..lli

IBM Curam Social Program Management

Cuaram Server Developer's Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
IR 1 01 0o 1 i o] o USRS 1
1.2 CONLENE SUMMIBIYeeeieieiie et siee et e s e sse e see e seeseeesbeesaeeenbeesneeeseesanesnneesneeansnas 2
1.3 Overview of Compliant Development Artifact Changesccooevvievenieneenennen, 3

Chapter 2 DITeCIONY SITUCIUIEc.vvcieiieeiecie sttt s et ste et se et e sreesseeneeneenneeneas 7
2. L OVEIVIBIW .ottt sttt st b et b e bt e e et et e st e e bt b e s bt e st et et e ntenbe st 7
2.2 Application COMPONENLSccceeiueiieeiierieeeeseesieeeesreesseseesseesseseesseesseseesseessesnsesseenes 7

2.2.1. CompOoNeNnt FOIAEN'Scceeiiiieecieie et 7
2.2.2 COMPONENE OFAENc.veeeeieieie ettt e et e e sreeae e e nseeneesreenns 7
2.3 Application DIreCtOry SLIUCLUIEccecvueiieeeeieeeesteesiesee e sie e sre e see e e e eneesre s 8
2.3.1 Source Artefacts of the Clram AppliCationcccccevvveveceevecce e 8
2.3.2 Caram Application Build StrUCLUIEccceeveveeveeie e 11
2.4 ArtefaCtS Of the SDEJociiiiirieieee st 14

Chapter 3 Build Filesand Thelr TAIrgeLSccooiiiriieiieneeeeee s 16
T O Y= V1= S 16
3.2 Performing the BUild ..o e 16
3.3 Overriding default JUNIT JAR ..ot e 17
3.4.Configuring the BUITAc.oiiieee e 17

3.4.1 CUram Build SELINGS ...c.coveveieerienieeses e 17
3.4.2 Java Compiler SELEINGSccvovveiererireeeeee e 20
34.3JAVATESK SEIINGSveeveeneeieeeie sttt s e sne e 21
344 GENEFALOr SELLINGSveeveeueeieieie ettt b et ee e sne e 22
3.4.5 Other ENVIronment SEEINGScccovvreririeieieiesee s 23
3.5 What is happening under the ROOd? ... 23
R o= 01 = (< o [T SRTPRROPTPRPRPN 23
S5.2TMPIEMENTED ..o 28
SO EXITATAIGELSoeeeeeeieeee e neennne e 29
3.7 ClOVEN TAIGELS ..veieeiieeieie ettt sttt a et bbb e e e e e e b 33
SO RUIEBS TAIGELS ...oveieeiieeieie ettt bt bbb e et e nne e 33
3.9 ClaSSIC IEG TaAQELScoouiieiiiiesieeiieie ettt bbbt e 36
O | =7 - 0T £SO 41
3.11 Application Configuration Import and EXport Targetsccocevvvererieneeneneneenne 41
3. 12 WOTKFIOW TaIGELS ..ottt 42
3.13 DEPIOYMENE TAIGELScuveveeirierieeieeee ettt b eesne e 44
314 EXtending the BUITA ..o e 45

Curam Server Developer's Guide

3.14. 1 INtroducCing @NEW SCIIPL ...cveeieeieeiieeie e see e 45

315 0VETIAEN TArQELS ..oc.eeieeeeiieee et 46

RGN ool 1T Lol g T 1= 0 T KRR 47
IR = N o o SRRSO 47

3L6.2 CREOLE ..ottt sttt st sttt nnenne s 47

3.16.3 EVIAENCE GENEIALIONccueevieiieiiesieeie ettt sne e 48

Chapter 4 Cdram Configuration SEINGScccoverirerinenenieeere s seens 51
T @ = V= USSP 51

AN o o) TTor= (Lo gl = o o = g (1= SRS 51
AN o] o] [Tor= 1 oo 1 o] o QRS 51

AR = ToTo 1 = o X 01 £0] 0 = 1= 55

4.3 Support for MUItiple TIME ZONESccvveeeieeeeeeeseece et 56

4.4 Dates and date/timeS in CUFBIMcooiireiiieneeieee e 58

O oIS S B L= = 1Y == o < PR 61
T O Y VT S 61

5.2 Intended Data Manager PrOCESScocueiiiireiiniereeee et 61
5.2.1 Planning for MBCS D@cccoveiuirieriieinieeeie st 62

CIRC TN 1 017/ 0Tox 1 o] o NS 63
SRANDT: = o7z S Sl AN (= - £ S 63
5.4.1 Data Definition XML FIESc.coveiieeceese et 64

5.4.2 Data ContentS DM X FIlESoccuveeeiice e 66

5.5 Database ObJECt NAMINGccoviririiiiiee e 81
5.5.1 Short Name SUDSHTULTONccuveeeiieiecieseee e 81

552 Primary K&y INAICESc.ooiiiiiiieiieeeee e 82

5.5.3 Primary K&y CONSITAINTScccoreririeririeeeiesiesee st see s seens 82

5.5 4 TaADIESPACESeoiviriiiieeiieee et e 82

5.6 DataManager CONfIQUIBLIONcooeeierierereseseseeee e 84

5.7 Database SYNCAIONIZATONcceierieieieie et 86

SIS - 1= 101 S 86

5.9 L0D MANAGES ..o e 86
Chapter 6 SQL CRECKEooiiieeee ettt sre s nneens 89
5.1 OVEIVIBIW ettt sttt sttt et st e bt et s ae e sbe et e e me e s beebeeneesbeenbeeneesneenaenneas 89
B.2UNdEN tNE HOOM ...ttt bt 89

OGN | 4111 = 1 o LSRR 90
Chapter 7 ECHIPSE .vviieiieieiee sttt sttt bt bttt et e nbe e 91
O V= oV T USSP 91

7.2 Curam ProjeCtSiN ECHPSE .ouviiieie ettt 91

7.3 Eclipse Configuration FIlEScccviieiiee ettt 92
G o (o= o | = TSP 92

7.3.2 .ClaSTPAN FIIE ... s 92

FRCRCIRS'< 111110 53 BT 1 = o (o o S 93

T A ACCESS RUIES ...ttt bbbttt b nae e 93
AT L0 1S = £ 93
CHaDLEr 8 LOGOING .veeveeeeerieeieeeesteeieeseesseessesseesseesesseesseessesseesseessessesssesssessessseesssssesssemssesenns 97
ST O Y= VT S 97

Curam Server Developer's Guide

B 2 USAOR ...ttt e e e e e e ne e e e Re e ane e e nre e anee s 97
8.3 L0ggiNg HIEIAICHYc.coiiiiiiiieieee et 98
B.AL0GOING LEVEL ...t 99
SR oo {0 TN = 1 o o SRR 100
e GRS = 11 1] 0= SRS 103
S oo [z (o] ISR 104
Chapter 9 USING EXCEPLIONSc.eeiieiiecieitiesie st see st ae e te e sreesneeneesneeseeneeeneenes 106
O. L OVEIVIBIW .ottt sttt b et et e b et b e bt be bt e bt et e e et e ntentenbenre s 106
9.2 Constructing an EXCEPLIONcc.ccvv ettt 107
9.3 Creating Messages with Argument Placeholderscccevveceveevecce e 109
9.4 HaNdliNG EXCEPLIONScceeieeiiieie ettt s te e s e saeeneesre e 109
9.5 L.0ggiNg EXCEPLIONSoocveiieeiieie ettt te e e e neeneesre s 111
9.6 General EXCEption GUIAEIINESccovieieiiese ettt 111
9.7 Coding Conventions fOor EXCEPLIONSccccevueeieiierieciee et eie e 112
9.8 Using Record Not FOUNd INICALONcccceiuieieiieriecee e 113
ORE T oo =0 J U 1101 | S 114
9.10 Informational MaNAJEYcccvecueieerieeie e ee sttt e e te e e sae e sre s 115
Chapter 10 Message and Code TabIE FIlEScooviiiiiiineee e 119
L O Y o T SR 119
10.2 MESSAPE FIIES ...ttt bbb e 119
10.2.1 The Format of MeSsSage Files ..o 120
10.2.2 Customizing aMeSsage File ... 122
10.2.3 Artefacts Produced by msggen Build Targetcccoceveveveeieiencneninn 124
10.2.4 Retrieving Messages from Message FilesS ... 125
10.2.5Writing Messages TO SErVEr LOGSooeverieieieiene e 126
10.2.6 Localizing SDEIMeESSAZE Fil€Socuviierieieeeee e 126

LG oo (o 1o [o = SR 127
10.3.1 The Format of Code Table Fil€Soccvveeiieeseee e 127
10.3.2 Customizing aCode Table File ... 132
10.3.3 Artefacts Produced by ctgen Build Targetcccoocvveveninicicncnenie 138
10.3.4 Code Table HIErarChyccocooereienineneeeee e e 142
10.3.5 Retrieving Codes from Code Table Files ... 145
10.3.6 Localizing SDEJ Code Table FIleScooevieieiieeeeeeeeee e 146
Chapter 11 Specialized Readmulti OPErationsccoeeveeierieneeie s 149
R O Y= o = SRR 149
11.2 When to Use Readmulti OPErationscccoeeverieeneeneeninsee e sie e ses e 150
11.3 How to Define Y our Own Readmulti Operationsccccoeeereerieneenenniesenseeens 150
11.4 Extra Features of Readmulti OPErationscceoereenerinnieneeniesee e see e 151
R N o N L= 0= YRS R 154
106 SUMIMEIY ...ttt ettt st e b e e sae e e be e s se e e se e eaeeeaseesneeaaseesaeeanneeannennneas 154
(O ECTo IS a2 D= o (= o= 1 o o KSR 155
M2 1 0o 18 o1 o o USRS 155
12,2 OVEIVIEW ..ottt sttt bbb st et e e et et e sbe s bt eb e e st e st e e e tentenbenre s 155
12.2.1 Other Sources of INfOrMatioNccoceveriririieierese e 156

12.3 Effect of Deprecation on a Custom AppliCationccceveceeveevecieesieseeie e 156
12.3.1 Customizations and REFErENCEScccvvireriiieren e 156

Curam Server Developer's Guide

12.3.2 Support for Deprecated Artefactscccoceverieieenene e e 157
12.3.3 Effect of Deprecation on the User Interfacecccoceveevenceiceiencinsiene 158
S ol o oL ST P PRSPPI 158
12.4.1 Artefact Typesthat can be Deprecatedccocevveieneeneniencenesee e 158
R I 1 1] = (o] TR 159
12.5 Running aDeprecation REPOITc.coceeiiririieienie et 159
12.5.1 Configuring the Deprecation REPOITcccevieieeienieniereeee e 159
12.5.2 Prerequisites for running the Deprecation Reportcccocvveeienienneenne 160
12.5.3 Generating the Deprecation build OUtpULccccereiiienenieneeee e 160
12.5.4 Identifying deprecation warnings in the build output.ccccceevriereene 160
12.5.5 Notes on running the Deprecation REPOITccccceeveveenenieneenesee e 161

12.6 Analyzing Deprecation WarninNgSccoceeeeeereenieneeseesee e siessseseesseessessesseeenes 162
12.6.1 Identifying overrides of deprecated artefactsccoccoveevenienceieccin i 162
12.6.2 Identifying references to deprecated artefactscccocevveeveicenencinnene 163
12.6.3 Notes on analyzing deprecation WarningsScccoeeceereeresieeseesiesiesseeenes 163
Chapter 13 USEr PrEfEIENCESocv ittt 165
13,1 OVEIVIBW ettt sttt st b s b sttt e e et et e st bt bt e st e e e et e ntenbenre s 165
13.2 User Preferences DEfiNITIONccoooviiiienininenie e 165
13.2.1 Data definition XML fil@ ..o 165
13.2.2 Properti€S FIlES ...uviiieiece et 167
13.3 Devel OPMENt SUPPOITocveiee et eie e ste et eee e re e e saeete e e reeneeneesreenes 168
134 EXEEINAl USEN'S ..ottt sttt sttt ettt bbb et b e 168
13.5Localizing Display NAIMESccciieieiieiice ettt sre s 169
13.6 Localizing Infrastructure Preferences Display Namescccccccvvceeieeveceeceene, 170
Chapter 14 TransaCtion CONLIO|cccvveereeieseeseere e esee e e esre e e esseseesseessesneesseenes 173
B O Y= o 1 = SR 173
14.2 DEVEIOPEI'S VIBW ..ottt sttt b et nbe e 173
14.2.1 Transactions and Method INVOCALIONSccceveereeieereeneseeseesee e 173
14.2.2 Optimistic Locking and the forUpdate FIagccoovevirirenieicicsiee 173
14.2.3 General GUIAEIINESocvviuieiecie et 174
143 UNAETYING DESIGN ..ottt nee e 174
N | = S 175
G I O - [S 175
Chapter 15 Transaction SQL QUENY CaChEcccoiiiiiirierieeieeee et 177
151 OVEIVIEW ..veeieiieiieiesie sttt ettt e et estesaestesbesbesse e s e e e s e naessesteaseeseeneeseeneensensensensens 177
15.2 Populating the CaCheooeiiiieeeee et e e 177
15.3 Invalidating the CaChe ..o e 178
B o (007 4 11 =SSR 179
15.5 SQLQUEryCacheAdmMIN AP ...t 179
15.6 SQLQUENYCEChEULIT APl ...ttt 180
B oo o1 oo USSR 180
Chapter 16 Deferred PrOCESSINGc.ccoeiirieieieriese et 181
16.1 ODJECLIVE ..ottt bbbt st ne e 181
16.2 PrErEQUISITESeoueeieieiiesie sttt sttt sttt b s b a et nbe e 181
RGN 101 oo I8 o1 o o USRS 181
16.4 Model Your Deferred PrOCESSEScccoveieriirerenieieenie e sie st ses e s sseseens 181

Vi

Curam Server Developer's Guide

16.5 Deferred Process ENACIMENTcoceiieiirieiie et 182
16.5. 1 WMINSLANCEDBLAeeeiiiieiiiieeiiee st s 184

16.6 Offline Unit-Testing of Deferred PrOCESSESccocvveeveriienienieeieeeesee e 184
16.7 Configuration of Deferred Processing Table ..o 185
16.8 TicketCallback.dpHaNAIEEITON() ..oocveieerieeieiieriee e e 186
LS IS o [1 USSR 187
16.10 SUMIMEIY ...ueieieeeiee et eetee sttt te e se et e e sae e e beesseeebeesseeeabeesneeaseesneeanneeanneeneeas 187
(O = A T 0= g == 190
171 OVEIVIBW ettt sttt bbbt se et et e e et et st e b e e bt e st et e e e tentenbenee s 190
17.2 EIB Timer Bean DEfiNItiONccooeiiiiiiiiieneee e 190
17.3 DevEl OPMENt SUPPOITooveieeiiecieeesee e eee s ste e e e sneere e e s reeneeneesreenes 191
1731 TIMENNFO ClESS ..eiviiiiiiiciieieeee e e 191
17.32TIMEITAsK ClIESS ..ocviieiiiiiiirieieesie e 192
17.3.3 TimerCalback INerface ..o e 193
G R @ To (== 1 0 o] = S 193

174 RuUlesfor uSiNg SDEJ TIMEXScccueiieiieie ettt 193
175 TIMEr BENAVION ..ottt 194
G N © USRS 195
Chapter 18 Events and Event Handlersccoovevieii et 198
BRSO Y= a1 = SR 198
18.2 The Format Of EVENT FIIESocveeeeeceee ettt 198
18.2.1 EVENt DEFINITION ...oveeiiee et 198
18.2.2 Event Handler REQISIIalioNccooeiererereeieiesiese e 200
18.3Merging EVENE FIIES ..o 201
18.3.1 Rules of Event Definition MEIgESccoceeirieieriene e 201
18.3.2 Rules of Event Handler MErgesoccovevereeeienese e 202

18.4 Artefacts produced by generate BVENLSccoeeeiererene e 202
18.4. 1 DAADASE SCITPLS ...ouveveierierieeieee ettt ne e 202

RS TRADZN - V7= U 0o /= S 203

18.5 RAISING BVENTS ..ottt sttt bbb et nbe e 204
18.6 EVENE NANAIEN'S ..ottt enre s 205
RS Y= | 1= £ SR 205
Chapter 1O UNIQUE IDSS ...ttt sttt sb e s nre s 208
L. T OVEIVIBW ettt sttt ettt he et et e s ae e be et e eae e st e e nte s st e seenbeeneenreenes 208
19.2 What are UNIQUE IDS?c..eiiiiiiieieeee ettt et 208
19.3 What are UnNiqUE IDSTOI?ooueiiiiiiiiesieeie ettt s 208
19.4 Can | run out Of UNIQUE IDS?oeeiiiiiiieee ettt 209
19.5When should | uSB UNIQUE IDS?ooiuiiiiiiiceesiee et 209
19.6 When should | not use UniqUE IDS?ooiiiiiiieieeesee et 210
19.7 Should my keys be human-readabl€? ... 210
19.8 What if | require contiguous human-readable Unique IDS?c.ccovevveenrienne 210
19.9 HOW dO | USBUNIQUE IDS? ...ttt s 211
19.10 RaNQE AWAIE KBY SEIVEYeiiiiiiieeee ettt s eeas 212
RS I @ Y= V1= T SRS 212
19.10.2 How does the Range Aware Key Server WOrk?cccovveveeieenenienseeenn 212
19.10.3 Where isthe Range Aware Key Server USed?cceeverceneenienien s 213

vii

Curam Server Developer's Guide

Appendix A Clram Configuration Parametersccceceiveeieeieseeseesieseeseese e e esee e 215
AL L OVEIVIBIV .ottt sttt ettt b e bbbt et e e et et et e b e 215
FNZ =10 0 s 1= O 0 0 0 < o 1] =SSR 215

A2 L DAEIDESE ..o e 215
F N = 0\V/] oo 0= o | PSS 219
G B = USSR 220
F A O U (o o TP 221
A.3 Application.prx - DynamiC Properti€Scccceveeeeiieereeieseesieeseeseeseeeesreessesneens 221
G I = 01V g 0= o | PSS 221
ALBZ IMX et ettt et b e 223
G B = OSSR SPPTRR 225
R (1 = PSS 225
ALBETEG ittt et e et na e nre s 226
LG A O 1 (o] 1 o TP 227
LG T I o PRSPPI 227
LG = o U Y PSS 229
ALBD SMTP e ettt nre s 229
ALSLO XIMLSEIVES ittt sttt na e b nre s 230
FC R DT = o7 = USSR 231
ALB L2 KBYSEIVEL ...ttt sttt et st st e s be e s ne e nne e nnnee s 231
PANRCIRCH 2T oi o -0 10 o = PSS 232
F A V1Yo 4 o PSS 234
ALSLS CTIM ettt bbbttt e e nne b e 234
A4 Application.prx - StatiCc ProPErTIESccceeceeeereeieseese et sre e 235
N I O U {0 TSRS 235
F <o U 1 Y TS 236
F L B I o TSP 237
F A 01V o] 0= | PSS 237
A5 Variable Property SEiNGScccveveeieiiesecie et sre e 237
LTt I =11 o (o) o PSS 237
ALDZ AUAIT oot na e nre s 238

Appendix B Infrastructure Auditing SEttiNGSccoceviriririiieresese e 240
B.1 Default table-level-audit SEINGccooereriririeeee e 240

N o= 258

viii

1.1

Chapter 1

Introduction

Introduction

The Server Development Environment (SDEJ) of IBM® Curam Social Pro-
gram Management enables the development of high-quality, low-cost client
server applications through model driven generation. This generation facilit-
ates client-server development by taking a Unified Modeling Language
(UML) model and producing the following:

* Generated Java® code;

» Data Definition Language (DDL) describing the database entities in the
model, enabling instances of a database to be defined in a human and
machine readable form;

e Support for remote invocation

The Curam Solution Architecture document provides an introduction to the
Curam Generator and its outputs. While the fundamental elements of a serv-
er application are supplied by the Caram Generator, certain custom coding
and configuration tasks must be performed.

The Clram Security Handbook document should be referenced for al as-
pects of security that must be considered when developing and deploying a
Curam enterprise application, e.g. authentication and authorization of users.

This document describes how to develop the custom code in Clram server
applications, and how to build the resultant applications. It is a reference
guide that should be read by programmers wishing to develop custom code
for Clram server applications using the SDEJ. It is not intended as an intro-
ductory document, or as guide on how to deploy a Curam application on an
Application Server® (this is described in the Clram Deployment Guide for
the appropriate application server).

1.2

Curam Server Developer's Guide

Content Summary

This guide provides details on a number of topics which can be grouped un-
der three main headings:

Building and Configuring a Caram Application

SDEJ Development and Application Programming Interfaces

Curam Runtime Behavior

Building and Configuring a Caram Application

Chapter 2, Directory Structure provides an introduction to the layout
of the application.

Chapter 3, Build Files and Their Targets details the build support
provided.

Chapter 4, Cdram Configuration Settings enumerates the various
configuration settings supported by the infrastructure.

Chapter 5, Data Manager details the Data Manager—a tool that can
be used to create a database to support the Curam application.

Chapter 6, SQL Checker details the SQL Checker—atool that can be
used to ensure the semantic and syntactic correctness of SQL which
has been hand-crafted by an Application Developer.

SDEJ Development and Application Programming Interfaces

Chapter 7, Eclipse describes relevant aspects of Eclipse usage, as
well as providing some tips and tricks.

Chapter 8, Logging details the infrastructure support for the logging/
tracing of status and error information.

Chapter 9, Using Exceptions details the infrastructure support for the
creation, tracing and display of exceptions.

Chapter 10, Message and Code Table Files details the format of the
message files and code table files that are used within Caram.

Chapter 11, Specialized Readmulti Operations explains the usage of
Specialized Readmulti Operations which can be used to replace
standard readmulti operations with specialized processing.

Chapter 12, Deprecation describes deprecation in Cdram: what it is,
how it can affect custom code, what it means for support and the as-
sociated build infrastructure that helps pinpoint custom artefact de-
pendencies on deprecated Clram artefacts.

Chapter 13, User Preferences describe how to define and use User

Curam Server Developer's Guide

Preferences for a Ciram application.

e Curam Runtime Behavior

» Chapter 14, Transaction Control details the aspects of Transaction
Control within a Cdram application that must be understood by a de-
veloper.

» Chapter 15, Transaction SQL Query Cache outlines the details of a
cache that can store the results of any SQL queries that do a SE-
LECT on a database table for the duration of the transaction in
which the operation was invoked.

o Chapter 16, Deferred Processing describes how to achieve deferred
processing in a Curam application

o Chapter 17, Timer Bean describes the functionality that allows
timers to be defined to invoke client-visible methods at a specified
time.

» Chapter 18, Events and Event Handlers describes Events, a mechan-
ism for loosely-coupled parts of the Cdram application to commu-
nicate information about state changes in the system.

e Chapter 19, Unique I1Ds details the infrastructure support for Unique
| dentifiers—numbers generated by the Caram infrastructure for use
as unique database keys.

1.3 Overview of Compliant Development Artifact
Changes

Aside from your new custom development (e.g. adding message files, code
tables, events, etc.) you may aso need to modify Curam out-of-the-box
(OOTB). The following summarizes the range of compliant changes you
can make to the out-of-the-box Clram development artifacts:

Type of Change Initial Artifact(s) Reference
Change an existing Message file (externalized Section 10.2, Message
message file server informational, Files

warning, and error mes-
sages- . xm filesinthe
nmessage directory)

Remove an existing Message file (externalized Section 10.2, Message
message server informational, Files

warning, and error mes-

sages- . xm filesinthe

nmessage directory)

Add additional loc- Messagefile (externalized Section 10.2.6, Localizing

Curam Server Developer's Guide

Type of Change

ale (i.e. language)
support to an exist-
ing message

Change an existing
code table name

Add anew code ta-
bleitem into an ex-
isting code table

Change the descrip-
tion of an existing
code table

Disable an existing
code tableitem

Remove an existing
code table item

Add additional loc-
ale (i.e. language)
support to an exist-
ing code table

Add an event regis-
tration (to augment

Caram OOTB func-
tionality

Disable an existing
event handler

Reference
SDEJ Message Files

Initial Artifact(s)

server informational,
warning, and error mes-
sages- . xm filesinthe
nessage directory)

Code Tablefile (code Section 10.3, Code Table
valuepairs- . ct x filesin Files
thecodet abl e direct-

ory)

Code Tablefile (code Section 10.3, Code Table
value pairs- . ct x filesin Files

the codet abl e direct-

ory)

Code Tablefile (code Section 10.3, Code Table

value pairs- . ct x filesin Files
the codet abl e direct-

ory)

Code Tablefile (code Section 10.3, Code Table
value pairs- . ct x filesin Files

thecodet abl e direct-

ory)

Code Tablefile (code Section 10.3, Code Table
value pairs- . ct x filesin Files

thecodet abl e direct-

ory)

Code Tablefile (code Section 10.3.6, Localizing

value pairs- . ct x filesin SDEJ Code Table Files
thecodet abl e direct-

ory)

Event Definition file

(. evx filesin the
event s directory) &
Event Handler Registra-
tion file (hand-

| er _config.xm in
theevent s directory)

Event Definition file

(. evx filesin the
event s directory) &
Event Handler Registra-
tion file (hand-

| er _config.xm in
theevent s directory)

Chapter 18, Events and
Event Handlers

Chapter 18, Events and
Event Handlers

Override an existing User Preferencefile (De- Section 13.2, User Prefer-

user preference

faul t Prefer- ences Definition

Curam Server Developer's Guide

Type of Change Initial Artifact(s) Reference

ences. xm fileinthe
user pr ef er ences dir-
ectory

Override an existing Application Property File Section 4.2.1, Applica-
application property (Appl i cation. prx tion.prx

fileinthepr operti es

directory)
Add initial, demo or DMX File (script for pop- Section 5.4.2, Data Con-
test data data (rows) ulating the database with tents DMX Files
toanexisting data- data- . dnx filesin the
base table relevant dat a subdirect-

ory)

Table 1.1 Caram Development Artifact Compliant Changes

Curam Server Developer's Guide

Notes

IBM® WebSphere® Application Server and Oracle® WebLogic are the
supported application servers. For exact information on versions, please

refer to the Cdram Supported Prerequisites document.

2.1

2.2

2.2.1

2.2.2

Chapter 2

Directory Structure

Overview

The directory structure for the server side IBM Curam Social Program Man-
agement application, and the underlying Server Development Environment
(SDEJ) are described in this chapter.

Application Components

Component Folders

The Curam server application is organized into collections of artifacts called
components. Each component has its own folder below the
<EJBSer ver >/ conponent s folder. The cor e component is aways
present. This contains all of the artifacts needed for the core functionality of
the Socia Program Management Platform. The name of the component
folder is used as the name of the component.

Component Order

There can be any number of application components, but they are processed
in a strict component order. This order determines the priority that will be
given to artifacts that share the same name but appear in different compon-
ents. This is fundamental to the manner in which server artefacts are cus-
tomized.

The component order is defined by the SERVER COMPONENT _ORDER en-
vironment variable. This is a comma-separated list of component names.
Use only commas; do not use spaces. You must place the component with
the highest-priority first in the list and continue in descending order of prior-
ity. The cor e component always has the lowest priority and is implicitly
assumed to be at the end of the list; you do not need to add it explicitly.

2.3

2.3.1

Curam Server Developer's Guide

For example, setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to
artifacts in the MyConponent One folder within

<EJBSer ver >/ conponent s, a lower priority to artifacts in the My-
Conmponent Two folder, and the lowest priority to artifacts in the cor e
folder. Any component folder not listed in the component order will not will
automatically be added to the end of the component order in aphabetical or-
der. If you do not set the component order at all, the default component or-
der will include all components in alphabetical order.

Localized Components

Localized components contains translated artifacts for the base components
and are of the format “<component name>_<locale>". It is not necessary for
these to be added to the SERVER COMPONENT _ ORDER environment vari-
able as the tooling that processes this environment variable will prepend any
available components that match entries in the SERVER LOCALE LI ST
environment variable. Localized components are matched both on complete
locale entry and on the two-character, lower-case language code. Localized
components are prepended before the base component in the complete com-
ponent order.

Application Directory Structure

Two aspects of the Clram application directory structure are described; the
structure related to the source artefacts associated with an application, and
the resultant structure when the application is built.

Source Artefacts of the Caram Application

Example 2.1, Caram Application Structure shows the directory structure for
the source artefacts of a Cdram application project i.e. the structure prior to
performing a build. Table 2.1, Ciram Application Installation Structure de-
scribes each directory within the directory structure in more detail.

Example 2.1, Clram Application Structure includes the SERVER DI R,
Pr oj ect Package and CodePackage as place holders.

 The SERVER DI Ristheroot of the server directory structure; the loca-
tion of the EJBSer ver directory within the Caram application.

« TheProj ect Package isagloba setting, set at build time. It is set to
Cuar amin the reference application which is shipped with Caram.

 The CodePackage is based on a model setting which is described in
the Ciram Modeling Reference Guide. It allows individual components
to be scoped within their own logical packages. Any number of Code
Packages may be nested inside each other.

Curam Server Developer's Guide

SERVER DI R
+ project
+ config
+ properties
+ conponents
+ core
codet abl e
dat a
doc
events
lib
nmessage
nodel
properties
rul esets
sanpl e
webservi ces
wor kf | ow
wsdl
+ custom
+ source
+ <Proj ect Package>
+ i
+ <Code Package>
+ i npl
+ wsdl
bui | d. bat
bui |l d. sh
bui | d. xm
bui | dhel p. bat
depr ecat 1 onr eport. xni
.cl asspath
. pr oj ect

R

+ 4+ o+ o+

Example 2.1 Caram Application Structure

Name Contents

project A top level directory containing al information
that is relevant to the entire project rather than
specific components.

project/config Configuration information related to the
project, including top level configuration files
for the data manager and web services con-

nector.

project/properties Properties that relate to the project asawhole.

components Each project is made up of a number of com-
ponents. This directory is simply a place holder
for those components.

components/core A pre-defined component which is used by all

other components.

components/core/codetable Codetable XML (ct x) files created by the de-
veloper are kept here. Thesefiles are used to
define codetables for a Curam application. The
outputs produced from a codetabl e file consist
of an SQL script to populate the code table in
the database, and a Java® file which provides
the necessary constants to the application. See

Curam Server Developer's Guide

Name Contents

Chapter 10, Message and Code Table Files for
more information

components/core/data The Data Manager for this component.
components/core/doc The JavaDoc for this component.

components/core/events Event XML (evx) files created by the de-
veloper are kept here. These files are used to
define event classes and event types for a
Curam application. The outputs produced from
an event file consist of an SQL script to popu-
late the event class and event type tablesin the
database, and a Java file which provides the
necessary constants to the application. See
Chapter 18, Events and Event Handlers for
more information

components/core/lib Contains the built component code packaged in
ajar e.qg. corejar.

Additionally, any third-party jar files specified
here will automatically be included in the
classpath used during compilation or a Batch
Launcher run. Fileslisted here will also be ad-
ded to any EAR (Enterprise ARchive) file cre-
ated and an entry added to the manifest file to
reference thisfile.

components/core/message Message (. xml) files created by the devel oper
are stored here. The Java artefacts produced
from a message file are a Java file and a prop-
ertiesfile. See Chapter 10, Message and Code
Table Files for more information

components/core/model The elements of a Clram application UML
model that relate to this component are avail-

able here.
components/ The component specific Application property
core/properties definitions are stored here.

components/core/rulesets Rules (. xm) files created by the developer
are stored here. These files may be hand-
crafted or created via an online client (Rules
Editor). The Cdram Rules Editor Guide de-
scribes how to create these files and the Clram
Rules Definition Guide explains ruleset struc-
ture in some detail.

components/core/sample An optional directory containing azip file of a
set of sample java source files matching the
component built code within the lib directory.
Used for debugging or reference,

10

2.3.2

Curam Server Developer's Guide

Name Contents

components/ An optional directory containing the . xsd
core/webservices schemafiles that are referenced by web ser-
vicesin this component.

components/core/workflow Workflow process definition (. xm) files cre-
ated by the developer are stored here. These
files may be hand-crafted or created viaan on-
line client (Process Definition Tool). The
Curam Wor kflow Reference Guide describes
these filesin some detail.

components/core/wsdl An optional directory containing the . wsdl
(Web Service Description Language) files that
are invoked from this component. A WSDL
description can be spread over several files that
reference each other possibly in some arbitrary
directory structure. These references can be re-
solved aslong as they arerelative

components/custom Any number of new components may be ad-
ded. They all have the same structure as the
core component.

components/custom/source All handcrafted Java source code, produced by
the developer, islocated here.

build.bat, build.sh A command file that builds your project. This
wrapsthebui | d. xm file (an Apache Ant
build file) that is contained within the EJ B-
Ser ver . The build structure and use of this
fileis described in Chapter 3, Build Files and

Their Targets

build.xml An Ant build file that extends the SDEJ build
scripts to enhance a number of targets.

deprecationreport.xml An Ant build file that provides deprecation re-
porting.

buildhel p.bat A command file that displays project help.

Thiswrapsthebui | d. xm file. The use of
thisfileis described in Chapter 3, Build Files
and Their Targets.

Table 2.1 Caram Application Installation Structure

Cuaram Application Build Structure

This section describes the directory structure created when a Caram applica-
tion is built. Example 2.2, The Ciram Application Build Srructure presents
the new directories that are created during the build process while Table 2.2,
Build Directory Structure gives more details on the contents of each direct-

11

ory.

SERVER DI R
+ build
+ dat amanager
+ ear
+ WAS
+ WS
+ jar
+ sqgl check
+ svr
+ cls
+ codet abl e
+ cls
+ gen
+ scp
+ sql
+ events
+ cls
+ gen
+ scp
gen
nmessage
+ cls
+ gen
+ scp
webservi ces
wor kf | ow
WsC
wsc?2
+ bui | dl ogs

+ +

+ + + +

Curam Server Developer's Guide

Example 2.2 The Caram Application Build Structure

Name
build/datamanager

build/ear/WAS

build/ear/WLS
build/jar

build/sglcheck

build/svr
build/svr/cls

Contents

Contains intermediate files produced by the
Data Manager and the resulting merge dmx
filesfrom theinitial, demo and test directories.
The Data Manager creates the intermediate
files when trangdlating the database independent
filesinto aformat which can be loaded onto
the database. Five database dependent . sql
files are produced as well as one database inde-
pendent . xm filewhichisresponsible for
loading the Large OBjects (LOBs) onto the
database.

The. ear file produced for WebSphere Ap-
plication Server.

The. ear file produced for WebLogic.

Jar files created by the command line project
build.

A database dependent sql j file which con-
tains a subset of the dynamic SQL statements
from the model and the inserts from the Data
Manager collated together.

All build artefacts for the server side.
All of the compiled classfilesfor the applica-

12

Curam Server Developer's Guide

Name Contents

tion.
build/svr/gen Generated server side sources.
build/svr/gen/ddl Database independent definition scripts that es-

tablish the structure of a Cdram server applica-
tion's database tables are generated into this
directory. Some intermediate files (including a
representation that is used to build to database
dependent sql j file) are also generated into

this directory.
build/ Root of the generated server source code hier-
svr/gen/<ProjectPackage> archy.
build/svr/gen/int Intermediate files produced during the build.

build/svr/codetable/cls The compiled codetable files.
build/svr/codetable/gen The generated codetable file artefacts.

build/svr/codetable/scp A copy of the results of merging the individual
codetable files according to the component or-
der (SERVER_COVPONENT _ORDER).

build/svr/events/cls The compiled event class and event typefiles.
These may be used as constants in the Caram
application.

build/svr/events/gen The generated events file artefacts which in-

cludethe. j ava files containing the event
class and event type constants and . dnx files
to be used to populate the event class and event
type tables on the database.

build/svr/events/scp A copy of the results of merging the individual
event files according to the component order
(SERVER_COVPONENT _ORDER).

build/svr/message/cls The compiled message files.
build/svr/message/gen The generated message file artefacts.

build/svr/message/scp A copy of the results of merging the individual
message files according to the component or-
der (SERVER_COVPONENT _ORDER).

build/svr/webservices Compiled classfiles for the web service sup-
port elements of the application.
build/svr/workflow A copy of the results of determining the indi-

vidual workflow process definition files to be
loaded onto the database according to the com-
ponent order

(SERVER_COVPONENT _ORDER)

build/svr/wsc2 Compiled classfiles for the Apache Axis2-

13

2.4

Curam Server Developer's Guide

NETgE Contents

generated client stubs for each registered out-
bound web service connector.

<app.xml> Extracted UML model contents, named as per
model.
buildlogs A log fileis created each time abuild is per-

formed and is stored here. This can be used to
investigate any problems with the build pro-
Cess.

Table 2.2 Build Directory Structure

Artefacts of the SDEJ

Example 2.3, SDEJ Structure shows the directory structure of the SDEJ
when installation is complete, while Table 2.3, SDEJ Structure at Installa-
tion gives more details on the contents of each directory. The CURANMSDEJ
is the root of the directory structure; the name given to wherever the SDEJ
has been set up or installed.

CURAMSDEJ
bi n

codet abl e
doc
drivers
ear

lib
nmessage
rsa
scripts
util

xml server

Example 2.3 SDEJ Structure

NETgE Contents

bin This directory contains al Ant build scripts ne-
cessary to build, verify and configure a Cdram
application. Thebui | d. bat script file de-
livered with the Curam application hooks into
this directory to invokethebui | d. xm file
contained here. Use of thisfile isdescribed in
Chapter 3, Build Filesand Their Targets

codetable This directory contains the set of codetable
files shipped by the SDEJ. These files use the
fileextension . i t x. Each of thesefiles can be
customized, see Section 10.3.6, Localizing
SDEJ Code Table Files for more details.

doc This directory contains the JavaDoc shipped

e T i S s

14

Curam Server Developer's Guide

Name Contents

with the SDEJ.

drivers This directory contains the drivers used by the
SDEJ to access the database.

ear This directory contains the deployment

descriptors and templates necessary to build
application ear (Enterprise Archive) files for
the chosen application server.

lib This directory contains the compiled SDEJ
source, Third Party JAR files, XML schemas
and stylesheets necessary to fulfill all SDEJ
functionality.

message This directory contains the set of message files
shipped with the SDEJ. Unlike the Ciram ap-
plication message files these infrastructure
message files use the file extension . i m .
Each of the files can be customized, See Sec-
tion 10.2.6, Localizing SDEJ Message Files for
more details.

rsa This directory contains the Eclipse plugin arte-
facts used to provide Curam functionality in
IBM® Rational® Software Architect. See the
Working with the Cdram Model in Rational
Software Architect for more details.

scripts This directory contains the database independ-
ent XML files necessary to create the database
required by the SDEJ.

util This directory contains useful utilities shipped
with the SDEJ.
xmlserver This directory contains the artefacts and build

scripts necessary to run the xmlserver. See
Curam XML Infrastructure Guide for morein-
formation

Table 2.3 SDEJ Structure at Installation

15

3.1

3.2

Chapter 3

Build Files and Their Targets

Overview

The IBM Curam Social Program Management Server Development Envir-
onment (SDEJ) uses Ant to process its build files. These Ant build files are
located in the / bi n directory of the SDEJ. The build files are invoked
through bui | d. bat and bui | dhel p. bat .

This chapter explains how to build a Cdram application once it has been in-
stalled, and the optional parameters which can be provided when performing
abuild.

Performing the Build

Invoking bui | dhel p at the command line (in SERVER _DI R) will show
all available targets. A single build target is required to build the Clram ap-
plication out-of-the-box for development. The user should:

e Start a command prompt and change directory to the top level of the
Curam project; the SERVER_DI R.

» Set up any environment variables that were not set as system properties
during the installation process as described in the Caram Third Party
Tools Installation Guide (e.g., JAVA HOMVE, J2EE JAR and
ANT_HOVE).

e Setup SERVER DI Rto point to the top level of your Clram project.
e Setup SERVER MODEL _NAME to be the name of your Clram project.
* Typebuild server and hit return to invoke this build target.

Invoking bui | dhel p at the command line (in SERVER_DI R) will show
all available targets. A single build target is required to build the Clram ap-
plication out of the box for development. The user should:

16

3.3

3.4

3.4.1

Curam Server Developer's Guide

Overriding default JUNIT JAR

Thejunit.jar fileisset by default relative to the JUNI T_HOVE envir-
onment variable, eg. ${sysenv.JUNIT HOVE}/junit.jar. To
override the location/naming of the j uni t. j ar file, a new system prop-
erty JUNI T_JAR is available for this purpose. If the JUNI T_JAR system
property is set, this will take precedence over the default. An example of its
usage (e0. Microsoft® Windows): set
JUNI T_JAR=c:\junit-4.8.]ar

Configuring the Build

This section describes the optional parameters that can be provided when
building the Caram application.

Cdram Build Settings

A number of parameters may be passed when performing the build. They
should be passed in the following way build server -
Dsome.setting=somevalue. These parameters are:

Parameter Values Description

dir.sde directory name The name of the directory contain-
ing the installed SDEJ that you want
to use for this build. The default is
the directory referred to by the
CURAMSDEJ environment variable.

prp.loglevel info Thelogging level used when record-
ing build progress to the build log.

warn The default isinfo.

error
verbose

debug

prop.file.location directory name Override the location of the direct-
ory that is used to pick up the prop-
erty files. By default the
<Pr oj ect Nane>/ properties
directory is used.

prp.maxcodetable number Override the maximum length of a

codelength code table code. Thisisused for
validation of codetables during gen-
eration, whereit is desired to ensure
that the code length defined in the
codetables being generated do not
exceed the length specified. Thisis

17

Parameter Values

prp.maxcodetable number
namelength

prp.maxcodetable number
descriptionlength

prp.warningstoerr true
ors false

prp.forcegen “-force:modelgen”

Curam Server Developer's Guide

Description

to ensure, you catch errors before
entering codetabl es onto the data-
base. This does not override the
maximum length on the database *.

Override the maximum length of a
code table nane. Thisisused for
validation of codetables during gen-
eration, where it is desired to ensure
that the name length defined in the
codetables being generated do not
exceed the length specified. Thisis
to ensure, you catch errors before
entering codetabl es onto the data-
base. This does not override the
maximum length on the database *.

Override the maximum length of a
codetabledescri ption. Thisis
used for validation of codetables
during generation, whereit is de-
sired to ensure that the description
length defined in the codetabl es be-
ing generated do not exceed the
length specified. Thisisto ensure,
you catch errors before entering
codetables onto the database. This
does not override the maximum
length on the database *.

Indicates that warnings thrown
when extracting and generating
from the model, code table and mes-
sage files should be treated as errors
(an error typically terminates the
process). The default isf al se.

Indicates that the build should pro-
gress even if errors are found when
generating code from the model.
The default isthat this should not
occur.

This meansthat if thisflagis set and
errors are found during generation,
the build is not interrupted after the
modelgen build target is executed.
Once thistarget is completeit will
eventually pass onto the com-
pile.generated target. See Sec-

18

Parameter Values

prp.noninternedst true
rings false

curam.using.dbcs true
false

curam.usi ng.nona true

SCii false
ex- String
tra.generator.opti

ons

portabil- BUILD,

ity.warnings DMX

enablefacade true
false

Curam Server Developer's Guide

Description

tion 3.5, What is happening under
the hood? for more details.

Note: The errors are still reported.

Indicates whether code table arte-
facts should be generated with
strings which will not be interned.
Thisis described in more detail in
Section 3.5.1.5, ctgen. The default is
true.

Should be set if the Caram model
contains DBCS (Double Byte Char-
acter Set) characters. If defined the
Curam application model isfirst
processed by the utility native2ascii.
The Model Extractor then uses this
new reworked model to produce
<project>.xml file. If this property is
not specified the Model Extractor
takes original model file asitsinput.

Should be set if the Cdram model
contains non ascii characters. If
defined the application model is first
processed by the utility native2ascii.
The Model Extractor then uses this
new reworked model to produce
<project>.xml file. If this property is
not specified the Model Extractor
takes original model file asitsinput.

Specifies additional command line
parameters for the server code gen-
erator. These settings are described
in Section 3.4.4, Generator Settings.

Specifies whether the SQL Checker
should determine if the build is port-
able to other database platforms and
whether the Data Manager files are
valid. The default isto check all of
these.

Specifies that the build should gen-
erate the session beans and their
corresponding deployment artefacts
for model elements identified as
facades. The default isf al se
which means they will not be gener-
ated.

19

Curam Server Developer's Guide

Parameter Values Description

prp.genschemaval true Indicates that the .xml file produced

idation false by the model extractor will be valid-
ated against aschemawhen it is be-
ing parsed and used by the code

generator to generate the application
code. Thedefault isf al se.

Table 3.1 Build Configuration Settings

ﬁ Database update for code table property changes

The relevant database column lengths must be altered to support the
changes made by wusing the prp.maxcodetablecodelength,
prp.maxcodetablenamelength, or prp.maxcodetabledescriptionlength
properties.

The columns should be atered using the Data Manager. In each case
a handcrafted SQL script that alters the relevant column's length
should be added to the custom database scripts folder. This script
should then be added as an entry to the datanman-
ager _confi g. xm file before loading the code tables into the
database. Please refer to Chapter 5, Data Manager for further in-
formation on using the Data Manager.

3.4.2 Java Compiler Settings

The following parameters may be passed when performing the build and
control the behavior of the Java compiler. They should be passed in the fol-
lowing way build server -Dcmp.debug=on. These settings are:

Parameter Values Description
cmp.debug on Indicates whether the source should
off be compiled with debug informa-
tion. The defaultison.
cmp.maxmemory Number The maximum size of the memory
for the underlying VM. The default
iS768.
cmp.nowarn on Indicates whether the - nowar n
of switch should be passed to the com-
piler. The default isof f .
cmp.maxwarnings Number Asks the compiler to set the maxim-

um number of warnings to print.
The default is 10000.

cmp.optimize on Indicates whether source should be
off compiled with optimization The de-
faultisof f .

20

Parameter Values
cmp.deprecation on
of f
cmp.verbose true
false
_cmp.i nclude AntRunt yes
ime 5

cmp.include.JavaRun yes

time no

cmp.failonerror true
false

cmp.listfiles yes
no

PRE_CLASSPATH Filename

POST_CLASSPATH Filename

Table 3.2 Java Compiler Settings

3.4.3 Java Task Settings

Curam Server Developer's Guide

Description

Indicates whether source should be
compiled with deprecation informa-
tion. The default is of f .

Asks the compiler for verbose out-
put. Thedefaultisf al se.

Indicates whether the Ant run-time
libraries should be included on the
classpath. The default isyes.

Indicates whether the default run-
time libraries, from the executing

VM (Virtual Memory), should be
included on the classpath. The de-
faultisno.

Indicates whether the build will con-
tinue even if there are compilation
errors. Thedefaultist r ue.

Indicates whether the source filesto
be compiled will be listed. The de-
faultisno.

An environment variable to allow
jar files to be added to the start of
the classpath used during compila-
tion or a Batch Launcher run. Files
listed here will be added to any
EAR (Enterprise ARchive) file cre-
ated and an entry added to the mani-
fest file to reference thisfile. Files
should be separated with the relev-
ant Path separator for your operating
system.

An environment variable to allow
jar files to be added to the end of the
classpath used during compilation
or aBatch Launcher run. Fileslisted
here will be added to any EAR file
created and an entry added to the
manifest file to reference thisfile.
Files should be separated with the
relevant Path separator for your op-
erating system.

21

3.4.4

Curam Server Developer's Guide

The following parameters may be passed when performing the build and
control the behavior of the Java runtime used by the build scripts. They
should be passed in the following way build server -Djava.fork=true.
These settings are:

Parameter Values Description
java.fork true Specifies whether any external
false classes are executed in another VM.
Thedefaultist r ue.
javamaxmemory Number The maximum size of the memory
to allocate to the forked VM. The
defaultis768m
javafailonerror true Specifies whether the build process
false should be stopped if an external java
command exits with areturn code
other than 0. The defaultist r ue.
javajvmargs String Specifies the arguments to passto
the forked VM The default ist he
enpty string.

Table 3.3 Java Task Settings

Generator Settings

The following parameters may be passed when performing the build and
control the behavior of the Cdram Generator. These parameters should be
passed in the following way build server -Dex-
tra.generator .options=-settingl -setting2.

These settings are:

Option Meaning

-nomessage <nnnnn> Prevent the message with this num-
ber from being displayed or acted
upon. Note that this can be used to
suppress errors which would nor-
mally cause the generator to termin-
ate. Doing so can cause the generator
to behave unpredictably or produce
code which cannot be built.

-primarykeyconstraintprefix Specify a prefix to be applied to

<prefix> primary key constraint namesin
IBM® DB2® and Oracle®
Database. See the Ciram Modeling
Reference Guide for more details.

-primarykeyindexprefix <prefix> Specify a prefix to be applied to
primary key index namesin DB2.

22

3.4.5

3.5

3.5.1

Curam Server Developer's Guide

Option Meaning

See the Caram Modeling Reference
Guide for more details.

-progresslevel <n> Specify the level of progressto be
reported by the generator.
-nonamedprimarykeyconstraint Specify that names should not be

provided for the primary keys. This
is off by default i.e. primary keys are
named. See the Ciram Modeling
Reference Guide for more details.

-nonamedforeignkeyconstraint Specify that names should not be
provided for the foreign keys. Thisis
off by default, i.e., foreign keys are
named. See the Clram Modeling
Reference Guide for more details

Table 3.4 Generator Settings

Other Environment Settings

If you are building on Red Hat Linux you may get this error during compila-
tion:

unmappabl e character for encodi ng UTF8

This is due to an encoding mismatch between Windows and Linux and can
be worked around by setting the LANG environment variable as follows:

LANG=en_US. | SO- 8859-1

What is happening under the hood?

While building the application is as simple as invoking the default target lis-
ted above, it is useful for the reader to understand the steps that are in-
volved. Each of these are ant targets which may be invoked separately:

generated

This target generates and compiles the code for use in an IDE and wraps the
following targets:

e wsconnector step generates client stub connectors for outbound web
servicesfrom . wsdl (WSDL is an acronym for Web Service Definition
Language) files registered in the configuration file,
<SERVER DI R>/ pr oj ect/ confi g/ webservi ces_confi g. x
m .

* wsconnector 2 Generates client stub connectors for outbound Axis2 web

23

Curam Server Developer's Guide

services from the registered WSDL files.

o« emx2xml - this extracts an intermediate XML representation from a
Curam application UML model.

* modelgen - this generates source code and other artefacts from the XML
representation of a Clram application model. It aso deletes any artefacts
that are no longer represented in the model.

* msggen - this merges the message file definitions according to the com-
ponent order and generates source code and properties from the resultant
message definitions.

» ctgen - this merges the code table definitions according to the compon-
ent order and generates source code from the resultant code table defini-
tions.

* evgen - this merges the event definitions according to the component or-
der and generates source code from the resultant event definitions.

e compile.generated - this compiles any generated source code that
doesn't depend on thei npl directory.

wsconnector

The wsconnector step generates client stub connectors for outbound web
services from .wsdl files registered in the configuration file,
<SERVER DI R>/ pr oj ect/ confi g/ webservi ces_confi g. xm .

An example is shown in Example 3.1, Example Web Services Configuration

<servi ces> .
<service |ocation= .
"conponent s/ <conponent _nane>/ wsdl / sone_ser vi ce/ TopLevel . wsdl "
/>
</ servi ces>

Example 3.1 Example Web Services Configuration

The location attribute is the location of the top level WSDL file relative to
the SERVER DI R. This configuration file also gives the ability to turn a
particular Web Service Connector on and off at will (bearing in mind that
business code that accesses the connector would be affected by this). It is
acceptable to have no service elementsin thisfile.

The generated connector client stubs must not be treated as source. They are
intended to be overwritten during each build, based on the WSDL files
provided, to ensure the connectors are always synchronized with the web
services they represent.

emx2xml

The emx2xml step transforms the UML model (which is located in the
<SERVER DI R>conponent s/ */ nodel directory) into an intermediate

24

Curam Server Developer's Guide

XML representation. The intermediate representation is stored at the top
level of the directory tree.

modelgen

The nodel gen step transforms the intermediate XML representation into
the final Java code, deployment support artefacts, web service support arte-
facts and a set of Data Definition XML files.

Data Definition XML Files

The Data Definition XML files are placed in the bui | d/ svr/ gen/ ddl
directory and are typically made up of a number of files:

» <SERVER MODEL_NAME> Tabl es. xni

« <SERVER MODEL_NAME>_| ndi ces. xm

e <SERVER MODEL NAME> Pri maryKeys. xni

« <SERVER MODEL_NAME>_Uni queConstrai nts. xni
¢ <SERVER MODEL_NAME> Forei gnKeys. xm

« <SERVER _MODEL_NAME> Bat ch. xml

» <SERVER MODEL_NAME> Fi ds. xm

¢ <SERVER MODEL_NAME> Fi el dsRet ur ned. xmi

« <SERVER _MODEL_NAME> SQLJ. xni

Thefirst five of these files contain database independent definitions for cre-
ating tables on the database and placing constraints on these tables.
<SERVER_MODEL NAME> Bat ch. xni describes the persistent data that
IS necessary to support the batch process related information that has been
captured in the UML model. <SERVER_MODEL _NAME> fid.xm de
scribes the persistent data that is necessary to support the security related in-
formation that has been captured in the UML model.
<SERVER_MODEL_ NAME> Fi el dsRet ur ned. xm describes the per-
sistent data that is necessary to support Field Level Security.
<SERVER_MODEL NAME> SQLJ. xml contains a representation of all
the hand-crafted SQL in the model and is used by the checksqgl target. More
information on the contents of these files is provided in Chapter 5, Data
Manager.

i Foreign Keys and Clram
The Caram application is responsible for enforcing referential integ-
rity and foreign keys are generated to support testing of this. The use
of declarative referential integrity (foreign keys) in a production sys-
tem will impact the performance of that system and is consequently
not supported.

25

Curam Server Developer's Guide

Java Code

A large number of Java code artefacts are generated as part of this model
generation build. They are generated according into a number of categories
(and are al located under the /

bui | d/ svr/ gen/ <Pr oj ect Package>/ and /

bui | d/ svr/ gen/ <Proj ect Package>/ <CodePackage> director-
ies). A CodePackage may be empty or there may be a number of Code-

Package elements within each other (for example,
<Pr oj ect Package>/intf and
<Pr oj ect Package>/ <CodePackageA>/ <CodePackageB>/i nt f

may both be generated depending on the options that have been chosen).

* intf - Definestheinterface for the objects that have been modeled.

 fact - Provides factory wrappers for the objects identified in bizinter-
face.

* base - Ensures the developer provides implementations for those meth-
ods which must be hand crafted.

* renot e - Provides remote interfaces for the objects which can be ex-
posed to the client.

e struct - Defines the classes which model parameters between the ob-
jects.

* rules/rdo - Defines the classes for the rules data objects. RDOs
cannot be stored in code packages so the rules folder is always at the top
level. As well as the classes this directory contains a file named
r doi ndex. pr operti es which contains alisting of all the generated
objects.

Deployment Artefacts

A number of deployment artefacts are also generated by the model build.
This section does not attempt to detail the meaning of these files but simply
introduces the files and their locations. These artefacts are used when build-
ing an application . ear file where they are passed into the XDocl et tool.
They are generated according to the following categories:

 |IBM Specific Metadata: provides support for deployment on Web-
Shere Application Server. These artefacts are generated into the /
bui | d/ ear / WASdirectory and contain the necessary . xm , . xm and
policy files.

» Oracle Specific Metadata: provides support for deployment on WebLo-
gic. These artefacts are generated into the / bui | d/ ear/ WS direct-
ory and contain the necessary . xmi files.

Web Service Artefacts

26

Curam Server Developer's Guide

Finally a number of Web Service artefacts are generated. This section does
not attempt to detail the meaning of these files but simply introduces the
files and their locations. These artefacts are used when building an . ear
file that supports Web Service invocation. The artefacts consist of special
structs which contain web service conversion routines and a web service
configuration file (ser ver - conf i g. wsdd) and are generated into the /
bui | d/ svr/ gen/ webser vi ces directory.

msggen

Curam message files alow a Curam application to be localized without
needing manipulation of hand-crafted code. These files should be used in
preference to hard-coded strings within hand-crafted code.

Message files are located in the / message directory of a component. The
Social Program Management Platform is shipped with a set of message
files. These files may be overridden by placing new message files in the
SERVER DI R/ conponent s/ <cust on® directory, where <cust on®
is any new directory created under components that conforms to the same
directory structure as conponent s/ cor e. The override process involves
merging all message files of the same name according to a precedence order
where the order is based on the SERVER COMPONENT _ORDER environ-
ment variable. This variable lists the components in a delimited list in order
of priority from most to least important.

The msggen build target performs the merge of message files and then
trandates the resultant merged message file (which is stored in /
bui | d/ svr/ message/ scp directory) into Java source code and prop-
erty filesso it can be accessed at runtime.

The generated Java code is then compiled and packed into /
bui | d/j ar/ nmessages. j ar.

ctgen

Curam code table files allow an application to use a level of indirection
when storing commonly used constants on the database. This level of indir-
ection enables efficient database storage. Codetable files are located in the
sour ce/ codet abl e directory of a component. Like message files, code
table files are shipped with the Social Program Management Platform and
may be customized through the merge behavior.

The ctgen build target merges Cdram code table (. ct x) files and then
trandates the resultant merged code table file (which is stored in /
bui | d/ svr/ codet abl e/ scp directory) into Java source code and
SQL fileswhich are used to return codes from the database at runtime.

The pr p. noni nt er nedst ri ngs parameter indicates whether code ta-
ble artefacts should be generated with strings that are not interned. The use
of interned strings in Java avoids the creation of duplicate
java.l ang. Stri ng objects. Consequently memory usage may be re-
duced as there will be only one St r i ng object created for a string value, ir-

27

3.5.2

Curam Server Developer's Guide

respective of how many references to that string value exist.

2

n Note

The default value for this property is true. Setting
pr p. noni nt er nedstrings tofal se means that strings will
be interned. Although this may result in decreased memory usage by
the final application, dependency checking will operate incorrectly
when . ct x files are changed.

The generated Java code is then compiled and packed into /
bui l d/jar/codetabl e.jar.

evgen

Events provide a mechanism for loosely-coupled parts of a Cdram applica-
tion to communicate information about state changes in the system. When
one module in the application raises an event, one or more other modules re-
ceive notification of that event having occurred provided they are registered
aslistenersfor that event. Event files are located in the event s directory of
a component.

The evgen build target merges Curam event (. evx) files and then trandlates
the resultant merged event file (which is stored in /
bui | d/ svr/ event s/ scp directory) into Java source code which can be
subsequently used as constants in the application and also . dnx files which
are used to populate the event class and event type database tables.

The generated Java code is then compiled and packed into /
buil d/jar/events.jar.

compile.generated

The compile.generated target compiles any generated source code that
doesn't depend on the i npl directory. This includes the classes with the

following patterns from the bui | d/ svr/ gen directory:
[struct//*_ java

[intf//*. java

<Proj ect Package>/*.|ava

This step uses an augmented version of Ant's dependency checker to minim-
ize the build time.

implemented
This target completes the build and wraps the following targets:

» compileimplemented - this compiles all hand-crafted source code and
any generated code that wasn't built during the compile.generated step.
Again this step uses an augmented version of Ant's dependency checker
to minimize the build time.

compile.implemented

28

3.6

Curam Server Developer's Guide

The compileimplemented step simply compiles all hand-crafted source
code and any generated code that wasn't built during the compile.gener ated
step. Thisincludes the classes with the following patterns from the bui | d/
svr/ gen directory:

**[base/ **/*. java

[fact//*.]java

**[/rul es/| oaders/*.java

**[rul es/rdo/*.java
**[remote/ **/*.] ava

From theconponent s/ */ sour ce directory -

**/i

mpl /**/*_java

**/rul es/| oaders/*.java
**[webservice/ **/*.java

Ex

tra Targets

A number of extra targets are provided which are not necessary to build a
server. Some of the more useful targets are listed below:

clean - Delete all the generated and compiled files to ensure all gener-
ated and compiled artefacts are removed and the next build is fresh and
clean. It is useful to periodically perform clean builds because of limita-
tions in the dependency checker provided by Ant.

encrypt - Encrypt a plain-text database password so the encrypted pass-
word can be safely stored in a property file. None of the Caram property
files contain plain-text passwords so the passwords contained within
them are automatically decrypted.

database - This transforms the database independent xml filesinto DDL
files and places the contents of these DDL files on the database. The
database target also provides support for applying rule sets to the data-
base (more detail on thisis provided in Section 3.8, Rules Targets).

mer geshortnames - Merges file Shor t Nanmes. properties from
all components

extractdata - This extracts the contents of all or some of the tables on
the database and transforms them into database independent XML files.
More detail on thistarget is provided in Chapter 5, Data Manager.

reloadextracteddata - This reloads data that was extracted using the ex-
tractdata command back onto the database.

checksgl - This validates the hand-crafted SQL and test data against the
actual database. If this step is not run syntactical (and semantic) mis-
takes in hand-crafted SQL will not be determined until run-time because
of the dynamic nature of JDBC (Java Database Connectivity)®. This step
operates by producing an SQLJ file and completely relies on the syntax
checking provided by the particular database. The checksgl target uses
the output that is built during the database target. So it is a pre-requisite

29

Curam Server Developer's Guide

to have run database target before running checksgl. Any errorsthat are
discovered while running the checksqgl target are logged to the console
and to a timestamped log file in the buildlogs directory. More detail on
thistarget is provided in Chapter 6, SQL Checker.

deprecationreport - The command-line Java compiler deprecation
warnings have been extended to apply to certain Caram builds and val-
idations. This helps to quickly pinpoint where custom dependencies ex-
ist on deprecated out-of-the-box artefacts. This target combines all the
Curam builds and validations that support deprecation warnings. As
such, the build output from this target provides a comprehensive over-
view of all deprecation warnings for all supported builds (server and cli-
ent builds, workflow validations, rules validations, etc). Please note that
this target starts with a clean (as the Java compiler does not produce
warnings for incremental builds). See Chapter 12, Deprecation for more
information.

foreignkeycheck - In a production environment it is not desirable to en-
able foreign keys on the database because of the result performance de-
gradation. Asaresult it is possible for referential integrity to be violated
as a result of program bugs or manual intervention by a Database Ad-
ministrator. This target validates that the Referential Integrity has not
been violated. It performs this task by loading the generated foreign key
constraints for the application and verifying that for each child record of
each foreign key the referenced parent key exists. The key values of any
missing parent key records are reported.

test - Execute the tests associated with the application.

» |If Clover is available a code coverage report can also be generated.
More details on the usage of Clover are available in Section 3.7,
Clover Targets.

 TheJUni t forkmode controls the number of Java Virtua Machines
that gets created if you want to fork some tests; and it can be set dy-
namically by specifying j uni t . f or k. node property, while ex-
ecuting the test target.

For Example:

build test -Djunit.fork.node=once

Possible values for this property are:
per Test - createsonly asingle JavJdava VM for all tests.

per Bat ch - creates a Java VM for each nested batch test and one
collecting al nested tests.

once - createsonly asingle Java VM for all tests.

Default value of per Test isusedif j uni t. f or k. node property
isnot set.

30

Curam Server Developer's Guide

It is possible to exclude or include set of tests while running the
test target. To Exclude/include tests, copy the Excl ude-
Tests.txt or IncludeTests.txt file located in the
Cur anSDEJ\ ut i I\ directory. This new file can then be modified
to add the tests that you want to exclude or include and can be refer-
ence using the property override.

For Example:

buil d test
- Dexcl ude. test.fil e=<PATH TO THE FI LE>\ Excl udeTest s. t xt

buil d test
-Dinclude.test.fil e=<PATH TO THE FI LE>\| ncl udeTest s. t xt

configtest - Examine the current environment to ensure that the various
environment settings and property files have been established correctly.
This tool attempts to diagnose any problems in the environment which
would be an impact. It checks the validity of the:

versions of third party tools including Java® SE Runtime Environ-
ment (JRE), Ant, application server and database.

Boot strap. properties including properties
curam db. nane or curam db. oracl e. servi cenane,
curam envi ronmnent . bi ndi ngs. | ocati on,

curam db. user nane, curam db. password and
curam db. type

database connectivity by attempting to connect to the database de-
scribed by propertiesin Boot st rap. properti es and ensures it
isavalid database.

database configuration e.g. DB2 buffer pools and tablespaces, Or-
acle privileges for the Cdram user

application server variables: WAS HOVE and W.S HOVE dependen-
cies are also checked i.e. if using WebSphere the IBM® JDK and
IBM® Java EE must be used.

Ant variablesi.e. ANT _HOVE and ANT_OPTS

server and client environment variables

configreport - Create aconfi g_report. zi p file containing al the
relevant settings and software versions on the machine. This can be used
if remote support is required.

javadoc - Produce the Java Documentation (JavaDoc) from the applica-
tion. To produce useful JavaDoc, comments must have been placed in
the model aswell asin the code.

31

Curam Server Developer's Guide

apijavadoc - Generates the javadoc for black/grey box components, this
is based on the javadoc.properties files.

release - Gathers al the files together that are necessary to run Clram
on another machine in the <SERVER DI R>/ r el ease directory. This
target is used when building for atarget platform (e.g. building on Win-
dows for deployment on IBM® z/OS®) or moving the application
between machines. On moving the release directory to another machine
aBoot strap. properties and AppSer ver. properties prop-
erty filesmust be placed inar el ease/ proj ect/ properti es dir-
ectory and the following environment variables must be set: SERV-

ER_DI R must point at the release directory, SERVER MODEL_NAME
must be set to the name of the application model, and CURAMSDEJ must
be set to the location of the SDEJ before any of the scripts can be used.
The SERVER _COMPONENT _ORDER environment variable must be set
on your target environment where you plan to work with the resulting
release directory, and this value must be the same as the value used in
your source environment. The files that are copied are:

e AntBuildfiles,

e Projectjars,

« DDL files;

e SQL files;

» Code Tablesfiles,

» Batch Launcher;

« DataManager;

* Application EAR files.
* XML Server files.

insertproperties - Merges al the properties (.prx) files defined under
the properti es directory for each of the application's components,
and inserts them into the database. See Section 4.2, Application Proper-
tiesfor more details.

extractproperties - Extracts the properties from the database, and stores
them into a database independent prx file. The generated prx file is
stored at <SERVER DI R>/ bui | d/ properti esextractor/

mer geuser prefer enceproperties - Merge the user preference properties
files.

model - Extract the model and generate source code and other artefacts
from the XML representation of a Clram application. The model target
combines the modelext and modelgen targets.

runbatch - Runs the Batch Launcher. For more information refer to the

32

3.7

3.8

Curam Server Developer's Guide

Curam Batch Processing Guide.

* runstatistics - Runs statistics for the database. For more information
refer to Section 5.8, Satistics.

» supplement - Compiles and jars al the Java files contained within any
supplementary directory specified by the - Dsuppl e-
ment =<DI RECTORY_NANME> parameter. A
<Dl RECTORY_NAME>. j ar file will be created and stored in the
<SERVER DI R>/ bui | d/ j ar/ directory.

» police.accessrestrictions - Provides a report of accesses to restricted
APIs within the Cdram application. The APIs that are restricted are
marked by annotations within the Javadoc and indicate areas that should
not be accessed by custom code. This policing tool highlights any code
that accesses restricted APIs and out-of-the-box code containing a re-
stricted annotation. During development these restrictions are further
backed by the non-delivery of sample Java files, Eclipse access restric-
tions and that there is no JavaDoc available.

Clover Targets

Clover is a code coverage tool that can easily be integrated into the Cdram
build environment. A number of Ant targets are provided to aid in the integ-
ration of Clover. For these targets to work correctly the cl over. j ar and
clover.license files must be obtaned and installed in the
<ANT_HOVE>/ | i b directory. More information on obtaining and using
Clover can be found at http://www.atlassian.com/software/clover/overview.

» clover.server - This is the equivalent of the server target and aso in-
cludes instrumenting the compiled . j ava files with the necessary
Clover information.

» clover.supplement - Thisisthe equivalent of the supplement target and
also includes instrumenting the compiled . j ava files with the neces-
sary Clover information.

o clover.report.html - This target will generate a html report detailing
code coverage. The report is generated into the
<SERVER DI R>/ cl over/cl over _htni folder.

» clover.report.viewer - This target will launch the Clover viewer with
details of the code coverage.

Rules Targets
The Curam Rules Codification Guide and the Ciram Rules Editor Guide
provide an introduction to the support for rules in Caram. A rule set is the

fundamental structure which describes the rules within a Caram application.
It is the database that is the system of record for rule sets. This allows the

33

http://www.atlassian.com/software/clover/overview

Curam Server Developer's Guide

rule sets to be changed at run-time via an administration client. However,
support is also provided for representing rule sets as . xm files. These
. xm files can be used for source control management. To allow for the
synchronization between these . xm files and the database a number of ex-
tratargets have been introduced:

2

1

Representing Rulesets as XML Files

Support for ruleset import and export is only there to alow source
control management and to exchange rulesets between machines.
Direct editing of the ruleset XML filesis not supported in any way.

listrulesets - Produce a listing of the names and identifiers of the rule-
sets that are present on the database.

exportruleset - This target exports a ruleset definition (.xml file) from
database to the file system. This command takes two parameters - rule-
setid and component. Exported ruleset will be saved as [specified rule-
setid].xml in <SERVER_DI R>/ conponent s/ [speci fied com
ponent]/rul eset s folder.

rul eseti d- Identifier of the ruleset that is to be exported from the
database.

conponent - Name of the component to which the rule set has to be
exported (copied).

For example:

bui |l d exportrul eset
- Drul eset i d=PRODUCT_1
- Dconponent =cust om

Where 'PRODUCT _1' denotes the identifier of the ruleset that is to be
exported from the database and ‘core’ denotes the name of the compon-
ent to which the rule set has to be exported (copied).

importruleset - This target imports a ruleset definition (.xml file) from
afile system to the database. It validates the rule set ID for uniqueness
before importing the rule set, it does this by searching for existing IDsin
the SERVER DI R/ conponents/../rul esets directories. This
command takes two parameters- ruleset.file and overwrite.

rul eset.fil e - Thisparameter denotes the path of the ruleset that is
to be placed on the database.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the ruleset already exists.

For example:

buil d inportrul eset
-Druleset.file=

<SERVER DI R>/ conponent s/ core/ rul eset s/ PRODUCT_1. xmi
-Doverwrite=true

34

Curam Server Developer's Guide

Where

<SERVER DI R>/ conponent s/ cor e/ rul eset s/ PRODUCT 1.
xml denotes the path of the ruleset definition file and #true# denotes the
flag to overwrite the database, if ruleset already exists.

validateallrulesets - Validates al the rule sets in the Ctram application.
This target has to be invoked from the SERVER DI R directory, where it
scans al the components for rule set files and validates them. For
schema validation this target uses the rule set schema located in
CURAMSDEJ/ | i b directory by default, unless another schema is spe-
cified by using an optional property 'schemarfile'.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER DI R/ conponents/../rul esets dir-
ectories.

schema.file (Optional) - Thisoptiona parameter specifies the
rule set schemathat has to be used for validating the rule sets.

For example:

ant validateal lrul esets

ant validateallrul esets
-Dschema. fil e=C./ Rul es/rul eset . xsd

validaterulesets - Validates all the rule sets in the specified directory.
The property 'rulesets.dir' has to be specified when invoking the target.
For schema validation this target uses the rule set schema located in
CURAMSDEJ/ | i b directory by default, unless another schema is spe-
cified by using an optional property ‘schema.fil€e'.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER DI R/ conponents/../rul esets dir-
ectories.

schema.file (Optional) - Thisoptiona parameter specifies the
rule set schemathat has to be used for validating the rule sets.

rul esets. dir - This parameter specifies the directory within which
rule sets are to be validated.

For example:

ant validaterul esets
-Drul esets.dir=
<SERVER DI R>/ conponent s/ cor e

ant validaterul esets
-Drul esets.dir=
<SERVER DI R>/ conponent s/ cor e
-Dschenmn. fil e=C./ Rul es/rul eset . xsd

validateruleset - Validates the specified rule set. The property 'rule-
set.file' that denotes the rule set path and file name has to be specified
when invoking the target. For schema validation this target uses the rule
set schema located in CURAMSDEJ]/ | i b directory by default, unless

35

Curam Server Developer's Guide

another schemais specified by using an optional property 'schemarfile’.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER DI R/ conponents/../rul esets dir-
ectories.

schema.file (Optional) - Thisoptiona parameter specifies the
rule set schemathat has to be used for validating the rule set.

rul eset.file - This parameter specifies the rule set path and file
name.

For example:

ant val i dat erul eset
-Drul esets.file=
<SERVER DI R>/ conponent s/ core/ rul eset s/ PRODUCT_1. xmi

ant val i dat erul eset
-Drul esets.file=
<SERVER DI R>/ conponent s/ core/ rul eset s/ PRODUCT_1. xmi
-Dschemn. fil e=C./ Rul es/ rul eset . xsd

rulesfunctionsmerge - Merge rules custom function meta-data from
xml files.

3.9 Classic IEG Targets

The Classic Intelligent Evidence Gathering Guide provides an introduction
to scripts and question groups within Classic |EG. The database can be pop-
ulated by using the Classic |EG editor to define these scripts. However, sup-
port is also provided for representing the groups and scripts as xml data. Al-
though the files are consistent with well and fully formed xml, the file ex-
tensions are modified to denote the contents as script (. sx) and question
group(. gx). These xml data files can be created and manipulated directly to
allow for the synchronization between these files, and the database. A num-
ber of extratargets have been introduced to enable this:

importieg - This target imports al 1EG files in a specified directory to
the database. This command takes two parameters - directory and over-
write.

di rect ory - This parameter denotes the directory from which IEG
scripts and question groups are imported.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if an imported script or group already exists.

For example:

build inportieg
-Ddi rectory=
<SERVER DI R>/ conponent s/ core/ i eg
-Doverwrite=true

36

Curam Server Developer's Guide

Where <SERVER DI R>/ conponent s/ cor e/ i eg denotes the path
to the import directory and #true# denotes the flag to overwrite the data-
baseif afile already exists.

importiegscript - This target imports an |1EG script from afile system to
the database. This command takes two parameters - |IEG file and over-
write.

i eg. file - This parameter denotes the full path of the IEG script to
be imported.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the script already exists.

For example:

buil d inportiegscript
-Dieg.file=
<SERVER DI R>/ conponent s/ cor e/ i eg/ PRODUCT_1. sx
-Doverwrite=true

Where

<SERVER DI R>/ conponent s/ core/ i eg/ PRODUCT_1. sx de
notes the path of the script definition file and 'true’ denotes the flag to
overwrite the database if the question script already exists.

importiegcomponent - This target imports all IEG data (IEG scripts
and question groups) from thei eg subdirectory of a specified compon-
ent to the database. This command takes two parameters - component
and overwrite.

conmponent - This parameter denotes the component from which to
import all 1EG datato the database.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the IEG data already exists.

For example:

bui I d i nporti egconponent
- Dconmponent =cor e
-Doverwrite=true

Where cor e denotes the path of the component and 'true’ denotes the
flag to overwrite the database if the question script already exists.

importiegsubdirs - This target imports al 1EG data (IEG scripts and
question groups) from the i eg subdirectory of subdirectories of a spe-
cified directory to the database. This command takes two parameters -
directory and overwrite. This target is used when it is required to import
IEG data from multiple components.

37

Curam Server Developer's Guide

di rect ory - This parameter denotes the directory whose subdirector-
ieswill be searched for IEG data to import to the database.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the IEG data already exists.

For example:

build inportiegsubdirs
- Ddi r ect or y=<SERVER DI R>/ conponent s
-Doverwrite=true

Where <SERVER DI R>/ conponent s denotes the path of the direct-
ory and 'true’ denotes the flag to overwrite the database if the IEG data
aready exists.

importquestiongroup - Thistarget imports an IEG question group from
afile system to the database. This command takes two parameters - IEG
file and overwrite.

i eg. file - This parameter denotes the full path of the IEG question
group to be imported.

overwite (Optional) - Thisisan optional flag with the default
value as f al se, indicating whether the database should be overwritten
if IEG import data already exists.

For example:

bui I d i nport questi ongroup
-Dieg.file=
<SERVER DI R>/ conponent s/ cor e/ i eg/ PRODUCT_1. gx
-Doverwrite=true

Where

<SERVER_DI R>/ conponent s/ core/ i eg/ PRODUCT_1. gx de
notes the path of the question group definition file and #true# denotes
the flag to overwrite the database, if the question group already exists.

exportiegscript - This target exports a script definition (.sx file) from a
database to the file system. This command takes two parameters - script-
id and component. Exported scripts will be saved and named as
[specified rulesetid].sx in the
<SERVER DI R>/ conponent s/ [speci fi ed conpon-

ent]/ieg folder.

scri pti d- Identifier of the script that is to be exported from the data-
base.

conmponent - Name of the component to which the script has to be ex-
ported (copied).

For example:

38

Curam Server Developer's Guide

bui |l d exportiegscript
-Dscri pti d=PRODUCT_1
- Dconmponent =cor e

Where 'PRODUCT _1' denotes the identifier of the script that isto be ex-
ported from the database and 'core’ denotes the name of the component
to which the script has to be exported (copied).

exportiegscripttodir - This target exports a script definition (.sx file)
from a database to the file system. This command takes two parameters -
scriptid and exportdirectory. Exported scripts will be saved and named
as [specified rulesetid].sx in the specified export directory.

scri pti d- Identifier of the script that is to be exported from the data-
base.

exportdirect ory- Full path of the directory to which the script has
to be exported (copied).

For example:

bui |l d exportiegscripttodir
-Dscri pti d=PRODUCT_1
- Dexportdirectory=C:/exportedscripts

Where 'PRODUCT _1' denotes the identifier of the script that isto be ex-
ported from the database and 'C:/exportedscripts denotes path to the dir-
ectory to which the script has to be exported (copied).

exportfulliegscript - This target exports a specific script definition (.sx
file) and its associated group definitions(.gx files) from the database to
the file system. If any of the files exported are read only, a warning will
be reported and the file will not be overwritten. The exportfulliegscript
command takes two parameters - scriptid and component. The exported
script is named as [specified scriptid].sx and the associated question
groups are saved and named as [associated questiongroupid].gx in the
<SERVER_DI R>/ conponent s/ [speci fi ed conpon-
ent]/ieg folder.

scri pti d- Identifier of the script that is to be exported from the data-
base.

conponent - Name of the component to which the script has to be ex-
ported (copied).

For example:

bui |l d exportiegscript

-Dscri pti d=PRODUCT_1
- Dcomponent =cor e

Where 'PRODUCT _1' denotes the identifier of the script that isto be ex-
ported from the database and ‘core’ denotes the name of the component
to which the script and its associated question groups has to be exported

39

Curam Server Developer's Guide

(copied).

exportfulliegscripttodir - This target exports a specific script definition
(.sx file) and its associated group definitions(.gx files) from the database
to the file system. If any of the files exported are read only, a warning
will be reported and the file will not be overwritten. The exportful-
liegscripttodir command takes two parameters - scriptid and exportdir-
ectory. The exported script is named as [specified scriptid].sx and the as-
sociated question groups are saved and named as [associated question-
groupid].gx in the specified export directory.

scri pti d- Identifier of the script that is to be exported from the data-
base.

exportdirectory- Full path of the directory to which the script has
to be exported (copied).

For example:

build exportfulliegscripttodir
-Dscri pti d=PRODUCT_1
- Dexportdirectory=C: /exportedscripts

Where 'PRODUCT _1' denotes the identifier of the script that isto be ex-
ported from the database and 'C:/exportedscripts denotes the path to the
directory to which the script and its associated question groups has to be
exported (copied).

exportquestiongroup - This target exports a question group definition
(.gx file) from database to the file system. This command takes two
parameters - groupid and component. Exported question groups will be
saved as [specified rulesetid].gx in
<SERVER DI R>/ conponent s/ [speci fi ed compon-
ent] /i eg folder.

gr oupi d- Identifier of the question group that is to be exported from
the database.

component - Name of the component to which the rule set has to be
exported (copied).
For example:

bui | d exportquesti ongroup
- Dgr oupi d=PRODUCT _1

- Dconponent =cor e

Where 'PRODUCT _1' denotes the identifier of the question group that is
to be exported from the database and ‘core’ denotes the name of the com-
ponent to which the question group has to be exported (copied).

listiegscripts - Produces alist of all the IEG scripts available in the data-
base.

listquestiongroups - Produces a list of all the question groups available

40

Curam Server Developer's Guide

in the database.

migrateiegscript - Migrate a Classic IEG script definition to an IEG2
script definition (use -Dscriptfilename= -Dinputdir= -Doutputdir=).

scri ptfil enane - denotesthe name of the file to import.
I nput di r - denotes the directory to import from.
out put di r - denotes the directory to write the migrated script to.

validatealliegscripts - Validates the |EG scripts.

3.10 IEGZ2 Targets

validateieg2scripts - Validates the IEG2 scripts in the specified direct-
ory. Requires IntelligentEvidenceGathering component to run.

3.11 Application Configuration Import and Export Tar-
gets

The application configuration information for the Cudram web client is
stored as a series of XML and properties files in the server source directory.
It is merged and loaded into the database at build time from where it is read
by the client tier at run time.

Therulesfor merging are asfollows:

Filesin the cl i ent apps directory take precedence over files in the
t ab directory, regardiess of component order. E.g: if a file named
CaseHone. nav existsinthecl i ent apps directory of any compon-
ent of the application, then any files named CaseHone. nav which ex-
istinthet ab directory of any component are ignored.

Filesinthecl i ent apps directory are selected (not merged) based on
the component order. E.g: if afile name CaseHone. nav exists in the
cl i ent apps directory of components Customl and Custom2, and
Customl is ahead of Custom2 in the component order, then the version
of CaseHone. nav from Customl is used and the version from Cus-
tom2 isignored.

Filesin thet ab directory are merged according to the component order
- provided that a corresponding file in acl i ent apps directory does
not exist. E.g: if afile named Sear chTab. nav existsin thet ab dir-
ectory of components CustomA and CustomB, but not in the cl i -

ent apps directory of any component, then the contents of the two files
are merged together.

]

H Note
Note that only OOTB Cdram components may use thet ab dir-

41

3.12

Curam Server Developer's Guide

ectory to store application configuration files; this directory may
not be used by custom components. Custom components may
use only the cl i ent apps directory for application configura-
tion files.

Onetarget controls the import and export of application configuration to and
from the database:

inser ttabconfiguration

Merges application configuration files from disk and inserts the data into the
database. The default action of this target is to insert the application config-
uration data onto the database but it can also be used to:

» Merge the application configuration files and write the merged files to a
directory on disk.

If property dir.tab. merge is set then it denotes a directory into
which the application configuration files from the various components
of your application will be merged. In this mode, nothing is written to
the database. E.o: build inserttabconfiguration -
Ddir.tab.merge=C:/EJBSer ver/tabExtract

» Extract the application configuration data from the database and write it
to adirectory on disk.

If property di r.tab. extract is set then it denotes a directory into
which the application configuration data from the database will be ex-
tracted. In this mode the application configuration data is read from the
database and nothing is written to the database. E.g: build inserttabcon-
figuration -Ddir .tab.extract=C:/EJBSer ver /tabExtract

Workflow Targets

The Curam Workflow Reference Guide provides an introduction to the sup-
port for workflow in Cdram. A workflow process definition is the funda-
mental structure which describes the workflow process within a Cdram ap-
plication. Workflow process definitions are stored on the database, but can
also be represented as . xml files and loaded onto the database as needed. A
number of targets exist to alow for the validation of workflow process
definition . xm files:

i Prerequisites for validating workflow process definition

files

Workflow process definitions can make reference to rule sets (see
Curam Rules Codification Guide) and Curam events (See
Chapter 18, Events and Event Handlers) in the process xm files.
Therefore, all rule sets and events that are referenced in workflow
process definitions being validated must already be loaded onto the
database before the associated workflow process definition files can
be validated using the targets outlined below.

42

Curam Server Developer's Guide

validatewor kflows - supports validation of the workflow process defini-
tion files in the specified directory. The property ‘workflow.dir' has to be
specified when invoking the target.

wor kf | ow. di r - This parameter denotes the directory within which
workflow process definition files are to be validated.

val i dat e. schema. onl y - This optional parameter, if set to true,
only performs schema validation on the workflow xmi files and by-
passes the full semantic validation that would otherwise be performed.

For example:

ant val i dat ewor kf | ows
- Dwor kf | ow. di r =
<SERVER DI R>/ path to workflow directory

validateallworkflows - performs validation of all workflow process
definitions files in the Cdram application.

val i dat e. schema. onl y - This optional parameter, if set to true,
only performs schema validation on the workflow xm files and by-
passes the full semantic validation that would otherwise be performed.

For example:
ant val i dat eal | wor kf | ows

validatewor kflow - supports validation of the specified workflow pro-
cess definition file. The property ‘'workflow.file' has to be specified
when invoking this target.

wor kf | ow. fi | e - This parameter denotes the full path to the work-
flow process definition file that isto be validated.

val i dat e. schema. onl y - This optional parameter, if set to true,
only performs schema validation on the workflow xm file and bypasses
the full semantic validation that would otherwise be performed.

For example:

ant val i dat ewor kf | ow
- Dwor kf |l ow. fi |l e=
<SERVER DI R>/path to workflow file to be validated

importworkflow - Import a workflow process definition (use -
Dworkflow.file= -Doverwrite=).

wor kf | ow. fi | e - This parameter denotes the full path to the work-
flow process definition file that isto be imported.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the workflow process definition already exists.

importwor kflows - Import the workflow definitions in the specified dir-
ectory (use -Dworkflow.dir= -Doverwrite=).

43

3.13

Curam Server Developer's Guide

wor kf | ow. di r - This parameter denotes the directory from which the
workflow definitions should be imported.

overwite (Optional) - Thisisan optiona flag with the default
value as f al se, indicating whether the database should be overwritten
if the workflow process definitions already exist.

listworkflows - List all process definitions available in the database.

Deployment Targets

A number of extra targets exist which allow an application to be deployed
on an application server. These commands are fully described in the Clram
Deployment Guide?, but a summary is provided here.

weblogicEAR - Produce an . ear file that can be deployed on WebLo-
gic.

websphereEAR - Produce an . ear file that can be deployed on Web-
Sohere Application Server.

weblogicHelpEAR - Produce an Online Help application Cur am
Hel p. ear filethat can be deployed on WebLogic.

websphereHelpEAR - Produce an Online Help application Cur am
Hel p. ear filethat can be deployed on WebSphere Application Server.

weblogicWebServices - Produce an . ear file that can be deployed on
WebLogic that supports Web Services invocation.

websphereWebServices - Produce an . ear file that can be deployed
on WebSphere that supports Web Services invocation.

weblogicEARGSS - Build GSS ear for WebLogic
webspher eEARGSS - Build GSS ear for WebSphere Application Server
configure - Automatically configures the application server.

installapp - Installs and starts a specified EJB application. (Note: the
EAR file (Cur am ear) containing the server module must be deployed
before installing any other (client-only) EAR files.)

precompilejsp - Precompiles all JSPsin the specified . ear file.

prepare.application.data - Must be run after the database target is run
and before starting the application server for the first time. Failing to run
this sequence will likely result in transaction timeouts during first login
and afailure to initialize and access the application. Whenever the data-
base target is rerun (e.g. in a development environment) this target must
also be rerun.

startserver - Starts an application server.

44

3.14

3.14.1

Curam Server Developer's Guide

* restartserver - Restarts an application server.
o stopserver - Stops an application server.

» uninstallapp - Stops and uninstalls the specified EJB application.

Extending the Build

This section describes how Ant can be used to introduce new targets, en-
hance existing targets or override OOTB build targets.

This is achieved by creating a script hierarchy using Ant's import task and
can be seen in the OOTB application. Examples include the bui | d. xm
files found in the webcl i ent and EJBSer ver directories that extend,
through an import, the buil d. xm files from the Cur anmCDEJ and
Cur anSDEJ directories respectively.

The delivered bui | d. bat or . sh files invoke Ant against the web-
client or EJBServer buil d. xm . Thisalowsfor these bui | d. xm
files to introduce new targets not available in the scripts delivered in the
CDEJ and SDEJ. It also allows these targets to be enhanced as required due
to the principal of theimport task, whichisthat" I f a target in the
main file is also present in at |east one of the
inmported files, the one from the main file takes
precedence".

Introducing a new script

The following section details the steps to create a new top level script which
can be used to introduce new targets, enhance existing targets or override
OOTB build targets.

Two Environment variables CDEJ_BUI LDFI LE and SDEJ_BUI LDFI LE
are used to control the script that is invoked by the bui | d. bat or . sh
files. A new script can be invoked by setting the appropriate environment
variable. For example:

Introducing a new server script:
SDEJ_BUI LDFI LE=%SERVER DI R% conponent s/ cust omf scri pt s/ bui | d. xm

This script must then import it's parent in the hierarchy EJBSer v-
er\ buil d. xm , for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<proj ect name="cust oni >

<I-- Relative path to EIJBServer\build.xm -->
<inmport file="./../../../../build.xm"/>

</ pr oj ect >

45

3.15

Curam Server Developer's Guide

New targets can then be added to the script as required. These targets can
also utilize existing targets or propertiesin the inherited script hierarchy.

To enhance or override an existing target the same target name is chosen as
that which is being enhanced or overriden. When enhancing a target, the ex-
isting target is then either added as a dependency of the new target or in-
voked during a point in the new target. The previous target's name used is
formed from the pr oj ect nane of the script where the target being en-
hanced exists. For example:

Enhancing the database target, where the pr oj ect nane of the SDEJ
script containing the database target is app_database.

Before target usage:
<t arget nane="dat abase" >
<l-- Sone further processing before the SDEJ dat abase target -->
<antcal | t ar get =" app_dat abase. dat abase"/ >
</target>
After target usage:
<t arget nanme="dat abase" depends="app_dat abase. dat abase" >
<l-- Sone further processing after the SDEJ database target -->
</iéfrget>

Example 3.2 Before/After Target usage

i Ant Target API

Only targets that are documented i.e. those visible through the -
projecthelp for a script should be enhanced, overriden or invoked.
Other targets are considered internal are subject to change without
notice.

Overridden Targets

Some targets in the SDEJ are overridden by application build scripts. Such
targets appear in the report produced by the -projecthelp command quali-
fied by the SDEJ sub project name such as app_auxiliary, serverbuild, etc.
Only the unqualified version of these targets should be used, otherwise the
target may not work correctly. E.g. always use weblogicEAR instead of
serverbuild.weblogicEAR.

This appliesto the following targets:
e app_auxiliary.ctgen
* app_auxiliary.msggen

e app_runtimewas.configure

46

3.16

3.16.1

3.16.2

Curam Server Developer's Guide

serverbuild.clean
serverbuild.generated
serverbuild.implemented
server build.model
serverbuild.release

server build.weblogicEAR
serverbuild.websphereEAR

Application Targets

This section lists targets which are available in the OOTB application and
which are displayed when the -pr ojecthelp command is given.

Bl App

biapp.BIRTViewerEARs - Builds deployable EAR files for Web-
Fohere and WebL ogic

biapp.configure.birtviewer - Configures the Ciram Business Intelli-
gence and Reporting Tools (BIRT) Viewer application (use -
Dserver.name= -Dear.file= -Dapplication.name=)

server . name - The name of the server to deploy the application onto.
appl i cati on. nane - The name of the BIRT Viewer application.

biapp.release - Copies BIRT build files required to run
biapp.configure.birtviewer (post install step for WebSphere)

CREOLE

creole.check.initial .database - Checks the structure of rule set XML
data uploaded from DM X files and runs lax validation.

creole.compile.test.classes - Compiles the test classes generated from
the CREOLE rule sets.

creole.consolidate.resource - Consolidates together resource bundlies
for CREOLE rule sets.

creole.consolidate.rulesets - Inlines any included CREOLE rule sets
and consolidates the rule sets into one build directory.

creole.copyresour ceto.cls - Copies resource files for CREOLE rule sets
into the build\svr\cls directory.

creole.generate.catalog - Generates an XML catalog file for CREOLE

47

3.16.3

Curam Server Developer's Guide

rule sets.

» creolegenerateruledoc - Generates rule documentation for all
CREOLE rule sets.

» creole.generate.schema - Generates an XML schema file for CREOLE
rule sets.

» creole.generate.test.classes - Generates test classes from the CREOLE
rule sets.

» creolereport.coverage - Reports CREOLE rule set coverage informa-
tion gathered from CREOLE rule executions.

» creolereport.unused.attributes - Reports CREOLE rule attributes
which are not used directly by any other rule attributes.

o creoleupload.rulesets - Uploads new CREOLE rule sets and/or
changes to existing CREOLE rule sets to the database.

* creolevalidaterulesets - Performs full validation of all CREOLE rule
Sets.

Evidence Generation

* egtools.assign.resourcel D - Allocate resourcelD values for the Create
Wizard AppResource.dmx.

* egtools.clean - Callson the EG Tool to delete all generated components.

* egtools.client.clean - Calls on the EG Tool to delete all generated client
evidence screens on the product.

* egtools.client.generate - Generate target for client evidence generation.

* egtools.generate - Main generate target for evidence generator. Gener-
ates al evidence components.

» egtools.server.clean - Calls on the EG Tool to delete al generated com-
ponents on the server.

» egtools.server.generate - Generate target for server evidence genera-
tion.

» egtools.wizard.dmx - Generate target for creation of AppResource.dmx
for Create Wizard pages.

* post.modelgen - Calls on the EG Tool to perform any steps required
after the modelgen.

» add.rootnode.to.appresour ce.dmx - APPRESOURCE.dmx gets appen-
ded to by each product's evidence generation. This adds the root node 'ta-
ble.

» add.rootnode.to.initialappresour ce.dmx - INITIALAPPRE-

48

Curam Server Developer's Guide

SOURCE.dmx gets appended to by each product's evidence generation.
This adds aroot node to make avalid xml file.

add.rootnode.to.products.xml - Product.xml gets appended to by each
product's evidence generation. This adds the root node "products.

build.all.component.dirs- Builds all components.
build.all.evidence.dirs - Builds al evidence directories.

build.evidencebroker.resour ces - Builds the evidencebroker resources
for domains and |abels.

call.egtools.transformer - Callson the XSLT transformer.

generateresolve.scripts - Calls any XSLT transformations that require
the cross products summary defined in Products.xml.

makedir - Creates directory structure for an evidenceEntities.xml filein
the EJBServer/build folder if none exists. Should only be necessary if an
appbuild clean has been performed.

49

Curam Server Developer's Guide

Notes

1IDBC (Java Database Connectivity) is part of the Java Development Kit
which defines an application programming interface for Java for standard
SQL access to databases from Java programs.

%For your particular application server, i.e. WebSphere and WebLogic. The
deployment guides are named Curam Deployment Guide for WebSphere Ap-
plication Server, Caram Deployment Guide for WebSphere Application
Server on Z/OS, and Curam Deployment Guide for WebLogic Server.

50

4.1

4.2

4.2.1

Chapter 4

Curam Configuration Settings

Overview

This chapter details the environment variables that can be set in your 1BM
Cuaram Social Program Management environment.

Application Properties

This section describes the property files associated with developing or run-
ning a Curam application.

Application.prx

The Appl i cati on. prx contains the properties used when running a
Curam application. The properties contained in this file are loaded to the
database during the build database target and at runtime are cached from
the database for use by the Application. An Appl i cati on. prx can be
loaded separately viathe build insertpropertiestarget.

The properties defined in Appl i cati on. prx can be dynamic or static.
Dynamic properties will have effect immediately if changed and published
using the administration interface during runtime. Modifying static proper-
tieswill have no effect until arestart of the server is performed.

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_ul tra_verbose</val ue>
<defaul t-val ue>trace_ul tra_verbose</ defaul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- nanme>Trace Property</displ ay- name>
<description>Details of the Trace Property</description>
</l ocal e>
</l ocal es>

51

Curam Server Developer's Guide

</ property>

Example 4.1 PRX Entry

Thefileis organized asfollows:

Property Element
There is a property element for each property used.

Name Attribute
Attribute specifying the name of the property.
Dynamic Attribute

Indicator as to whether a change to the property value will require
an Application restart.

Type Element
Refers to a code entry on the codetable Donmai nType.
Value Element
The property value.
Default-Value Element
The default value of a property used when properties are reset.
Category Element

Refers to a code entry on the codetable
EnvPropertyCat egory.

L ocales Element

Contains one or more locale specific elements for the display name
and description.

L anguage Attribute

Language Code for thislocale specific entry.
Country Attribute

(Optional) Country Code for thislocale specific entry.
Display Name Element

L ocale specific display name for the property.
Description Element

L ocale specific entry for the property.

Merging an Application prx File

Prx files are located in the / pr operti es directory of a component and
the root / pr oj ect/ properties directory. The Socia Program Man-
agement Platform is shipped with a set of prx files. These may be overrid-
den by placing new prx files in the SERV-
ER DI R/ conmponent s/ <cust on®/properties directory, where

52

Curam Server Developer's Guide

<custom> is any new directory created under components that conforms to
the same directory structure as conponent s/ cor e. This mechanism
avoids the need to make changes directly to the out-of-the-box application,
which would complicate later upgrades.

This override process involves merging al prx files according to a preced-
ence order. The order is based on the SERVER _COMPONENT _ORDER en-
vironment variable. This environment variable contains a comma-separated
list of component names: the left most has the highest priority, and the right
most the lowest.

SERVER _COWMPONENT _ORDER=cust om Appeal , | SPr oduct , sanpl e
Example 4.2 SERVER_COMPONENT_ORDER example

The order shows that the precedence of Appeal is higher than that of the
sanpl e component. The cor e component always has the lowest priority
and as such does not need to be specified. Any components which are not
specified are placed alphabetically above cor e and below those which are
specified.

]

H Note

After changing the component precedence order in SERV-
ER_COVPONENT _ORDER it is necessary to preform a re-insert of
the merged properties. This is done by invoking build insertprop-
erties.

When merging prx files, the components listed in the SERV-
ER_COVPONENT _ORDER are taken in order of highest to lowest priority.
In the above example the Appl i cat i on. pr x filefrom the sanpl e com-
ponent is merged with the Appl i cati on. pr x located in the cor e com-
ponent. The Appl i cati on. prx from | SPr oduct is then merged into
the intermediate results and the merge process continues until the Appl i c-
ati on. prx inthecust omcomponent is merged.

Rules of PRX Merges

PRX files are merged based on precedence order. As described above there
is aways a more important main/source Appl i cati on. prx file, and a
file which is being merged into it. The second file is called the merge filein
the following sections.

An Appl i cati on. pr x files can be customized by:

» Adding aproperty providing mandatory property values.
* Overriding an existing properties description.

» Overiding an existing properties display name.

* Override an existing properties value or default value.

* Adding a new locale to provide a new display name and description for

53

Curam Server Developer's Guide

that locale.
Removing a property by setting the property tag r enoved to bet r ue.

An Appl i cati on. pr x files cannot be customized by:

Changing an existing property name.

Changing an existing properties type.

Changing an existing properties category.

Changing the static or dynamic setting of a property .

Duplicate property nodes will aways be overwritten by the Appl i ca-
tion. prx file in the component with the highest precedence order. The
main Appl i cati on. pr x example file below and the merge Appl i ca-
ti on. prx file below illustrate these rules:

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_ultra_verbose</val ue>
<defaul t-val ue>trace_ul tra_verbose</ defaul t-val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- name>Tr ace Property</di spl ay- nane>
<descri ption>Details of the Trace Property</description>
</l ocal e>
</l ocal es>
</ property>

Example 4.3 Sample main Application.prx file

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_of f </ val ue>
<def aul t -val ue>trace_of f </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GB">
<di spl ay- name>New Trace Di spl ay Nane</di spl ay- nane>
<descri pti on>New Descri pti on</descri pti on>
</l ocal e>
</l ocal es>
</ property>
<property nane="property2" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>val ue</ val ue>
<def aul t - val ue>def aul t </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GCB">
<di spl ay- nane>Di spl ay Name</di spl ay- nanme>
<descri pti on>Descri pti on</ descri ption>
</l ocal e>
</l ocal es>
</ property>

Example 4.4 Sample merge Application.prx file

54

4.2.2

Curam Server Developer's Guide

As a result of the merge process the new Appl i cati on. pr x produced
would be:

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_of f </ val ue>
<def aul t - val ue>trace_of f </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- name>Tr ace Property</di spl ay- nane>
<descri ption>Details of the Trace Property</description>
</l ocal e>
<l ocal e | anguage="en" country="GB">
<di spl ay- name>New Trace Di spl ay Nane</di spl ay- nane>
<descri pti on>New Descri pti on</descri pti on>
</l ocal e>
</l ocal es>
</ property>
<property nane="property2" dynam c="true">
<t ype>STRI NG/t ype>
<val ue>val ue</ val ue>
<def aul t - val ue>def aul t </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GCB">
<di spl ay- nane>Di spl ay Name</di spl ay- nanme>
<descri pti on>Descri pti on</descri ption>
</l ocal e>
</l ocal es>
</ property>

Example 4.5 Resulting Application.prx File

Bootstrap.properties

The Boot st rap. properti es file mainly contains the minimum set of
properties necessary for obtaining a connection to the database. These prop-
erties will generally have no effect if set in the Appl i cati on. prx file
and are only picked up directly from the Boot st r ap. properti es file.

The Boot st rap. properti es file may aso contain properties that can
be defined in Appl i cat i on. prx file. If such a property is defined in the
Boot st rap. properti es fileand is adynamic property, it can be over-
ridden by setting it on database using the administration interface.

o]

n Note

Properties defined in the following are cached: Appli ca-
tion. prx,Bootstrap. properties and Java System proper-
ties at runtime. Properties defined in Application. prx are
loaded into the database and can be updated at runtime using the ad-
ministration interface. A publish is required to rebuild the property
cache and allow the changes to take effect.

The property cache loads its contents with the following priority:

1. Java System properties,

55

4.3

Curam Server Developer's Guide

2. Application.prx,

3. Bootstrap. properti es;

For example, if a property is set in the Java System properties
(either via the Application Server or using
j ava. |l ang. Syst em set Property()) andalsoin Appli c-
curamutil.resources. Configuration.g

ation. prxet Property(), thevalue of the property defined in
the Java System properties will always be returned when using the
Appl i cation. prx and Boot strap. properti es, the value
of the property in Appl i cati on. pr x iswhat will take effect.

Tnameserv Port
curam envi r onnent . t nameser v. port =900
curam envi ronnent . bi ndi ngs. | ocati on=C: / Bi ndi ngs

curam db. user nane=db2adni n

cur am db. passwor d=WWW5UTMFQOel1SeCBEQy/ Zg==
curam db. t ype=DB2

cur am db. nane=CURAM

curam db. server port =50000

curam db. server nane=| ocal host

property to specify Oracle service nane.
curam db. or acl e. servi cenane=or cl . <host nane>

Properties specific to H2

Mode renot e| enbedded

curam db. h2. node=enbedded

For renote node al so specify:

curam db. server port =9092

curam db. ser ver nanme=l ocal host

Lock Time Qut in ns. Default is 1000, i.e. 1 second. (Optional)
curam db. h2. | ockt i neout =20000

Property to disable MWCC. Default: true. (Optional)

curam db. h2. nvcc=true

Example 4.6 Bootstrap.properties

An automatically generated version of Boot strap. properties is
packed in the Enterprise Archive (EAR) when building the EAR file. This
file chooses it's properties from the default Boot st rap. properties
and is extended with extra properties relating to the Application Server be-
ing used.

curam db. t ype=DB2
curam envi ronnent . as. vendor =I BM

Example 4.7 Bootstrap.properties in an EAR file

]

I

Note
The EAR file cannot be built for H2 database. *

Support for Multiple Time Zones

56

Curam Server Developer's Guide

To enable multiple time zone support, the time zone ID must be specified
for each user in the user preferences.

Only DateTimes are processed and displayed in the user's preferred time
zone. Date only and Time only fields are not affected and for these fields it
is the responsibility of the business logic to ensure that the time zone is not
relevant. If the time zone is relevant then a DateTime field should be used.
An example of a date where the time zone is not relevant is someone's date
of birth; it doesn't vary no matter what time zone that person was born. An
example of a date where the time zone is relevant is the current date; this
will be different for two user's working either side of the international date
line, in this case a DateTime must be used.

The server's time zone is basically the underlying operating system's con-
figured time zone, however the server stores date/times in atime zone inde-
pendent manner, i.e the number of milliseconds since 1/1/1970 00:00 GMT
(also known as the epoch). It is the responsibility of the web tier to convert
all DateTimes passed to it from the server into the user's preferred time zone
and also to convert all DateTimes to be passed back to the server into milli-
seconds since the epoch.

The preferred time zone for each user is configured based on the time zone
ID specified in the user preferences for the particular user. The time zone ID
must conform to one of the time zones returned from the Java method
java. util.Ti meZone. get Avai | abl el Ds() .

Some of the Java supported time zones returned by
java. util.Ti neZone. get Avai | abl el Ds() method are as listed
below:

* GMT+Xx ,where x can take value from 1 to 12.
* GMT-x ,where x can take value from 1 to 12.
* America/Chicago

* America/Mexico_City

* America/lndiana/Indianapolis

» America/New_York

e America/Los Angeles

» Australia/Canberra

* Australia/North

» Australia/South

» Australia/West

» Australia/Adelaide

» Australia/Melbourne

57

4.4

Curam Server Developer's Guide

» Australia/Brisbane
» Africa/Casablanca
» Africa/Johannesburg
e Brazl/West

» Canada/Pacific

» Canada/Saskatchewan
» Canada/Eastern

« Canada/Atlantic

» Canada/Central

» Canada/Eastern

» Europe/London

» Europe/Dublin

» Europe/London

» Europe/Paris

* Europe/Vatican

* Europe/Moscow

» Europe/Amsterdam
* Indian/Chagos

* Indian/Cocos
 NZ

» Pacific/Auckland

For information on server time zone configuration consult the Time Zone
Configuration chapter in the Caram Deployment Guide for the appropriate
application server.

Dates and date/times in Cldram

This section describes the behavior of dates and date/times in Clram.
Take alook at these examples:

* The server isin time zone "GMT". A user isin time zone "GMT -01".
At 15:00 GMT the user registers a new person, and the server-side pro-
cessing timestamps a resulting database record with the time 15:00.
Twenty seconds later the user performs a query and sees the timestamp
displayed in the client user interface as 14:00. The user's clock is show-

58

Curam Server Developer's Guide

ing 14:00:20 - the new record's timestamp is twenty seconds in the past -
just what the user expected.

* The user registers a new case at 23:30 local time on 01-Jul-2003. The
server's local time is 00:30 on 02-Jul-2003, so it creates the case with a
case start date of 02-Jul-2003. The user immediately performs a query
on al cases registered on 01-Jul-2003. The newly registered case is not
found.

In the second example, the server processing which records the current date
as the case start date must convert from the current date (which is time zone
dependent) to some fixed value that will henceforth be taken as the case
start date. On the grounds of both simplicity and higher likelihood of meet-
ing requirements, the server'slocal date is recorded.

The basis for how dates and date/times are handled is as follows:

» Datesare processed and displayed in atime zone-independent manner.
» Date/times are processed and displayed in the user's preferred time zone.

» Thetime zone of the server is used when converting from a date/time to
adate (or vice versa).

The second issue was mentioned with an earlier example :- the fact that the
user, on performing a search for today's cases, fails to find a record just re-
gistered. What caused this situation is as follows:

* The user carried out a transaction just before midnight, local time, on
day 1. The server recorded a "start date" of day 2, based on converting
it's current local date/time to a date.

* The user requested a list of transactions with a start date of day 1. Be-
cause this is a date, not a date/time the server treats it in a time zone in-
dependent manner. The newly registered record does not match the
search criteria.

Searches on date/time ranges (such as the start/end of the user's local day)
are only feasible if the column being searched on is itself date/time. Users
will need to be aware that the current "business day" may not be the same
date as the date in their local time zone. Fortunately, such situations are
likely to berare.

59

Curam Server Developer's Guide

Notes

For more information on H2 database consult the Ciram Third-Party Tools
Installation Guide for Windows.

60

5.1

5.2

Chapter 5

Data Manager

Overview

The Data Manager is a tool delivered as part of IBM Curam Social Pro-
gram Management, which alows a developer to conveniently create a data-
base which contains a set of initial and/or test data. It is based around data-
base independent . xm files so any setup done by a developer can be ap-
plied to any of the supported databases.

Intended Data Manager Process

The Data Manager is intended to provide assistance as part of an overall
process for initial database creation. At a high level, that process includes
the following three main steps:

1. Create the database, tablespaces and so on.

2. Use the Data Manager to create tables and complete initial data |oad-
ing.

3. DBA tasks to complete database creation such as handcrafting scripts
to tune the tables (ALTER) and set constraints.

The aim of the Data Manager is to help establish a skeletal database. Sub-
sequently a DBA can then write handcrafted scripts to complete the data-
base by modifying tables and settings such as LOCKSIZE or BUFFER-
POOL.

]

H Note

The SQL generated by the Data Manager is not intended to replace
the role of a DBA. It is expected that there would be site-specific
tweaking required in order to achieve production readiness.

A DBA would not be expected to manipulate the Cdram model to

61

Curam Server Developer's Guide

define extra entity options such as LOCKSIZE, BUFFERPOOL,
and so on, in order for the desired SQL to be generated. Thisis due
to a number of factors. The modeling tooling is designed to be un-
aware of the final deployment environment, and DBAs would not be
expected to have the skill-sets for using the modeling environment.

The Data Manager is not intended to be used to upgrade an existing
database; it exists simply to reset the database to a known state.

5.2.1 Planning for MBCS Data

The use of multi-byte character set (MBCS) data with Oracle, DB2, or
IBM® DB2® for zZZOS® has specific database considerations, which are
covered in the Clram Third-Party Tools Installation Guide for Windows
and Caram Third-Party Tools Installation Guide for UNIX. However, for
MBCS support with DB2 or DB2 for z/OS specific Curam configuration is
required, which impacts the behavior of the Data Manager.

Curam support for MBCS data with DB2 and DB2 for ZOSis enabled out-
of-the-box to ensure error-free operation for users with languages requiring
MBCS data and for users who find they require MBCS data when copying/
pasting data from other applications. This support entails expanding the size
of string columns in the database because DB2 column sizes are based on
bytes, which is not necessarily the length required when MBCS data is used.
Thisis explained in more detail in the Cdram Third-Party Tools Installation
Guide for Windows and Curam Third-Party Tools Installation Guide for
UNIX. However, these default expansion settings may not be appropriate for
those using only Western languages (i.e., SBCS data) and you should con-
sider disabling this support or, for MBCS data, reducing the default expan-
sion factor. Whether database expansion is applied by the Data Manager is
controlled by the curam db. nul ti byte. expansi on property in
Boot st rap. properties. The amount of expansion (a factor of 1.0 to
4.0) is set with the curam db. nmul ti byt e. defaul t. factor prop-
erty in Boot st rap. properti es. These properties are described in Ap-
pendix A, Caram Configuration Parameters.

To be 100% sure of no processing errors when processing MBCS data the
maximum expansion factor is the default out-of-the-box. However, for
many languages and data profiles it's unlikely that every database column
character would require MBCS data or that al characters would require the
maximum size of 4 bytes. Since there is a cost associated with using the
maximum expansion factor in terms of disk space used, network overhead,
memory utilization, buffer pool performance, CPU utilization, etc., it is best
to use an expansion factor that balances resource utilization and perform-
ance while avoiding or minimizing the possibility of application errors
caused by data overruns. There are no strict rules for achieving a balance
between resource utilization and the possibility of application errors; but,
some considerations can help you choose a reasonable expansion factor and
your testing should confirm your choice.

Depending on your language, locale, and encoding the number of required

62

5.3

Curam Server Developer's Guide

MBCS characters will vary. For instance, if you are using English with only
a few specia characters (e.g. smart quotes) you will require very little ex-
pansion. Or, if you are using a language that shares the Latin alphabet with
some additional characters (e.g. German) then you will need more space for
MBCS data. A language (e.g. Chinese) that utilizes characters at the higher
end of the Unicode range will require more space per character, which needs
to be tempered by the number of characters required per word; i.e., the lan-
guage may convey more information in each character than a typical Latin
alphabetic character. In other words, consider the average bytes required per
character, word, etc. Typically this average is only a rough estimate be-
cause, as studies have shown, character usage can vary depending on a num-
ber of factors; e.g. data context, data that is more numeric (phone numbers),
versus more textual data (names) and even free-form comments. So, some
additional safety factor should be considered in choosing your expansion
factor.

You aso have the ability to control the expansion factor at a more fine-
grained level in the modeling environment by specifying the Mul ti -
byt e Expansi on_Fact or option for a string domain and/or entity
string attribute, which may be appropriate for your customizations. See the
Curam Modeling Reference Guide for more information on setting these op-
tions. You may need to set these fine-grained expansions at this level due to
various limits within DB2 and DB2 for zZ/OS regarding the size of rows, in-
dexes, etc. that can be exceeded by large expansion factors (see the relevant
DB2 or DB2 for zZ/OS SQL reference for more information on these limits).

Invocation

The Data Manager is invoked by executing a build command of build
database.

]

n DB2 development database optimization tip.

During iterative development with DB2 on distributed platforms the
dropping and creation of tables performed during the build data-
base target can be optimized to run quicker by running the script:

ant -f % CURAM SDEJ% \util\db2_optimizedbr ecr eation.xml
once per database. Internally this runs:

ALTER TABLESPACE USERSPACE1 DROPPED TABLE
RECOVERY OFF;

ALTER TABLESPACE CURAM_L DROPPED TABLE RE-
COVERY OFF,;

This step should not be performed on a production database.

5.4 Database Artefacts

The Data Manager uses a number of generated and hand-crafted artefacts to

63

5.4.1

Curam Server Developer's Guide

setup the database. This section introduces those artefacts. It does not de-
scribe the artefacts that are related rules as these are described in the Clram
Rules Codification Guide.

Data Definition XML Files

These generated files were briefly introduced in Section 3.5, What is hap-
pening under the hood?. The. xm files describe the database tables and the
constraints that should be placed on them.

Example 5.1, Table Definitions, shows a sample table definition. An entity
can have any number of at t ri but e elements. Not al elements will have
all the attributes (the si ze attribute is only present for strings and Large
Objects).

<entities>
<entity tablenane="Fully qualified tabl ename"
<attribute ddltype="DD Type fromthe UML Mdel "
not nul | =" 1 ndi cat or whether Nulls are all owed"
?ize:"Size qualifier for the DDL Type"
>
</entity>
</entities>

Example 5.1 Table Definitions

Example 5.2, Foreign Key Constraints, shows a sample foreign key con-
straint. There can be any number of key, associ ati on and f or ei gn-
keypai r elements.

]

il Note
If foreign keys are applied to a DB2 for Z/OS database by the Data
Manager manual intervention will be required to move the tables

from the check_pendi ng state. Please consult with your local
Database Administrator (DBA) to resolve this.

<f or ei gnkeys>
<key>
<associ ati on tabl enane="Local Table nane"
ot hert abl enane="Renpt e t abl e nane"

>
<forei gnkeypair |ocalfield="Local field nane"
renot ef i el d="Renpte field nane"/>
</ associ ati on>
</ key>
</ forei gnkeys>

Example 5.2 Foreign Key Constraints

Example 5.3, Primary Key Constraints, shows a sample primary key con-
straint. There can be any number of key andat t ri but e elements.

<pri marykeys>
<key tabl enane="Fully qualified tabl enane">
<attribute keynane="Field name"/>
</ key>
</ pri marykeys>

64

Curam Server Developer's Guide

Example 5.3 Primary Key Constraints

Example 5.4, Index Constraints, shows a sample index constraint. There can
be any number of i ndex andi ndexattri but e elements.

<i ndi ces>
<i ndex>
<i ndexdetai |l s tabl enane="Ful ly qualified tabl enane"
i ndexnane="Nane for the |ndex" >
<i ndexattribute attribute="Field nane"/>
</ i ndexdet ai | s>
</i ndex>
</indi ces>

Example 5.4 Index Constraints

Example 5.5, Unique Constraints, shows a sample Unique Constraint. This
can have any number of constrai nt,associ ationandattri bute
elements as necessary.

<uni queconstrai nt s>
<constrai nt >
<associ ation tabl enane="fully qualified tabl enane">
<attribute field="field nane on table for constraint">
</ associ ati on>
</ constrai nt >
</ uni queconstrai nt s>

Example 5.5 Unique Constraints

Example 5.6, Batch Metadata, shows a sample of the metadata that is gener-
ated to support the batch processes that have been modeled by the de-
veloper. There may be any number of batch processes which have any num-
ber of parameters.

<bat ches>
<bat ch process="Process Nane"
oper ati on="Cper ati on Nane"
appl i cati on="Application Nang"
>

<par anet er nane="Par anet er nane"

t ype="Domai n Type"/>
</ bat ch>
</ bat ches>

Example 5.6 Batch Metadata

Example 5.7, Security Metadata, shows a sample of the metadata that is
generated to support the security that has been modeled by the developer.
There may be any number of function identifiers (FIDs).

<fids>
<fid
nane="Function identifier nane"
operation="Cperation to all ow access to"
fi denabl ed="1ndi cat e whet her enabl ed by default or not"
i swebservi ce="Indi cate whether this is a web service"
/>
</fids>

Example 5.7 Security Metadata

65

5.4.2

Curam Server Developer's Guide

Example 5.8, Field Level Security Metadata, shows a sample of the
metadata that is generated to support the field level security that has been
modeled by the developer. There may be any number of fields returned.

<fi el dsreturned>
<fi el dreturned
oper ati onnane="Function identifier nane"
fieldnane="Fi el d nanme"
/sidnane:"Associated SI D"
>
</fi el dsreturned>

Example 5.8 Field Level Security Metadata

Data Contents DMX Files

Aswell as creating the tables on the database, the Data Manager allows the
developer to specify sample and test data which should be placed on the
database. The format of the . DMX file is introduced in Example 5.9, Data
Contents File. The developer will typically edit this file using a standard
XML editor.

<table name = fully qualified tabl ename>
<col um nanme = col utMm nane
type = One of:
nunber
t ext
bool
id
bl ob
cl ob
dat e
ti mest anp
>
</ col um>
<r ow>
<attribute nane = field nane>
<val ue>Fi el d val ue</ val ue>
</attribute>
</ row>
</t abl e>

Example 5.9 Data Contents File

The Data Contents DM X file is made up of a number of elements described
in the following sections, some of these elements/attributes are necessary to
enable customization of DMX files, described in further detail in Sec-
tion 5.4.2.2, Customizing a DMXfile.

The t abl e Element

The <t abl e> element has the following attributes:

Attribute Re- Default Description

Name quired

name Yes None Specifiesthe name of the database
table.

66

Curam Server Developer's Guide

Attribute Re- Default Description
Name quired
override No fal se Usedto customize or completely

override existing DMX files from
within a component lower down in
the

SERVER_COVPONENT _ORDER.

Table 5.1 Attributes of the table Element

The <col umm> Element

The <col umm> element has the following attributes:

Attribute Re- Default Description

Name quired

name Yes None Specifiesthe name of the column.
type Yes None Specifiesthe datatype of a column.

Table 5.6, Attribute Values describes
thet ype that acol urm can be set
to.

encodi ng No UTF-8 Specifiesthe clob datafile encoding
type.Check Section 5.9, Lob Man-
ager.

Table 5.2 Attributes of the column Element

The <r ow> Element

The <r ow> element has the following attributes:

Attribute Re- Default Description

Name quired

renove No f al se Enablestheremoval of arow from a
DMX file from within a component
lower down in the SERV-
ER_COVPONENT _ORDER.

| ocal es No None If omitted, the row will be applicable
to al locales.

If present, thismust be set to a
comma-separated list of locales en-
suring there are no spaces between
each locale. The following example
indicates the <r ow> is applicable
for theen and en_US locales:

Curam Server Developer's Guide

Attribute Re- Default Description
Name quired

<row | ocal es="en, en_US">.
Table 5.3 Attributes of the row Element

Ther owelement also encapsulates acollection of at t ri but e elements.

The <at tri but e> Element

The<at t ri but e> element has the following attribute:

Attribute Re- Default Description

Name quired

name Yes None Specifiesthe name of the column.

encodi ng No UTF-8 Specifiesthe clob datafile encoding
type.Check Section 5.9, Lob Man-
ager.

Table 5.4 Attributes of the attribute Element

ﬁ Note

If the number of attributes defined for a row does not match the
number of columns defined the DM X processing will fail.

ﬁ Note

Also, when processing DMX files, the name of each attribute is not
taken into account, the order is taken from the column definition at
the start of the file, therefore the ordering of the attributes should
match the ordering of the columns.

Theat t ri but e element has arequired sub-element: val ue.
The <val ue> Element

The <val ue> element is the value to be inserted into the column for this
row. For a BLOB the value should be a pointer to a file. To be meaningful
the nane attribute of theat t r i but e element must take its value from one
of the col utm elements nane attributes within the same DM X file. Order-
ing is also important as when the database is being built, database columns
will be updated with content defined by the r ow elements in the order the
col um elements are listed within the DMX file.

The <col um> elements t ype attribute determines the valid attri b-
ut e values. Table 5.6, Attribute Values, describes the relation between the
columntype andat t ri but e value.

The <val ue> element has the following attributes:

68

Curam Server Developer's Guide

Attribute Required Default Description
Name
| anguage No None Thel anguage attribute,

aong withthecount ry at-
tribute, make up the locale
foran<attri but e>ee

ment.
country No, but if the None Thecount ry attribute,
| anguage at- along with thel anguage
tribute is spe- attribute, make up the locale
cified this attrib- foran<attri but e>éee
ute must also be ment.

specified.
Table 5.5 Attributes of the value Element

] Important

The primary key/composite key for arecord must never be localized
within the DMX file for that record. For example, if AddressiD is
the primary key for the Address table, the AddressID val ue ele-
ment within the Addr ess. DMX file must not be localized.

Column Type Attribute Value

number Value must be numeric.

text Value must be text or multi-line text.

bool Vaue must be TRUE or FALSE.

id Value must be numeric.

blob Vaue must be arelative path from the
DMX fileto the blob file.

clob Value must be arelative path from the
DMX fileto the clobfile.

date Value must be avalid date or system date.
For system date, value must be represented
as SYSDATE.

timestamp Vaue must be avalid time or system time.
For system time, value must be represented
as SYSTIME.

Table 5.6 Attribute Values

Customizing a DMX file

The Data Manager processing allows for the customization of DM X filesfor
theinitial,deno and t est targets, Supported customizations include

69

Curam Server Developer's Guide

the ability to add a row, update a row, remove a row, localize at a row/
attribute level and completely override a DMX file. This process allows for
DMX files that are shipped with the Clram application to be easily custom-
ized by adding new DM X files to new components in the relevant directory.

The DMX files to be customized must be in the following directory struc-
ture:

« <SERVER DI R>/ conponent s/ <custon®/data/initial
« <SERVER DI R>/ conponent s/ <cust on®/ dat a/ deno
» <SERVER DI R>/ conponent s/ <cust on®/ dat a/ t est

To customize DMX files that are delivered out-of-the-box, new DMX files
must be created and added to new components in the relevant directory
within SERVER DI R/ conponent s/ <custone/ data/initi al

(or /deno or /test).

This mechanism avoids the need to make changes directly to the out-of- the-
box application, which would complicate later upgrades.

The customization process involves the merging of DMX files of the same
name within the specified directory structure according to a precedence or-
der. The order is based on the SERVER _COMPONENT _ ORDER environment
variable which contains a comma separated list of component names, the
left-most having the highest priority.

2

n Note

It is possible that more than one DMX file will contain data for a
particular database table. As the merging of DMX files is based on
file names it may be necessary to customize multiple DMX files in
order to achieve a desired data customization for an individual en-
tity.

Only DMX files placed within the structure above will be included
in the merging process for DMX files. If sub-directories are used
within thei ni ti al , denp and t est directories, then these will
not be included in the merging process.

The merged DMX file is output to the
%BERVER DI R% bui | d/ dat ananager/ data/initial (or /
deno or /test) directory.

Rules of DMX file merging

DMX files are merged based on precedence order. There is aways a more
important main/source DMX file, and a file which is being merged into it.
The second fileis called the merge file in the following sections.

The merging rules described below are applied to decide if the rows, attrib-
utes or DMX files should be merged into the new DMX file.

« A DMX file will only be considered for merging if the new DMX file

70

Curam Server Developer's Guide

does not have the over r i de attribute on the <t abl e> eement set to
true.

A <row> will beinserted into the new DMX file if is determined, by
using the primary key information for the record, that the <r ow> is not
already present in the new file.

* If a<row> aready existsin the new DMX file and ther enove attrib-
uteisset tot r ue, then no merging will occur. If ther enpve attribute
is set to false or is not present, then the attribute values for that row will
be considered for merging.

e If the <val ue> element does not exist in the new DMX file, then
the <val ue> element will be copied.

» If the <val ue> contains a different locale, then this <val ue>
entry will be copied into the new file. The locale is specified by the
| anguage and count ry attributes on the <val ue> element.

All examples below assume custom is before core in the SERV-
ER_COVPONENT _ORDER.

The Example 1 below illustrates how merging works when using the
<t abl e> level overri de attribute. To use the overri de attribute,
copy the contents of the existing DMX file, i.e. the core DM X file and place
itinaDMX file of the same name in a <cust o> component. Then add
the following to the table element:

<tabl e override="true">

This indicates that only DMX files in this <custom> component or in a
component higher up in the SERVER COVPONENT _ORDER will be in-
cluded in the merged DMX file output produced from the Data Manager
processing.

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane=" CONCERN' >
<col umm nane="CONCERNI D" type="id"/>
<col umm name="NAME' type="text"/>
<col umm nane="COWENTS" type="text"/>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>22</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COWENTS" >
<val ue>Concern 1 record</val ue>
</attribute>
</ r ow>
<r ow>
<attri bute nane="CONCERN D'>
<val ue>23</ val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>

71

Curam Server Developer's Guide

<attribute nanme="COMMENTS">
<val ue>Concern 2 record</val ue>
</attribute>
</ r ow>
</t abl e>

Example 5.10 Example 1 - Core DMX File.

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane="CONCERN"' override="true">
<col umm name="CONCERNI D" type="id"/>
<col um name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attribute name="CONCERNI D'>
<val ue>55</ val ue>
</attribute>
<attribute nanme="NAME">
<val ue/ >
</attribute>
<attribute nane=" COWENTS">
<val ue>My cust om comment </ val ue>
</attribute>
</ row>
</t abl e>

Example 5.11 Example 1 - Custom DMX file.

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<t abl e nane="CONCERN"' override="true">
<col um nanme="CONCERNI D" type="id"/>
<col um name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERN D'>
<val ue>55</val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attribute name=" COWENTS" >
<val ue>My cust om conment </ val ue>
</attribute>
</ row>
</t abl e>

Example 5.12 Example 1 - Resulting Merge DMX File.

In the resulting merge file, no rows are taken from the core DMX file as the
custom DMX file is completely overriding the core DMX file through the
following: <table override="true"> , resulting in all entries in the core file
being excluded.

The Example 2 below illustrates how the merging process works when the
<r ow> level r enpve attribute is set. To remove a row, copy the row from
the existing DMX file and place it in a DMX file of the same name in a
<cust on» component. Then set the r enpbve attribute on that row to
true.

72

Curam Server Developer's Guide

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" CONCERN' >
<col um name="CONCERNI D" type="id"/>
<col um nanme="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERNI D'>
<val ue>1</val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>
<attribute name=" COWENTS" >
<val ue>Concern 1 core</val ue>
</attribute>
</ row>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>2</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COMMENTS" >
<val ue>Concern 2 core</val ue>
</attribute>
</row>
</t abl e>

Example 5.13 Example 2: Core DMX file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" CONCERN' >
<col umm name="CONCERNI D" type="id"/>
<col umm name="NAME' type="text"/>
<col umm nane="COWENTS" type="text"/>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>1</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COWENTS" >
<val ue>Concern 1 custonx/val ue>
</attribute>
</ r ow>
<row renove="true">
<attri bute nane="CONCERN D'>
<val ue>2</val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>
<attribute name="COMMENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
</attribute>
</ r ow>
<r ow>
<attri bute nane="CONCERNI D'>
<val ue>5</val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>
<attribute name=" COWENTS" >
<val ue>Concern 5 cust onx/val ue>

73

Curam Server Developer's Guide

</attribute>
</ r ow>
</t abl e>

Example 5.14 Example 2 : Custom DMX file.

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane=" CONCERN' >
<col umm nane="CONCERNI D" type="id"/>
<col umm name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERN D'>
<val ue>1</val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>
<attribute nanme="COMMENTS" >
<val ue>Concern 1 custonx/val ue>
</attribute>
</ r ow>
<row renove="true">
<attri bute nane="CONCERNI D'>
<val ue>2</ val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attri bute nane=" COVWENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
</attribute>
</ row>
<r ow>
<attribute name=" CONCERN D'>
<val ue>5</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COWENTS" >
<val ue>Concern 5 custonx/val ue>
</attribute>
</row>
</t abl e>

Example 5.15 Example 2 : Result merge file.

For Example 2, the <r ow> where the CONCERNID is set to 2, does not
merge the <r ow> from the core DMX file. When processing the merged
DMX filein Example 2, the <r ow> where the CONCERNID is set to 2 will
not be included when creating the SQL insert statements, thus ensuring no
entry will exist on the database for this <r ow>.

Example 3 below illustrates the setting and merging of the | anguage and
count ry attributes on the <val ue> element.

In this example, the COMMENTS attribute for the CONCERNID=2 has a
valuefor thef r andtheen_GB locales.

<?xm version="1.0" encodi ng="UTF- 8" ?>

74

Curam Server Developer's Guide

<t abl e nanme=" CONCERN' >
<col umm name="CONCERNI D" type="id"/>
<col umm nanme="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>1</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COMMENTS" >
<val ue>Concern 1 core</val ue>
</attribute>
</row>
<r ow>
<attribute name=" CONCERN D'>
<val ue>2</ val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attribute nanme="COMVENTS">
<val ue | anguage="fr">Concern 2 French core</val ue>
<val ue | anguage="en"
country="GB">Concern 2 en_GB core</val ue>
</attribute>
</ row>
</t abl e>

Example 5.16 Example 3: Core DMX file.

In this example, the COMMENTS attribute for the CONCERNID=2 has a
value for the en locale only. The COMMENTS attribute for the CON-
CERNID=5 hasavauefor theen_US locale only.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nanme=" CONCERN' >
<col umm nane="CONCERNI D" type="id"/>
<col umm nane="NAME" type="text"/>
<col um nane="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERN D'>
<val ue>1</val ue>
</attribute>
<attri bute nane="NAME'>
<val ue/ >
</attribute>
<attribute name="COMMENTS" >
<val ue>Concern 1 custonx/val ue>
</attribute>
</ r ow>
<row renove="true">
<attri bute nane="CONCERNI D'>
<val ue>2</ val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attribute name=" COWENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
</attribute>
</ row>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>5</ val ue>
</attribute>
<attri bute nanme="NAME">

75

Curam Server Developer's Guide

<val ue/ >
</attribute>
<attribute nane=" COMVENTS">
<val ue | anguage="en"
country="US">Concern 5 en_US custonx/val ue>
</attribute>
</ row>
</tabl e>

Example 5.17 Example 3 : Custom DMX file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" CONCERN' >
<col umm nane="CONCERNI D" type="id"/>
<col umm name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERNI D' >
<val ue>1</val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COMMENTS" >
<val ue>Concern 1 custonx/val ue>
</attribute>
</row>
<row renove="true">
<attribute nanme=" CONCERNI D'>
<val ue>2</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attribute name="COMMVENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
<val ue | anguage="fr">Concern 2 French core</val ue>
<val ue | anguage="en"
country="GB">Concern 2 en_GB core</val ue>
</attribute>
</ row>
<r ow>
<attri bute nane="CONCERN D'>
<val ue>5</val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attribute name="COMMENTS" >
<val ue | anguage="en"
country="US">Concern 5 en_US cust onx/ val ue>
</attribute>
</ row>
</t abl e>

Example 5.18 Example 3 : Result merge file.

In Example 3 above, for the <r ow> where the CONCERNID is set to 2, the
resulting merge file has values for the en, f r and the en_GB locales, i.e. a
merge of both core and custom <val ue> elements.

Example 4 below illustrates the <r ow> level | ocal es attribute.

<?xm versi on="1.0" encodi ng="UTF- 8" ?>

76

Curam Server Developer's Guide

<t abl e nane=" CONCERN' >
<col um nanme="CONCERNI D" type="id"/>
<col um name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute nane="CONCERNI D'>
<val ue>1</val ue>
</attribute>
<attribute nane="NAME'>
<val ue/ >
</attribute>
<attribute name=" COMWENTS" >
<val ue>Concern 1 core</val ue>
</attribute>
</ row>
<row | ocal es="en_GB">
<attri bute nane="CONCERNI D' >
<val ue>2</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COVWENTS" >
<val ue | anguage="fr">Concern 2 French core</val ue>
<val ue | anguage="en"
country="GB">Concern 2 en_GB core</val ue>
</attribute>
</row>
</t abl e>

Example 5.19 Example 4: Core DMX file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" CONCERN' >
<col umm name="CONCERNI D" type="id"/>
<col umm name="NAME' type="text"/>
<col umm nane="COWENTS" type="text"/>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>1</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COWENTS" >
<val ue>Concern 1 custonx/val ue>
</attribute>
</ row>
<row | ocal es="en, en_US">
<attri bute nane="CONCERN D'>
<val ue>2</val ue>
</attribute>
<attribute nane="NAME">
<val ue/ >
</attribute>
<attribute name="COMMENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
</attribute>
</ r ow>
</t abl e>

Example 5.20 Example 4 : Custom DMX file.

<?xm versi on="1.0" encodi ng="UTF- 8" ?>

77

Curam Server Developer's Guide

<t abl e name=" CONCERN" >
<col um nanme="CONCERNI D" type="id"/>
<col um name="NAME" type="text"/>
<col um nanme="COWENTS" type="text"/>
<r ow>
<attri bute name="CONCERNI D' >
<val ue>1</ val ue>
</attribute>
<attri bute name="NAME">
<val ue/ >
</attribute>
<attribute nane=" COMVENTS">
<val ue>Concern 1 custonx/val ue>
</attribute>
</ row>
<row | ocal es="en, en_US">
<attribute name="CONCERN D'>
<val ue>2</val ue>
</attribute>
<attribute nanme="NAME'>
<val ue/ >
</attribute>
<attribute name="COWENTS" >
<val ue | anguage="en">Concern 2 en custonx/val ue>
<val ue | anguage="fr">Concern 2 French core</val ue>
<val ue | anguage="en"
country="GB">Concern 2 en_GB core</val ue>
</attribute>
</ row>
</t abl e>

Example 5.21 Example 4 : Result merge file.

In Example 4 above, the value for the | ocal es attribute is taken from the
row in the component that is higher up in the SERV-
ER_COVPONENT _ORDER, i.e. the custom component.

The primary key/composite key for a record is used to determine the over-
riding/merging process for DM X files. DMX files will be merged based on
the definition of the primary key for the table/entity the DMX file repres-
ents. For al modelled entities, the primary key information is stored in the
generated <SERVER MODEL_NAME> Pri mar yKeys. xm file in the
build directory, i.e. “SERVER DI R% bui | d/ svr/ gen/ ddl . For all
non-modelled components, the primary key information for entities must be
stored in a file caled <SonmeNane> Pri maryKeys. xnl within
¥SERVER DI R¥ conponent s/ <cust on®/ dat a/ ddl directory. If
this file is named correctly in the specified location, the DMX processing
will contain the relevant primary key information for the non-modelled
component.

Retrieving values from DMX files for database insertion

The Data Manager uses the <r ow> level r enpove attribute to determine if
an entry will be inserted onto the database for that row. If ther enove at-
tributeisset tot r ue, then the Data Manager will not insert an entry for that
row. The row will beignored.

DMX files store the locale information for the attributes for the database ta-
ble. As the database must be built for only one locale, the Data Manager

78

Curam Server Developer's Guide

uses the cur am dnx. | ocal e property to determine the locale that must
be used when inserting data specified in DMX files onto the database. This
property can be set in either the Boot st rap. properties fileor asa
system variable. If set in both the Boot st rap. properti es fileandasa
system variable, the system variable will override the setting in the Boot -

strap. properti es file. This property must be set to avalid locale, i.e.
in the format language Country, where language is mandatory and country
isoptional. For example,

curam dnx. | ocal e=en_US

If this property is not set, the infrastructure will fallback on the en locale.

As mentioned, the Data Manager processing uses the
cur am dnx. | ocal e to determine the value to insert for an attribute in a
DMX file. The locale can be specified at a<r ow> or <at t ri but e> level.
If specified at arow level, then this takes precedence over the attribute level.
For example, given the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane=" CONCERN' >
<col umm nane="CONCERNI D" type="id"/>
<col umm name="NAME" type="text"/>
<col umm nane="COWENTS" type="text"/>
<r ow>
<attribute nanme=" CONCERN D'>
<val ue>1</ val ue>
</attribute>
<attri bute nanme="NAME">
<val ue/ >
</attribute>
<attri bute nanme=" COWENTS" >
<val ue>Concern 1 core</val ue>
</attribute>
</ r ow>
<row | ocal es="en_GB">
<attribute name="CONCERNI D'>
<val ue>2</val ue>
</attribute>
<attribute nanme="NAME">
<val ue/ >
</attribute>
<attribute nane=" COMENTS">
<val ue | anguage="fr">Concern 2 French core</val ue>
<val ue | anguage="en"
country="GB">Concern 2 en_GB core</val ue>
</attribute>
</ row>
</t abl e>

In this example, if thecur am dnx. | ocal e environment variableis set to
the fr locale, then there will be no entry inserted for the record where
CONCERNID is set to 2, asthe | ocal es attribute for the <r ow> is only
applicable for the en_GB locale, even though the attribute for COMMENTS
has an entry for thef r locale.

The Data Manager attempts to match the locae specified by the
curam dnx. | ocal e environment variable with the | ocal es attribute
for the <r ow> element within a DMX file. If this attribute is not set, then
the Data Manager attempts to match on the <val ue> for an

79

Curam Server Developer's Guide

<attribute>,i.e it triesto match on thel anguage and country at-
tributes of the <val ue> element.

Since DMX files are not guaranteed to contain an entry for every locae, a
fall back mechanism isin place. This fallback mechanism is only applicable
to the attribute <val ue> element, i.e. it is not applicable to the <r ow>
| ocal es attribute. Once a<val ue> has been found and there is no direct
match with the locale specified by cur am dnx. | ocal e, the rules for fall
back are asfollows:

e |If the curam dnx. | ocal e is set to include a language and country
part, the processing looks for an attribute where the | anguage and
country attributes are set on the <val ue> element. If this is not
found, then the country is removed and the search looks for a
<val ue> where the | anguage attribute matches, if thisis not found,
then the search looks for a<val ue> that does not have the| anguage
and count ry attributes set, i.e. a default match. If this is not found,
then no entry isinserted onto the database for this<val ue>.

<r ow>
<attri but e name=" ADDRESSELEMENTI D' >
<val ue>3227</ val ue>
</attribute>
<attribute nane="ELEVENTTYPE" >
<val ue | anguage="en">EN TYPE</ val ue>
<val ue country="US" | anguage="en">EN US TYPE</val ue>
</attribute>
<attribute name="ELEMENTVALUE" >
<val ue | anguage="fr">French Val ue</val ue>
</attribute>
</ row>

Example 5.22 Locale Fallback Example

In Example 5.22, Locale Fallback Example, lets assume the
curam dnk. | ocal e issettoen. Thefollowing is set for each attribute:

« ELEMENTTYPE - EN_TYPE isthe value inserted onto the database for
this attribute, asthisis the value set for the en locale.

« ELEMENTVALUE - null isinserted onto the database for this attribute.
This attribute has the | anguage attribute set to f r . The locale that is
being searched for is en, a value for en is not found, so a <val ue>
that contains no | anguage or count ry attributes is searched for, i.e.
the default value, as this does not exist, null isinserted for this attribute.

Validation of DMX files

All DMX files in
%BSERVER DI R% conponent s/ conponent Nane/ data directories
will be validated against a DM X schema file when the build database target
isrun. This schemafileis located in “CURAMSDEJ % | i b/ DMX. xsd. For
any DMX file that is not in the correct format, a warning will be displayed.

80

5.5

5.5.1

Curam Server Developer's Guide

The vdidation of DMX files is controlled by the
curam dnx. di sabl e. val i dati on system variable. Validation is en-
abled by default, to disable the validation, this system variable should be
passed into the database build setting ittot r ue, asfollows:

bui | d dat abase -Dcuram dnx. di sabl e. val i dati on="t rue"

The ability to treat these warnings as errors is available by setting the
pr p. war ni ngst oerror s property. If thisissettot r ue, the warnings
will be treated as errors and the build database will fail.

Tracing Information for the DMX Merging Process

It is possible to turn tracing on for the DM X merging process. This can help
assist in debugging any issues that may occur, as a result of merging DMX
data. The system property cur am dnx. t raci ng, if set to t r ue, pro-
duces tracing information to the console for the DMX file being processed.
This property isf al se by default.

The tracing output includes:

* Thename of the file being processed;

» Thekey value for arow that is being merged (only where duplicate rows
exist);

» Information indicating the merging process has finished for aDMX file.

The following is an example of setting this property:

bui | d dat abase - Dcuram dnx.traci ng=true

Example 5.23 Set tracing for DMX files.

When set to t r ue, this property outputs a large amount of data to the con-
sole and must therefore only be used for debugging purposes.

Database Object Naming

Typicaly the names of the objects on the database are clearly visible from
the Data Manager XML Files (for example, table names and column
names). The Data Manager does provide support for the naming of objects
which are not directly visible in these files.

Short Name Substitution

The Short Name Substitution feature will be removed in a future version of
IBM Caram Social Program Management. The third party databases now
supported no longer have the SQL identifier limitations that originally ne-
cessitated the feature. Consequently, it isno longer necessary to use this fea-

81

5.5.2

5.5.3

Curam Server Developer's Guide

ture and it has been removed from the product documentation. If you still
require this feature please contact Support for the information that previ-
ously was available in this document. Please refer to the Caram Supported
Prerequisites document for comprehensive details of the supported versions
of database management systems.

Primary Key Indices

By default the primary key index will have the same name as its correspond-
ing table.

If required, a prefix can be specified for the primary key index name using
the generator command line option -primarykeyindexpr efix. For example
Setting the property ex-
tra. generator.options=-primarykeyi ndexprefix Pl_ in
Boot st rap. properties will result in the primary key index for atable
named Person being named PI_Person. If the index name length is greater
than the SQL identifier limit supported by your database you will encounter
an error during SQL processing.

Primary Key Constraints

By default, the generated DDL for adding a primary key to a table takes the
form:

alter table TTTT add primary key (AAAA)

where

TTTT isthe table name.

AAAA isacomma-delimited list of the primary key attributes.

By specifying the command line option -usenamedprimarykeyconstraint
through the extra.gener ator .options this DDL can be made take the form:

alter table TTT add constraint CCCC primary key
(AAAA)

where
CCCC isthe name of the primary key constraint.

In this case the name of the primary key constraint defaults to the same as
the name of its corresponding table. Also, like primary key index names, a
prefix can be applied to this name using the -primarykeyconstraintpr efix
command line option. If the constraint name length is greater than the SQL
identifier limit supported by your database you will encounter an error dur-
ing SQL processing.

5.5.4 Tablespaces

i Note

82

Curam Server Developer's Guide

This section is specific to DB2 for ZOS,

By default the behavior is for tablespaces to be created implicitly during ta-
ble creation. The exceptions to this are:

1

The tablespace named by the cur am db. zos. 32kt abl espace
property is created explicitly by the datamanager and tables exceeding
the 4K row limit are placed in this tablespace.

Tablespaces identified in the Tabl espace. properti es file are
created explicitly by the datamanager. If the table specified for the ta-
blespace exceeds the 4K row limit the tablespace is defined in the 32K
BUFFERPOOL. Otherwise, it will take the default setting.

When using the Tabl espace. properti es filethe format of the entries

is:

t abl enane=t abl espacenane

Comments are specified by the "#" character in column one.

2

1

=

=

Note

If the tablespace for the table that exceeds the 4K row limit is
defined in the Tabl espace. properti es file then this ta
blespace will be used over the one defined in the property
curam db. zos. 32kt abl espace.

Note

When using DB2 for ZOS version 8 the use of the default 32K ta-
blespace (curam db. zos. 32kt abl espace) can result in
SQLCODE -913 errors during login, but could also occur in other
contexts. To avoid these errors you should do one of the following:

1. Ensure your Curam default 32K tablespace is segmented
(SEGSI ZE; see the DB2 Universal Database for zZ0OS SQL
Reference Version 8 for more information).

2. Explicitly define tablespaces for each Curam table that defaults
to the 32K tablespace (e.g. SELECT * FROM SYS-
| BM SYSTABLESPACE VWHERE NANVE =
<curam db. zos. 32kt abl espace val ue>) and assign
each table to a gpecific tablespace via the Ta-
bl espaces. properti es file

(This is not an issue when using DB2 for zZ/OS version 9 be-
cause tablespaces are segmented by defauilt.)
Note

In DB2 for z/OS version 9 the behavior of the ALTER TABLE
DROP PRI MARY KEY SQL statement changed as follows: "If the
table space was implicitly created, the corresponding enforcing in-

83

Curam Server Developer's Guide

dex is dropped if the primary key is dropped.” Most production
users would typically explicitly create their tablespaces and would
not be impacted by this change, but in test environments this may
not be the case. The symptom of thisissue is an SQLCODE -551 er-
ror on a DROP | NDEX statement following the ALTER TABLE
DROP PRI MARY KEY statement. To avoid this error you can
either:

e Manually remove the generated DROP | NDEX SQL statement
from the Data Manager-generated SQL to take into account the
new behavior; or,

» Explicitly define the tablespace and specify it in the Ta-
bl espace. properti es file. For example, for the USERS
table, your Tabl espace. properti es filewould contain:

USERS=USERSTS

5.6 Data Manager Configuration

Typically the Data Manager sets up the database from a number of different

components:

« SDEJTables

» Application Tables
 Initia Data

« Demo Data
 TestData

The selection of which set of data to apply effectively depends on the task
the devel oper wishes to perform.

The Data Manager is configured using the dat amanager _confi g. xm
configuration file. Thefileislocated at:

SERVER DI R\ proj ect\ confi g\ dat ananager _confi g. xm

The structure of dat amanager _confi g. xm isshownin Example 5.24,
Data Manager Configuration.

<dat ananager >
<conpositetarget nane="target nanme">
<subt ar get name="subt arget nane"/>
</ conposi t et ar get >
<target nanme="subtarget nanme">
<entry name="relative filename or relative directory"
type="sql, DWX or xm"
base="sdej scripts or basedir"/>
</target>

84

Curam Server Developer's Guide

</ dat amanager >

Example 5.24 Data Manager Configuration

Thefileis organized asfollows:

Target Tag

This has a name attribute specifying the name of the target and a set of
associated entry tags.

Entry Tag
This has three attributes associated with it.

Name Attribute

This specifies the file or directory associated with this attribute and
its offset from the base attribute.

Type Attribute

This specifies whether the file is an SQL script, a. DMX file or an
. xml file.

Base Attribute

This specifies the system dependent offset of the file on the local
machine. It may be specified as one of basedi r (the directory
above the Data Manager) or sdescri pts (the location of the
SDEJinstallation).

Any of the targets listed in this configuration file can be passed to the build
database target.

The dat amanager _confi g. xm file is used when running the the
build database target. When this target is run, composite targets specified
within the dat amanager _confi g. xm can be called. By default, the all
composite target is called within the dat ananager _confi g. xm file.
To call adifferent composite target the pr m t ar get can be passed to the
build database target specifying the composite target to be called. For ex-
ample, to call theinitial composite target, the following could be executed:

buil d database -Dprmtarget=initial

New composite targets can be added to the dat ananager _confi g. xm
file. The composite target can contain any number of subtargets. The fol-
lowing is an example of specifying a new composite target mycompositetar-
get that calls mynewtar get.

<t arget nane="nynew arget">
<entry base="basedir"
nane="conponent s/ core/data/initial/
handcr af t edscri pt s/ NewScri pt. sql"

type="sql "
/>
</target>

<conposit etarget nane="myconpositetarget">
<subt ar get nanme="nmynewt ar get "/ >

85

5.7

5.8

5.9

Curam Server Developer's Guide

</ conposi t et ar get >

Database Synchronization

Typicaly the Data Contents XML files are hand crafted by a developer.
However the infrastructure provides Ant targets to create a Data Contents
XML file from the database. The Data Extractor is invoked by executing a
build command of build extractdata. By default the full database is extrac-
ted and DMX files are created for any tables that contain data. An optional
parameter of t abl ename can be passed to specify that only one or more
tables should be extracted e.g. build extractdata -Dtablename=Users. If
you want to extract multiple tables during the one run, pass a comma separ-
ated list of tablesto thet abl ename parameter.

The generated . DMX files are placed in a
%SERVER DI R% bui | d/ dat aext r act or folder. Under this folder the
contents of any clobs or blobs are also extracted and stored in afile whichis
based on the naming format: <t abl enanme><r ownunber >.

Statistics

Databases use an optimizer to determine the most efficient access path to
data on the database. The optimizer uses statistics about the physical charac-
teristics of a table and the associated indexes to determine this information.
These characteristics include number of records, number of pages, and aver-
age record length. If no statistics are available on the database, then the op-
timizer makes a guess as to the best access path to use and this can often
lead to performance issues, including unnecessary deadlock and timeout ex-
ceptions. The runstatistics target is available to gather these necessary stat-
istics on the database and will be run against all Clram database tables.

]

n Note

The "runstatistics' target is not supported with DB2 for zZ/OS due to
the architectural differences of this platform. Consult with your loc-
al database administrator in regard to invoking the equivalent DB2
for Z/OSfunctionality.

Lob Manager
The LOB Manager is part of the Data Manager which enables Clobs and
Blobs to be loaded onto the database.

In the data contents file Blob and Clob fields are handled slightly differently
to other fields, in that the val ue element will not contain the literal data
but will instead contain areference to afile containing the data.

The Example 5.25, Blob Data Contents File, illustrates how a table with a
numeric and blob column can be populated with one record using a binary

86

Curam Server Developer's Guide

file from disk.
<tabl e nane = "Bl obEntity">
<col um name = "imagel D' type = "nunber"/>
<col um name = "imageData" type = "bl ob"/>
<r ow>
<attribute name = "i magel D'>

<val ue>1</val ue>
</attribute>
</ row>
<r ow>
<attribute nane = "binaryData">
<val ue>. /i mages/ 1.] pg</ val ue>
</attribute>
</ row>
</t abl e>

Example 5.25 Blob Data Contents File

Note that to load Blobs, the LOB Manager can only be used on tables for
which the primary key fields are known. Thisis because inserting aLOB in-
volves an SQL insert followed by an SQL update, and the SQL update must
be capable of addressing a single record by means of its primary key.

The Example 5.26, Clob Data Contents File, illustrates how a table with a
numeric and clob column can be populated with one record using a charac-
ter data file from disk.Here, the clob data file is encoded with UTF-16
format, and this is specified in the attribute element with encoding as UTF-
16 for that row, so the clob content gets encoded before it gets inserted.

<table name = "Entity">

<col um nanme = "I D' type = "nunber"/>
<col um name = "content" type = "clob"/>
<r ow>

<attribute name = "ID'>

<val ue>1</val ue>
</attribute>
</ row>
<r ow>
<attribute nane = "content" encoding = "UTF-16">
<val ue>./cl obcontentdir/1.txt</val ue>
</attribute>
</ row>
</t abl e>

Example 5.26 Clob Data Contents File

The Example 5.27, Clob Data Contents File in encoded format, illustrates
how a table with a numeric and clob column can be populated with two re-
cords using the character data files from disk.Here, if al the clob data files
are encoded in UTF-16 format, then this can be specified at column level,
using encoding attribute, so al the rows for clob type uses the same encod-
ing type of that column. To override this for only a single row, the encoding
type can be specified as in previous example at attribute element level of
that row element.

87

Curam Server Developer's Guide

<table nane = "Entity">
<col um nanme = "I D' type = "nunber"/>
<col um name = "Data" type = "cl ob"
encodi ng = "UTF-16"/>
<r ow>
<attribute name = "ID'>

<val ue>1</val ue>
</attribute>
</ row>
<r ow>
<attribute nane = "Data">
<val ue>./cl obcontentdir/4.txt</val ue>
</attribute>
</ row>
<r ow>
<attribute nane = "I D'>
<val ue>2</ val ue>
</attribute>
</row>
<r ow>
<attribute nane = "Data">
<val ue>./cl obcontentdir/ 2.t xt </ val ue>
</attribute>
</row>
</t abl e>

Example 5.27 Clob Data Contents File in encoded format
The LOB manager identifies primary keys by means of the dat aman-

ager confi g. xm file sothisfile must contain areference to the gener-
ated Pri maryKeys. xm relating to table containing the LOB.

88

6.1

6.2

Chapter 6

SQL Checker

Overview

The IBM Curam Social Program Management SDEJ produces a database
access layer which is based around JDBC. JDBC is dynamic SQL from the
viewpoint of database and as such there is no ability to check the syntax and
semantics of the statements prior to their first execution. The SQL checker
provides a method of validating the syntax and semantics of these SQL
statements before they are first exercised.

Under the Hood

The SQL checker is invoked by an Ant target and generates a ssmple Java
program which uses SQL J rather than JDBC. This program is generated into
/ bui | d/ sql check/ SQLJTenp. sql . This Java program contains all
the elements that should be checked, namely the hand crafted SQL in the
model and the Data Manager. Because SQLJ is static SQL the program can
be compiled in advance of deployment, provided the database is already cre-
ated and popul ated.

The SQL checker can also check the contents of the model for database
portability. Thisis useful in situations where primary development is against
one kind of database (for example DB2) but final deployment is against an-
other database (for example DB2 for zZ/OS). The elements checked for in-
clude:

e Comparison of Host Variablesto NULL

This check is performed because hand-crafted SQL can use the SQL i s
Nul | keyword on ahost variable. If thisis done the Clram Generator auto-
matically produces a cast to the correct fundamental SQL datatype for the
database that is being built against. However, this means that the resultant
. ear file cannot be deployed against a database of a different type unless it

89

6.3

Curam Server Developer's Guide

iscompletely re-built.

Limitations

The SQL Checker is designed to reduce the number of syntax and portabil-
ity errors that remain until deployment as this reduces the effort expended in
testing for and removing these errors. However, it is not a replacement for a
comprehensive test suite as it does not catch al the possible errors. There
are anumber of reasons for this:

Reliance on the SQLJ Check

The SQL Checker is only as good as the SQLJ compiler that it invokes.
Any syntactical or semantic errors which are not reported by the com-
piler will not be reported by the SQL Checker.

Portability Warnings

The SQL Checker is only designed to capture and report the most com-
mon portability errors. It is not a replacement for early and comprehens-
ive testing on the final target database.

Limitation with H2

H2 doesn't provide an implementation of an SQLJ checker; therefore, it
only performs a portion of the perceived checks that the SQL Checker
does.

90

Chapter 7

Eclipse

7.1 Overview

7.2

Eclipse is the core IDE for development of IBM Curam Social Program
Management. It is the underlying technology in:

* |IBM® Rational® Application Developer for WebSphere;
* Rational Software Architect;
» Rational Software Architect for WebSphere.

This chapter describes relevant aspects of Eclipse as well as providing some
tips and tricks. It does not attempt to describe the general features or usage
of Eclipse; e.g., the Java Editor or debugging as that information is provided
by the vendor, see http://www.eclipse.org/ for more information.

The term “Eclipse” which is used throughout this chapter appliesto all sup-
ported tooling based on Eclipse; e.g., Rational Software Architect.

The supported version of Eclipse or its usage through the Rational product
versions can be found in the Ciram Supported Prerequisites.

Curam Projects in Eclipse

Four projects are provided that should be imported into Eclipse:

Project Name File System Contents
directory
CuramSDEJ CuramSDEJ The Server Development librar-
Ies.
CuramCDEJ CuramCDEJ The Client Development librar-
ies, depends on the CuramSDEJ
project.

91

http://www.eclipse.org/

7.3

7.3.1

7.3.2

Curam Server Developer's Guide

Project Name File System Contents
directory

EJBServer EJBServer The Curam Server application,
depends on the CuramSDEJ
project.

Curam webclient The Caram Client application,
depends on the CuramCDEJ
project.

Table 7.1 Transaction settings

Dependencies allow for exposed jar libraries in referenced projects to be
used in code developed in the dependent project.

The Cur amCDEJ and Cur anSDEJ are non-development projects that are
only containers for libraries. All development should be done within the
EJBSer ver and Cur amprojects.

Eclipse Configuration Files

Each Eclipse project is configured through two XML files; a . pr oj ect

and a. cl asspat h file. Also a number of preferences and settings can be
configured at a project level rather than workspace level; the effect of set-
ting these at a project level means that this configuration, which form files
and entries in a .settings folder under the project, can be distributed which
the project in ateam environment.

The configuration mentioned in section is maintained by right-clicking on a
Project within the Project Explorer view in Eclipse and selecting Pr oper -
ties.

.project File

The . pr oj ect file holds the project nature and builders and for a typical
Java project holds a single nature and builder corresponding a Java project.
Additionally in the Cur amproject there is a Apache Tomcat nature to signi-
fy the project can be configured for and deployed on Tomcat. The project's
dependencies are also maintained in the . pr oj ect file.

.classpath File
The . cl asspat h maintains the Project's source and target references for
Java compilation and jar or project dependencies.

This configuration is maintained through the Java Build Path page in the
Project's properties. Source entries can be added, ordered or new jar file de-
pendencies can all be managed through this page.

Optionally, Access Rules and JavaDoc references can be configured on jar

92

7.3.3

7.4

7.5

Curam Server Developer's Guide

files. Access Rules are discussed further in Section 7.4, Access Rules.

.settings Directory

The . set ti ngs folder maintains a number of the other preferences that
can be maintained at the project level e.g. Compiler warning/error levels,
Code style settings, etc. The preference pages offering this ability to main-
tain a a project level can be seen to have an Enabl e proj ect spe-
cific settings atthetop of the page.

This directory can be added to SCM control and settings distributed to team
members as required.

Access Rules

The Access Rul es option alows jar files within an Eclipse project
. ¢l asspat h to define an access level for packages and classes. There are
three different levels of access. non-accessible, discouraged and accessible.
When the compiler within Eclipse detects access to a type that should not be
accessed, it will create a problem marker rather than compile failure:

* Non-accessible rules define types that must not be referenced. The com-
piler typically creates an error marker for accesses to these types;

» Discouraged rules define types that should not be referenced. The com-
piler typically creates awarning marker for accesses to these types;

o Accessible rules define types that can be referenced.

Access rules are applied and provided rules for a number of the jar filesin
the. cl asspat h files of the Eclipse projects. These access rules comple-
ment each jar file's APl and through the accessi bl e rul e indicate ac-
cess that is compliant! as per the Cliram Development Compliancy Guide.
Classes defined as non- accessi bl e or di scour aged are not suppor-
ted for usage and are subject to change without notice and may not respect
their API; hence they can impact the ability to easily integrate IBM Cldram
Social Program Management upgrades.

i Note

A large number of discouraged accesses exist in the out of the box
Social Program Management Platform that may have been copied
into your codebase as part of sub-classing or extension work. In a
future release it is expected that these accesses will be removed and
appropriate aternative APIs provided where none currently exist. In
order to reduce future impact to your codebase, in regard access to
discouraged code, you should treat these accesses as non-accessible
and work to seek an alternate API.

Working Sets

93

Curam Server Developer's Guide

A common problem in Eclipse is that as the content in your workspace
grows it can be overwhelming to navigate through all the directories and
difficult to focus on the areas of interest to you. Eclipse solves this through
Working Sets which is away to specify, in aglobal location, which working
set you are currently interacting with. The following views and dialogs in
Eclipse support the concept of working sets:

The Navigator;

The Package Explorer;
The Projects View;
The Packages View;
The Types View;

The Problems View;

The Open Type Dialog.

Working sets can be especialy useful for example on the Problems View, in
terms of viewing what problems relate to your owned code. The following
steps detail how to set a working set on the Problems view to only display
problems related to the cust omcomponent:

1
2.

From the Problem View menu select Configure Contents;

In the Configure Contents dialog you must first add a filter from the
Configurations panel. Click the New... button and name this filter (e.g.
Cust om) and click OK. This will create the filter checking it in the
Configurations: list. Under Scope: select the On Working Set: Window
Working Set radio button and click the Select... button to add a new
working set;

In the Select Working Set dialog select the Selected Working Sets radio
button and click the New... button;

The New Working Set wizard can then be used to add types to the
working sets. In this instance we want to add a Java type and select the
custom source directory.

In the Select a working set type panel, select Java from the Working set
type: and click the Next > button. In the Java Working Set panel, select
items in the Workspace content: list and add them to the Working set
content: list using the Add --> button. Use the other buttons in the list
to manage the Workspace content: list. Specify a name in the Working
set name: text box. Click the Finish button. You can invoke the New
Working Set wizard again to create more working sets. Before clicking
the OK button to exit the Wizard ensure your Selected Working Sets are
checked.

On clicking OK to exit the Configure Contents dialog your Problems
View will be updated to only display errors, warnings or informationals

94

Curam Server Developer's Guide

relating to the newly created Cust omfilter.

95

Curam Server Developer's Guide

Notes

Access Rules can only be applied to jar files so should not be treated as a
complete solution to police compliancy.

96

Chapter 8

Logging

8.1 Overview

8.2

Logging facilities in an IBM Curam Social Program Management applica-
tion are provided by the curam uti | . resour ces. Tr ace class which
provides a convenient wrapper onto the Apache log4j * API.

This alows developers to log any information without concerning them-
selves with whether the program is being run in on-line or batch mode. The
final destination of the trace information is highly configurable and may be
alog file associated with the application server, a standalone log file, a con-
sole or even a database.

Usage

The main interface into the tracing APl is through an instance of the
or g. apache. | og4j . Logger class. The infrastructure provides a num-
ber of named instances which match the categories described in Table 8.1,
Logging Hierarchy. The top level category is accessed through
curamutil.resources. Trace. kTopLevel Logger as shown in
Example 8.1, Usage of the loggers.

curamutil.type. DateTi ne ti meNow;
ti meNow = curamutil.type. Dat eTi me. get Current Dat eTi ne() ;
curamutil.resources. Trace. kTopLevel Logger . i nf o(

"This function was called at ");
curamutil.resources. Trace. kTopLevel Logger . i nfo(ti meNow);

Example 8.1 Usage of the loggers

It should be noted that the above code produces two trace records. This will
not be easily visible if log4j is configured to use a flat file or the console.
However if alogdj viewer is used then the two trace records will result in a
needless entry which will complicate the view without any added benefit.

97

8.3

Curam Server Developer's Guide

As such it is recommended that trace statements which contain logically de-
pendent data are performed in asingle call.

A formatted textual representation of a Clram struct class object may be ob-
tained through a call to the class
curamutil.resources. Trace. obj ect AsTraceString cal.
For example:

curamutil.struct. ProcessNaneKey soneKey =
new curam util.struct. ProcessNaneKey;
soneKey. pr ocessNanme="soneVal ue";

curamutil.resources. Trace. kTopLevel Logger . i nf o(" DEBUG n") ;
curamutil.resources. Trace. kTopLevel Logger. i nf o(
curamutil.resources. Trace. obj ect AsTraceSt ri ng(soneKey)) ;

Example 8.2 Tracing a Caram Struct

Logging Hierarchy

The Curam infrastructure produces trace records in specific categories with
specific levels. This allows them to be easily filtered in alog4j viewer. The
categories and levels supported are described in the following table where
<BPO>, <Entity> and <Facade> are the names of the relevant Cliram
class. The <CodePackage> field is left empty if the classis not located in a
code package.

Category Level Meaning

Trace Error L oggable exceptions
which have not been
caught in the code.

Trace.BatchL auncher Info Progress of Batch Launch-
er
Trace.BatchL auncher Error Errorsin Batch Launcher
Trace.CodeTable Debug Tracing information about
code table lookups.
Trace.DataA ccess.<Entity> Info SQL statements executed
by entity objects.
Trace.DataA ccess.<Entity> Debug Results of SQL select
Statements.
Trace.Methods.<CodePackage>.<B Info Business Object method
PO> invocation.
Trace.Methods.<CodePackage>.<B Debug Arguments and types of
PO> arguments for Business
Object method invocation.
Trace.Rules Info Progress of Rules Engine.
Trace.ServerCalls.<CodePackage>. Info Server method invocations
<Facade> by remote clients.

98

8.4

Curam Server Developer's Guide

Category Level Meaning

Trace.ServerCalls.<CodePackage>. Debug Arguments and types of

<Facade> arguments for server meth-
od invocation.

Trace.Tools Info Progress of build time
tools. E.g: configtest

Trace.Tools Warning Warnings from build time
tools

Trace.Tools Error Errors from build time
tools

Table 8.1 Logging Hierarchy

Logging Level

When logging the Curam server, trace level should be taken into considera-
tion. These settings can be used to guard the calls made into log4j to im-
prove the performance in environments where tracing is not required-.

The current level of tracing can be checked by calling the method:
curamutil.resources. Trace. at Least (Trace t)
where the parameter to this method can be one of the following:

e curamutil.resources. Trace. kTraceO f

e curamutil.resources. Trace. kTraceOn

e curamutil.resources. Trace. kTraceVer bose

e curamutil.resources. Trace. kTraceUl tr aVer bose

The trace level for your application can be specified by setting the
curam trace property as defined in Chapter 4, Caram Configuration
Settings. Valid values for this property are:

e trace_on
e trace_verbose

e trace_ultra_verbose

The amount of logging done by your application code should reflect the cur-
rent logging level of the application. The following code extract demon-
strates this:

if (curamutil.resources. Trace. at Least (
curamutil.resources. Trace. kTraceOn)) {
curamutil.resources. Trace. kTopLevel Logger. i nf o(
"hello world.");

99

8.5

Curam Server Developer's Guide

Example 8.3 Logging example in application code

The Caram infrastructure provides support for a number of standard trace
options which provide a convenient view on top of the trace levels. All of
the options result in significant information being written to the log and will
have a significant impact on the performance of the application. The follow-
ing are the properties that may be set as described in Chapter 4, Ciram Con-
figuration Settings, and the level at which they are set at default (O isOn, V
isVerbose, U is Ultra).

Property Name Meaning En-
abled
curam.trace.servercalls Trace server method invocationsby O

remote clients. Thisincludes the name
of the user requesting the invocation.

curam.trace.methods Trace al business object method in- VvV
vocation.

curam.tracemethod_args ~ Dump arguments, including their U
types, to BO method invocations.

curam.trace.sq Trace SQL statements executed by en- V
tity objects.

curam.trace.sgl_args Dump results of SQL select state- U
ments.

curam.trace.rules For more information refer to the U

Runtime Rules Logging in the Cdram
Rules Codification Guide.

curam.trace.smtp Trace the messages that are sent to the
mail server.

Table 8.2 Diagnostic Tracing Options

Configuration

log4j provides extensive support for configuring the destination of the trace
information. This section does not attempt to duplicate the log4j documenta-
tion but places this information in the context of IBM Cuaram Social Pro-
gram Management. The configuration information should be placed in afile
pointed at by thecuram t race. confi gfil e. |l ocati on property.

If thecuram trace. configfile.location property is not set, the
default log4j setting is to use a Console Appender. The Console Appender
simply outputs everything output at the default (or higher) log4j level to
System Out. The default log4j level for the top level logger (and al inher-
ited loggers) is set to DEBUG. ®

Example 8.4, Configuring log4j will result in trace information being writ-

100

Curam Server Developer's Guide

tento arolling file appender. This means the output is placed in afile until it
reaches a specified size. Once it reachesthissizeit is “rolled-over”, and it is
renamed by appending a. 1 to thefilename. If a. 1 fileexistsit isfirst re-
named to . 2 and so on.

This is suitable for development environments where a historical trace can
be useful.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | 0g4j : confi gurati on SYSTEM "Il og4j .dtd">
<l--
| For nore configuration infornmation and exanpl es
| see the Jakarta Log4] website:
| http://jakarta. apache. org/ | og4j
>

<l og4j : configuration
xm ns: 1 og4) ="http://jakarta. apache. org/| og4j/"
debug="f al se">

<l-- - >
<l-- Append nessages to a File -->
<l-- - >

<appender nane="CQut put ToFi | e"
cl ass="org. apache. | og4j . Rol I i ngFi | eAppender " >

<param nane="Fi| e"

val ue="d: / Cur anPr ops/ Cur amAppLog. | og" />
<par am nane="Thr eshol d"

val ue="debug"/ >
<par am nane=" MaxBackupl ndex"

val ue="3"/>

<l ayout cl ass="org. apache. | og4j . PatternLayout">
<par am nane="Conver si onPat t er n"
val ue="[% 5p] [%{dd MW yyyy HH mm ss}] [%] - %P%"/>
</ | ayout >
</ appender >

<l -- -->
<l-- Setup the Root category -->
<l -- -->
<r oot >

<l evel val ue="I1NFO'/>
<appender -ref ref="CQutputToFile"/>
</root >

</l og4j: configuration>

Example 8.4 Configuring log4j

There are a number of customizable valuesin thisfile:

» The name of the log file Is set to be
d: / Cur anPr ops/ Cur amAppLog. | og.

e The maximum number of previously rolled back files which are pre-
served is set to 3.

e The maximum file size is not explicitly set so the default of 10Mb is
used.

» The Conversion pattern means the following is output:

* %-5p: Thelevel of the trace message after being left padded to be a
5 character string.

101

Curam Server Developer's Guide

* %c : The category of the trace message.
* %m: The trace message itself.
* %n: A platform specific line separator.

* Thelog4j level is set to INFO, which means that all items logged at the
DEBUG level will be ignored. This overwrites the default level of DE-
BUG set by the infrastructure.

However, direct access to a file may not be an ideal mechanism if the trace
output should be monitored. Example 8.5, Configuring log4j to log to a
socket will result in trace information being written to a socket. A listener
(such as Apache Chainsaw which is delivered with log4j) can then be used
to display the resultant information.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | 0og4j : confi gurati on SYSTEM "| og4j . dtd">
<l--
| For nore configuration information and exanpl es
| see the Jakarta Log4] website:
| http://jakarta.apache. org/| og4j
>

<l og4j : confi guration
xm ns: |1 og4j ="http://jakarta. apache. org/| og4j /"
debug="f al se">

<I-- -->
<l-- Append nessages to a Socket -->
<l-- -->

<appender nane="Qut put ToSocket
cl ass="org. apache. | og4j . net . Socket Appender " >
<par am nanme=" Renot eHost "
val ue="| ocal host" />
<param nane="Port"
val ue="4445"/ >

<l ayout cl ass="org. apache. | og4j . PatternLayout">
<par am nane="Conver si onPattern"
val ue="[% 5p] [%{dd MW yyyy HH. nm ss}] [%] - %P@"/>
</ | ayout >
</ appender >

<I-- -->
<l-- Setup the Root category -->
<l-- -->
<r oot >

<l evel val ue="I1NFO'/>
<appender-ref ref="CQutputToFile"/>
</root >

</l og4j: configuration>

Example 8.5 Configuring log4j to log to a socket

The Conversion pattern used in thisfile is the same but some extra custom-
izable values have been introduced:

e The host name and port of the remote server are set to localhost and
4445 respectively.

Numerous other possibilities exist for this configuration and this section

102

8.6

Curam Server Developer's Guide

does not attempt to duplicate the existing log4j documentation. However, it
isworth noting that Nested Diagnostic Contexts are not currently supported.

Statistics

Tracing facilities are provided to allow server-related information and dia
gnostics to be output to a central location. It is possible to use this informa-
tion to collect performance information about client visible Caram server
functions, i.e. any operations invoked by the Ciram web client. However
writing trace informational typically has an impact on performance, because
the log4] appender should aways be configured to maintain the contents
after a server crash (for example buffered file access should not be used).
For performance benchmarking it is highly desirable that the benchmarking
process should not itself impose a performance overhead on the application
being measured. For this reason, A way to collect server function perform-
ance statistics is provided that imposes less overhead than server tracing,
and which produces output in a format more amenable for automated pro-
cessing as part of benchmark analysis.

To avoid performance overhead on the server output is written to separate
log files, one per Session Bean (Cdram Facade) in the application. Each log
file has an associated 4Kb memory buffer, so there is a memory overhead
imposed by the collection of server benchmarks. It is assumed that a realist-
ic benchmark configuration will involve application server machines with a
significant amount of physical memory.

The dtatistics files are created in the directory specified by the
curamtest.trace.statistics.location propety if the
curamtest.trace.statistics property is set. They are named
<Machi neNanme>_<Sessi onBeanNanme>_0. <Ti neSt anp>. Each
(tab-delimited) entry in the file contains the following format:

Summary Meaning

Timestamp Thistimestamp isin asortable format (1SO
8601 complete) and indicates the time at which
the method was invoked. The International
Standard for the representation of dates and
timesis SO 860L1. It displays the timestamp
with the accuracy to seconds. The format of
the timestampisYYYYMMDDTHHMMSS.
Note that the"T" appears literally in the string,
to indicate the beginning of the time element,
as specified in SO 8601.

Machine name The name of the application server machine on
which this function executed.

Session Bean Name The name of the statistics class, Statistics, is al-
way's printed.

Process ID Currently hard-coded to zero.

103

8.7

Curam Server Developer's Guide

Summary Meaning

Server function signature The function signature including class and
method name, and method argument types.

Success indicator A flag indicating whether the server function
succeeded with no error returned to the client.
A value of 1 indicates success, avalue of 0 in-
dicates failure. The specific error messageis

not recorded
Elapsed time in milli- Thisisthe time spent (in milliseconds) execut-
seconds ing this function excluding time spent by the

middleware software in dispatching the func-
tion call and marshaling arguments

Table 8.3 Statistics File Elements

Localization

In cases where log messages should be localizable, class Local i s-
abl eSt ri ng can be used. See Section 9.9, Localized Output. However it
is important to note that logged messages are typically targeted at a system
administrator who may have a different locale to the current user. For ex-
ample if the user uses English and the administrator uses French, then the
Curam default locale will be French and the log message should be written
in French. In the following example, the default server locale is explicitly
passed into get Message, otherwise get Message would return a string
corresponding to the users locale rather than the Clram server locale.

i mport curamutil.resources. Prograniocal e;

/Il Create a |localizable nessage
curamutil.exception. LocalisableString e =

new Local i sabl eStri ng(EXAVPLE. | D_EXAMPLE_MESSAGE) ;
e.arg(sonel dentifier);

/1 WRONG This logs the nessage in the current users | ocal e,
// not that of the Cdram server.
curamutil.resources. Trace. kTopLevel Logger . i nfo(e. get Message());

/] RIGHT: The nmessage is | ogged using the Ciram server |ocal e.
curamutil.resources. Trace. kTopLevel Logger . i nf o(
e. get Message(Prograniocal e. get Def aul t Server Local e()));

Example 8.6 Localizable logging example in application code

104

Curam Server Developer's Guide

Notes

Yog4j is alogging framework provided by the Apache Jakarta project (see
The complete manual - log4j, Gulcu).

2While log4j is designed to impose a minimal overhead it cannot avoid the
cost of the parameter construction inside the method invocation. Application
devel opers must take this into consideration.

3The set of possible levels (in order of priority) defined by log4j are ALL,
DEBUG, INFO, WARN, ERROR, FATAL and OFF. Only those items
logged at the specified level or higher levels will be included in the log.

105

Chapter 9

Using Exceptions

9.1 Overview

As the Java language provides full support for exceptions, they are the re-
commended mechanism for handling errors in an IBM Cdram Social Pro-
gram Management application. The advantage of using exceptions to handle
errors is that it saves the developer from having to check the status of each
operation attempted. A single try. . cat ch construct can enclose many
statements, each of which could raise an exception.

In a Cdram application, exceptions can originate from various parts of gen-
erated code. For example the Database Access Layer (DAL) throws excep-
tions in the event of a database error, application developers can throw pre-
defined exceptions or customized exceptions. There are two basic forms of
exceptions used; checked and unchecked.

Checked exceptions are subclasses of
curamutil.exception. AppExcepti on and
curamutil.exception.|nformational Excepti on. These ex-
ceptions must be explicitly caught or listed in the t hr ows clause of the
method.

Unchecked exceptions are subclasses of
curamutil.exception. AppRunti meExcepti on. These excep-
tions do not have to be explicitly handled as they inherit from the Java Ex-
cepti onand Runt i neExcept i on classes respectively. Typicaly, data-
base problems (such as a Recor dLockedExcept i on) are thrown as un-
checked exceptions. This means that there is no need for code to tediously
check for a Recor dLockedExcepti on each time the database is ac-
cessed.

In a Caram application, checked exceptions can arrive at the Remote Inter-
face Layer (RIL), despite being checked, at hr ows clause can unwind all
the way to the RIL. Once here they are converted to a different form of ex-
ception which is thrown to the client, and may write information from the

106

9.2

Curam Server Developer's Guide

exception to the log file. To avoid this a developer can write code to catch
exceptions and handle them and/or re-throw them before the exception
reachesthe RIL.

The following happens when the RIL catches a checked exception:

Thetext for the exception is loaded from a message catalog file.

If the exception is loggable, then the text will be formatted, with argu-
ments inserted and written to the log file in the default server language.

If the exception isloggable and includes a stack trace thiswill be written
tothelogfile.

An exception is created and thrown to the client. This contains the name
of the message catalog, the ID of the message, and the exception argu-
mentsif any.

The client receives the exception and uses the catalog name and message
ID to look-up a localized version of the message. It then inserts and
formats the arguments into a message and displays the message.

The RIL also catches unchecked exceptions to perform default actions.

The text for the exception is loaded from a message catal og file.

The text is formatted with arguments inserted and written to the log file
in the default server language.

A stack trace iswritten to the log file.

A new exception is created and thrown to the client. This exception
states that the original exception was Unhandled. The origina exception
is mapped because the descriptive text is at too low a level to make
sense to a user.

The newly created exception contains a nested exception which has the
details of the original exception - namely the name of the message cata-
log, the ID of the message, and the exception argumentsiif any.

This mapping happens for all but four unchecked exceptions. These ex-
ceptions are left untouched because the descriptive text produced is
readable to a user. These are Recor dChangedExcepti on. Re-
cor dDel et edExcepti on, RecordLockedException and
Readnul ti MaxExcepti on.

When the client receives the exception and uses the catalog hame and
message ID to look-up alocalized version of the message. It then inserts
and formats the arguments into the message and displays the message.

Constructing an Exception

Exceptions® are typically created with a catalog name and message identifi-
er. If these are not specified default values are used. The server infrastruc-

107

Curam Server Developer's Guide

ture will take care of delivering the message text to the client and/or log file.
For example:

i f (DatabaseFieldlsNull()) {
curamutil . exception. AppException e = new
AppExcept i on(MAI NTENANCE. | D_NULL_| NDI CATOR) ;
throw e;

This can also be witten as foll ows

(Dat abaseFi el dl sNul | ()) {

hrow new curam util . excepti on. AppExcepti on
(1 NFRASTRUCTURE. | D_NULL_| NDI CATOR) ;

}
I
i f

t
}

Example 9.1 Constructing an AppException

The purpose of exceptions is to communicate the fact that an error has oc-
curred and to communicate information about that error. Often it is neces-
sary to include additional information as well as the error code. This can be
done using arguments.

Arguments are attached to an exception before it is thrown and are intended
to be ultimately included in the error message displayed at the client and/or
the server log file.

To attach an argument to an exception, the arg method (. ar g()) is used.
Example 9.2, Using the arg method with a primitive type shows a code ex-
ample of how to use the arg method to attach an argument to an exception.

// set a status code for the error which occurred
| ong | ngErrorCode = -1;

/'l create the exception.
curamutil . exception. AppException e = new
AppExcept i on(MAI NTENANCE. | D_SYSTEM ERROR) ;

/] Include this status code with the exception.
e. arg(! ngError Code);

/] now throw the exception
throw e;

Example 9.2 Using the arg method with a primitive type

The ar g method supports the addition of many different types of arguments
to an exception. Such primitive types include long, boolean or double while
complex types edg. Dat e, Dat eTi e, Money and
CodeTabl el tem denti fier objects can aso be added. See the
JavaDoc for curam uti | . excepti on. AppExcepti on for more de-
tails.

/|l Create a codetable identifier to describe donmain type.
curamutil.type. CodeTabl el tem dentifi er aCodel dentifier =
new CodeTabl el tem denti fier
(DOVAI NTYPE. TABLENAME, DOVAI NTYPE. | NT32) ;

/'l create the exception to flag an invalid data type
curamutil . exception. AppException e = new
AppExcept i on(WORKFLOW ERR_ANSWER NOT_VAL| D_DATATYPE) ;

/1 Include the donmain type code with the exception.

108

9.3

Curam Server Developer's Guide

e. arg(aCodel dentifier);

/1 now throw the exception
throw e;

Example 9.3 Using the arg method with a complex type

Creating Messages with Argument Placeholders
Argument place holders are tokens which are included in the error message
source text and are replaced by an argument at runtime.

Place holders are of the form % c, where n is the argument number (of 1 or
more), and c is a single character denoting the argument type as follows:

e S-string

* n-numeric
 d-dae

e t-time

» z-dateltime

e C-codetableitem

For example, the source message:

“Thefirst name is %1s and the surname is %2s”
would be displayed as:

“The first name is John and the surname is Smith”

The fact that the place holders are numbered means that they can appear in
the message in any order. For example, the source message:

“The second name is %2s and the first name is %1s’

would be displayed as:

“The second name is Smith and the first name is John”

The exception would be constructed and thrown as shown in Example 9.4,
Exception message with argument placeholders.

curamutil . exception. AppException e = new
AppExept i on(EXAMPLE. | D_EXAMPLE_MESSACE) ;

e. arg(Person. First Nane) ;

e. ar g(Per son. Sur nane) ;

t hrow e;

Example 9.4 Exception message with argument placeholders

9.4 Handling Exceptions

109

Curam Server Developer's Guide

When an exception is thrown in an application, it may be caught within a
try. . cat ch construct or it may be allowed to filter up to the RIL.

Thetry. . cat ch construct will typically handle the exception in one of
the following ways:

Ignore it and carry on with the next processing step.

An example of thisiswhere the program must check for the existence of
arecord on the database. If the DAL throws a Recor dNot FoundEx-

cept i on, then this indicates that the record does not exist. This excep-
tion will not be allowed to reach the client, instead it controls how pro-
cessing is done.

bPer sonExi sts = true;

try {
dtls = nmyPerson.read(key);

cat ch(Recor dNot FoundException rnfe) {
bPer sonExi sts = fal se;

Pass it upwards to a higher t ry. . cat ch construct by re-throwing the
actual exception.

An example of thisisatry. . cat ch construct which is interested in
only a specific exception. If any other exception is caught then it can be
passed on upwards for some other handler to deal with.

try {
myPer son. checkConpl et eness(dtl s);

catch(curamutil . exception. AppException e) {
i f(e.equal s(APP. | D_| NCOWLETE_DATA)) {
/1 set this flag and conti nue
bl nconpl eteData = true;
} else {
/1 do not know how to handl e this exception,
/] pass it straight through.
t hrow e;
}
}

Create a new exception and throw the new exception.

An example of thisiswhere the handler would replace a generated DAL
exception with an application exception containing a more user-friendly
application-specific error message.

cat ch(Recor dNot FoundExcept i on rnf e)
{
curamutil . exception. AppException e = new
AppExcept i on(APP. NO_SUCH_PERSON) ;
/] substitute the nessage for the exception.
/1 (The new nmessage includes the |ID nunber of
/1 the record we searched for.)
e.arg(dtls. personl DNunber) ;
t hrow e;
}

Create a new exception, attach the original exception to this new excep-

110

Curam Server Developer's Guide

tion, and raise the new exception.

An exception can be constructed with a pointer to another exception as
follows:

catch(curamutil.excepti on. AppExcepti on
ori gException) {
curamutil.exception. AppExcepti on newExcepti on = new
AppExcepti on(MYAPP. | D_MYMESG, ori gException);
t hr ow newExcepti on;

}

This has the effect of creating a linked list of exceptions with the most
recent exception at the head of the list. This allows a detailed history of
an exception to be built up for auditing or debugging purposes.

9.5 Logging Exceptions

Exceptions can be optionally logged to the application log file by setting its
loggable flag using the set Loggabl e method.

Loggable exceptions are written to the application log file by the RIL. The
exception message is read from the error message catalog file, the exception
arguments, if any, are inserted into the text and this parsed text is written to
thelog file.

An exception is treated as loggable if its loggable flag is set or if the log-
gable flag is set on any attached exceptions.

If the exception being logged has any other exceptions attached, then these
exceptions are also logged.

9.6 General Exception Guidelines

Follow the processing specification for the method, this should describe
the error situations that can be encountered. When actually writing and
testing the code, look out for sources of errors that might have been
overlooked.

Do not try to add a “catch-all” for unanticipated errors; the server infra-
structure can handle these better than you can. Do not wrap entire opera-
tions with error handlers.

Do handle exceptions where you are in a position to add more specific
information about what has happened, such as converting “record not
found” into “bank account not found”.

Do gain an understanding of the standard exceptions defined in the core
infrastructure. Be aware of the types of exceptions that can be thrown
by generated database manipulation operations of entity objects:

* Recor dNot FoundExcept i on can be thrown by singleton reads,
updates and removes of the database (entity read, nsread, modify, ns-

111

Curam Server Developer's Guide

modify, remove and nsremove operations). A non standard operation
(for example nsmodify and nsremove) will throw this exception irre-
spective of the uniqueness of the key that is passed into it.

Recor dNot FoundExcept i on can be thrown by nonkeyed up-
dates and removes of the database (entity nkremove and nkmodify).

Recor dDel et edExcept i on is aways thrown in precedence to
aRecor dNot FoundExcept i on.

Recor dDel et edExcept i on can be thrown when an optimistic
update fails because the target record has been deleted. With optim-
istic locking enabled the record is re-read to obtain the version num-
ber. If the record is no longer present this exception is thrown.

Dupl i cat eRecor dExcept i on can be thrown by insert and up-
date operations (entity insert, nsinsert, modify, nsmodify, nkmodify
operations).

Recor dChangedExcepti on and Recor dDel et edExcep-
t i on can be thrown by update operations with optimistic locking.
Recor dDel et edExcept i onis thrown by entities which have
optimistic locking enabled in preference to Recor dLockedEx-
ception.

Mul ti pl eRecor dExcept i on can be thrown by singleton reads
of the database (entity read, nsread, nkread operations) if multiple
records are found which meet the specified selection criteria.

Readnul t i MaxExcept i on can be thrown by multiple reads of
the database (entity readmulti, nsmulti, nkreadmulti operations) if
more record are retrieved than the maximum specified in the applic-
ation model.

Recor dLockedExcepti on can be thrown by any of the entity
operations if adeadlock or lock timeout occurs.

O her Dat abaseExcept i on can be thrown by any of the entity
operations if the database reports an error which does not map to one
of the above exceptions.

9.7 Coding Conventions for Exceptions

Under norma circumstances don't create your own subclasses of
AppExcepti on or AppRunt i meExcepti on.

Use exception chaining and exception logging when handling serious er-
rors (the definition of “serious’ is application-specific).

When writing the text of errors in a message file, be aware of localiza-
tion issues. Do not write code which simply replaces placeholders with

112

9.8

Curam Server Developer's Guide

hard-coded literals as shown in Example 9.5, Incorrect usage of hard-
coded literals.

/] Check that BankAccount entity exists:
bankAccount Key. account Nunber = ar gl n. account Nunber ;
try {

bankAccount Dt | s = bankAccount . r ead(bankAccount Key) ;
} catch (RecordNot FoundException rnf) {

[/ This is a SERIQUS error

curamutil.exception. AppExcepti on e = new AppExcepti on(

OOK. | D_NO_SUCH ACCOUNT, rnf);

e. set Loggabl e(true); // make sure it gets | ogged
e.arg("not found"); // NOT LOCALI ZABLE!!!
throw e;

}
Example 9.5 Incorrect usage of hard-coded literals

Using Record Not Found Indicator

Each of the singleton reads of the database (entity read, nsread, nkread oper-
ations) which could potentially throw a Recor dNot FoundExcept i on
has overloads added to take a Record Not Found Indicator variable.

The reasons for providing a Record Not Found Indicator are:

» To save the overhead of creating and throwing an exception whenever a
record cannot be found, asthisis an expensive process in some JVMs.

* Tomakeit easier to write code which simply checks for the existence of
arecord.

This indicator (curam util . type. Not Foundl ndi cat or) wraps a
boolean value which indicates whether the required record could not be
found. When this indicator is passed into one of the above read operations,
the operation will never throw aRecor dNot FoundExcept i on if there-
cord does not exist but will instead set the boolean flag inside Not -
FoundI ndi cat or totrue, and return avalue of nul | . If the record is
found, the boolean flag inside Not Foundl ndi cat or is set to f al se,
and the record is returned.

Whenever a developer wishes to pass a Not Foundl ndi cat or into a
singleton read operation, it is always passed in as the first argument. Thisis
shown in the following examples:

try {
bankAccount Dt | s = bankAccount . read(bankAccount Key) ;

} catch (RecordNot FoundException rnf) {
/1 record was not found...

Example 9.6 A typical read operation which may throw a
Recor dNot FoundExcepti on

113

9.9

Curam Server Developer's Guide

final Not Foundl ndi cat or not Foundl nd =
new curam util.type. Not Foundl ndi cator () ;
bankAccount Dt | s = bankAccount . read(not Foundl nd, bankAccount Key) ;
i f (not Foundl nd. i sNot Found()) {
/1 record was not found...
} else {
/1 record was found...

}

Example 9.7 The overloaded version of the one above, using the
Not Foundl ndi cat or

try {
bankAccount Dt | s = bankAccount. read(bankAccount Key, true);

} catch (RecordNot FoundException rnf) {
/1 record was not found...

Example 9.8 A typical read operation for update which may
throw a Recor dNot FoundExcepti on

bankAccountDtls =

bankAccount . r ead(not Foundl nd, bankAccount Key, true);
i f (not Foundl nd. i sNot Found()) {

// record was not found...
} else {

/1 record was found...

}

Example 9.9 The overloaded version of the one above, using the
Not Foundl ndi cat or

Localized Output

In IBM Curam Social Program Management the client is responsible for
converting the text of an exception into the language that a user has chosen.
However certain situations do exist where the server must present data to
the client for localization. To facilitate these dituations the
curamutil.exception. Localisabl eString class has been in-
troduced. This class is used in a similar manner to AppExcepti on asis
shown in Example 9.10, Use of LocalisableString.

curamutil.type. CodeTabl el tem dentifier sonmeldentifier =
new CodeTabl el tem dentifier("soneTabl e", "someCode");
curamutil.exception. LocalisableString e =
new Local i sabl eStri ng(EXAVPLE. | D_EXAMPLE_MESSAGE) ;
e.arg(sonel dentifier);
return e.toC ient FormattedText ();

Example 9.10 Use of LocalisableString

This string can be passed back to the client as an output parameter and will
be localized by the client.

114

Curam Server Developer's Guide

9.10 Informational Manager

The standard exception handling and string presentation features described
in this chapter do not address one scenario. In a number of situations it is
useful to present multiple informational messages at one time. For example,
during the course of validation a number of warnings, or errors, may occur
independently as they are based on different elements of the user input.
These should be reported together to smplify the corrective actions that a
user must take. The | nf or mat i onal Manager class alows for excep-
tions and informationals to be grouped together in this manner. Ex-
ample 9.11, Use of the Informational Manager shows the use of this class to
group informational messages for presentation:

i mport curamu
i mport curamu
i mport curamu
i mport curamu
i mport curamu
i mport curamu
i mport curamu
i mport curamu

til.exception.|nformational El enent;
til.exception.|nformational Excepti on;
til.exception.|nformational Manager ;
til.exception. LocalisableString;
til.internal.security.struct.Logi nMessage;
til.internal.security.struct.Logi nMessagelLi st;
til.nmessage. | NFRASTRUCTURE;

til.resources. General Const ants;

cl ass | nformati onal Manager Deno {

public Logi nMessagelLi st checkLogi nStat us()
throws | nformational Exception {

/1l Create an informational nmanager to store the
/1 results of the validation checks. A transaction w de
/1 version can be obtained via
/] Transactionl nfo. getl| nformati onal Manager ().
final |nformational Manager i nformati onal Manager =
new | nf or mat i onal Manager () ;

I nformational #1
Create an informational string for presentation to
the client: this specifies the password will expire
in 6 days
calisabl eString infoMessagel = new Local i sabl eStri ng(
I NFRASTRUCTURE. | NFO_I D_PASSWORD_EXPI RI NG) ;
i nf oMessagel. ar g(6) ;
/1 Add this informational string to the informational
/1 manager
i nf or mat i onal Manager . addl nf or mat i onal Msg(i nf oMessagel,
Cener al Const ant s. KEnpty,
I nf or mat i onal El ement . | nf or mat i onal Type. kWar ni ng) ;

[/ Informational #2

/1l Create an informational string for presentation to
/1 the client: this specifies the user will be | ocked
/] out if they do not change their password in the next
/1 10 | ogins.

Local i sabl eString i nf oMessage2 = new Local i sabl eStri ng(

| NFRASTRUCTURE. | NFO | D LOG _ATTEMPTS_EXPI RI NG) ;
i nfoMessagel. ar g(10) ;
/1 Add this informational string to the informational
/1 manager
i nf or mat i onal Manager . addl nf or mat i onal Msg(i nf oMessage2,
Cener al Const ant's. kEnpty,
I nf or mat i onal El enent . | nf or mat i onal Type. kWar ni ng) ;

/! The informationals nust now be converted to a fornmat

/] suitable for return to the client.
final String[] informational Array = informati onal Manager

115

}

Curam Server Developer's Guide

.obtai nl nformational AsString();

/1 The array of informational strings must be

/'l transferred to an array of structs because we

/] cannot return an array of strings directly. Each

/Il string goes into one struct (Logi nMessage) and

/1 this is aggregated into a |ist by struct

/] Logi nMessageli st.

/] Logi nMessage : A struct containing one string

/1 named ' nmessage’

/1 Logi nMessageLi st : A struct which aggregates

/1 Logi nMessage as nenber 'dtls'.

;inal Logi nMessagelLi st result = new Logi nMessageli st();
0

r (int i =0; i !'=informationalArray.length; i++) {
Logi nMessage war ni ng = new Logi nMessage() ;
war ni ng. nessage = i nformational Array[i];

resul t.dtls. addRef (warni ng) ;

return result;

Example 9.11 Use of the Informational Manager

There are anumber of points worth emphasizing in this code fragment:

This sample is based around the presentation of informationals to the cli-
ent. It does not throw an exception, and therefore it is a successful in-
vocation of the method. This means the transaction will be committed
and any database updates will be made permanent. It is the responsibil-
ity of the client screen for this sample to handle the return value of the
operation as a collection of informationals.

I nf or mat i onal Manager .fai | Operati on() can be used to fail
the invocation depending on whether or not the informational manager
contains any warnings or errors. If the informational manager contains
an error or warning then this method will throw an exception which
means the transaction will be rolled-back. Otherwise this method does
nothing and the transaction is allowed to continue. The full details of
this operation are described in the APl documentation (JavaDoc)
shipped with IBM Curam Social Program Management.

The second parameter to | nf or mat i onal Man-
ager . addl nf or mati onal Msg currently populated with General-
Constants.KEmpty (as in Example 9.11, Use of the Informational Man-
ager) is intended to name a field. However, this is not supported in the
current release

The Caram Web Client Reference Manual should be consulted to determine
the client side configuration that is necessary to use the | nf or mat i on-

al Manager ; at its simplest the field in the struct containing the informa-
tionals must be named in the UIM.

The | nf or mat i onal Manager logs informationals to the Curam log.
Please see Chapter 8, Logging for details on Logging.The informationals are
logged in the following way:

Logging of the informationals is only performed at the time when they

116

Curam Server Developer's Guide

are added to the | nf or mat i onal Manager (i.e. when calling I n-
f or mat i onal Manager .addl nf or mati onal Msg()) .

» Fata errors and errors are logged at the top level logger using the error
level.

* Warnings arelogged at the top level logger using the info level.

117

Curam Server Developer's Guide

Notes

1The following sections focus on use of AppExcept i on rather than Ap-
pRunt i meExcepti on as this is typica of production code. However,
AppRunt i meExcepti on can be created and manipulated in the same

way.

118

10.1

10.2

Chapter 10

Message and Code Table Files

Overview

This chapter describes message catalog and code table files and how they
are used in the IBM Curam Social Program Management application.
Curam message catalogs alow an application to be localized without ma-
nipulating hand-crafted code, while Curam code table files allow an applica-
tion to use a level of indirection when storing commonly used constants on
the database, e.g., Ms., Mr. This chapter introduces message and code table
fundamentals, and explains how they can be augmented to produce custom-
ized messages and code tables in a Caram application.

Message Files

Traditionally message files or catalogs are binary files used for holding text
messages associated with an application. Each message catalog had a one-
to-one association with a symbol definition file. The symbol definition file
was examined at compile time and the message catalog at run-time. Using
this form of indirection allows an application to be localized without a re-
compilation being necessary.

In keeping with this approach, Clram message catalogs are generated from
message . xm files using a command-line build utility called msggen
(build msggen). Generating from a message . xmi file produces two out-
puts. a message catalog file (one Java . pr operti es fileis generated for
each locale specified) and a symbol definition file (a standard Java class
file). The symbol definition file is a Java file containing constants (in Java
terms, aconstantisast ati ¢ fi nal) for message identifiers enumerated
in the messagexm file, and the name of the message file itself. This file
should be imported into any Java source files which use that catalog. The
message catalog is a properties file opened by the Cdram application at
runtime.

119

10.2.1

Curam Server Developer's Guide

The msggen build target performs the merge of message files and then
trandates the resultant message file (which are stored in /
bui | d/ svr/ nmessage/ scp) into symbol definition (Java code) and
message catal og (property) files.

msggen is automatically invoked by the provided build scripts, against those
message files which are placed in the suggested source locations, i.e., the /
nmessage directory of a component.

The Format of Message Files

Themessage . xm fileisan XML document which is made up of a number
of distinct elements combined with the core message elements; see Ex-
ample 10.1, Example of Message text file.

As a standard XML document, the encodi ng attributed indicates that the
file is encoded in UTF-8. It should be noted that this encoding will be re-
spected and maintained by an XML aware editor. However, other editors
(such as TextPad) do not maintain this encoding by default. A file which
contains UTF-8 characters may have to be specifically saved as UTF-8 with
these editors.

<?xm version="1.0" encodi ng="UTF-8"?>
<I-- A sanple nessage file. -->
<nessages package="curam nessage" >
<nessage nanme="ERR _XRV_EXI STI NG_OVERLAP" >
<l ocal e country="US" | anguage="en">
More than 1 overl appi ng Assessnent has been found.
</l ocal e>
</ message>
<nessage name="ERR_CREATI ON_DATE_EMPTY" >
<l ocal e country="US" | anguage="en">
You nust enter a creation date
</l ocal e>
</ message>
</ messages>

Example 10.1 Example of Message text file

The following sections detail the message. xm file elements and attrib-
utes.

The <nessages> Element

The <nmessages> element is the root element of a message file, and it
groups all other elements together. The messages element has the follow-
ing attribute:

Attribute Re- Default Description
Name quired
package Yes None The Java package nameto use for

the generated Java file.

Table 10.1 Attributes of the messages Element

120

Curam Server Developer's Guide

The <nessage> Element

The <message> element groups a number of <| ocal e> elements togeth-
er. Themessage element has the following attributes:

Attribute Re- Default Description

Name quired

name Yes None Uniquely identifies the message.
renmoved No false Settot r ue toindicate if the mes-

sage is to be removed and hence not
included in the generated artefacts.

Table 10.2 Attributes of the message Element

The <l ocal e> Element

The <I ocal e> element details the text of the message for one of the sup-
ported locales. Since the message files are XML, it is not necessary to use
Java escape characters. Specia characters can be inserted by using the
XML entity references in the message files. These will be converted to the
actual characters in the properties file. For example ¢ and $ will
result in the cent and dollar symbols, respectively, being put in the proper-
ties file. Care must be taken to only specify characters that can be supported

by the target properties file on your platform and for your operating system
locale.

Thel ocal e element has the following attributes:

Attribute Re- Default Description

Name quired

| anguage Yes None To beincluded during generation of
the message artefacts each

<| ocal e> element must specify a
language (and optional country) at-
tribute that corresponds to a suppor-
ted locale. The SERV-

ER LOCALE LI ST environment
variable is a comma separated list
defining the set of locales that are
supported, where the locale is either
simply | anguage or | an-
guage_count ry. For example:
SERVER_LOCALE LI ST=en,
en_US, en_GB.

country No None Set to the country relevant to the loc-
alel anguage attribute.

121

10.2.2

Curam Server Developer's Guide

Table 10.3 Attributes of the locale Element

Customizing a Message File

Message text files are located in the / mnessage directory of a component.
The Socia Program Management Platform is shipped with a set of message
files. These may be overridden by placing new message files in the SERV-
ER_DI R/ conponent s/ <cust onr/message directory, where <custom>
Is any new directory created under components that conform to the same
directory structure as conponent s/ cor e. This mechanism avoids the
need to make changes directly to the out-of-the-box application, which
would complicate later upgrades.

]

n Note

If the package attribute in the overridden message file is modified,
then the customization will not work.

This override process involves merging all message files of the same name
according to a precedence order. The order is based on the SERV-
ER_COVPONENT _ORDER environment variable. This environment variable
contains a comma separated list of component names: the left most has the
highest priority, and the right most the lowest.

SERVER_COVPONENT _ORDER=cust om Appeal , | SPr oduct, sanpl e
Example 10.2 SERVER_COMPONENT_ORDER example

The order in Example 10.2, SERVER COMPONENT_ORDER example,
shows that the precedence of Appeal is higher than that of the sanpl e
component. The cor e component always has the lowest priority and as
such does not need to be specified. Any components that are not specified
are placed alphabetically above cor e and below those that are specified.

]

H Note

After changing the component precedence order in SERV-
ER_COVPONENT _ORDER it is necessary to perform a clean build
to ensure that you are using the appropriate files. Thisis done by in-
voking build clean server.

When merging message files, the components listed in the SERV-

ER_COVPONENT _ORDER are taken in order of highest to lowest priority.
In Example 10.2, SERVER_COMPONENT_ORDER example message files
from the sanpl e component are merged with the message files located in
the core component. The message files from | SProduct are then
merged into the intermediate results and the merge process continues until
the messages in the cust omcomponent are merged.

Rules of Message Merges

122

Curam Server Developer's Guide

Message files are merged based on precedence order. As described above
there is always a more important main/source message file, and a file which
is being merged into it. The second file is called the merge file in the fol-
lowing sections.

The merging rules described below are applied to decide if the <nessage>
and <I ocal e> elements should be merged into the new message file.

e A <message> will be merged into a new message file if the
<nmessage> isnot aready present in the new file.

A<l ocal e>will be merged into a named <nessage> element in the
new message file if the <l ocal e> is not aready present in the
<nmessage> of the new messagefile.

Duplicate messages will aways be overwritten by the message file in the
component with the highest precedence order. The main message file of Ex-
ample 10.3, Sample main message file, and the merge file of Example 10.4,
Sample merge message file, illustrate these rules:

<nessages package="curam nessage" >
<nmessage nanme="ERR _SAMPLE VALI| DATI ON_MsG' >
<l ocal e country="US" | anguage="en">
The specified color is not valid.
</l ocal e>
</ message>
<nessage name="ERR SAMPLE ERROR MSG'>
<l ocal e country="US" | anguage="en">
An external resource is not avail able.
</l ocal e>
</ message>
</ messages>

Example 10.3 Sample main message file

<nessages package="curam nessage" >
<nessage name="ERR _SAMPLE VALI DATI ON_MsG' >
<l ocal e country="GB" | anguage="en">
The specified colour is not valid.
</l ocal e>
</ message>
<message nanme="ERR _SAMPLE_NEW MSG'>
<l ocal e country="GB" | anguage="en">
An exanpl e of |ocalisation.
</l ocal e>
</ nessage>
<message name="ERR SAMPLE REMOVED MSG' renoved="true">
<l ocal e | anguage="en">
This message will be renoved.
</l ocal e>
</ message>
</ messages>

Example 10.4 Sample merge message file
As aresult of the merge process the new message file produced would be:

<nessages package="curam nessage" >
<nmessage nanme="ERR SAMPLE VALI DATI ON_MsG'>
<l ocal e country="GB" | anguage="en">
The specified colour is not valid.

123

10.2.3

Curam Server Developer's Guide

</l ocal e>
<l ocal e country="US" | anguage="en">
The specified color is not valid.
</l ocal e>
</ message>
<nessage name="ERR_SAMPLE ERROR MSG'>
<l ocal e country="US" | anguage="en">
An external resource is not avail able.
</l ocal e>
</ message>
<nessage nanme="ERR_SAMPLE_NEW MsSG'>
<l ocal e country="GB" | anguage="en">
An exanpl e of |ocalisation.</|ocal e>
</l ocal e>
</ message>
<nessage name="ERR_SAMPLE REMOVED MSG' renpved="true" >
<l ocal e | anguage="en" >
This nmessage wi || be renoved.
</l ocal e>
</ message>
</ messages>

Example 10.5 Resulting Message File

Artefacts Produced by msggen Build Target

The Java artefacts (symbol definition and message catalog files) produced
from a merged message file, are placed in the /buil d/
svr/ message/ gen/ <package> directory, where <package> is the
package attribute specified in the message file. For example, pack-
age="curam.message" would result in the Java artefacts being placed in the
/bui | d/ svr/ message/ gen/ cur anf nessage directory.

The directory contains the Java files (which are locale independent) and the
property files (which are locale dependent) which are named <Message
File nanme>_<specific |anguage> <specific coun-
try>. properties.

i Note
If message files of the same name exist in different components with
a different package attribute value, then the generated artefacts
(symbol definition and message catalog files) produced are placed in
the package specified by the message file of the component with the
highest precedence order (as listed in the SERV-
ER_COMPONENT _ORDER environment variable).

These artefacts are best illustrated by example:

package curam nessage;

Import curamutil.message. Cat Entry;

i mport curamutil.message. MessageCat al og
public final class Sanpl eMessages {

private static final MessageCatal og kCat =
new MessageCat al og("curam nmessage. Sanpl eMessages") ;
/**

* BpoActivity: ERR_ SAMPLE VALI DATI ON_MSG
* en_UK = The specified colour is not valid.

124

10.2.4

Curam Server Developer's Guide

* en_US = The specified color is not valid.
*/
public static final CatEntry ERR SAVPLE_VALI DATI ON_MSG

= KkCat . entry(" ERR_SAMPLE_VAL| DATI ON_MBG') ;

/**
* BpoActi vity: ERR SAMPLE_ERROR_MSG
* en_US = An external resource is not avail abl e.
*/
public static final CatEntry ERR SAMPLE ERROR MSG
= kCat . entry("ERR_SAMPLE_ERROR_MSG') ;

/**
* BpoActi vity: ERR_ SAMPLE_NEW MSG
* en_GB = An exanple of localisation.
*/
public static final CatEntry ERR SAMPLE NEW MSG
= kCat.entry("ERR _SAMPLE NEW MSG') ;

}
Example 10.6 Java file produced from merged message file

ERR_SAMPLE_VALI DATI ON_MSG=The specified colour is not valid.
ERR_SAMPLE_NEW MSG=An exanpl e of | ocalisation.

Example 10.7 Sample (UK) Properties produced from message
file

At the end of the nsggen step these property files are placed into a.. | ar
file which is used by the client to localize the messages that are returned to
it.

Retrieving Messages from Message Files

A message file can contain any number of locales for a named message, and
as aresult a mechanism needs to be in place to return the correctly localized
message for a running instance of Curam. Messages are retrieved from a
message file based on the locale property which includes a language and,
optionally, a country. The message file look up returns a matching localized
message for a named message identifier. For example, if the runtime locale
isset to en_US where “en” is the language and “US” is the country, a mes-
sage look up for the message named A_MESSAGE (Example 10.8, Mes-
sage File Search) will return the text “The message’. If however the
runtime locale was set to “fr” the text “Le message” would be returned.

<nessages package="curam nessage" >

<message nane="A MESSAGE">
<l ocal e country="US" | anguage="en">The nessage</| ocal e>
<l ocal e | anguage="fr">Le nessage</| ocal e>

</ message></ nessages>

Example 10.8 Message File Search
Since message files are not guaranteed to contain an entry for each message

that matches the runtime locale, afall back mechanismisin place to guaran-
tee that if possible a localized message is returned when a look up is per-

125

10.2.5

10.2.6

Curam Server Developer's Guide

formed. Once a message of a given name has been found, and there is no
direct match with the specified locale, the rulesfor fall back are as follows:

» |If the runtime locale is set to include a language and country, the coun-
try isremoved and the search looks for a matching language only. Look-
ing up the message named A_MESSAGE in Example 10.9, Message
File FallBack One with runtime locale en_US will return the message
text “The message”.

<nessages package="curam nessage" >
<nessage nanme="A_ MESSACE">
<l ocal e | anguage="en">The nessage</| ocal e>
</ message>
</ messages>

Example 10.9 Message File FallBack One

The underlying message lookup mechanism is provided by the JDK class
java. util.ResourceBundl e. Please refer to the relevant JDK
JavaDoc for details of this classes functionality and further details of the
fallback mechanism provided.

There is no default behavior for message file lookup. If the runtime locale
does not find a match in the message file after applying the fall back rules
described by java.util.ResourceBundle, a M ssingRe-
sour ceExcept i on isreturned and server logs are updated if appropriate.

Writing Messages To Server Logs

Messages from message catalogs are used in many instances in Caram and
localized at runtime as described in Section 10.2.4, Retrieving Messages
from Message Files. Localization of server log messages is different in that
it is performed by the server infrastructure based on the default server loc-
ale. In this case, the locale used when writing to Clram server logs is set by
configuring the cur am envi ronnent . def aul t . | ocal e property in
Appl i cati on. prx.

Localizing SDEJ Message Files

It is possible to localize or modify the message files shipped with the Clram
SDEJ. These message files are located in the nessage directory of the
SDEJ and are in the same format as Cdram application message files but
with the extension. i m .

To localize these files copy the particular . i M message file to be modified
from the SDEJ to the message directory of a component in your Clram ap-
plication, for example, SERV-
ER DI R/ conponent s/ cust onf message. The .inl message file
can then be modified in the same way as any message file, overriding a mes-
sage or adding anew locale for al the messages.

o]

ﬂ Note

126

10.3

10.3.1

Curam Server Developer's Guide

If the package attribute in the message file is modified the localiz-
ation will not work.

The msggen target, when run, will merge the localized . i M message file
with the original one located in the SDEJ. The localized message file will
have the higher precedence order. It will then generate the properties files
only and include them in the nessages. j ar file created. The nes-
sages. j ar file will always be on the classpath before the default SDEJ
messages in a runtime application.

Code Table Files

Code table files allow a Clram application to use alevel of indirection when
storing commonly used constants on the database. Like message files, code
table files are shipped with Ciram and can be customized by adding new
code table files to new components in the SERV-

ER_DI R/ conponent s/ <cust on®/ codet abl e directory, where
<custom> is any new directory created under conponent s that conforms
to the same directory structure as conponent s/ cor e. Code table files
can contain one code table or a number of code tables that are linked as a
hierarchy.

Generating code tables produces two outputs: a code table SQL file to place
the codes on the database, and a symbol definition file (a standard Java
class file). The symbol definition file is a Java file containing constants for
code table identifiers used in the code table XML file. The generation of
code table hierarchies also produces .properties files as described in Sec-
tion 10.3.3, Artefacts Produced by ctgen Build Target.Generating code
tablesis supported by the build target ctgen.

For more information on code tables also consult the Domain Definitions
chapter in the Cdram Modeling Reference Guide and the Cdram Web Client
Reference Manual.

The Format of Code Table Files

The code table file is an XML document which is made up of a number of
distinct elements. Example 10.10, Sample Main Code Table File 1, shows a
sample code table.

As a standard XML document, the encodi ng attributed indicates that the
file is encoded in UTF-8. It should be noted that this encoding will be re-
spected and maintained by an XML aware editor. However, other editors
(such as TextPad) do not maintain this encoding by default. A file which
contains UTF-8 characters may have to be specifically saved as UTF-8 with
these editors.

The following sections detail the elements and attributes of a code tablefile.

The <codet abl es> Element

127

Curam Server Developer's Guide

The <codet abl es> element is the root element of a code table file and it
groups all other elements together. The codet abl es element has the fol-
lowing attributes:

Attribute Re- Default Description

Name quired

package Yes None Specifiesthe package the generated
symbol definition Java file will be
part of.

hi er - No None Identifiesthe code table file as con-

archy_nane taining a hierarchy of code tables.

Table 10.4 Attributes of the codetables Element

The <descri pti on> Element

The <descri pti on> element is an optiona sub-element below the
<codet abl es> root. It is used to define a description for the code tables.
It should be listed first, before the other sub-element, <codet abl e>, of
<codet abl es>. It should only be listed once. There are no attributes for
thedescri pti on element.

The <codet abl e> Element

The <codet abl e> element is a sub-element below the <codet abl es>
root. The <codet abl e> element should follow the <descri pti on>
element, if it's specified. For an ordinary code table file definition only a
single <codet abl e> element can be defined. If ahi er ar chy _nane at-
tribute has been specified in the <codet abl es> multiple <codet abl e>
elements are allowed as long as they are linked correctly in a hierarchy.

The codet abl e element groups a number of <code> elements together
and an optional <codet abl edat a> element.

The <codet abl e> element has the following attributes:

Attribute Name Re- Default Description
quired

name Yes None A uniqueidentifier for the
code table. The nane attrib-
ute istrimmed of leading and
trailing spaces on code table
generation. Some restrictions
apply to the nane attribute
when the
<di spl aynames> element
is specified. Please see Sec-
tion 10.3.3, Artefacts Pro-

128

Curam Server Developer's Guide

Attribute Name Re- Default Description
quired

duced by ctgen Build Target
for further details.

java_identifier Yes None The name of the generated
symbol definition Java file.
par ent _codet abl e No None Used to define the name of

the parent code table in the
hierarchy, where the code ta-
blefile has been defined asa
hierarchy of code tables.

Table 10.5 Attributes of the codetable Element

The <codet abl edat a> Element

The <codet abl edata> element is an optional sub-element of
<codet abl e> that groups the locale-specific comments for a codetable.
Each <codet abl e> element can have one optional <codet abl edat a>
element. The <codet abl edat a> element can contain multiple optional
<| ocal e> elements.

o]

n Note

The <codet abl edat a> element and its child elements are op-
tional elements.

The<codet abl edat a> element has the following attributes:

Attribute Re- Default Description

Name quired

| anguage Yes None Specifiesthe language portion of the
locale for thecodet abl edat a
element.

country No None Specifiesthe country portion of the
locale for thecodet abl edat a
element.

Table 10.6 Attributes of the codetabledata Element

The <l ocal e> Element

The optional <I ocal e> element can occur multiple times for the
<codet abl edat a> element. Each <l ocal e> element can contain one
optional <comment s> element.

Thel ocal e element has the following attributes:

129

Curam Server Developer's Guide

Attribute Re- Default Description

Name quired

| anguage Yes None Specify alanguage that corresponds
to a supported locale.

country No None Specify acountry that corresponds

to a supported locale and language.

Table 10.7 Attributes of the locale Element

The <comment s> Element

The optional <conment s> element is used to store the locale-specific
comments for a code table.

The comment s element has no attributes.
The <di spl aynanes> Element

The <di spl aynames> element groups a number of code table hierarchy
<nane> elements together. It is an optional element. However, if present it
must contain at least one <nane> element. The di spl aynanmes element
has no attributes.

The <nanme> Element

The <name> element is required when the <di spl aynanes> element is
present. When displaying the <nane> values on the client, the name that
contains the locale for the current user is displayed. However, if the current
user's locale does not match any of the locales specified within the <name>
element, then the <codet abl e> nane attribute is displayed.

The name element has the following attributes:

Attribute Re- Default Description

Name quired

| anguage Yes None Specifiesthe language portion of the
locale for the nanme element.

country No None Specifiesthe country portion of the

local for the nane element.
Table 10.8 Attributes of the name Element
The <code> Element

The <code> element is a sub-element of <codet abl e> and groups a
number of <l ocal e> elements together. The code element has the fol-
lowing attributes:

130

Curam Server Developer's Guide

Attribute Re- Default Description

Name quired

val ue Yes None A uniqueidentifier for the codein
the code table.

st at us Yes None Indicatesif the code tableis enabled

and selectable in the list of codes as
displayed on the client. It can be set
to either ENABLED or DI SABLED
and if set to anything elseit is con-
sidered to be DI SABLED.

def aul t No None Indicatesif thisisthe default code
for the code table. There should only
ever be one default specified. The
default code is used to define the ini-
tially selected value in an editable
codetablelist in the client. For more
information consult the Clir am
Wb dient Reference

Manual .
java_identi No None Used as part of the generated symbol
fier definition Java file
r enoved No fal se Settotrue toindicateif thecodeis

to be removed and hence not in-
cluded in the generated artefacts

par ent _code No None Used to define the name of the code
in the specified parent code tablein
the hierarchy that this codeislinked
to. See Section 10.3.4, Code Table
Hierarchy for more information on
defining a code table hierarchy.

Table 10.9 Attributes of the code Element

The <l ocal e> Element

The <l ocal e> e€ement contains two mandatory sub-elements
(<descri pti on> and <annot at i on>) and one optional sub-element
<conment s>, which are used to describe the code.

To be included during generation of the code table artefacts, each
<l ocal e> element must specify a language (and optional country) attrib-
ute that corresponds to a supported locale. The SERVER LOCALE LI ST
environment variable is a comma separated list of locales that are supported,
where the locale is either simply of the form | anguage or | an-
guage_count ry asshown in this example:

SERVER LOCALE_LI ST=en, en_US, en_GB

131

10.3.2

Curam Server Developer's Guide

Thel ocal e element has the following attributes:

Attribute Re- Default Description

Name quired

| anguage Yes None Specifies alanguage that corres-
ponds to a supported locale.

country No None Specifiesacountry that corresponds
to a supported locale and language.

sort_order No None Specifiesthe order in which the

codesin acodetablewill bedis-
played in the drop-down list on an
edit page in the client.

Table 10.10 Attributes of the locale Element

The <descri pti on> Element

The <descri pti on> element is used to provide a description for the
code. Thedescri pti on element has no attributes.

The <annot ati on> Element

The <annot at i on> element is used to provide an annotation to the code.
Theannot at i on element has no attributes.

The <comment s> Element

The optional <conmrent s> element is used to store the locale-specific
comments for a code table item. This element can be used to provide local-
ized information to aid in understanding the usage for a code table item, and
any implication of change to it.

The conmment s element has no attributes.

Customizing a Code Table File

Code table files are located in the / codet abl e directory of a component.
The Social Program Management Platform is shipped with a set of code ta-
ble files. These may be overridden by placing new code table files in the
SERVER DI R/ conponent s/ <cust on®/ codet abl e directory,
where <cust on® is any new directory created under conponent s that
conformsto the same directory structure asconponent s/ cor e.

This mechanism avoids the need to make changes directly to the out-
of-the-box application, which would complicate later upgrades. Typically
code table files are customized to add new entries, localize descriptions or to
add new locales.

This override process involves merging all code table files of the same name
according to a precedence order. The order is based on the SERV-
ER COMPONENT _ORDER environment variable which contains a comma-
separated list of component names: the left most has the highest priority,

132

Curam Server Developer's Guide

and the right most the lowest?

Rules of Code Table Merges

Code table files are merged based on precedence order. There is always a
more important main/source code table file, and a file which is being
merged into it. The second file is called the merge file in the following sec-
tions.

The merging rules described below are applied to decide if the <code>,
<l ocal e>, <di spl aynanes>, and <nane> e ements should be merged
into the new codetablefile.

A <code> will be merged into a new code table file if its associated
<codet abl e> ispresent in the new file and its val ue attribute is not
already present in the new file.

e The <codetabledata> eement is merged into the
<codet abl edat a> €lement in the new code table file if the
<| ocal e> element is not aready present in the <codet abl edat a>
element of the new code table. The <codet abl edat a> element is ad-
ded into the new code table file even if the <codet abl edat a> is not
aready present in the new code tablefile.

* A<l ocal e> will be merged into a named <code> element in the new
code table file if the <l ocal e> is not aready present in the <code>
of the new codetable.

A <di spl aynames> element will be merged into a new code table
file if its associated <codet abl e> is present in the new file and it is
not already present in the new file.

* If the <di spl aynanes> element is aready present in the new file,
then the <name> elements will need to be merged. If the <nane> ele-
ment with its| anguage and count r y attributesis not already present
in the new file, then it will be merged into the new file.

The main code table file of Example 10.10, Sample Main Code Table File 1,
and the merge code table file of Example 10.11, Sample Merge Code Table
File 1, illustrate the rules of merging <code>, <codet abl edat a> and
<l ocal e> elements.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<codet abl es package="curam codet abl e" >
<codet abl e java_identifier="ACCEPTANCESTATUS"
nanme="Accept anceSt at us" >
<code defaul t="true" java_identifier="ACCEPTED'
st at us="ENABLED" val ue="ACS1" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Accept ed</ descri pti on>
<annot at i on></ annot at i on>
</ | ocal e>
</ code>
<code defaul t="fal se" java_identifier="PROVI SI ONAL"
st at us="ENABLED" val ue="ACS2" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Provi si onal </ descri pti on>

133

Curam Server Developer's Guide

<conment s>Coment s for PROVI SIONAL i n EN_US</ comment s>

<annot ati on></ annot at i on>
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="REJECTED"
st at us="ENABLED" val ue="ACS3" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Rej ect ed</ descri pti on>

<conment s>Comment s for Rejected in EN_US</coment s>

<annot at i on></ annot at i on>
</l ocal e>
</ code>

<code defaul t="fal se" java_identifier="REMOWED' renoved="true

st at us="ENABLED"" val ue="ACS3" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Renoved</ descri pti on>

<annot ati on>Thi s message wi || be renmpved</annot ati on>

</l ocal e>
</ code>
<codet abl edat a>
<l ocal e | anguage="en">
<comment s>Code table comments for
Country in EN. </ coment s>
</l ocal e>
<l ocal e> | anguage="en" country="US">
<comment s>Code tabl e comments for
Country in US. </ coment s>
</l ocal e>
</ codet abl edat a>
</ codet abl e>
</ codet abl es>

Example 10.10 Sample Main Code Table File 1

<?xm version="1.0" encodi ng="UTF- 8" ?>
<codet abl es package="curam codet abl e" >
<codet abl e java_identifier="ACCEPTANCESTATUS"
nanme="Accept anceSt at us" >
<code defaul t="true" java_identifier="ACCEPTED'
st at us="ENABLED" val ue="ACS1">
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri pti on>Passed</ descri pti on>
<annot at i on></ annot at i on>
</ | ocal e>
</ code>
<code defaul t="fal se" java_identifier="PROVI SI ONAL"
st at us="ENABLED" val ue="ACS2" >
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri pti on>Pendi ng</ descri pti on>

<comment s>Comments for PROVI SI ONAL i n EN_GB</ comment s>

<annot at i on></ annot at i on>
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="REJECTED"
st at us="ENABLED" val ue="ACS3" >
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri ption>Fai | ed</ descri pti on>

<conment s>Comment s for REJECTED i n EN_GB</ comment s>

<annot ati on></ annot at i on>
</l ocal e>
</ code>
<code default="fal se" java_identifier="UNKNOMN"
st at us="ENABLED" val ue="ACS4" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Unknown</ descri pti on>
<annot ati on></ annot at i on>
</l ocal e>
</ code>
<codet abl edat a>
<l ocal e | anguage="en" >

134

Curam Server Developer's Guide

<coment s>Code table comments for
Country in EN. </ coment s>

</l ocal e>

<l ocal e | anguage="en" country="GB">
<coment s>Code table comments for
Country in GB. </coment s>

</l ocal e>

</ codet abl edat a>

</ codet abl e>
</ codet abl es>

Example 10.11 Sample Merge Code Table File 1
Asaresult of the merge process the resulting code table file would be:

<codet abl es package="curam codet abl e" >
<codet abl e java_i denti fi er =" ACCEPTANCESTATUS"
name="Accept anceSt at us" >
<code defaul t="true" java_identifier="ACCEPTED'
st at us="ENABLED" val ue="ACS1" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Accept ed</ descri pti on>
<annot at i on></ annot ati on>
</l ocal e>
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri pti on>Passed</ descri pti on>
<annot at i on></ annot ati on>
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="PROVI SI ONAL"
st at us="ENABLED" val ue="ACS2" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Pr ovi si onal </ descri pti on>
<conmment s>Comment s for PROVI SI ONAL i n EN_US</ coment s>
<annot at i on></ annot at i on>
</l ocal e>
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri pti on>Pendi ng</ descri pti on>
<comrent s>Comrent s for PROVI SIONAL i n EN_GB</ comment s>
<annot at i on></ annot at i on>
</l ocal e>
</ code>
<code default="fal se" java_identifier="REJECTED"
st at us="ENABLED" val ue="ACS3" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Rej ect ed</ descri pti on>
<comrent s>Comment s for REJECTED i n EN_US</coment s>
<annot at i on></ annot at i on>
</l ocal e>
<l ocal e | anguage="en" country="GB" sort_order="0">
<descri ption>Fai | ed</ descri pti on>
<comment s>Conment s for REJECTED i n EN_GB</ comment s>
<annot at i on></ annot ati on>
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="UNKNOMN'
st at us="ENABLED" val ue="ACS4" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Unknown</ descri pti on>
<annot at i on></ annot ati on>
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="REMOED' renoved="true"
st at us="ENABLED" val ue="ACS3" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>Renoved</ descri pti on>
<annot ati on>Thi s message wi || be renmpbved</annotati on>

135

Curam Server Developer's Guide

</l ocal e>
</ code>
<codet abl edat a>
<l ocal e | anguage="en" >
<coment s>Code table comments for
Country in EN. </ coment s>
</l ocal e>
<l ocal e> | anguage="en" country="US">
<comment s>Code table comments for
Country in US. </ coment s>
</l ocal e>
<l ocal e | anguage="en" country="GB">
<comment s>Code table comments for
Country in GB.</coments>
</l ocal e>
</ codet abl edat a>

</ codet abl e>
</ codet abl es>

Example 10.12 Resulting Code Table File 1

The main code table file of Example 10.13, Sample Main Code Table File 2,
and the merge code table file of Example 10.14, Sample Merge Code Table
File 2, illustrate the rules of merging <di spl aynanmes> and <nane> ele-
ments.

<codet abl es
hi er ar chy_nane=" Car Hi er ar chy"
package="cur am codet abl e" >
<codet abl e java_identifier="Car Make" nane="Car Make">
<di spl aynanes>
<nanme country="GB" | anguage="en">Car Make Cust onGB</ nanme>
<nane | anguage="I|1t">Masi nos Gani nt oj as</ nane>
<nane | anguage="en">Car Make Cust onx/ nanme>
</ di spl aynanes>
<code default="fal se" java_identifier="MTS"
st at us="ENABLED" val ue="CWK1" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>M t subi shi </ descri ption>
<annot ati on/ >
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="AUD"
st at us="ENABLED" val ue="CWK2" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Audi </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
<codet abl e java_identifier="CarMdel" nane="Car Mdel "
par ent _codet abl e=" Car Make" >
<code default="fal se" java_identifier="COLT"
par ent _code="CMK1" st at us="ENABLED"' val ue="CM.1">
<l ocal e | anguage="en" sort_order="0">
<descri ption>Col t </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="LANCER"
par ent _code="CMK1" st atus="ENABLED"' val ue="CM.2" >
<l ocal e | anguage="en" sort_order="0">
<descri ption>Lancer </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>

136

Curam Server Developer's Guide

</ codet abl es>

Example 10.13 Sample Main Code Table File 2

<codet abl es
hi er ar chy_nanme=" Car Hi er ar chy"
package="cur am codet abl e"

<codet abl e java_identifier="Car Make" nane="Car Make" >
<di spl aynanes>
<nane country="US" | anguage="en">Car Make US</nane>
<nane | anguage="fr" >Mar que</ nane>
<nane | anguage="en">Car Make Core</ nane>
<nane | anguage="en" country="GB">Car Muke Cor eGB</ nane>
</ di spl aynanes>
<code default="fal se" java identifier="MTS"
st at us="ENABLED" val ue="CW1" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>M t subi shi </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code default="fal se" java_identifier="AUD"
st at us="ENABLED" val ue="CWK2" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Audi </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
<codet abl e java_identifier="CarMdel" nane="Car Mdel "
par ent _codet abl e=" Car Make" >
<di spl aynames>
<name | anguage="en">Car Mbdel </ name>
</ di spl aynanes>
<code default="fal se" java_identifier="COLT"
parent _code="CWK1" st at us="ENABLED' val ue="CM.1" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Col t </ descri ption>
<annot ati on/ >
</l ocal e>
</ code>
<code defaul t="fal se" java_identifier="LANCER
par ent _code="CMK1" st at us="ENABLED"' val ue="CM.2">
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Lancer </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Example 10.14 Sample Merge Code Table File 2

Asaresult of the merge process, the resulting code table file would be:

<codet abl es
hi er ar chy_name="Car Hi er ar chy"
package="cur am codet abl e" >
<codet abl e java_identifier="Car Make" nanme="Car Make" >
<di spl aynames>
<name country="GB" | anguage="en">Car Make Cust onGB</ name>
<nane | anguage="I1t">Masi nos Gami nt oj as</ nane>
<nane | anguage="en">Car Make Cust onx/ nanme>
<nane country="US" | anguage="en">Car Make US</nane>
<name | anguage="fr" >Mar que</ nane>
</ di spl aynanes>
<code default="fal se" java_identifier="MTS"

137

10.3.3

Curam Server Developer's Guide

st at us="ENABLED' val ue="CW1" >
<l ocal e | anguage="en" sort_order="0">
<descri ption>M t subi shi </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code default="fal se" java_identifier="AUD"
st at us="ENABLED" val ue="CWK2" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Audi </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
<codet abl e java_identifier="CarMdel" nane="Car Mdel "
par ent _codet abl e=" Car Make" >
<di spl aynanes>
<nane | anguage="en">Car Mddel </ name>
</ di spl aynanes>
<code defaul t="fal se" java_identifier="COLT"
par ent _code="CMK1" st at us="ENABLED"' val ue="CM.1">
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Col t </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code default="fal se" java_identifier="LANCER
par ent _code="CMK1" st atus="ENABLED"' val ue="CM.2">
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Lancer </ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Example 10.15 Resulting Code Table File 2

Artefacts Produced by ctgen Build Target

The artefacts produced from the code table file of Example 10.11, Sample
Merge Code Table File 1, are a symbol definition file (Java class) and an

SQL file.

The symbol definition file is a Java file containing constants for code table
identifiers used in the code table XML file. Thisfile can be used in conjunc-
tion withthecuram uti | . CodeTabl e interface to access code table in-
formation programmatically.

The Java file is generated to /

bui | d/ svr/ codet abl e/ gen/ <package> directory, where
<package> is the package attribute specified in the codetable file. For ex-
ample, package="curam.codetable" would result in the Java artefacts being
placed in the /buil d/ svr/ codet abl e/ gen/ cur ani codet abl e
directory.

The code table SQL file contains inserts for the CodeTabl eHeader and
CodeTabl el t emdatabase tables. All SQL file artefacts are placed in a
common directory: / bui | d/ svr/ codet abl e/ sqgl /.

]

il Note

138

Curam Server Developer's Guide

If code table files of the same name exist in different components
with different package attribute values then the symbol definition
file (Java class) artefacts are placed in the package specified by the
code table file of the component with the highest precedence order
(as listed in the SERVER _COMPONENT _ORDER environment vari-

able).
These artefacts are best illustrated by example:

package curam codet abl e;

/**

* Generated AcceptanceStatus codetable file.
*

*/
public final class ACCEPTANCESTATUS {

/**
* TABLENAME=Accept anceSt at us.
*/
public static final String TABLENAME
= new String("AcceptanceStatus");

/**
* DEFAULTCODE=ACSL.
*/
public static final String DEFAULTCODE
= new String("ACS1");

*

Retri eves the default Code fromthe cache.
@eturns the default code val ue

@hrows curamutil.exception. AppExcepti on
Generic Exception Signature.

@hrows curamutil.exception.|nformational Exception
Generi c Exception Signature.

* % ok kX ok X F

*
/
public static String getDef aul t Code()
throws curamutil.exception. AppExcepti on,
curamutil.exception.|nfornational Exception {
return curamutil.type. CodeTabl e. get Def aul t |t en(TABLENAME) ;

/**
* ACSl1l=Accept ed.
*/
public static final String ACCEPTED
= new String("ACS1");
/**
* ACS2=Provi si onal .
*/
public static final String PROVI SI ONAL
= new String("ACS2");
/**
* ACS3=Rej ect ed.
*/
public static final String REJECTED
= new String("ACS3");
/**
* ACS4=Unknown.
*/
public static final String UNKNOM
= new String("ACs4");
}

Example 10.16 Sample Java file produced from code table file

139

Curam Server Developer's Guide

It should be noted that this pattern of generation means that the Strings will
not be interned by the Java compiler. This alows the dependency checking
in the build scripts to operate correctly. If an empty string is provided for a
Java ldentifier the code is only mapped into persistent data (SQL file) and is
not reflected in the Java artefacts.

The persistent data associated with code tables is generated into the com-
mon/ bui | d/ svr/ codet abl e/ sql / directory.

-- Ciram Code Table SQ. Data File

-- CODETABLE Accept anceSt at us

I NSERT | NTO CodeTabl el t em (TABLENAME, CODE, DESCRI PTI ON,
ANNOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI Fl ER,
LASTWRI TTEN)

VALUES (' AcceptanceStatus', 'ACS1', 'Accepted, '', '1',
0, '"en_US', CURRENT_TI I\/ESTAI\/P(‘ '))'

| NSERT | NTO CodeTabl el t em (TABLENAMVE, CODE, DESCRI PTI ON,
ANNCOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI Fl ER,
LASTWRI TTEN)

VALUES (' Accept anceSt at us' ‘ACSZ' '"Provisional', "', '1',
0, 'en_US , CURRENT_TI I\/ESTAI\/P(

| NSERT | NTO CodeTabl el t em (TABLENAMNE, CODE DESCRI PTI ON,
ANNOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI FI ER,
LASTVRI TTEN)

VALUES (' Accept anceSt at us', ACSS Rej ected', '', '1',
0, 'en_US , CURRENT_TI MESTAWP(''

| NSERT | NTO CodeTabl el t em (TABLENANMNE, C(]DE DESCRI PTI ON,
ANNOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI FI ER,
LASTVRI TTEN)

VALUES (' Accept anceSt at us', ACSl 'Passed', '', '1',
0, 'en_GB', CURRENT_TI MESTAWP(''))

| NSERT | NTO CodeTabl el t em (TABLENANE, CCDE DESCRI PTI ON,
ANNOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI FI ER,
LASTWRI TTEN)

VALUES (' Accept anceSt at us', ACSZ 'Pending', ', '1',
0, 'en_GB', CURRENT_TI MESTAWP("'

| NSERT | NTO CodeTabl el t em (TABLENANE, OODE DESCRI PTI ON,
ANNOCTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI FI ER,
LASTWRI TTEN)

VALUES (' AcceptanceStatus', 'ACS3', 'Failed , '', '1',
0, 'en_GB', CURRENT_TI MESTAMP(''));

I NSERT | NTO CodeTabl el t em (TABLENAME, CODE, DESCRI PTI ON,
ANNOTATI ON, | SENABLED, SORTORDER, LOCALEI DENTI FI ER,
LASTWRI TTEN)

VALUES (' AcceptanceStatus', 'ACS4', 'Unknown', "', "1',
0, 'en', CURRENT_TI MESTAMP(''));

I NSERT | NTO CodeTabl eHeader (Tabl eNane, Ti neEntered,
Def aul t Code, LASTWRI TTEN)
VALUES (' Accept anceStatus', CURRENT_TI MESTAMP(''),
" ACS1', CURRENT_TI MESTAMP(''));

Example 10.17 Sample SQL file produced from code table file

i Note

If any <| ocal e> entries specify alanguage (and optional country)
which are not contained in the SERVER_LOCALE_LIST environ-
ment variable they will be ignored during generation and a warning
will be produced.

140

Curam Server Developer's Guide

Also, while generating the codetable SQL artefacts containing the
contents for the CodeTableltem and CodeTableHeader database
tables, the LASTWRITTEN field with an initial value will be popu-
lated. Theinitial value is atime stamp which is set to the time when
the datais inserted into the database.

The same artefacts are produced for the code table file of Example 10.15,
Resulting Code Table File 2, aso, because the file contains a
<di spl aynanes> element, additional artefacts are created, i.e. a proper-
tiesfileis generated for each <nane> element it contains.

The ctgen target produces one properties file for each locale (composite of
| anguage and count ry attributes) and <nanme> element within the
<di spl aynanes> element of acode table definition. Locale is defined by
the | anguage and count ry attributes of the <nanme> element. These
properties files define the display names associated with each code tablein a
code table hierarchy.

The properties files are generated into /

bui | d/ svr/ codet abl e/ gen/ . If no<di spl aynanes> element is
specified for a code table hierarchy, no properties file is generated, and a
warning will be displayed. The name of the generated properties file con-
sists of the code table name along with the locale. Since a code table name
with spaces renders a properties file invalid and unlocalizable, any spaces
specified in the code table name will be replaced with the underscore char-
acter.

The warning, i.e. warning where a <di spl aynanes> element is not spe-
cified, is only treated as a warning and never an error, regardless of the set-
ting of the property pr p. war ni ngst oerrors.

If the locale specified for the <nanme> element is not supported, then the ct-
gen will display awarning and no properties file for that locale will be gen-
erated.

The following is an example of properties files produced by the ctgen on the
Example 10.15, Resulting Code Table File 2. Each properties file is gener-
atedto/ bui | d/ svr/ codet abl e/ gen/

Car Make=Car Make US

Example 10.18 CarMake_en_US.properties

Car Make=Mar que

Example 10.19 CarMake_fr.properties

Car Make=Car ©Make Cust onGB

Example 10.20 CarMake_en_GB.properties

Car Make=Masi nos Gani nt oj as

141

10.3.4

Curam Server Developer's Guide

Example 10.21 CarMake_It.properties

Car Make=Car Make Custom

Example 10.22 CarMake_en.properties

Car Mbdel =Car Model

Example 10.23 CarModel_en.properties

Code Table Hierarchy

Code table files can define a single code table or a hierarchy of code tables.
A hierarchy is where multiple code tables are linked into a number of levels.
Selecting a code at a particular level will reduce the number of selections
available at the next level. Any number of levelsin a code table hierarchy is
supported.

For example, Table 10.11, Address Hierarchy shows a sample hierarchy.
Selecting Ireland as the country will return a sub-list of Meath and Wexford
and selecting Meath as the county will return sub-list of Trim and Navan.
Alternatively, selecting England will return a sub-list of Stafford and Lon-
don, etc.

Level 1 Level 2 Level 3
Country County Town
Ireland Meath Navan
Trim
Wexford Gorey
Enniscorthy
England Stafford Bednall
Stone
London Earlsfield
Eltham

Table 10.11 Address Hierarchy

To define a code table hierarchy a code table (CTX) file should be created
with a code table defined for each level in the hierarchy. To indicate that the
code table file contains a hierarchy, the hi erarchy_nane attribute
should be defined on the <codet abl es> element.

<codet abl es package="cur ant
hi er ar chy_nanme="Addr essHi er ar chy" >
<descri pti on>
A description of the hierarchy.
</ descri ption>

142

Curam Server Developer's Guide

Example 10.24 Usage of hierarchy name attribute

Each <codet abl e> defined must then be linked using the par -
ent _codet abl e attribute of the <codet abl e> element. The par -
ent _codet abl e value should be set to the name of an existing
<codet abl e> in the file, where the specified code table is the parent in
the hierarchy. All code tables defined in the file, excluding the top level
code table, must have a valid par ent _codet abl e attribute defined for
them. A <codet abl e> can be linked to only one parent <codet abl e>
and cannot be used in more than one code table hierarchy.

<codet abl e java_identifier="COUNTY"
nane="County" parent_codet abl e="Count ry" >

Example 10.25 Usage of parent_codetable attribute

Each <code> entry in a code table is finally linked to a <code> entry in
the parent code table, using the par ent code attribute. The par -
ent _code value must be the value of a <code> existing in the specified
parent code table. A child <code> cannot be linked to more than one par-
ent <codet abl e>.

<code java_identifier="NMNEATH'
val ue="MEATH' parent_code="1 RELAND' st at us="ENABLED" >

Example 10.26 Usage of parent_code attribute

The hierarchy defined in Table 10.11, Address Hierarchy can be represented
asfollowsin acode tablefile.

<?xm version="1.0" encodi ng="UTF-8" ?>
<codet abl es package="curan' hierarchy_name="Addr essHi erarchy" >
<descri pti on>
A description of the hierarchy.
</ descri pti on>

<codet abl e java_identifier="COUNTRY" nanme="Country">
<di spl aynames>
<name | anguage="en" >Count r y</ name>
<di spl aynames>
<code java_identifier="IRL" val ue="1RLND" defaul t="true"
st at us=" ENABLED" >
<l ocal e | anguage="en" sort_order="1">
<descri pti on>|rel and</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="GB" val ue="ENGLND' st at us="ENABLED' >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Engl and</ descri pti on>
</l ocal e>
</ code>
</ codet abl e>

<codet abl e java_identifier="COUNTY" nane="County"
par ent _codet abl e=" Country" >

<di spl aynanmes>
<nane | anguage="en" >Count y</ nane>

</ di spl aynanes>

<code java_identifier="MEATH' val ue="MIH"

parent _code="| RLND' st at us="ENABLED" >

<l ocal e | anguage="en" sort_order="1">

143

Curam Server Developer's Guide

<descri pti on>Meat h</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="WEXFORD"' val ue="WKFD'
parent _code="| RLND' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="1">
<descri pti on>Wexf or d</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="STAFFORD' val ue="STFFRD'
par ent _code="ENGLND' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="1">
<descri pti on>St af f or d</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="LONDON' val ue="LNDN"
par ent _code="ENGLND' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>London</ descri pti on>
</l ocal e>
</ code>
</ codet abl e>

<codet abl e java_identifier="TOMW' name="Town"
par ent _codet abl e=" Count y" >
<code java_identifier="NAVAN' val ue="NVN'
par ent _code="MIH"' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Navan</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="TRIM val ue="TRM
par ent _code="MIH' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Tri n</ descri ption>
</l ocal e>
</ code>
<code java_identifier="GOREY" val ue="GRY"
par ent _code="WKFD"' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Gor ey</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="ENN SCORTHY" val ue="ENC"
parent _code="WKFD"' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Enni scort hy</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="ELTHAM' val ue="ELTM
parent _code="LNDN"' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>El t hanx/ descri pti on>
</ 1 ocal e>
</ code>
<code java_identifier="EARLSFI ELD' val ue="ELFD"
parent _code="LNDN' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Ear| sfi el d</descri pti on>
</l ocal e>
</ code>
<code java_identifier="BEDNALL" val ue="BDNL"
par ent _code="STFFRD' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="4">
<descri pti on>Bednal | </ descri pti on>
</l ocal e>
</ code>
<code java_identifier="STONE' val ue="STN'
par ent _code="STFFRD' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="4">
<descri pti on>St one</ descri pti on>
</l ocal e>

144

10.3.5

Curam Server Developer's Guide

</ code>
</ codet abl e>
</ codet abl es>

Example 10.27 Code Table Hierarchy Example

The artefacts listed in Section 10.3.3, Artefacts Produced by ctgen Build
Target are also generated for code table files that define a hierarchy.

Properties files are generated for <di spl aynanmes> elements. A symbol
definition Java file is generated for each code table in the hierarchy. A
single SQL file is generated, containing the relevant inserts to the
CodeTabl eHeader and CodeTabl el t em database tables for all
defined code tables. These insert statements will include the population of
the par ent Code field in the CodeTabl el t em table and the par -
ent _codet abl e field in the CodeTabl eHeader table. An insert entry
is also generated for the CodeTabl eHi er ar chy database table. This ta-
bleis used for administration purposes only.

i Note
The code table hierarchies can only be created through code table
(CTX) files and not through the admin screens. The admin screens
can only be used to maintain the code table hierarchies.

Retrieving Codes from Code Table Files

Since a code table file can contain any number of locales for a named code a
mechanism needs to be in place to return the correctly localized code for a
running instance of Caram. Codes are retrieved from a code table file based
on the locale property which includes alanguage and or a country. The code
table file look up returns a matching localized code for a named value. For
example, if the runtime locale is set to en_US where “en” is the language
and “US’ is the country, a code look up for the code named ACODE in Ex-
ample 10.28, Code File Search, will return the text “The code”. If, however,
the runtime locale was set to “fr”, the text “Le code” would be returned.

<codet abl es package="curam codet abl e" >
<codetabl e java_identifier="AN_| D' nane="ANAME">
<code defaul t="true" java_identifier="ACCDE"
st at us="ENABLED" val ue="ACODE" >
<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>The code</descri ption>
<annot at i on></ annot at i on>
</l ocal e>
<l ocal e | anguage="fr">
<descri pti on>Le code</descri pti on>
<annot at i on></ annot ati on>
</l ocal e>
</ code>
</ codet abl e
</ codet abl es>

Example 10.28 Code File Search

Since code table files are not guaranteed to contain an entry for every coun-

145

10.3.6

Curam Server Developer's Guide

try, a fall back mechanism is in place. Once a code of a given name has
been found and there is no direct match with the specified locale, the rules
for fall back are asfollows:

» |If the runtime locale is set to include a language and country, the coun-
try isremoved and the search looks for a matching language only. Look-
ing up the code named ACODE in Example 10.28, Code File Search,
with runtime locale f r _CNwould return the text “Le code”.

There is no default behavior for code tables. If the runtime locale does not
find a match in the code table after applying the fall back rule an empty
string is returned.

Localizing SDEJ Code Table Files

It is possible to localize or modify the codetable files shipped with the
SDEJ. These codetable files are located in the codet abl e directory of the
SDEJ and are in the same format as Curam application codetable files but
with the extension . i t X.

To localize these files copy the particular . i t x codetable file to be modi-
fied from the SDEJ to the codetable directory of a component in your
Curam application, for example, SERV-
ER DI R/ conponent s/ cust onf codet abl e. The .itx codetable
file can then be modified in the same way as any codetable file; overriding a
code or adding anew locale for all the codes.

]

H Note

If the package attribute in the codetable file is modified the local-
ization will not work.

The ct gen target, when run, will merge the localized . i t x codetable file
with the original one located in the SDEJ. The localized codetable file will
have the higher precedence order. It will then generate the sql files only. No
Java artefacts will be generated for codetable files with the extension . i t x.

The dat amanager _confi g. xm file, located in the pr oj ect/ con-
fi g directory specifies the location of the common directory for generated
SQL artefacts. There is no requirement to update this entry for localized
codetablesasal . sql filesare generated to the same location.

< entry
nanme="bui | d/ svr/ codet abl e/ sql /"
type="sql "
base="basedir"/>

Example 10.29 Datamanager entry for the code table SQL
artefacts location

Note
The <description> sub-element is an optional element for the

146

Curam Server Developer's Guide

<codetables> element in the codetable (CTX) files. The
<description> element is mainly used to define a description for the
code tables for developers information. The description is not saved
into any database tables for normal code tables. However, for Code
Table Hierarchies, if the description is defined in the CTX file, then
the <description> value is saved to the description attribute in the
CODETABLEHI ERARCHY table. This value will be displayed on the
Code Table Hierarchy page of the Clram Administration screens.

147

Curam Server Developer's Guide

Notes

1See Section 10.2.2, Customizing a Message File, for further explanation of
SERVER_COVPONENT _ORDER.

148

Chapter 11

Specialized Readmulti Operations

11.1 Overview

Generated readmulti operations in IBM Cdram Social Program Manage-
ment servers execute SQL SELECT statements and return the resulting re-
cord set as an ArrayList. In fact, readmulti operations are implemented as
two very distinct pieces:

» aData Access Layer function which establishes the result set, through
building up the statement, executing an execut eQuery on it, and fi-
nally a series of get Resul t Cbj ect statements, and

* aBusiness Object Layer function which assembles the results into the
required in-memory vector of structures.

The Business Object Layer function is a specialization of a general class of
functions called readmulti operations, which can perform arbitrary pro-
cessing on the contents of SQL cursors. You can view the definitions of
these function classes in
curamutil . dataaccess. ReadMul ti Qperati on. This Read-
Mul ti Operation is the paent abstract class, while
curamutil . dataaccess. St andar dReadMul ti Operati on isa
concrete subclass providing an implementation of “normal” readmulti func-
tions.

“Specialized readmulti operations’ are simply hand-crafted functions
“plugged into” the Data Access Layer using generated helper classes. The
pattern in use here is similar to the Visitor design pattern described in
Design Patterns by Gamma et al. Readmulti operations are “plugged into”
the appropriate Data Access Layer functions by generated readmulti helper
classes, which insulate the operation from knowledge about the specific
Data Access Layer functions used.

149

11.2

11.3

Curam Server Developer's Guide

When to Use Readmulti Operations

“Normal” readmulti operations return a set of database records as an Ar -
rayLi st . There are several situations in which you might want to replace
this type of standard “normal” readmulti operation with your own special-
ized processing.

An example is in batch processing where you want to iterate across a large
number of records on a database table, and process each record in turn. It is
not feasible to use a standard readmulti operation to assemble an in-memory
vector of all of the records read before processing. Another common ex-
ample is where you want to lock or delete records from the result set as they
are processed. In each of these examples you can write your own readmulti
operations to process records individualy as they are retrieved from the
database rather than relying on the standard processing supplied by St and-

ar dReadMul ti Oper ati on.

How to Define Your Own Readmulti Operations

The steps that you follow to define your own specialized readmulti opera-
tions are as follows:

1. Add the readmulti operation to your UML application model. We will
assume for this example that you add a standard readmulti operation
calledr eadrmul ti to an entity called E. The standard readmulti oper-
ation whose “details’ structure will be called EDt | s. However, this
example applies equally to <<r eadnul ti >>, <<nsr eadnul ti >>,
<<nkr eadnul ti >> and <<nsmnul t i >> operations in the UML ap-
plication model, where the “details’ structure might not be a generated
entity details structure.

2. Write the specialized readmulti operation class, as follows:

static class MyReadnul ti Operati on extends
curam util . dat aaccess. Readnul ti Operation {

publ i c bool ean operation(Cbject objDtls) throws
AppException, |nformational Exception {

/1 No inplenentation for the nonent

return true;

}

i Note

If the readmulti operation specifies a'Post Data Access' or 'On-
fail' operation then your readmulti operation must be a subclass
of

curamutil . dataaccess. St andar dReadMul ti Ope

150

Curam Server Developer's Guide

rat i on. Thisisbecause this class builds up an in-memory list
of the structs which are read by the readmulti operation in order
to make it available to the Post Data Access and On-
fai |l operations.

If your readmulti operation processes large numbers of records
then this could cause an excessive memory usage overhead; so
caution is advised if using specialized readmulti operations in
conjunction with Post Data Access or On-fai |l opera
tions.

Implement MyReadMul ti OQper ati on.operati on to perform
your specific processing. This method will be called automatically for
each record retrieved from the database.

In general, always return t r ue from r eadnul ti operations. In un-
usual cases, where you want to stop processing before you hit the end
of the record set, return f al se. This means the operation method will
not be called again.

Write the code that will invoke the readmulti operation. This will ap-
pear in a BPO implementation and look like this:

/1 instance of specialized operation class
M/ReadMul ti Operati on op = new M/ReadMul ti Operati on();

/1 instance of readnulti key structure
EReadnul ti Key key;

/] set key fields for search
key.id = 99;

/'l construct hel per and call operation
E. newl nst ance() . readmul ti Hel per (key, op);

Each generated readmulti function is associated with a generated “helper”
class which exists solely for use in code like that above. The helper classis
scoped inside the entity class and has an execute method that begins a read-
multi.

11.4 Extra Features of Readmulti Operations

The READMULTI _MAX option in the model limits the number of re-
cords processed by a standard “normal” readmulti operation. It has
however no effect when you hand-craft your own operations. As a result
none of the overrides for this option (defined in Chapter 4, Cdram Con-
figuration Settings) have any effect. To limit the number of records re-
turned within your readmulti subclass you must override the following
method:

public int getMaximm();

You can filter out records from the database result set by overriding the
following method of your readmulti subclass:

151

Curam Server Developer's Guide

public boolean filter(Object dtls) throws AppEx-
ception, Infornmational Exception;

Each record ispassedtofi | t er before being passed to your oper a-
t i on method. Any record which resultsinfi | t er returningf al se is
not passed to oper at i on. Thedefaultfi | t er awaysreturnst r ue.

If you want to write code that is called before the first row is passed to
oper at i on, you can override:

public void pre() throws AppException, |nform-
ti onal Excepti on;

If you want to write code that is called with the first row read from the
database, you can override:

public void first(Cbject dtls) throws AppExcep-
tion, Informational Exception;

The samerecord is also passed to the oper at i on method.

2

n Note

Notethat fi r st iscaled aslong asthereis at least one row in
the result set, regardless of whether or not filter returns
t r ue for thisrow.

If you want to write code that is called after the last call to oper ati on,
you can override:

public void post() throws AppException, Infornma-
tional Excepti on;

Be aware, this function is always called once, regardless of the value re-
turned by the oper at i on method.

An optional third parameter to the execut e method of readmulti help-
er classesis abool ean which specifies whether records read from the
database will be updated later in the transaction. Thiscan beused asin:

E. newl nst ance() . readmul ti Hel per (key, op, true);

This means that each record read from the database is locked for write
access asitisread.

Y ou can use a combination of the above methods, with your own data mem-
bers, to achieve many common styles readmulti operation. For instance, Ex-
ample 11.1, Specialized readmulti example shows a readmulti operation that
produces a report grouped by department:

static class MyReadnul ti Operati on

extends curamutil . dataaccess. Readnul ti Operati on

/' Remenber |ast dept, for grouping
private String | astDepartnment;

/| Department sal ary accumul at or

152

Curam Server Developer's Guide

private curamutil.type. Money sal aryDept Tot al ;

/1 Total Salary Accunul at or
private curamutil.type. Money sal aryG andTot al ;

public void pre()
t hrows AppException, |nformational Exception {
/1 initialization
| ast Depart nent =
sal aryGrandTotal = 0.0;

}

public void first (Cbject dtls)

t hrows AppException, |nformational Exception {
/| per-departnment group initialization
sal aryDept Total = 0. 0;

[/ remenber |ast departnent for grouping.
| ast Depart nent = dtls. depart nent;

publ i ¢ bool ean operati on(Ohject dtls)
t hrows AppException, |nformational Exception {
/1 Change of departnent group
if (!(lastDepartment.equal s(dtls.departnent))) {
print G oupTotal s();
/1 redo per-dept initialization
first(dtls);

/] detail report line

curamutil.resources. Trace. kTopLevel Logger.info("Emp "

curamutil.resources. Trace. kTopLevel Logger . i nf o(
dtls. enpl oyeel d) ;
curamuti|.resources. Trace. kTopLevel Logger. i nf o(
sal ary: ;
curamutil.resources. Trace. kTopLevel Logger. i nf o(
dtls.salary);

/1 accunul ate dept sal ary
sal aryDept Total += dtls. sal ary;

/1 accunul ate total salary
sal aryGrandTotal += dtls.sal ary;

return true;

}

public void post()
t hrows AppException, |nformational Exception {
/] only if there was at |east one depart nment
if (!'(lastDepartnent.enmpty())) {
print G oupTot al s();
[/ final group
/'l Grand total report line:
curamutil.resources. Trace. kTopLevel Logger . i nf o(
"Grand total salary: ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(
sal aryG andTot al) ;

}
}
public int getMaxi mun()
/1 Explicitly enforce that all matching records are

/1 considered. Any nunber other than zero would limt

// the nunber of records.
return O;

}
private void printGoupTotal s() {

153

11.5

11.6

Curam Server Developer's Guide

/1 group report line
curamutil.resources. Trace. kTopLevel Logger. i nf o(
"Departnent ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(
| ast Depart nent) ;
curamuti|.resources. Trace. kTopLevel Logger . i nf o(
" total salary: ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(
) sal aryDept Tot al) ;
}
Example 11.1 Specialized readmulti example

An Alternative

Specialized Readmulti operations and non-standard operations allow the de-
veloper a greater level of freedom when handcrafting database access code.
However in certain situations this may prove to be too limiting. For example
where the SQL string will be derived from the input parameters to a method;
parts of the ‘where' clause will be optional or expressed differently depend-
ing on the input. In these situations the developer can obtain the Connection
being used for database = communication through the
Transacti onl nf o.get I nf oConnect i on interface. Once this con-
nection has been obtained it is possible to execute any form of handcrafted
JDBC in the context of the Curam transaction.

To enable this style of database access to be visible in the model it should be
placed in an entity which has the NO_SQL option enabled. This is detailed
in the Cdram Modeling Reference Guide.

Summary

The order in which your readmulti operation methods are called is:

* pr e- aways called once before anything else;

o first- caled once with the first record, provided at least one record
exists;

o filter-caledforeachrecord (including thefirst);
* oper ati on- caled for each record for which filter returnst r ue;
* post - aways caled once after everything else;

e get Maxi mum specifies the maximum number of records that should
be matched.

If you are designing processing that maintains locks remember that there are
performance implications when you do so.

154

12.1

12.2

Chapter 12

Deprecation

Introduction

IBM®IBM Cluram Social Program Management uses deprecation as a
means of reducing the impact of change on custom applications. This
chapter describes deprecation in Clram: what it is, how it can affect custom
code, what it means for support and the build infrastructure that helps pin-
point custom artefact dependencies on deprecated Clram artefacts.

Overview

In enhancing Cdram in a Major Version release or fixing defects in a Ser-
vice Pack, the necessity occasionally arises where the contract of a Clram
development artifact has to be changed. In this context the contract of an ar-
tifact is its APl or signature (e.g. name, parameters, return values, etc) in
conjunction with its documented statement of functionality (e.g. JavaDoc).

Prior to Caram 6.0, such changes would typically have been made in place,
potentially causing compilation errors or unexpected runtime behavior in a
custom application. This policy changed in 6.0 to favor adding a new arti-
fact which implements the changed behavior while preserving the original
artefact and marking it 'deprecated’. This has two main benefits for custom
applications. Primarily, it provides back-compatibility for any referencesin
custom code to the deprecated artefact (n.b. it does not provide back-
compatibility for a custom override of the deprecated artefact). It also elim-
inates a source of compilation failures during upgrades, which can hamper
the development of a reliable upgrade plan. These effects are described in
more detail in this chapter.

Finaly, infrastructure is provided in Curam that extends Java's command-
line compiler deprecation warnings to certain Cdram builds. This helps pin-
point dependencies in custom applications on deprecated Curam artefacts. It
also helps distinguish between references-to and customizations-of deprec-

155

12.2.1

12.3

12.3.1

Curam Server Developer's Guide

ated artefacts in custom code. That build infrastructure is also described in
this chapter.

Other Sources of Information

Information about specific deprecated artefacts, can be found in the artefact
itself and aso in the 'Notes on Deprecation' section of the Clram release
notes.

In the artefact itself, the deprecated element will be marked as described in
Section 12.4.1, Artefact Types that can be Deprecated. This marker includes
space for a short 'deprecation comment' about the replacement functionality
for the deprecated item and a reference to any associated release note con-
taining more context. To make your analysis easier, Cuiram validation and
compilation steps will include this comment in the build warning, to save
you looking up the deprecated artefact. However, this enhanced build warn-
ing is only available from Curam compilers/validations, the command-line
Java compiler does not have equivaent functionality. It is recommended
you view Java warningsin your IDE for fast navigation between artefacts.

If the information in the artefact's deprecation comment does not provide
enough context, additional information can be found in the Cliram Release
Notes. Y ou can search these by the name of the deprecated artefact or by the
release note ID referenced in its deprecation comment.

Effect of Deprecation on a Custom Application

In Caram, a'deprecated’ artefact means an artefact that has been replaced by
other functionality and is no longer part of the default flow of Cdram. De-
precated artefacts remain present in the application codebase, but they are
not referenced by the out-of-the-box runtime application. If deprecated arte-
facts are referenced in the out-of-the-box application codebase, it is only by
other deprecated artefacts.

To quickly pinpoint where custom dependencies exist on deprecated Clram
artefacts, the command-line Java compiler has been extended to provide de-
precation warnings to Caram builds and validations. This will be described
in more detail later in this chapter.

Customizations and References

Custom artefacts can depend on deprecated Caram artefacts either by refer-
encing them, or by customizing (overriding) them. Reference and customiz-
ation dependencies have different characteristics and it is important to un-
derstand the difference. To illustrate:

» Examples of References

A custom method can call a deprecated Caram server interface
method

156

12.3.2

Curam Server Developer's Guide

» A custom workflow can reference a deprecated Curam method as an
automatic activity

A custom UIM client page can link to a deprecated Clram UIM
page

» Examples of Customizations

e A custom class can subclass a Caram class and replace (override)
deprecated Clram methods

* A custom UIM client page can customize (override) a deprecated
Curam UIM client page

The impact of deprecation on custom code depends on whether that code is
referencing or customizing a deprecated artefact.

Where code references a deprecated Caram artefact (e.g. cals a deprecated
method), the deprecated artefact still exists and functions in a backwardly-
compatible way. This is the same as for regular Java deprecation where the
immediate impact is minimal or nil.

Where code customizes (overrides) a deprecated Curam artefact, the base
Curam Application no longer invokes that artefact - it is no longer part of
the "default flow" of the base application. It is reasonably likely that it has
been removed from the default flow of custom applications. In short, cus-
tomizations of deprecated artefacts do not function as before and there is a
strong likelihood that some corrective action will be needed. That action
could include dropping the customization (e.g. if equivalent functionality
has since been implemented), re-applying the customization to the artefact
that replaces the deprecated one, etc.

The deprecation build infrastructure provided uses special tags in depreca-
tion warnings to help distinguish between references-to and customizations-
of deprecated artefacts. This will be described in more detail later in this
chapter.

Support for Deprecated Artefacts

Deprecated artefacts will continue to be supported as long as the version in
which they were deprecated remains in-support. Customer-raised defects
will continue to be addressed in the deprecated artefacts during this period.
All future enhancement requests will be directed toward the replacement
functionality.

Deprecation of an artefact is an indication of the intent to remove it in afu-
ture version. However, a deprecated artefact will remain in- support as long
as the version it was deprecated in remains in-support. After that, it is sub-
ject to removal without further notice. Extended support for specific arte-
facts will be considered as long as the request is made in good time (no less
than 6 months in advance of the relevant version falling out of general sup-

port).

157

12.3.3

12.4

12.4.1

Curam Server Developer's Guide

You are advised to address any dependencies from Custom code on deprec-
ated Caram artefacts at the earliest opportunity. The replacement functional-
ity offers better support and better upgrades in future. When deprecated
artefacts are removed in a future release, it can cause compilation failures
and this can seriously hamper effective planning of upgrade tasks.

Effect of Deprecation on the User Interface

When client pages are deprecated, this changes the default flow of the client
application to include the replacement functionality. This has two results
that do not occur when other artefacts are deprecated:

Consistency of the User Interface: If existing client pages have been cus-
tomized or new pages added which are used in conjunction with deprecated
pages, then the resultant user experience may be changed with the replace-
ment pages. If thisis the case it will be necessary to consider updating the
customizations to be consistent with the replacement pages, or reverting the
default flow to use the deprecated pages.

Documentation/Training Materials: If descriptions and/or screen shots of
the deprecated pages have been included in custom documentation/training
materials, these may need to be updated to describe/show the replacement

pages.
Scope

Artefact Types that can be Deprecated

The following artefact types may be deprecated:

Area Artefact Type

Modeled Artefacts Process Class, Entity Class, Struct Class, Process
Method, Entity Method.

Java Code Identical to Java deprecation (Class, Interface,
Method, Attribute, etc)

Client Artefacts UIM Page, VIM file, Page Property (.property as-
sociated with aUIM or VIM file)

Messages Message Catalog Entry

Table 12.1 Artefact Types that can be Deprecated

All of these artefact types support explanatory comments attached to the de-
precation tag. These can be easily found by searching for the string 'deprec-
ated' within the artefact in question. For . j ava files (and model artefacts),
the @deprecated JavaDoc tag is used in the normal way. For XML files
such as UIM/NVIM files and message catdog entries, the
<?curam-deprecated XML processing instruction is used. Finally, in prop-

158

Curam Server Developer's Guide

erty files, the string .deprecated is appended to the name of a property to
denote that that property is deprecated.

2

1

Entity Classes

Please note that for Entity Classes, the term 'deprecation’ refers en-
tirely to the generated Java artefacts derived from the Entity and
does not refer to data associated with that entity. The Caram Gener-
ator produces no database schema representation for a deprecated
Entity, it is expected that this data has migrated to another Entity (or
Entities). Entities are deprecated in order to minimize the code im-
pact of changes to the data model. The deprecated Entity's purpose
is to re-route method calls to the appropriate replacement Entity (or
Entities). As such, deprecated Entities follow the same pattern as
other classes - references to the entity will continue to function as
before, customizations (overrides) will not.

12.4.2 Limitations

12.5

12.5.1

There are certain limitations of the deprecation infrastructure to be aware of:

No build warnings will be produced for non-typed references to deprec-
ated artefacts. For example, if the UIM page Parti -

ci pant _vi ewAddr ess. ui m was deprecated and a Java method
contained a "Participant_viewAddress" string literal - this would not be
picked up by the build warnings because the reference is not typed - the
compiler cannot know that the String refersto a UIM page.

The deprecation infrastructure is comprised of a deprecation tagging
capability and build/validation warning capability (reporting dependen-
cies on tagged artefacts). The build/validation warning capability is in-
tended for customer use. The deprecation tagging capability is not inten-
ded for customer use and is therefore not supported. For example, using
the <?curam-deprecated processing instruction in custom XML filesis
not supported.

Running a Deprecation Report

Curam has developed infrastructure that extends Java's command-line com-
piler deprecation warnings to certain Curam builds. This helps pinpoint de-
pendencies in custom applications on deprecated Curam artefacts. It also
helps distinguish between references-to and customizations-of deprecated
artefactsin custom code.

Configuring the Deprecation Report

Deprecation reporting in Cdram is controlled by two properties:

Ensure the prp.warningstoerrors build property, is set to false or the
build may be unable to complete (false is the default for this property, so

159

12.5.2

12.5.3

12.5.4

Curam Server Developer's Guide

if you do not override the property then the default isfine).

« The curam.deprecation.reporting property in the boot -
strap. properti es file controls the reporting of deprecation warn-
ings. Warnings are not displayed if this property is set to false. The
property defaults to true so if it is not specified deprecation warnings
will be displayed.

* |t is recommended you remove "Sample" components (Sample, CPM-
Sample, etc) from the CLIENT_COMPONENT_ORDER environment
variable before running the commands below. These components may
generate spurious warnings that are not relevant to identifying your ex-
posure to deprecated Curam artefacts.

Prerequisites for running the Deprecation Report

The deprecationreport build target calls a sequence of Clram build targetsin
order to provide build output containing a complete set of deprecation warn-
ings. As there are dependencies between some of the build steps the follow-
ing builds should complete successfully before running the deprecationre-
port target.

e build clean server
e build clean client
e build database

Generating the Deprecation build output

Execute the build target below, it will capture the build output to a
%SERVER DI R\ bui | dl ogs\ %epr ecat i on<ti nest anp>. | og
filefor further analysis.

 cd %SERVER_DIR%
* build deprecationreport

Identifying deprecation warnings in the build output.

Since the build output has all been directed into the Depreca-
tion<ti mestanp>. 1 og file check that file, to ensure that the overall
build succeeded. Ant prints either a 'BUILD SUCCESSFUL' marker in the
last few lines of that file if all parts of the build completed (or 'BUILD
FAILED' if any failed).

Since you have already confirmed that the server, client and database builds
complete successfully, the only issues that are expected to cause this target
to fail are validation issues. Since the validation of one file has no bearing
on the next, the these targets do not stop on afailed validation. They am to

160

12.5.5

Curam Server Developer's Guide

provide as complete a picture as possible by validating al files and only re-
porting success or failure at the end of the build. So the deprecation inform-
ation will still be produced for all files that pass validation.

Finally, to get a summary report of all exposure to deprecated artefacts, fil-
ter the depr ecati on. | og for the [deprecati on] tag. You can use
grep or the Windows find utility for this, or your preferred text editor. e.g.:

grep "\[deprecation\]" Deprecation<tinestanp>.|og
1> deprecati on_summary. | og 2>&1

or

find "[deprecation]" Deprecation<tinestanp>.|og
1> deprecati on_sunmmary. | og 2>&1

Example 12.1 Getting a Summary Report

The resulting depr ecati on_summary. | og file will contain only the
deprecation warnings produced by the build.

i Tip:
Since some warnings can be broken over more than one line, it is
useful to hold on to the original depr ecati on. | og aswell.

Notes on running the Deprecation Report

* Thisbuild can take some time to run, as it has to do a clean followed by
server and client build, in order to identify al dependencies. The target
also does the validations for several artifact types.

» Although the deprecationreport target generates the depr ecati on
bui | d | og, itisnot always necessary to rerun the entire build in case
it fails. If the build fails due any validation, the validation target can be
ran in isolation. After fixing all the validation issue, deprecationreport
target should be executed to ensure the deprecation build log is com-
plete.

* The deprecationreport calls the validation target. For example: The
deprecationreport will fail if validateallworkflows target will report
an error, as the build output from other buildsis not available.

[deprecation] The client has not been built and therefore it
cannot be determined if U M pages referenced are
depr ecat ed.

* By default the Java compiler limits the number of compiler warnings
displayed. The Cdram build specifies this limit as 10,000, which means
that the compiler will display 10,000 warnings followed by a message
that, there were further warnings. This value can be overridden by
passing -Dcmp.maxwar nings to the build.

» |EG scripts can aso contain dependencies on server and/or client arti-

161

12.6

12.6.1

Curam Server Developer's Guide

facts that have become deprecated. However, this scenario is not
covered by validation targets at this time. If you have IEG scripts, you
will need to manually inspect UIM page and server interface references
to identify any dependencies on deprecation pages or interfaces.

i Note

Since some warnings can be broken over more than one line, it is
useful to hold on to the original depr ecat i on. | og aswell.

Analyzing Deprecation Warnings

Once you have produced a summary deprecation build log you need to
identify the deprecation warnings contained in it. This section describes how
to identify and categorize the deprecation warnings

Identifying overrides of deprecated artefacts

As described in Section 12.3.1, Customizations and References there are
significant differences between the effects of deprecation on references and
on customizations. Identifying overrides of deprecated artefacts is relatively
simple. The deprecation summary report you produced in Section 12.5, Run-
ning a Deprecation Report pinpoints all dependencies on deprecated arte-
facts using the standard Java [depr ecat i on] taginthe build log. Curam
code generators and command-line validations also check for dependencies
on deprecated artefacts and produce the same build warning as Java (using
thesame[depr ecat i on] tag).

In addition to this, Curam code generators augment the [depr ecat i on]
tag with an additional [cust omi zat i on] tag where your custom artefact
isoverriding a Curam artefact, rather than referencing it.

Any lines in your deprecation summary report tagged with
[deprecation] [custom zation] indicate places where you are
overriding an artefact that Curam has since deprecated (i.e. removed from
the default flow of the base application). Since Curam has removed this
artefact from the default flow of the out-of-the-box application, it is reason-
ably likely that it has also been removed from the flow of your custom ap-
plication. Where this happens, it will be necessary to address the override.

The example below shows a custom VIM file that is overriding an out-
of-the-box Curam VIM file. The Curam VIM file has become deprecated, so
the client build is producing this warning. The warning follows the Java de-
precation message format: the first part is the path of the file that references
the deprecated artefact, followed by the [deprecation] tag and, in this case, a
[customization] tag also. This is followed by the name of the artefact that
has been deprecated. Finaly (and this differs from the Java format) where
possible, any comments attached to the deprecated artefact are also printed.
This saves you having to locate the file and look up the associated com-
ments.

162

12.6.2

12.6.3

Curam Server Developer's Guide

[processUi ni

C:. /webcl i ent/ conponent s/ cust oml Case_| i st Vi ew. vi m war ni ng:
[deprecation] [custom zation]

C:. /webcl i ent/ conponent s/ core/ Case_| i stVi ew.vi m has been
deprecated. [deprecati on comment] Since Curam 6.0,

repl aced with Case_listAnotherView vim See rel ease note:
CR12345

Example 12.2 Example: override of a deprecated artefact

In the above example, the VIM file is no longer used in the default flow of
the out-of-the-box Curam application. If your application relies on the out-
of-the-box flow, your customization of this file will no longer appear in that
flow.

Addressing overrides of deprecated artefacts

There is no single approach to addressing overrides of deprecated artefacts.
You must analyze the modifications you made to the origina
(now-deprecated) artefact and determine a suitable course of action for your
customization. Some options are to drop the customization (e.g. if Cdram
have since implemented equivalent functionality), to re-apply the customiz-
ation to the artefact that replaces the deprecated one, etc. There are sources
of information that can help you when deciding the appropriate course for
your customization, please see Section 12.2.1, Other Sources of Information

Identifying references to deprecated artefacts

References (e.g. callsto) to deprecated artefacts can also be easily identified
in your deprecation log - they are lines tagged with a [deprecation] marker,
but no [customization] marker.

[processUin] C:.\Curam webclient\conponent s\ cust om

Cust om Benefi t\ Deduction\li st ThirdPartyDeduction.ui m

war ni ng: [deprecation] U M Product Del i very_cancel Deducti on

has been deprecated. [deprecati on conment]

Since Curam 6.0, replaced with ProductDelivery_cancel Deductionl

Example 12.3 Example: reference to a deprecated artefact

In the above example, the UIM page is no longer used in the default flow of
the out-of-the-box Curam application and is deprecated.

Notes on analyzing deprecation warnings

* You should not see any deprecation warnings from out-of-the-box
Curam files. However, there are instances where a deprecation issue in
your custom file can appear, asif it came from an out-of-the-box Curam
file. If you overrode a .VIM client file that is being used by an out-
of-the-box .UIM page, any warnings from your VIM file will appear as

163

Curam Server Developer's Guide

if they came from the out-of-the-box UIM page. This is because the cli-
ent build imports .VIM content into UIM pages before validating it. If
you see deprecation warnings from out-of-the-box UIM pages, please be
aware that they may be referring to issuesin a custom VIM file.

If you have included sample components in your build (such as Sample,
CPMSample, etc), you may also see deprecation warnings from these
components. Curam does not recommend including sample components
in your builds.

You will find [deprecation comment] marker, if the tag @depreceted in
documentation field has a comment. This save you having to look up the
file and then look up thefileit's referencing and then get the comment.

Please be aware that any deprecation warnings marked [bopigen] in the
build log are duplicates of warnings produced earlier in the log and
marked as [servercodegenerator]. You can safely ignore deprecation
warnings marked as [bopigen].

Warnings coming from generated java classes (those in build/svr/gen)
are by-products of the [customization] warnings produced by the gener-
ator and can generally be ignored. Resolving the "[deprecation]
[customization]” issues should also resolve these generated file warn-
ings.
i Note
It is easier to work with java deprecation warnings in Eclipse, than it
isto use the command-line deprecation build logs.

164

13.1

13.2

13.2.1

Chapter 13

User Preferences

Overview

User preferences are name-value options which specify settings that can be
customized for a particular user. A set of Def aul t Pr ef er ences isas
signed to each user of the Curam application.

A user preferences editor is available in the web client. This editor allows
each user to update values for the preferences. Examples of user preference
usage include setting the time zone, or providing aflag to turn a custom op-
tion on or off.

A set of user preferences are defined out-of-the-box in Clram:

Name Description Default
Value
Time Zone The user'stime zone. Europe/
Dublin
High Contrast The high contrast accessibility feature ad- false
Mode justs the colors and images used in the ap-

plication to ensure all visual content is ac-
cessible to users with limited color vision.

Table 13.1 Out of the box user preferences

User Preferences Definition

Data definition XML file

It is possible to create new user preferences, or override existing user prefer-
ences, by creating a custom Def aul t Pr ef er ences. xni file.

165

Curam Server Developer's Guide

A custom Def aul t Preferences. xnml file should be placed in the
EJBSer v-

er\ conponent s\ <conponent _nane>\ user pr ef er ences direct-
ory, where <conponent _nane> is the name of a component within the
component directory.

The following sample Def aul t Pr ef er ences. xm fileillustrates how a
user preference is defined:

<Pr ef er ences>
<PreferenceSet id="default"
descri pti on="The default preferences">
<Pr ef erence nane="sanpl e. pref" category="Def aul t Pref erences">
<t ype>SVR_BOOLEAN</t ype>
<val ue>f al se</ val ue>
<r eadonl y>f al se</r eadonl y>
<vi si bl e>t rue</ vi si bl e>
<ext er nal Vi si bl e>f al se</ ext er nal Vi si bl e>
</ Pr ef erence>
</ Pr ef erenceSet >
</ Pr ef erences>

Example 13.1 Example of user preference definition

In the user preferences definition example above the preference
"sample.pref" is defined in an XML document with a root Pr ef er ences
node.

The Preferences document may contain only one
<Pr ef er enceSet > element, with the i d attribute set to “default”. The
<Pr ef er enceSet > contains any number of <Pr ef er ence> elements,
each defining a new preference or overriding an existing one.

The nane attribute of <Pr ef er ence> defines the internal name of the
user preference. This attribute forms a unique name for the preference
stored in the database. In the example above the name is *“ sample.pref”.

A <Pr ef er ence> element contains a number of child elements, listed in
the table below.

Element Description Mandat- Default
ory Value

type Indicates the preference type, which yes N/A
should beavalid Dormai n Defi n-
i tion type

value Theinitial default value of theuser yes N/A
preference.

readonly A boolean value (true or false) that no false

indicates whether the preference
should be editable in the user prefer-
ence editor in the web client.

visible A boolean value (true or false) that no true
indicates whether the preference

166

13.2.2

Curam Server Developer's Guide

Element Description Mandat- Default

ory Value

should be displayed in the user pref-
erence editor in the web client for an
internal user, i.e. auser on the Users
table.

externalVisible A boolean value (true or false) that no false
indicates whether the preference
should be displayed in the user pref-
erence editor in the web client for an
external user.

Table 13.2 User Preference options

If multiple Def aul t Pr ef erences. xml filesexist (in different compon-
ents), the contents of these files are merged together during a server build.
The files are merged according to the SERVER _COMPONENT_ORDER. Du-
plicated preferences in a component with higher precedence in the SERV-
ER_COVPONENT _ORDER will take priority over those duplicates in com-
ponents with lower precedence.

The results of the merged user preferences are added to the database by the
dat abase build target for usage at runtime.

]

ﬂ Note

Only the default value of the out of the box user preferences in
Curam should be overridden.

Although the ability to override all elements of a user preference ex-
istsit is strongly recommended that only the actual value, as defined
by the <val ue>some value</ val ue> element, should be up-
dated.

Properties files

When defining a user preference in the Def aul t Pr ef er ences. xm file
a corresponding entry should also be made in an accompanying Def aul t -
Pref erences_<l ocal e>. properti es file. where, <l ocal e> rep-
resents the intended locale of the properties. This file specifies the display
name that will be displayed when accessing the user preferences in the web
client user preferences editor. The ability to localize the display name for
each of the user preferences is possible by creating a DefaultPrefer-
ences _<locale>.properties file for each supported user | ocal e. See Sec-
tion 13.5, Localizing Display Names for more details on localizing user
preferences display names.

A Def aul t Preferences_<l ocal e>. properties file should be
created if it does not aready exist. The Defaul tPrefer-
ences_<I ocal e>. properti es should be placed in the EJBSer v-

167

13.3

13.4

Curam Server Developer's Guide

er\ conponent s\ <conponent _nane>\ user pr ef er ences direct-
ory with the corresponding Def aul t Pr ef er ences. xnl .An entry for
the user preference defined in the previous example would be:

sanpl e. pref =Sanpl e Preference Di splay Nane:

Def aul t Pref erences_<l| ocal e>. properties files in multiple
components will be merged using the same SERV-
ER_COVPONENT _ORDER merge rules that apply to Def aul t Pr ef er -
ences. xnl files.

Development Support

User Preferences can be accessed at development time using the get -
Val ue() and set Val ue() methods in the
curamutil.userpreference.inpl.UserPreference class.

A user preference must have been previously created before invoking the
set Val ue() method. See Section 13.2, User Preferences Definition for
more details on creating user preferences.

External Users

To make user preferences available to an external user, you need to make
both client and server changes. These changes are described below.

For the client, you need to set the USER _PREFS_ PAGE attribute to true
within a <l i nk> element. Please see the Ciram Web Client Reference
Manual for further details on setting this element.

The Ext er nal AccessSecuri ty interface is used to retrieve informa
tion for an external user. This class contains 2 new methods, get User -
PreferenceSet| D() that reads user preferences for an externa user
and nodi f yUser Pref erenceSet | () that updates user preferences
for an external user. These methods must be implemented in order to re-
trieve user preferences for an external user. Please see the Customizing Ex-
ternal User Applications chapter in the Ciram Security Handbook guide for
further details on the Ext er nal AccessSecuri ty interface.

Once the client and server changes have been implemented, you must en-
sure that the relevant user preferences are visible to the externa user. The
<external Visible> element within the DefaultPrefer-
ences. xnl alows you to manage the visibility of each user preference to
an external user. This element is described in Section 13.2, User Prefer-
ences Definition.

If you want to make user preferences available for externa users and
<ext er nal Vi si bl e> isset to false or is not defined for all user prefer-
ences, then there will be no user preferences displayed for an external user.
If you do not wish to have any user preferences displayed for external users,
it is recommended that the User Preferences link should not be available
within the external user application.

168

Curam Server Developer's Guide

13.5 Localizing Display Names

Localized display names can be added by creating new Def aul t Pr ef er -
ences_<l ocal e>. properties files for each Def aul t Pref er -
ences. xni file created under directory EJBSer v-
er\ conponent s\ <conponent _nane>\ user pr ef er ences.

<l ocal e> represents the intended locale of the properties file and
<conponent _nanme> is the name of a component within the component
directory.

For example, to support the en_US locale, you should create the following
default preference propertiesfile

Def aul t Pref erences_en_US. properti es

As there may exist multiple Def aul t Prefer-
ences_<I ocal e>. properti es filesin different components, the con-
tents of these default preference properties will be merged to aMer gedDe-
faul t Preferences_<l ocal e>. properties file according to the
SERVER_COMPONENT _ORDER * . This merging happens when running
either of the following targets. mer geuser pr ef er enceproperti es,
server.

Before merging the .properties files, the following validations will cause an
error during a build where:

« The specified <locale> is not present in the SERV-
ER LOCALE LI ST?2

* Morethan one display nameis specified for the same locale.
For example, two display names are specified for locale en_US.

Def aul t Pref erences_en_US. properti es:
Ti mezone=Ti neZone:
Ti mezone=Ti neZone US:

 The <l ocal e> in the property file name includes a country part with
more than 2 characters.

For Example:
Def aul t Pr ef er ences_en_USA. properti es

 The<l ocal e> in the property file name includes a language part with
more than 2 characters.

For Example:

Def aul t Pref er ences_eng_US. properti es

* The .propertiesfileis empty.

169

13.6

Curam Server Developer's Guide

» The .propertiesfile contains invalid properties.
For Example:

Def aul t Pref erences_en_US. properti es:
Ti nezone

The infrastructure will attempt to display the correct localized name by
matching the country part and language part of the user'slocale. If the coun-
try part does not exist, the infrastructure will attempt to match the language
part only, and if this does not exist it will fall back to a default language.
The localization of display namesisillustrated below.

If the user is associated with the locale fr_CA, then the application searches
the Mer gedDef aul t Pref erences_<l ocal e>. properties files
for the display namesin the following order:

1) MergedDef aul t Preferences_fr_CA. properties
2) MergedDef aul t Preferences_fr.properties

3) MergedDef aul t Pref erences_en. properties

4) Mer gedDef aul t Pref erences. properties

The system first attempts to locate the correct display name for the f r _CA
locale in a MergedDefaultPreferences fr CA.propertiesfile. If thisfile does
not exist, or if the display name for the user preference does not exist within
this file, then the system looks for MergedDefaultPreferences fr.properties.
If this file does not exist, then the system will search for a Mer gedDe-

faul t Preferences_en. properti es file where locale is set to the
default system locale. If the display name is not present the system will fall
back to the Mer gedDef aul t Pr ef er ences. properti es file

In the case where the display name is not found in any of the properties files
(or the properties files do not exist), the value defined for the nane attribute
for a user preference in the DefaultPreferences.xml file will be used as the
display name. See Section 13.2, User Preferences Definition for more de-
tails on the nane attribute.

Similarly, if the user is associated with the locale en_US, then the applica-
tion searches for the display names in Mer gedDef aul t Pref er -
ences_<I| ocal e>. properti es fileswith the following priority.

1) MergedDef aul t Pref erences_en_US. properties
2) MergedDef aul t Pref erences_en. properties
3) MergedDef aul t Pref erences. properties

Localizing Infrastructure Preferences Display
Names

There are a number of Infrastructure Preferences used in the application and
their display names can be localized in a manner similar to User Prefer-
ence's display names. Localized display names can be added by creating
new I nfrastructurePreferences_<l ocal e>. properties

170

Curam Server Developer's Guide

files under the directory EJBSer v-
er\ conponent s\ <conponent _nane>\ user pr ef er ences.
Where <| ocal e> represents the intended locale of the properties file and
<conponent _name> is the name of a component within the component
directory. A sample file, containing all the properties available for localisa-
tion, can be found in
SDEJ\ | i b\ I nfrastructurePreferences. properties.

171

Curam Server Developer's Guide

Notes

1See Section 10.2.2, Customizing a Message File, for further explanation of

SERVER_COVPONENT _ORDER.
%See Section 10.2.1, The Format of Message Files, for further explanation

of SERVER LOCALE LI ST.

172

14.1

14.2

14.2.1

14.2.2

Chapter 14

Transaction Control

Overview

The IBM Curam Social Program Management Server Development Envir-
onment (SDEJ) abstracts transaction management from the average de-
veloper. This section provides a brief overview for the developer and then
details what is happening “under the hood”. This is a difficult task because
of multiple database support, which provide significantly different ways of
supporting the ACID nature of atransaction. A transaction should be Atom-
ict, its result should be Consistent?, 1solated® and Durable”.

Developer's View

Transactions and Method Invocations

Typicaly in Ciram a Facade method invocation maps to a single transac-
tion. The exception to this is where the method invokes a deferred process
or workflow. See the Cdram Workflow Management System Developers
Guide for more details. The single transaction starts at the beginning of the
Facade method invocation and finishes at the end.

The transaction demarcation in Curam is bean managed rather than contain-
er managed and as such the developer must use the APIs in the infrastruc-
ture to checkpoint transactions.

One exception to this general rule is the Key Server. When a Unique ID
block is obtained from the Key Server a separate transaction is started to
govern this database access. This guarantees that long running transactions
do not place locks on the Key Server tables as this would provide an unac-
ceptabl e bottleneck.

Optimistic Locking and the forUpdate Flag

173

14.2.3

14.3

Curam Server Developer's Guide

When a developer creates operations on an entity they must first determine
if that entity supports optimistic locking. Optimistic locking is described in
the Curam Modeling Reference Guide and provides a suitable method of en-
suring that transactions are ACID. However there are situations when using
optimistic locking can unnecessarily impact on the performance of a trans-
action. If arecord is read and then modified later in the transaction it is un-
likely (though not impossible) that the record will have changed underneath
the developer. Rather than using the version number it is often more suitable
to lock the record when it isread. This means that it isimpossible for anoth-
er transaction to change the record, so there is no need to guard the modify
with a version number. However it also means that the possibility of locks
and deadlocks increases.

This form of locking is supported in Cdram via an extra parameter which
can be passed to any of the standard read operations. This parameter
(forUpdate), when set to t r ue, will result in an update lock being taken on
the record(s) that are being accessed as part of this query. These locks will
not be released until the end of atransaction.

General Guidelines

There is agolden rule relating to locking and performance in database trans-
actions. Any records you lock should remain locked for the minimum pos-
sible period of time to reduce database contention caused by other users
seeking the same records. This means that operations that take out locks
should be called as late as possible in your transactions. For example, if you
read several records to validate a transaction, followed by updates to severa
more records, aways perform the validations first followed by the updates.
Try to defer update operations (or reads with locks) until as late as possible:
don't scan a million-record table after taking out a record lock that ought to
be short-lived.

Underlying Design

Transaction management happens on the server, rather than the client side.
Client-initiated transactions would involve complicated and largely unne-
cessary communication overhead. However, this imposes a requirement on
the application to guarantee that the database data remains consistent across
a series of client/server calls. In practice this usually involves deferring the
database updates done by a business function until the last client/server in-
teraction in a series.

Transactions typically have to encompass interactions with more than one
resource manager even if legacy systems are not used. The server database
is one resource manager and the queues used for deferred processing and
workflow are another. In order to guarantee atomicity of atransaction that is
distributed across multiple resource managers, a two-phase-commit protocol
isrequired to coordinate the distributed transaction.

174

14.3.1

14.3.2

Curam Server Developer's Guide

DB2

At the beginning of a transaction Cuiram obtains a single connection to the
database. This connection runs at a specific isolation level:

* Repeatable Read - This guarantees that dirty data is not read and that a
second read will read the same thing as afirst.

However specific categories of statements are run at alower isolation level:

* Cursor Stability - Cursor stability isthe DB2 implementation of the SQL
standard Read Conmi tted isolation level. This guarantees that a
transaction cannot read a row with uncommitted changes in it. However
it does not guarantee that a second read will read the same thing as a
first.

This is not a separate connection to the database rather the DB2 keyword
W TH CS isautomatically appended to the SELECT statement.

All queries which do not have the f or Updat e flag set run at the “Cursor
Stability” isolation level. All modifies and queries with the forUpdate flag
set run at “repeatable read” isolation level. This means that they place alock
on the row(s) that have been read so that they cannot be updated by anyone
else, and in the case of modify operations be read by anyone else. This lock
is not released until the transaction commits.

Oracle

Oracle does not really support the IDBC Isolation levels (mainly because its
underlying support does not truly map to these levels). For this reason Or-
acle's default isolation level is used for al statements. In Oracle there is no
possibility of adirty read occurring.

175

Curam Server Developer's Guide

Notes

!Atomicity requires that all of the operations of a transaction are performed
successfully for the transaction to be considered complete. If all of a trans-
action's operations cannot be performed, then none of them may be per-
formed.

2Consistency refers to data consistency. A transaction must transition the
data from one consistent state to another. The transaction must preserve the
data's semantic and physical integrity.

3| solation requires that each transaction appear to be the only transaction
currently manipulating the data. Other transactions may run concurrently.
However, a transaction should not see the intermediate data manipulations
of other transactions until and unless they successfully complete and com-
mit their work. Because of interdependencies among updates, a transaction
might get an inconsistent view of the database were it to see just a subset of
another transaction's updates. Isolation protects a transaction from this sort
of datainconsistency.

“Durability means that updates made by committed transactions persist in
the database regardless of failures that occur after the commit operation and
it also ensures that databases can be recovered after a system or media fail-
ure.

176

15.1

15.2

Chapter 15

Transaction SQL Query Cache

Overview

Benchmarking has identified that the same database query is often per-
formed numerous times during one transaction in an IBM Curam Social
Program Management application. This is costly in performance terms and
to counteract this a transaction SQL query cache is now available in the
Server Development Environment (SDEJ). This cache, when enabled, oper-
ates at the data access layer and endures for the lifetime of any one transac-
tion. The cache stores the results of any SELECT SQL queries for the dura-
tion of the transaction in which the operation was invoked. Subsequent calls
in the same transaction will retrieve the required results from the SQL query
cache and will not read the results from the database.

Populating the Cache

The SQL query cache will store the results in memory of any SQL query
that executes a SELECT statement on a database table. Invocation of the
following entity operation stereotypes will result in the results of that query
being stored in the cache:

e <<read>>

e <<nsread>>

e <<nkread>>

e <<readnulti>>

e <<nsreadmulti>>
e <<nkreadmulti>>

e <<nsmul ti>>

177

15.3

Curam Server Developer's Guide

¢ <<ns>> with handcrafted SQL containing a SELECT statement
There are two exceptionsto thisrule:

* SQL queries that have the FOR UPDATE flag set to true will not have
their results cached. These queries will aways result in direct database
access. Thisis dueto the fact that this datais being read for modification
and the subsequent update operation will result in that cache entry being
invalidated.

» The results of speciaized <<r eadmnul ti >> operations, where the op-
eration is not an instance of St andar dReadMul ti Operati on
class, will not be cached. This is due to the fact that a customized
ReadMul ti Oper at i on can modify the result set for a SQL query be-
ing executed. Since these results are not yet present in the cache, the
cache cannot be invalidated which results in invalid data in the cache
(i.e. the data cached for the SQL query does not reflect the data for that
SQL query on the database).

Invalidating the Cache

The SQL query cache is associated with a transaction and is not global.
When any specified transaction is committed or rolled back, the SQL query
cache associated with that transaction isinvalidated.

Any time an update (i.e. an insert, modify or remove operation) is made to a
table associated with a transaction SQL query cache entry, that entry isin-
validated from the cache. For most update operations (i.e. <<nodi f y>>,
<<nsnodi f y>>, <<r enove>> eic.), the invalidation of cache entries is
somewhat intelligent. The table affected by the update is determined from
the SQL statement being executed and used to directly invalidate only the
cache entries relating to the table. However, for <<ns>> operations that are
executed and contain anything other than a SELECT SQL statement, the
complete SQL query cache associated with that transaction isinvalidated.

The following entity operations therefore cause the cache entries containing
the table affected by that operation to be invalidated:

* <<insert>>
* <<nsinsert>>
« <<nodify>>
* <<nsnodi fy>>
* <<nknodi fy>>
e <<renove>>
e <<nsrenove>>

e <<nkrenove>>

178

15.4

15.5

Curam Server Developer's Guide

¢ <<ns>> operation with handcrafted SQL that does not contain a SE-
LECT statement

e <<batchi nsert>>

* <<bat chnodi fy>>

As detailed above the transaction SQL query cache endures for the lifetime
of atransaction only. Database updates will result in the invalidation of as-
sociated entries in the local transaction cache only. As a result, any sub-
sequent reads within a different transaction will return data from the cache
and not as updated on the database.

Properties

The transaction SQL cache is enabled by default, meaning that the results of
SQL queries will be cached. To disable it, the
curam transaction. sql querycache. di sabl ed property must
besettot rue inthe Appl i cati on. prx file.

Storing the results of SQL queries that return large result sets may lead to
memory problems in transactions that endure for along period of time. The
most likely queries that could lead to such problems are those that return
data of type CLOB and BLOB. To cater for SQL queries that return large res-
ult sets, a property is available to control the size of fields of type CLOB or
BLOB that may be stored in the transaction SQL query cache. This property
iscalled cur am sql quer ycache. | ob. max. si ze and it's default size
IS set to S00KB.

Further details concerning these properties may be found in Appendix A,
Curam Configuration Parameters.

SQLQueryCacheAdmin API

A public API is available for the transaction SQL query cache. The class,
curamutil.transaction. SQLQuer yCacheAdni n, provides
functions that allow developers to manipulate the transaction SQL query
cache at runtime. These methods include the following:

* enableSQLQueryCache(): this function enables the SQL query cache for
the current transaction.

o disableQLQueryCache(): this function disables the SQL query cache
for the current transaction.

o clearSQLQueryCacheFor Table(String tableName): this function flushes
all entries from the transaction SQL cache that contain the specified ta-
ble name for the current transaction.

» clearSQLQueryCache(): this function flushes all of the entries from the
transaction SQL cache for the current transaction.

179

Curam Server Developer's Guide

15.6 SQLQueryCacheUtil API

15.7

A public API is available which contains utility methods for the transaction
SQL query cache. The class,
curamutil.transaction. SQLQueryCacheUti |, provides utility
methods for the transaction SQL query cache. These methods include the
following:

* isSQLQueryCacheEnabled(): This function returns a flag to indicate if
the transaction SQL query cache has been enabled or not.

o runWithSQLQueryCacheDisabled(Runnable run): This function runs
the runnable bypassing the SQL query cache. SQL QueryCache may be
needed to be disabled when there is a need to read the same row mul-
tiple times in a transaction to see if it has changed. For example, in the
batch infrastructure it is required to read the same row multiple times in
atransaction to see if it has changed.

Logging
When the tracing level for the Cdram application is set to
curamutil.resources. Trace. kTraceUl t r aVer bose (see

Section 8.4, Logging Level for more details on logging), various lifecycle
events concerning the transaction SQL query cache are logged. These
entries may be diagnosed in the logs by the following starting statement:
Transaction SQ. Query Cache: . The following events are logged
during the lifecycle of the SQL query cache:

* When an entry is added to the transaction SQL query cache.
* When an entry isinvalidated from the transaction SQL query cache.

* When the complete SQL query cacheisinvalidated as aresult of atrans-
action being either committed or rolled back.

180

16.1

16.2

16.3

16.4

Chapter 16

Deferred Processing

Objective

In this chapter you will learn how to achieve deferred processing for appoin-
ted Business Process Objects (BPOs) in your IBM Caram Social Program
Management application.

Prerequisites

Before reading this chapter you should be familiar the Ciram Modeling Ref-
erence Guide and the Server Development Environment (SDEJ).

Introduction

In Curam, describing a Business Process method as a Deferred Process
means that this method is invoked asynchronously. A BPO within your
Curam application that calls a method of another BPO, configured for de-
ferred processing, does not wait for it to return. Deferred Processing is ac-
complished, in part, by configuring queues in the middleware®. Any request
over the queued enactment interface is deferred.

The structure of this guide is a step-by-step walk-through and explanation of
what you must do in order to achieve deferred processing in your applica-
tion.

Model Your Deferred Processes

A deferred process is identified in your application model by selecting the
<<wndpact i vi t y>> stereotype on a method of a <<pr ocess>> class.
Each deferred processing method must be defined to take the following in-
put parameters:

181

Curam Server Developer's Guide

Note

The application does not invoke a deferred process method using
these parameters. These are the parameters passed to the method by
the deferred processing server once the process is enacted.

=

» Theticket ID of the DPTi cket record generated by the deferred pro-
cessing engine (long datatype).

* The instance data ID (type of long) of the WM nst anceDat a record
associated with the deferred process method at the time of enactment.
This gives the deferred process method access to any information you
wish it to have in order to carry out the required processing (long data-

type).

* A boolean flag. This parameter is internal to the deferred processing in-
frastructure. It should be ignored, but must be part of the signature of the
method (boolean datatype).

publ i c void sanpl eDef erredMet hod(l ong ticketl D,
| ong i nst Dat al D,
bool ean fl ag)

/1 Method | ogic goes here

Example 16.1 <<wmdpactivity>> stereotype method

Example 16.1, <<wmdpactivity>> stereotype method shows the code that is
generated for a method that is stereotyped as <<wndpacti vi t y>>. The
required parameters must be specified in the model by the developer. You
are not concerned with how these parameters are provided to the deferred
process (that is taken care internally by the deferred processing engine fol-
lowing the enactment request). Y ou, however, must code the logic of your
deferred process into this method.

]

n Note

Your deferred process should not attempt to perform any begin,
commits or rollbacks viathe Tr ansact i onl nf o class or attempt
any other forms of Java EE Transactional Control. This also applies
to any methods that are invoked by workflows or deferred pro-
cesses, regardless of how deep in the call stack. As well as deferred
processes the examples of the methods include implementations of
workflow or deferred processing interfaces (such as Noti fi ca-
tionDelivery, WrkResol ver, DPCal | back, etc.) and any
methods called by either of the above.

16.5 Deferred Process Enactment

Deferred processes are enacted via the Deferred Processing Enactment Ser-
vice.

182

Curam Server Developer's Guide

Consider the situation where a BPO within your Caram application needs to
call a deferred process in order for it to do some other processing. The call
must be made as shown in Example 16.2, Using DeferredPro-
cessing.startProcess. Within the calling BPO you should populate a WM n-

st anceDat a record (see Section 16.5.1, WMInstanceData, how to define
this entity) with the information that you want to be accessible to the de-
ferred process.

The classDef er r edPr ocessi ng isavailable to you from the SDEJ.

i mport curamutil . AppExcepti on;

i nport curam core. fact. W nst anceDat aFact ory;

i mport curam core.intf.W nstanceDat a;

i mport curam core.struct. UsersDtls;

i mport curam core. struct. W nst anceDat abDt| s;

i mport curamutil.fact. DeferredProcessi ngFactory;
i mport curamutil.intf.DeferredProcessing;

i mport curamutil.resources. General Const ants;

i mport curamutil.resources. KeySet;

i mport curamutil.type. Uni quel D

public class MyBPO ext ends curam core. base. MyBPO {

public void doOnlineQperation(int casel D,
UsersDtl s usersDtls)
t hrows AppException {

Def er r edPr ocessi ng def erredProcessi ngObj

= Def erredProcessi ngFact ory. newl nst ance() ;
WM nst anceDat a wirl nst anceDat aCbj =

WM nst anceDat aFact ory. newl nst ance() ;

VWM nst anceDat aDt | s wm nst anceDat aDt | s
= new WM nst anceDat aDt | s();

/]l Create a new instance data record
wnl nst anceDat abDt | s. wirl nst Dat al D
= Uni quel D. next Uni quel D(KeySet . kKeySet Def aul t) ;
wnl nst anceDat abDt | s. casel D = casel D;
wnl nst anceDat aDt | s. ent eredByl D = usersDt| s. user Nane;
wnl nst anceDat aDt | s. ent er edByNanme = usersDtls. firstName
+ Cener al Const ant s. kSpace
+ usersDt| s. surnane;
wm nst anceDat aQbj . i nsert (wrl nst anceDat aDt | s) ;
def erredProcessi ngQbj . st art Process(
" DO_DEFERRED_OPERATI ON',
) wnl nst anceDat abDt | s. wrl nst Dat al D) ;

Example 16.2 Using DeferredProcessing.startProcess

Example 16.2, Using DeferredProcessing.startProcess shows a Curam ap-
plication BPO that calls a deferred process method. The key points to note,
however, are that the VWM nst anceDat a record is set up as part of the
caling BPO implementation. The Def err edPr o-

cessing. start Process() is then used to request the enactment of
the deferred process method. The parameters of this method are:

1. The name of the deferred process method being requested. This string
value is configured by you in the DPPr ocess table. The exact config-
uration of the DPPr ocess table for deferred processing is dealt with
in Section 16.7, Configuration of Deferred Processing Table.

183

Curam Server Developer's Guide

2. Theinstance data ID of the WM nst anceDat a record that is popu-
lated with information that you deem necessary to be used by the de-
ferred process.

3. Optional The Error Handler that implements the Ti cket Cal I -
back interface that should be invoked if an error occurs. If the para-
meter is not provided the global error handler set through the property
curam cust om wor kf | ow. ti cket cal | back iscalled.

16.5.1 WMInstanceData

VWM nst anceDat a allows the definition of application data that is particu-
lar to each deferred process, so that values can be supplied for that data for
each instance of the deferred process.

Consider the situation where you want to develop a deferred method for
processing a Case. The deferred processing engine has no knowledge of any
cases (or even what acaseis), so it cannot supply the ID of the case to your
deferred method. It does, however, know about VWM nst anceDat a and
suppliesthe ID of a\VWM nst anceDat a record to every deferred method it
invokes. This record should be created and populated by you before enact-
ing the deferred process and the ID of the populated record should then be
supplied to the enactment API. When the deferred processing engine in-
vokes your deferred method, it will passin that ID as a parameter.

Table 16.1, WMInstanceData Properties shows the WM nst anceDat a en-
tity class and its properties. As you can see, apart from the unique identifier
attribute of this class, al other information must be defined by you. Thisis
done using the modeling environment. The VWM nst anceDat a entity
should be created in your model, in a package of your choice. WM nst an-

ceDat a facilitates in the definition of your application specific informa-
tion.

Property Description Require-

ment

wminstDatalD The uniqueidentifier WM_INST_DATA M
of theinstancedata. _ID

mylnstan- Property to bein- Your application O

ceDatal cluded as instance domain definition
data for the property.

my|lnstan- Property to be in- Your gpplication O

ceData2 cluded asinstance domain definition

etc. data for the property.

Table 16.1 WMinstanceData Properties

16.6 Offline Unit-Testing of Deferred Processes

184

16.7

Curam Server Developer's Guide

If the application is deployed in an Application Server, the deferred methods
will be invoked asynchronously. However, if the Application is not execut-
ing in an Application Server container (for example, for off-line unit-test-
ing), you may wish to invoke the deferred method synchronously (i.e. not
deferred). This can be done by setting the property
curam test. stubdeferredprocessingtotrue.

ﬁ Note

The invocation of the deferred method is dependent on a successful
commit of the the caller's transaction context. If the calling method's
transaction rolls back, the deferred process will not be invoked.

Setting

curamtest. stubdeferredprocessi nsanetransacti
on property to t r ue ensures that the deferred processes gets in-
voked in the same transaction. If this property is not set, the deferred
processes will still be invoked, but in adifferent transaction.

Configuration of Deferred Processing Table

When using deferred processing functionality in your Curam application,
you need to configure the DPPr ocess table prior to runtime in order for it
to work correctly.

The DPPr ocess table, provided as part of the SDEJ, must contain names
for the methods within your application that have been modeled and defined
as being deferred using the <<wnrdpact i vi t y>> stereotype. For each de-
ferred method, you must define a name that describes it, for the pr ocess-

Nane field. This string value is what must be used when requesting for a
deferred process method to be enacted. The primary key of this table is a
processName field.

Table 16.2, DPProcess Properties details the properties of the DPPr ocess
table.

Property Description Type Require-
ment
processName Name that describesyour String M
deferred processing meth-
od.
interfaceName Fully-qualified interface String M

name of a BPO with a
<<wndpacti vi ty>>
method corresponding to
the deferred process.
methodName The name of the String M
<<wmrdpacti vi ty>>
method corresponding to
the deferred process.

185

16.8

Curam Server Developer's Guide

Property Description Type Require-
ment
ticketType Codetable value describ- String O
ing the type of deferred

process. The meaning of
thisis Application-defined,
for example, see the Ciram
Ti cket Type codetable.

subject Short description of what String O
the deferred process meth-
od does.

Table 16.2 DPProcess Properties

Table 16.3, Example DPProcess Table shows an example of how a DP-
Pr ocess table might be populated.

process- interface- method- ticketType Subject
Name Name Name
DO _DEFERR serv- doSomething CLAIM This method
ED_OPERATI er.curam.bizint does
ON er- something.
face.SomeProc
ess
DO _ANOTHE serv- doSomethin- CASE- This method
R_DEFERRE er.curam.bizint gElse REVIEW does
D_OPERATI er- something
ON face.SomeOth else.
erProcess

Table 16.3 Example DPProcess Table

TicketCallback.dpHandleError()

The Deferred Processing Engine provides an error handling callback mech-
anism for when deferred processes fail (i.e. the deferred method you defined
throws an exception). The DPCal | back interface is provided with the in-
frastructure. It has a single method definition: dpHandl eEr r or .

dpHandl eEr ror () gives application developers control over error hand-
ling when the invocation of a deferred process fails. This calback is in-
voked once the deferred processing message has been moved to the DPEr -
ror queue (usualy after the failing process has been retried several times).
An implementation example is provided in Example 16.3, TicketCall-
back.dpHandleError() below.

There are two ways an error handler can be configured. Firstly, a single

186

Curam Server Developer's Guide

(global) error handler calback can be defined for deferred processing by
setting the curam cust om def erredpr ocessi ng. dpcal | back
property to the fully- qualified name of a class that implements the DP-

Cal | back interface. The dpHandl eEr r or () method on that class will
then be invoked when any deferred method fails. Alternately, you can sup-
ply the fully-qualified name of any class that implements the DPCal | back
interface when enacting a deferred process. This allows you to specify a
specific error handler for a single deferred process, or even a subset of the
instances a deferred process.

voi d dpHandl eError(String processNane, |ong instDatalD)
t hrows AppException {
/1 Method | ogic goes here

}
Example 16.3 TicketCallback.dpHandleError()

This callback operation could be used to:
* Notify the client that a deferred process failed.

 Take someremedia action.

16.9 Security

Deferred processes run under the username 'SYSTEM,; therefore the effect-
ive locale for deferred processes is the default locale for this user as spe-
cifiedin field 'defaultLocale’ on the Users table.

In the case of offline unit-testing of deferred processes, the username is
blank and the effective locale is the default locale for the Cdram server.

16.10 Summary
» Theincorporation of Deferred Processing into your application is largely
achieved by:

1. Modeing appointed BPO methods with <<wrdpacti vity>>
stereotype;

2. Configuring the DPPr ocess tablein your database;

3. Using the Def err edPr ocessi ng to request deferred process
methods.

* The appropriate deferred processing queues must be set up prior to
runtime by following the steps given in the Ctiram Installation Guide?.

» Application specific error handling can be achieved using the Ti cket -
Cal | back. dpHandl eError () method. An error handler can then
be targeted in the code by passing the error handler class name when in-

187

Curam Server Developer's Guide

voking the Def er r edPr ocessi ng. start Process() method.

188

Curam Server Developer's Guide

Notes

WebSphere Application Server and WebLogic. For exact details on the ver-
sions of these products, see the Cdram Supported Prerequisites document.
2y ou should refer to the installation guide for your particular platform type,
i.e. Windows or UNIX.

189

17.1

17.2

Chapter 17

Timer Bean

Overview

Generic EJB Timer Bean functionality is provided as part of IBM Curam
Social Program Management, which allows users to start timers which will
invoke client-visible methods at a specified point in the future either once or
multiple times. Thisis based on the timer service provided by the EJB con-
tainer. This chapter gives details about all major aspects of implementing
Cuaram Generic EJB Timer Bean.

EJB Timer Bean Definition

The EJB container provides the timer service, which is the infrastructure for
the registration and callbacks of timers and, hence, provides the methods for
creating and canceling them. The timer service of the enterprise bean con-
tainer enables you to schedule timed notifications for all types of enterprise
beans except for stateful session beans. You can schedule a timed notifica-
tion to occur at a specific time, after duration of time, or at timed intervals.
For example, you could set timers to go off at 10:30 AM on May 23, in 30
days, or every 12 hours.

The EJB container provides different types of timers. The timer can be a
single-event timer, which can occur at a specific time or after a specific
elapsed duration, or an interval timer, which may occur on a regular sched-
ule. Essentialy, three types of timers are possible, as outlined in the table
below:

Type of Timer Description

Single-event timer Create a single-action timer that expires after a
specified duration.

Single event with expira- Create a single-action timer that expires at a
tion date given point in time.

190

17.3

17.3.1

Curam Server Developer's Guide

Type of Timer Description

Interval timer with initial

expiration Duration

Interval timer with initial

expiration Date

Create an interval timer whose first expiration
occurs after a specified duration, and whose
subsequent expirations occur after a specified
interval.

Create an interval timer whose first expiration
occurs at a given point in time and whose sub-
sequent expirations occur after a specified in-
terval.

Table 17.1 Types of Timers

Development Support

The Curam infrastructure provides the following classes and interface to de-
velop Timer Bean functionality.

e curamutil.transaction. Tinerlnfo

e curamutil.timer. Ti mer Task

e curamutil.tinmer.TimerCall back

Ti mer | nf o Class

Theclasscuram uti | . transacti on. Ti mer | nf o contains methods
for starting and stopping timers. This class also contains a number of intern-
al methods and methods reserved for future use. The following table de-
scribes the API's that are currently supported by the infrastructure:

Method Name Description

start Task(l ong,
Ti mer Task)

start Task(| ong,
| ong, Ti mer Task)

start-
Task(Dat eTi e,
Ti mer Task)

start-
Task(Dat eTi ne,
| ong, Ti mer Task)

cancel ()

Create asingle-action timer that expires after a
specified duration.

Create an interval timer whose first expiration
occurs after a specified duration, and whose
subsequent expirations occur after a specified
interval.

Create a single-action timer that expiresat a
given point in time.

Create an interval timer whose first expiration
occurs at a given point in time and whose sub-
sequent expirations occur after a specified in-
terval.

Cancels the timer which invoked the current
method. Should only be called by methods

191

17.3.2

Curam Server Developer's Guide

Method Name Description

get 1 ()

i sTi mer Tr ansac-
tion()

which were invoked by atimer, calling this
method from a non-timed method will have no
effect.

Gets the identifier for the timer which is run-
ning the current thread.

Indicates whether the current transaction is be-
ing run by atimer.

Table 17.2 List of API's in Ti mer | nf o Class

Ti mer Task Class

Theclasscuram util . tinmer. Ti mer Task contains information about
the timed operation, such as which server operation to invoke, parameters to
pass into it, whether a callback is required, etc. The following table de-
scribes the parameters that are available in this class.

Name
met hodNane

ar gunment
ti mer Name

err or Handl er Name

user| D

t askl D

creati onTi me

i nitial Del ay

initial EventTi ne

| nt erval

Description

Mandatory. The name of the method to invoke
when timer expires.

Optional. A struct parameter for the method
being invoked.

Optional. A name for thistimer. This can be
used as an identifier to query or cancel atimer.

Optional. The name of aclass, which imple-
ments interface Ti mer Cal | back which will
get called if the timed method fails.

Read-only. The ID of the user who started off
the task. This gets automatically populated
when the timer is started.

Read-only. A unique identifier for each task.
Thisis automatically populated when the timer
IS requested.

Read-only. The time at which this timer was
requested. Thisis automatically populated
when the timer is requested.

Read-only. Theinitial delay time in milli-
seconds which was specified when this timer
was created.

Read-only. The absolute time of the first event
for thistimer, or null if none was specified
when this timer was created.

Read-only. The repeat interval which was spe-

192

17.3.3

17.3.4

17.4

Curam Server Developer's Guide

Name Description

cified when this timer was created, or zero if it
is aone event timer.

Table 17.3 List of parameters from Ti mer Task Class

Ti mer Cal | back Interface

Thisis an interface for which developers can provide an implementation and
which will get invoked if a timed operation fals. The interface
curamutil.timer. TinmerCall back has only one method
handl eError (Excepti on, TinerTask) defined and uses can
provide implementation to this method.

Code sample:

/1l Create the task, specifying the name of the server
/] operation to invoke:
final TinerTask task = new Ti ner Task();
t ask. met hodNanme =
"curam core. facade.intf.ProductDelivery. cl ose";

/1 This operation takes one struct paraneter,

// so instantiate the struct and add it to the task:

final curam core.facade.struct.Cl oseCaseDetails caseDetails
= new curam core. facade. struct. Cl oseCaseDet ai | s();

caseDet ai | s. casel D = 12345;

t ask. argunment = caseDetail s;

/[l Start off the timer, specifying that it invokes the
/1 method in 10 seconds tine:

final long timerl D = Tinerlnfo.startTask(10000, task);
/! Every timer is assigned a unique |ID which can be used
/! to manipulate it and also to help track the timer

/1 in any diagnostic | ogs.

Systemout.println("Created a tiner with ID" + timerlD);

Rules for using SDEJ Timers

There are some considerations and limitations to Generic Timer Bean
provided as part of Clram infrastructure and they are listed below.

1. SDEJtimers can invoke any client visible operation in the application
meta-model, provided that:

a. The operation has zero or one parameter.
b. The operation hasits Transactional option set to No.

c. Theuser has access rightsto that operation.

193

Curam Server Developer's Guide

2. SDEJtimers do not have any facility to return a value from an opera-
tion.

3. Timer creation and cancellation are transactiondl; i.e., if you create a
timer, it only becomes active after the transaction gets committed. Sim-
ilarly if you cancel atimer, it only gets cancelled when that transaction
gets committed.

4. Transactions invoked by timers execute using the same Caram user 1D
as the user who created that timer.

5. The transaction type of a timer transaction is reported by Tr ansac-
tionl nfo. get Transacti onType() as being 'online. (i.e. not
deferred/batch/etc)

6. Timers should only be started by online transactions or other timer
transactions. i.e. deferred processes, workflows or batch programs can-
not start timers.

7. Timers are persistent and remain active until they are cancelled by the
user, even if the application server is stopped and restarted.

8. If the application server is stopped for a time and then restarted |ater,
all timers which were active before the shutdown will resume follow-
ing the restart but the timer will not try to ‘catch up' with any missed
ticks. Instead it will tick at the next scheduled time.

9. If atimed operation throws an exception, the transaction will be rolled
back. If the developer has specified a callback handler for the excep-
tion, the callback handler will get called if it has been configured, but it
cannot be used to prevent the transaction from being rolled back.

10. If atimed operation throws an exception, the timer does not get can-
celled and will continue to tick as before until it is cancelled from with-
in a transaction which gets committed.

Therefore it isimportant for devel opers to ensure that timed operations
cannot repeatedly throw exceptions, as otherwise they could continue
to be attempted indefinitely.

11. Timers should not be used to drive batch style processing. A timer
driven transaction will have the same timeout as a deferred processing
transaction (30 seconds by default) and should therefore be used only
for reasonably short running pieces of processing.

12. Timersin the SDEJ are provided by the javax.gb. TimerService of the
application server. Currently it is not possible to start atimer from out-
side an application server which means that SDEJ timers are not avail-
able in the development environment. Attempting to start a timer from
outside an application server will have no effect.

17.5 Timer Behavior

194

Curam Server Developer's Guide

Timer can behave differently depending on the scenario at with they are
started. Some of the scenarios and Timer behavior is as described bel ow.

For a repeating timer, if a timed transaction continues past the point at
which the next tick is due, then that tick is discarded and the next due
tick will be used.

For example:

A timer is configured to tick every 20 seconds. So this means that the
timer will normally tick at the following times:

20, 40, 60, 80, 100, etc

Now let's say that on the second tick, the timed transaction took 25
seconds to complete. This means that the transaction which started at the
40 second mark completed at the 65 second mark, and is therefore
deemed to have 'missed’ the 60 second mark. So the next time the timer
will tick will be at the 80 second mark. So the actual times the timer will
have ticked are:

20, 40, 80, 100

When a timer is specified with an initial duration, that duration is relat-
ive to the time at which the timer was created. It is not relative to the
time at which the transaction was committed - even though the timer
cannot actually begin ticking until the transaction in which it was cre-
ated has been committed.

For example, the user invokes a rather long online transaction which
does the following:

» Creates Timer A with an initial duration of 60 seconds.

» Does some processing which takes 20 seconds.

* Createstimer B with an initial duration of 60 seconds.

» Commits the transaction.

Next the following will happen:

» 60 seconds after it was created, Timer A will start ticking.
» 20 seconds later, Timer B will start ticking.

i.e. even though these timers were committed at the same time, each re-
tainsits own individual start time.

17.6 FAQ

How do | see which timers are active?
Different Java EE application servers implement their timer mechanism

195

Curam Server Developer's Guide

in different ways and there is no standard way to administer timers via
their admin consoles. The Timerinfo APl provides a number of func-
tions to find and query active timers.

How do | stop atimer?

A single-event timer will stop automatically after one successful execu-
tion. (i.e. if it executes a transaction which committed successfully.) For
repeating timers, the TimerInfo class contains a number of methods for
stopping these timers. Note that stopping a timer will only take effect
when the transaction which requested the stop is committed.

Can | ensure that my operation will be invoked only by atimer?

Curam timer beans can only invoke methods which are in the model and
are client visible, therefore it is possible for the HTML client to also ac-
cess these methods, which may not be desirable.

If you want to ensure that only only a timer transaction executes your
method, you can use the Timerinfo API to check for this at run time as
illustrated by the following sample code extract:

Ensure that this transaction is a timer:
(!'Timerlnfo.isTimerTransaction()) {
throw an exception to report that an
invalid attenpt was nmade to execute
this operation outside of a tiner.

row new AppException(....);

How many timers can be active at atime?

The Cdram timer bean API is awrapper for the Java EE Timer APl and
it is worth noting that the Java EE Timer API uses arrays of timers and
as such is not designed for dealing with very large volumes of timers.

As an extreme example: if an application contained several million cus-
tomer records on the database, it would be unadvisable to use timers as
the mechanism for controlling when an invoice is issued to each custom-
er, because this would result in having several million timer objects act-
ive in memory.

In genera it is recommended that timers be kept as few and as short
lived as possible.

How accurateis atimer?

The parameters used when creating a timer allow a developer to specify
a granularity of milliseconds with regard to when and how often the
timer will fire. However the application server cannot guarantee to fire
the timer at exactly the expected time because there may be conditions
which prevent this from being achieved. For example the server may be
down at the scheduled time, it may be delayed by other transactions, a
large number of timers may be scheduled to fire at exactly the same mo-
ment, etc. The rule of thumb is that the application server will fire the

196

Curam Server Developer's Guide

timer event as close to the designated time as possible, so the devel oper
should not assume that the timer will fire at an exact time.

Can | usetimersin the development environment?

No. Currently timers only operate in deployed applications because the
underlying implementation is provided by the application server.

How can | debug timers?

Timers cannot be executed in the development environment as this is
currently not supported. However Clram timers can output extensive
logging data if required. The fact that each timer has a unique identifier
means that its execution and life cycle can be traced via the log output.

This logging data can be captured by configuring a log4j appender for
category "Trace.TimerInfo'.

Can atimer be configured to start automatically?

No. The life cycle of atimer is controlled by the developer. i.e. the de-
veloper is responsible for starting each timer and for ensuring that it
stops.

197

18.1

18.2

18.2.1

Chapter 18

Events and Event Handlers

Overview

Events provide a mechanism for loosely-coupled parts of the IBM Clram
Social Program Management application to communicate information about
state changes in the system. When one module in the application raises an
event, one or more other modules receive notification of that event having
occurred provided they are registered as listeners for that event.

To make use of this functionality, some events have to be defined, some ap-
plication code must raise these events, and some event handlers have to be
defined and registered as listeners to such events. Developers must write
and register event handlers (classes that perform some action when an event
is raised) and optionally event filters (logic that determines whether or not
to invoke the handler for a given event). Event handlers and filters are
classes that implement callback interfaces in much the same way as in the
classic observer pattern *.

The Format of Event Files

Event Definition

Events are defined in Cdaram in XML files that specify both the event
classes and the event types. These files are created with a. evx extension
and are placed in the event s of a Cliram component from where they are
picked up and processed by the build scripts. The format of an event file is
shown below:

<events package="curamutil.events">
<event-cl ass identifier="EVENT CLASS ONE" val ue="CLASS1" >
<annot ati on>Some event cl ass. </ annot ati on>
<event-type identifier="EVENT_TYPE_ONE" val ue="EVENT1"/>

198

Curam Server Developer's Guide

<event-type identifier="EVENT_TYPE TWO' val ue="EVENT2"/ >
</ event - cl ass>
<event-cl ass identifier="EVENT_CLASS TWO' val ue="CLASS2" >
<event-type identifier="EVENT_TYPE_ONE"' val ue="EVENT1">
<annot ati on>Sone event type.</annotation>
</ event -type>
<event-type identifier="EVENT_TYPE_TWO' val ue="EVENT2"/>
<event-type identifier="EVENT_TYPE_THREE" val ue="EVENT3"/>
</ event - cl ass>
</ event s>

Example 18.1 Event definition file

events

Thisis the root tag of an event definition file under which all the event
classes and types are defined.

package
This specifies the Java code package into which the Java constants
for event classes and their types are generated.
annotation

Thisis an optional element specified for both event classes and typesin-
tended for descriptive text for the element. The text specified in an an-
notation is generated into the Java constant files as javadoc comments.

event-class

Defines an event class, which qualifies all the event types associated
with that class.

identifier
Thisisthe identifier of the event class for code generation and will
be the class name for the constant class containing all the event

types in the class. Since this will be a Java class name it must be a
valid Java identifier.

value

This is how an event class is referenced at runtime and it is this
value that event handlers are registered against. This value should
be unique in the system and is a 100 character string.

event-type

Defines an event type within a given class. Since an event is identified
by it's own name and that of it's parent class, an event type only needs
to be unique within a given class.

identifier
This is the identifier of the event type for code generation and will
be the field name for the constant containing the value of the event

type. Since this will be a Java field name it must be a valid Java
identifier.

199

Curam Server Developer's Guide

value

This is how an event type is referenced at runtime and the value
should be unique within a given event class and is a 100 character
string.

18.2.2 Event Handler Registration

Event handlers and their associated (optional) filters have to be registered
against a particular event class to be invoked when the an event of the spe-
cified classisraised. Thisis donein file named handl er _confi g. xmi
placed in the event s folder of a Cdram component.

<regi strations>
<event-regi stration handl er="curam i npl . SomeEvent Handl er " >
<event - cl asses>
<event-cl ass identifier="CLASS1"/>
</ event - cl asses>
</event-registration>
<event-regi stration handl er="curam i npl . Anot her Event Handl er "
filter="curaminpl.Anot herEventFilter">
<event - cl asses>
<event-cl ass identifier="CLASS2"/>
</ event - cl asses>
</ event-registrati on>
<event-regi strati on handl er="curam i npl . RenbvedEvent Handl er"
renoved="true">
<event - cl asses>
<event-class identifier="CLASS2"/>
</ event - cl asses>
</ event-regi stration>
</registrations>

Example 18.2 Event handler registration file

registrations

Thisis the root tag of an event handler registration file under which in-
dividual registrations are defined.

event-registration
Specifies an event handler registration.

handler

The fully qualified name of an event handler class (see: Sec-
tion 18.6, Event handlers).

filter

The fully qualified name of an optional event filter class (see: Sec-
tion 18.7, Event filters).

removed

An optional attribute used by components of a higher precedence to
disable previoudly registered event handlers, (see: Section 18.3.2,
Rules of Event Handler Merges).

200

18.3

18.3.1

Curam Server Developer's Guide

event-classes

This is a list of all the event classes against which the handler is re-
gistered.

event-class

A specific event class against which the specified handler is registered.
When any event with the specified class is raised the event handler
(providing the event filter approves) isinvoked.

identifier
This identifies the event that the handler is registered against. This

value should corresponds to the val ue attribute of an event -
cl ass element in the event definition files.

Merging Event Files

Both event definition and handler registration files are located in the /
event s directory of a component. The Clram reference application is
shipped with a set of event files. These may be augmented by placing new
event files in the SERVER DI R/ conponent s/ <cust on®/ event s
directory, where <cust on® is any new directory created under compon-
ents that conforms to the same directory structure as conponent s/ cor e.
This mechanism avoids the need to make changes directly to the out-
of-the-box application, which would complicate later upgrades.

The override process involves merging all event files of the same name ac-
cording to a precedence order. The order is based on the SERV-
ER_COVPONENT _ORDER environment variable. This environment variable
contains a comma-separated list of component names: the left most has the
highest priority, and the right most the lowest.

After changing the component precedence order in SERV-
ER_COVPONENT _ORDER it is necessary to perform a clean build to ensure
that you are using the appropriate files. This is done by invoking build
clean server.

Rules of Event Definition Merges

For event definitions to be merged, the files provided to customize the
events must be named the same as the existing files containing the event
classes to customize. Placing event classes with the same name in files with
different names will result in errors occurring when loading the event defini-
tions onto the database.

The customizing behavior for events is very simple; events cannot be re-
moved as existing functionality might be using an event that other compon-
ents then decide to remove. Such code would subsequently fail to compile.
This being the case the only change that can be made to existing event
definitions is that event types can be added to an event class by other com-
ponents.

201

18.3.2

18.4

18.4.1

Curam Server Developer's Guide

Rules of Event Handler Merges

The event handler (and filter) configurations used at runtime are those from
the component with the highest precedence that specifies the event handler
in question (for the purpose of merging the event handler is the identifier).
Event classes that are to be processed by each handler as specified in the
handler configuration in all the components are amalgamated into a merged
configuration. It is also possible for higher precedence components to dis-
able handler specified by lower precedence components by setting the r e-

noved attribute of theevent -regi strati on elementtotr ue.

Artefacts produced by generate events

There are two types of output generated by the evgen command: . j ava
files (for code constants that make the use of events less error prone) and
. dnx files (database scripts for loading event definitions onto the database).

The Java artefacts produced from a merged event files are placed in the /
bui | d/ svr/ event s/ gen/ [package] directory. Where [package] is
the package attribute specified in the event definition file. For example,
package="curam.events' would result in the Java artefacts being placed in
the/ bui | d/ svr/ event s/ gen/ cur am event s directory.

The database scripts produced from a merged event files are placed in the /
bui | d/ svr/ event s/ gen/ dnx directory.

Database Scripts

Events are primarily a development time concept they are defined in XML
files, raised in application code and handled by application defined call-
backs. However some administration utilities in the application need access
to the list of events defined and available in a running system; thus they are
also loaded onto the data base.

Below are examples of the DMX files generated from the event definitions
for the two entities used to store the event definitions.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" EVENTCLASS" >
<col umm name="EVENTCLASS" type="text"/>
<r ow>
<attri bute nanme="EVENTCLASS" >
<val ue>CLASS1</ val ue>
</attribute>
</ r ow>
<r ow>
<attri bute nane="EVENTCLASS" >
<val ue>CLASS2</ val ue>
</attribute>
</ row>
</t abl e>

202

Curam Server Developer's Guide

Example 18.3 Generated event class database script

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<t abl e nane="EVENTTYPE" >
<col um nanme="EVENTCLASS" type="text"/>
<col um nanme="EVENTTYPE" type="text"/>
<r ow>
<attri bute nanme="EVENTCLASS" >
<val ue>CLASS1</ val ue>
</attribute>
<attribute nane="EVENTTYPE">
<val ue>EVENT1</ val ue>
</attribute>
</ row>
<r ow>
<attri bute nanme="EVENTCLASS">
<val ue>CLASS2</ val ue>
</attribute>
<attribute nanme="EVENTTYPE" >
<val ue>EVENT2</ val ue>
</attribute>
</ row>
</t abl e>

Example 18.4 Generated event type database script

18.4.2 Java Code

Events are identified in the system by their names as specified by the
val ue attribute of the event-cl ass and event-type eements.
However smply using text in application code to reference events would be
error prone. In particular, an event isfully identified by itstype aswell asits
class. Thus, using string literals to reference an event could be ambiguous,
as an event type is only unigue when qualified by its associated event class.

Below is an example of the generated constants file for an event class, the
class name is the same as the event class, the attributes are the event types.
This prevents the use of incompatible values.

package curamutil.testnodel . events;
/**

* Generated EVENT_CLASS ONE events file.
* Sonme event cl ass.
*

*/
public final class EVENT_CLASS ONE {

/[** Some event type. */
public static final
curamutil.events. struct. Event Key EVENT_TYPE_ONE
= new curamutil.events. struct. Event Key();

static {
EVENT _TYPE ONE. event O ass = " CLASS1";
EVENT_TYPE_ONE. event Type = "EVENT1";

}

203

18.5

}

Curam Server Developer's Guide

/** Anot her event type. */
public static final
curamutil.events. struct. Event Key EVENT_TYPE_TWO
= new curamutil.events. struct. Event Key();

static {
EVENT_TYPE_TWO. event Cl ass = "CLASS1";
EVENT_TYPE_TWO. event Type = "EVENT2";

}

Example 18.5 Generated event Java constants

Raising events

Raising an event is simply a matter of creating an event struct, populating it
with data, then calling the event service API to raise the event. The event in-
frastructure will notify any registered handlers that the event has been
raised. An example of how to raise an event is shown below.

i mport curamutil.events. struct. Event;
i mport curamutil.events.inpl.Event Servi ce;
curamutil.events. EVENT_CLASS ONE;

Event event = new Event();

event. event Key = EVENT_CLASS ONE. EVENT_TYPE_TWO,
event. pri maryEvent Data = 12300838;

event . secondar yEvent Data = 23413081;

Event Servi ce. rai seEvent (event);

Example 18.6 Raising an event

eventKey

This is the unique identifier of the event within the system. It is made
up of two congtituent parts. the event class and the event type. As men-
tioned earlier and as shown in the example, though the event key is two
parts it is best to specify it using one generated constant to avoid mis-
matching event classed and types.

eventClass

The class of the event being raised: thisis the value on which hand-
lers are registered.

eventType

The type of the event being raised: this identifies the specific type
of the event in the given class.

primaryEventData

204

18.6

18.7

Curam Server Developer's Guide

This is the primary payload of the event and is a 64-bit integer. Typic-
aly this will be (though not necessarily) the identifier of an entity in
Curam, the entity in question being identified by the class of the event.
The event type is commonly used to indicate the action that has taken
place on the entity.

secondaryEventData

Thisis any additional data that may be associated with an event when it
israised. Unlike the primary event data the secondary event data is op-
tional.

Event handlers

We have aready seen how to register handlers. To create an event handler
one simply needs to implement the interface:
curamutil.events.inpl.Event Handl er, whichisshown below.

The action taken by an event handler when the event is raised is up to the
developer. It should be noted that event handlers are invoked synchronously
when the event is raised (and hence run within the same transaction context
as the code raising the event). This has two implications:

» Throwing exceptions from an even handler will result in the transaction
from which the event was raised being rolled back.

* Long running actions should be avoided in event handlers as they will
affect the running time of the code raising the event.

package curamutil.events.inpl;

i mport curamutil.events. struct. Event;
i nport curamutil.exception. AppExcepti on;
i mport curamutil.exception.|nfornational Excepti on;

public interface Event Handl er {

voi d event Rai sed(Event event)
t hrows AppException, |nfornmational Excepti on;

Example 18.7 Event handler interface

Event filters

As mentioned previously, an event handler can be configured to have a fil-
ter. The purpose of afilter is to decide whether or not the handler needs be
notified about the event being raised. To create an event filter one simply
needs to implement the interface:
curamutil.events.inpl.EventFilter whichisshown below.

If the accept method returns t r ue the event will be passed on to the

205

Curam Server Developer's Guide

event handler (that is the event Rai sed method of the associated event
handler will be invoked), otherwise the event isignored.

package curamutil.events.inpl;

i mport curamutil.events.struct. Event,

i mport curamutil.exception. AppExcepti on; _

i mport curamutil.exception.|nfornational Excepti on;
public interface EventFilter {

bool ean accept (Event event) _
t hrows AppException, |nfornmational Excepti on;

Example 18.8 Event filter interface

206

Curam Server Developer's Guide

Notes

! The observer pattern is one of the design patterns made popular by the
landmark book Design Patterns: Elements of Reusable Object-Oriented
Software. It describes a generic listener framework.

207

19.1

19.2

19.3

Chapter 19

Unique IDs

Overview

This chapter describes what Unique I1Ds (Identifiers) are in the context of
IBM Caram Social Program Management and how to use them in your ap-
plication.

What are Unique IDs?

Unique IDs are numbers generated by the Curam infrastructure for use as
unique database keys. They come in two flavors:

* Human-readable Unique IDs are ascending sequences of numbers, usu-
aly starting at 1, and are used as database keys where the key value
might need to be presented in a User Interface to a human user.

* Non-human-readable Unique IDs are typically large positive or negative
values in the approximate range 1E-19 to 1E+19. The sequence of non-
human-readable Unique IDs does not repeat (for 264 key values), but is
random in a way that can improve database performance in some cir-
cumstances.

A Unique ID key set is a named non-repeating set of 264 Unique ID key
values. Key sets can be configured by developers and used to generate
Unique IDs for a particular purpose. Each key set can be configured to be
human-readable or non-human-readable. The infrastructure uses a number
of predefined key sets which must be configured as part of a Clram installa-
tion.

What are Unique IDs for?

Curam-generated Unique IDs address a perennial problem in application

208

19.4

19.5

Curam Server Developer's Guide

design - how to co-ordinate multiple processes each of which needs to alloc-
ate a number guaranteed to be unique throughout the application. One clas-
sic approach involved locking and updating a key control database table
each time a key needs to be alocated. Unfortunately, this can lock the con-
trol table for the duration of long-lived transactions, preventing other pro-
cesses from accessing it. This technique is almost always the source of seri-
ous database contention problems in an application (see “Allocating Se-
guence Numbers’ from Chapter 12 of High Performance Client/Server,
Loosley and Douglas).

Unique IDs are served out in blocks of 256 keys using a unique ID generat-
or, also know as the Key Server LA process requests a block of Unique IDs
by calling the key server. This updates a database control table each time it
returns a block of Unique IDs to a requesting process. Once a block has
been allocated, the requesting process can allocate keys from this block loc-
ally, i.e. without calling the server again, until the Unique ID block is ex-
hausted. Furthermore, the key server operates in its own transaction so it
never locks the key control table for longer than it takes to allocate and up-
date anext Unique ID block value.

It should be noted, however, that a process which requests a Unique 1D
block may or may not use the keys from that block. If it does not, then the
unused keys represent holes in the key sequence. Processes which use, say,
one key value before shutting down will leave quite large holes in the key
sequence. Note also that there is no time limit on how long a process can
wait between allocating a Unique ID block, and using the key values in it.
Thus, even for human-readable keys which are in an ascending sequence
starting at 1, the sort order of keys on the database has no direct bearing on
the chronological order in which they were inserted. Obvioudly, programs
should not assume that thisis the case.

Can | run out of Unique IDs?

In short, no! A process which used only one key out of each Unique ID
block, and allocated one thousand of these per second non-stop, would take
over two million years to exhaust one Unique ID key set. For al practical
purposes, the set of Unique IDs in a key set can be considered to be inex-
haustible.

When should | use Unique IDs?

Use Unique IDs in your design when each of the following criteria are met:
» you need aunique key for a database entity
» the database key has no “business meaning”

» instances of the entity may be created by multiple contending on-line or
batch functions

209

19.6

19.7

19.8

Curam Server Developer's Guide

» holesin the key sequence are acceptable (which should always be true if
the key has no business meaning).

When should | not use Unique IDs?

Do not use Unique IDs in your design when:

» you need a unique key for a database entity, but have a business require-
ment for an ascending sequence without holes (Clram-generated Unique
IDs are not guaranteed to be contiguous), or

» your key requires something other than a simple numeric format, or

» contending processes will not create instances of the entity (in which
case there is no need for key control at all).

Should my keys be human-readable?

This is up to you. The rule of thumb is that Unique ID values that will be
displayed to a user should be human-readable. Otherwise, you may choose
to use non-human readable Unique IDs. The advantage of these is that their
values are spread across a very large range, so that database indexes are not
always being extended at the end, as for ascending sequences.

What if | require contiguous human-readable
Unique IDs?

Human-readable IDs allocated by the key server are sequential, but can have
gaps for two reasons.

» thelDsare allocated in blocks of 256 keys. When the server is restarted,
the remaining values in any block for any key set that has been loaded
are discarded.

» if atransaction that requests a human readable ID from the key server is
rolled back, the ID that was served up is discarded (as the key server
runs in a separate transaction, its transaction commits irrespective of
what happens to the application transaction - this is important for per-
formance reasons).

In instances where there is a requirement to generate human-readable 1Ds,
where the numbers must be both sequential and have no gaps, Cdram uses
an application defined "key" table for each set of 1Ds (for example, Intern-
alPersoniD, Internal EmployerID, etc). An example of such a business re-
quirement is the one around the issuing of "Social Security Numbers".
These tables are read and updated in the context of the application transac-
tion, meaning, the ID is only alocated if the record bearing that ID is com-
mitted to the database. Otherwise, the whole business transaction, including

210

19.9

Curam Server Developer's Guide

the ID alocation, is rolled back. It is worth noting that there is a perform-
ance overhead because of this, as the single row ID table is a database hot
spot that must be updated every time the record bearing that ID is commit-
ted to the database.

Thusit is recommended that:

» thismethod of 1D generation is used only when absolutely necessary and

» your design should strive to ensure that transactions using this mechan-
ism are kept as short as possible to minimize contention on the key ta-
ble.

How do | use Unique IDs?

Designing Unique IDs into your Curam application is straightforward. In
your UML application model, set the appropriate domain definitions to be
of the data type SVR | NT64. The developer's view of this is as a Java
Long primitive. To alocate a new Unique ID cal
Uni quel D. next Uni quel X)), passing a key set name as a string. This
call transparently looks after allocating a new Unique ID block if necessary.
If no key set name is passed to the next Uni quel () method the default
key set, curam util.resources. KeySet. kKeySet Def aul t, is
used. This key set alocates non human-readable Unique IDs.

Key sets are defined by configuring entries in the Key Ser ver database ta-
ble. This can be done by creating a DMX file defining all key entries. Ta-
ble 19.1, KeyServer Database Table details the fields of the KeySer ver
database table.

Field Description

keySetCode Anidentifier for the key set, e.g. MYKEY SET.

nextUniqueldBlock The next Unique ID block that should be allocated.
For human-readable IDs this field can be used to
skip pre-alocated Unique IDs.

humanReadable Trueif the Unique | Ds should be human-readable.

lastUpdated The timestamp for when the entry was last updated.

strategy Represents strategy used to generate next uniqueid
block for agiven key set.

Annotation A description of the key set.

Table 19.1 KeyServer Database Table

If you are using human-readable Unique IDs, and non-Curam-generated
keys have aready been alocated, then you can guarantee that these values
will never be re-allocated by Caram (i.e. Unique IDs will never “clash”).
This is achieved by setting the next Uni quel dBl ock field on the Key-
Ser ver database table to be Ceiling(N/256), where N is the number of

211

19.10

19.10.1

19.10.2

Curam Server Developer's Guide

Unique IDs which have aready been pre-allocated.

The strategy field is used to specify whether the standard Key Server or the
Range Aware Key Server is used for the key set. If the field is set to null,
the standard Key Server is used. If the field is set to a specific value
KB1002 then the Range Aware Key Server will be used to generate next
unique id block for the key set. The Range Aware Key Server is explained
in more detail in Section 19.10, Range Aware Key Server.

i Warning

Care should be taken when defining and using custom key sets. The
same key set should always be used when using Unique 1Ds as the
primary key for a particular database table. If two key sets are used
to generate Unique IDs for the same database table, duplicate record
problems may occur. Unique IDs are only unique within a particular
key set.

Note

The conversion routine for hexadecimal numbers that are used as
Unique IDs on a DB2 for zZ/OS database can only support numbers
between Long. MAX_VALUE and Long. M N_VALUE + 1.

=

Range Aware Key Server

Overview

The Range Aware Key Server is a new Key Server implementation intro-
duced to support Configuration Transport Manager (CTM). CTM is used to
transport administrative configuration data (Business Objects) between sys-
tems. Each Business Object is comprised of a number of entities. Each of
these entities has a primary key. The standard Key Server implementation
only guarantees uniqueness of a primary key within a single system installa-
tion. This means that when a Business Object is transported from a Source
System and applied on a Target System, there is the strong possibility of key
clashes between the transported entities and the existing entities on the sys-
tem.

The Range Aware Key Server implementation is responsible for creating
primary keys to meet the following requirements:

* Prevent clashes in primary keys between new entities transported to a
system and existing entities on that system.

* ldentify where there is an existing version of a transported entity on a
system, so that the existing entity is updated with the transported entity
data.

How does the Range Aware Key Server work?

212

19.10.3

Curam Server Developer's Guide

The approach used by the Range Aware Key Server to generate primary
keys hinges on ensuring that non-overlapping key ranges are alocated to
every system. The Range Aware Key Server will then ensure that all of the
primary keys on a given system are generated from the range(s) assigned to
that system. Therefore, the primary keys generated by each system will be
unique.

So, at system install (or upgrade) time, the system administrator allocates a
unique primary key range from which all primary keys provided by the
Range Aware Key Server implementation will be generated. Please refer to
the CTM Setup Guide chapter in the Configuration Transport Manager
guide for information on how the range allocations are configured.

Where is the Range Aware Key Server used?

The Range Aware Key Server is only used for Key Sets that have been cre-
ated specifically for the entities that form part of transportable Business Ob-
jects. Existing Key Sets continue to use the current SDEJ Key Server imple-
mentation, unchanged. Note that it is important that existing Key Sets are
not changed to use the Range Aware Key Server - the Range Aware Key
Server should only be used with new Key Sets.

The Range Aware Key Server supports both non-human readable and hu-
man-readable generated keys, so the value of the humanReadable attribute
in the KeyServer table is set to either O or 1 depending on the entity's re-
quirements.

213

Curam Server Developer's Guide

Notes

! The design is loosely based on the Sequence Block pattern described by
Floyd Marinescu in EJB Design Patterns (ISBN: 0471208310).

214

A.l

A.2

A.2.1

Appendix A

Curam Configuration Parameters

Overview

This section describes configuration parameters for Curam applications that
you can (or in some cases must) set to control characteristics of application
execution. Generally, and unless otherwise noted, these parameters are set in
property and prx files associated with your application. The following con-
figuration parameter descriptions are organized according to the file that
they should be set in and aso in functionally-related groups. Some paramet-
ers are of a "BOOLEAN" type, where noted. This means that the value
"true" or "yes' in upper-, lower-, or mixed-case, equates to a "true" value;
all other values (or none) equate to "false". The configuration parameter de-
scriptions are grouped into functionally-related groups.

Bootstrap.properties

The following properties relate to the Bootstrap.propertiesfile.

Database

These settings configure Curam for database communication.

Property Name Type Meaning

curam.db.type STRING The property which specifies the
database type. Suggested:
DB2/ORA/ZOS.

curam.db.password STRING The encrypted password that cor-

responds to the user name spe-
cified above. The database pass-
word is never stored in plaintext
in the various Curam property

215

Property Name Type
curam.db.username STRING

curam.db.oracle.cachesiz INT32
e

curam.db.oracle.connecti BOOLEAN
oncache.enabled
curam.db.oracle.connecti INT32
oncache.minlimit
curam.db.oracle.connecti INT32
oncache.maxlimit
curam.db.oracle.connecti INT32
oncache.initiallimit
curam.db.oracle.connecti STRING

oncache.name

curam.db.zos.32ktablespa STRING
ce

curam.db.zos.enableforei BOOLEAN
gnkeys

Curam Server Developer's Guide

Meaning
files.
A valid database username.

The size of the prepared state-
ment cache used by batch pro-
grams when run against Oracle
(the prepared statement cacheis
based around implicit caching).

Turn on connection caching for
Oracle outside of an Application
Server.

Set Min Limit for the Cache.
This sets the minimum number
of PooledConnections that the
cache maintains. This guarantees
that the cache will not shrink be-
[ow this minimum limit.

Set Max Limit for the Cache.
This sets the maximum number
of PooledConnections the cache
can hold. Thereis no default
MaxLimit assumed meaning con-
nections in the cache could reach
as many as the database allows.

Set the Initial Limit. This setsthe
size of the connection cache
when the cacheisinitially cre-
ated or reinitialized. When this
property is set to avalue greater
than 0, then that number of con-
nections are pre-created and are
ready for use.

The name used to identify the
cache uniquely.

Property which specifies the
name of the table space used for
32k storage on DB2 z/OS.

Controls whether foreign keys
are generated for a z/OS database
when running the Data Manager.
Note on usage - If Foreign Keys
are used against a z/OS database,
thetablesareputin a
CHECK_PENDING state, caus-
ing failures when the tables are

216

Property Name Type

curam.db.disableforeignk BOOLEAN
eys

curam.db.disablelnvalidL. BOOLEAN
obFileError

curam.db.zos.encoding STRING

curam.db.zos.dbname STRING

curam.database.shortnam BOOL EAN
es

Curam Server Developer's Guide

Meaning

accessed. The state can only be
changed through direct DBA in-
tervention on the target platform
(hence it cannot be scripted into
the Data Manager which can run
on remote clients). In normal us-
age the Data Manager invokes
LOB Manager after applying the
foreign keys. This means the

L OB manager should be re-run
after the this
CHECK_PENDING state has
been resolved.

Controls whether foreign keys
are generated in SQL statements.
By default this property isfalse,
which means foreign key genera-
tion is enabled. However, for z/
OSforeign keyswill not be gen-
erated if
curam.db.zos.enabl eforeignkeys
Isset to false.

This property controls the report-
ing of invalid LOB file pathsin
DMX files. The default valueis
FALSE. By default a build ex-
ception will be thrown, when set
to TRUE awarning will be re-
ported.

Property which specifies whether
the database being used on zZ/0OS
requires processing for EBCDIC,
ASCII, or UNICODE encoding.
This should be set to EBCDIC,
ASCII, or UNICODE depending
on the appropriate database en-
coding in use. EBCDIC isthe de-
fault value.

The name of the database on z/
OS.

It is strongly recommended that
this property be set to false. The
functionality for this property is
planned for removal in afuture
version of Curam. If you have
utilized this property in previous

217

Property Name Type

curam.db.oracle.servicen STRING
ame

curam.db.name STRING
curam.db.servername STRING
curam.db.serverport INT32

curam.db.enable.bindings BOOLEAN
.generation

curam.db.disable.binding BOOLEAN
s.generation

curam.dmx.locae STRING

curam.db.multibyte.expa BOOLEAN
nsion

Curam Server Developer's Guide

Meaning

versions of Curam please contact
Curam Support for more inform-
ation.

The Oracle database service
name. Setting thiswill create
database connection using Oracle
service name.

The database name. This setting
will be overridden if property
"curam.db.oracle.servicename” is
set for Oracle database.

The database server name.

Suggested: 1521 (Oracle)/ 50000
(DB2). The database server TCP/
|P port.

Suggested: false. Causes a bind-
ings file to be generated for the
JDBC data source when a data-
base connection is made outside
of the application server, e.g. by
the Batch Launcher. Has no ef-
fect if property
‘curam.db.disable.bindings.gener
ation' is set. Intended to be used
to produce a starter bindingsfile
which can then be customized.

Suggested: false. Preventsre-
generation of the JIDBC data
source bindings file and instead
causes the data source to be
looked up from a customized
bindings file when a database
connection is made outside of the
application server, e.g. by the
Batch Launcher.

Default: en. Property that spe-
cifiesthelocale that will be used
when inserting dmx data onto the
database. The locale should be
specified in the format: lan-
guage_country, for example
en_US.

Enables the multi-byte expansion
feature. Default valueis true.

218

Curam Server Developer's Guide

Property Name Type

curam.db.multibyte.defau FLOAT
It.factor

Meaning

Specifies the default expansion
factor for multi byte string fields
if multi byte expansion is en-
abled. Must be afloat between
the values of 1 and 4. Default
vaueis4.

Table A.1 Database settings

A.2.2 Environment

These settings configure the environment for your Curam application.

Property Name Type

curam.environment.as.ve STRING
ndor

curam.environment.tnam INT32
eserv.port

curam.environment.bindi STRING
ngs.location

curam.environment.defau STRING
It.dateformat

curam.environment.defau STRING
It.dateseparator

curam.disable.dynamic.pr BOOLEAN

operties

Meaning

Suggested: Should be set to BEA
or IBM to reflect the Application
Server which is being used. If
running outside an application
server this should be empty.
Definesthe Application Server in
which Curam will be deployed.
Thisis setup automatically when
the EAR fileis built using the
build targets.

Suggested: 900. Port on which
the tnameserv is running.

Suggested: C:/Temp. Name of
the file system location contain-
ing data sources.

Default: yyyy MM dd. The date
format. Can be set to one of: "d
M yyyy", "M dyyyy", "yyyy M
d', "dd MM yyyy", "MM dd
yyyy", "yyyy MM dd", "d MMM
yyyy", "MMM dyyyy", "yyyy
MMM d","d MMM yyyy",
"MMMM dyyyy", "yyyy
MMMM d*, "dd MMM yyyy",
"MMM dd yyyy", "yyyy MMM
dd".

The date separator. Can be set to
oneof:".", """, "

Indicates if dynamic properties
should be enabled or disabled.
Thisisused by command line

219

Property Name Type

curam.deprecation.reporti BOOLEAN
ng

curam.entity.struct.deprec BOOLEAN
ation

curam.environment.round STRING
ingprecision.enable

Table A.2 Environment settings

A.2.3 Test

Curam Server Developer's Guide

Meaning

tools that require access to prop-
erties but cannot access the data-
base.

Indicatesif deprecation reporting
should be enabled or disabled.
Thisisused by al tools (both on-
line and offline) that report de-
precation warnings to the user
(e.g. rules and workflow valida-
tion).

Indicatesif generated entity
standard structs should be de-
precated if an entity is deprec-
ated. Thisisused by generators
which generate standard entity
structs.

Indicates if when rounding
money typesin Curam, the
HALF_UP agorithm will be
used. This meansthat all Money
will be rounded up. If set to true,
the HALF_UP algorithm will be
used. If not set, adefault of true
is used.

These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as
they will either degrade performance or cause failures.

Property Name Type
curam.test.override.date STRING

Meaning

This property allows the date and
time to be set to a known value
for testing. In order to override
the date and time the property
should be in the format
YYYYMMDDThhmmss. The T'
character isthe separator
between the date and the time. It
isvalid to only specify the date.
If the time portion of the prop-
erty isnot explicitly set the time

220

A.2.4

A.3

A3.1

Curam Server Developer's Guide

Property Name Type Meaning

will be automatically default to
midnight (00:00:00). For ex-
ample, the string value
20070101T175930 represents
17:59:30 on 1st January 2007.
The string value 20070101 rep-
resents 00:00:00 on 1st January
2007.

curam.test.treatreadmulti BOOLEAN Default: false. Specifiesthat a

maxaserror run time error should be thrown
aswell as alog message when
the result size of Readmulti oper-
ation exceeds the maximum. This
does not apply when the Treat
readmulti-max as Informa-
tional Exception option is enabled

Table A.3 Test settings

Custom

These settings allow a developer to replace elements of the Curam infra
structure with their own customized handlers.

Property Name Type Meaning
curam.custom.workflow. STRING The name of the application BPO
webservicebpo that workflow process enactment

web services go through.

Table A.4 Custom settings

Application.prx - Dynamic properties

The following properties relate to the available dynamic properties in the
Application.prx file.

Environment

These settings configure the environment for your Curam application.

Property Name Type Meaning
curam.environment.defau STRING Default: en. The default value of
It.locale the language code for the server.

curam.environment.recor BOOLEAN Specifies whether a RecordL ock-

221

Property Name
dlocked.systemexception

Type

curam.environment.read BOOLEAN
mul-
timax.systemexception

curam.transaction.sglquer BOOLEAN
ycache.disabled

curam.sglquerycache.lob. INT64
max.size

curam.enable.logging.clie BOOLEAN
nt.authcheck

curam.audit.audittrail.dat INT32
acompressionthreshold

Curam Server Developer's Guide

Meaning

edException should be set to a
System exception. The default is
false here, that it isa Application
exception.

Specifies whether a Readmul-
tiMaxException should be set to
a System exception. The default
isfalse here, that it isa Applica-
tion exception.

Specifies whether any SQL quer-
iesthat do a SELECT on a data-
base table will have their results
cached for the duration of the
transaction in which the opera-
tion was invoked. Subsequent
calls using the same SQL query
will then retrieve the results from
thisthread local transaction SQL
guery cache and not read the res-
ults from the database. The de-
fault setting for disabling this
cacheisfalse so that the results
of SQL querieswill be cached.

Specifies the maximum size of a
field of type CLOB or type
BLOB in aresult set that isal-
lowed to be cached in the trans-
action SQL query cache.

Default: false. When set to true,
al client authorization checks
will be logged to the Authorisa-
tionLog database table.

Specifies the size of the audit
data stored in the detailinfo
column of the audittrail database
table that causes data compres-
sion to be invoked. Default: -1
(off). Thisvalueis checked per
audit operation. To turn compres-
sion on for all audittrail detail-
info data set thisvalue to 0.
When turned on rows that con-
tain compressed data have the
boolean attribute |SCOM-
PRESSED set to true. Note that
short audit datais not likely to

222

Property Name

Table A.5 Environment settings

A.3.2 JMX

Type

Curam Server Developer's Guide

Meaning

see performance gains, but will
for large data rows. The perform-
ance of Curam auditing OOTB
should not require compression,
but if you add additional auditing
you should evaluate your audit-
ing selections for performance to
determine the best setting for this
value. Compression is done via
the
curam.util.resources.ByteArrayU
til.byteArray ToBase64EncodedS
tring method and decompression
can be done via the correspond-
ing ByteArray-
Util.base64EncodedStringToByt
eArray method.

These settings configure the IMX infrastructure for your Curam application.

Property Name

curam.jmx.monitoring_e BOOLEAN

nabled

curam.jmx.transaction_tr BOOLEAN

acing_enabled

curam.jmx.transaction_tr
acing_url_filter

curam.jmx.transaction_tr
acing_max_recorded_thr
eads

curam.jmx.transaction_tr
acing_purge _period

Type

STRING

INT32

INT32

Meaning

Whether IMX monitoring is en-
abled or not in the application.

Whether transaction tracing is
enabled or not in the application.
When thisis enabled, in-flight
data collection is enabled as well.

Regular expression to identify
URLs for which transaction tra-
cing datais collected.

The maximum number of threads
for which transaction tracing data
is collected. Note that at any one
moment there could be more than
this number of threadsin the
transaction tracing data but a sig-
nificant amount of entries will
only be preserved for this num-
ber of threads.

The period of time, in seconds,
between checks to ensure that

223

Property Name

curam.jmx.transaction_tr
acing_max_thread idle t
ime

curam.jmx.configured_m
beans_gb

curam.jmx.configured_m
beans web

curam.jmx.per_user_stati
stics filter

curam.jmx.in_flight_stati
stics_enabled

curam.jmx.sgl_statement
_statistics_enabled

curam.jmx.download_stat
istics alowed

curam.jmx.download_stat
istics _username

curam.jmx.end_user_stati
stics_enabled

curam.jmx.end_user_stati
stics user_filter

curam.jmx.end_user_steti
stics_display_enabled

curam.jmx.end_user_stati
stics_upload_delay

Table A.6 JMX settings

Type

INT32

STRING
STRING

STRING

BOOLEAN

BOOLEAN
BOOLEAN

STRING

BOOLEAN

STRING

BOOLEAN

INT32

Curam Server Developer's Guide

Meaning

only the number of threads spe-
cifiedin
curam.jmx.transaction_tracing_
max_recorded_threads are pre-
served in the transaction tracing
data.

The maximum amount of time,
in seconds, athread is allowed to
beidle before its transaction tra-
cing data can be cleared.

Thelist of MBeans configured in
the EJB container.

Thelist of MBeans configured in
the WEB container.

Regular expression to identify
users for which individual statist-
ics are collected.

Whether or not statistics about
in-flight transactions are collec-
ted.

Whether or not SQL statement
statistics collection is enabled.

Whether or not the download of
IJMX statisticsis allowed.

The username of the user whois
alowed to download the IM X
statistics.

Whether or not end user statistics
collection is enabled.

Regular expression that selects
users for which end user statistics
are collected.

Whether or not the end user stat-
istics are displayed in the
browser. If true, the statistics for
the current page are displayed in
the top left corner of the page.

The delay in seconds between the
page reporting being loaded and
the moment the statistics are up-
loaded.

224

A.3.3

A.3.4

Test

Curam Server Developer's Guide

These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as
they will either degrade performance or cause failures.

Property Name Type

curam.test.store.entitykey BOOLEAN
S

curam.test.trace.statistics BOOLEAN

curam.test.trace.statistics. STRING
location

curam.test.singleuser BOOLEAN

curam.test.stubdeferredpr BOOLEAN
ocessing

curam.test.stubdeferredpr BOOLEAN
ocessinsametransaction

Table A.7 Test settings

Rules

Meaning

Default: false. Specifiesthat the
values written to the database
should be stored in memory for
retrieval by tests. They can be ac-
cessed through

curam.util.DataA ccess.K eyRepos
itory.

Default: false. Place a compact
trace of BO method invocations
in abuffered log. This represent-
ation is suitable for obtaining
performance measurements.

The name of the file which will
have the statistics information
generated into it.

Indicates whether only asingle
user will be active. Thisisthe
only mode supported if an IDE is
used to execute Curam as a stan-
dalone Java program.

Default: false. Specifiesthat it
needs to use deferred processing
without en-queuing in App Serv-
er.

Default: false. Specifies that
stubbed deferred process calls
should be run in the current
transaction using the current
database connection. If true, a
new transaction will not be star-
ted for each stubbed deferred
process call.

These settings configure the rules infrastructure of Curam.

225

A.3.5

Property Name Type

curam.rulesfile.accesslo STRING
cation

curam.rulesfile.accessm BOOLEAN
ultilocation

curam.rules.model .filerd BOOLEAN
0.access

curam.rules.default.locale STRING

curam.rules.globals.descr STRING
iption

curam.rules.enable.optim BOOLEAN
ization

curam.rules.enable.fulltex BOOLEAN
t

curam.debug.rules BOOLEAN

curam.disable.empty.obje BOOLEAN
ctivelistgroups

curam.rules.date.range.in BOOLEAN
cludes.calculation.date

Table A.8 Rules settings

IEG

Curam Server Developer's Guide

Meaning

The directory where the XML
representation of rule setswill be
created.

Specifiesthat rule set files exist
in multiple locations.

Specifies that RDOs should be
retrieved from a Curam mode
file.

Default: en_US. Default locale
used when creating the XML
representation of rule sets.

The display/user friendly name
associated with the pre-defined
Globals Rules Data Object. The
default value is the localized
message text associated with the
infrastructure catalog entry:
RULES:ID_GROUP_DISPLAY
_NAME_GLOBALS

Specifies the rules optimization.

Specifies the rules engine con-
struction of full result text.

Default: false. Specify whether
the rules debugging should be
enabled.

Default: true. Specify whether
the rules decision should include
empty Objective list groups.
Specifies the new objective cal-
culation.

These settings configure the properties which relate to the IEG Environ-

ment.

Property Name Type

curam.iegeditor.callback. STRING
class

curam.iegruntime.questio BOOLEAN

Meaning

Specifies the IEG Editor Applic-
ation Callbacks class.

Specifies whether to use separate

226

A.3.6

A.3.7

Property Name

npage.separatequesti onsf
orloopstyle

Type

Table A.9 IEG settings

Custom

Curam Server Developer's Guide

Meaning
guestion pages when "for" loop-

ing.

These settings allow a developer to replace elements of the Curam infra
structure with their own customized handlers.

Property Name Type

curam.custom.deferredpr STRING
ocessing.dpcallback

curam.custom.workflow. STRING
workresolver

curam.custom.workflow. INT32

processcachesize

curam.audit.audittrail.nox BOOLEAN
mlaudit

curam.custom.notificatio STRING
ns.notificationdelivery

curam.custom.dataaccess. STRING
databasewritecal |back

curam.custom.dataaccess. STRING
transactioncall back

curam.custom.disable.dat BOOLEAN
abase.callback

Table A.10 Custom settings

Trace

Meaning

The name of the application class
that implements the DPTicket-
Callback interface.

The name of the application class
that implements the WorkRe-
solver interface.

Default: 250. Specifies the max-
imum size of the process defini-
tion cache.

If set to true this property will
disable the existing audit writer.

Specifies the name of the applic-
ation class that implements the
NotificationDelivery interface.

The name of the application class
that implements the Database-
WriteCallback interface.

The name of the application class
that implements the Transaction-
Callback interface.

If set to true this property will
disable the database callback.

These control what diagnostic information (in addition to errors which are
always logged) is written to the application server's diagnostics file. Note
that you can set the "curam.trace*" settings independently of the
"curam.trace” settings, resulting in the union of these settings.

227

Property Name Type
curam.trace STRING
curam.trace.servercals BOOLEAN
curam.trace.methods BOOLEAN

curam.trace.method_args BOOLEAN

curam.trace.sql BOOLEAN
curam.trace.sgl_args BOOLEAN
curam.trace.rules BOOLEAN
curam.trace.smtp BOOLEAN

curam.trace.configfile.loc STRING
ation

curam.trace.oracle.cacheh BOOLEAN
its

curam.trace.gjb.invocatio STRING

Curam Server Developer's Guide

Meaning

Default: trace off. Tracing is off
by default. Turn tracing on by
setting the property to trace on,
trace_verbose or

trace_ultra verbose. The value
trace_onisequivalent to setting
curam.trace.servercalls to true.
The value trace verboseis equi-
valent to setting
curam.trace.servercalls,
curam.trace.methods and
curam.trace.sgl to true, while the
highest trace level

"trace_ultra verbose" is equival-
ent to setting curam.trace.* to
true

Default: false. Trace server meth-
od invocations by remote clients.

Default: false. Trace all business
object (BO) method invocations.

Default: false. Dump arguments
to BO method invocations, in-
cluding the argument type. This
optionisonly valid if
curam.trace.methods is set to true
or curam.trace is set to at least
trace verbose.

Default: false. Trace SQL state-
ments executed by entity objects.
Default: false. Dump results of
SQL select statements.

Default: false. Trace Curam rules
execution.

Default: false. Tracethe callsto
the SMTP server.

Thelocation of the".xml" con-
figuration file which controls the
output of logging within Curam.

Default: false. An indicator as to
whether the cache hits and
misses of the Oracle prepared
statement cache should be out-
put.

Comma separated list of invoca-

228

A.3.8

A.3.9

Property Name
n_differentiators

Type

curam.trace.suppress opt BOOLEAN
imistic_locking_detail

curam.trace.suppress dat BOOLEAN
abase_exception_detall

Table A.11 Trace settings

Security

Curam Server Developer's Guide

Meaning

tion differentiator implementa-
tions.

Default: false. Suppress SQL de-
tail from being dumped when op-
timistic locking exceptions oc-
cur.

Default: false. Suppress SQL de-

tail from being dumped when
database exceptions occur.

These settings configure the authentication behavior of Curam.

Property Name Type

curam.security.breakinTh INT32
reshold

curam.security.passworde INT32
Xpiry.warningperiod

curam.security.loginatte INT32

mpts.warningperiod

curam.security.cache.fail STRING
ure.callback

curam.security.disable.ca BOOLEAN
che.failure.callback

curam.security.identifier. INT32
minsearch.stringlength

Table A.12 Security settings

SMTP

Meaning

Default: 3. The number of con-
secutive break-in attempts that
are alowed before an account is
locked out.

The number of days, in advance,
that a user should be warned (on
login) that their password is
about to expire.

Default: 1. The number of logins,
in advance, that a user should be
warned (on login) that they have
alimited number of loginsin
which they must change their
password.

Specifies the security cache fail-
ure callback class.

If set to true this property will
disable the security cache failure
callback.

Specifies the security Identifier
Minimum Search String Length.

These settings configure the environment in which the SMTP client element

229

A.3.10

of Curam operates.

Property Name Type

curam.mail.smtp.serverh STRING
ost

curam.mail.smtp.serverp INT32
ort

curam.mail.smtp.connecti INT32
ontimeout

curam.mail.smtp.timeout INT32

Table A.13 SMTP settings

XMLServer

Curam Server Developer's Guide

Meaning

The default mail server that is
used by Curam.

The port on which the default
mail server is addressed.

The socket connection timeout
value (in seconds) of the mail
server.

The socket 1/0 timeout value (in
seconds) of the mail server.

These settings configure the environment in which the XML Server will be

used.

Property Name Type
curam.xmlserver.host STRING

curam.xmlserver.port STRING

curam.xmlserver.printer STRING
curam.xmlserver.tray STRING

curam.xmlserver.fileenco STRING
ding

curam.xmlserver.serialize BOOLEAN

Meaning

The host on which the XML
Print Server resides. The prop-
erty may also be specifiedasa'/’
separated list of host namesin
order to use multiple XML Serv-
ers. For further information
please refer to the Curam XML
Infrastructure Guide.

The port on which the XML

Print Server islistening. The
property may also be specified as
a'l' separated list of portsin or-
der to use multiple XML Servers.
For further information please
refer to the Curam XML Infra-
structure Guide.

The printer name that will be
provided to the XML Server.

The printer tray that will be
provided to the XML Server.

The encoding that should be used
for the encoding of files provided
to the XML Server.

Specify that xml server data will

230

A.3.11

A.3.12

Curam Server Developer's Guide

Property Name Type Meaning

localeneutral be serialized in alocale-neutral
way instead of being based on
the locale properties on the serv-
er.

Table A.14 XMLServer settings

Database

These settings configure Curam for database communication.

Property Name Type Meaning

curam.db.readmultimax INT32 Default: 100. Allows the de-
veloper to override the default
maximum number of records re-
turned by the readmulti
(readmulti, nsreadmulti, nkread-
multi and nsmulti) operations in
an application. This default value
isonly used if an explicit valueis
not set in the model.

curam.db.locktimeout INT32 Default: 30. Allowsthe de-
veloper to set the lock timeout in
seconds on an Oracle database
when performing a singleton se-
lect FOR UPDATE. The syntax
here isto append aWAIT XX
clause to the statement. This de-
fault valueis only used if an ex-
plicit valueis not set.

curam.db.batch.limit INT32 Default: 10. Globally defines the
number of updates that can be
grouped together as part of a
batch update.

Table A.15 Database settings

KeyServer

These settings allow a customer to configure the behavior of the KeyServer.

Property Name Type Meaning
curam.keyserver.default.u STRING The name of the default key set
nique.set used by the application.
curam.keyserver.retry INT32 Default: 5. The number of retries

231

A.3.13

Curam Server Developer's Guide

Property Name Type Meaning

that will be performed if thereis
a problem communicating with
the key server before that prob-
lem is reported to the user.

curam.keyserver.support BOOLEAN Default: false. The range aware
key server algorithm allows us-
age of group from 3 to 32,768.
But as group 2 isto alocated for
Curam support.This property can

be set to true to state keys gener-
ated are for Cdram support pur-
pose.
curam.keyserver.remaini INT64 Default: 100000000. The range
ng.keyblock.notification aware key server algorithm sup-

ply a notification to administrat-
ors when aparticular key set is
nearing the end of the systems al-
located range.This notification
would be sent repeatedly at
defined magnitude intervals be-
fore exhaustion e.g. the first mes-
sage sent when there are X key
blocks remaining for the key set,
the next when there are X/10 key
blocks remaining etc. Range
Aware Key Server send these no-
tifications only in case if there
are no further ranges allocated to

the system.
curam.keyserver.keyset.c INT32 Default: 1 : Specifies the number
achesize of unique ID keysets to be con-
sumed and cached per Key Serv-
er transaction.

Table A.16 KeyServer settings

BatchLauncher

These settings configure the behavior of Curam when problems occur in-
voking batch programs.

Property Name Type Meaning
curam.batchlauncher.erro STRING The email address of the recipi-
remail.recipient ent of error emails from Curam.

curam.batchlauncher.erro BOOLEAN Default: false. Suppress the stack

232

Property Name
remail .nostacktrace

curam.batchlauncher.defa INT32
ult.error.code

curam.batchlauncher.dbto BOOLEAN
jms.enabled

Type

curam.batchlauncher.dbto String
jms.notification.host

curam.batchlauncher.dbto STRING
jms.contextroot

curam.batchlauncher.dbto INT32
jms.notification.port

curam.batchlauncher.dbto BOOLEAN
jms.notification.sd

curam.batchlauncher.dbto String
jms.notification.encoding

curam.batchlauncher.dbto String
jms.notification.batchlau
nchermode

curam.batchlauncher.dbto BOOLEAN
jms.notification.disabled.
in.standalone

Curam Server Developer's Guide

Meaning

trace in the error emails.

Default: 1. The default error code
returned by a batch program.

Default: false. Specifies whether
deferred processing and work-
flow functionality for batch pro-
grams should be enabled. When
Set to true the
curam.batchlauncher.dbtojms.not
ification.host and
curam.batchlauncher.dbtojms.not
ification.port properties must
also be set.

Default: localhost. Specifies
whether the host on which the
database-to-JM S listener is avail-
able. This property must be set
when the
curam.batchlauncher.dbtojms.ena
bled property is set to true.

The context root used by the
Curam web client. Default value
='Curam'.

Default: 9044. Specifies whether
the port on which the database-
to-JM S notification listener is
available. This property must be
set when the
curam.batchlauncher.dbtojms.ena
bled property is set to true.

Default: true. Specifies that the
database-to-JM S notification
listener on the application server
isusing SSL.

Specifies the encoding of the
database-to-JM S listener.

Specifies the db-to-jms mode for
the batch launcher. O=none,
1=once per batch launcher ses-
sion, 2=once per batch job.

Specifies that the batch launcher
should not perform a db-to-jms
notification when run in stan-
dalone mode.

233

A.3.14

A.3.15

Property Name Type
curam.batchlauncher.dbto BOOLEAN
jms.notification.test.stubt

rigger

curam.batchlauncher.dbto INT32
jms.messagespertransacti
on

Table A.17 BatchLauncher settings

Workflow

Curam Server Developer's Guide

Meaning

Default: false. For debugging
batch jobs which use DBtoJMS:
stubs out DBto-
IJMS.beginTransfer() to prevent it
from creating deferred processes.
M SLiteEngine must be started
to process the messages.

Default: 512. The number of
messages per transaction pro-
cessed by the database-to-IM S
conversion.

These settings configure the properties which relate to the Workflow Envir-

onment.

Property Name Type

curam.workflow.disable.a BOOLEAN
udit.wdoval ueshistory.bef
ore.activity

curam.workflow.disable.a BOOLEAN
udit.wdovalueshistory.aft
er.activity

curam.workflow.disable.a BOOLEAN
udit.wdovalueshistory.tra
nsition.evaluation

Table A.18 Workflow settings

CTM

Meaning

When specified to true, this flag
will ensure that no WDO values
history audit information will be
written before an activity is ex-
ecuted.

When specified to true, thisflag
will ensure that no WDO values
history audit information will be
written after an activity is ex-
ecuted.

When specified to true, thisflag
will ensure that no WDO values
history audit information will be
written before the transitions
from an activity are evaluated.

These settings configure the properties which relate to configuration trans-

port manager.

Property Name Type
curam.ctm.landscape.nam STRING

Meaning
Default: nolandscape. The land-

234

A.4

A4l

Curam Server Developer's Guide

Property Name Type Meaning

e scape name for configuration
transport manager to transport
change set from source to target
systems with in the configured

landscape.
Table A.19 CTM settings

Application.prx - Static properties

The following properties relate to the available static properties in the Ap-
plication.prx file.

Custom

These settings allow a developer to replace elements of the Curam infra
structure with their own customized handlers.

Property Name Type Meaning
curam.custom.audit.write STRING Default:
r curam.util.internal.misc.Standard

DatabaseAudit. The name of the
class which will handle the gen-
erated audit information. This
class must extend
curam.util.audit.AuditL oginterfa
ce.
curam.util.audit.DisabledAudit
may be used to globally disable

auditing.
curam.custom.predataacc STRING The name of the class that imple-
ess.hook ments the interface
curam.util.audit.DataA ccessHoo
K.
curam.custom.external.op STRING Specifies the fully qualified class
eration.hook name of the customized external
operation Hook which imple-
ments

curam.util.audit.External Operatio
nHook. An external operation is
an operation callable as aremote,
batch, webservice or deferred
process call.

Table A.20 Custom settings

235

A.4.2 Security

Curam Server Developer's Guide

These settings configure the authentication behavior of Curam.

Property Name Type
curam.security.disable.au STRING
thorisation

curam.security.casesensit BOOLEAN
ive

curam.custom.externalac STRING
cess.implementation

curam.custom.authenticat STRING
ion.implementation

curam.custom.userscope.i STRING
mplementation

Table A.21 Security settings

Meaning

Default: false. Suppress the au-
thorization checks normally per-
formed by Curam.

Authentication and authorization
of usernames is case sensitive by
default. When this property is set
to false the authentication and
authorization mechanisms will
ignore the case of the user. If du-
plicate case insensitive user
names exist (e.g. caseworker,
CaseWorker), authentication will
fail due to an ambiguous user
name. Such duplicate names will
also cause the security cache to
fal toinitialize.

The fully qualified name of the
classimplementing the
curam.util.security.External Acce
ssSecurity interface. This class
implements the custom authen-
tication mechanism for External
Users.

The fully qualified name of the
classimplementing the
curam.util.security.CustomA uthe
nticator interface. Thisclassim-
plements custom authentication
verifications that will be invoked
during the authentication pro-
cess.

The fully qualified name of the
classimplementing the
curam.util.security.UserScope in-
terface. This class determines the
type of User logging into the ap-
plication, i.e. INTERNAL or EX-
TERNAL.

236

A.4.3

A.4.4

A.5

A5.1

Curam Server Developer's Guide

Trace

These control what diagnostic information (in addition to errors which are
alwayslogged) is written to the application server's diagnosticsfile.

Property Name Type Meaning
curam.trace.method_hand STRING Default:
ler curam.util.resources.Trace.Cura

mM ethodl nvocationHandlerDe-
fault. Name of aclassimple-
menting
curam.util.resources.Trace.Cura
mM ethodl nvocationHandler to
perform custom method tracing.

curam.trace.dataaccessm STRING Default: 1000. Maximum length
axstringlength of a String or CLOB logged by
the Data Access Layer when

SQL tracing is enabled.

Table A.22 Trace settings

Environment

These settings configure the environment for your Curam application.

Property Name Type Meaning

curam.project.name STRING This parameter isrequired by the
Rules and Workflow engines to
dynamically invoke methodsin
the application.

curam.disable.tab.cache BOOLEAN Default: false. Indicatesif tab
caching should be disabled.
Note, this only applies to caching
on the server side.

Table A.23 Environment settings

Variable Property Settings

The following properties whose name is defined variably.

Transaction

Contains properties connected with the runtime setting of transactional op-
tions.

237

A.5.2

Curam Server Developer's Guide

Property Name Type Meaning

<fully qualified class- INT32 Used to control the transaction

name>.intf.<method timeout for a single operation.

name>.transaction.timeou The value is the number of

t seconds before the transaction
should timeout. Format: PRO-
JECT-
NAME.CODEPACKAGE.CLAS

SNAME.intf. OPERATIONNAM
E.transaction.timeout e.g.
curam.core.facade.intf.Person.cre
ateAd-
dress.transaction.timeout=60

Table A.24 Transaction settings

Audit
Contains properties connected with the runtime setting of auditing options.

Property Name
curam.audit.opaudittrail

Meaning

Specify whether operation level
auditing for the operation 'OPER-
ATIONNAME!, within the client
visible class'CLASSNAME' of
the code package 'CODEPACK-
AGE' isenabled or disabled.
Format:

curam.audit.opaudittrail . PROJEC
TNAME.CODEPACKAGE.CL
ASS
NAME.OPERATIONNAME
Default: determined by the op-
tion set in the model.

Specify whether table level
auditing for the operation 'OPER-
ATIONNAME' of entity
'CLASSNAME' within the code
package 'CODEPACKAGE'is
enabled or disabled. Format:
curam.audit.audittrail. PROJECT
NAME.CODEPACKAGE.CLAS
SNAME.OPERATIONNAME
Default: determined by the op-
tion set in the model.

Specify the name of aclass
which implements

Type
BOOLEAN

curam.audit.audittrail BOOLEAN

curam.custom.external.op STRING
eration.hook

238

Curam Server Developer's Guide

Property Name Type Meaning

‘curam.util.audit.DataA ccessHoo
k' and which will be used to audit
client-visible operation calls.

curam.custom.predataacc STRING Specify the name of the class

ess.hook

which implements
‘curam.util.audi.DataA ccessHook
"and is used to audit data access
cdls.

curam.custom.audit.write STRING Specify the name of aclass

r

which implements
curam.util.audit.AuditL ogl nterfa
ce and will be used to capture
and write audit information.

curam.audit.audittrail.nox BOOLEAN Specify whether the XML audit
mlaudit

writer is disabled for data access
operations. This saves XML
from being generated for each in-
vocation of the operation done so
far. Default: false.

Table A.25 Audit settings

i

Note
There are two ways to turn off auditing:

Set the 'curam.custom.predataaccess.hook’ property in the Ap-
plication.prx to be blank and Set the
‘curam.audit.audittrail.noxmlaudit' property to be true.

Set the value of the property 'curam.custom.audit.writer' to be
‘curam.util.audit.DisabledAudit'. The
‘curam.util.audit.DisabledAudit’ is a class that is provided by the
Infrastructure that contains empty methods. Therefore the class
will be called but no auditing will take place. This ensures that
the 'Audit.logDataA ccess class gets called and builds up the xml
that will form part of the auditing but it does not actually insert
any audit records onto the database.

Thefirst option is the preferred option.

239

Appendix B

Infrastructure Auditing Settings

B.1 Default table-level-audit setting

The following tables list the database operations in the IBM® Caram Social
Program Management infrastructure and the default value of their table-
level auditing flag. This value may be overridden by setting application
properties, see the Ciram Modeling Reference Guide for more details. Cer-
tain database operations do not support auditing, for example operations
with stereotype <<ns>> which have handcrafted SQL - and these are listed
with adefault value of N/ A

Operation Name Default
Auditing
Setting
Activitylnstance.getActivityVersionDetail sBy TasklD N/A
Activitylnstance.getTasklD False
Activitylnstance.insert False
Activitylnstance.modify False
Activitylnstance.read False
Activitylnstance.readActivitylnstanceByTaskl D False
Activitylnstance.readByA ctivitylnstanceCompoundK ey N/A
Activitylnstance.readByTasklD False
Activitylnstance.readlterationl D False
Activitylnstance.remove False
Activitylnstance.searchByProcess| nstancel D False
Activitylnstance.searchByProcessl nstancel DAndStatus False
Activitylnstance.setActivityl nstanceStatusAndEndDate False
Activitylnstance.setTasklD False

240

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

ActivityOccurrence.insert False
ActivityOccurrence.read False
ActivityOccurrence.remove Fase
AppResource.insert False
AppResource.modify False
AppResource.read False
AppResource.readAllResources False
AppResource.readByCategory False
AppResource.readByEmptyCategory N/A
AppResource.readByl EGScriptDefinitionl D N/A
AppResource.readByL ikeName N/A
AppResource.readByName False
AppResource.readByNameAndL ocale N/A
AppResource.readResourceNameByI D False
AppResource.remove False
AppResource.removeByl EGScriptDefinitionl D N/A
AppResource.removeByName False
AppResource.removeByNameAndLoca e N/A
AuditTrail.insert False
AuditTrail.readAll False
AuthenticationL og.countEntries N/A
AuthenticationL og.insert False
AuthenticationL og.modify True
AuthenticationL og.read False
AuthenticationL og.readmulti False
AuthenticationLog.remove True
AuthorisationL og.countEntries N/A
AuthorisationLog.insert False
AuthorisationL og.readmulti False
BPOMethodLibrary.insert False
BPOMethodLibrary.modify False
BPOMethodLibrary.read False
BPOMethodLibrary.remove False
BPOM ethodL ibrary.searchBPOM ethodReferences N/A

241

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

BPOMethodL ibrary.searchByCompoundK ey False
BatchErrorCodes.getAllErrorCodes N/A
BatchErrorCodes.insert Fase
BatchErrorCodes.modify False
BatchErrorCodes.read False
BatchErrorCodes.remove False
BatchGroupDesc.insert True
BatchGroupDesc.read False
BatchGroupDesc.readmulti False
BatchGroupDesc.remove True
BatchGrpGrpAssoc.insert False
BatchGrpGrpAssoc.readmulti False
BatchGrpGrpAssoc.readmultichildid False
BatchGrpGrpAssoc.remove False
BatchParamDef.read Fase
BatchParamDef.readmuilti False
BatchParamDesc.insert True
BatchParamDesc.modify True
BatchParamDesc.read False
BatchParamDesc.readmulti False
BatchParamDesc.remove True
BatchParamV aue.insert False
BatchParamVaue.read False
BatchParamV aue.readmulti False
BatchParamV alue.remove False
BatchProcDef.read False
BatchProcDef.readAllProcesses Fase
BatchProcDesc.insert True
BatchProcDesc.modify True
BatchProcDesc.read False
BatchProcDesc.readAll False
BatchProcDesc.remove True
BatchProcGrpAssoc.insert True
BatchProcGrpAssoc.readmulti False

242

Curam Server Developer's Guide

Operation Name

BatchProcGrpA ssoc.readmultionprocessname
BatchProcGrpAssoc.remove
BatchProcRequest.insert
BatchProcRequest.read
BatchProcRequest.readallrequests
BatchProcRequest.readmulti
BatchProcRequest.readmultiuserid
BatchProcRequest.remove
BizObjAssociation.countOpenTasksByBizObjectTypeAndI D
BizObjAssociation.insert
BizObjAssociation.modify

BizObj A ssociation.modifyBusinessObjectl D
BizObjAssociation.read
BizObjAssociation.remove
BizObjAssociation.searchByBizObjectTypeAndI D
BizObjAssociation.searchByTasklD
CacheVersion.insert

CacheVersion.modify

CacheVersion.read
CodeTableData.changeTableName
CodeTableData.insert
CodeTableData.modify

CodeTableData.read

CodeT ableData.removeOneCodeT able
CodeTableHeader.getChildCode

CodeT ableHeader.insert
CodeTableHeader.joinCTHeaderCTItem
CodeT ableHeader.modifyDefaultCode
CodeTableHeader.modifyParentCodetable
CodeTableHeader.modifyTableName

CodeT ableHeader.modify Timestamp

CodeT ableHeader.read
CodeTableHeader.readChildCodeTable
CodeT ableHeader.readDefaultCode

Default
Auditing
Setting

False
True
False
False
False
False
False
False
N/A
False
False
False
False
False
False
False
False
False
False
False
True
False
False
False
False
True
N/A
False
False
False
False
False
False
False

243

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting
CodeTableHeader.readEntireTable False
CodeT ableHeader.readTableName False
CodeT ableHeader.remove True
CodeT ableHeader.searchByCodeT ableName N/A
CodeTableHierarchy.insert False
CodeTableHierarchy.modify False
CodeTableHierarchy.modifyCodetable False
CodeTableHierarchy.read False
CodeTableHierarchy.readAll Fase
CodeTableHierarchy.readByCodetable False
CodeTableHierarchy.remove False
CodeTableltem.changeT ableName False
CodeTableltem.countCodeT ablel tems N/A

CodeT ableltem.countDescriptionSameParentCodeDifferentCo N/A
de

CodeTableltem.countDescriptionSameParentCodeOnTable N/A

CodeTableltem.countDescriptionsOnTable N/A
CodeTableltem.countDescriptionsWithDifferentCodeOnTable N/A
CodeTableltem.insert True
CodeTableltem.insertWithoutTimestamp True
CodeTableltem.listUnlinkedCodesExcludelL ocale N/A
CodeTableltem.read False
CodeTableltem.readAllLocaes False
CodeTableltem.readAllWithoutAnnotations False
CodeTableltem.readChildren False
CodeTableltem.readChildrenOnelocale False
CodeT ableltem.readChildrenOnel ocal eExcludeDuplicates N/A
CodeTableltem.readDisabled False
CodeTableltem.readEnabled False
CodeTableltem.readOnel.ocale False
CodeTableltem.readOnel ocal eExcludeDuplicates N/A
CodeTableltem.readUnlinkedCodes False
CodeTableltem.readmulti False
CodeTableltem.remove True
CodeTableltem.removeOneCodeTable False

244

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

CodeTableltem.update True
CodeT ableltem.updateWithCommentWithoutParentCode True
CodeTableltem.updateWithoutParentCode True
DPErrorInformation.insert False
DPErrorInformation.read False
DPErrorInformation.remove False
DPProcess.insert False
DPProcess.nkreadmuilti False
DPProcess.read Fase
DPProcess.remove False
DPProcessl nstance.insert False
DPProcessl nstance.nkreadmulti False
DPProcessl nstance.read False
DPProcessl nstance.setFinishTime False
DPTicket.insert Fase
DPTicket.modify False
DPTicket.nkreadmulti False
DPTicket.read False
EventClass.insert False
EventClass.modify False
EventClass.read Fase
EventClass.readAll EventClasses False
EventClass.remove False
EventType.insert False
EventType.modify False
EventType.modifyByEventClass N/A
EventType.read Fase
EventType.remove False
EventType.removeByEventClass False
EventType.searchByEventClass False
EventWait.countEventWaitsByActivityl nstancel D N/A
EventWait.countEventWaitsByEventMatchK ey N/A
EventWait.insert Fase
EventWait.readByA ctivitylnstancel D False

245

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting
EventWait.readByEventMatchK ey False
EventWait.readEventM atchDataByA ctivityl nstancel D False
EventWait.remove False
EventWait.removeByA ctivitylnstancel D False
FailedM essage.getAllM essages False
FailedM essage.insert False
FailedM essage.read False
FailedM essage.remove False
FailedM essage.searchByMessageType Fase
FailedM essage.searchByProcessl nstID False
FieldLevel Security.getAllOperations N/A

FieldL evel Security.getAllReturnedFieldNamesByOperation False
FieldL evel Security.getAllReturnedFiel dsAndSidsByOperation False

FieldL evel Security.getAll SecuredFields N/A

FieldL evel Security.getSidForReturnedField Fase
FieldLevel Security.getSidV ersionNoForReturnedField False
FieldLevel Security.insert True
FieldLevel Security.setSidForReturnedField True
Functionldentifier.joinFidSecurityFidSid N/A

Functionldentifier.read False
Functionldentifier.readAllFids Fase
Grouplnformation.getV ersionNoForGroup False
Grouplnformation.insert False
Groupl nformation.listExcludingScript N/A

Grouplnformation.modify False
Grouplnformation.nkreadmulti False
Grouplnformation.read False
Grouplnformation.remove False
GroupRange.insert False
GroupRange.readAll False
GroupRangeValid.insert False
GroupRangeValid.readAll False
GroupRangeValid.removeAll False
|EGDefinitionlnfo.insert False

246

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

|EGDefinitionlnfo.nsmultiGroupByType N/A
|EGDefinitionl nfo.nsmultiGroupWithout Type N/A
|EGDefinitionInfo.nsmulti ScriptBy Type N/A

| EGDefinitionl nfo.nsmulti ScriptWithout Type N/A
|EGDefinitioninfo.readmulti False
|EGDéefinitionlnfo.remove N/A

| EGExecutionlnfo.insert False
| EGExecutionlnfo.modify False
| EGExecutionlnfo.nkreadmulti Fase
| EGExecutionlnfo.read False
| EGExecutionlnfo.readExec False
| EGExecutionlnfo.remove False
| EGExecutionlnfo.searchBeforeDate N/A
Iteration.insert False
Iteration.modifyEndDateTime False
Iteration.read False
Iteration.readlterationl D False
Iteration.readl terationSummary False
Iteration.remove False
JMSLiteMessage.insert False
JMSLiteMessage.read False
JMSLiteMessage.readAlIBy Type False
JMSLiteM essage.remove False
Joinlnstance.insert False
Joinlnstance.modify False
Joinlnstance.readByJoinMetal D False
Joinlnstance.remove False
KeyServer.insert False
KeyServer.modify False
KeyServer.read False
KeySetRange.insert False
KeySetRange.modify False
KeySetRange.read False

MatchedEvtArchive.getM atchedEventsForActivitylnstance False

247

Curam Server Developer's Guide

Operation Name

MatchedEvtArchive.insert

MatchedEvtArchive.read
MatchedEvtArchive.readByActivityl nstancel D
MatchedEvtArchive.searchByActivitylnstancel D
OpAuditTrail.insert

ProcEnactEvtData.insert

ProcEnactEvtData.modify

ProcEnactEvtData.read
ProcEnactEvtData.readByProcessStartEvent| D
ProcEnactEvtData.remove
ProcEnactEvtData.removeByProcessStartEvent! D
ProcEnactmentEwvt.insert

ProcEnactmentEvt.modify

ProcEnactmentEvt.read
ProcEnactmentEvt.readAllRecords
ProcEnactmentEvt.readByEnabled
ProcEnactmentEvt.readByEvent
ProcEnactmentEvt.readByProcessToStart
ProcEnactmentEvt.remove

Procl nstOverflow.getWDOSnapshot
ProclnstOverflow.insert

Procl nstOverflow.removeAll RecordsForProcessl nstanceWDO
ProclnstWDOData.getAll ContextWDOForActivity
ProclnstWDOData.getAllWDODataForOneProcessl nstance
ProclnstWDOData.insert

ProclnstWDOData.modify

ProclnstWDOData.read
ProclnstWDOData.readAllRecords
ProclnstWDOData.readOverflowlnd
ProclnstWDOData.remove
ProclnstWDOData.removeAllContextWDOForActivity
ProcessDefinition.countDefinitionsByName
ProcessDefinition.countDefinitionsByNameAndVersion

Table B.1 Audit settings 1

Default
Auditing
Setting

False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
N/A

N/A

N/A

248

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting
ProcessDefinition.countUnrel easedDefinitionsByl D N/A
ProcessDefinition.countUnrel easedDefinitionsByName N/A
ProcessDefinition.getHighestRel easedV ersionNumber N/A
ProcessDefinition.getHighestUnRel easedV ersionNumber N/A
ProcessDefinition.getHighestV ersionNumber N/A
ProcessDefinition.insert False
ProcessDefinition.modify False
ProcessDefinition.modifyByNameAndVersion False
ProcessDefinition.read Fase
ProcessDefinition.readByNameAndVersion False
ProcessDefinition.readDefinitionByl D N/A
ProcessDefinition.readDefinitionByName N/A
ProcessDefinition.readL atestV ersionDefinitionDetailsByName N/A
ProcessDefinition.readProcess| dentifier False
ProcessDefinition.readProcessRel eased False
ProcessDefinition.readUnrel easedDefinitionByName N/A
ProcessDefinition.remove False
ProcessDefinition.removeByNameAndVersion False
ProcessDefinition.searchAllDefinitionsSummaryDetails N/A
ProcessDefinition.searchAllVersions False
ProcessDefinition.searchAllVersionsByName Fase
ProcessDefinition.searchByNameAndRel easedI nd False
ProcessDefinition.searchByRel easedI ndicator False
ProcessDefinition.searchDefinitions False
ProcessDefinition.searchL atestDefinitions N/A
ProcessDefinition.searchlL atestRel easedProcesses N/A
ProcessDefinition.searchProcesses Fase
Processin- N/A
stance.countProcessl nstancesByProcessDefinitionDetails
Process| nstance.insert False
Processl nstance.modify False
Processl nstance.modifyStatus False
Processl nstance.read False
Processlnstance.readOne Fase
Processl nstance.readStatus False

249

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting
Processl nstance.remove False
Processl nstance.searchByBizObject N/A
Processl nstance.searchByEventWaitDetails N/A
Processl nstance.searchByParentProcessl nstancel D N/A
Processl nstance.searchByProcessDetails N/A
Processl nstance.searchByProcessI DAndV ersion N/A
Processl nstance.searchByTasklD N/A
Processl nstance.searchBy TaskUser N/A
PropDescription.countDescriptions N/A
PropDescription.insert True
PropDescription.modify True
PropDescription.read False
PropDescription.readDescriptionByI D False
PropDescription.remove True
PropDescription.removeAllDescriptionsByProperty| D False
Properties.countOccurrencesOfName N/A
Properties.insert True
Properties.modify True
Properties.read False
Properties.readAlIByL ocaleOrCategory N/A
Properties.readName Fase
Properties.readNameAndV aluelL ist N/A
Properties.readbyName False
Properties.readl AllPropertiesTable False
Properties.remove True
Properties.resetAll Properties N/A
Reminders.clearSentRemindersByActivitylnstancel D Fase
Remind- False
ers.clear SentRemindersByReminderAndActivityl nstancel D
Reminders.insertReminder False
Reminders.scanReminders N/A
RuleSetInformation.insert False
RuleSetInformation.listBy Type False
RuleSetInformation.modify False
RuleSetInformation.read False

250

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

RuleSetInformation.readDetail sWithoutDefinition False
RuleSetInformation.remove False
RuleSetLink.insert Fase
RuleSetLink.read False
RuleSetLink.readmultiByM asterRul eSet False
RuleSetLink.readmultiBy SubRul eSet False
RuleSetLink.remove False
ScriptGroupRel s.dropGroupsFor Script N/A
ScriptGroupRels.insert Fase
ScriptGroupRels.read False
ScriptGroupRel s.readmulti False
ScriptGroupRel s.readmulti ForScript False
Scriptlnformation.insert False
Scriptlnformation.modify False
ScriptInformation.nkreadmulti False
Scriptlnformation.read False
Scriptlnformation.remove False
SecurityFidSid.insert True
SecurityFidSid.joinFidSidFunctionl dentifier N/A
SecurityFidSid.modifySid True
SecurityFidSid.readAllFid False
SecurityFidSid.readAllFidSid False
SecurityFidSid.readAllSid False
SecurityFidSid.readFid False
SecurityFidSid.readSid False
SecurityFidSid.remove True
SecurityFidSid.removeSid True
SecurityGroup.insert True
SecurityGroup.modify True
SecurityGroup.read False
SecurityGroup.readAllGroups False
SecurityGroup.readGroupsinRole N/A
SecurityGroup.readGroupsNotInRole N/A
SecurityGroup.remove True

251

Curam Server Developer's Guide

Operation Name

Default
Auditing

SecurityGroupSid.getFunctionSI DsForGroup
SecurityGroupSid.getNonFunctionSI DsForGroup
SecurityGroupSid.getUnlinkedFunctionSI DsForGroup
SecurityGroupSid.insert
SecurityGroupSid.modifyGroup
SecurityGroupSid.modifySid
SecurityGroupSid.read
SecurityGroupSid.remove
SecurityGroupSid.removeGroupName
SecurityGroupSid.removeSid
Securityldentifier.insert
Securityldentifier.modify
Securityldentifier.modifyNameAndDescription
Securityldentifier.read
Securityldentifier.readAllSids
Securityldentifier.readMatchSid
Securityldentifier.readSidType
Securityldentifier.readSidsinGroupSid
Securityldentifier.readSidsNotInGroupSid
Securityldentifier.remove
SecurityRole.getNonUsersRoles
SecurityRole.getRolesAndFunctionSIDs
SecurityRole.getRolesAndNonFunctionSIDs
SecurityRole.getUnlinkedFunctionSIDs
SecurityRole.insert

SecurityRole.modify

SecurityRole.read

SecurityRole.readAllRoles
SecurityRole.readRolesNotInGroup
SecurityRole.remove

SecurityRoleGroup.insert
SecurityRoleGroup.modifyAllOccurrencesOf ARoleName
SecurityRoleGroup.modifyGroup
SecurityRoleGroup.read

Setting
N/A
N/A
N/A
True
True
True
False
True
True
True
True
True
True
False
False
False
False
N/A
N/A
True
N/A
N/A
N/A
N/A
True
True
False
False
N/A
True
True
True
True
False

252

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

SecurityRoleGroup.readRolesInGroup False
SecurityRoleGroup.remove True
SecurityRoleGroup.removeGroupName True
SecurityRoleGroup.removeRole True
SuspendedActivity.insert False
SuspendedActivity.read False
SuspendedA ctivity.readmulti False
SuspendedActivity.remove False
SuspendedA ctivity.removeA ctivitiesForProcessl nstance Fase
TabSession.insert False
TabSession.modify False
TabSession.read False
TabSession.remove False
Task.countAllByBizObjectAndStatus N/A
Task.countAllByBizObjectDueDateAndStatus N/A
Task.countAssignedByBizObjectAndStatus N/A
Task.countAssignedByBizObjectDueDateAndStatus N/A
Task.countByUserAndPriority N/A
Task.countByUserAndStatus N/A
Task.countByUserDueDateAndStatus N/A
Task.countReservedByCategory N/A
Task.countReservedByStatus N/A
Task.countReservedByUsername N/A
Task.countReservedByUsernameAndDueDate N/A
Task.countReservedByUsernameAndPriority N/A
Task.countReservedByUsernameAndStatus N/A
Task.countReservedByUsernameBizObjectAndStatus N/A
Task.countReservedByUsernameBizObjectStatusAndDueDate N/A
Task.countTasksForReservedByUser N/A
Task.insert False
Task.modify False
Task.modifyAssignedDateTime False
Task.modifyPriority Fase
Task.modifyReservedBy False

253

Curam Server Developer's Guide

Operation Name

Default
Auditing
Setting

Task.modifyRestartTime

Task.modifyStatus

Task.modifyTotal TimeWorked

Task.read

Task.readAllTasks
Task.readAssignedDateTime
Task.readReservedByYy

Task.readStatus

Task.resadSummaryDetails
Task.readTaskWithDueDate

Task.readTotal TimeWorked
Task.readVersionNo
Task.searchAllByBizObjectAndStatus
Task.searchAllByBizObjectDueDateAndStatus
Task.searchAssignedByBizObjectAndStatus
Task.searchAssignedByBizObjectDueDateAndStatus
Task.searchReservedByCategory
Task.searchReservedByDueOnDate
Task.searchReservedByPriority
Task.searchReservedByStatus
Task.searchReservedByUsername
Task.searchReservedByUsernameAndDueDate
Task.searchReservedByUsernameAndPriority
Task.searchReservedByUsernameAndStatus
Task.searchReservedByUsernameBizObjectAndStatus

False
False
False
False
False
False
False
False
False
N/A
False
False
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Task.searchReservedByUsernameBizObjectStatusAndDueDate N/A

Task.searchTasksByBizObject
Task.searchTasksByBizObjectAndDueDate
Task.searchTasksByBizObjectAndReservationStatus
Task.searchTasksByBizObjectUserAndStatus
Task.searchTasksByDueDate

Task.searchTasksDuel nTheNextWeek
Task.searchTasksReservedDuel nTheNextTimePeriod
TaskHistory.insert

N/A
N/A
N/A
N/A
N/A
N/A
N/A
False

254

Curam Server Developer's Guide

Operation Name

TaskHistory.read

TaskHistory.search

TaskHistory.searchByTaskID
TaskWDOOverflow.getWDOSnapshot
TaskWDOOverflow.insert
TaskWDOOverflow.removeAllEntriesForTask
Transitionl nstance.insert

Transitionl nstance.modify

Transitionlnstance.read

Transitionl nstance.remove
Transitionlnstance.removeByTransitionl D
Transitionl nstance.searchByProcess| nstancel D
UserPreferencel nfo.getAllUserPrefNameskorPref Setl D
UserPreferencel nfo.getAllUserPreferences
UserPreferencel nfo.getAllUserPreferencesForUser
UserPreferencel nfo.getUserPreference
UserPreferencel nfo.insertUserPreference
UserPreferencel nfo.modifyUserPreference
UserPreferencel nfo.removeUnusedUserPreferences
UserPreferencel nfo.removeUserPreferencesForUser
Users.countOccurrencesOfRole

Users.modify

Users.modifyAllOccurrencesOf ARoleName
Users.read

Users.readAllUsers

Users.readCasel nsensitiveUser

Users.readLocale

Users.readUserAndRoleNames
Users.readUsersByRole

Users.remove
WDOTemplateLibrary.countTemplatesByName
WDOTemplateL ibrary.insert
WDOTemplateLibrary.modify

WDOTemplateL ibrary.read

Default
Auditing
Setting

False
False
N/A

False
False
False
False
False
False
False
False
False
N/A

False
N/A

False
False
False
N/A

False
N/A

True
True
False
False
N/A

False
N/A

False
True
N/A

False
False
False

255

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting
WDOTemplateLibrary.readAll False
WDOTemplateL ibrary.readTemplateByName False
WDOTemplateLibrary.remove False
WDOTemplateL ibrary.searchByCategory False
WDOV auesHistory.insert False
WDOV auesHistory.modify False
WDOV auesHistory.read False
WDOVauesHis- False
tory.readByA ctivityl nstancel DA ndExecutionPeriod
WDOV auesHistory.remove False
WDOV auesHistory.searchByActivityl nstancel D False
WDOV auesHistory.searchByProcess| nstancel D False
WDOV auesHis- N/A
tory.searchByProcessl nstancel DAndCreationTime
WorkflowDeadline.insert False
WorkflowDeadline.modify False
WorkflowDeadline.modifySuspended False
WorkflowDeadline.read False
WorkflowDeadline.readDeadlineDetailsByActivitylnstancelD False
WorkflowDeadline.readDeadlineDetail sBy Taskl D False
WorkflowDeadline.readDeadlinel DAndTimeByTasklD False
WorkflowDeadline.readDeadlinel DBy TasklD False
WorkflowDeadline.remove Fase
WorkflowDeadline.scanWorkflowDeadlines N/A
WorkflowHistory.insert False
WorkflowHistory.modify False
WorkflowHistory.read False
WorkflowHistory.readmulti False
WorkflowHistory.remove False
WorkflowHistory.searchByEvent False

WorkflowHistory.searchByProcessl nstancel DAndEventTime False
WorkflowHistory.searchByProcessl nstancel DAndUser| D False

WorkflowHistory.searchByUser False
WorkflowHistory.searchByUserAndEvent False
XMLArchiveDoc.insert Fase

256

Curam Server Developer's Guide

Operation Name Default
Auditing
Setting

XMLArchiveDoc.read False
XSLTemplate.insert False
XSL Template.modify False
XSLTemplate.read False
XSLTemplate.readAlIByType False
XSLTemplate.readBylDCode False
XSLTemplate.readByName False
XSLTemplate.readL atestV ersionAndTemplateName False
XSLTemplate.readL atestV ersionByTemplatel D False
XSLTemplate.readmulti False
XSLTemplate.remove False
XSLTemplatel nst.deleteUsingTemplatel DAndL ocale Fase
XSLTem- False
platel nst.getAll Templatel nstDetail sFor Templatel dJAndLocale
XSLTemplatel nst.getAllVersionDetails False
XSLTemplatel nst.insert False
XSLTemplatel nst.modify False
XSLTemplatel nst.read False
XSLTemplatel nst.remove False

Table B.2 Audit settings 2

257

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

258

Curam Server Developer's Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

259

Curam Server Developer's Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

260

Trademarks

Curam Server Developer's Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apacheis atrademark of Apache Software Foundation.
BIRT isaregistered trademark of Eclipse Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

Oracle, WebL ogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Red Hat Linux is a registered trademark of Red Hat, Inc. in the
United States and other countries.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

261

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Server Developer's Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Content Summary
	1.3 Overview of Compliant Development Artifact Changes

	Chapter 2 Directory Structure
	2.1 Overview
	2.2 Application Components
	2.2.1 Component Folders
	2.2.2 Component Order
	Localized Components

	2.3 Application Directory Structure
	2.3.1 Source Artefacts of the Cúram Application
	2.3.2 Cúram Application Build Structure

	2.4 Artefacts of the SDEJ

	Chapter 3 Build Files and Their Targets
	3.1 Overview
	3.2 Performing the Build
	3.3 Overriding default JUNIT JAR
	3.4 Configuring the Build
	3.4.1 Cúram Build Settings
	3.4.2 Java Compiler Settings
	3.4.3 Java Task Settings
	3.4.4 Generator Settings
	3.4.5 Other Environment Settings

	3.5 What is happening under the hood?
	3.5.1 generated
	wsconnector
	emx2xml
	modelgen
	Data Definition XML Files
	Java Code
	Deployment Artefacts
	Web Service Artefacts

	msggen
	ctgen
	evgen
	compile.generated

	3.5.2 implemented
	compile.implemented

	3.6 Extra Targets
	3.7 Clover Targets
	3.8 Rules Targets
	3.9 Classic IEG Targets
	3.10 IEG2 Targets
	3.11 Application Configuration Import and Export Targets
	3.12 Workflow Targets
	3.13 Deployment Targets
	3.14 Extending the Build
	3.14.1 Introducing a new script

	3.15 Overridden Targets
	3.16 Application Targets
	3.16.1 BI App
	3.16.2 CREOLE
	3.16.3 Evidence Generation

	Chapter 4 Cúram Configuration Settings
	4.1 Overview
	4.2 Application Properties
	4.2.1 Application.prx
	Merging an Application prx File
	Rules of PRX Merges

	4.2.2 Bootstrap.properties

	4.3 Support for Multiple Time Zones
	4.4 Dates and date/times in Cúram

	Chapter 5 Data Manager
	5.1 Overview
	5.2 Intended Data Manager Process
	5.2.1 Planning for MBCS Data

	5.3 Invocation
	5.4 Database Artefacts
	5.4.1 Data Definition XML Files
	5.4.2 Data Contents DMX Files
	The table Element
	The column Element
	The row Element
	The attribute Element
	The value Element

	Customizing a DMX file
	Rules of DMX file merging

	Retrieving values from DMX files for database insertion
	Validation of DMX files
	Tracing Information for the DMX Merging Process

	5.5 Database Object Naming
	5.5.1 Short Name Substitution
	5.5.2 Primary Key Indices
	5.5.3 Primary Key Constraints
	5.5.4 Tablespaces

	5.6 Data Manager Configuration
	5.7 Database Synchronization
	5.8 Statistics
	5.9 Lob Manager

	Chapter 6 SQL Checker
	6.1 Overview
	6.2 Under the Hood
	6.3 Limitations

	Chapter 7 Eclipse
	7.1 Overview
	7.2 Curam Projects in Eclipse
	7.3 Eclipse Configuration Files
	7.3.1 .project File
	7.3.2 .classpath File
	7.3.3 .settings Directory

	7.4 Access Rules
	7.5 Working Sets

	Chapter 8 Logging
	8.1 Overview
	8.2 Usage
	8.3 Logging Hierarchy
	8.4 Logging Level
	8.5 Configuration
	8.6 Statistics
	8.7 Localization

	Chapter 9 Using Exceptions
	9.1 Overview
	9.2 Constructing an Exception
	9.3 Creating Messages with Argument Placeholders
	9.4 Handling Exceptions
	9.5 Logging Exceptions
	9.6 General Exception Guidelines
	9.7 Coding Conventions for Exceptions
	9.8 Using Record Not Found Indicator
	9.9 Localized Output
	9.10 Informational Manager

	Chapter 10 Message and Code Table Files
	10.1 Overview
	10.2 Message Files
	10.2.1 The Format of Message Files
	The messages Element
	The message Element
	The locale Element

	10.2.2 Customizing a Message File
	Rules of Message Merges

	10.2.3 Artefacts Produced by msggen Build Target
	10.2.4 Retrieving Messages from Message Files
	10.2.5 Writing Messages To Server Logs
	10.2.6 Localizing SDEJ Message Files

	10.3 Code Table Files
	10.3.1 The Format of Code Table Files
	The codetables Element
	The description Element
	The codetable Element
	The codetabledata Element
	The locale Element
	The comments Element

	The displaynames Element
	The name Element

	The code Element
	The locale Element
	The description Element
	The annotation Element
	The comments Element

	10.3.2 Customizing a Code Table File
	Rules of Code Table Merges

	10.3.3 Artefacts Produced by ctgen Build Target
	10.3.4 Code Table Hierarchy
	10.3.5 Retrieving Codes from Code Table Files
	10.3.6 Localizing SDEJ Code Table Files

	Chapter 11 Specialized Readmulti Operations
	11.1 Overview
	11.2 When to Use Readmulti Operations
	11.3 How to Define Your Own Readmulti Operations
	11.4 Extra Features of Readmulti Operations
	11.5 An Alternative
	11.6 Summary

	Chapter 12 Deprecation
	12.1 Introduction
	12.2 Overview
	12.2.1 Other Sources of Information

	12.3 Effect of Deprecation on a Custom Application
	12.3.1 Customizations and References
	12.3.2 Support for Deprecated Artefacts
	12.3.3 Effect of Deprecation on the User Interface

	12.4 Scope
	12.4.1 Artefact Types that can be Deprecated
	12.4.2 Limitations

	12.5 Running a Deprecation Report
	12.5.1 Configuring the Deprecation Report
	12.5.2 Prerequisites for running the Deprecation Report
	12.5.3 Generating the Deprecation build output
	12.5.4 Identifying deprecation warnings in the build output.
	12.5.5 Notes on running the Deprecation Report

	12.6 Analyzing Deprecation Warnings
	12.6.1 Identifying overrides of deprecated artefacts
	Addressing overrides of deprecated artefacts

	12.6.2 Identifying references to deprecated artefacts
	12.6.3 Notes on analyzing deprecation warnings

	Chapter 13 User Preferences
	13.1 Overview
	13.2 User Preferences Definition
	13.2.1 Data definition XML file
	13.2.2 Properties files

	13.3 Development Support
	13.4 External Users
	13.5 Localizing Display Names
	13.6 Localizing Infrastructure Preferences Display Names

	Chapter 14 Transaction Control
	14.1 Overview
	14.2 Developer's View
	14.2.1 Transactions and Method Invocations
	14.2.2 Optimistic Locking and the forUpdate Flag
	14.2.3 General Guidelines

	14.3 Underlying Design
	14.3.1 DB2
	14.3.2 Oracle

	Chapter 15 Transaction SQL Query Cache
	15.1 Overview
	15.2 Populating the Cache
	15.3 Invalidating the Cache
	15.4 Properties
	15.5 SQLQueryCacheAdmin API
	15.6 SQLQueryCacheUtil API
	15.7 Logging

	Chapter 16 Deferred Processing
	16.1 Objective
	16.2 Prerequisites
	16.3 Introduction
	16.4 Model Your Deferred Processes
	16.5 Deferred Process Enactment
	16.5.1 WMInstanceData

	16.6 Offline Unit-Testing of Deferred Processes
	16.7 Configuration of Deferred Processing Table
	16.8 TicketCallback.dpHandleError()
	16.9 Security
	16.10 Summary

	Chapter 17 Timer Bean
	17.1 Overview
	17.2 EJB Timer Bean Definition
	17.3 Development Support
	17.3.1 TimerInfo Class
	17.3.2 TimerTask Class
	17.3.3 TimerCallback Interface
	17.3.4 Code sample:

	17.4 Rules for using SDEJ Timers
	17.5 Timer Behavior
	17.6 FAQ

	Chapter 18 Events and Event Handlers
	18.1 Overview
	18.2 The Format of Event Files
	18.2.1 Event Definition
	18.2.2 Event Handler Registration

	18.3 Merging Event Files
	18.3.1 Rules of Event Definition Merges
	18.3.2 Rules of Event Handler Merges

	18.4 Artefacts produced by generate events
	18.4.1 Database Scripts
	18.4.2 Java Code

	18.5 Raising events
	18.6 Event handlers
	18.7 Event filters

	Chapter 19 Unique IDs
	19.1 Overview
	19.2 What are Unique IDs?
	19.3 What are Unique IDs for?
	19.4 Can I run out of Unique IDs?
	19.5 When should I use Unique IDs?
	19.6 When should I not use Unique IDs?
	19.7 Should my keys be human-readable?
	19.8 What if I require contiguous human-readable Unique IDs?
	19.9 How do I use Unique IDs?
	19.10 Range Aware Key Server
	19.10.1 Overview
	19.10.2 How does the Range Aware Key Server work?
	19.10.3 Where is the Range Aware Key Server used?

	Appendix A Cúram Configuration Parameters
	A.1 Overview
	A.2 Bootstrap.properties
	A.2.1 Database
	A.2.2 Environment
	A.2.3 Test
	A.2.4 Custom

	A.3 Application.prx - Dynamic properties
	A.3.1 Environment
	A.3.2 JMX
	A.3.3 Test
	A.3.4 Rules
	A.3.5 IEG
	A.3.6 Custom
	A.3.7 Trace
	A.3.8 Security
	A.3.9 SMTP
	A.3.10 XMLServer
	A.3.11 Database
	A.3.12 KeyServer
	A.3.13 BatchLauncher
	A.3.14 Workflow
	A.3.15 CTM

	A.4 Application.prx - Static properties
	A.4.1 Custom
	A.4.2 Security
	A.4.3 Trace
	A.4.4 Environment

	A.5 Variable Property Settings
	A.5.1 Transaction
	A.5.2 Audit

	Appendix B Infrastructure Auditing Settings
	B.1 Default table-level-audit setting

	Notices
	Trademarks

