
Business-Driven SOA

Supply/Demand oriented SOA architecture - driving the SOA from a
business perspective

Many organizations are now undertaking development of service oriented architectures, but the
probability is that most will result in sub-optimal implementation. Most organizations will focus on a
smaller set of objectives than they ought to, because they are overly influenced by technical concerns,
and not sufficiently focused on the business service view. In this report we provide explicit process
guidance on how to develop the right SOA for your business.

By Richard Veryard

Introduction

Problem Statement

Everyday practice is that projects take the easy way out – addressing a smaller set of objectives
because it is too difficult to do the job properly. We observe many organizations now undertaking
development of service oriented architectures, but the probability is that most will result in sub-optimal
implementation because the relationship to the business requirements is not fully understood or
communicated. Consequently business management will not see the value of the SOA.

Popular application packages claim to be SOA-friendly, but in many cases their web service interfaces
simply expose the inherent inflexibility of the coding within.

There are many organizations that want to do SOA, but are stuck in the False Start position, as shown
in Figure 1. Once you can break into the Upward Spiral (also Figure 1), the benefits of SOA reinforce
themselves. But how to get there? This is a question of organizational change, and above all a question
of IT governance – introducing a form of governance appropriate to SOA.

Figure 1 - Upwards Spiral vs False Start

Example

Reuse Use

Reuse is a software engineering metric – it refers
to some notional saving in software development
effort.
If a component or service is called n times by other
components and services, this gives a reuse factor
of n (or possibly n-1).
If a service is accessed in many different ways, this
gives a higher reuse factor than if it is only
accessed through a single channel.
Multiple routes to a single service may increase
adaptability, or it may increase complexity.
Achieving reuse simply by multiplying the routes to
a given service does not always deliver real
business benefit.

Use is a business metric – it refers to the
economics of scale and scope in utilizing a
common resource.
If a service is invoked n million times a month, it
doesn’t make any difference to the economics of
scale whether the requests come through a single
channel or many different channels.
Counting use rather than reuse gives us a much
better measure of the business value extracted
from a given resource.

Box 1 Reuse or Use?

Here’s a hypothetical example of what very commonly goes wrong with the reuse agenda. Let’s
suppose a project is building some new functionality, and needs to reference some employee context.
Employee context is the responsibility of Human Resources (HR). In an SOA world, HR would ideally
provide this context as a service. Furthermore, HR would have regard for its own economies of scale in
providing this and similar services across the enterprise, and would establish this service at a level of
generalization and abstraction that balances the immediate needs of the project requesting this service
against the future needs of other parts of the company. This is what software engineers call reuse. See
Box 1.

Fat chance. HR doesn’t have the responsibility or the IT resource to do anything useful at all. Instead,
the project that wants employee data has to go get it itself. This means either playing around with the
HR applications (perhaps using screenscraping to avoid messing up the application code) or going
straight into the HR database.

One result of this is that HR, despite being the formal owner of the employee data, is disconnected from
many of the business processes that use and interpret the employee data. Data ownership becomes
simply the administrative responsibility of populating a database and passively making it available, with
little opportunity to monitor and control the appropriate use of the data. Furthermore, HR cannot then
make any real changes to the employee data without affecting dozens of applications – and it may not
even know what they all are.

If the HR function uses a well-known application package, we might think the situation would be better.
Doesn’t the latest version of the package promise full web-service enablement? And surely this means
that whatever we want is already rendered as a web service?

Fat chance again. The package offers a limited range of interfaces. You may have to extract more data
than you need (perhaps using multiple interfaces into multiple systems) and then process it in some
complex way. You may have to try and make do with some data that are not quite what you want – and
this may impair the effectiveness of the business process.

Meanwhile the application project is driven by the need to deliver a solution, and does not have spare
resource to produce anything that is likely to be much use elsewhere. In some IT organizations, there
may be a special group of developers who take certain pieces of development away from the solution
delivery project and turn them into reusable assets. This may be done either preemptively (with reusable
assets identified through the architecture function) or retrospectively (with reusable assets identified
through harvesting).

From a use/reuse point of view, that’s probably better than nothing – but it doesn’t give us the necessary
alignment between the production of data (HR) and the consumption of data (business process).

Meanwhile, there are some applications that reference employees – but it turns out that the full
requirement is for a superset of employee – perhaps including temporary staff, staff of business partners,
and other associates. These are maintained in separate data stores, not integrated into the main
employee database. Thus an application providing office equipment may take a service request from

any person legitimately working in the office – but should not need to know the exact status of the
requestor, merely that the request is legitimate.

Ultimately, the right place for building and maintaining the HR service is HR itself. It is always the
business that should be responsible for providing the service. If this service needs an IT implementation,
the HR department may request an implementation service from the IT department, or from an external
IT supplier.

When another department needs this HR service, the first contacts would always first be on business
level, to agree quality of service, resources and other business issues. Then an IT connection service
can be invoked (either by the providing department or by the consuming department) to make the
necessary links at the IT level.

In the short term we may expect this linking to involve human intervention. While there are some
increasingly sophisticated tools that support web service orchestration, these are at present only really
suitable for use by IT personnel. However, there is clearly an expectation that this linking will evolve
towards the automatic, especially for simple cases.

Business Organization Transformation through SOA

In this hypothetical example, we saw how the HR function was effectively disenfranchised from its own
business data, and reduced (at least in this area) to playing a fairly bureaucratic administration role. This
organizational pattern is typically found not just in HR but all over the large organization.

As Table 1 indicates, there is a parallel between the software problem of legacy and the organizational
problem of bureaucracy. Business-driven SOA allows us to tackle either or both.

Software Business

Legacy
Systems Bureaucratic

Organization

Inflexible, Unresponsive
Possibly based on a historical attempt to make something automatic and
efficient, but now perceived negatively

Adaptable
Systems

Agile
Organization Flexible. Smart. “On-Demand”

Table 1 SOA-Driven Change

To see how this transformation works, let’s continue with the HR example. If we take an architectural
look at the HR function, we may see a variety of activities and other stuff – some of it meaningful and
important, but perhaps some of it fragmented and bureaucratic.

One of the services that HR typically provides to the rest of the organization is recruitment. There may
be different variants of this service – from the succession planning for a new CEO at one end to the
annual recruitment of new trainees or the adhoc recruitment of temporary staff and subcontractors – but
we may assume that there are at least some common elements.

This is a complex service that may run over an extended period (perhaps months) and may be
decomposed into smaller services (e.g. multiple interviews with multiple candidates for multiple
vacancies). While the line manager may act as the primary consumer of the recruitment service, the line
manager may herself provide subordinate services (such as job specification and interviewing) as part of
the orchestration of the recruitment as a whole service.

Let’s assume that HR is responsible for the whole recruitment service, and for the composition of this
service from its composite parts, although the composite parts may be delegated to the line manager, or
to external service providers (e.g. the recruitment agency).

But in some organizations, the HR function merely acts as an optional communication channel between
the line manager and the recruitment agency, which line managers often bypass. The administrative
work of HR is done by software packages, or by an external payroll bureau. There may be some

expertise, but it is rarely if ever called upon. There may be some recruitment policies (including
compliance with certain procedures), which HR tries vainly to enforce.

More generally, as we have seen, the HR function has abstract responsibility for managing employee
relationships, including the holding of employee data to support a range of business processes, and
overseeing a range of employment functions. In these areas, HR may be regarded as performing a
series of governance services, responsible (among other things) for protecting the employee against
unfair or arbitrary treatment, and protecting the company from employment tribunals and other legal
action.

In many organizations, HR responsibility is increasingly pushed out to line management, leaving the HR
department more than ever in an indirect supervisory capacity – orchestrating procedures and
monitoring compliance.

Orchestration and compliance are of course both classic SOA stuff. But these alone possibly don’t
constitute a sufficient justification for a separate Head Office department with its own seat on the Board
– since they could reasonably be lumped together with a range of other internal audit and compliance
functions.

The key SOA design principle here is that an organizational unit has to reflect a coherent chunk
of service capability, and encapsulate some complexity (separation of concerns) on behalf of the
rest of the enterprise.

So SOA business design tells us both whether HR has any meaningful coherence, and if so what its
scope should be. This is based on a clustering of activity, capability and assets – or more generically, a
clustering of practice and knowledge.

In the case of HR, the most likely clustering is one that is centered around a single key business
resource – initially identified as “the employee”. By stepwise generalization, this may be extended to
other categories of individual stakeholder, such as temporary staff, staff of business partners (who may
be treated as employees for some purposes, including office space and access), and other associates.
It may also include pensioners and their families. But where do we stop? Do we include shareholders,
customers, and journalists? The answer to that question should come not from an abstract notion of
generalization, but from a detailed and grounded look at the clustering of actual business processes
associated with each category of person.

In other words, the clustering for this organizational function may be entity-based, as in this example,
with a set of business processes that manage the lifecycle of a given entity. The appropriate scope of
the entity is discovered through supporting a broad range of business processes, and by aligning the
function as closely as possible to these business processes.

Not all organizational clustering will be entity-based, however. A sales management function will be
centered around a coherent set of sales processes. Clustering here may address such issues as
whether product customization and configuration should belong to the sales process or to the delivery
process.

Where it gets even more interesting is where a responsibility is seemingly pulled into two different
clusters. For example, one important overlap between the sales function and the HR function is in the
matter of sales commission payable to individual sales executives. This has important implications for
the achievement both of HR objectives (recruitment and retention of sales executives) and of sales
management objectives (motivating and rewarding the attainment of sales targets) – and there is
potentially a conflict between these two objectives. A higher-order process is required, which will
moderate between the HR process and the sales management process.

There are lots of organizational design issues here that barely touch on IT itself, although they may be
strongly influenced by the opportunities SOA provides at the IT level for simplifying administration,
communication and supervision. In turn, when we are designing IT services to support the HR function,
we may be influenced by the opportunities for radical organization redesign afforded by SOA, and
ensuring that the IT services support the underlying business process, rather than the current
organization structure.

A New Theory of Service-Based Design

The architect Christopher Alexander has had an enormous influence on software engineering for many
decades. His first book “Notes on the Synthesis of Form” was referenced by the structured methods
gurus of the 1970s, and his later work on design patterns has inspired a wealth of activity.

In 1987, Alexander and a few colleagues published an account of a design experiment under the title “A
New Theory of Urban Design”. This book shows how order can be created without top-down planning,
by a governance process that imposes some simple structural principles on all design activity.

There are some strong analogies between town planning and service-oriented architecture1 , which
make it reasonable to translate Alexander’s governance process into the SOA domain.

1. The distribution of design. Detailed design decisions are taken within different organizations,
each following its own agenda (e.g. commercial or political goals).

2. The constancy of change. Elements of the whole are constantly being redesigned and
reconfigured, and new elements are constantly being added. Structures must evolve in robust
ways.

3. The need for progressive improvement. Each design increment should not only make local
improvements, but should have a positive effect on the whole.

4. The recursive nature of the architecture. Similar design tasks must be carried out at different
scales (levels of granularity).

Alexander formulates the following highly generalized principle: “Each new act of construction must
create a continuous structure of wholes around itself.” Alexander then spells out what is meant by the
word “whole” in an architectural context. One of the key consequences of his notion of wholeness is that
a designer tasked with constructing something of scale X must pay attention to three scales – larger
than X, same as X, and smaller than X. Part of the governance process is to ensure that there is a
reasonable balance of projects of different scales.

Following Alexander, SOA designers need to be aware of the following three design rules.

1. Each service should contribute to some larger-scale “whole” service.
2. Each service should have clean boundaries with other services of the same scale as itself.
3. Each service should be supported by a series of smaller-scale services.

Wholeness can be understood in terms of rotational symmetry, as shown in Table 2.

Service Type Basis of Symmetry

Entity-Based Life-Cycle – including all events that alter the identity or status of the entity

Process-Based Closed Feedback Loop – including all activities that establish stability / equilibrium
between independent elements.

Rule-Based Open Learning Loop – including all activities that allow the rule/policy to be reviewed
and improved

Table 2 – Rotational Symmetry

Let’s now look at the HR example in the light of this service-centric process.

Figure 2 Incremental Improvement of HR-related Services

Step Status Consequencese

The office equipment application obtains
employee data direct from the employee
database.

The office equipment application is
given direct access to employee data.
This means it has to be subject to higher
levels of privacy and security protection
than it otherwise needs.
And it is affected by any local changes
in the HR database systems.

1

The mechanism for providing office
equipment services to non-employees is
not properly defined.

Provision of services to non-employees
is adhoc and often inconsistent.
Sometimes non-employees get a better
service than employees, sometimes
they don’t get any service at all.
In a few cases, non-employees have
been added to the HR employee
database, with status codes to denote
that they are not real employees. This
makes the HR systems more complex.
There is a risk of processing error if HR
applications fail to check the status code
properly.

2 An employee context service is
introduced, to shield the office
equipment service from the HR
database.

This initially gets data direct from the HR
database. When appropriate web
services are provided by HR systems,

This service can then be used by other
applications/services as well, thus
gradually reducing the number of
applications/services with direct access
to the HR database.

these will be used instead.

3 An equivalent service is created for
establishing Contractor Context.

This initially gets its data from a local file
of approved contractors.

We can now clean the non-employees
out of the HR database, which makes it
simpler and more reliable.

The contractor context service allows a
range of office services to be provided to
contractors in a consistent and
controlled way.

4 The Contractor Context service now
gets its data by remote access to the
contractor’s systems.

This means that if a member of
contracting staff changes employment
status with the contracting company, this
can be immediately reflected in office
services.

Table 3– Incremental Improvement

In this incremental improvement, we have strengthened (by simplifying) the lifecycle of EMPLOYEE,
created a lifecycle for CONTRACTOR (with specific reference to events that affect the status of
contractors), and started to build a larger supertype OFFICE WORKER. The lifecycle of contractor can
now be understood as an intersection between the local lifecycle of CONTRACT and the remote
lifecycle of EMPLOYMENT within the contractor’s own systems.

Each of these services may use smaller services, and contributes to larger services. The office
equipment service is linked in turn to a series of business processes that require office services.

The ultimate touchstone of service wholeness is the business process. Our SOA design process
is both service-centric and business-process-oriented. It allows SOA structures to be evolved
incrementally, through SOA design and SOA governance.

Scope of SOA Governance

In a true SOA world, the supply/demand relationship is a dynamic one, and we should be wary of
institutionalizing this into a fixed twin-track organization. In order to maintain true adaptability, we have
to have a form of SOA governance that is itself adaptable.

Governance is not just about planning. (Governance that focuses on planning and neglects the rest of
the life-cycle is sometimes referred to as “govern-once”.)

And governance is not just about the inhouse IT function – although that’s an obvious place for the CIO
to start – get your own house in order, before tackling broader governance issues. A broader framework
for governance is shown in Figure 3.

Software Governance

Coordinating software development,
acquisition and (re)use across internal and
external domains to achieve maximum
agility and economics of scale/scope.
Monitoring the technical performance of
software services, including security.

Business Governance

Coordinating business development,
negotiation and collaboration across
internal and external organizations,
including trust.
Monitoring the business performance of
services, including ROI.

Service Governance

Figure 3

Aligning software governance with business
governance.

Roadmap

Figure 4 Roadmap for SOA Governance

The roadmap for SOA governance is in several steps. In step one, SOA Governance is primarily a
matter for the IT organization inside a single enterprise. In the final (more radical) step, SOA
Governance extends beyond IT, and beyond the boundaries of a single enterprise. There are two
alternative paths, as shown in Figure 4 you can go up and then across, or across and then up.

Thus in the HR example, we saw how HR services may be managed. In step one, HR services are
managed by some HR team within IT, representing the HR organization. At a later stage, HR services
are managed directly by the HR organization, calling upon services from IT as required.

At this point, the design of the whole enterprise, as well as its relationships with the outside world can
now be organized along SOA principles.

However, most organizations will not be willing to take this more radical step until the earlier steps have
been mastered - perhaps several years hence. However, there will be some organizations that may be
forced to broaden the scope of SOA Governance much sooner than this.

Acknowledgements

Thanks to Rob Mocking of KLM for initiating this discussion, and for some great ideas.

CBDI Material

1. For a comparison between urban planning and IT, see Pat Helland, Metropolis, in Microsoft
Architects Journal, April 2004.

