond.

As many organizations look to service oriented architecture (SOA) to increase

the flexibility of IT, it becomes increasingly important to be able to connect

the new (service-oriented applications and assets) and the now (existing IT

assets that are the lifeblood of your organization). As SOA enables greater

interoperability to IT assets and increases the ability to dynamically interconnect

these, the need to provide a robust, reliable backbone for these interactions is

ever-more acute, preserving a bet-the-business quality of robustness whenever

services and non-service-oriented assets interact.

Providing a messaging backbone for SOA connectivity.
Page �

 IBM WebSphere® MQ provides a flexible, robust messaging backbone that

enables integration for SOA and for your existing IT assets. WebSphere MQ

provides the industry’s leading messaging backbone with assured, once-only

delivery of data across a wide range of operating systems. Across industries,

from banks and telecommunications companies to government agencies,

IT departments have reaped the benefits of using a common technology to

connect disparate systems.

In the last decade, the software industry has converged on certain standards:

Web services for service discovery and invocation, Java™ 2 Platform, Enterprise

Edition (J2EE) as an enterprise programming model or XML as a canonical

data format. Messaging technology — particularly WebSphere MQ — complements

these standards by playing an important role in building a strong, open,

IT infrastructure.

This white paper examines the value of implementing a messaging backbone

instead of building a complex web of custom coding to integrate your business

processes. It explores WebSphere MQ, and the key concepts that comprise the

product, in more detail. This white paper also discusses some of the standards

that currently shape the industry — and why the messaging backbone is still a

critical part of the picture, especially in an SOA. Finally, it provides insight

about the overall industry landscape, so you can more clearly understand

WebSphere MQ, how it fits into today’s IT industry and how it can work for you.

Providing a messaging backbone for SOA connectivity.
Page �

Messaging backbone: A first step to SOA

Today’s business goals are driving IT priorities. Competitive pressure and

market forces drive business leaders to radically change their organizations.

The goal is strategic flexibility through innovation. And SOA enables IT to

respond to change faster. Typically, a major barrier to achieving flexible IT

is a veritable rat’s nest of applications, developed in isolated silos, often aligned

with departments. Significant portions of IT budgets are expended simply

maintaining the connectivity, and the cost of extending it tends to increase as

it grows.

The messaging backbone provides a first step to SOA (see Figure 1). It bridges

the gap between new service-oriented assets and existing core assets, and

provides the transport foundation for an enterprise service bus (ESB). It also

frees applications from the connectivity logic needed to determine how each

application communicates with the others.

Figure 1. WebSphere MQ provides a first step to SOA.

Your application
Your application

Your application

0 1
2

3

Your application
as a service

Replaces hardwired connectivity with flexible, reliable
coupling that externalizes the connectivity logic so that can
be managed and modified independent of your application.

Hand-coded, Hardwired Handles
connectivity

Application integration

ESB

WebSphere MQ

Hand-coded
logic buried deep
inside for:
• Connectivity
• Mediation

Still contains:
• Mediation Still contains:

• Transformation

Application connectivity

ESB

Handles
mediations Enables you to focus on

core business function
(a reusable service)

Increased flexibility and reuseMore code to develop and maintain

Providing a messaging backbone for SOA connectivity.
Page �

A messaging backbone enables you to reuse what you have already. Because

you do not have to rip and replace applications, you can increase the return on

investment (ROI) of the applications you have. Because the WebSphere MQ

messaging backbone is supported on virtually any commercial IT system, you

don’t have to replace your choice of hardware and operating system, either. Its

choice of interfaces in a range of popular programming languages means that

you can use the skills that you have available.

Business processes can be made more reliable with a messaging backbone

helping to assure that the data is delivered and that transactions are preserved,

even when these processes touch multiple IT systems spanning across your

organization. Reducing the risk of IT systems losing integrity can help to

prepare you for the challenges of regulatory compliance, where financial

reports must be based on demonstrably accurate business data.

To further understand the benefits of messaging software, consider the

alternatives. Most enterprises have several systems, applications or islands of

automation that stand alone — often on different operating systems. Data

usually resides in more than one place, causing duplication and synchronization

issues. Employees manually enter data into several different systems.

And if you develop or purchase a new application — or a merger or acquisition

occurs — the situation becomes even more complex. To solve the problem, you

need to connect your applications together, allowing them to share information

and unlock the data distributed across your enterprise.

To achieve this level of connectivity, you might decide to write code, typically

embedded into your application, to communicate with other systems. This

means your developers must write connectivity logic — and grapple with the

nuts and bolts of a particularly difficult area of software development. It could

involve issues like the handling of TCP/IP sockets, which can vary depending

on the operating system and programming language used. And it can require a

wide array of specialized skill sets within your development team. The code

must be able to handle situations where the network fails, or where the receiving

applications are unavailable. Because each piece of connectivity logic is

specific to the applications it connects, you limit the possibility of reuse and

make it more difficult to add applications as your business needs change. The

likely result is your IT staff writes, owns, extends and maintains a large

quantity of complex, unwieldy connectivity logic.

Providing a messaging backbone for SOA connectivity.
Page �

You can avoid this situation by using a software product designed to handle all

these connectivity issues for you — a messaging backbone. Rather than riddling

your applications with connectivity logic, you let your applications talk to the

backbone — through a simple, common application programming interface

(API) — to deliver the data to other applications.

When you implement a messaging backbone, you can adopt industry-standard

programming models and make them available on a selection of operating

systems. An effective messaging backbone should be ubiquitous to maximize

reuse of skills and code across your enterprise. Your application developers can

simply concentrate on writing business logic without having to maintain large

quantities of connectivity code.

A vital aspect of the messaging backbone is assured delivery. You have to be

able to control the required quality of service on data delivery. For example, it

might be acceptable to send noncritical data in a fire-and-forget model,

where you’re aware that the data might be lost, given certain failure scenarios.

However, for critical business information, like a banking transaction, you want

assured once-and-once-only delivery. When the application sends this critical

data to the messaging layer, the processing should continue. If messaging

events — like sending and receiving data — can also act as part of a transaction, it

helps ensure that actions, such as database updates, can occur in the same unit

of work as messaging operations, with coordinated commit or rollback.

Providing a messaging backbone for SOA connectivity.
Page �

Another central concept of the messaging backbone is time-

independent — or asynchronous — processing. This concept means that

applications don’t rely on each other’s availability, or the availability of

the network, to send data. In a purely synchronous model, in the case

of a network failure, your applications would require sophisticated

retry logic and could be blocked waiting for the network to recover.

Asynchronous messaging is best viewed as a delivery model, not as the

opposite to synchronous messaging. Asynchronous messaging simply

decouples applications from each other and from the network. It

operates on a fastest-possible delivery model. If you wish to send data

from application A to application B, and the network is available, the

data will be delivered almost immediately. However, if the network or

the receiving application is unavailable, the sending application isn’t

necessarily affected. The messaging backbone temporarily stores the

data if required.

Because your messaging backbone handles your valuable business

data, you want to ensure that the infrastructure you choose is reliable.

You have to make sure data doesn’t get irrecoverably lost. Your

messaging software must operate in a failover model. It needs built-in

capabilities to help ensure high availability. You might also want

features to help with workload balancing, so you can be sure your

messaging backbone can grow and adapt as your business

requirements change.

Providing a messaging backbone for SOA connectivity.
Page �

Messaging concepts

The fundamental components of a messaging backbone are its messages and

queues. This section briefly discusses these and some other key components.

For more in-depth information, refer to the WebSphere MQ product manuals.

Messages

WebSphere MQ enables applications and services to communicate by sending

messages rather than calling each other directly. Messages are simply strings of

bytes, containing the data you wish to deliver from one application to another.

A message has two parts: a header that describes the message, and the data

itself, which could be any kind of data, such as XML, binary data or a bit

stream. The message header identifies the message with a unique message ID

and contains other fields such as message type, information about its origin,

priority, expiration time, the queue to send any replies to and so on.

Each WebSphere MQ message can be up to 100 MB in size. Larger messages

and files can be transported by segmenting these into smaller chunks.

WebSphere MQ can segment large messages automatically, and receiving

applications can choose to retrieve the larger messages when these have been

recombined by WebSphere MQ, or receive each segment. Alternatively,

programming controls enable messages to be split into segments based on

logical boundaries or the size of the buffer available to the receiving application.

WebSphere MQ helps ensure that the order of the segments is preserved.

Similarly, messaging traffic can be reduced when many very small messages

are being sent to the same destination by grouping these together into larger

WebSphere MQ messages. When the composite message arrives at its destination,

WebSphere MQ disassembles the message and can again preserve the order in

which these constituent messages are delivered.

Providing a messaging backbone for SOA connectivity.
Page �

Distribution lists provide another way to reduce messaging traffic. When

the same message is being sent to multiple queues owned by the same queue

manager, only one single copy of that message needs to be sent to the queue

manager. WebSphere MQ uses a distribution list to determine which of the

queues it owns needs a copy of that message and acts accordingly. These

distribution lists can be updated at any time, as required.

Message persistence

WebSphere MQ can handle messages in both a persistent and nonpersistent

manner. All persistent messages are logged by WebSphere MQ, which

synchronously writes these messages to disk or other nonvolatile storage at the

same time as sending them. This capability enables the delivery and recovery

of messages even if the applications, networks or WebSphere MQ server goes

down at any stage of transmission.

Nonpersistent messages are not logged in this way; however, these messages

are also delivered no more than once, avoiding the problems associated with

duplicate messages arriving and causing transactions to partially run more

than once.

Semipersistent messaging is also possible, in cases where you need a more-

granular trade-off between the robustness of delivery and the throughput

of the messaging system. Performance of semipersistent messaging is typically

greater than persistent messages because logs of the message are not taken at

all the steps during delivery where failures could possibly occur. In this

instance, semipersistent message logging occurs asynchronously — typically

after the message is actually dispatched. This capability can increase the speed

of throughput because it avoids waiting for disk input/output (I/O) operation to

complete before sending, but introduces some risk that the messages and queue

manager cannot be completely recovered if a failure occurs in the window

before the log is updated.

Providing a messaging backbone for SOA connectivity.
Page 10

It is important to understand the level of persistence needed by each application

or service and select the appropriate persistence service to help optimize the

messaging backbone and provide the level of recoverability needed by the

business. By default, WebSphere MQ uses persistent messaging. In addition, to

make accurate performance benchmark comparisons of message backbones,

you should use equivalent persistence levels.

Queues

WebSphere MQ enables applications and services to communicate

asynchronously, without each having to be available at the same time.

This capability is possible because of queues, which are data structures used to

store messages. When messages move across the WebSphere MQ backbone,

queues are used, even momentarily, to store messages so that these can be

retrieved when the recipient is available. Typically, when sending and receiving

applications are all available, messages sent through these queues arrive at

their destination in near real time. However, when applications or the network

are unavailable or busy, the queue is able to hold the messages until they can be

received and processed. This asynchronous messaging model is a powerful way

of loosely coupling applications and services so that their communication is

time-independent.

As a result, the messaging backbone is able to shield applications and services

from interruptions and failures, as well as enabling them to continue doing

meaningful work instead of being locked in conversations. In addition, you can

also use WebSphere MQ to start applications — through the use of application-

triggering — when sufficient messages arrive for it to process. And WebSphere

MQ can preserve the order of messages, delivering them to applications in the

same order as they were dispatched. First-In-First-Out (FIFO) is the default.

Types of queues
The most common types of queues include:

•	 Local queues, the queues that actually

reside on a particular machine

•	 Alias queues, alternate names for referring

to local queues

•	 Remote queues, references or handles to

queues that reside on other machines

•	 Transmission queues, special queues

that WebSphere MQ uses internally to

move messages across a network

(where messages reside if the network

is unavailable)

•	 Dynamic queues, local queues that are

created on demand

•	 Dead-letter queues, queues that store

messages that cannot be delivered (such as

when a destination queue is full and cannot

be enlarged)

•	 Repository queues, queues that hold

clustering information

Providing a messaging backbone for SOA connectivity.
Page 11

Queue managers

At the heart of a messaging backbone are its queue managers, which

provide the messaging services and manage objects like queues and channels.

Queue managers use transmission queues to move messages to remote queues

owned by other queue managers. They provide triggering services, enabling

applications to be started when sufficient messages arrive for processing.

They also handle the conversion of character sets within messages between

platforms. On distributed systems, WebSphere MQ queue managers can act

as transaction coordinators, using two-phase commit to preserve the

transactionality of operations to databases and queues.

Queue managers handle the recovery, persistence and assured delivery of

messages. In persistent or semipersistent messaging, the queue manager logs

message data to disk. WebSphere MQ queue managers are often backed up in

high-availability environments.

Channels

WebSphere MQ uses channels to connect its queue managers, and to connect

WebSphere MQ clients to them. Channels are logical communication links.

A message channel is defined to connect one queue manager to another —

 referred to as server-to-server communication. These channels are

unidirectional, and are often defined in pairs. At either end of these

message channels, sender and receiver agents — or movers — coordinate the

communications link. WebSphere MQ clients also use channels to connect to

the queue managers of WebSphere MQ servers, although a different kind of

channel is used in this case, because clients do not have queue managers.

Client channels are bidirectional. Some channels can be defined automatically

by WebSphere MQ. Queue managers contain a message channel agent (MCA)

that is responsible for channels.

Providing a messaging backbone for SOA connectivity.
Page 12

Clients

WebSphere MQ supports a range of clients to enable applications and services

to connect into its messaging backbone. WebSphere MQ clients connect into

remote queue managers. WebSphere MQ clients for a range of platforms are

included with the product and can also be downloaded at no charge. Most

clients are fully supported.

The main difference between clients and servers is that clients do not have

queue managers, whereas servers can. This difference means that clients do not

provide a local queue to store messages and so do not support asynchronous

messaging between the client and the servers it connects with. Clients connect

using dedicated, bidirectional channels, and can only make connections to

WebSphere MQ servers when the network is available. The application or

service can retry the connection in this case or try another route to reach

messaging servers.

Whether to run a WebSphere MQ server with its queue manager or a client

depends on the quality of delivery needed by the applications and services local

to a particular machine. If reliable delivery of messages is needed from that

machine, then a client is unlikely to meet your needs.

WebSphere MQ also supports a special client called an extended transactional
client. As with other clients, it does not provide a queue manager. Extended

transactional clients enable applications to perform several tasks — including

putting messages to a server and updating the resources of another resource

manager, such as a transaction coordinator, database or application server — all

within a single unit of work (UOW) transaction. This capability can enhance

the transactionality of a connection, while removing the need to deploy a local

queue manager. Extended transactional clients are licensed as part of

WebSphere MQ. When installing WebSphere MQ, you can choose to deploy

either a server or an extended transactional client.

To learn more about clients, visit ibm.com/webspheremq/clients.

http://www.ibm.com/webspheremq/clients

Providing a messaging backbone for SOA connectivity.
Page 13

Messaging topologies

Topologies refer to the shape of the messaging backbone — how its messaging

nodes are connected. Different messaging styles and topologies have certain

strengths and can be combined within your messaging backbone. Figure 2

shows examples of different messaging topologies.

Figure 2. Messaging backbone topologies

The point-to-point topology is a simple connection between two messaging

nodes or applications. The logic defining where messages are sent resides either

in the originating application, or in the messaging artifacts defined locally to

this application. If the target application moves to a new location, the logic at

the source application must also be updated so that messages still reach it. This

capability is useful for simple scenarios where a few applications are connected.

However, to connect n applications to each other, you must define n(n-1)/2

connections in your messaging middleware — to connect each point to each

other point. For example, for two applications this means making only one

connection; for five applications, 10 connections are needed; for 10

applications, 45 connections are needed. To add one more application now

requires an additional 10 new connections to be defined and likely requires

changes to most of the existing connections. This combinatorial explosion of

configuration information, with the need to make many updates for each

changing application, means that it is not ideal for larger deployments.

Point-to-point

Hub-and-spoke

Point-to-point

Bus

Providing a messaging backbone for SOA connectivity.
Page 14

In a hub-and-spoke topology, each application connects into a centralized node

in the messaging backbone. This helps to reduce the number of connections

needed for a given number of applications, because the number of connections

is only as many as the applications being connected. So in the example of 10

applications, only 10 connections to the messaging backbone need to be

defined. Adding another application means defining only one extra

connection — only one-tenth of the work of a point-to-point topology. Logic

determining where messages are sent can be centralized within the hub of

messaging nodes. Although this topology might require more planning to set

up initially, it can reduce the reconfiguration required when applications are

added or changed. Single points of failure can be eliminated by clustering

several messaging nodes within the central hub.

In a bus topology, as with a hub-and-spoke, the number of connections needed

between a given number of applications is also only as many as the applications

being connected. Fundamentally, this topology is equivalent to hub and spoke,

although the bus topology places more emphasis on distributing the connectivity

logic across the backbone, helping to reduce the single point of failure often

thought to be associated with the hub-and-spoke topology.

Often, hub-and-spoke topologies are associated with “traditional” messaging,

and buses are positioned as a new approach. This comparison depends largely

on how one chooses to define or implement these topologies. Ideally a messaging

backbone should support a mix of topologies so that the optimal approach can

be used.

Messaging styles

You can use a variety of approaches to set up a messaging backbone that can

optimize performance or simplify ongoing configuration (see Figure 3).

Fire-and-forget is a style of messaging where the sending application does not

require a reply or confirmation from the receiving application or applications.

Such messages are sometimes called datagrams. Request-response is a style of

messaging where applications request messages specifying where replies need

to be sent. Applications sending requests can choose to wait for replies or

continue processing.

Providing a messaging backbone for SOA connectivity.
Page 15

Application B Application Z

Application B Application B

 Figure 3. Messaging styles

Publish-and-subscribe provides an event-driven style of messaging that

enables the messaging backbone to dynamically determine where messages

should be delivered. This approach relieves applications and services of the

burden of containing up-to-date information about which applications and

services need to receive messages and precisely where these are currently

located. It can be useful in progressing toward an SOA, and is especially valuable

when you are more likely to move or replace applications and services.

In the publish-and-subscribe model, messages are tagged with keywords or

topics — strings that represent a subject for the message. These keyword topics

can be organized into hierarchies to enable more-complex classification.

Applications and services define the messages they need to receive by

logging a subscription with the messaging backbone, using topics to describe

their information space, and optionally using wildcards to define

richer subscriptions.

WebSphere Message Broker, IBM’s advanced ESB, takes topic-based

publish-and-subscribe messaging even further, enabling messages to be routed

based on the content of messages and more-sophisticated message-

routing definitions. You can apply statistical- and causal-analysis tools to

streams of messages so that patterns can be detected that signify even

more-complex events and situations.

Examples of publish-and-subscribe topics

Topics can be simple strings:

“New Sale”, “New Customer”,

“Credit Rejected”,…

Topics can be organized into hierarchies (such

as organizing sales activities by location and

industry for each customer):

“North-East/New York/Retail/ACME Corp

/New Sale”

Richer subscriptions can be described using

“*” wildcards (for example, get messages

whenever the credit for retailers is rejected):

“*/*/Retail/*/Credit Rejected”

(or get messages whenever there are new

customers in New York):

“North-East/New York/*/New Customer”

1

Fire-and-forget Request-and-response

Publish-and-subscribe
(Topic-based)

2

2

WebSphere MQ

WebSphere MQ WebSphere MQ

New sale

New sale

B
Z

Application A Application A

Application F

1

Application A Application C

3

Providing a messaging backbone for SOA connectivity.
Page 16

Meeting enterprise demands

The messaging backbone plays a crucial role in an IT infrastructure as the

conduit for linking assets and services together. This backbone must satisfy the

high demands of business today to be entrusted as the courier of one of its most

valuable resources — its business data. WebSphere MQ has the heritage and

credentials to be an excellent choice as the messaging backbone for all sizes of

organization, across all industries.

Reliability

The business costs, implications and penalties are steep when critical

business data is lost or when the integrity of data and applications is compromised.

Lost or duplicated business transactions can severely disrupt business

processes, causing a chain reaction of expensive after-affects that might

confuse supply-chain interactions and erode customer satisfaction.

Regulatory-compliance initiatives such as the U.S. Sarbanes-Oxley Act (SOX)

impose heavy penalties on businesses that cannot demonstrate that their

financial reports are accurate — an unattainable goal if business transactions

are at risk of being lost or duplicated. An organization’s messaging backbone

must be robust, and able to ensure that business transactions are preserved

regardless of failures in hardware, software and the network.

WebSphere MQ guarantees the delivery of messages transported over its

backbone and helps ensure that these messages are not duplicated during

transmission. It automatically manages its reliable messaging by using receipts

to confirm delivery and resends messages as needed so that these operations

are invisible to application programmers. By using queues to store the

messages, reliable delivery is assured even when the network, hardware and

receiving applications are not available.

WebSphere MQ employs the two-phase-commit protocol as a mechanism for

preserving the integrity of IT systems when transferring messages over its

backbone as part of transactions — where the entire exchange must complete

and partial completion or failure leaves these systems in an unreconciled state.

It can coordinate transactions that involve messages moving right across its

backbone, not just between one server and another, enabling transactionality

to be preserved from end to end.

Providing a messaging backbone for SOA connectivity.
Page 17

High availability

In today’s 24x7 world, the business impact of applications, networks and

hardware failing can be severe and far-reaching. Similarly, the messaging

backbone that connects these applications and services also needs to meet the

enterprise’s needs for high availability. High availability is the most fundamental

part of a strategy to maximize the resilience of an IT environment and requires

that this environment be able to rapidly and completely recover from

outages — especially unplanned ones.

High availability is achieved by eliminating single points of failure in the

backbone by providing backup or redundant systems that can take over should

failures occur. It is also accomplished by helping to ensure that whatever data is

being transported, and the state of the messaging system itself, is logged up to

date and can be used to restore the data and the messaging system following

a failure.

Replication-based techniques are often promoted as the simple, straightforward

approach to increasing the availability of messaging systems, requiring only

software and no specific hardware. However, these approaches are not

recommended. Asynchronous replication puts messages at risk of being

duplicated or lost, and synchronous replication requires real-time replication

of all messages to work around this shortcoming and can result in significant

performance degradation.

To avoid these issues, WebSphere MQ uses a persistent messaging approach

that logs its messages to disk synchronously with message transmission, along

with the state of its queue managers, so that it can reconstruct messages and

recover to a consistent state following a failure. Synchronously logging

messages to disk at the same time they are dispatched is very important;

otherwise you risk being unable to recover a failure to a coherent state before or

after the message is sent. WebSphere MQ can take steps to roll back messages

that were in transit and commit transfers that had completed to help preserve

the integrity of the messages and the applications exchanging them.

WebSphere MQ: Proven and trusted

•	 More than 10 000 customers worldwide

use WebSphere MQ.

•	 WebSphere MQ moves more than 10 billion

messages every day, supporting more than

US$1 quadrillion (US$1 000 000 000 000

000) worth of business transactions.

•	 WebSphere MQ has won multiple awards

including the prestigious Royal Academy of

Engineering MacRobert Award in 2004.

•	 WebSphere MQ provides the underlying

backbone for IBM’s advanced ESB,

WebSphere Message Broker, and is fully

supported by all IBM ESB offerings.

•	 More than 800 IBM Business Partners

worldwide support WebSphere MQ with

software, solutions and services.

Providing a messaging backbone for SOA connectivity.
Page 18

WebSphere MQ uses platform-specific high-availability facilities such as

High Availability Cluster Multi-Processing (IBM HACMP™) on the IBM AIX®

platform and Automatic Restart Manager (ARM) on the IBM z/OS® platform.

On IBM System z™ running on the z/OS operating system, WebSphere MQ

provides shared queues that can be accessed by different queue managers so

that should any fail, another queue manager can automatically access the

shared messages.

Clustering

The clustering features of WebSphere MQ enable messages to be redirected

around parts of the messaging backbone that have become isolated by network

failure or otherwise unavailable without the applications.

Clustering can help reduce administration of the messaging backbone. It

enables many WebSphere MQ queue managers to be administered together as a

group. Configuring queues in a cluster with the same name enables WebSphere

MQ to determine how the messaging workload should be shared between them.

This clustering can be based on the workload-balancing algorithm supplied or

your own custom algorithm. Alternatively, individual queue managers can be

targeted within a cluster by giving them unique names and referencing them

when directing messages to their cluster. By balancing the workload, clustering

enables you to improve the performance of a messaging backbone, and enable

more messaging engines to be added as needed.

Security

In today’s business climate, the security of valuable and confidential information

and IT systems is a major concern. Making IT systems as secure as possible is

an holistic challenge that needs to address areas such as encryption,

authentication, authorization, nonrepudiation and privacy.

Providing a messaging backbone for SOA connectivity.
Page 19

WebSphere MQ provides built-in security features to help protect data moving

across its messaging backbone. It supports the industry-standard Secure

Sockets Layer (SSL) for strong authentication of message channels before

messages are exchanged to help prevent malicious attacks to the backbone.

SSL can also provide bulk data encryption similar to virtual private

networks (VPNs).

IBM WebSphere MQ Extended Security Edition adds even more security

capabilities to the messaging backbone, taking advantage of IBM Tivoli®

technologies to provide individual, message-level security encapsulation.

It extends protection beyond the messaging channels to the application layer.

It also provides granular audit records down to the message level and can be

retrofitted to an existing WebSphere MQ network without the need to modify it.

Security is configured using policies that can be administered remotely using a

Web browser interface, helping to avoid the need to write security-specific

code for each application.

Scalability and performance

As business requirements grow and as more applications and services use

messaging to communicate, the messaging backbone needs to be able to scale

to support increasing volumes of messaging traffic and enable you to take full

advantage of the power of your IT infrastructure.

WebSphere MQ takes advantage of multiprocessor and multicore machines so

that you can scale your messaging backbone by using parallel processing to

accelerate messaging. This approach can significantly improve point-to-point

messaging performance and scalability over single-threaded alternatives. A

single instance of WebSphere MQ can run across multiple processors and cores,

so there is no need to configure routing or load balancing between multiple

instances of a server. It requires practically no tuning or configuration to run

across multiple processors or cores, and does not require multiple message logs.

To help ensure your messaging backbone can grow with your business, insist

on performance comparisons where a range of processors are used. Another

useful approach to scaling a messaging backbone is clustering, which is

described previously in this white paper.

Providing a messaging backbone for SOA connectivity.
Page 20

When comparing the performance of messaging servers, it is important to use

the same quality of service for message delivery — such as persistence or

nonpersistence. Performance reports for WebSphere MQ provide throughput

analysis, capacity planning and tuning information specific to each platform

and are published as IBM SupportPacs™ at ibm.com/webspheremq/support.

Configuration

Your organization’s IT infrastructure is as unique as a fingerprint and

ever-changing to take advantage of new technologies and IT assets, and to

respond to business pressures and opportunities. It is vital that the messaging

backbone enables these changes rather than inhibits them. To reduce the time,

risk and cost of configuration, it is important that the whole messaging

backbone is able to be centrally configured and administered, despite being

a widespread, distributed infrastructure.

WebSphere MQ enables its entire messaging backbone to be remotely

configured from a single console, called WebSphere MQ Explorer (see Figure

4). WebSphere MQ, Version 6.0 introduced this new configuration tool, which is

based on open-source Eclipse Workbench technology. The Eclipse framework

is common across IBM software products, so that WebSphere MQ Explorer can

be combined with the tools of other products, such as WebSphere Message

Broker, to provide a single integrated console. This graphical tool enables you

to explore and configure all WebSphere MQ objects and resources, including

Java Message Service (JMS), and publish and subscribe. Because it is based on

Eclipse technology, WebSphere MQ Explorer is highly customizable and fully

extensible. You can add new tools as plug-ins to WebSphere MQ Explorer to add

new features in a way that is integrated into the console. Documentation

shipped with the WebSphere MQ Explorer provides the interfaces for plug-ins,

together with examples of how to develop them so that IBM Business Partners

and users can join IBM in augmenting its capabilities.

http://www.ibm.com/webspheremq/support

Providing a messaging backbone for SOA connectivity.
Page 21

Figure 4. WebSphere MQ Explorer enables you to explore, test and configure your entire messaging
backbone remotely.

WebSphere MQ Explorer runs on Microsoft® Windows® and Linux® x86

machines. It does not need to be deployed with a WebSphere MQ client or

server, and you can install as many copies as required. You also don’t have

to directly connect to a queue manager to explore or configure. You can

configure queue managers remotely through intermediate queue managers.

The WebSphere MQ Explorer can remotely connect to queue managers

on any supported platform — enabling your entire messaging backbone to

be viewed, explored and altered from the console. You can even remotely

configure WebSphere MQ for z/OS running on the System z platform,

provided it is running the Version 6.0 (or later) release, because of the

added support for the programmable command format (PCF) administration

messages that WebSphere MQ Explorer uses.

Providing a messaging backbone for SOA connectivity.
Page 22

You can customize views of the messaging backbone, for example, using

filters to show queues or other resources that match certain criteria such as the

number of messages in a queue or its name. You can adjust the refresh rates of

these filtered views to update them at a machine or queue-manager level. You

can also compare attributes, for example, to see whether two queues have the

same characteristics.

To prevent unauthorized changes, the WebSphere MQ Explorer uses SSL

security. It provides graphical tools to manage authority and access based on

the Object Authority Manager (OAM) to help make governance control easier.

For example, you can use WebSphere MQ Explorer to show at a glance all the

users or groups that have permissions to certain queues and objects. Figure 5

shows this feature.

WebSphere MQ supports more than 80
platform configurations, covering virtually
any commercial IT system, including:

•	 AIX

•	 IBM System i™ (IBM eServer™ iSeries™

and IBM OS/400®)

•	 IBM z/OS (IBM eServer zSeries® and

IBM OS/390®)

•	 HP-UX

•	 HP NonStop Server and OpenVMS

•	 Linux on Intel®

•	 Linux on System z

•	 Sun Solaris Operating Environment

•	 Microsoft Windows XP and 2000

For the latest support details, visit
ibm.com/webspheremq/requirements.

Figure 5. WebSphere MQ Explorer enables you to control access to your messaging backbone.

New problem-diagnostic tools have recently been added to enable you to

run tests against your messaging backbone to discover errors and potential

problems with the configuration. With one click, this tool searches for

problems and provides advice on solutions and improvements. User-defined

checks can be added to its suite of tests.

http://www.ibm.com/webspheremq/requirements

Providing a messaging backbone for SOA connectivity.
Page 23

Connecting virtually anything

A messaging backbone is only as valuable as the range of applications and

services it can connect. Even if certain platforms and environments are not part

of your IT domain today, you can’t afford to risk leaving applications stranded

as a result of a cross-department initiative, or merger and acquisition, or be

prevented from using a new technology or platform. WebSphere MQ is designed

to be able to connect virtually any commercial IT system, from the latest

technologies to those core systems your organization depends upon — even less-

common platforms.

WebSphere MQ provides consistent functionality across its range of supported

platforms. WebSphere MQ for z/OS is built natively for z/OS, yet is designed

consistently with the distributed version. Therefore, it can take specific

advantage of the z/OS environment to offer unique capabilities that make it a

powerhouse for the messaging backbone. WebSphere MQ for z/OS is not an

adaptation of the distributed product, but a unique code-base designed from

the ground up to take full advantage of the z/OS platform and fit tightly within

the mainframe environment.

WebSphere MQ for z/OS takes advantage of IBM Parallel Sysplex® technology,

increasing availability, capacity and performance for persistent and nonpersistent

messages, by enabling multiple queue managers to access the same queue.

WebSphere MQ for z/OS also provides workload balancing based on a pull

model that enables very high-availability messaging on the z/OS platform.

In addition, WebSphere MQ for z/OS provides tight integration with IBM CICS®

and IBM IMS™ using the IBM MQSeries®-CICS Dynamic Program Link (DPL)

Bridge, the IBM MQSeries-CICS 3270 Bridge and IBM MQSeries-IMS Bridge.

A simple interface
MQI provides 13 simple commands that are
consistent across supported platforms:

•	 MQCONN connects to the queue manager

named as a parameter.

•	 MQCONNX connects using fast-path

bindings for trusted applications.

•	 MQDISC disconnects from the

queue manager.

•	 MQOPEN opens a message queue on the

queue manager.

•	 MQCLOSE closes the message queue.

•	 MQPUT puts a message onto the queue.

•	 MQPUT1 is equivalent to the sequence

MQOPEN, MQPUT, MQCLOSE.

•	 MQGET retrieves a message from the

message queue.

•	 MQINQ inquires about the properties of

 a queue.

•	 MQSET sets the properties of a queue.

•	 MQBEGIN begins a transaction or UOW.

•	 MQBACK rolls back a transaction before it

is completed.

•	 MQCMIT commits a transaction, ending

the UOW.

Providing a messaging backbone for SOA connectivity.
Page 24

Interfaces and standards

A messaging backbone needs to tie into what you have today, enable you to

make the most of the skills at your disposal, and support the decisions you

make in the future. WebSphere MQ has evolved to provide a variety of ways to

connect to its messaging backbone.

MQI

The message-queuing interface (MQI) is the original programming interface

for WebSphere MQ. It provides a simple, small set of verbs that are consistent

across platforms. Depending on the operating system you are running, you can

use C, C++, Java, PL/I, COBOL, Visual Basic, ActiveX/COM, Assembler,

Report Program Generator (RPG) or Typed Assembly Language (TAL) to

program the MQI. Support for other languages, like Perl, are available

as downloads.

MQI provides structures (groups of fields) that you can use to supply input to,

and get output from, calls. It also provides a large set of named constants to

help you supply options in the parameters of the calls. Data-definition files

supply the definitions of the calls, structures and named constants for each of

the supported programming languages. Default values are set within the

MQI calls.

JMS

JMS is an industry-standard programming interface for messaging based on

J2EE. It performs the same role as the MQI but is standardized and increasingly

popular with Java developers. J2EE technology-compliant application servers,

such as IBM WebSphere Application Server, provide the JMS interface and can

also provide an implementation of messaging services. JMS is also supported

by many stand-alone messaging products, including WebSphere MQ. J2EE

applications servers can use WebSphere MQ as their JMS provider, regardless

of whether one is already supplied. It is a misconception that JMS technology-

compliant products must be developed entirely in Java.

Providing a messaging backbone for SOA connectivity.
Page 25

WebSphere MQ supports the latest version of the JMS standard, Version 1.1.

Like the MQI described previously, JMS is an interface for programming.

Because JMS is an industry standard, applications programmed to JMS can be

ported between messaging products that support it without modification, and

developers need only learn one set of commands to use a range of vendor

products. In practice, vendors often provide extensions to the JMS API.

Because JMS standardizes only the interface, it does not standardize the

technology used for the underlying data delivery. As a result, the wire protocol

used by JMS technology-compliant products is proprietary and vendor-

specific. This means that products compliant with JMS cannot interoperate.

Although the JMS standard does not deliver interoperability between

messaging providers, IBM provides the capabilities needed to bring JMS

implementations together to form a combined messaging backbone.

First, WebSphere MQ and WebSphere Application Server have been designed

so that their JMS implementations do interoperate. WebSphere MQ and

WebSphere Application Server can exchange messages to form a combined

messaging backbone where transactionality is preserved between them and

publish-and-subscribe definitions can be shared. This means that a Java

application hosted in WebSphere Application Server can use JMS to talk to

other applications connected to WebSphere MQ, either by JMS or by its

MQI. IBM products based on WebSphere Application Server, including IBM

WebSphere ESB and WebSphere Process Server can also connect to

WebSphere MQ in this manner, as well as use native MQI calls to connect to

WebSphere MQ.

In addition, WebSphere Message Broker, the advanced ESB, provides unique

mediations that can consolidate any JMS, Version 1.1 technology-compliant

messaging products into a single messaging backbone.

Providing a messaging backbone for SOA connectivity.
Page 26

Multilanguage message service

The industry-standard JMS interface described in the previous section

requires that programmers have Java skills. Although Java is in widespread use

today, it is not always the preferred choice of programming language, nor is it

optimal for connecting to many non-Java environments. IBM has developed an

API that is consistent with JMS but implemented in additional languages.

Whereas JMS is geared specifically toward Java, the IBM API is provided in a

range of languages, and is referred to as multilanguage message service. Often

it is abbreviated to XMS, where X stands as a wildcard for “any” message service.

WebSphere MQ clients provide the XMS interface. Supported languages

include C, C++ and a fully managed client for Microsoft .NET environments,

which can be used with any .NET language such as C#.

Messaging for Web services

Web services standards define mechanisms for classifying, externalizing,

finding and invoking services. These services could range from operations

residing within your existing applications that can be made available to the

rest of your enterprise, to new J2EE components sitting within an application

server. And as Web services standards develop, concepts like Web Services-

Reliable Messaging and Web Services-Notification are emerging.

Web Services Description Language (WSDL) defines the standards for

Web services. Universal Description, Discovery and Integration (UDDI)

provides directory and search capabilities. SOAP is the data format used when

communicating with a Web service. However, a predicated standard for data

transmission doesn’t exist. You can send your SOAP messages using whatever

transport suits you. One common method is to send SOAP messages over

HTTP or HTTP Secure (HTTPS).

Providing a messaging backbone for SOA connectivity.
Page 27

If you want your SOAP-formatted data to be delivered with the quality of

service and benefits of a messaging backbone, you need to use a messaging

product for the underlying data transfer. WebSphere MQ can send and receive

SOAP data within a Web services implementation — most common within

the J2EE environment — and often referred to as SOAP over JMS. This

approach enables Web services to take advantage of the benefits of a

messaging backbone.

Transferring files reliably

Many analysts estimate that as much as 80 percent of business information is

shared around — and between — organizations using File Transfer Protocol

(FTP) technology. You might be surprised by how much of your valuable

business information is exposed to risk, and could be lost or unknowingly

corrupted. Applications and data can become unreconciled, business processes

can cease or work less effectively, and financial reports can be inaccurate.

And perhaps worst of all — because the transfers are far from transparent — you

might not even know when this has happened.

FTP technologies proliferate because of their simple appeal. An abundance of

free FTP packages are available, the notion of file transfer is very intuitive and

it usually only requires a basic level of skill to get going. There might not be any

review or analysis of either the initial cost or the ongoing cost of deployment

and maintenance of this solution. However, as dependency on these approaches

increases, IT departments invest more time and skills to engineer additional

function to try and address deficiencies in the reliability or security of these

solutions. As more senders and receivers of files participate, the complexity of

the environment rapidly increases and the business finds it is now trapped into

maintaining and patching these solutions, which inhibits it from investing

these resources in other IT projects, for example, to advance its progress to

becoming more flexible or service-oriented.

Typically without realizing it, such an IT department has unwittingly now

entered the middleware business. Even organizations that have made great

strides in adopting integration middleware might still have a significant

dependency on file transfers, although they might not be aware of this.

This dependency not only reduces the flexibility of your business and affects

responsiveness but can rack up hours of your staff’s time in diagnosing errors

or reworking supposedly simple solutions. Is this really the best use of your

precious IT resources? What’s needed is a way to incorporate files into your

messaging backbone.

Providing a messaging backbone for SOA connectivity.
Page 28

IBM resells PM4Data from IBM Business Partner MetaStorm Incorporated.

PM4Data uses WebSphere MQ as its underlying transport and runs on most

platforms supported by WebSphere MQ, including a specialized edition of

PM4Data for z/OS. The combination of PM4Data and WebSphere MQ enables

file transfers to be managed end to end, even remotely, and audited with

end-to-end visibility. The transfers are assured by WebSphere MQ and take

advantage of the enterprise-level security provided by WebSphere MQ

including SSL. PM4Data can compress large files to optimize network traffic

and has no theoretical bound on the size of file it can move over WebSphere

MQ. Differences between platforms and between file types are handled

automatically during transfers.

MetaStorm PM4Data enables you to manage all aspects of your file transfers,

such as viewing and logging when file transfers started and ended, and seeing

what transfers are in progress. PM4Data can help in determining whether

transfers failed for any reason and monitor the rate of file transfers or the

underlying performance of WebSphere MQ. With PM4Data you can restart or

redirect file transfers on the fly so that there is usually no need to resend the

file across its entire journey again. The file is simply redirected from where it

became marooned.

As required, PM4Data can automatically transfer multiple files within a single

WebSphere MQ message, optimizing use of your network. It is very extensible

with customizable exit points and a powerful scripting language.

In addition to transferring files in a managed, reliable fashion, organizations

are increasingly seeing the value in processing, transforming or enriching their

files. WebSphere Message Broker File Extender enables you to feed files

directly into WebSphere Message Broker where they can then be transformed,

reformatted and enriched using its powerful mediation functions. It is fully

integrated with the WebSphere Message Broker Toolkit palette, giving new and

existing users of WebSphere Message Broker immediate productivity with this

new extension.

Providing a messaging backbone for SOA connectivity.
Page 29

With WebSphere Message Broker File Extender, you can extend WebSphere

Message Broker to become a file broker as well as a message broker. This

capability enables you to realize the same level of reuse and value from the data

held in files as you currently get from the data being sent around your business

in messages. You can apply brokering services such as transformation,

enrichment, logging and routing to file content, and seamlessly convert

messages into files, file records and vice versa, by simply wiring and

configuring the relevant I/O nodes into the appropriate message flow.

Mobile and wireless devices

IBM WebSphere MQ Everyplace® provides the core features of a messaging

backbone for devices with limited resources and optimized for fragile

networks. This product supports the JMS standard and interoperates through

a built-in bridge with WebSphere MQ.

Sensors and actuators

WebSphere Message Broker, IBM’s advanced ESB, provides a transport that

can extend the messaging backbone to reach very small (and embedded)

devices, like sensors, valves and meters. This transport is called MQ Telemetry
Transport (MQTT).

Foundation for your ESB

A messaging backbone — even when used to connect just a few applica-

tions — can deliver substantial benefits, such as helping to reduce IT costs

and making the infrastructure and organization more flexible. However, a

messaging backbone also serves as a foundation for enabling other integration

capabilities, providing a basis for deep, end-to-end integration and service

orientation. A messaging backbone provides a springboard for launching IT

projects aimed at addressing more-complex integration challenges and reaping

even greater rewards.

Providing a messaging backbone for SOA connectivity.
Page 30

An ESB provides an abstraction layer on top of the messaging backbone that

enables it to be augmented with richer integration capabilities without the

need to write code. Whereas messaging backbones are connected directly to

applications, an ESB is primarily used by connecting it to services — loosely

coupled, interoperable pieces of code that are independent of their underlying

platform and programming language. An ESB also adds these capabilities to

a messaging backbone:

•	 Dynamically matching and routing messages between services

•	 Converting transport protocols or adjusting transport service-levels

between services

•	 Transforming message formats, and enriching or altering message content in-flight

between services

•	 Distributing business events between services

WebSphere MQ provides a messaging backbone that can be used by all of IBM’s

ESB offerings — IBM WebSphere ESB, IBM WebSphere Message Broker and

IBM WebSphere DataPower® XI50 Integration Appliance. WebSphere ESB is

focused on using Web services standards and provides mediation services for

XML-formatted data. WebSphere Message Broker is an advanced ESB, with

extended capabilities to handle a broad range of standardized and nonstandard

situations, mediating data in any kind of message format.

In turn, an ESB provides the grounding for business process management

(BPM), enabling business tasks to be automated and managed more effectively.

It also enables you to make more-informed decisions about how to evolve and

change the way business activities are handled based on quantitative

business-level analysis, and existing processes to be measured and

optimized using key performance indicators (KPIs) and other business or

financial metrics.

Providing a messaging backbone for SOA connectivity.
Page 31

Summary

WebSphere MQ delivers a robust, innovative messaging backbone that

provides a first step to SOA. Although WebSphere MQ is a mature product

with a strong reputation and market presence, it continues to evolve. Today,

as Web services gain momentum, IBM stands at the vanguard of standards

definition in this area. And WebSphere MQ plays a key role as these exciting

technologies develop.

However you plan to use SOA for greater IT flexibility, a messaging backbone

provides compelling value for your organization, regardless of its size. If your

organization wants to deploy an ESB, WebSphere MQ provides a foundational

connectivity layer to build on. Small or midsize businesses with immediate

needs to connect applications can still realize substantial benefits from

implementing a messaging solution. Whatever business you are in, you can feel

confident in the knowledge that IBM continues to invest in WebSphere MQ.

IBM plans to continue to add new function and support new technologies,

while improving existing function.

For more information

IBM WebSphere MQ software isn’t just a product with a distinguished past.

It’s also a product with a long and exciting future dedicated to solving the

fundamental connectivity problems faced within today’s IT industry.

To learn more about messaging backbone and IBM WebSphere MQ,

contact your IBM representative or IBM Business Partner, or visit:

ibm.com/webspheremq

To join the Global WebSphere Community, visit:

www.websphere.org

http://www.ibm.com/webspheremq
http://www.www.websphere.org

WSW11316-USEN-00

©	 Copyright IBM Corporation 2007

IBM Corporation	
Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

Produced in the United States of America	
03-07	
All Rights Reserved

AIX, CICS, DataPower, eServer, Everyplace, HACMP,
IBM, the IBM logo, IMS, iSeries, MQSeries, OS/390,
OS/400, Parallel Sysplex, SupportPac, System i,
System z, Tivoli, WebSphere, z/OS and zSeries
are trademarks of International Business Machines
Corporation in the United States, other countries 	
or both.

Intel is a trademark of Intel Corporation in the 	
United States, other countries or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries 	
or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds 	
in the United States, other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

All statements regarding IBM future direction or intent
are subject to change or withdrawal without notice
and represent goals and objectives only.

