
IBM Cúram Social Program Management

Cúram Evidence Broker Developers Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2009, 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Prerequisites ... 1
1.4 Chapters in this Guide .. 1

Chapter 2 Evidence Broker Architecture ... 3
2.1 Introduction .. 3
2.2 Architecture .. 3

2.2.1 Following are the key components of Evidence Broker: 3
2.2.2 Evidence Sharing Steps ... 4

2.3 Evidence Broker Sharing Strategy ... 5
2.4 Evidence Compare Interface .. 5
2.5 Transfer Evidence .. 5
2.6 Broadcast Evidence Hook .. 6
2.7 Integration with Evidence Generator ... 6
2.8 Evidence Broker Configuration ... 7

Chapter 3 Implementing Evidence Compare Interface .. 8
3.1 Introduction .. 8
3.2 Identify Evidence Types Available for Sharing ... 8
3.3 Determine Classes which Implement Evidence Compare Interface 8
3.4 Map Evidence Compare Classes to Evidence Type .. 9

3.4.1 Using Google Guice .. 9
3.4.2 Using Registrar ... 9

3.5 Provide Implementation for the Evidence Compare Interface 10
3.5.1 Values ... 10
3.5.2 Labels .. 10
3.5.3 Domains .. 10
3.5.4 Sample Implementation .. 11

Chapter 4 Implementing Transfer Evidence .. 13
4.1 Introduction .. 13
4.2 Identify Evidence Types Requiring Specialized Transfer Evidence Code 13

Chapter 5 Using the Broadcast Evidence Hook ... 16
5.1 Introduction .. 16

iii

5.2 Identify Evidence Types with Pre or Post Processing ... 16
5.3 Provide Implementation for the Evidence Broadcast Hook 17
5.4 Register Custom Override of OOTB Broadcast Evidence Hook 19

5.4.1 Using Google Guice .. 19
5.4.2 Using Registration .. 19

Chapter 6 Implementing Evidence Sharing Strategy Interface .. 21
6.1 Introduction .. 21
6.2 Provide Implementation for the EvidenceSharingStrategy Interface 21
6.3 Map the Custom Strategy to a Case Type .. 21

Chapter 7 Evidence Broker Web Service .. 23
7.1 Introduction .. 23
7.2 Receive Change Notification Service .. 23

7.2.1 Incoming Parameters .. 23
7.2.2 Incoming Parameter Descriptions ... 24

Notices ... 27

Cúram Evidence Broker Developers Guide

iv

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to provide a high level understanding of Cúram
Evidence Broker ™ and its components. This guide also describes how cus-
tom evidence can be shared using the Cúram Evidence Broker.

1.2 Audience

This guide is for architects and developers responsible for implementing
evidence sharing.

1.3 Prerequisites

The reader should be familiar with the business requirements for evidence
sharing and how the Cúram Evidence Broker works. For a high-level over-
view, see the Cúram Evidence Broker Guide .

1.4 Chapters in this Guide

The following list describes the chapters within this guide:

Evidence Broker Architecture
This chapter provides a high level overview of the key technical aspects
of the Cúram Evidence Broker.

Implementing the Evidence Comparison Interface
This chapter outlines the steps for implementing the Evidence2Compare
interface.

Implementing Transfer Evidence

1

This chapter discusses the implementation of the transferEvidence evid-
ence interface operation and why it is required.

Using the Broadcast Evidence Hook
This chapter looks at the Broadcast Evidence hook which allows cus-
tomers route the evidence broadcast through their custom processing.

Implementing Evidence Sharing Strategy Interface
This chapter provides high level instructions on how to implement the
EvidenceSharingStrategy interface.

Evidence Broker Web Service
This chapter provides a high level overview of the evidence broker web
service that facilitates evidence sharing with remote systems.

Cúram Evidence Broker Developers Guide

2

Chapter 2

Evidence Broker Architecture

2.1 Introduction

This chapter describes the architecture of the Cúram Evidence Broker.

2.2 Architecture

Evidence Broker enables flexible sharing of evidence between programs and
systems to ensure that the most up to date evidence changes are available to
the configured programs and systems improving the speed and accuracy at
which changes are propagated. The system and programs that share the
evidence are called source and the ones that receive these updates are called
target. Source and target could refer to the same system if the system sup-
ports multiple programs.

2.2.1 Following are the key components of Evidence Broker:

Change Notification Interface
This evidence broker web services interface is used to share and accept
evidence changes from and to remote systems. An API version of this
interface exists for more performant sharing if the source and target are
the same system.

Evidence Broker Sharing Configuration
Evidence broker sharing configuration allows systems to configure sys-
tems, programs, and evidence types as the source and target for evid-
ence sharing.

Evidence Broker Sharing Strategy
A case type specific sharing strategy to allow organizations additional
flexibility in providing consent to sharing of evidence changes. A de-
fault sharing strategy exists that uses evidence broker configuration data

3

to determine the sharing targets.

Evidence Broker Broadcast Hook
An evidence type specific hook that is invoked while applying evidence
changes to the target case.

2.2.2 Evidence Sharing Steps

Following are the high levels steps in the evidence sharing process.

Detect Change
The evidence sharing process starts after a change of evidence is detec-
ted, typically when the user approves evidence, in the source system.

Apply Sharing Strategy
A case type specific sharing strategy is invoked to determine targets
configured for sharing and to notify the targets of the change. The de-
fault sharing strategy uses evidence broker sharing configuration to de-
termine targets and to notify them of the change. The sharing strategy is
executed in a deferred process to avoid any performance impact on the
evidence approval process.

Notify Change
As part of the sharing strategy, the change is notified to the target sys-
tem via a web service call or an API depending on if the sharing is done
across systems or not.

If sharing is via web services, the sources system creates an XML docu-
ment containing the change details. In case the target system is the same
as the source system and API call to Evidence Broker with the identifier
of the changed source evidence is required for change notification.

Process Change Notification
After receiving the change notification the target system validates the
details by applying the appropriate schema or loading the evidence de-
tails from the database. Evidence broker then checks the configuration
to see if it is allowed to accept the specific evidence type changes from
the target system.

If an appropriate configuration exists, Evidence Broker determines the
cases in that might be impacted from the change and invokes the evid-
ence type specific hook (Broadcast Evidence hook) to process the evid-
ence application on the target case. Evidence type specific transferEvid-
ence operation on EvidenceInterface is called to map various keys from
the source to the target case.

Synchronize Change
A task is sent to the caseworker if an action is required in applying the
shared evidence. The caseworker then using the synchronization screens
applies the changes to the target case. The synchronization screens use
the Evidence Compare interface to return the data source and target
evidence data in a format that is conducive to presenting it on the screen

Cúram Evidence Broker Developers Guide

4

in a user friendly manner.

2.3 Evidence Broker Sharing Strategy

Each time evidence is shared from the source case Evidence Broker invokes
the case type specific Evidence Sharing Strategy. This allows, at a case type
level, flexibility in deciding how the sharing should take place. A default
sharing strategy that is appropriate for most situations is included out of the
box. Custom implementation of the sharing strategy can institute a consent
model that uses customer specific logic to determine if a particular evidence
can be shared and also decide on specific targets that it can be shared with.
The transport mechanism of changes from source to the target can also be
modified using a custom strategy.

To facilitate easy creation of new strategies a helper class ProcessEvidence-
Helper has been provided. This class contains reusable code and provides
various helper functions thought to be useful in creating a new strategy.

2.4 Evidence Compare Interface

When a user selects the Compare link on the Synchronization screen of the
Evidence Broker, the Evidence2Compare interface identifies all the pieces
of evidence for comparison and returns the evidence comparison data in a
format that can be understood by the evidence comparison screen. The
Evidence Broker API determines which evidence records need to be re-
turned for comparison. It has been enhanced to transform the data returned
from the Evidence2Compare interface into xml format to be understood by
the evidence comparison screens.

Evidence generated by the Cúram Evidence Generator will implement the
Evidence2Compare interface. Customers not using the Cúram Evidence
Generator need to ensure their custom evidence, which is being shared, im-
plements the interface. They also need to provide the necessary handcrafted
functionality in its implementation which builds up the comparison data to
be transformed into xml by the Evidence API.

2.5 Transfer Evidence

The transferEvidence operation, which is one of the functions on the Evid-
ence Interface, handles the foreign keys on a custom entity when evidence is
broadcast from one case to another. For example, if a custom entity has one
or more case participant role fields, code needs to exist in this function to
manage the foreign keys. This is so these fields on the new record on the
target case do not point at case participants on the source case. For evidence
generated by the Cúram Evidence Generator, the code for managing the for-
eign keys will be automatically generated.

Note

Cúram Evidence Broker Developers Guide

5

It should be noted that the transferEvidence interface operation was
originally added for the transfer evidence functionality. The code,
whether it be generated or handcrafted, should cater for both the
transferring and broadcasting of evidence. The transferring of evid-
ence can take place without the Evidence Broker being installed.

2.6 Broadcast Evidence Hook

The Broadcast Evidence hook allows customers provide an alternative
mechanism for broadcasting evidence. Any time the evidence broker is
triggered to look for incoming evidence available for sharing, this hook will
be called before the evidence is broadcast to the target case. Customers can
use this hook to call processing that is usually invoked when evidence is ad-
ded to a case. Customers may want to invoke this same processing when
evidence is shared on cases. For example, a workflow may be invoked as
part of an evidence insert, either pre or post, which initiates other events.

The Cúram Evidence Generator automatically inserts in the create evidence
service layer functions a pre and post step for calling custom processing be-
fore and after the evidence is created. These steps apply to general evidence
creation and shared evidence creation. When the Cúram Evidence Generator
is not used, customers can still implement a hook by handcrafting pre and
post steps in their own create evidence business processes. Customers
should update their existing create evidence processes to distinguish
between evidence which is being shared and evidence which is being inser-
ted.

2.7 Integration with Evidence Generator

The Cúram Evidence Broker has been integrated with the Cúram Evidence
Generator to streamline the implementation of evidence sharing. When
evidence is generated, it can be shared without any custom code having to
be written aside from listing the classes of evidence types in the Evid-
ence2Compare Registrar. The Cúram Evidence Generator automatically im-
plements the Evidence2Compare interface on the generated service layer. It
provides implementations for the Evidence2Compare interface for every
generated evidence type. The evidence generator also provides implementa-
tions of the transferEvidence operation, where required, on the entity layer.
This generation saves a considerable amount of development time.

From the perspective of the Evidence API, integration with the evidence
generator automatically makes the create evidence business process 'evid-
ence sharing' aware. The generated service layer create functions can recog-
nize the difference between inserted evidence and evidence broadcast from
a source case. As described in the previous section, this allows customers to
use the same pre and post steps of the insert evidence function for the broad-
cast evidence.

Cúram Evidence Broker Developers Guide

6

2.8 Evidence Broker Configuration

Evidence Broker configuration can be set up manually by an administrator.
This is done by enabling sharing when assigning evidence types to cases
and by setting up the source and target evidence types (as described in the
Cúram Evidence Broker Guide).

Cúram Evidence Broker Developers Guide

7

Chapter 3

Implementing Evidence Compare Interface

3.1 Introduction

The purpose of this chapter is to provide instructions on how to implement
the Evidence2Compare interface. Most of the instructions in this chapter re-
late to evidence sharing that is not generated. When evidence is generated,
the only step required is adding evidence type / class pairings to the Evid-
ence2Compare registrar.

3.2 Identify Evidence Types Available for Sharing

Before evidence sharing can occur, it is necessary to define the evidence
types available for sharing and to configure how this sharing will occur.
More specifically this includes defining the source and target evidence types
and cases (see the Cúram Evidence Broker Guide for more inform-
ation).

3.3 Determine Classes which Implement Evidence
Compare Interface

The evidence generator implements the Evidence2Compare interface at the
service layer. Some custom evidence may not have a service layer, in which
case it is possible to implement the interface at the facade or entity layer. To
implement at the facade layer, it is necessary to have a separate facade for
each evidence type since a single implementation cannot cater for multiple
evidence types. There are no limitations for entities as the entity to evidence
type relationship is one-to-one.

Here is a sample declaration of the Sample Sporting Activity Evid-
ence2Compare implementation which lives on the SampleMaintainS-
portingActivity facade layer:

8

/**
* Facade methods for the Sample Sporting Grant Activity
* product.
*/

public class SampleMaintainSportingActivity
extends curam.sample.facade.base.SampleMaintainSportingActivity
implements Evidence2Compare {
.
.
//___
/**
* Return details that will comprise the XML blob used to
* populate the evidence comparison screen inside the
* Evidence Broker.
*
* @param key Identifies an evidence entity
* @return Evidence entity details
*/
public EvidenceComparisonDtls getComparisonData(

EvidenceCaseKey key)
throws AppException, InformationalException {

}
}

3.4 Map Evidence Compare Classes to Evidence Type

After deciding the classes which implement the Evidence2Compare inter-
face, it is necessary to add these classes to the Evidence2Compare map that
provides a look up for the implementing class using the evidence type. This
can be done in two ways: using Google Guice module or by a registrar.
Though both approaches achieve the same goal, the Google Guice route is
preferred over the registrar route. Typically the registrar route should be
used when overriding the OOTB implementation. Both approaches are out-
lined below using the Sample Sporting Activity evidence type referred to in
the previous section:

3.4.1 Using Google Guice

This can be done by creating a Guice module class and adding a correspond-
ing entry in the MODULE table. A Guice module class is created by deriv-
ing a class from com.google.guice.AbstractModule and overriding the con-
figure method to add the following statement:
MapBinder<String, Method> evidence2CompareMapBinder =

MapBinder.newMapBinder(binder(), String.class, Method.class,
new RegistrarImpl(RegistrarType.EVIDENCE_TO_COMPARE));

evidence2CompareMapBinder.addBinding(CASEEVIDENCE.SAMPLEADDRESS)
.toInstance(SampleAddressFactory.class.getMethod(

ReflectionConst.kNewInstance, new Class[0]));

Where 'RegistrarType.EVIDENCE_TO_COMPARE' is an annotation which
is used to differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

3.4.2 Using Registrar

Cúram Evidence Broker Developers Guide

9

Define the following method in a class:
public void registerEvidence2Compare() throws

AppException, InformationalException {
Evidence2CompareMap map = EvidenceController.
getEvidence2CompareMap();
map.putEvidenceType(CASEEVIDENCE.SAMPLEADDRESS,
SampleAddressFactory.class);

}

The class which implements the registrar must be added to the
ENV_EVIDENCE2COMPARE_REGISTRARS_LIST environment vari-
able. Out-of-the-box, for example the facade class
curam.sample.sl.fact.SampleSportingGrantEvidenceRegistrarFactory, is ad-
ded to the ENV_EVIDENCE2COMPARE_REGISTRARS_LIST variable.
Further additions should be added in a comma delimited fashion, with no
space left between the comma and the next addition to the list.

3.5 Provide Implementation for the Evidence Com-
pare Interface

One of the main benefits of using the evidence generator is that developers
do not have to provide an implementation for the Evidence2Compare inter-
face. Without the evidence generator, this can be a time consuming task,
particularly when sharing a large number of evidence types.

3.5.1 Values

Developers must write code which gets the relevant values, i.e., attributes
from the evidence entity, and put them into a struct that can be transformed
into xml by the Evidence Broker API for evidence comparison purposes.

3.5.2 Labels

Developers must create an entity.properties file, <Entity>Labels.properties,
per evidence type. This should contain the attribute name and label for that
name which will be displayed on the evidence comparison screen. Like all
property files, the label is localizable.
readDtls.clientDtls.name=Client Name
readDtls.sportingActivityType=Sporting Activity Type
readDtls.sportingAwardType=Sporting Award Type
readDtls.paymentAmount=Payment Amount
readDtls.startDate=Start Date
readDtls.endDate=End Date
readDtls.comments=Comments

3.5.3 Domains

Customers don't need to implement domains with a resource bundle. They
could just as easily use java constants. Labels however, must be localizable,
so it makes sense for them to do it this way. The generated naming conven-
tion for domains is <Entity>Domains.properties. These are generated to the

Cúram Evidence Broker Developers Guide

10

service layer impl code package (alongside the code that uses them). An ex-
ample of a domains file is shown below
readDtls.clientDtls.name=FULL_NAME
readDtls.sportingActivityType=SAMPLE_SPORT_ACT_TYPE
readDtls.sportingAwardType=SAMPLE_SPORT_AWRD_TYPE
readDtls.paymentAmount=CURAM_AMOUNT
readDtls.startDate=CURAM_DATE
readDtls.endDate=CURAM_DATE
readDtls.comments=COMMENTS

3.5.4 Sample Implementation

Here is a sample implementation of the Evidence2Compare interface
//__
/**
* Return details that will comprise the XML blob
* used to populate the evidence comparison screen
* inside the Evidence Broker.
*
* @param key Identifies an evidence entity
* @return Evidence entity details
*/
public EvidenceComparisonDtls getComparisonData(EvidenceCaseKey

key) throws AppException, InformationalException {

EvidenceComparisonDtls evidenceComparisonDtls =
new EvidenceComparisonDtls();

SampleSportingActivityKey sampleSportingActivityKey =
new SampleSportingActivityKey();

sampleSportingActivityKey.sportingActivityID =
key.evidenceKey.evidenceID;

SampleViewSportingActivityDtls readDtls =
readSampleSportingActivityEvidence(
sampleSportingActivityKey);

EvidenceDescriptorKey evidenceKey =
new EvidenceDescriptorKey();

evidenceKey.evidenceDescriptorID =
readDtls.evidenceDescriptorID;

EvidenceDescriptorDtls evidenceDtls =
EvidenceControllerFactory.newInstance()
.readEvidenceDescriptorDtls(evidenceKey);

evidenceComparisonDtls.descriptor.assign(evidenceDtls);

evidenceComparisonDtls.descriptor.updatedBy =
readDtls.updatedBy;

evidenceComparisonDtls.descriptor.updatedDateTime =
readDtls.updatedDateTime;

ResourceBundle domainTypes =
ResourceBundle.getBundle(
SampleSportingGrantConst.kSampleSportingActivityDomainsFile,
new Locale(TransactionInfo.getProgramLocale()));

ResourceBundle labels =
ResourceBundle.getBundle(
SampleSportingGrantConst.kSampleSportingActivityLabelsFile,
new Locale(TransactionInfo.getProgramLocale()));

Object[] valueObjects = {
readDtls.clientDtls.name

, readDtls.sportingActivityType
, readDtls.sportingAwardType
, readDtls.paymentAmount

Cúram Evidence Broker Developers Guide

11

, readDtls.startDate
, readDtls.endDate
, readDtls.comments
};

EvidenceComparisonHelper helper =
new EvidenceComparisonHelper();

// populate the return struct one attribute at a time
for (int i = 0;

i < SampleSportingGrantConst.kSampleSportingActivityNames
.length

&& i < valueObjects.length; i++) {

EvidenceAttributeDtls attribute =
new EvidenceAttributeDtls();

try {
attribute.domain =
domainTypes.getString(
SampleSportingGrantConst.kSampleSportingActivityNames[i]);

} catch (MissingResourceException mre) {
// missing domain causes widget to fail
// insert SVR_STRING by default
attribute.domain = CuramConst.kDomainSVR_STRING;

}

try {
attribute.label =
labels.getString(
SampleSportingGrantConst.kSampleSportingActivityNames[i]);

} catch (MissingResourceException mre) {
// labels are blank by default
attribute.label = CuramConst.gkEmpty;

}
attribute.value =
helper.objectToString(valueObjects[i]);

evidenceComparisonDtls.details.addRef(attribute);
}

return evidenceComparisonDtls;
}

Cúram Evidence Broker Developers Guide

12

Chapter 4

Implementing Transfer Evidence

4.1 Introduction

The purpose of this chapter is to provide instructions on how to implement
the transferEvidence Evidence Interface function. This is only necessary
when dealing with handcrafted evidence as this function is automatically
generated when using the Cúram Evidence Generator.

4.2 Identify Evidence Types Requiring Specialized
Transfer Evidence Code

Some evidence entities contain one or more case participant role fields.
These are foreign keys to the Case Participant Role entity. When this evid-
ence is broadcast to one or more target cases, the evidence will initially be
inserted with the case participant roles of the source case. These must be
handled by specialized code in the transferEvidence Evidence Interface
function so these fields are updated with case participant roles on the target
case. An example of such code is shown below:
// __
/*
* Method that does any entity adjustments for moving the
* evidence record to a new caseID
*
* @param details Contains the evidenceID / evidenceType
* pairings of the evidence to be transferred
* @param fromCaseKey The case from which the evidence is being
* transferred
* @param toCaseKey The case to which the evidence is being
* transferred
*/
public void transferEvidence(EvidenceTransferDetails details,

CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
throws AppException, InformationalException {

EIEvidenceKey key = new EIEvidenceKey();

CaseParticipantRoleKey caseParticipantRoleKey =

13

new CaseParticipantRoleKey();
CaseParticipantRoleDtls caseParticipantRoleDtls;
CaseIDParticipantRoleKey caseIDParticipantRoleKey =

new CaseIDParticipantRoleKey();

CaseParticipantRoleDtlsList caseParicipantRoleDtlsList;
CaseParticipantRole caseParticipantRoleObj =

CaseParticipantRoleFactory.newInstance();

// Read the "from" Evidence entity details
key.evidenceID = details.fromEvidenceID;
key.evidenceType = details.fromEvidenceType;
fromClaimParticipantDtls =

(ClaimParticipantDtls)readEvidence(key);

// Read the "to" evidence entity details
key.evidenceID = details.toEvidenceID;
key.evidenceType = details.toEvidenceType;
toClaimParticipantDtls =

(ClaimParticipantDtls)readEvidence(key);

// Get the case participant details
curam.core.sl.intf.CaseParticipantRole

caseParticipantServiceLayerObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();

CaseParticipantRoleDetails caseParticipantRoleDetails =
new CaseParticipantRoleDetails();

caseParticipantRoleDetails.dtls.caseID = toCaseKey.caseID;
caseIDParticipantRoleKey.caseID = toCaseKey.caseID;
caseParticipantRoleDetails.dtls.fromDate =

Date.getCurrentDate();
caseParticipantRoleDetails.dtls.recordStatus =

RECORDSTATUS.NORMAL;

if (fromClaimParticipantDtls.caseParticipantRoleID != 0L) {

// Find the ParticipantRoleID by using the existing
// CaseParticipantRoleID
caseParticipantRoleKey.caseParticipantRoleID =
fromClaimParticipantDtls.caseParticipantRoleID;

caseParticipantRoleDtls =
caseParticipantRoleObj.read(caseParticipantRoleKey);

// Need to search for the CaseParticipantRole that have the
// to CaseID and the existing ParicipantRoleID. There should
// only be one.
caseIDParticipantRoleKey.participantRoleID =
caseParticipantRoleDtls.participantRoleID;

caseParticipantRoleDtlsList =
caseParticipantRoleObj.searchByParticipantRoleAndCase(

caseIDParticipantRoleKey);

caseParticipantRoleDetails.dtls.participantRoleID =
caseParticipantRoleDtls.participantRoleID;

// If the list is empty, it means the participant to whom the
// evidence belongs is not a CPR on the toCase
if (caseParticipantRoleDtlsList.dtls.isEmpty()) {

// never create a PRIMARY in transferEvidence
if (caseParticipantRoleDtls.typeCode.equals(

CASEPARTICIPANTROLETYPE.PRIMARY)) {

caseParticipantRoleDetails.dtls.typeCode =
CASEPARTICIPANTROLETYPE.MEMBER;

} else {
// use the 'from' type
caseParticipantRoleDetails.dtls.typeCode =

caseParticipantRoleDtls.typeCode;

Cúram Evidence Broker Developers Guide

14

}

// Create a new record
caseParticipantServiceLayerObj.insertCaseParticipantRole(

caseParticipantRoleDetails);

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDetails.dtls.caseParticipantRoleID;

} else {

// MEMBER takes precedence
if (fromClaimParticipantDtls.caseParticipantRoleID

== toClaimParticipantDtls.caseParticipantRoleID) {

for (int i = 0;
i < caseParticipantRoleDtlsList.dtls.size(); i++) {

if (caseParticipantRoleDtlsList.dtls.item(
i).typeCode.equals(CASEPARTICIPANTROLETYPE.MEMBER)
|| caseParticipantRoleDtlsList.dtls.item(
i).typeCode.equals(CASEPARTICIPANTROLETYPE.PRIMARY)) {

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDtlsList.dtls.item(
i).caseParticipantRoleID;

break;
}

}

}

// If there are still no matches, use the MEMBER type to
// create a new record
if (fromClaimParticipantDtls.caseParticipantRoleID

== toClaimParticipantDtls.caseParticipantRoleID) {

caseParticipantRoleDetails.dtls.typeCode =
CASEPARTICIPANTROLETYPE.MEMBER;

caseParticipantServiceLayerObj.insertCaseParticipantRole(
caseParticipantRoleDetails);

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDetails.dtls.caseParticipantRoleID;

}

}

}

claimparticipantKey.evidenceID = details.toEvidenceID;
modify(claimparticipantKey, toClaimParticipantDtls);

}

Cúram Evidence Broker Developers Guide

15

Chapter 5

Using the Broadcast Evidence Hook

5.1 Introduction

The purpose of this chapter is to provide instructions on how to use the
broadcast evidence hook.

5.2 Identify Evidence Types with Pre or Post Pro-
cessing

Some evidence types require pre and / or post processing when evidence is
created, whether through an insert or through sharing. The purpose of the
broadcast evidence hook is to allow developers to include this processing
when sharing evidence. Before using the broadcast evidence hook, de-
velopers must first identify the evidence types with pre and / or post create
processing which need to be invoked as part of evidence sharing.

Developers then need to provide a second create business process whose
signature will accept the additional parameters required for evidence shar-
ing. Keeping the existing create business process will ensure there is no im-
pact on existing functionality and existing tests. The simplest way to
achieve this is to move the code from the original business process into the
new business process and get the original process to call the new one. Here
is a sample of the signature for the new business process:
//___
/**
* Creates a <custom> evidence record.
*
* @param dtls Contains <custom> evidence creation details
* @param sourceEvidenceDescriptorDtls If this function is
* called during evidence sharing, this parameter will be
* non-null and it represents the header of the evidence
* record being shared (i.e. the source evidence record)
* @param targetCase If this function is called during evidence
* sharing, this parameter will be non-null and it represents
* the case the evidence is being shared with.
* @param sharingInd A flag to determine if the function is

16

* called in evidence sharing mode. If false, the function
* is being called as part of a regular create.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails create<Custom>Evidence(

<Custom>EvidenceDetails dtls,
EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
CaseHeaderDtls targetCase, boolean sharingInd)
throws AppException,InformationalException {

5.3 Provide Implementation for the Evidence Broad-
cast Hook

The Broadcast Evidence hook is used to route the processing for specific
evidence types to their respective create business processes. Here is a
sample implementation of the Broadcast Evidence hook which includes
comments to clearly describe what needs to be done:
/**
* Sample implementation of the Broadcast Evidence hook.
*/
public abstract class CustomBroadcastEvidence extends

custom.evidencebroker.sl.base.CustomBroadcastEvidence {

//___
/**
* Delegates the evidence broadcast through the custom service
* layer processing.
*
* @param sourceDescriptor The source evidence descriptor
* @param targetCase The case the evidence is being broadcast
* to
* @return The evidence descriptor of the broadcast record on
* the target case
*/
public EvidenceDescriptorDtls processBroadcast(

EvidenceDescriptorDtls sourceDescriptor, CaseHeaderDtls
targetCase) throws AppException, InformationalException {

if (sourceDescriptor.evidenceType.equals(
CASEEVIDENCE.ALIEN)) {

// Read the Alien evidence details (through the service
// layer)
AlienKey alienKey = new AlienKey();
alienKey.alienID = sourceDescriptor.relatedID;

ReturnAlienDetails alienDetails =
AlienFactory.newInstance().readAlienDetails(alienKey);

// Assign these details to the alien creation struct,
// e.g.
// Note: a number of assignments may be required here
// depending on the number of aggregated structs
// within ReturnAlienDetails and CreateAlienDetails
CreateAlienDetails createAlienDetails =

new CreateAlienDetails();
createAlienDetails.assign(alienDetails);

ReturnCreateAlien returnCreateAlien =
AlienFactory.newInstance().createAlienEvidence(

createAlienDetails,
sourceDescriptor,
targetCase,
true);

Cúram Evidence Broker Developers Guide

17

RelatedIDAndEvidenceTypeKey key =
new RelatedIDAndEvidenceTypeKey();

key.relatedID = returnCreateAlien.alienID;
key.evidenceType = CASEEVIDENCE.ALIEN;

// Read the EvidenceDescriptor and return the details
EvidenceDescriptor evidenceDescriptorObj =

EvidenceDescriptorFactory.newInstance();

return evidenceDescriptorObj.readByRelatedIDAndType(key);
}

// null will be returned for all other evidence types
return null;

}

}

/**
* Delegates the external evidence broadcast through the
* custom service layer processing.
*
* @param descriptorDetails Contains the evidence descriptor
* details received from remote system.
* @param targetCase Contains the case the evidence is being
* broadcast to.
*
* @return The evidence descriptor of the broadcast record on
* the target case.
*/

public EvidenceDescriptorDtls processExternalBroadcast(
SharedEvidenceDescriptorDetails descriptorDetails,
CaseHeaderDtls targetCase) throws AppException,
InformationalException {

if (descriptorDetails.details.evidenceType.
equals(CASEEVIDENCE.ALIEN)) {

EvidenceDescriptorDtls evidenceDescriptorDtls =
EvidenceControllerFactory.newInstance().
shareExternalEvidence(descriptorDetails, targetCase);

// Perform Alien evidence specific processing here
// . . .
// . . .

return evidenceDescriptorDtls;
}
// null will be returned for all other evidence types
return null;

}

/**
* Returns the structure with a true value set if the evidence being
* passed has been auto accepted onto the target case else false would
* be returned.
*
* @param sourceDescriptor
* Contains source evidence descriptor details.
* @param targetCase
* Contains the case identifier of the evidence is being
* broadcast to.
*
* @return True would be returned if the evidence being passed has
* been auto accepted onto the target case else false.
*/
public EvidenceAutoAcceptanceInd isAutoAccepted(

EvidenceDescriptorDtls sourceDescriptor,
CaseHeaderDtls targetCase) throws AppException,
InformationalException {

return null;
}

Cúram Evidence Broker Developers Guide

18

5.4 Register Custom Override of OOTB Broadcast
Evidence Hook

The Cúram Evidence Broker comes with an OOTB Broadcast Evidence
hook as part of the Evidence Broker. After creating a custom version of the
hook, it is necessary to associate the custom version with the evidence type.
The custom hook is managed by a combination of the BroadcastEvidenceM-
anager.

This can be done in two ways: using Google Guice module or by a registrar.
Though both approaches achieve the same goal, the Google Guice route is
preferred over the registrar route. Typically the registrar route should be
used when overriding the OOTB implementation. Both approaches are out-
lined below:

5.4.1 Using Google Guice

This can be done by creating a Guice module class and adding a correspond-
ing entry in the MODULE table. A Guice module class is created by deriv-
ing a class from com.google.guice.AbstractModule and overriding the con-
figure method to add the following statement:
public void configure() {

MapBinder<String, Method> broadcastEvidenceHookMapBinder
= MapBinder.newMapBinder(binder(), String.class, Method.class,
new RegistrarImpl(RegistrarType.EVIDENCE_BROKER));

broadcastEvidenceHookMapBinder.addBinding(CASETYPECODE.
INTEGRATEDCASE).toInstance(BroadcastEvidenceFactory.class.
getMethod(ReflectionConst.kNewInstance, new Class[0]));

}

Where 'RegistrarType.EVIDENCE_BROKER' is an annotation which is
used to differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

5.4.2 Using Registration

This is done by adding the custom hook to the
ENV_BROADCASTEVIDENCE_REGISTRARS_LIST environment vari-
able. The BroadcastEvidenceRegistrar contains an interface which must be
implemented by a custom registrar class in order to register the class which
implements the hook. This is looked up via the BroadcastEvidenceManager
class inside the Evidence Broker.
/**

* Registers the custom evidence broadcast hook
*/
public class CustomBroadcastEvidenceRegistrar

extends custom.sl.base.CustomBroadcastEvidenceRegistrar
implements BroadcastEvidenceRegistrar {

Cúram Evidence Broker Developers Guide

19

public void register() {
HookMap map = BroadcastEvidenceManager.get();
map.addMapping(CASETYPECODE.INTEGRATEDCASE,

BroadcastEvidenceFactory.class);
}

}

Cúram Evidence Broker Developers Guide

20

Chapter 6

Implementing Evidence Sharing Strategy Interface

6.1 Introduction

The purpose of this chapter is to provide high level instructions on how to
implement the EvidenceSharingStrategy interface.

6.2 Provide Implementation for the EvidenceShar-
ingStrategy Interface

This interface needs to be implemented in scenarios where the customer
wants to change the conditions under which an evidence type for a specific
case is shared or the target systems it is shared with.

Please see the code of class
curam.evidencebroker.sl.infrastructure.impl.EvidenceBrokerSharingStrateg
yImpl as an interface implementation sample.

6.3 Map the Custom Strategy to a Case Type

The Cúram Evidence Broker comes with an EvidenceSharingStrategy im-
plementation that acts as default strategy for all the case types without a spe-
cific sharing strategy. After creating a custom strategy (for example, Cus-
tomEvidenceSharingStrategyImpl) for a case type, it is necessary to bind the
strategy with the case type. This can be done by creating a Guice module
class and adding a corresponding entry in the MODULE table. A Guice
module class is created by deriving a class from
com.google.guice.AbstractModule and overridding the configure method to
add the following statement:
public void configure() {

MapBinder<String, CaseTypeEvidence< mapbinder =
MapBinder.newMapBinder(binder(), String.class,

21

CaseTypeEvidence.class);
mapbinder.addBinding(CASETYPECODE.INTEGRATEDCASE).to(

IntegratedCaseTypeEvidence.class);

}

It is not necessary to create a new module for each of such hooks you have
to bind. Single module class per component will work well.

Cúram Evidence Broker Developers Guide

22

Chapter 7

Evidence Broker Web Service

7.1 Introduction

This chapter provides a high level overview of the evidence broker web ser-
vice that facilitates evidence sharing with remote systems.

7.2 Receive Change Notification Service

Cúram Evidence Broker uses web services to accept change notifications
from remote systems. The web service calls are implemented on an Axis2
stack for improved performance, security, and flexibility.

When a remote system calls the Receive Change Notification service
(EvidenceBrokerWS.receiveChangeNotification), the service layer class
verifies that the structure of the incoming XML is correct and then creates
an ExternalCaseHeader record with some basic information as a representa-
tion of the source case that exists in the remote system. The incoming XML
is translated into structures and the sharing process starts based on the con-
figured sharing strategy.

7.2.1 Incoming Parameters

The parameters are used to populate the internal struct:
curam.core.sl.struct.SharedEvidenceDescriptorDetails:

Intake Element Map to Parameter Schema Type
caseID caseID se:caseReference

participantNumber participantID se:personReference

evidenceType evidenceType se:evidenceType

caseType sourceType se:caseType

caseSubType sourceID se:caseSubType

23

Intake Element Map to Parameter Schema Type
sourceSystemName sourceSystemID se:sourceSystemNa

me

sharedInstanceID sharedInstanceID se:sharedInstanceID

operation operation se:OperationName

receivedDate effectiveFrom se:date

effectiveDate effectiveDate se:date

dataObjects see below see below

Table 7.1 Minimum Requirements

The parameters caseID, participantID, sourceSystemID are internal ID de-
termined by querying the database using the attributes CaseHead-
er.caseReference, ConcernRole.primaryAlternateID, TargetSys-
tem.systemName.

The parameter sourceID is determined using the API
curam.core.sl.impl.CaseTypeEvidence.getSubTypeID(final String caseSub-
Type) using the caseSubType value.

Each Incoming Evidence schema has an object structure defined for the in-
coming data. The dataObjects structure is:

<dataItem name="{data item name}"
>{value}</dataItem>

Example 7.1

• Data Item name: The name of the attribute within the struct that is
passed to the entity object.

• Value: The value to populate the struct field with. This will be passed to
the entity object.

Note
DataItem to struct mapping controls all data type conversions and
checks.

7.2.2 Incoming Parameter Descriptions

Parameter Domain Description
caseID CASE_ID This is the case identifi-

er to idenify the case
with which this evid-
ence is associated.

sourceType CASE_TYPE_CODE The source case type
code from which evid-
ence being shared. Code

Cúram Evidence Broker Developers Guide

24

Parameter Domain Description
table:CaseTypeCode

effectiveDate CURAM_DATE The date from which
this Evidence applies.
Format:ddMMyyyy

sharedInstanceID INTERNAL_ID Unique identifier that
will be common to all
evidence records which
have been shared from
the same initial piece of
evidence.

evidenceType EVID-
ENCE_TYPE_CODE

This is the evidence
type code to identify the
type of Evidence record.
Code ta-
ble:EvidenceType

operation OPERATION_NAME This corresponds to
evidence create or re-
move operations.
Type:string

sourceID INTERNAL_ID The unique identifier of
the source product from
which evidence is being
shared.

sourceSystemID INTERNAL_ID The unique identifier of
the source system from
which evidence is being
shared.

participantID CONCERN_ROLE_ID Identifier of the parti-
cipant to whom the
evidence relates; this
could be the primary cli-
ent of the case or a
member of the integ-
rated case.

Table 7.2 Parameter Descriptions

The following figure displays an example of the inbound Share Evidence
xml message:

Cúram Evidence Broker Developers Guide

25

Figure 7.1 Inbound Example : Share Evidence

Cúram Evidence Broker Developers Guide

26

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

27

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Evidence Broker Developers Guide

28

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Evidence Broker Developers Guide

29

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Evidence Broker Developers Guide

30

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Evidence Broker Developers Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2 Evidence Broker Architecture
	2.1 Introduction
	2.2 Architecture
	2.2.1 Following are the key components of Evidence Broker:
	2.2.2 Evidence Sharing Steps

	2.3 Evidence Broker Sharing Strategy
	2.4 Evidence Compare Interface
	2.5 Transfer Evidence
	2.6 Broadcast Evidence Hook
	2.7 Integration with Evidence Generator
	2.8 Evidence Broker Configuration

	Chapter 3 Implementing Evidence Compare Interface
	3.1 Introduction
	3.2 Identify Evidence Types Available for Sharing
	3.3 Determine Classes which Implement Evidence Compare Interface
	3.4 Map Evidence Compare Classes to Evidence Type
	3.4.1 Using Google Guice
	3.4.2 Using Registrar

	3.5 Provide Implementation for the Evidence Compare Interface
	3.5.1 Values
	3.5.2 Labels
	3.5.3 Domains
	3.5.4 Sample Implementation

	Chapter 4 Implementing Transfer Evidence
	4.1 Introduction
	4.2 Identify Evidence Types Requiring Specialized Transfer Evidence Code

	Chapter 5 Using the Broadcast Evidence Hook
	5.1 Introduction
	5.2 Identify Evidence Types with Pre or Post Processing
	5.3 Provide Implementation for the Evidence Broadcast Hook
	5.4 Register Custom Override of OOTB Broadcast Evidence Hook
	5.4.1 Using Google Guice
	5.4.2 Using Registration

	Chapter 6 Implementing Evidence Sharing Strategy Interface
	6.1 Introduction
	6.2 Provide Implementation for the EvidenceSharingStrategy Interface
	6.3 Map the Custom Strategy to a Case Type

	Chapter 7 Evidence Broker Web Service
	7.1 Introduction
	7.2 Receive Change Notification Service
	7.2.1 Incoming Parameters
	7.2.2 Incoming Parameter Descriptions

	Notices
	Trademarks

