..lli

IBM Curam Social Program Management

Curam Evidence Broker Developers Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2009, 2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
LT PUIMPOSE ...ttt ettt e e ab e se e e e ne e e e be e e sne e e e ne e e sane e e nanes 1

B2 N o 1= 0o USRS 1

R 1 (=01 S (=S PR RS 1

1.4 ChapterSiNthiS GUITEcccoiuiiieiieeee e e 1
Chapter 2 Evidence Broker ArchiteCtUreocvoeveeceice s 3
P20 1 110 o [FTox 1 o o PSSR SRPTPRN 3

2.2 ATCRITECIUNE ...t bbbttt st nbe s 3
2.2.1 Following are the key components of Evidence Broker:ccccceevveveeneene. 3

2.2.2 EVIidence Sharing SEEPSccovieeieeiecee et 4

2.3 Evidence Broker Sharing Strat€gyccceeceeieeieeie e cie e s 5

2.4 Evidence Compare INtEIfaCeccceiveiiiee i e 5

2.5 TranSfer EVIAENCEcvoiiiiriisiesiirienee ettt bbb e et sbe e 5

2.6 Broadcast EVIAENCE HOOKccoiiirieiiiiie st 6

2.7 Integration With EVIAeNCe GENEratorcccvevueeieeieerieeieseesieeee e see e e sree s 6

2.8 Evidence Broker Configurationccccccceeeeieeieseesesee e see s 7
Chapter 3 Implementing Evidence Compare INterfacecccccveveveevenceenieeie e 8
G300 1 11 0o ¥ Tox 1 o o S 8

3.2 ldentify Evidence Types Available for Sharingc.cccceeeveneneneneneeeeesesene s 8

3.3 Determine Classes which Implement Evidence Compare Interfacecccoveieeene 8

3.4 Map Evidence Compare Classes to EVidenCe TYPeccooeverevenineneneieeesesie s 9
34.1USING GOOGIE GUICEcueneeiiie sttt sttt 9
SA.2USING REJISITAN ...oviieiiieiieeeste sttt 9

3.5 Provide Implementation for the Evidence Compare Interfacecccceeveverennne 10
S5 LVAIUES oottt ettt ae e e et e tenrenaenne s 10

5.2 LADEIS .o ettt aenne s 10

GRG0 0= S 10

3.5.4 Sample IMPIemMENtaLiONcccooeiireririeeeee e 11

Chapter 4 Implementing Transfer EVIAENCEcoov i 13
T | g 11 (0o LB o1 o o USRS 13

4.2 |dentify Evidence Types Requiring Specialized Transfer Evidence Code 13
Chapter 5 Using the Broadcast EVIAence HOOKcccoeiiriiiiiinini e 16
oI 111 oo [FTox 1 o o USSP 16

Curam Evidence Broker Developers Guide

5.2 Identify Evidence Types with Pre or POSt ProCESSINGccccereerierierieenienieseesieenens 16

5.3 Provide Implementation for the Evidence Broadcast HOOKccccooeriiiieinnnen. 17

5.4 Register Custom Override of OOTB Broadcast Evidence HOOKcccceveeuenen. 19
5.4.1USING GOOGIE GUICEeeeeeniieieeiiesieeie sttt sae et eesneesneeneas 19
5.4.2USING REGISIIALIONveiiiiiieiiieie ettt st 19

Chapter 6 Implementing Evidence Sharing Strategy Interfacecooevvvveieecv e 21
LT 111 oo [FTox 1 o o PSSP 21

6.2 Provide Implementation for the EvidenceSharingStrategy Interface 21

6.3 Map the Custom Strategy t0 8 Case TYPE ...cceeveerrereerieeriesieseese e seestesee e e saeeneas 21
Chapter 7 Evidence Broker WeD SErVICEcvovvev e 23
8 1 15 0o ¥ Tox 1 oo S 23

7.2 Receive Change NOtifiCaliON SEIVICEcociveiiriririeee e 23
7.2.11NCOMING PAr@MELEN'Sooiiiiiiriese e 23

7.2.2 Incoming Parameter DESCIiPLIONScoovieeieriirie e 24

N[o= 27

1.1

1.2

1.3

1.4

Chapter 1

Introduction

Purpose

The purpose of this guide is to provide a high level understanding of Clram
Evidence Broker ™ and its components. This guide also describes how cus-
tom evidence can be shared using the Clram Evidence Broker.

Audience

This guide is for architects and developers responsible for implementing
evidence sharing.

Prerequisites

The reader should be familiar with the business requirements for evidence
sharing and how the Curam Evidence Broker works. For a high-level over-
view, seethe Cir am Evi dence Broker QGui de.

Chapters in this Guide

The following list describes the chapters within this guide:

Evidence Broker Architecture

This chapter provides a high level overview of the key technical aspects
of the Curam Evidence Broker.

I mplementing the Evidence Comparison I nterface

This chapter outlines the steps for implementing the Evidence2Compare
interface.

Implementing Transfer Evidence

Curam Evidence Broker Developers Guide

This chapter discusses the implementation of the transferEvidence evid-
ence interface operation and why it is required.

Using the Broadcast Evidence Hook

This chapter looks at the Broadcast Evidence hook which allows cus-
tomers route the evidence broadcast through their custom processing.

Implementing Evidence Sharing Strategy I nterface

This chapter provides high level instructions on how to implement the
EvidenceSharingStrategy interface.

Evidence Broker Web Service

This chapter provides a high level overview of the evidence broker web
service that facilitates evidence sharing with remote systems.

2.1

2.2

2.2.1

Chapter 2

Evidence Broker Architecture

Introduction

This chapter describes the architecture of the Cdram Evidence Broker.

Architecture

Evidence Broker enables flexible sharing of evidence between programs and
systems to ensure that the most up to date evidence changes are available to
the configured programs and systems improving the speed and accuracy at
which changes are propagated. The system and programs that share the
evidence are called source and the ones that receive these updates are called
target. Source and target could refer to the same system if the system sup-
ports multiple programs.

Following are the key components of Evidence Broker:

Change Notification I nterface

This evidence broker web services interface is used to share and accept
evidence changes from and to remote systems. An APl version of this
interface exists for more performant sharing if the source and target are
the same system.

Evidence Broker Sharing Configuration

Evidence broker sharing configuration allows systems to configure sys-
tems, programs, and evidence types as the source and target for evid-
ence sharing.

Evidence Broker Sharing Strategy

A case type specific sharing strategy to allow organizations additional
flexibility in providing consent to sharing of evidence changes. A de-
fault sharing strategy exists that uses evidence broker configuration data

2.2.2

Curam Evidence Broker Developers Guide

to determine the sharing targets.
Evidence Broker Broadcast Hook

An evidence type specific hook that isinvoked while applying evidence
changes to the target case.

Evidence Sharing Steps

Following are the high levels steps in the evidence sharing process.

Detect Change

The evidence sharing process starts after a change of evidence is detec-
ted, typically when the user approves evidence, in the source system.
Apply Sharing Strategy

A case type specific sharing strategy is invoked to determine targets
configured for sharing and to notify the targets of the change. The de-
fault sharing strategy uses evidence broker sharing configuration to de-
termine targets and to notify them of the change. The sharing strategy is
executed in a deferred process to avoid any performance impact on the
evidence approval process.

Notify Change

As part of the sharing strategy, the change is notified to the target sys-
tem viaaweb service call or an API depending on if the sharing is done
across systems or not.

If sharing is via web services, the sources system creates an XML docu-
ment containing the change details. In case the target system is the same
as the source system and API call to Evidence Broker with the identifier
of the changed source evidence is required for change notification.

Process Change Notification

After receiving the change notification the target system validates the
details by applying the appropriate schema or loading the evidence de-
tails from the database. Evidence broker then checks the configuration
to seeif it is allowed to accept the specific evidence type changes from
the target system.

If an appropriate configuration exists, Evidence Broker determines the
cases in that might be impacted from the change and invokes the evid-
ence type specific hook (Broadcast Evidence hook) to process the evid-
ence application on the target case. Evidence type specific transferEvid-
ence operation on Evidencelnterface is called to map various keys from
the source to the target case.

Synchronize Change

A task is sent to the caseworker if an action is required in applying the
shared evidence. The caseworker then using the synchronization screens
applies the changes to the target case. The synchronization screens use
the Evidence Compare interface to return the data source and target
evidence datain aformat that is conducive to presenting it on the screen

2.3

2.4

2.5

Curam Evidence Broker Developers Guide

in auser friendly manner.

Evidence Broker Sharing Strategy

Each time evidence is shared from the source case Evidence Broker invokes
the case type specific Evidence Sharing Strategy. This allows, at a case type
level, flexibility in deciding how the sharing should take place. A default
sharing strategy that is appropriate for most situations is included out of the
box. Custom implementation of the sharing strategy can institute a consent
model that uses customer specific logic to determine if a particular evidence
can be shared and also decide on specific targets that it can be shared with.
The transport mechanism of changes from source to the target can also be
modified using a custom strategy.

To facilitate easy creation of new strategies a helper class ProcessEvidence-
Helper has been provided. This class contains reusable code and provides
various helper functions thought to be useful in creating a new strategy.

Evidence Compare Interface

When a user selects the Compare link on the Synchronization screen of the
Evidence Broker, the Evidence2Compare interface identifies all the pieces
of evidence for comparison and returns the evidence comparison data in a
format that can be understood by the evidence comparison screen. The
Evidence Broker APl determines which evidence records need to be re-
turned for comparison. It has been enhanced to transform the data returned
from the Evidence2Compare interface into xml format to be understood by
the evidence comparison screens.

Evidence generated by the Clram Evidence Generator will implement the
Evidence2Compare interface. Customers not using the Curam Evidence
Generator need to ensure their custom evidence, which is being shared, im-
plements the interface. They also need to provide the necessary handcrafted
functionality in its implementation which builds up the comparison data to
be transformed into xml by the Evidence API.

Transfer Evidence

The transferEvidence operation, which is one of the functions on the Evid-
ence Interface, handles the foreign keys on a custom entity when evidenceis
broadcast from one case to another. For example, if a custom entity has one
or more case participant role fields, code needs to exist in this function to
manage the foreign keys. This is so these fields on the new record on the
target case do not point at case participants on the source case. For evidence
generated by the Curam Evidence Generator, the code for managing the for-
eign keyswill be automatically generated.

i Note

2.6

2.7

Curam Evidence Broker Developers Guide

It should be noted that the transferEvidence interface operation was
originally added for the transfer evidence functionality. The code,
whether it be generated or handcrafted, should cater for both the
transferring and broadcasting of evidence. The transferring of evid-
ence can take place without the Evidence Broker being installed.

Broadcast Evidence Hook

The Broadcast Evidence hook allows customers provide an alternative
mechanism for broadcasting evidence. Any time the evidence broker is
triggered to look for incoming evidence available for sharing, this hook will
be called before the evidence is broadcast to the target case. Customers can
use this hook to call processing that is usually invoked when evidence is ad-
ded to a case. Customers may want to invoke this same processing when
evidence is shared on cases. For example, a workflow may be invoked as
part of an evidence insert, either pre or post, which initiates other events.

The Curam Evidence Generator automatically inserts in the create evidence
service layer functions a pre and post step for calling custom processing be-
fore and after the evidence is created. These steps apply to genera evidence
creation and shared evidence creation. When the Caram Evidence Generator
IS not used, customers can still implement a hook by handcrafting pre and
post steps in their own create evidence business processes. Customers
should update their existing create evidence processes to distinguish
between evidence which is being shared and evidence which is being inser-
ted.

Integration with Evidence Generator

The Curam Evidence Broker has been integrated with the Caram Evidence
Generator to streamline the implementation of evidence sharing. When
evidence is generated, it can be shared without any custom code having to
be written aside from listing the classes of evidence types in the Evid-
ence2Compare Registrar. The Clram Evidence Generator automatically im-
plements the Evidence2Compare interface on the generated service layer. It
provides implementations for the Evidence2Compare interface for every
generated evidence type. The evidence generator also provides implementa-
tions of the transferEvidence operation, where required, on the entity layer.
This generation saves a considerable amount of development time.

From the perspective of the Evidence API, integration with the evidence
generator automatically makes the create evidence business process 'evid-
ence sharing' aware. The generated service layer create functions can recog-
nize the difference between inserted evidence and evidence broadcast from
a source case. As described in the previous section, this alows customers to
use the same pre and post steps of the insert evidence function for the broad-
cast evidence.

Curam Evidence Broker Developers Guide

2.8 Evidence Broker Configuration

Evidence Broker configuration can be set up manually by an administrator.
This is done by enabling sharing when assigning evidence types to cases
and by setting up the source and target evidence types (as described in the
Curam Evi dence Broker Cuide).

Chapter 3

Implementing Evidence Compare Interface

3.1

3.2

3.3

Introduction

The purpose of this chapter is to provide instructions on how to implement
the Evidence2Compare interface. Most of the instructions in this chapter re-
late to evidence sharing that is not generated. When evidence is generated,
the only step required is adding evidence type / class pairings to the Evid-
ence2Compare registrar.

ldentify Evidence Types Available for Sharing

Before evidence sharing can occur, it is necessary to define the evidence
types available for sharing and to configure how this sharing will occur.
More specifically this includes defining the source and target evidence types
and cases (see the Car am Evi dence Broker Gui de for moreinform-
ation).

Determine Classes which Implement Evidence
Compare Interface

The evidence generator implements the Evidence2Compare interface at the
service layer. Some custom evidence may not have a service layer, in which
caseit is possible to implement the interface at the facade or entity layer. To
implement at the facade layer, it is necessary to have a separate facade for
each evidence type since a single implementation cannot cater for multiple
evidence types. There are no limitations for entities as the entity to evidence
type relationship is one-to-one.

Here is a sample declaration of the Sample Sporting Activity Evid-
ence2Compare implementation which lives on the SampleMaintanS-
portingActivity facade layer:

Curam Evidence Broker Developers Guide

/**

* Facade nethods for the Sanple Sporting Gant Activity
* product .
*/

public class Sanpl eMai ntai nSportingActivity
ext ends curam sanpl e. f acade. base. Sanpl eMai nt ai nSporti ngActivity
i mpl ement s Evi dence2Conpar e {

/
/

*

Return details that will conprise the XM. bl ob used to
popul ate the evi dence conparison screen inside the
Evi dence Broker.

* Ok Kk Ok kT~

@aram key ldentifies an evidence entity
@eturn Evidence entity details

*/
publ i c Evi denceConpari sonDt|s get Conpari sonDat a(
Evi denceCaseKey key)
t hrows AppException, |nformati onal Exception {

3.4 Map Evidence Compare Classes to Evidence Type

After deciding the classes which implement the Evidence2Compare inter-
face, it is necessary to add these classes to the Evidence2Compare map that
provides alook up for the implementing class using the evidence type. This
can be done in two ways. using Google Guice module or by a registrar.
Though both approaches achieve the same goal, the Google Guice route is
preferred over the registrar route. Typically the registrar route should be
used when overriding the OOTB implementation. Both approaches are out-
lined below using the Sample Sporting Activity evidence type referred to in
the previous section:

3.4.1 Using Google Guice

This can be done by creating a Guice module class and adding a correspond-
ing entry in the MODULE table. A Guice module class is created by deriv-
ing a class from com.google.guice.AbstractModule and overriding the con-
figure method to add the following statement:

MapBi nder <Stri ng, Method> evi dence2Conpar eMapBi nder =
MapBi nder . newVapBi nder (bi nder (), String.class, Method.cl ass,
new Regi strarl npl (Regi strar Type. EVI DENCE_TO COVPARE)) ;

evi dence2Conpar eMapBi nder . addBi ndi ng(CASEEVI DENCE. SAMPLEADDRESS)
. tol nst ance(Sanpl eAddr essFact ory. cl ass. get Met hod(
Ref | ecti onConst . kNew nst ance, new C ass[0]));
Where 'RegistrarType.EVIDENCE_TO_COMPARE' is an annotation which
is used to differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

3.4.2 Using Registrar

3.5

3.5.1

3.5.2

3.5.3

Curam Evidence Broker Developers Guide

Define the following method in a class:

public void registerEvi dence2Conpare() throws
AppExcepti on, |nformational Exception {
Evi dence2ConpareMap map = EvidenceController.
get Evi dence2Conpar eMap() ;
map. put Evi denceType(CASEEVI DENCE. SAMPLEADDRESS,
Sanpl eAddr essFact ory. cl ass) ;

}

The class which implements the registrar must be added to the
ENV_EVIDENCE2COMPARE_REGISTRARS LIST environment vari-
able. Out-of-the-box, for example the facade class
curam.sample.sl.fact. SampleSportingGrantEvidenceRegistrarFactory, is ad-
ded to the ENV_EVIDENCE2COMPARE_REGISTRARS LIST variable.
Further additions should be added in a comma delimited fashion, with no
space left between the comma and the next addition to the list.

Provide Implementation for the Evidence Com-
pare Interface

One of the main benefits of using the evidence generator is that developers
do not have to provide an implementation for the Evidence2Compare inter-
face. Without the evidence generator, this can be a time consuming task,
particularly when sharing alarge number of evidence types.

Values

Developers must write code which gets the relevant values, i.e., attributes
from the evidence entity, and put them into a struct that can be transformed
into xml by the Evidence Broker API for evidence comparison purposes.

Labels

Developers must create an entity.properties file, <Entity>L abels.properties,
per evidence type. This should contain the attribute name and label for that
name which will be displayed on the evidence comparison screen. Like all
property files, the label islocalizable.

readDtl s. clientDtls. name=Cli ent Nane

readDt| s. sportingActivityType=Sporting Activity Type
readDt | s. sporti ngAwar dType=Sporti ng Award Type
readDt | s. payment Anount =Payment Anount

readDt| s. start Date=Start Date

readDt | s. endDat e=End Dat e

readDt | s. comrent s=Comment s

Domains

Customers don't need to implement domains with a resource bundle. They
could just as easily use java constants. Labels however, must be localizable,
so it makes sense for them to do it this way. The generated naming conven-
tion for domains is <Entity>Domains.properties. These are generated to the

10

3.5.4

Curam Evidence Broker Developers Guide

service layer impl code package (alongside the code that uses them). An ex-
ample of adomainsfileis shown below

Is.clientDtls. name=FULL_NAME

|'s.sportingActivityType=SAMPLE SPORT_ACT_TYPE

| s. sporti ngAwar dType=SAMPLE_SPORT_AWRD_ TYPE
readDt | s. paynent Amount =CURAM_AMOUNT

| s. start Dat e=CURAM DATE

| s. endDat e=CURAM DATE

| s. conment s=COMVENTS

Sample Implementation

Here is a sample implementation of the Evidence2Compare interface

* Return details that will conprise the XM. bl ob

* used to popul ate the evidence conpari son screen
* inside the Evidence Broker.

*

* @aram key ldentifies an evidence entity

* @eturn Evidence entity details

*/

publ i ¢ Evi denceConpari sonDt| s get Conpari sonDat a(Evi denceCaseKey
key) throws AppException, |nformational Exception {

Evi denceConpari sonDt | s evi denceConpari sonDtls =
new Evi denceConpari sonDtl s();

Sanpl eSporti ngActi vityKey sanpl eSportingActivityKey =
new Sanpl eSporti ngActivityKey();

sanpl eSporti ngActi vityKey. sportingActivitylD =
key. evi denceKey. evi dencel D;

Sanpl eVi ewSportingActivityDils readDtls =
r eadSanpl eSporti ngActi vit yEvi dence(
sanpl eSporti ngActi vi t yKey) ;

Evi denceDescri pt or Key evi denceKey =
new Evi denceDescri pt or Key();

evi denceKey. evi denceDescriptorl D =
readDt | s. evi denceDescri ptor | D;

Evi denceDescriptorDtls evidenceDtls =
Evi denceControl | er Fact ory. newl nst ance()
. readEvi denceDescri pt or Dt | s(evi dencekKey) ;

evi denceConpari sonDt| s. descri pt or. assi gn(evi dencebDt| s) ;

evi denceConpari sonDt | s. descri pt or. updat edBy =
readDt | s. updat edBy;

evi denceConpari sonDt | s. descri pt or. updat edDat eTi ne =
readDt | s. updat edDat eTi ne;

Resour ceBundl e domai nTypes =
Resour ceBundl| e. get Bundl e(
Sanpl eSporti ngG ant Const . kSanpl eSporti ngActi v

i t yDomei nsFi | e,
new Local e(Transacti onl nf o. get Programl_ocal e())

)

Resour ceBundl e | abel s =
Resour ceBundl e. get Bundl e(
Sanpl eSporti ngG ant Const . kSanpl eSporti ngActi vi t
new Local e(Transacti onl nf 0. get Progr amnl_ocal e()

yLabel sFi | e,
)

Ohj ect[] val uenjects = {
readDtls.clientDt|s. nane
, readDtl s. sportingActivityType
, readDtl s. sportingAwar dType
, readDtl s. paynent Anount

11

Curam Evidence Broker Developers Guide

, readDtls.startDate
, readDtl|s. endDat e
, readbDt|s.coments

Evi denceConpari sonHel per hel per =
new Evi denceConpari sonHel per();

/] popul ate the return struct one attribute at a tine
for (int i = 0;
i < Sanpl eSportingG ant Const . kSanpl eSporti ngActi vit yNanmes
.l ength
&& i < valueObjects.length; i++) {

Evi denceAttributeDtls attribute =
new Evi denceAttributeDtl s();

try {
attribute.domain =
domai nTypes. get Stri ng(
Sanpl eSporti ngG ant Const . kSanpl eSporti ngActivityNanes[i]);

} catch (M ssi ngResour ceExcepti on nre)

/! m ssing donmain causes w dget to fail

/1 insert SVR STRI NG by default

attri bute.domai n = CurantConst. kDomai nSVR_STRI NG,

}

try {
attribute. |l abel =

| abel s. get Stri ng(
Sanpl eSporti ngG ant Const . kSanpl eSporti ngActi vityNanes[i]);
} catch (M ssi ngResourceException nre) {
/1 |abels are bl ank by default
attribute.label = CuranConst.gkEnpty;

attribute.value =
hel per . obj ect ToStri ng(val ueCbj ect s|
evi denceConpari sonDt| s. det ai | s. addRef

}

return evi denceConpari sonDt| s;

)i
t

I(L tribute);

12

4.1

4.2

Chapter 4

Implementing Transfer Evidence

Introduction

The purpose of this chapter is to provide instructions on how to implement
the transferEvidence Evidence Interface function. This is only necessary
when dealing with handcrafted evidence as this function is automatically
generated when using the Caram Evidence Generator.

ldentify Evidence Types Requiring Specialized
Transfer Evidence Code

Some evidence entities contain one or more case participant role fields.
These are foreign keys to the Case Participant Role entity. When this evid-
ence is broadcast to one or more target cases, the evidence will initially be
inserted with the case participant roles of the source case. These must be
handled by specialized code in the transferEvidence Evidence Interface
function so these fields are updated with case participant roles on the target
case. An example of such code is shown below:

/
/
Met hod that does any entity adjustments for noving the
evi dence record to a new casel D

@ar am detai |l s Contains the evidencel D/ evidenceType
pai ri ngs of the evidence to be transferred

@ar am fronCaseKey The case from which the evidence is being
transferred

@ar am t oCaseKey The case to which the evidence is being
transferred

* %k k3 F F 3k kT~

*

*/
public void transferEvi dence(Evi denceTransferDetails details,
CaseHeader Key fronCaseKey, CaseHeader Key toCaseKey)
t hrows AppException, |nformati onal Exception {
El Evi denceKey key = new El Evi denceKey();

CaseParti ci pant Rol eKey caseParti ci pant Rol eKey =

13

Curam Evidence Broker Developers Guide

new CaseParti ci pant Rol eKey() ;
CasePartici pant Rol eDt| s casePartici pant Rol eDt | s;
Casel DParti ci pant Rol eKey casel DParti ci pant Rol eKey =
new Casel DParti ci pant Rol eKey();

CasePartici pant Rol eDt | sLi st casePari ci pant Rol eDt | sLi st ;
CasePartici pant Rol e caseParti ci pant Rol eCbj =
CaseParti ci pant Rol eFact ory. new nst ance() ;

/! Read the "from' Evidence entity details
key. evi dencel D = detai |l s. fronEvi dencel D
key. evi denceType = detail s. fronEvi denceType;
fromC ai nParticipantDils =

(A ainmParticipantDt|s)readEvi dence(key);

/! Read the "to" evidence entity details
key. evi dencel D = detail s.toEvi dencel D
key. evi denceType = detail s.toEvidenceType;
tod ainParticipantDils =

(G ainParticipantDtls)readEvi dence(key);

/'l CGet the case participant details
curamcore. sl.intf.CasePartici pant Rol e
casePartici pant Servi ceLayer Ghj =
curam core. sl.fact. CaseParti ci pant Rol eFact ory. newl nst ance() ;

CasePartici pant Rol eDetail s caseParti ci pant Rol eDetails =
new CaseParti ci pant Rol eDetai l s();

casePartici pant Rol eDetail s.dtls. casel D = t oCaseKey. casel D;
casel DParti ci pant Rol eKey. casel D = t oCaseKey. casel D;
casePartici pant Rol eDetail s.dtls.fronDate =
Dat e. get Current Dat e() ;
casePartici pant Rol eDetail s.dtls.recordStatus =
RECORDSTATUS. NORVAL;

if (fronC ai mParticipantDtls.caseParticipantRolelD != 0L) {

/] Find the ParticipantRol el D by using the existing

/| CasePartici pant Rol el D

caseParti ci pant Rol eKey. caseParti ci pant Rol el D =
fromC ai nPartici pant Dt| s. caseParti ci pant Rol el D;

casePartici pantRol eDtls =
caseParti ci pant Rol eCbj . read(caseParti ci pant Rol eKey) ;

/'l Need to search for the CasePartici pantRol e that have the
/1 to Casel D and the existing ParicipantRolelD. There shoul d
/1 only be one.
casel DParti ci pant Rol eKey. partici pant Rol el D =

casePartici pant Rol eDt | s. parti ci pant Rol el D

casePartici pant Rol eDt | sLi st =
caseParti ci pant Rol eCbj . searchByParti ci pant Rol eAndCase(
casel DParti ci pant Rol eKey) ;

casePartici pant Rol eDetails.dtls.participantRolelD =
casePartici pant Rol eDt | s. parti ci pant Rol el D

/] 1f the list is enpty, it means the participant to whomthe
/] evidence belongs Is not a CPR on the toCase
if (caseParticipantRol eDtlsList.dtls.isEmty()) {

/1l never create a PRI MARY in transferEvidence
if (caseParticipantRol eDtls.typeCode. equal s(
CASEPARTI Cl PANTROLETYPE. PRI MARY)) {

casePartici pant Rol eDetail s. dtls.typeCode
CASEPARTI Cl PANTROLETYPE. MEMBER;
} else {
/1 use the 'froml type
casePartici pant Rol eDetail s. dtls.typeCode
casePartici pant Rol eDt | s. t ypeCode;

14

Curam Evidence Broker Developers Guide

}

/'l Create a new record o o
caseParti ci pant Servi ceLayer Obj . i nsert CaseParti ci pant Rol e(
caseParti ci pant Rol eDet ai | s);

toCl ai mParticipantDtls. casePartici pant Rol el D =
casePartici pant Rol eDetai |l s. dt| s. caseParti ci pant Rol el D;

} else {

/1 MEMBER t akes precedence
if (fronCl ai mParticipantDt!|s.casePartici pantRol el D
== toCd ai nParticipantDtls. casePartici pant Rol el D) {

for (int i = 0;
i < caseParticipantRol eDt|sList.dtls.size(); i++) {

if (caseParticipantRoleDtlsList.dtls.item
i).typeCode. equal s(CASEPARTI Cl PANTROLETYPE. MEMBER)
|| caseParticipantRol eDtlsList.dtls.iten
i). typeCode. equal s(CASEPARTI Cl PANTROLETYPE. PRI MARY)) {

toCl ai nParticipantDtls. casePartici pant Rol el D =
casePartici pant Rol eDt | sList.dtls.iten
i).caseParti ci pant Rol el D
br eak;

/[If there are still no matches, use the MEMBER type to
/| create a new record

f (fronmC ainParticipantDtls. casePartici pantRol el D

== toC ainParticipantDtls. casePartici pant Rol el D) {

}
/
/
i

casePartici pant Rol eDetail s. dtls.typeCode =
CASEPARTI Cl PANTROLETYPE. MEMBER;

caseParti ci pant Servi ceLayer Obj . i nsert CaseParti ci pant Rol e(
caseParti ci pant Rol eDet ai | s);

tod ainParticipantDtls. casePartici pantRol el D =
casePartici pant Rol eDetai |l s. dt| s. caseParti ci pant Rol el D;

}

cl ai mparti ci pant Key. evi dencel D = detail s.toEvi dencel D
modi fy(cl ai mpartici pant Key, toC ai mParticipantDtl|s);

15

5.1

5.2

Chapter 5

Using the Broadcast Evidence Hook

Introduction

The purpose of this chapter is to provide instructions on how to use the
broadcast evidence hook.

ldentify Evidence Types with Pre or Post Pro-
cessing

Some evidence types require pre and / or post processing when evidence is
created, whether through an insert or through sharing. The purpose of the
broadcast evidence hook is to allow developers to include this processing
when sharing evidence. Before using the broadcast evidence hook, de-
velopers must first identify the evidence types with pre and / or post create
processing which need to be invoked as part of evidence sharing.

Developers then need to provide a second create business process whose
signature will accept the additional parameters required for evidence shar-
ing. Keeping the existing create business process will ensure thereis no im-
pact on existing functionality and existing tests. The simplest way to
achieve this is to move the code from the origina business process into the
new business process and get the original process to call the new one. Here
isasample of the signature for the new business process:

I/

/**

* Creates a <custone evidence record.

@aram dtls Contai ns <custom> evidence creation details

@ar am sour ceEvi denceDescriptorDtls If this function is
call ed during evidence sharing, this paraneter wll be
non-null and it represents the header of the evidence
record being shared (i.e. the source evidence record)

@aramtargetCase If this function is called during evidence
sharing, this parameter will be non-null and it represents
the case the evidence is being shared w th.

@ar am sharinglnd Aflag to determne if the function is

* % ok ok kX Ok kX F

16

5.3

Curam Evidence Broker Developers Guide

* called in evidence sharing node. |f false, the function
* is being called as part of a regular create.
*
*

@eturn the new evidence | D and war ni ngs.
*

publ i ¢ ReturnEvi denceDet ai | s creat e<Cust onm>Evi dence(
<Cust onPEvi denceDetai | s dtl s,
Evi denceDescriptorDtls sourceEvi denceDescriptorDtl s,
CaseHeader Dt | s target Case, bool ean shari ngl nd)
throws AppExcepti on, | nf or mati onal Excepti on {

Provide Implementation for the Evidence Broad-
cast Hook

The Broadcast Evidence hook is used to route the processing for specific
evidence types to their respective create business processes. Here is a
sample implementation of the Broadcast Evidence hook which includes
comments to clearly describe what needs to be done:

/ * %

*/Sanpl e inpl ementation of the Broadcast Evi dence hook.

public abstract class CustonBroadcast Evi dence extends
cust om evi dencebr oker. sl . base. Cust onBr oadcast Evi dence {

/1

/**

* Del egates the evidence broadcast through the custom service
* | ayer processing.

*

* @aram sour ceDescri ptor The source evi dence descri ptor

* @aramtarget Case The case the evidence is being broadcast
* to

* @eturn The evidence descriptor of the broadcast record on
* the target case

*/

publ i ¢ Evi denceDescriptorDtls processBroadcast (
Evi denceDescriptorDtls sourceDescriptor, CaseHeaderDtls
target Case) throws AppException, |Informational Exception {

i f (sourceDescriptor.evidenceType. equal s(
CASEEVI DENCE. ALI EN)) {

/1l Read the Alien evidence details (through the service
/1 |ayer)

Ali enKey alienKey = new AlienKey();

al i enKey. al i enl D = sourceDescriptor.rel atedl D;

ReturnAlienDetails alienDetails =
Al i enFact ory. newl nst ance() . readAl i enDet ai | s(al i enKey) ;

Assign these details to the alien creation struct,
e.g.
Not e: a nunber of assignnents may be required here
dependi ng on the nunmber of aggregated structs
within ReturnAlienDetails and CreateAlienDetails
CreateAlienDetails createAlienDetails =

new CreateAlienDetail s();
createAlienDetails.assign(alienDetails);

—~——— — —
~———

ReturnCreateAlien returnCreateAlien =
Al i enFact ory. newl nst ance() . creat eAl i enEvi dence(
createAlienDetails,
sour ceDescri pt or,
t ar get Case,
true);

17

Curam Evidence Broker Developers Guide

Rel at edl DAndEvi denceTypeKey key =
new Rel at edl DAndEvi denceTypeKey() ;

key.relatedl D = returnCreateAlien. alienlD;
key. evi denceType = CASEEVI DENCE. ALI EN,

/'l Read the EvidenceDescriptor and return the details
Evi denceDescri pt or evi denceDescriptor o) =
Evi denceDescri pt or Fact ory. newi nst ance() ;

return evi denceDescri pt or Qbj . r eadByRel at edl DAndType(key) ;
}

/1 null will be returned for all other evidence types
return null;
}
}
/**
* Del egates the external evidence broadcast through the
* custom service |ayer processing.
*
* @aram descriptorDetails Contains the evidence descri ptor
* details received fromrenote system
* @aramtarget Case Contains the case the evidence is being
* broadcast to.
*
* @eturn The evi dence descriptor of the broadcast record on
* the target case.
*/
publ i ¢ Evi denceDescriptorDtls processExternal Broadcast (
Shar edEvi denceDescri ptorDetails descriptorDetails,
CaseHeader Dt | s target Case) throws AppException,
I nf or mat i onal Excepti on {
if (descriptorDetails.details.evidenceType.
equal s(CASEEVI DENCE. ALI EN)) {
Evi denceDescriptorDtls evidenceDescriptorDils =
Evi denceControl | er Fact ory. newl nst ance().
shar eExt er nal Evi dence(descriptorDetails, targetCase);
/] Perform Alien evidence specific processing here
I
I
return evi denceDescriptorDtls;
/1 null will be returned for all other evidence types
return null;
}
/**
* Returns the structure with a true value set if the evidence being
* passed has been auto accepted onto the target case el se fal se woul d
* be returned.
*
* @ar am sour ceDescri pt or
* Cont ai ns source evidence descriptor details.
* @aramtarget Case
* Contains the case identifier of the evidence is being
* br oadcast to.
*
* @eturn True would be returned if the evidence being passed has
* been auto accepted onto the target case el se fal se.
*/

publ i ¢ Evi denceAut oAccept ancel nd i sAut oAccept ed(
Evi denceDescriptorDtls sourceDescriptor,
CaseHeader Dt | s target Case) throws AppException,
I nf or mat i onal Excepti on {
return null;

18

5.4

5.4.1

5.4.2

Curam Evidence Broker Developers Guide

Register Custom Override of OOTB Broadcast
Evidence Hook

The Cuaram Evidence Broker comes with an OOTB Broadcast Evidence
hook as part of the Evidence Broker. After creating a custom version of the
hook, it is necessary to associate the custom version with the evidence type.
The custom hook is managed by a combination of the BroadcastEvidenceM-
anager.

This can be done in two ways. using Google Guice module or by aregistrar.
Though both approaches achieve the same goal, the Google Guice route is
preferred over the registrar route. Typically the registrar route should be
used when overriding the OOTB implementation. Both approaches are out-
lined below:

Using Google Guice

This can be done by creating a Guice module class and adding a correspond-
ing entry in the MODULE table. A Guice module class is created by deriv-
ing a class from com.google.guice.AbstractModule and overriding the con-
figure method to add the following statement:

public void configure() {

MapBi nder <St ri ng, Met hod> br oadcast Evi denceHookMapBi nder
= MapBi nder. newVapBi nder (bi nder (), String.class, Mthod.cl ass,
new Regi strarl npl (Regi strar Type. EVI DENCE_BROKER)) ;

br oadcast Evi denceHookMapBi nder . addBi ndi ng(CASETYPECODE.
| NTEGRATEDCASE) . t ol nst ance(Br oadcast Evi denceFact ory. cl ass.
get Met hod(Ref | ecti onConst . kNew nst ance, new C ass[0]));

Where 'RegistrarType.EVIDENCE_BROKER' is an annotation which is
used to differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

Using Registration

This is done by adding the <custom hook to the
ENV_BROADCASTEVIDENCE_REGISTRARS LIST environment vari-
able. The BroadcastEvidenceRegistrar contains an interface which must be
implemented by a custom registrar class in order to register the class which
implements the hook. This is looked up via the BroadcastEvidenceM anager
classinside the Evidence Broker.
/**

I/ Regi sters the custom evi dence broadcast hook

public class CustonBroadcast Evi denceRegi strar

ext ends custom sl . base. Cust onBr oadcast Evi denceRegi strar
i npl ement s Broadcast Evi denceRegi strar {

19

Curam Evidence Broker Developers Guide

public void register() {
HookMap map = Broadcast Evi denceManager . get () ;
map. addMappi ng(CASETYPECODE. | NTEGRATEDCASE,
Br oadcast Evi denceFact ory. cl ass) ;

20

Chapter 6

Implementing Evidence Sharing Strategy Interface

6.1

6.2

6.3

Introduction

The purpose of this chapter is to provide high level instructions on how to
implement the EvidenceSharingStrategy interface.

Provide Implementation for the EvidenceShar-
ingStrategy Interface

This interface needs to be implemented in scenarios where the customer
wants to change the conditions under which an evidence type for a specific
caseis shared or the target systemsit is shared with.

Please See the code of class
curam.evidencebroker.dl.infrastructure.impl.EvidenceBrokerSharingStrateg
ylmpl as an interface implementation sample.

Map the Custom Strategy to a Case Type

The Curam Evidence Broker comes with an EvidenceSharingStrategy im-
plementation that acts as default strategy for al the case types without a spe-
cific sharing strategy. After creating a custom strategy (for example, Cus-
tomEvidenceSharingStrategylmpl) for a case type, it is necessary to bind the
strategy with the case type. This can be done by creating a Guice module
class and adding a corresponding entry in the MODULE table. A Guice
module class is created by deriving a class from
com.google.guice.AbstractModule and overridding the configure method to
add the following statement:

public void configure() {

MapBi nder <Stri ng, CaseTypeEvi dence< mapbi nder =
MapBi nder . newivapBI nder (bi nder (), String. cl ass,

21

Curam Evidence Broker Developers Guide

CaseTypeEvi dence. cl ass) ;
mapbi nder . addBi ndi ng(CASETYPECODE. | NTEGRATEDCASE) . t o(
I nt egr at edCaseTypeEvi dence. cl ass) ;

}

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

22

7.1

7.2

7.2.1

Chapter 7

Evidence Broker Web Service

Introduction

This chapter provides a high level overview of the evidence broker web ser-
vice that facilitates evidence sharing with remote systems.

Receive Change Notification Service

Cuaram Evidence Broker uses web services to accept change notifications
from remote systems. The web service calls are implemented on an Axis2
stack for improved performance, security, and flexibility.

When a remote system calls the Receive Change Notification service
(EvidenceBrokerWS.receiveChangeNotification), the service layer class
verifies that the structure of the incoming XML is correct and then creates
an External CaseHeader record with some basic information as a representa-
tion of the source case that exists in the remote system. The incoming XML
is trandlated into structures and the sharing process starts based on the con-
figured sharing strategy.

Incoming Parameters

The parameters ae used to populate the internal struct:
curam.core.dl.struct.SharedEvidenceDescriptorDetails:

Intake Element Map to Parameter Schema Type
caselD caselD se:caseReference
participantNumber participant!D se:personReference
evidenceType evidenceType se:evidenceType
caseType sourceType seicaseType
caseSubType sourcelD se:caseSubType

23

7.2.2

Curam Evidence Broker Developers Guide

Intake Element Map to Parameter Schema Type

sourceSystemName sourceSystemiD se:sourceSystemNa
me

sharedinstancelD sharedinstancel D se:sharedl nstancel D
operation operation se:OperationName
receivedDate effectiveFrom se:date
effectiveDate effectiveDate se:date
dataObjects see below see below

Table 7.1 Minimum Requirements

The parameters casel D, participantlD, sourceSystemID are internal ID de-
termined by querying the database using the attributes CaseHead-
er.caseReference, ConcernRole.primaryAlternatel D, TargetSys-
tem.systemName.

The parameter sourcelD is determined using the API
curam.core.dl.impl.CaseTypeEvidence.getSubTypel D(final String caseSub-
Type) using the caseSubType value.

Each Incoming Evidence schema has an object structure defined for the in-
coming data. The dataObjects structureiis:

<dat al t em nane="{data item nane}"
>{val ue} </ dat al t en>

Example 7.1
« Data Item name: The name of the attribute within the struct that is
passed to the entity object.

» Value: The vaue to populate the struct field with. Thiswill be passed to
the entity object.

L]
Note

It Dataltem to struct mapping controls all data type conversions and
checks.

Incoming Parameter Descriptions

Parameter Domain Description
caselD CASE_ID Thisisthe case identifi-
er to idenify the case
with which this evid-
ence is associated.
sourceType CASE TYPE_CODE The source case type

code from which evid-
ence being shared. Code

24

Parameter

effectiveDate

sharedl nstancel D

evidenceType

operation

sourcelD

sourceSystem| D

participant| D

Curam Evidence Broker Developers Guide

Domain

CURAM_DATE

INTERNAL_ID

EVID-
ENCE_TYPE_CODE

OPERATION_NAME

INTERNAL_ID

INTERNAL_ID

CONCERN_ROLE_ID

Table 7.2 Parameter Descriptions

Description
table:CaseTypeCode

The date from which
this Evidence applies.
Format:ddMMyyyy

Unique identifier that
will be common to al
evidence records which
have been shared from
the same initial piece of
evidence.

Thisisthe evidence
type code to identify the
type of Evidence record.
Code ta-
ble:EvidenceType

This corresponds to
evidence create or re-
move operations.
Type:string

The unique identifier of
the source product from
which evidenceis being
shared.

The unique identifier of
the source system from

which evidence is being
shared.

Identifier of the parti-
cipant to whom the
evidence relates; this
could be the primary cli-
ent of the case or a
member of the integ-
rated case.

The following figure displays an example of the inbound Share Evidence

xml message:

25

Curam Evidence Broker Developers Guide

<evidence xmins="http://ws.curam/EvidenceShare" xmlns:xsi="http:/ /www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http:/ /ws.curam/EvidenceShare"=
<evidenceData>
<evidenceDetails>
<caselD=512</caselD>
<participantNumber>=30000001 </participantNumber:
<evidenceType=ET500</evidenceType:
<caseType>CT5</caseType>
<caseSubType=PCY9</caseSubType=
<sourceSystemMName>Bird </sourceSystemMNamea=
zsharedInstancelD>-338107742024839987 2 </sharedInstancelD >
<operation>0N2001 </operation=
<receivedDate=2011-01-20</receivedDate=
zeffectiveDate =0001-01-01 </effectiveDate
<fevidenceDetails =
<dataObjects>
<dataltem name="sportingActivityID" type="long">2527645290861690880</dataltem=>
«dataltem name="caseParticipantRoleID" type="long">-2084040727565697024</dataltem=>
«dataltem name="sportingActivityType" type="string">SA8</dataltem>
=dataltem name="sportingAwardType" type="string">SAT1</dataltem:
<dataltem name="paymentAmount" type="money">40.00</dataltem:
<dataltem name="comments" type="string" />
<dataltem name="startDate" type="date">2008-08-04</dataltem=>
<dataltem name="endDate" type="date">2008-09-28</dataltem>
<dataltem name="versionNo" type="int">1</dataltem=>
</data0bjects>
</evidenceDataz
</evidence:

Figure 7.1 Inbound Example : Share Evidence

26

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

27

Curam Evidence Broker Developers Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

28

Curam Evidence Broker Developers Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

29

Trademarks

Curam Evidence Broker Developers Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

30

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Evidence Broker Developers Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2 Evidence Broker Architecture
	2.1 Introduction
	2.2 Architecture
	2.2.1 Following are the key components of Evidence Broker:
	2.2.2 Evidence Sharing Steps

	2.3 Evidence Broker Sharing Strategy
	2.4 Evidence Compare Interface
	2.5 Transfer Evidence
	2.6 Broadcast Evidence Hook
	2.7 Integration with Evidence Generator
	2.8 Evidence Broker Configuration

	Chapter 3 Implementing Evidence Compare Interface
	3.1 Introduction
	3.2 Identify Evidence Types Available for Sharing
	3.3 Determine Classes which Implement Evidence Compare Interface
	3.4 Map Evidence Compare Classes to Evidence Type
	3.4.1 Using Google Guice
	3.4.2 Using Registrar

	3.5 Provide Implementation for the Evidence Compare Interface
	3.5.1 Values
	3.5.2 Labels
	3.5.3 Domains
	3.5.4 Sample Implementation

	Chapter 4 Implementing Transfer Evidence
	4.1 Introduction
	4.2 Identify Evidence Types Requiring Specialized Transfer Evidence Code

	Chapter 5 Using the Broadcast Evidence Hook
	5.1 Introduction
	5.2 Identify Evidence Types with Pre or Post Processing
	5.3 Provide Implementation for the Evidence Broadcast Hook
	5.4 Register Custom Override of OOTB Broadcast Evidence Hook
	5.4.1 Using Google Guice
	5.4.2 Using Registration

	Chapter 6 Implementing Evidence Sharing Strategy Interface
	6.1 Introduction
	6.2 Provide Implementation for the EvidenceSharingStrategy Interface
	6.3 Map the Custom Strategy to a Case Type

	Chapter 7 Evidence Broker Web Service
	7.1 Introduction
	7.2 Receive Change Notification Service
	7.2.1 Incoming Parameters
	7.2.2 Incoming Parameter Descriptions

	Notices
	Trademarks

