
IBM Cúram Social Program Management

Cúram Rules Codification Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Introduction .. 1
1.2 Prerequisites ... 1
1.3 Audience .. 2

Chapter 2 Overview of Rules Codification .. 3
2.1 Introduction .. 3
2.2 Rules .. 3
2.3 Evidence (Data Items) .. 3
2.4 Rules Data Objects (RDOs) ... 3

2.4.1 List RDOs ... 4
2.4.2 Pre-initialized RDOs ... 4

2.5 Loaders ... 4
2.6 Data flow within the Curam Server Application ... 4
2.7 Development Steps .. 5
2.8 Curam Server Application Development Tools ... 6

Chapter 3 Rules Data Objects (RDOs) .. 7
3.1 Introduction .. 7
3.2 Designing RDOs .. 7

3.2.1 Identifying Attributes .. 7
3.2.2 Grouping Attributes .. 8

3.3 Adding RDOs to a Cúram Application Model .. 9
3.3.1 Adding Data Items to a RDO .. 9

3.4 Attributes (data items) Documentation .. 9
3.5 Adding List RDOs to a Cúram Application Model ... 9

3.5.1 Defining Description Items ... 9
3.6 Immutable RDOs ... 10
3.7 Qualified RDOs ... 10

3.7.1 Local RDO .. 10
3.7.2 Input RDO ... 11
3.7.3 Output RDO .. 11

Chapter 4 Loaders .. 12
4.1 Introduction .. 12
4.2 Designing Loaders ... 12

4.2.1 Data Categorization .. 12

iii

4.2.2 Loader Invocation ... 13
4.2.3 Loaders and BPOs ... 13
4.2.4 Implementing a Loader and its BPO ... 13
4.2.5 Defining the Loader in the Curam Application Model 14
4.2.6 Defining the Structs Based on the Data Required .. 15
4.2.7 Creating a BPO in the Curam Application Model .. 15
4.2.8 Implementing BPOs .. 15
4.2.9 Creating the Loader ... 15
4.2.10 Adding Hand-crafted Code to the Loader Body ... 16
4.2.11 Extending Loaders .. 18
4.2.12 Building the Application ... 18
4.2.13 Testing the Implementation of Rules .. 18

Chapter 5 Rule Set Best Practices .. 20
5.1 Introduction .. 20
5.2 What is an Optimally Designed Rule Set .. 20
5.3 Highest Value Rate Groups ... 20
5.4 Informational Rules ... 21
5.5 Shared Sub-Rule Sets ... 21

Chapter 6 Debugging the Rules ... 22
6.1 Introduction .. 22
6.2 Typical Testing Phases .. 22
6.3 Rules Engine Outputs .. 23

6.3.1 Decision .. 23
6.3.2 Evidence Information .. 23
6.3.3 Decision Information .. 23

6.4 Runtime Rules Logging ... 24
6.4.1 How Logging Works ... 24
6.4.2 What Gets Logged? ... 24
6.4.3 Designing for Logging .. 24

Chapter 7 Advanced Topics ... 26
7.1 Introduction .. 26
7.2 Performance ... 26

7.2.1 Keep it Simple ... 27
7.2.2 Separate Business Rules from Business Logic ... 27
7.2.3 Rules Data Retrieval ... 27
7.2.4 Rule Execution Optimization .. 27

7.3 Rules Results Decompression .. 29
7.4 Execution Modes ... 29

7.4.1 Execution Mode kNormal ... 30
7.4.2 Execution Mode kQuotation ... 30
7.4.3 Execution Mode kReassessment ... 30
7.4.4 Execution Mode kSimulation ... 30

7.5 ObjectiveTag Type ... 30
7.6 Get Dynamic Rate .. 31

7.6.1 The getDynamicRate API ... 31
7.6.2 The Processing Performed By getDynamicRate ... 31

7.7 Built-in Functions .. 32

Cúram Rules Codification Guide

iv

7.7.1 The not() Function .. 32
7.7.2 The isNothing() Function .. 32
7.7.3 The IsZero() Function ... 32
7.7.4 The Date() Function .. 33
7.7.5 The DateAddOne() Function .. 33
7.7.6 The DateAdd() Function ... 33
7.7.7 The subDates() Function ... 33
7.7.8 The ceiling() Function ... 33
7.7.9 The floor() Function .. 33
7.7.10 The round() Function .. 34

7.8 Custom Functions .. 34
7.8.1 Custom functions in the Rules expressions .. 34
7.8.2 Writing the custom function ... 34
7.8.3 CustomFunctionMetaData.xml ... 35
7.8.4 Adaptor Types ... 36

7.9 Mathematical Operations ... 36
7.9.1 Bracketing of Terms ... 36
7.9.2 Operator Precedence ... 37
7.9.3 Data Types and Supported Operations ... 37
7.9.4 Literal Values .. 38

7.10 Evidence Missing ... 38
7.10.1 “DataItem Missing” Exception ... 39
7.10.2 Existence Checking ... 39

7.11 Data Items Used ... 39
7.12 Rules Summary Item .. 39
7.13 Multi Language Support .. 40
7.14 Error Reporting .. 40

7.14.1 Rules Runtime Errors .. 40
7.14.2 Error Handling .. 41
7.14.3 Warnings versus Errors ... 41

Notices ... 42

Cúram Rules Codification Guide

v

Chapter 1

Introduction

1.1 Introduction

This guide describes the process of coding the rules (eligibility and entitle-
ments for Social Welfare products) into a Cúram server application. This is
an involved aspect of Cúram server development that uses tools and data
structures provided within Cúram.

The following two companion guides are available:

• Cúram Rules Definition Guide

• Cúram Rules Editor Guide

The Cúram Rules Definition Guide, describes the procedures involved in de-
fining the rules based on the relevant legislation.

The Cúram Rules Editor Guide, takes these rules as a starting point and de-
scribes the Cúram Rules Editor and the process of entering these rules into
the Cúram server application.

1.2 Prerequisites

To successfully design and add rules to a Cúram server application, the
reader will need the following:

• A basic understanding of social welfare systems and products;

• A basic understanding of Cúram and Cúram server application develop-
ment;

• A basic understanding of data storage architecture and design;

• An adequate understanding of Unified Modeling Language (UML) for
working with the Cúram application meta-model;

1

This guide assumes the above levels of competence as a starting point. Oth-
er documents in the Cúram Server Development Environment
Documentation Suite are provided to introduce the developer to the
different areas mentioned above.

There may be situations where a developer is charged with a specific sub-
task of the rules development and so requires expertise in an individual area
only.

1.3 Audience

This document should be read by anybody who will be developing, adding
or editing the rules of a Cúram server application model.

Cúram Rules Codification Guide

2

Chapter 2

Overview of Rules Codification

2.1 Introduction

This chapter provides a brief overview of the main elements involved in
rules codification. It describes where and how the implementation of rules
fits into application development. It also identifies the tools required for
rules codification.

2.2 Rules

Rules are simple conditions that evaluate data and return a true or false
result, indicating whether or not the rule was successful. Rules are extracted
from relevant legislation and other criteria such as implicit conditions (i.e.,
the client is alive) or previous eligibility decisions for a product. Note that
rules extraction is conducted by business analysts during the rules definition
process (see the Curam Rules Definition Guide for more inform-
ation).

2.3 Evidence (Data Items)

Evidence is the data that rules evaluate during rules execution. The evidence
required for a particular rules execution is identified during the rules defini-
tion process (see the Curam Rules Definition Guide for more in-
formation).

A piece of evidence that is used by the rules during rules execution is re-
ferred to as a data item. During rules codification, the developer must model
the relationship between the rules and the data items that the rules will eval-
uate.

2.4 Rules Data Objects (RDOs)

3

Rules Data Objects (RDOs) are UML stereotypes. Related data items are
grouped together as attributes within RDOs.

The attributes for most RDOs are modeled according to the business logic
of social welfare categories, i.e., case details, demographic details, contribu-
tion details, means details, dependencies details, and employment details.
The attributes for these RDOs are populated and read by the rules engine
during rules processing. Note that as part of rules codification, the developer
needs to model RDOs to contain the necessary data items.

Rules engine provides an in-built RDO called Globals RDO. It's not re-
quired to model the Globals RDO. Data items of Globals RDO are access-
ible to all the eligibility rule sets and it usually acts as a key in the loaders to
load the required evidence. These data items of this RDO are pre-initialized
and passed into the Rules Engine interface methods rather than loading them
using the loaders.

2.4.1 List RDOs

A List RDO is a special kind of RDO which can be seen as an array of
RDOs. For example, representing the demographic data for a person and his
or her children would require one RDO to represent the data for the person
and one List RDO to represent the data for all his or her children.

2.4.2 Pre-initialized RDOs

RDOs can be pre-initialized by setting the values of their data items and
passing them to the Rules Engine interface methods for rules execution.
RDOs provide setter methods for each of their data items to set the value
without the need of loading the value from the loader.

2.5 Loaders

Loaders are purpose-written Java classes used to populate RDOs with data
(this data is usually read from the database or other RDOs). Whereas RDOs
organize data according to the business logic of social welfare categories,
loaders organize data according to data storage criteria. The design for a
loader must therefore consider the underlying structure of the data which
will be required for the implementation of the rules. Loaders will have a dir-
ect correspondence to this structure. However, because RDOs are structured
according to business logic, there will not be a one-to-one correspondence
between loaders and RDOs.

Pre-initialized RDOs do not require loaders, as they are already populated.

2.6 Data flow within the Curam Server Application

One of the main strengths of Curam is its ability to offer clients information
clearly while processing the necessary information in the background. Load-

Cúram Rules Codification Guide

4

ers, BPOs and rules achieve this by translating the client's business logic
(RDOs) into a form that can be processed and stored in the database. This
results in two different views of the data.

An advantage of maintaining two views of the data is that the abstraction
created between the different architectural layers allows changes to be made
to one layer without affecting another level. For example, new database
structures can be implemented without RDOs having to be changed.

2.7 Development Steps

The following list describes each of development steps for rules codifica-
tion:

1. Gather information for system design. This is performed by business
analysts and is described in more detail in the Curam Rules
Definition Guide.

2. Open the Curam Reference Model in in Rational Software Architect
(RSA).

3. Add custom entities and processes to the Model. Business Process Ob-
jects (BPOs) are one of the fundamental building blocks of the Curam
server application. This process is described in more detail in the
Curam Modeling Reference Guide and the Curam Server
Developer's Guide.

4. Extract rules from relevant legislation and other criteria. This is per-
formed by business analysts and is described in more detail in the
Curam Rules Definition Guide.

5. Design and add RDOs to the Curam application model within RSA.
The process for designing loaders is outlined in Chapter 4, Loaders.

6. Write loaders in Java for all RDOs that require them. The process for
writing loaders is outlined in Chapter 4, Loaders.

7. Create rule sets using the Curam Rules Editor. This process is de-
scribed in more detail in the Curam Rules Editor Guide.

8. Generate server code by running the Curam Generator. For more in-
formation, see the Curam Modeling Reference Guide.

9. Write the java code for the modeled BPOs. For more information, see
the Curam Server Developer's Guide.

10. Compile the server application. For more information, see the relevant
server deployment guide, e.g., Curam Deployment Guide for
WebSphere Application Server.

11. Invoke and test the new application, checking the implementation of
the rules. Rules testing is described in more detail in Chapter 6, Debug-
ging the Rules.

Cúram Rules Codification Guide

5

12. Adjust the model and/or code and rebuild as required.

2.8 Curam Server Application Development Tools

The Curam Server Development Environment (SDEJ) consists of several
tools that are used for different aspects and stages of application develop-
ment:

Rational Software Architect (RSA)
Curam makes use of RSA primarily as a tool for UML modeling, ana-
lysis, and design.

The Rules Editor
This is a part of the Curam application that allows rules definitions to be
entered. It is described in more detail in the Curam Rules Editor
Guide.

Cúram Rules Codification Guide

6

Chapter 3

Rules Data Objects (RDOs)

3.1 Introduction

This chapter describes the process for designing RDOs and adding them to a
Cúram server application.

3.2 Designing RDOs

RDO design involves two main steps. The first of these is the identification
of the data items (evidence) that are required during a rules execution. The
data items identified must be modelled into the attributes for the RDOs. The
second step is the grouping of attributes according to the business logic of
social welfare categories.

3.2.1 Identifying Attributes

Identifying the data items that are required is a difficult process; the choice
of attributes, their datatypes and what they are called draws from both social
welfare business and Cúram development experience.

For example, an unemployment benefit product will have a requirement that
the claimant is alive. This can be represented as either of the following:

• DeceaseDate [type date]

• AliveOrDead [type indicator (i.e., Boolean)]

The decision made has a bearing on:

• the underlying database tables

• the selection coding required in the BPO

• the definition of the struct used to pass the data between objects, and

7

• the information that the client both inputs and receives as output.

Worked Example

The example below outlines a subset of the list of criteria (rules) required
for a typical unemployment benefit product:

• Must be alive;

• Must be capable of work;

• Must be available for work;

• ...

• The case must not be closed;

• ...

• Must have made at least 39 contributions;

• ...

From these criteria, we could identify the following attributes
(evidence/data items) for the RDO:

• DeceaseDate [type date];

• CapableOfWorkIndicator [type Boolean];

• AvailableForWorkIndicator [type Boolean];

• AvailableForWorkEvidence [type text];

• ...

• CaseExistsIndicator [type Boolean];

• CaseCloseDate [type date];

• ...

• NoOfContributions [type integer];

• ...

3.2.2 Grouping Attributes

The list of attributes identified must be broken down into groups according
to the business logic of social welfare categories. Typically, these groupings
include case details, demographic details, contribution details, means de-
tails, dependencies details, and employment details. These social welfare
categories form the basis of the RDOs upon which rules will operate. The
way the data is organized at this level ultimately determines the data that the
client will enter and receive as output from the Cúram application.

Cúram Rules Codification Guide

8

Note that it is possible to maintain constants in an RDO at this level. These
will be used during rules execution.

3.3 Adding RDOs to a Cúram Application Model

RDOs are added to a Cúram application model using RSA. This topic is
covered in the Working with the Cúram Model in Rational Software Archi-
tect.

3.3.1 Adding Data Items to a RDO

Data items are added to RDOs in the same way as adding attributes to a
struct or entity. Use the context menu on the RDO element in the project ex-
plorer of RSA to add the required data items.

If a loader is required for this dataitem please specify the name of the loader
in the dataitem property panel (see Chapter 4, Loaders).

3.4 Attributes (data items) Documentation

Each attribute (data item) within an RDO has a documentation field, which
represents a naturalistic language phrase describing what the attribute rep-
resents. This can be added to an attribute (data item) by following the steps
below

1. Select a RDO or List RDO in the model and expand it to view the data
items.

2. Select the data item to which you want to add the documentation.

3. In the properties (Properties can be viewed either by right clicking the
data item and selecting Properties or in the Properties view) of the data
item select the "Documentation" tab to see the text area where the doc-
umentation can be added.

4. Save the model after adding the documentation.

3.5 Adding List RDOs to a Cúram Application Model

To add a List RDO to a Cúram application model, you have to follow the
same procedure as the one described for adding RDOs in Section 3.3,
Adding RDOs to a Cúram Application Model.

Additionally, you must define one Description Item for a List RDO. De-
scription Item is a attribute of a List RDO. Its stereotype is set to
“description”.

3.5.1 Defining Description Items

Cúram Rules Codification Guide

9

There must be exactly one Description Item on a List RDO. Rules Engine
and Loaders uses it to uniquely identify a record in the List RDO.

In order to define the Description Item you have to follow the procedure de-
scribed below.

1. Select a List RDO in the model and expand it to view the data items.

2. Select the data item you want to define as description. window.

3. In the properties (Properties can be viewed either by right clicking the
data item and selecting Properties or in the Properties view) of the data
item select the "Stereotypes" tab to see the property "Description". Set
this to true.

4. Save the model.

3.6 Immutable RDOs

An immutable RDO is an RDO whose values cannot be changed after they
have been set.

An RDO can optionally be made immutable by adding the "final" attribute
to the RDO declaration in the rule set. e.g.

<DataAccess name="rdoName" final="true">

If the value of an RDO attribute is changed after it has been set then the
rules engine will throw an exception.

3.7 Qualified RDOs

An RDO declared in a sub-rule set can optionally take a qualifier to restrict
it's scope within the entire rule set. An RDO can be qualified by adding the
"qualifier" attribute to the RDO declaration in the sub-rule set. e.g.

<DataAccess name="rdoName" qualifier="qualifier">

The following qualifiers can be used:

• local

• input

• output

3.7.1 Local RDO

The scope of a local RDO is the sub-rule set; the values of a local RDO are
not visible outside of the sub-rule set in which the RDO is declared.

Cúram Rules Codification Guide

10

3.7.2 Input RDO

An input RDO is passed to the sub-rule set from the immediate outer rule
set/sub-rule set. The scope of the input RDO is the rule set/sub-rule set in
which it is declared plus any sub-rule set in which it is passed as an input
parameter.

3.7.3 Output RDO

An output RDO is passed from the sub-rule set to the immediate outer rule
set/sub-rule set. The scope of an output RDO is the sub-rule set where it is
declared plus the outer rule set/sub-rule set.

Cúram Rules Codification Guide

11

Chapter 4

Loaders

4.1 Introduction

This chapter describes the process for designing loaders and adding them to
a Curam server application.

4.2 Designing Loaders

As described in Section 2.6, Data flow within the Curam Server
Application, the Curam server application takes two different views of the
data. Whereas RDOs organize data according to the business logic of social
welfare categories, loaders organize data according to data storage criteria.
Good loader design therefore requires an understanding of how both the
RDOs and the database are structured. With this understanding, the de-
veloper can make informed decisions about how to best design loaders to
populate RDOs with data.

4.2.1 Data Categorization

An important feature of loader design is data categorization. This is the sep-
aration into different loaders of different types of information based on the
data storage structure.

In the event that a single category of data is unavailable (e.g., Dependents'
information), the loader that retrieves this data will fail. This means that the
loader will not deliver this category of data to the RDO and will also fail to
deliver any other data. However, if different data retrieval tasks are imple-
mented using separate loaders, the RDO can still receive other data that is
present. Thus, the careful design of which loaders retrieve which informa-
tion has a fundamental bearing on the ability of Curam to successfully ma-
nipulate product information.

This also has an impact on the quality of output information received by the

12

client. When a claim is processed by the client, Curam outputs information
according to what criteria failed and why; careful loader design ensures that
as much accurate information as possible can be provided to the client.

For example, an unemployment benefit claimant may have personal details
in the database, but no payment history details. Separate loaders would be
used to populate the RDO. One loader would succeed in retrieving data
(personal details), while the other would fail (payment history details). If all
the data retrieval for the RDO was implemented in a single loader, the
whole retrieval operation would fail, as would the ability of the final Curam
server application to process this particular claim. Additionally, the client
would not be able to view the personal details for this claim even though the
information would be available in the database.

4.2.2 Loader Invocation

Loader invocation has to be kept in mind when designing the loaders. If a
loader is invoked at the wrong moment, it will overwrite data that was
already loaded using other means, e.g., using data item assignments in a rule
set. In a data item assignment, a boolean indicator attribute ("Load Target")
instructs whether the data item should be loaded before execution or not. By
default, this indicator is set to true and, if this is so, the loader will be in-
voked prior to executing the data item assignment.

When a rule tries to access a value of an RDO attribute, the attribute first
checks if its value has already been loaded. If the value has not been loaded
yet, the attribute will call the loader. The loader will load the values of all
the attributes to which it was assigned, thus possibly overwriting the values
which were already set for other attributes.

4.2.3 Loaders and BPOs

Loaders usually have one-to-one correspondences with BPOs. BPOs handle
data retrieval from the database. As part of the loader implementation pro-
cess, BPOs must be added to the Curam application model and the selection
code must be hand-crafted. For this reason, the design and implementation
of loaders and BPOs go hand-in-hand. For more information on BPOs in
Curam Modeling Reference Guide and Curam Server De-
veloper's Guide.

Important

While the majority of loaders are paired with BPOs to retrieve in-
formation from the database, loaders are simply Java classes and can
retrieve information from a range of other sources such as other
RDOs.

4.2.4 Implementing a Loader and its BPO

The sequence of steps required for adding a loader/BPO pair can be sum-

Cúram Rules Codification Guide

13

marized as follows:

1. Define the loader in the Curam application model.

2. Define structs for passing information based on the data required.

3. Create a BPO with required operations in the Curam application model.

4. Create the appropriate structs in the model.

5. Add attributes to the structs.

6. Add the structs to the operations in the BPO.

7. Write a specification document for the BPO and processing required.

8. Run the Curam Generator to create the shell of the BPO.

9. Create loader by extending class curam.util.rules.Loader

10. In the loader:

a. Obtain an instance of the RDO to be used in the loader.

b. Initialize any data required by the BPO.

c. Call the Appropriate method on the BPO using the initialized
structs.

d. Implement the population of the RDO with the data returned from
the BPO.

11. Implement the selection code in the BPO.

12. Build the server application.

13. Test the server application and the implementation of the rules.

These steps are described in more detail in the following sections.

4.2.5 Defining the Loader in the Curam Application Model

A Loader is added to a Curam application model in RSA by means of the
Curam Palette or the project explorer context menu. Ensure the name of the
loader is identical to the loader specified for the RDO or RDO dataitem. The
loader can be added by following the steps below:

1. Select any package in the model where the loader needs to added.

2. Right click on it, select "Add Class" in the menu and Select "Loader".

3. Name the loader by ensuring that the name of the loader is identical to
the loader specified for the RDO or RDO dataitem.

4. Save the model after adding the loader.

Cúram Rules Codification Guide

14

4.2.6 Defining the Structs Based on the Data Required

This topic is covered in the Curam Modeling Reference Guide.

4.2.7 Creating a BPO in the Curam Application Model

This topic is covered in the Curam Modeling Reference Guide.

4.2.8 Implementing BPOs

BPOs are used to retrieve data from external data sources such as databases.
In some cases, loaders do not require BPOs. For example loaders without an
associated BPO can be used to load constants to RDOs. The procedure of
designing and implementing BPOs is described in the Curam Modeling Ref-
erence Guide and the Curam Server Developer's Guide.

4.2.9 Creating the Loader

Loaders are hand-crafted but follow a standard structure and are straightfor-
ward to code. Writing a loader typically involves creating the subclass of
curam.util.rules.Loader, then implementing the method
load(curam.util.rules.RulesParameters dtls) by adding
the selection logic which will be passed to the BPOs for the actual database
access.

Loaders that are used to retrieve data from the database must have a corres-
ponding BPO. This is to provide a process in the Curam application model
that can access the DAL objects and implement the actual selection and re-
trieval of the data required by the loader. Data is passed between the loader
and the BPO via purpose-defined structs. These structs must be defined in
the model using the Class Wizard on the Merlin Toolbar.

When a BPO, its operations, and the relevant structs have been added to the
Curam application model, the Curam Generator will generate a skeleton for
the BPO, which subsequently requires hand-crafted code for selection oper-
ations.

The Curam Generator does not generate skeletons for the loader files. In or-
der to implement a loader you have to extend the class
curam.util.rules.Loader.

The following method has to be implemented for the new loader:

• protected void load(RulesParameters dtls) throws
AppException, InformationalException

The new loader has to be placed in the package,
<applicationname>.rules.loaders

A sample loader skeleton is detailed below.

Cúram Rules Codification Guide

15

package testapp.rules.loaders;

import curam.util.rules.ItemGroupGlobals;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.rules.Loader;
import curam.util.rules.RulesParameters;

public class SampleLoader extends Loader {

protected void load(RulesParameters dtls)
throws AppException, InformationalException {

}
}

Example 4.1 Loader Skeleton

A class stereotype 'loader' is also supported in the model, and loaders spe-
cified by rules data items must exist as classes in the model. The reasons for
this are:

1. Loaders specified by rules data items can be validated at generation
time rather than run time.

2. Java interfaces can be generated for loaders.

3. Developers can model inheritance between loaders.

Loaders support a restricted form of subclassing in the UML model which
allows the developer to model a replacement for a Loader class. i.e. all
Loader classes in the model behave as if their 'Replace Superclass' has been
set - although this option is not available to the developer on these classes.

For more information on the 'Replace Superclass' option see the Curam
Modeling Reference Guide.

4.2.10 Adding Hand-crafted Code to the Loader Body

This generally consists of three tasks, namely:

1. Initializing any data required by the BPO,

2. Calling the BPO,

3. Populating the RDO with the data returned from the BPO.

To see how these tasks are implemented, see the sample below.

package server.testapp.rules.loaders;

import curam.util.rules.ItemGroupGlobals;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.rules.Loader;
import curam.util.rules.RulesParameters;
import sampleapp.rules.rdo.DemographicDataRDOGroup;
import sampleapp.struct.*;

public class SampleLoader extends Loader {

Cúram Rules Codification Guide

16

protected void load(RulesParameters dtls)
throws AppException, InformationalException {
ItemGroupGlobals globals =
ItemGroupGlobals.getCurrentInstance(dtls);

DemographicDataRDOGroup rdo =
DemographicDataRDOGroup.getCurrentInstance(dtls);

// Initializing the data required by the BPO.
MaintainPersonKey maintainPersonKey =
new MaintainPersonKey();

PersonDetails personDetails = null;

maintainPersonKey.personID =
globals.getPersonReferenceNumber().getValue(dtls);

// Calling the BPO.
sampleapp.intf.MaintainPerson
maintainPersonObj =

sampleapp.fact.MaintainPerson.newInstance();

personDetails =
maintainPersonObj.readDetails(maintainPersonKey);

// Populating the RDO with the data returned from the BPO.
rdo.getName().setValue(personDetails.fullName);

}
}

Example 4.2 Sample Loader Implementation

Implementation of list group loaders is almost similar to the above imple-
mentation except that the startLoader() and endLoader() methods are to be
called at the begining and end of the list RDO processing respectively. It has
to be noted that for every startLoader() method call there should be an end-
Loader() method call immediately after the list RDO processing is com-
pleted. Every time when startLoader() method is called it saves the current
position of the list RDO and endLoader() restores it, so that the rule set exe-
cution is not affected by the list RDO processing.

package server.testapp.rules.loaders;

import curam.util.rules.ItemGroupGlobals;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.rules.Loader;
import curam.util.rules.RulesParameters;
import sampleapp.rules.rdo.HouseHoldDetailsGroup;
import sampleapp.intf.HouseEligibilty;
import sampleapp.intf.EligibilityFactory
import sampleapp.struct.*;

public class SampleListLoader extends Loader {

protected void load(RulesParameters dtls)
throws AppException, InformationalException {

ItemGroupGlobals globals =
ItemGroupGlobals.getCurrentInstance(dtls);

HouseEligibilty eligibilityObj =
EligibilityFactory.newInstance();

HholdDetailsList readHholdDetailsList =
eligibilityObj.readHholdDetails(

globals.getPersonReferenceNumber().getValue(dtls));

Cúram Rules Codification Guide

17

HouseHoldDetailsGroup houseListRDO =
HouseHoldDetailsGroup.getCurrentInstance(dtls);

/* startLoader() is called to save the current
position of the houseListRDO.

*/
houseListRDO.startLoader();
for (int i = 0;

i < readHholdDetailsList.hholdEvid.size();
i++) {

houseListRDO.insertIfRequired(i);
houseListRDO.setCurrentPos(i);

houseListRDO.current().getName()
.setValue(

readHholdDetailsList.hholdEvid.item(i).name);

}

/* endLoader() is called to restores the houseListRDO
position, so that the rule set execution is not
affected by the list RDO processing.

*/
houseListRDO.endLoader();

}
}

Example 4.3 Sample List Group Loader Implementation

4.2.11 Extending Loaders

It is possible to extend Loaders in the Curam application model. This feature
allows the sub-classing of loaders. The Rules Engine picks up the new sub
class loader rather than the original super class loader.

Loaders support a restricted form of sub-classing in the Curam application
model, which allows the developer to model a replacement for a loader
class. To do this create a new loader in a custom component to subclass the
appropriate loader. All Loader classes in the model behave as if their 'Re-
place Superclass' has been set although this option is not available to the de-
veloper.

For example in the Curam application model, if a loader class LoaderB ex-
tends LoaderA and a data item references LoaderA then LoaderB will
be invoked instead of LoaderA.

For more information on the 'Replace Superclass' option see the Curam
Modeling Reference Guide.

4.2.12 Building the Application

When the loader(s) and BPO(s) have been completed, as described above,
the application can be built.

A description of how to do this can be found in the Curam Server De-
veloper's Guide.

4.2.13 Testing the Implementation of Rules

Cúram Rules Codification Guide

18

For a description of the testing and debugging processes, see Chapter 6, De-
bugging the Rules.

Cúram Rules Codification Guide

19

Chapter 5

Rule Set Best Practices

5.1 Introduction

Between packages, objective groups, rule groups and rules themselves, and
the multi-level rules structure, it is possible to develop quite substantial rule
sets, and, in the process, be faced with choices as regarding how best to
structure them.

This chapter is designed to highlight several of the key areas where attention
at design time can sometimes greatly enhance optimum rule set develop-
ment.

5.2 What is an Optimally Designed Rule Set

When developing rule sets, there are two criteria which the designer seeks to
maximize:

1. End-user clarity of information, and

2. System efficiency.

In some cases, enhancing one of these has a cost in terms of the other. Read-
ability and accuracy of information for the client is most important. For the
sake of clarity and explanatory feedback, some techniques referred to below
actually increase processing required beyond simply establishing eligibility.

5.3 Highest Value Rate Groups

If a client is familiar with a criterion “at least 39 payments must have been
made”, then it is good practice to show this explicitly in the output for the
processing for this claim, even if the claimant has made, say, over 50 pay-
ments. There may be several rates coded, e.g., “<10 payments”, “10-20 pay-
ments”, “<39 payments”, “>=39 payments”, “>50 payments”, and if the

20

highest value has been chosen, then processing will stop once the “>50 pay-
ments” condition has been met. For the purposes of full and useful client
feedback information, it is preferable to select the “all objectives” option, so
that the client can see the familiar “>=39 payments” rule succeed.

5.4 Informational Rules

Generally, rules are implemented purely as succeed/fail tests against the cri-
teria for eligibility for a product. Under certain circumstances, however,
rules are implemented that will always evaluate to true, purely to enhance
the output information for the client.

For example, in an unemployment benefit product there may be a product-
level rule group with a “>50 contributions” rule that succeeds. There may
also be an informational rule of “>35 contributions” that also gets evaluated,
even though the “>50 contributions” rule has succeeded, purely so that the
user can see the success output of “>35 contributions”, that may be useful or
clarifying for the client.

5.5 Shared Sub-Rule Sets

Sub-Rule Sets are a re-usable subset of rules, i.e., where one copy of the
sub-rule set is called, or linked to, from more than one place in the main rule
set. Sub-rule sets replace an earlier, more laborious, process of copying and
pasting rule sets.

Sub-rule sets are used in cases where rule structures are similar across dif-
ferent products. For example, the repayment mechanisms for different types
of loan products. There is virtually zero runtime overhead for utilizing sub-
rule sets, while careful use of sub-rule sets during design time can increase
clarity, speed of development, and reliability.

Usage of sub-rule sets can be handy when developing large rule sets. It al-
lows multiple developers to work on separate parts of the rule set without
interfering with each other. This can also make source control management
easier.

Cúram Rules Codification Guide

21

Chapter 6

Debugging the Rules

6.1 Introduction

Once the RDOs, loaders and rule sets have been designed and added to the
Cúram application, the Cúram application must be tested to check the im-
plementation of the rules.

The user should be able to enter any possible claim eventuality and observe
the appropriate response from Cúram when compared to the raw legislation.
In practice, unfortunately, this scenario is very rare. There is typically an in-
volved process of testing, debugging, modifying, rebuilding, and re-testing.

This chapter describes process of testing and debugging of rules implement-
ation.

In order to do preliminary testing of rules you can use the Rules Simulation
Environment. For more information see the Cúram Rules Editor
Guide.

6.2 Typical Testing Phases

There are several main areas where problems can occur, with the ultimate
result that Cúram fails to process (consistently or accurately) claims accord-
ing to the rules. These areas are:

• Errors in the criteria list (the list from which the rules are coded);

• Errors in the Cúram application model (RDOs, other entities);

• Errors in the rule sets;

• Building/Compiling errors (syntax errors).

Assuming that the developer has succeeded in getting the application to
build and compile, subsequent testing is primarily aimed at identifying

22

design or implementation errors in:

• RDOs;

• Loaders;

• BPOs for the loaders;

• Rule set definition.

6.3 Rules Engine Outputs

When applying rules while processing a claim, the output of the Rules En-
gine is:

• Decision;

• Evidence information;

• Decision information.

Both of these are displayed to the user in the client application as a result of
entering a claim for processing.

6.3.1 Decision

Rules Engine outputs a decision as boolean value to define whether a claim
succeeded or failed.

6.3.2 Evidence Information

An evidence information consists of list of all attributes of RDOs which
were used during rules execution, with their values. The datatype and de-
scription/comment fields are also returned.

Rules Engine generates the evidence information in a compressed format
and returns it in the form of a String. This compressed result can be decom-
pressed by the Evidence text decoder to a presentable format suitable for
display or other purpose.

6.3.3 Decision Information

Every rule that is defined in Cúram has to have a success text and a failure
text, that are entered at the point of rule definition in the Rules Editor (see
the Cúram Rules Editor Guide). This is designed to provide a nat-
ural language result for each claim.

Rules Engine generates the rules decision information in a compressed
format of bits (Binary digits) and returns it in the form of two byte arrays.
Compressed result comprises of rules execution flow bits and status
(success/failure) bits. This compressed result can be decompressed by the

Cúram Rules Codification Guide

23

Rules decoder to a presentable format suitable for display or other purpose.
This enables a user to know specifically which rules have succeeded and
which rules have failed. This can often form the basis for a simple modifica-
tion for another claim attempt, e.g., entering all required demographic de-
tails.

6.4 Runtime Rules Logging

The rules system allows runtime logging to be enabled on demand. This is
based on a property curam.trace.rules. This allows logging to be en-
abled as required, without the constant overhead of unnecessary logging.

Note

A change to the rules logging property does not affect the servers
that are already running.

6.4.1 How Logging Works

The rules logging works by capturing the details at all the core points inside
the rules engine to provide comprehensive information on the operation of
the rules and a clear picture of how a given decision is reached. It is envis-
aged that this functionality will only be used in the development environ-
ment to analyze any issues that arise during execution.

6.4.2 What Gets Logged?

The logging is placed in a large number of areas inside the Rules Engine in-
cluding:

• Loader. Each piece of evidence is associated with a loader, and a loader
may load several pieces of evidence. Every call to the loader during
Rules Engine execution can be logged.

• Data Item. Start of data item value retrieval, end of data item value re-
trieval including the value retrieved and setting a value for a data item
are logged.

• Rule Item. Start of execution of any rule item, end of execution of any
rule item along with the name, value, condition, formula (if available),
and result. Rule item can be any one of the rule, rule group, rule list
group, objective group, objective list group, objective tag, sub-rule set,
sub-rule set link, product and data item assignment are logged.

• Rule Set. Start of execution of a rule set and end of rule set execution
are logged.

6.4.3 Designing for Logging

The major component of the logging refers to the name of the components

Cúram Rules Codification Guide

24

involved and the their values in the case evidence. With this in mind the
names of components should be meaningful in their own right, even when
stripped of the associated failure and success texts. This also is a very good
reason to ensure that component names are unique inside a rule set.

Cúram Rules Codification Guide

25

Chapter 7

Advanced Topics

7.1 Introduction

This chapter addresses a selection of more advanced topics, including

• Performance

• Rules Results Decompression

• Execution Modes

• Custom Functions

• Mathematical Operations

• Missing evidence

• Multi Language Support

• Error reporting

7.2 Performance

The Cúram Rules Engine is a high performance rules engine capable of
evaluating thousands of rules per second. However to maximize the capabil-
ities of the Rules Engine there are several considerations that must be evalu-
ated when designing the rule set and associated RDOs. These come under
the following headings.

• Keep it Simple.

• Separate Business Rules from Business Logic.

• Rules Data Retrieval.

• Rule Execution Optimization.

26

7.2.1 Keep it Simple

By focusing on design and keeping the overall rule set as simple as possible
you should benefit not only from rules which are easier to maintain and
easier to read but also this will typically yield better performance than unne-
cessarily complex rule sets.

7.2.2 Separate Business Rules from Business Logic

The Cúram rules engine is designed to support business and legislative rules
which are typically volatile. The surrounding business logic which is more
static, is better suited to BPOs, which are designed to handle this type of
processing. Coding business logic in rules typically leads to more complex
rule sets and unnecessary rule executions

7.2.3 Rules Data Retrieval

As retrieving the rules data is significantly slower than rule execution it is
essential that this process is as efficient as possible. The rules data retrieval
processing should minimize database or legacy application access. One pos-
sible way to achieve this could be to load related evidence data into a single
BPO allowing related RDOs to be populated from it.

While RDOs are cached for the duration of a rule set execution, they are not
cached across rule set executions. So caching should be considered in the
BPOs to ensure that for subsequent rule set executions, this data can be re-
trieved from the cache. Cúram v6.0 includes a Transaction SQL Cache,
where identical database queries in the same transaction are cached for the
duration of the transaction; if this is disabled or if there is significant pro-
cessing on the data after the read, application level caches should be con-
sidered to improve performance.

7.2.4 Rule Execution Optimization

The performance of a rule set can be strongly affected by ensuring that rules
are executed in an efficient and prioritized fashion. The number of rules ex-
ecuted also directly influences decisions. Unnecessarily large decisions are
more difficult to interpret and will take longer to display as there is more
processing involved on both the server and the client. Effective use of the
Summary Item option and clear success and failure text, will increase the
probability the user will get the information from the summary design view
and thus avoid viewing the full decision.

Prioritizing and Ordering of Rules

The ordering of the rules and the design of the conditions applied can influ-
ence the number of rules executed. It is important that the rules which are
most likely to fail are placed before those that are less likely to fail. Remem-

Cúram Rules Codification Guide

27

ber that the rule set is a tree and placing the rules most likely to fail closer to
the top of the branch will help to avoid the rules contained in the remainder
of the branch.

Avoid Repeated Rules Executions

Rule sets can often have repeating blocks of rules. One technique to minim-
ize the number of rules executions in an instance, is to run the rules once
and set a dataitem to hold the outcome. This dataitem can be managed and
used through the ruleset.

A general design aim is to reduce the number of repeated rules in the rule
set to ensure the most efficient execution of the rules. This may result in the
introduction of rule groups at levels in the rule tree where they would not lo-
gically be located. However, the benefits of the introduction of such rule
groups should be weighed against the extra difficulty for the user in deci-
phering the details of the conditions being applied, as well as the potential
for confusion in the reporting of the decision reasons.

Use Rule List Groups Wisely

Rule list groups can be nested inside other rule list groups and objective list
groups. Objective list groups can also be nested inside other objective list
groups. However it is important to remember that list groups are effectively
loops, where the rules in the group will be executed for each element in the
list. So if list groups are nested then the inner list group will be executed for
each iteration of the outer list group. Complex nesting of rule list groups can
make it difficult for a case worker to navigate through as well as create po-
tential performance concerns.

To alleviate these concerns you should consider the following when design-
ing nested rule list groups.

• Keep the number of nested rule list groups to a minimum.

• Order the rules so that the rules exit as soon as possible.

• Minimize the number of elements in the list RDO so that only the ele-
ments required for the list group are loaded.

• Pay attention to the order of the elements in the list. Sorting the elements
in the list RDO can help to exit from list group in certain circumstances.

Top Level Rule Group

This group is important, as it is usually added and executed before any ob-
jectives are evaluated and hence can serve several important purposes. In
fact, if this group fails then execution is halted immediately, which can pre-
vent errors occurring at lower levels in the rules by ensuring that the re-
quired evidence exists.

The top level rule group can also be used to ensure that cases that cannot

Cúram Rules Codification Guide

28

qualify for the product delivery are caught quickly, and no more processing
then necessary is done. However, it should also be noted that the benefit of
early detection of failing cases may be outweighed by the repetition of rules
through the rule set at lower levels of the tree where, for example, the fail-
ing of a case according to a rule may be preferred in order to give the user
the failure message. The benefits of each rule in the top level rule group
should be carefully assessed in these terms.

Using the correct Execution Mode

The correct execution mode is an important factor when trying to reduce the
number of rules executed inside rule groups and rule list groups. The execu-
tion of rules inside a rule group or rule list group can stopped early by using
the execution mode to stop when a successful result for the rule group or
rule list group has been achieved. This can be used as long as it is not man-
datory to run all the rules in the group. For rule groups you can use the
"Stop On Result" execution mode and for rule list groups you can use either
the "Succeed All Stop" or "Succeed One Stop" execution modes.

7.3 Rules Results Decompression

The Rules Engine generates rules decision information in a compressed
format of bits (Binary digits) and returns it in the form of two byte arrays.
Compressed results are comprised of rules execution flow bits and status
(success/failure) bits. This compressed result can be decompressed by the
ResultTextDecoder class to a presentable format suitable for display
or other purposes. This enables a user to know specifically which rules have
succeeded and which rules have failed for a given decision.

Evidence information is also returned in a compressed format. This informa-
tion can be decompressed using the EvidenceTextDecoder class.

Note

In order to decompress decision or evidence information into a
format suitable for processing, the rule set that was used for the con-
struction of the decision must be provided to the decompression
method.

This means that no modifications can be made to a rule set once it
has been executed and the results of any such execution need to be
referenced (for example, by displaying a decision record using the
Cúram Client application). Any modifications to such a rule set
must be carried out on a cloned copy of the rule set.

7.4 Execution Modes

An execution mode allows to alter the Rules Engine's runtime behavior. The
execution mode allows a developer to use the same rule set under different

Cúram Rules Codification Guide

29

circumstances. For example some rules can be excluded when running in
kReassessment or kQuotation mode.

7.4.1 Execution Mode kNormal

kNormal - default rules execution mode. In this mode all rules are executed,
all loaders are invoked and execution fails if the value for a required data
item cannot be loaded.

7.4.2 Execution Mode kQuotation

The special rules engine behavior in this mode is that the rules marked as
excluded "From Simulation"* are not executed. It is expected that the evid-
ence to be used will be passed in to the Rules Engine when running in this
mode rather than relying on the loaders to load the data from the external
source.

7.4.3 Execution Mode kReassessment

The rules marked as excluded "From Reassessment" will not be executed in
this mode, otherwise it is exactly the same as kNormal.

7.4.4 Execution Mode kSimulation

kSimulation - only used by simulation environment. Special behavior for
this mode is that the rules marked as excluded "From Simulation"* are not
executed. The loaders are not invoked to determine the size of a list RDO.

7.5 ObjectiveTag Type

The behavior of ObjectiveTag value evaluation depends on the Objectiv-
eTag type. The type is an attribute of the rule set ObjectiveTag element
which can be used to specify one of the following tag type codes from the
RulesTagType codetable.

• RTT1 - Product delivery recommendation.

• RTT2 - Assessment recommendation.

• RTT3 - Money.

• RTT4 - Double.

The value of the ObjectiveTag with the type RTT3 or RTT4 is evaluated,
but its result must be always a numerical value as it would be used to calcu-
late the value of its parent Objective.

Apart from the above mentioned types in the RulesTagType codetable, the
ObjectiveTag can also have the type code that starts with the word "EVAL"
(For example: EVAL1, EVAL_A or EVAL). The value of the ObjectiveTag

Cúram Rules Codification Guide

30

with the type that starts with "EVAL" will be evaluated by the Rules engine
and returned as a String but its value is not used for calculating the value of
its parent Objective.

The following example shows a sample ObjectiveTag with the type as EV-
AL.

<Objective deductionallowable="true" description="sample"
id="11" ratetarget="RC1" ratetype="PC1" recordid="11">

<Label highlightonfailure="true">
<RuleName>

<Text locale="en_US" value="Sample Objective" />
</RuleName>
<SuccessText>

<Text locale="en_US" value="Sample Objective
Succeeded" />

</SuccessText>
<FailureText>

<Text locale="en_US" value="Sample Objective
Failed" />

</FailureText>
</Label>

<ObjectiveTag id="2" type="EVAL_Sample" name="Sample"
recordid="12" value="SampleRDO.dataItem" />

</Objective>

Example 7.1 Sample ObjectiveTag with EVAL type

All the ObjectiveTags having the types other than RTT3, RTT4 and the
types that does not start with EVAL will not be evaluated. Their values will
be returned after the execution in the same form as they were specified in
the rule set.

7.6 Get Dynamic Rate

The Rules Engine provides a method getDynamicRate to calculate the
rate value of a given Objective for a given date range. The application can
determine the rate for each financial objective by calling this method.

7.6.1 The getDynamicRate API

The getDynamicRate method gets the parameters of rule set ID, object-
ive ID, objective Name, date range and tag values. The tag values parameter
is calculated during the initial eligibility check.

7.6.2 The Processing Performed By getDynamicRate

The following processing is done when the getDynamicRate method is
invoked:

• The rule set is loaded and the objective is located in the rule set

Cúram Rules Codification Guide

31

• The objective tags related to the objective are identified.

• The values of the objective tags are summed in such a way, that the date
range specified in parameters of the methods is covered by the smallest
possible number of frequency patterns associated with the objective tags
identified in the previous steps.

• The value is then returned from the method.

7.7 Built-in Functions

7.7.1 The not() Function

The not() function acts as a logical inversion operator. In the normal case
this is applied to a Boolean value, for example:

not(ClientDeceasedInd)

When using this function, you should be aware of double inversion.

7.7.2 The isNothing() Function

The isNothing() function provides a core piece of functionality inside
the rules environment. The behavior of the function is best explained by first
describing what happens in the case where a piece of evidence which is un-
available from the database is accessed from the rules. In this situation, the
database returns an error code and a “Data Item Missing” exception is gen-
erated inside the rules. Execution is stopped at this point and a message is
stored with the decision noting the missing piece of evidence.

However, there are some circumstances when different behavior is required,
for example where multiple pieces of evidence are missing it may be im-
portant to inform the client of them all. Another situation would be where
the absence of a piece of evidence is in itself evidence. In these circum-
stances the isNothing() function can be applied to a piece of evidence.
The function will first invoke the loader if the loader was not invoked yet
and return a Boolean value of true if the evidence is not available from the
database (or business process that it called).

Any data item can be passed as a parameter to this function. For example
isNothing(ClientRDO.clientAddress). It returns true if cli-
entAddress is not set.

7.7.3 The IsZero() Function

The IsZero() function provides an easy type independent way to check if
the data item's value is zero. It is possible to check if the value is zero for
any numerical data item or date. The function will return true if the value
is set to a zero or equivalent. It will return false otherwise.

Cúram Rules Codification Guide

32

7.7.4 The Date() Function

The Date() function provides a way to create instances of type
curam.util.type.Date.

Three int values are passed in to represent each of day, month and year re-
spectively, for example:

Date(31, 12, 2006)

7.7.5 The DateAddOne() Function

The DateAddOne() takes Date or DateTime as input parameter and re-
turns DateTime after adding a day to the input Date or DateTime

7.7.6 The DateAdd() Function

The DateAdd() takes Date and an integer that denotes number of days as
input parameters and returns Date after adding the given number of days to
the input Date

7.7.7 The subDates() Function

The subDates() function is passed in two dates and returns the number
of days difference between the two dates. This function will return a negat-
ive value if the second parameter is greater than the first. For example:

subDates(SampleRDO.endDate, SampleRDO.startDate) re-
turns 3 if SampleRDO.endDate is 04 April 2008 and SampleRDO.startDate
is 01 April 2008.

7.7.8 The ceiling() Function

The ceiling() function rounds the specified number up, and return the
smallest number that is greater than or equal to the specified number. This
function takes a double and an integer as input parameters and calculates the
ceiling of the first value based on the precision of the second value. For ex-
ample:

ceiling(23.1, 1) returns 24

7.7.9 The floor() Function

The floor() function rounds the specified number down, and returns the
largest number that is less than or equal to the specified number.This func-
tion takes a double and an integer as input parameters and calculates the
floor of the first value based on the precision of the second value. For ex-
ample:

floor(23.5,1) returns 23

Cúram Rules Codification Guide

33

7.7.10 The round() Function

The round() function returns a number rounded to a specified number of
decimal places.This function takes a double and an integer as input paramet-
ers and rounds the first value based on the precision of the second value. For
example:

round(23.7,1) returns 24

7.8 Custom Functions

7.8.1 Custom functions in the Rules expressions

Rules expressions have access to a number of "built-in" functions which
deal with the requirements of rules expressions. However to allow the user
to address a greater number of issues, there is the possibility to expand the
number of functions available to these expressions. Custom functions allow
the user to add their own code to the Rules Parser and implement this func-
tionality whenever an expression is evaluated.

In order to implement a new custom function a user must:

• Create the custom function class.

• Populate CustomFunctionMetaData.xml with the meta data of
the function.

7.8.2 Writing the custom function

In order to create a custom function the user must extend
curam.util.rules.functor.CustomFunctor . The new class
name must also have the prefix CustomFunction and implement the
method:

public Adaptor getAdaptorValue(final RulesParamet-
ers rulesParameters)

throws AppException, InformationalException

These implementations should be stored in the package:
<SERVER_DIR>/components/<COMPONENT_NAME>/source/cur
am/rules/functions where COMPONENT_NAME is the name of
the component in which you are working.

A java.util.List of passed parameters can then be retrieved by call-
ing the getParameters() method. Each element in the List will be of
type curam.util.rules.functor.Adaptor representing a para-
meter in the order that they were supplied. These can be cast from
java.lang.Object as per the entry in the CustomFunction-
MetaData.xml (described below).

Cúram Rules Codification Guide

34

The example below accepts an int or a String as its parameter and multiplies
it by 5. e.g. multByFive("2")

import curam.util.exception.AppException;
... // List of imports.
import curam.util.rules.RulesParameters;

public class CustomFunctionmultByFive extends CustomFunctor {

public Adaptor getAdaptorValue(
final RulesParameters rulesParameters)
throws AppException, InformationalException {

// Get the passed parameters list.
final List parameters = getParameters();
//get the adaptor representing the passed in value.
final Adaptor inputAdaptor = (Adaptor) parameters.get(0);
int inputValue;

// Evaluate the adaptor.
if (inputAdaptor instanceof IntegerAdaptor) {

inputValue = ((IntegerAdaptor) inputAdaptor)
.getIntegerValue(rulesParameters);

} else if (inputAdaptor instanceof StringAdaptor) {
final String stringValue = ((StringAdaptor) inputAdaptor)

.getStringValue(rulesParameters);
inputValue = Integer.getInteger(stringValue).intValue();

}

final int returnValue = inputValue * 5;
// Create an IntegerAdaptor representing the returnValue.
return AdaptorFactory.getIntegerAdaptor(
new Integer(returnValue));

}

}

Example 7.2 Example of Custom Function implementation

7.8.3 CustomFunctionMetaData.xml

In order to facilitate type checking of passed arguments an entry for the new
function must be made within CustomFunctionMetaData.xml. This
file can be found within the rulesets/functions directory of the
component which is being used. If this file does not exist it must be created.
For each permutation of the parameters that may be expected to be passed to
the custom function an entry should be made within the parameters section
of that function. In the example the function accepts either an In-
tegerAdaptor or a StringAdaptor and the entry should resemble
the following.

<CustomFunctions>
...

<CustomFunctor name=”CustomFunctionmultByFive”>
<parameters>
<parameter>

curam.util.rules.functor.Adaptor$IntegerAdaptor
<parameter>

</parameters>
<parameters>
<parameter>

curam.util.rules.functor.Adaptor$StringAdaptor
<parameter>

Cúram Rules Codification Guide

35

</parameters>
<returns>
curam.util.rules.functor.Adaptor$IntegerAdaptor

</returns>
</CustomFunctor>

...
</CustomFunctions>

Example 7.3 Sample CustomFunctionMetaData.xml

7.8.4 Adaptor Types

The parameter and return types available are:

• curam.util.rules.functor.Adaptor$IntegerAdaptor
contains a value which will be evaluated to an int.

• curam.util.rules.functor.Adaptor$DoubleAdaptor
contains a value which will be evaluated to a double.

• curam.util.rules.functor.Adaptor$LongAdaptor con-
tains a value which will be evaluated to a long.

• curam.util.rules.functor.Adaptor$BooleanAdaptor
contains a value which will be evaluated to a boolean.

• curam.util.rules.functor.Adaptor$StringAdaptor
contains a value which will be evaluated to a String.

• curam.util.rules.functor.Adaptor$DateAdaptor con-
tains a value which will be evaluated to a curam.util.type.Date.

• curam.util.rules.functor.Adaptor$DateTimeAdaptor
contains a value which will be evaluated to a curam.util.type.DateTime.

• curam.util.rules.functor.Adaptor$CharacterAdapto
r contains a value which will be evaluated to a char.

• curam.util.rules.functor.Adaptor$MoneyAdaptor con-
tains a value which will be evaluated to a curam.util.type.Money.

• curam.util.rules.functor.Adaptor Base type of all ad-
aptors. An entry of this type into parameters denotes that any type of ad-
aptor would be accepted.

7.9 Mathematical Operations

The mathematical operations inside the rules can be used in the objective
tags for compound rate evaluation.

7.9.1 Bracketing of Terms

The bracketing of terms can have a significant impact on the result of a cal-

Cúram Rules Codification Guide

36

culation. The behavior is as normal for mathematical operations, but the ef-
fects of brackets can be combined with operator precedence (see Sec-
tion 7.9.2, Operator Precedence) and may add complexity to the situation.
The basic approach is that any operation that should be carried out in ad-
vance of another operation should be bracketed, e.g., 5 * (3/4) = 3.75.

7.9.2 Operator Precedence

The precedence of operators is as defined for the Java programming lan-
guage. These following operators are listed in order of precedence:

Operator Associatively Type
() left to right parentheses

* / left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equities

Table 7.1 Operator Precedence

This can have a significant impact on the results of calculations unless it is
considered from the beginning.

7.9.3 Data Types and Supported Operations

The operations that are explicitly supported between the data types are de-
tailed in the Table 7.2, Data Types and Supported Operations.

It is possible to perform operations between the data types not listed in the
Table 7.2, Data Types and Supported Operations if the underlying data type
of an attribute can be converted into one of the types for which an operation
is supported.

For example, the addition of SVR_INT8 and SVR_MONEY is possible, be-
cause SVR_INT8 is converted into SVR_DOUBLE and the addition of
SVR_DOUBLE and SVR_MONEY is supported.

It is possible to add or subtract integers from the dates. Integers represent
the number of days to be added or subtracted.

The first para-
meter type

The second
parameter type

Operations
supported

Result type

SVR_STRING SVR_STRING ==, != SVR_BOOLEA
N

SVR_CHAR SVR_CHAR ==, != SVR_BOOLEA
N

SVR_MONEY SVR_MONEY ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

Cúram Rules Codification Guide

37

The first para-
meter type

The second
parameter type

Operations
supported

Result type

SVR_MONEY SVR_DOUBLE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DOUBLE SVR_MONEY ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DOUBLE SVR_DOUBLE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATE SVR_DATE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATE SVR_DATETIME ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATETIME SVR_DATETIME ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATETIME SVR_DATE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_MONEY SVR_MONEY +, -, /, * SVR_DOUBLE

SVR_MONEY SVR_DOUBLE +, -, /, * SVR_DOUBLE

SVR_DOUBLE SVR_MONEY +, -, /, * SVR_DOUBLE

SVR_DOUBLE SVR_DOUBLE +, -, /, * SVR_DOUBLE

SVR_FLOAT SVR_FLOAT +, -, /, * SVR_DOUBLE

SVR_INT8 SVR_INT8 +, -, /, * SVR_INT32

SVR_INT16 SVR_INT16 +, -, /, * SVR_INT32

SVR_INT32 SVR_INT32 +, -, /, * SVR_INT32

SVR_INT64 SVR_INT64 +, -, /, * SVR_INT64

SVR_DATE SVR_INT32 +, - SVR_DATE

Table 7.2 Data Types and Supported Operations

7.9.4 Literal Values

The basic rule for literal values is: do not use them. There are numerous
maintenance and readability issues, but there can be more serious behavioral
problems at run time. These are caused by the fact that any un-typed value
will be treated as an integer (SVR_INT32) and makes all operations on this
value integer operations, for example 4 / 5 = 0.

7.10 Evidence Missing

The Rules Engine supports two basic approaches to the issue of evidence
that is not available:

Cúram Rules Codification Guide

38

• an exception-based response under normal circumstances, and

• a logical function-based approach using the isNothing() function
(see Section 7.7.2, The isNothing() Function).

These two approaches should allow the rules to deal appropriately with any
given missing evidence situation (providing that the rules and associated
conditions have been written to allow these situations).

7.10.1 “DataItem Missing” Exception

This is the default route for evidence that is unavailable when the rules are
executing; an exception is thrown and execution is halted at this point. This
is a valid approach in situations where it is not possible to calculate eligibil-
ity and entitlement in the absence of the evidence. Most evidence will fall
into this category and there is no extra effort for the rules developer in this
case.

7.10.2 Existence Checking

Existence checking involves the use of the isNothing() function (see
Section 7.7.2, The isNothing() Function). This allows a rule to have a condi-
tion based on the existence of a piece of evidence. This means that rules can
be written to verify the existence of evidence, where the value of the evid-
ence is not used. If the value of the piece of evidence is directly referenced
elsewhere in the rules even if it is initially referenced via isNothing()
then, should that evidence be unavailable an exception will be thrown.
Therefore, any place where both the existence and value of a piece of evid-
ence must be used, it is necessary to “wrap” this processing in a business
process that gives a Boolean for the existence of the evidence and a second
parameter for its value.

7.11 Data Items Used

The result information for each rule and objective will also contain informa-
tion about the RDO data items and their values which were used for evaluat-
ing the result of that particular rule or objective.

This information is not directly accessible to the application developer, but
it might be used to display information about the RDO data items used and
their values on the client screen.

7.12 Rules Summary Item

Rule groups, rule list groups and rules have a property Summary Item. It is
represented by a check-box in the Rules Editor. Summary Item is used to
specify which rules should be displayed on rules execution summary page.

This property allows only the relevant rules execution information to be

Cúram Rules Codification Guide

39

shown.

For example, a person is eligible for a study grant if he or she is studying or
if he or she has a dependent who is studying.

If you are executing the rules for a person who is studying and does not
have any studying dependents, this means that person is eligible for the
product and you do not really want to show failure of the rule “Does this
person have any dependents who are studying?” as it is not relevant.

In order not to display it in the rules summary view, you have to set Sum-
mary Item property of rule group to true and set summary item property
for both rules to false.

7.13 Multi Language Support

It is possible to specify multi-language text for rules. Only the text for the
appropriate language is displayed in the Cúram application.

The following items can be localized:

• Rule Name field in the Rules Editor (for more information see the
Cúram Rules Editor Guide);

• Success Text field in the Rules Editor (for more information see the
Cúram Rules Editor Guide);

• Failure Text field in the Rules Editor (for more information see the
Cúram Rules Editor Guide);

• Comments of an attribute on a RDO or a ListRDO in the Merlin Tool-
bar.

• Display name of a RDO or a ListRDO in the in the Merlin Toolbar.

Multi language text for Rule name, Success text and Failure text can be
entered by using the online Rules editor. An option Create Translation has
been provided for every rule set node in the Rules editor to facilitate the
user to enter the text in different languages.(for more information see the
Cúram Rules Editor Guide)

7.14 Error Reporting

The errors reported by the rules system can be viewed in a number of cat-
egories.

7.14.1 Rules Runtime Errors

Runtime errors are normally thrown as exceptions that are then caught in-
side the Cúram server application and an appropriate message returned to
the user. The main errors reported by the runtime system are:

Cúram Rules Codification Guide

40

• Data Item Missing. This error is reported if an attempt is made to use a
piece of evidence which is not available. This is typically the case when
some required information has not been recorded on the system in rela-
tion to a given client.

• Rule Set Missing. This error is reported if an attempt is made to execute
a rule set that does not exist on the system. This would normally occur if
an error has been made during the rule release process, or if data has
been corrupted elsewhere in the system.

7.14.2 Error Handling

The error handling mechanism used by the rules is the standard Java excep-
tion processing mechanism. Exceptions are then “wrapped” by the Cúram
infrastructure to return error messages to the user.

7.14.3 Warnings versus Errors

The rules system cannot produce any warnings, as its operation either suc-
ceeds or fails. However, it may be the case that the processing invoked after
a decision is returned treats the failure due to evidence being missing as a
warning, and continues processing via another route.

Also, in the case where eligibility is being assessed for multiple services, a
failure (due to an error or otherwise) on a single product should not prevent
the assessments for other services going ahead.

Cúram Rules Codification Guide

41

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

42

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Rules Codification Guide

43

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Rules Codification Guide

44

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

Oracle, WebLogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Red Hat Linux is a registered trademark of Red Hat, Inc. in the
United States and other countries.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Rules Codification Guide

45

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Rules Codification Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Prerequisites
	1.3 Audience

	Chapter 2 Overview of Rules Codification
	2.1 Introduction
	2.2 Rules
	2.3 Evidence (Data Items)
	2.4 Rules Data Objects (RDOs)
	2.4.1 List RDOs
	2.4.2 Pre-initialized RDOs

	2.5 Loaders
	2.6 Data flow within the Curam Server Application
	2.7 Development Steps
	2.8 Curam Server Application Development Tools

	Chapter 3 Rules Data Objects (RDOs)
	3.1 Introduction
	3.2 Designing RDOs
	3.2.1 Identifying Attributes
	Worked Example

	3.2.2 Grouping Attributes

	3.3 Adding RDOs to a Cúram Application Model
	3.3.1 Adding Data Items to a RDO

	3.4 Attributes (data items) Documentation
	3.5 Adding List RDOs to a Cúram Application Model
	3.5.1 Defining Description Items

	3.6 Immutable RDOs
	3.7 Qualified RDOs
	3.7.1 Local RDO
	3.7.2 Input RDO
	3.7.3 Output RDO

	Chapter 4 Loaders
	4.1 Introduction
	4.2 Designing Loaders
	4.2.1 Data Categorization
	4.2.2 Loader Invocation
	4.2.3 Loaders and BPOs
	4.2.4 Implementing a Loader and its BPO
	4.2.5 Defining the Loader in the Curam Application Model
	4.2.6 Defining the Structs Based on the Data Required
	4.2.7 Creating a BPO in the Curam Application Model
	4.2.8 Implementing BPOs
	4.2.9 Creating the Loader
	4.2.10 Adding Hand-crafted Code to the Loader Body
	4.2.11 Extending Loaders
	4.2.12 Building the Application
	4.2.13 Testing the Implementation of Rules

	Chapter 5 Rule Set Best Practices
	5.1 Introduction
	5.2 What is an Optimally Designed Rule Set
	5.3 Highest Value Rate Groups
	5.4 Informational Rules
	5.5 Shared Sub-Rule Sets

	Chapter 6 Debugging the Rules
	6.1 Introduction
	6.2 Typical Testing Phases
	6.3 Rules Engine Outputs
	6.3.1 Decision
	6.3.2 Evidence Information
	6.3.3 Decision Information

	6.4 Runtime Rules Logging
	6.4.1 How Logging Works
	6.4.2 What Gets Logged?
	6.4.3 Designing for Logging

	Chapter 7 Advanced Topics
	7.1 Introduction
	7.2 Performance
	7.2.1 Keep it Simple
	7.2.2 Separate Business Rules from Business Logic
	7.2.3 Rules Data Retrieval
	7.2.4 Rule Execution Optimization
	Prioritizing and Ordering of Rules
	Avoid Repeated Rules Executions
	Use Rule List Groups Wisely
	Top Level Rule Group
	Using the correct Execution Mode

	7.3 Rules Results Decompression
	7.4 Execution Modes
	7.4.1 Execution Mode kNormal
	7.4.2 Execution Mode kQuotation
	7.4.3 Execution Mode kReassessment
	7.4.4 Execution Mode kSimulation

	7.5 ObjectiveTag Type
	7.6 Get Dynamic Rate
	7.6.1 The getDynamicRate API
	7.6.2 The Processing Performed By getDynamicRate

	7.7 Built-in Functions
	7.7.1 The not() Function
	7.7.2 The isNothing() Function
	7.7.3 The IsZero() Function
	7.7.4 The Date() Function
	7.7.5 The DateAddOne() Function
	7.7.6 The DateAdd() Function
	7.7.7 The subDates() Function
	7.7.8 The ceiling() Function
	7.7.9 The floor() Function
	7.7.10 The round() Function

	7.8 Custom Functions
	7.8.1 Custom functions in the Rules expressions
	7.8.2 Writing the custom function
	7.8.3 CustomFunctionMetaData.xml
	7.8.4 Adaptor Types

	7.9 Mathematical Operations
	7.9.1 Bracketing of Terms
	7.9.2 Operator Precedence
	7.9.3 Data Types and Supported Operations
	7.9.4 Literal Values

	7.10 Evidence Missing
	7.10.1 “DataItem Missing” Exception
	7.10.2 Existence Checking

	7.11 Data Items Used
	7.12 Rules Summary Item
	7.13 Multi Language Support
	7.14 Error Reporting
	7.14.1 Rules Runtime Errors
	7.14.2 Error Handling
	7.14.3 Warnings versus Errors

	Notices
	Trademarks

