
IBM Cúram Social Program Management

Cúram Server Developer's Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Introduction .. 1
1.2 Content Summary .. 2
1.3 Overview of Compliant Development Artifact Changes ... 3

Chapter 2 Directory Structure .. 7
2.1 Overview .. 7
2.2 Application Components ... 7

2.2.1 Component Folders ... 7
2.2.2 Component Order .. 7

2.3 Application Directory Structure ... 8
2.3.1 Source Artefacts of the Cúram Application .. 8
2.3.2 Cúram Application Build Structure .. 11

2.4 Artefacts of the SDEJ ... 14

Chapter 3 Build Files and Their Targets .. 16
3.1 Overview .. 16
3.2 Performing the Build .. 16
3.3 Overriding default JUNIT JAR .. 17
3.4 Configuring the Build .. 17

3.4.1 Cúram Build Settings .. 17
3.4.2 Java Compiler Settings ... 20
3.4.3 Java Task Settings ... 21
3.4.4 Generator Settings ... 22
3.4.5 Other Environment Settings .. 23

3.5 What is happening under the hood? ... 23
3.5.1 generated ... 23
3.5.2 implemented .. 28

3.6 Extra Targets .. 29
3.7 Clover Targets .. 33
3.8 Rules Targets ... 33
3.9 Classic IEG Targets ... 36
3.10 IEG2 Targets .. 41
3.11 Application Configuration Import and Export Targets .. 41
3.12 Workflow Targets .. 42
3.13 Deployment Targets ... 44
3.14 Extending the Build ... 45

iii

3.14.1 Introducing a new script .. 45
3.15 Overridden Targets .. 46
3.16 Application Targets .. 47

3.16.1 BI App ... 47
3.16.2 CREOLE ... 47
3.16.3 Evidence Generation ... 48

Chapter 4 Cúram Configuration Settings ... 51
4.1 Overview .. 51
4.2 Application Properties ... 51

4.2.1 Application.prx ... 51
4.2.2 Bootstrap.properties .. 55

4.3 Support for Multiple Time Zones .. 56
4.4 Dates and date/times in Cúram .. 58

Chapter 5 Data Manager .. 61
5.1 Overview .. 61
5.2 Intended Data Manager Process ... 61

5.2.1 Planning for MBCS Data .. 62
5.3 Invocation .. 63
5.4 Database Artefacts ... 63

5.4.1 Data Definition XML Files ... 64
5.4.2 Data Contents DMX Files ... 66

5.5 Database Object Naming ... 81
5.5.1 Short Name Substitution ... 81
5.5.2 Primary Key Indices ... 82
5.5.3 Primary Key Constraints ... 82
5.5.4 Tablespaces ... 82

5.6 Data Manager Configuration ... 84
5.7 Database Synchronization .. 86
5.8 Statistics ... 86
5.9 Lob Manager .. 86

Chapter 6 SQL Checker ... 89
6.1 Overview .. 89
6.2 Under the Hood .. 89
6.3 Limitations ... 90

Chapter 7 Eclipse ... 91
7.1 Overview .. 91
7.2 Curam Projects in Eclipse .. 91
7.3 Eclipse Configuration Files .. 92

7.3.1 .project File ... 92
7.3.2 .classpath File .. 92
7.3.3 .settings Directory ... 93

7.4 Access Rules .. 93
7.5 Working Sets .. 93

Chapter 8 Logging ... 97
8.1 Overview .. 97

Cúram Server Developer's Guide

iv

8.2 Usage .. 97
8.3 Logging Hierarchy ... 98
8.4 Logging Level .. 99
8.5 Configuration ... 100
8.6 Statistics ... 103
8.7 Localization .. 104

Chapter 9 Using Exceptions ... 106
9.1 Overview .. 106
9.2 Constructing an Exception ... 107
9.3 Creating Messages with Argument Placeholders .. 109
9.4 Handling Exceptions .. 109
9.5 Logging Exceptions ... 111
9.6 General Exception Guidelines ... 111
9.7 Coding Conventions for Exceptions .. 112
9.8 Using Record Not Found Indicator .. 113
9.9 Localized Output .. 114
9.10 Informational Manager .. 115

Chapter 10 Message and Code Table Files .. 119
10.1 Overview .. 119
10.2 Message Files ... 119

10.2.1 The Format of Message Files .. 120
10.2.2 Customizing a Message File ... 122
10.2.3 Artefacts Produced by msggen Build Target .. 124
10.2.4 Retrieving Messages from Message Files ... 125
10.2.5 Writing Messages To Server Logs .. 126
10.2.6 Localizing SDEJ Message Files .. 126

10.3 Code Table Files .. 127
10.3.1 The Format of Code Table Files ... 127
10.3.2 Customizing a Code Table File ... 132
10.3.3 Artefacts Produced by ctgen Build Target .. 138
10.3.4 Code Table Hierarchy ... 142
10.3.5 Retrieving Codes from Code Table Files .. 145
10.3.6 Localizing SDEJ Code Table Files ... 146

Chapter 11 Specialized Readmulti Operations .. 149
11.1 Overview .. 149
11.2 When to Use Readmulti Operations .. 150
11.3 How to Define Your Own Readmulti Operations .. 150
11.4 Extra Features of Readmulti Operations .. 151
11.5 An Alternative .. 154
11.6 Summary .. 154

Chapter 12 Deprecation ... 155
12.1 Introduction .. 155
12.2 Overview .. 155

12.2.1 Other Sources of Information ... 156
12.3 Effect of Deprecation on a Custom Application .. 156

12.3.1 Customizations and References .. 156

Cúram Server Developer's Guide

v

12.3.2 Support for Deprecated Artefacts ... 157
12.3.3 Effect of Deprecation on the User Interface ... 158

12.4 Scope .. 158
12.4.1 Artefact Types that can be Deprecated ... 158
12.4.2 Limitations .. 159

12.5 Running a Deprecation Report ... 159
12.5.1 Configuring the Deprecation Report ... 159
12.5.2 Prerequisites for running the Deprecation Report 160
12.5.3 Generating the Deprecation build output .. 160
12.5.4 Identifying deprecation warnings in the build output. 160
12.5.5 Notes on running the Deprecation Report .. 161

12.6 Analyzing Deprecation Warnings .. 162
12.6.1 Identifying overrides of deprecated artefacts .. 162
12.6.2 Identifying references to deprecated artefacts .. 163
12.6.3 Notes on analyzing deprecation warnings .. 163

Chapter 13 User Preferences .. 165
13.1 Overview .. 165
13.2 User Preferences Definition ... 165

13.2.1 Data definition XML file .. 165
13.2.2 Properties files .. 167

13.3 Development Support .. 168
13.4 External Users .. 168
13.5 Localizing Display Names ... 169
13.6 Localizing Infrastructure Preferences Display Names .. 170

Chapter 14 Transaction Control ... 173
14.1 Overview .. 173
14.2 Developer's View ... 173

14.2.1 Transactions and Method Invocations .. 173
14.2.2 Optimistic Locking and the forUpdate Flag ... 173
14.2.3 General Guidelines .. 174

14.3 Underlying Design ... 174
14.3.1 DB2 ... 175
14.3.2 Oracle .. 175

Chapter 15 Transaction SQL Query Cache ... 177
15.1 Overview .. 177
15.2 Populating the Cache ... 177
15.3 Invalidating the Cache ... 178
15.4 Properties ... 179
15.5 SQLQueryCacheAdmin API ... 179
15.6 SQLQueryCacheUtil API .. 180
15.7 Logging .. 180

Chapter 16 Deferred Processing .. 181
16.1 Objective .. 181
16.2 Prerequisites ... 181
16.3 Introduction .. 181
16.4 Model Your Deferred Processes .. 181

Cúram Server Developer's Guide

vi

16.5 Deferred Process Enactment .. 182
16.5.1 WMInstanceData .. 184

16.6 Offline Unit-Testing of Deferred Processes .. 184
16.7 Configuration of Deferred Processing Table ... 185
16.8 TicketCallback.dpHandleError() ... 186
16.9 Security .. 187
16.10 Summary .. 187

Chapter 17 Timer Bean .. 190
17.1 Overview .. 190
17.2 EJB Timer Bean Definition ... 190
17.3 Development Support .. 191

17.3.1 TimerInfo Class .. 191
17.3.2 TimerTask Class ... 192
17.3.3 TimerCallback Interface ... 193
17.3.4 Code sample: ... 193

17.4 Rules for using SDEJ Timers ... 193
17.5 Timer Behavior .. 194
17.6 FAQ .. 195

Chapter 18 Events and Event Handlers ... 198
18.1 Overview .. 198
18.2 The Format of Event Files ... 198

18.2.1 Event Definition .. 198
18.2.2 Event Handler Registration ... 200

18.3 Merging Event Files ... 201
18.3.1 Rules of Event Definition Merges .. 201
18.3.2 Rules of Event Handler Merges .. 202

18.4 Artefacts produced by generate events .. 202
18.4.1 Database Scripts .. 202
18.4.2 Java Code .. 203

18.5 Raising events .. 204
18.6 Event handlers .. 205
18.7 Event filters .. 205

Chapter 19 Unique IDs .. 208
19.1 Overview .. 208
19.2 What are Unique IDs? .. 208
19.3 What are Unique IDs for? .. 208
19.4 Can I run out of Unique IDs? ... 209
19.5 When should I use Unique IDs? .. 209
19.6 When should I not use Unique IDs? .. 210
19.7 Should my keys be human-readable? .. 210
19.8 What if I require contiguous human-readable Unique IDs? 210
19.9 How do I use Unique IDs? ... 211
19.10 Range Aware Key Server ... 212

19.10.1 Overview ... 212
19.10.2 How does the Range Aware Key Server work? 212
19.10.3 Where is the Range Aware Key Server used? .. 213

Cúram Server Developer's Guide

vii

Appendix A Cúram Configuration Parameters .. 215
A.1 Overview ... 215
A.2 Bootstrap.properties .. 215

A.2.1 Database ... 215
A.2.2 Environment ... 219
A.2.3 Test ... 220
A.2.4 Custom ... 221

A.3 Application.prx - Dynamic properties .. 221
A.3.1 Environment ... 221
A.3.2 JMX .. 223
A.3.3 Test ... 225
A.3.4 Rules ... 225
A.3.5 IEG ... 226
A.3.6 Custom ... 227
A.3.7 Trace ... 227
A.3.8 Security .. 229
A.3.9 SMTP ... 229
A.3.10 XMLServer .. 230
A.3.11 Database ... 231
A.3.12 KeyServer ... 231
A.3.13 BatchLauncher ... 232
A.3.14 Workflow ... 234
A.3.15 CTM ... 234

A.4 Application.prx - Static properties .. 235
A.4.1 Custom ... 235
A.4.2 Security .. 236
A.4.3 Trace ... 237
A.4.4 Environment ... 237

A.5 Variable Property Settings .. 237
A.5.1 Transaction ... 237
A.5.2 Audit ... 238

Appendix B Infrastructure Auditing Settings .. 240
B.1 Default table-level-audit setting .. 240

Notices ... 258

Cúram Server Developer's Guide

viii

Chapter 1

Introduction

1.1 Introduction

The Server Development Environment (SDEJ) of IBM® Cúram Social Pro-
gram Management enables the development of high-quality, low-cost client
server applications through model driven generation. This generation facilit-
ates client-server development by taking a Unified Modeling Language
(UML) model and producing the following:

• Generated Java® code;

• Data Definition Language (DDL) describing the database entities in the
model, enabling instances of a database to be defined in a human and
machine readable form;

• Support for remote invocation

The Cúram Solution Architecture document provides an introduction to the
Cúram Generator and its outputs. While the fundamental elements of a serv-
er application are supplied by the Cúram Generator, certain custom coding
and configuration tasks must be performed.

The Cúram Security Handbook document should be referenced for all as-
pects of security that must be considered when developing and deploying a
Cúram enterprise application, e.g. authentication and authorization of users.

This document describes how to develop the custom code in Cúram server
applications, and how to build the resultant applications. It is a reference
guide that should be read by programmers wishing to develop custom code
for Cúram server applications using the SDEJ. It is not intended as an intro-
ductory document, or as guide on how to deploy a Cúram application on an
Application Server1 (this is described in the Cúram Deployment Guide for
the appropriate application server).

1

1.2 Content Summary

This guide provides details on a number of topics which can be grouped un-
der three main headings:

• Building and Configuring a Cúram Application

• SDEJ Development and Application Programming Interfaces

• Cúram Runtime Behavior

• Building and Configuring a Cúram Application

• Chapter 2, Directory Structure provides an introduction to the layout
of the application.

• Chapter 3, Build Files and Their Targets details the build support
provided.

• Chapter 4, Cúram Configuration Settings enumerates the various
configuration settings supported by the infrastructure.

• Chapter 5, Data Manager details the Data Manager—a tool that can
be used to create a database to support the Cúram application.

• Chapter 6, SQL Checker details the SQL Checker—a tool that can be
used to ensure the semantic and syntactic correctness of SQL which
has been hand-crafted by an Application Developer.

• SDEJ Development and Application Programming Interfaces

• Chapter 7, Eclipse describes relevant aspects of Eclipse usage, as
well as providing some tips and tricks.

• Chapter 8, Logging details the infrastructure support for the logging/
tracing of status and error information.

• Chapter 9, Using Exceptions details the infrastructure support for the
creation, tracing and display of exceptions.

• Chapter 10, Message and Code Table Files details the format of the
message files and code table files that are used within Cúram.

• Chapter 11, Specialized Readmulti Operations explains the usage of
Specialized Readmulti Operations which can be used to replace
standard readmulti operations with specialized processing.

• Chapter 12, Deprecation describes deprecation in Cúram: what it is,
how it can affect custom code, what it means for support and the as-
sociated build infrastructure that helps pinpoint custom artefact de-
pendencies on deprecated Cúram artefacts.

• Chapter 13, User Preferences describe how to define and use User

Cúram Server Developer's Guide

2

Preferences for a Cúram application.

• Cúram Runtime Behavior

• Chapter 14, Transaction Control details the aspects of Transaction
Control within a Cúram application that must be understood by a de-
veloper.

• Chapter 15, Transaction SQL Query Cache outlines the details of a
cache that can store the results of any SQL queries that do a SE-
LECT on a database table for the duration of the transaction in
which the operation was invoked.

• Chapter 16, Deferred Processing describes how to achieve deferred
processing in a Cúram application

• Chapter 17, Timer Bean describes the functionality that allows
timers to be defined to invoke client-visible methods at a specified
time.

• Chapter 18, Events and Event Handlers describes Events, a mechan-
ism for loosely-coupled parts of the Cúram application to commu-
nicate information about state changes in the system.

• Chapter 19, Unique IDs details the infrastructure support for Unique
Identifiers—numbers generated by the Cúram infrastructure for use
as unique database keys.

1.3 Overview of Compliant Development Artifact
Changes

Aside from your new custom development (e.g. adding message files, code
tables, events, etc.) you may also need to modify Cúram out-of-the-box
(OOTB). The following summarizes the range of compliant changes you
can make to the out-of-the-box Cúram development artifacts:

Type of Change Initial Artifact(s) Reference
Change an existing
message file

Message file (externalized
server informational,
warning, and error mes-
sages - .xml files in the
message directory)

Section 10.2, Message
Files

Remove an existing
message

Message file (externalized
server informational,
warning, and error mes-
sages - .xml files in the
message directory)

Section 10.2, Message
Files

Add additional loc- Message file (externalized Section 10.2.6, Localizing

Cúram Server Developer's Guide

3

Type of Change Initial Artifact(s) Reference
ale (i.e. language)
support to an exist-
ing message

server informational,
warning, and error mes-
sages - .xml files in the
message directory)

SDEJ Message Files

Change an existing
code table name

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3, Code Table
Files

Add a new code ta-
ble item into an ex-
isting code table

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3, Code Table
Files

Change the descrip-
tion of an existing
code table

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3, Code Table
Files

Disable an existing
code table item

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3, Code Table
Files

Remove an existing
code table item

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3, Code Table
Files

Add additional loc-
ale (i.e. language)
support to an exist-
ing code table

Code Table file (code
value pairs - .ctx files in
the codetable direct-
ory)

Section 10.3.6, Localizing
SDEJ Code Table Files

Add an event regis-
tration (to augment
Cúram OOTB func-
tionality

Event Definition file
(.evx files in the
events directory) &
Event Handler Registra-
tion file (hand-
ler_config.xml in
the events directory)

Chapter 18, Events and
Event Handlers

Disable an existing
event handler

Event Definition file
(.evx files in the
events directory) &
Event Handler Registra-
tion file (hand-
ler_config.xml in
the events directory)

Chapter 18, Events and
Event Handlers

Override an existing
user preference

User Preference file (De-
faultPrefer-

Section 13.2, User Prefer-
ences Definition

Cúram Server Developer's Guide

4

Type of Change Initial Artifact(s) Reference
ences.xml file in the
userpreferences dir-
ectory

Override an existing
application property

Application Property File
(Application.prx
file in the properties
directory)

Section 4.2.1, Applica-
tion.prx

Add initial, demo or
test data data (rows)
to an existing data-
base table

DMX File (script for pop-
ulating the database with
data - .dmx files in the
relevant data subdirect-
ory)

Section 5.4.2, Data Con-
tents DMX Files

Table 1.1 Cúram Development Artifact Compliant Changes

Cúram Server Developer's Guide

5

Notes
1IBM® WebSphere® Application Server and Oracle® WebLogic are the
supported application servers. For exact information on versions, please
refer to the Cúram Supported Prerequisites document.

Cúram Server Developer's Guide

6

Chapter 2

Directory Structure

2.1 Overview

The directory structure for the server side IBM Cúram Social Program Man-
agement application, and the underlying Server Development Environment
(SDEJ) are described in this chapter.

2.2 Application Components

2.2.1 Component Folders

The Cúram server application is organized into collections of artifacts called
components. Each component has its own folder below the
<EJBServer>/components folder. The core component is always
present. This contains all of the artifacts needed for the core functionality of
the Social Program Management Platform. The name of the component
folder is used as the name of the component.

2.2.2 Component Order

There can be any number of application components, but they are processed
in a strict component order. This order determines the priority that will be
given to artifacts that share the same name but appear in different compon-
ents. This is fundamental to the manner in which server artefacts are cus-
tomized.

The component order is defined by the SERVER_COMPONENT_ORDER en-
vironment variable. This is a comma-separated list of component names.
Use only commas; do not use spaces. You must place the component with
the highest-priority first in the list and continue in descending order of prior-
ity. The core component always has the lowest priority and is implicitly
assumed to be at the end of the list; you do not need to add it explicitly.

7

For example, setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to
artifacts in the MyComponentOne folder within
<EJBServer>/components, a lower priority to artifacts in the My-
ComponentTwo folder, and the lowest priority to artifacts in the core
folder. Any component folder not listed in the component order will not will
automatically be added to the end of the component order in alphabetical or-
der. If you do not set the component order at all, the default component or-
der will include all components in alphabetical order.

Localized Components

Localized components contains translated artifacts for the base components
and are of the format “<component name>_<locale>”. It is not necessary for
these to be added to the SERVER_COMPONENT_ORDER environment vari-
able as the tooling that processes this environment variable will prepend any
available components that match entries in the SERVER_LOCALE_LIST
environment variable. Localized components are matched both on complete
locale entry and on the two-character, lower-case language code. Localized
components are prepended before the base component in the complete com-
ponent order.

2.3 Application Directory Structure

Two aspects of the Cúram application directory structure are described; the
structure related to the source artefacts associated with an application, and
the resultant structure when the application is built.

2.3.1 Source Artefacts of the Cúram Application

Example 2.1, Cúram Application Structure shows the directory structure for
the source artefacts of a Cúram application project i.e. the structure prior to
performing a build. Table 2.1, Cúram Application Installation Structure de-
scribes each directory within the directory structure in more detail.

Example 2.1, Cúram Application Structure includes the SERVER_DIR,
ProjectPackage and CodePackage as place holders.

• The SERVER_DIR is the root of the server directory structure; the loca-
tion of the EJBServer directory within the Cúram application.

• The ProjectPackage is a global setting, set at build time. It is set to
Cúram in the reference application which is shipped with Cúram.

• The CodePackage is based on a model setting which is described in
the Cúram Modeling Reference Guide. It allows individual components
to be scoped within their own logical packages. Any number of Code
Packages may be nested inside each other.

Cúram Server Developer's Guide

8

SERVER_DIR
+ project

+ config
+ properties

+ components
+ core
+ codetable
+ data
+ doc
+ events
+ lib
+ message
+ model
+ properties
+ rulesets
+ sample
+ webservices
+ workflow
+ wsdl

+ custom
+ source

+ <Project Package>
+ impl

+ <Code Package>
+ impl

+ wsdl
+ build.bat
+ build.sh
+ build.xml
+ buildhelp.bat
+ deprecationreport.xml
+ .classpath
+ .project

Example 2.1 Cúram Application Structure

Name Contents
project A top level directory containing all information

that is relevant to the entire project rather than
specific components.

project/config Configuration information related to the
project, including top level configuration files
for the data manager and web services con-
nector.

project/properties Properties that relate to the project as a whole.

components Each project is made up of a number of com-
ponents. This directory is simply a place holder
for those components.

components/core A pre-defined component which is used by all
other components.

components/core/codetable Codetable XML (ctx) files created by the de-
veloper are kept here. These files are used to
define codetables for a Cúram application. The
outputs produced from a codetable file consist
of an SQL script to populate the code table in
the database, and a Java® file which provides
the necessary constants to the application. See

Cúram Server Developer's Guide

9

Name Contents
Chapter 10, Message and Code Table Files for
more information

components/core/data The Data Manager for this component.

components/core/doc The JavaDoc for this component.

components/core/events Event XML (evx) files created by the de-
veloper are kept here. These files are used to
define event classes and event types for a
Cúram application. The outputs produced from
an event file consist of an SQL script to popu-
late the event class and event type tables in the
database, and a Java file which provides the
necessary constants to the application. See
Chapter 18, Events and Event Handlers for
more information

components/core/lib Contains the built component code packaged in
a jar e.g. core.jar.

Additionally, any third-party jar files specified
here will automatically be included in the
classpath used during compilation or a Batch
Launcher run. Files listed here will also be ad-
ded to any EAR (Enterprise ARchive) file cre-
ated and an entry added to the manifest file to
reference this file.

components/core/message Message (.xml) files created by the developer
are stored here. The Java artefacts produced
from a message file are a Java file and a prop-
erties file. See Chapter 10, Message and Code
Table Files for more information

components/core/model The elements of a Cúram application UML
model that relate to this component are avail-
able here.

components/
core/properties

The component specific Application property
definitions are stored here.

components/core/rulesets Rules (.xml) files created by the developer
are stored here. These files may be hand-
crafted or created via an online client (Rules
Editor). The Cúram Rules Editor Guide de-
scribes how to create these files and the Cúram
Rules Definition Guide explains ruleset struc-
ture in some detail.

components/core/sample An optional directory containing a zip file of a
set of sample java source files matching the
component built code within the lib directory.
Used for debugging or reference,

Cúram Server Developer's Guide

10

Name Contents
components/
core/webservices

An optional directory containing the .xsd
schema files that are referenced by web ser-
vices in this component.

components/core/workflow Workflow process definition (.xml) files cre-
ated by the developer are stored here. These
files may be hand-crafted or created via an on-
line client (Process Definition Tool). The
Cúram Workflow Reference Guide describes
these files in some detail.

components/core/wsdl An optional directory containing the .wsdl
(Web Service Description Language) files that
are invoked from this component. A WSDL
description can be spread over several files that
reference each other possibly in some arbitrary
directory structure. These references can be re-
solved as long as they are relative

components/custom Any number of new components may be ad-
ded. They all have the same structure as the
core component.

components/custom/source All handcrafted Java source code, produced by
the developer, is located here.

build.bat, build.sh A command file that builds your project. This
wraps the build.xml file (an Apache Ant
build file) that is contained within the EJB-
Server. The build structure and use of this
file is described in Chapter 3, Build Files and
Their Targets

build.xml An Ant build file that extends the SDEJ build
scripts to enhance a number of targets.

deprecationreport.xml An Ant build file that provides deprecation re-
porting.

buildhelp.bat A command file that displays project help.
This wraps the build.xml file. The use of
this file is described in Chapter 3, Build Files
and Their Targets.

Table 2.1 Cúram Application Installation Structure

2.3.2 Cúram Application Build Structure

This section describes the directory structure created when a Cúram applica-
tion is built. Example 2.2, The Cúram Application Build Structure presents
the new directories that are created during the build process while Table 2.2,
Build Directory Structure gives more details on the contents of each direct-

Cúram Server Developer's Guide

11

ory.

SERVER_DIR
+ build

+ datamanager
+ ear
+ WAS
+ WLS

+ jar
+ sqlcheck
+ svr
+ cls
+ codetable

+ cls
+ gen
+ scp
+ sql

+ events
+ cls
+ gen
+ scp

+ gen
+ message

+ cls
+ gen
+ scp

+ webservices
+ workflow
+ wsc
+ wsc2

+ buildlogs

Example 2.2 The Cúram Application Build Structure

Name Contents
build/datamanager Contains intermediate files produced by the

Data Manager and the resulting merge dmx
files from the initial, demo and test directories.
The Data Manager creates the intermediate
files when translating the database independent
files into a format which can be loaded onto
the database. Five database dependent .sql
files are produced as well as one database inde-
pendent .xml file which is responsible for
loading the Large OBjects (LOBs) onto the
database.

build/ear/WAS The .ear file produced for WebSphere Ap-
plication Server.

build/ear/WLS The .ear file produced for WebLogic.

build/jar Jar files created by the command line project
build.

build/sqlcheck A database dependent sqlj file which con-
tains a subset of the dynamic SQL statements
from the model and the inserts from the Data
Manager collated together.

build/svr All build artefacts for the server side.

build/svr/cls All of the compiled class files for the applica-

Cúram Server Developer's Guide

12

Name Contents
tion.

build/svr/gen Generated server side sources.

build/svr/gen/ddl Database independent definition scripts that es-
tablish the structure of a Cúram server applica-
tion's database tables are generated into this
directory. Some intermediate files (including a
representation that is used to build to database
dependent sqlj file) are also generated into
this directory.

build/
svr/gen/<ProjectPackage>

Root of the generated server source code hier-
archy.

build/svr/gen/int Intermediate files produced during the build.

build/svr/codetable/cls The compiled codetable files.

build/svr/codetable/gen The generated codetable file artefacts.

build/svr/codetable/scp A copy of the results of merging the individual
codetable files according to the component or-
der (SERVER_COMPONENT_ORDER).

build/svr/events/cls The compiled event class and event type files.
These may be used as constants in the Cúram
application.

build/svr/events/gen The generated events file artefacts which in-
clude the .java files containing the event
class and event type constants and .dmx files
to be used to populate the event class and event
type tables on the database.

build/svr/events/scp A copy of the results of merging the individual
event files according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/message/cls The compiled message files.

build/svr/message/gen The generated message file artefacts.

build/svr/message/scp A copy of the results of merging the individual
message files according to the component or-
der (SERVER_COMPONENT_ORDER).

build/svr/webservices Compiled class files for the web service sup-
port elements of the application.

build/svr/workflow A copy of the results of determining the indi-
vidual workflow process definition files to be
loaded onto the database according to the com-
ponent order
(SERVER_COMPONENT_ORDER)
.

build/svr/wsc2 Compiled class files for the Apache Axis2-

Cúram Server Developer's Guide

13

Name Contents
generated client stubs for each registered out-
bound web service connector.

<app.xml> Extracted UML model contents, named as per
model.

buildlogs A log file is created each time a build is per-
formed and is stored here. This can be used to
investigate any problems with the build pro-
cess.

Table 2.2 Build Directory Structure

2.4 Artefacts of the SDEJ

Example 2.3, SDEJ Structure shows the directory structure of the SDEJ
when installation is complete, while Table 2.3, SDEJ Structure at Installa-
tion gives more details on the contents of each directory. The CURAMSDEJ
is the root of the directory structure; the name given to wherever the SDEJ
has been set up or installed.

CURAMSDEJ
+ bin
+ codetable
+ doc
+ drivers
+ ear
+ lib
+ message
+ rsa
+ scripts
+ util
+ xmlserver

Example 2.3 SDEJ Structure

Name Contents
bin This directory contains all Ant build scripts ne-

cessary to build, verify and configure a Cúram
application. The build.bat script file de-
livered with the Cúram application hooks into
this directory to invoke the build.xml file
contained here. Use of this file is described in
Chapter 3, Build Files and Their Targets

codetable This directory contains the set of codetable
files shipped by the SDEJ. These files use the
file extension .itx. Each of these files can be
customized, see Section 10.3.6, Localizing
SDEJ Code Table Files for more details.

doc This directory contains the JavaDoc shipped

Cúram Server Developer's Guide

14

Name Contents
with the SDEJ.

drivers This directory contains the drivers used by the
SDEJ to access the database.

ear This directory contains the deployment
descriptors and templates necessary to build
application ear (Enterprise Archive) files for
the chosen application server.

lib This directory contains the compiled SDEJ
source, Third Party JAR files, XML schemas
and stylesheets necessary to fulfill all SDEJ
functionality.

message This directory contains the set of message files
shipped with the SDEJ. Unlike the Cúram ap-
plication message files these infrastructure
message files use the file extension .iml.
Each of the files can be customized, See Sec-
tion 10.2.6, Localizing SDEJ Message Files for
more details.

rsa This directory contains the Eclipse plugin arte-
facts used to provide Cúram functionality in
IBM® Rational® Software Architect. See the
Working with the Cúram Model in Rational
Software Architect for more details.

scripts This directory contains the database independ-
ent XML files necessary to create the database
required by the SDEJ.

util This directory contains useful utilities shipped
with the SDEJ.

xmlserver This directory contains the artefacts and build
scripts necessary to run the xmlserver. See
Cúram XML Infrastructure Guide for more in-
formation

Table 2.3 SDEJ Structure at Installation

Cúram Server Developer's Guide

15

Chapter 3

Build Files and Their Targets

3.1 Overview

The IBM Cúram Social Program Management Server Development Envir-
onment (SDEJ) uses Ant to process its build files. These Ant build files are
located in the /bin directory of the SDEJ. The build files are invoked
through build.bat and buildhelp.bat.

This chapter explains how to build a Cúram application once it has been in-
stalled, and the optional parameters which can be provided when performing
a build.

3.2 Performing the Build

Invoking buildhelp at the command line (in SERVER_DIR) will show
all available targets. A single build target is required to build the Cúram ap-
plication out-of-the-box for development. The user should:

• Start a command prompt and change directory to the top level of the
Cúram project; the SERVER_DIR.

• Set up any environment variables that were not set as system properties
during the installation process as described in the Cúram Third Party
Tools Installation Guide (e.g., JAVA_HOME, J2EE_JAR and
ANT_HOME).

• Set up SERVER_DIR to point to the top level of your Cúram project.

• Set up SERVER_MODEL_NAME to be the name of your Cúram project.

• Type build server and hit return to invoke this build target.

Invoking buildhelp at the command line (in SERVER_DIR) will show
all available targets. A single build target is required to build the Cúram ap-
plication out of the box for development. The user should:

16

3.3 Overriding default JUNIT JAR

The junit.jar file is set by default relative to the JUNIT_HOME envir-
onment variable, e.g. ${sysenv.JUNIT_HOME}/junit.jar. To
override the location/naming of the junit.jar file, a new system prop-
erty JUNIT_JAR is available for this purpose. If the JUNIT_JAR system
property is set, this will take precedence over the default. An example of its
usage (e.g. Microsoft® Windows): set
JUNIT_JAR=c:\junit-4.8.jar

3.4 Configuring the Build

This section describes the optional parameters that can be provided when
building the Cúram application.

3.4.1 Cúram Build Settings

A number of parameters may be passed when performing the build. They
should be passed in the following way build server -
Dsome.setting=somevalue. These parameters are:

Parameter Values Description
dir.sde directory name The name of the directory contain-

ing the installed SDEJ that you want
to use for this build. The default is
the directory referred to by the
CURAMSDEJ environment variable.

prp.loglevel info

warn

error

verbose

debug

The logging level used when record-
ing build progress to the build log.
The default is info.

prop.file.location directory name Override the location of the direct-
ory that is used to pick up the prop-
erty files. By default the
<ProjectName>/properties
directory is used.

prp.maxcodetable
codelength

number Override the maximum length of a
code table code. This is used for
validation of codetables during gen-
eration, where it is desired to ensure
that the code length defined in the
codetables being generated do not
exceed the length specified. This is

Cúram Server Developer's Guide

17

Parameter Values Description
to ensure, you catch errors before
entering codetables onto the data-
base. This does not override the
maximum length on the database *.

prp.maxcodetable
namelength

number Override the maximum length of a
code table name. This is used for
validation of codetables during gen-
eration, where it is desired to ensure
that the name length defined in the
codetables being generated do not
exceed the length specified. This is
to ensure, you catch errors before
entering codetables onto the data-
base. This does not override the
maximum length on the database *.

prp.maxcodetable
descriptionlength

number Override the maximum length of a
code table description. This is
used for validation of codetables
during generation, where it is de-
sired to ensure that the description
length defined in the codetables be-
ing generated do not exceed the
length specified. This is to ensure,
you catch errors before entering
codetables onto the database. This
does not override the maximum
length on the database *.

prp.warningstoerr
ors

true

false

Indicates that warnings thrown
when extracting and generating
from the model, code table and mes-
sage files should be treated as errors
(an error typically terminates the
process). The default is false.

prp.forcegen “-force:modelgen” Indicates that the build should pro-
gress even if errors are found when
generating code from the model.
The default is that this should not
occur.

This means that if this flag is set and
errors are found during generation,
the build is not interrupted after the
modelgen build target is executed.
Once this target is complete it will
eventually pass onto the com-
pile.generated target. See Sec-

Cúram Server Developer's Guide

18

Parameter Values Description
tion 3.5, What is happening under
the hood? for more details.

Note: The errors are still reported.

prp.noninternedst
rings

true

false

Indicates whether code table arte-
facts should be generated with
strings which will not be interned.
This is described in more detail in
Section 3.5.1.5, ctgen. The default is
true.

curam.using.dbcs true

false

Should be set if the Cúram model
contains DBCS (Double Byte Char-
acter Set) characters. If defined the
Cúram application model is first
processed by the utility native2ascii.
The Model Extractor then uses this
new reworked model to produce
<project>.xml file. If this property is
not specified the Model Extractor
takes original model file as its input.

curam.using.nona
scii

true

false

Should be set if the Cúram model
contains non ascii characters. If
defined the application model is first
processed by the utility native2ascii.
The Model Extractor then uses this
new reworked model to produce
<project>.xml file. If this property is
not specified the Model Extractor
takes original model file as its input.

ex-
tra.generator.opti
ons

String Specifies additional command line
parameters for the server code gen-
erator. These settings are described
in Section 3.4.4, Generator Settings.

portabil-
ity.warnings

BUILD,

DMX

Specifies whether the SQL Checker
should determine if the build is port-
able to other database platforms and
whether the Data Manager files are
valid. The default is to check all of
these.

enablefacade true

false

Specifies that the build should gen-
erate the session beans and their
corresponding deployment artefacts
for model elements identified as
facades. The default is false
which means they will not be gener-
ated.

Cúram Server Developer's Guide

19

Parameter Values Description
prp.genschemaval
idation

true

false

Indicates that the .xml file produced
by the model extractor will be valid-
ated against a schema when it is be-
ing parsed and used by the code
generator to generate the application
code. The default is false.

Table 3.1 Build Configuration Settings

Database update for code table property changes

The relevant database column lengths must be altered to support the
changes made by using the prp.maxcodetablecodelength,
prp.maxcodetablenamelength, or prp.maxcodetabledescriptionlength
properties.

The columns should be altered using the Data Manager. In each case
a handcrafted SQL script that alters the relevant column's length
should be added to the custom database scripts folder. This script
should then be added as an entry to the dataman-
ager_config.xml file before loading the code tables into the
database. Please refer to Chapter 5, Data Manager for further in-
formation on using the Data Manager.

3.4.2 Java Compiler Settings

The following parameters may be passed when performing the build and
control the behavior of the Java compiler. They should be passed in the fol-
lowing way build server -Dcmp.debug=on. These settings are:

Parameter Values Description
cmp.debug on

off

Indicates whether the source should
be compiled with debug informa-
tion. The default is on.

cmp.maxmemory Number The maximum size of the memory
for the underlying VM. The default
is 768.

cmp.nowarn on

off

Indicates whether the -nowarn
switch should be passed to the com-
piler. The default is off.

cmp.maxwarnings Number Asks the compiler to set the maxim-
um number of warnings to print.
The default is 10000.

cmp.optimize on

off

Indicates whether source should be
compiled with optimization The de-
fault is off.

Cúram Server Developer's Guide

20

Parameter Values Description
cmp.deprecation on

off

Indicates whether source should be
compiled with deprecation informa-
tion. The default is off.

cmp.verbose true

false

Asks the compiler for verbose out-
put. The default is false.

cmp.include.AntRunt
ime

yes

no

Indicates whether the Ant run-time
libraries should be included on the
classpath. The default is yes.

cmp.include.JavaRun
time

yes

no

Indicates whether the default run-
time libraries, from the executing
VM (Virtual Memory), should be
included on the classpath. The de-
fault is no.

cmp.failonerror true

false

Indicates whether the build will con-
tinue even if there are compilation
errors. The default is true.

cmp.listfiles yes

no

Indicates whether the source files to
be compiled will be listed. The de-
fault is no.

PRE_CLASSPATH Filename An environment variable to allow
jar files to be added to the start of
the classpath used during compila-
tion or a Batch Launcher run. Files
listed here will be added to any
EAR (Enterprise ARchive) file cre-
ated and an entry added to the mani-
fest file to reference this file. Files
should be separated with the relev-
ant Path separator for your operating
system.

POST_CLASSPATH Filename An environment variable to allow
jar files to be added to the end of the
classpath used during compilation
or a Batch Launcher run. Files listed
here will be added to any EAR file
created and an entry added to the
manifest file to reference this file.
Files should be separated with the
relevant Path separator for your op-
erating system.

Table 3.2 Java Compiler Settings

3.4.3 Java Task Settings

Cúram Server Developer's Guide

21

The following parameters may be passed when performing the build and
control the behavior of the Java runtime used by the build scripts. They
should be passed in the following way build server -Djava.fork=true.
These settings are:

Parameter Values Description
java.fork true

false

Specifies whether any external
classes are executed in another VM.
The default is true.

java.maxmemory Number The maximum size of the memory
to allocate to the forked VM. The
default is 768m.

java.failonerror true

false

Specifies whether the build process
should be stopped if an external java
command exits with a return code
other than 0. The default is true.

java.jvmargs String Specifies the arguments to pass to
the forked VM The default is the
empty string.

Table 3.3 Java Task Settings

3.4.4 Generator Settings

The following parameters may be passed when performing the build and
control the behavior of the Cúram Generator. These parameters should be
passed in the following way build server -Dex-
tra.generator.options=-setting1 -setting2.

These settings are:

Option Meaning
-nomessage <nnnnn> Prevent the message with this num-

ber from being displayed or acted
upon. Note that this can be used to
suppress errors which would nor-
mally cause the generator to termin-
ate. Doing so can cause the generator
to behave unpredictably or produce
code which cannot be built.

-primarykeyconstraintprefix
<prefix>

Specify a prefix to be applied to
primary key constraint names in
IBM® DB2® and Oracle®
Database. See the Cúram Modeling
Reference Guide for more details.

-primarykeyindexprefix <prefix> Specify a prefix to be applied to
primary key index names in DB2.

Cúram Server Developer's Guide

22

Option Meaning
See the Cúram Modeling Reference
Guide for more details.

-progresslevel <n> Specify the level of progress to be
reported by the generator.

-nonamedprimarykeyconstraint Specify that names should not be
provided for the primary keys. This
is off by default i.e. primary keys are
named. See the Cúram Modeling
Reference Guide for more details.

-nonamedforeignkeyconstraint Specify that names should not be
provided for the foreign keys. This is
off by default, i.e., foreign keys are
named. See the Cúram Modeling
Reference Guide for more details

Table 3.4 Generator Settings

3.4.5 Other Environment Settings

If you are building on Red Hat Linux you may get this error during compila-
tion:

unmappable character for encoding UTF8

This is due to an encoding mismatch between Windows and Linux and can
be worked around by setting the LANG environment variable as follows:

LANG=en_US.ISO-8859-1

3.5 What is happening under the hood?

While building the application is as simple as invoking the default target lis-
ted above, it is useful for the reader to understand the steps that are in-
volved. Each of these are ant targets which may be invoked separately:

3.5.1 generated

This target generates and compiles the code for use in an IDE and wraps the
following targets:

• wsconnector step generates client stub connectors for outbound web
services from .wsdl (WSDL is an acronym for Web Service Definition
Language) files registered in the configuration file,
<SERVER_DIR>/project/config/webservices_config.x
ml.

• wsconnector2 Generates client stub connectors for outbound Axis2 web

Cúram Server Developer's Guide

23

services from the registered WSDL files.

• emx2xml - this extracts an intermediate XML representation from a
Cúram application UML model.

• modelgen - this generates source code and other artefacts from the XML
representation of a Cúram application model. It also deletes any artefacts
that are no longer represented in the model.

• msggen - this merges the message file definitions according to the com-
ponent order and generates source code and properties from the resultant
message definitions.

• ctgen - this merges the code table definitions according to the compon-
ent order and generates source code from the resultant code table defini-
tions.

• evgen - this merges the event definitions according to the component or-
der and generates source code from the resultant event definitions.

• compile.generated - this compiles any generated source code that
doesn't depend on the impl directory.

wsconnector

The wsconnector step generates client stub connectors for outbound web
services from .wsdl files registered in the configuration file,
<SERVER_DIR>/project/config/webservices_config.xml.

An example is shown in Example 3.1, Example Web Services Configuration

<services>
<service location=

"components/<component_name>/wsdl/some_service/TopLevel.wsdl"
/>

</services>

Example 3.1 Example Web Services Configuration

The location attribute is the location of the top level WSDL file relative to
the SERVER_DIR. This configuration file also gives the ability to turn a
particular Web Service Connector on and off at will (bearing in mind that
business code that accesses the connector would be affected by this). It is
acceptable to have no service elements in this file.

The generated connector client stubs must not be treated as source. They are
intended to be overwritten during each build, based on the WSDL files
provided, to ensure the connectors are always synchronized with the web
services they represent.

emx2xml

The emx2xml step transforms the UML model (which is located in the
<SERVER_DIR>components/*/model directory) into an intermediate

Cúram Server Developer's Guide

24

XML representation. The intermediate representation is stored at the top
level of the directory tree.

modelgen

The modelgen step transforms the intermediate XML representation into
the final Java code, deployment support artefacts, web service support arte-
facts and a set of Data Definition XML files.

Data Definition XML Files

The Data Definition XML files are placed in the build/svr/gen/ddl
directory and are typically made up of a number of files:

• <SERVER_MODEL_NAME>_Tables.xml

• <SERVER_MODEL_NAME>_Indices.xml

• <SERVER_MODEL_NAME>_PrimaryKeys.xml

• <SERVER_MODEL_NAME>_UniqueConstraints.xml

• <SERVER_MODEL_NAME>_ForeignKeys.xml

• <SERVER_MODEL_NAME>_Batch.xml

• <SERVER_MODEL_NAME>_Fids.xml

• <SERVER_MODEL_NAME>_FieldsReturned.xml

• <SERVER_MODEL_NAME>_SQLJ.xml

The first five of these files contain database independent definitions for cre-
ating tables on the database and placing constraints on these tables.
<SERVER_MODEL_NAME>_Batch.xml describes the persistent data that
is necessary to support the batch process related information that has been
captured in the UML model. <SERVER_MODEL_NAME>_fid.xml de-
scribes the persistent data that is necessary to support the security related in-
formation that has been captured in the UML model.
<SERVER_MODEL_NAME>_FieldsReturned.xml describes the per-
sistent data that is necessary to support Field Level Security.
<SERVER_MODEL_NAME>_SQLJ.xml contains a representation of all
the hand-crafted SQL in the model and is used by the checksql target. More
information on the contents of these files is provided in Chapter 5, Data
Manager.

Foreign Keys and Cúram

The Cúram application is responsible for enforcing referential integ-
rity and foreign keys are generated to support testing of this. The use
of declarative referential integrity (foreign keys) in a production sys-
tem will impact the performance of that system and is consequently
not supported.

Cúram Server Developer's Guide

25

Java Code

A large number of Java code artefacts are generated as part of this model
generation build. They are generated according into a number of categories
(and are all located under the /
build/svr/gen/<ProjectPackage>/ and /
build/svr/gen/<ProjectPackage>/<CodePackage> director-
ies). A CodePackage may be empty or there may be a number of Code-
Package elements within each other (for example,
<ProjectPackage>/intf and
<ProjectPackage>/<CodePackageA>/<CodePackageB>/intf
may both be generated depending on the options that have been chosen).

• intf - Defines the interface for the objects that have been modeled.

• fact - Provides factory wrappers for the objects identified in bizinter-
face.

• base - Ensures the developer provides implementations for those meth-
ods which must be hand crafted.

• remote - Provides remote interfaces for the objects which can be ex-
posed to the client.

• struct - Defines the classes which model parameters between the ob-
jects.

• rules/rdo - Defines the classes for the rules data objects. RDOs
cannot be stored in code packages so the rules folder is always at the top
level. As well as the classes this directory contains a file named
rdoindex.properties which contains a listing of all the generated
objects.

Deployment Artefacts

A number of deployment artefacts are also generated by the model build.
This section does not attempt to detail the meaning of these files but simply
introduces the files and their locations. These artefacts are used when build-
ing an application .ear file where they are passed into the XDoclet tool.
They are generated according to the following categories:

• IBM Specific Metadata: provides support for deployment on Web-
Sphere Application Server. These artefacts are generated into the /
build/ear/WASdirectory and contain the necessary .xml, .xmi and
policy files.

• Oracle Specific Metadata: provides support for deployment on WebLo-
gic. These artefacts are generated into the /build/ear/WLS direct-
ory and contain the necessary .xml files.

Web Service Artefacts

Cúram Server Developer's Guide

26

Finally a number of Web Service artefacts are generated. This section does
not attempt to detail the meaning of these files but simply introduces the
files and their locations. These artefacts are used when building an .ear
file that supports Web Service invocation. The artefacts consist of special
structs which contain web service conversion routines and a web service
configuration file (server-config.wsdd) and are generated into the /
build/svr/gen/webservices directory.

msggen

Cúram message files allow a Cúram application to be localized without
needing manipulation of hand-crafted code. These files should be used in
preference to hard-coded strings within hand-crafted code.

Message files are located in the /message directory of a component. The
Social Program Management Platform is shipped with a set of message
files. These files may be overridden by placing new message files in the
SERVER_DIR/components/<custom> directory, where <custom>
is any new directory created under components that conforms to the same
directory structure as components/core. The override process involves
merging all message files of the same name according to a precedence order
where the order is based on the SERVER_COMPONENT_ORDER environ-
ment variable. This variable lists the components in a delimited list in order
of priority from most to least important.

The msggen build target performs the merge of message files and then
translates the resultant merged message file (which is stored in /
build/svr/message/scp directory) into Java source code and prop-
erty files so it can be accessed at runtime.

The generated Java code is then compiled and packed into /
build/jar/messages.jar.

ctgen

Cúram code table files allow an application to use a level of indirection
when storing commonly used constants on the database. This level of indir-
ection enables efficient database storage. Codetable files are located in the
source/codetable directory of a component. Like message files, code
table files are shipped with the Social Program Management Platform and
may be customized through the merge behavior.

The ctgen build target merges Cúram code table (.ctx) files and then
translates the resultant merged code table file (which is stored in /
build/svr/codetable/scp directory) into Java source code and
SQL files which are used to return codes from the database at runtime.

The prp.noninternedstrings parameter indicates whether code ta-
ble artefacts should be generated with strings that are not interned. The use
of interned strings in Java avoids the creation of duplicate
java.lang.String objects. Consequently memory usage may be re-
duced as there will be only one String object created for a string value, ir-

Cúram Server Developer's Guide

27

respective of how many references to that string value exist.

Note

The default value for this property is true. Setting
prp.noninternedstrings to false means that strings will
be interned. Although this may result in decreased memory usage by
the final application, dependency checking will operate incorrectly
when .ctx files are changed.

The generated Java code is then compiled and packed into /
build/jar/codetable.jar.

evgen

Events provide a mechanism for loosely-coupled parts of a Cúram applica-
tion to communicate information about state changes in the system. When
one module in the application raises an event, one or more other modules re-
ceive notification of that event having occurred provided they are registered
as listeners for that event. Event files are located in the events directory of
a component.

The evgen build target merges Cúram event (.evx) files and then translates
the resultant merged event file (which is stored in /
build/svr/events/scp directory) into Java source code which can be
subsequently used as constants in the application and also .dmx files which
are used to populate the event class and event type database tables.

The generated Java code is then compiled and packed into /
build/jar/events.jar.

compile.generated

The compile.generated target compiles any generated source code that
doesn't depend on the impl directory. This includes the classes with the
following patterns from the build/svr/gen directory:
/struct//*.java
/intf//*.java
<Project Package>/*.java

This step uses an augmented version of Ant's dependency checker to minim-
ize the build time.

3.5.2 implemented

This target completes the build and wraps the following targets:

• compile.implemented - this compiles all hand-crafted source code and
any generated code that wasn't built during the compile.generated step.
Again this step uses an augmented version of Ant's dependency checker
to minimize the build time.

compile.implemented

Cúram Server Developer's Guide

28

The compile.implemented step simply compiles all hand-crafted source
code and any generated code that wasn't built during the compile.generated
step. This includes the classes with the following patterns from the build/
svr/gen directory:
/base//*.java
/fact//*.java
**/rules/loaders/*.java
**/rules/rdo/*.java
/remote//*.java

From the components/*/source directory -
/impl//*.java
**/rules/loaders/*.java
/webservice//*.java

3.6 Extra Targets

A number of extra targets are provided which are not necessary to build a
server. Some of the more useful targets are listed below:

• clean - Delete all the generated and compiled files to ensure all gener-
ated and compiled artefacts are removed and the next build is fresh and
clean. It is useful to periodically perform clean builds because of limita-
tions in the dependency checker provided by Ant.

• encrypt - Encrypt a plain-text database password so the encrypted pass-
word can be safely stored in a property file. None of the Cúram property
files contain plain-text passwords so the passwords contained within
them are automatically decrypted.

• database - This transforms the database independent xml files into DDL
files and places the contents of these DDL files on the database. The
database target also provides support for applying rule sets to the data-
base (more detail on this is provided in Section 3.8, Rules Targets).

• mergeshortnames - Merges file ShortNames.properties from
all components

• extractdata - This extracts the contents of all or some of the tables on
the database and transforms them into database independent XML files.
More detail on this target is provided in Chapter 5, Data Manager.

• reloadextracteddata - This reloads data that was extracted using the ex-
tractdata command back onto the database.

• checksql - This validates the hand-crafted SQL and test data against the
actual database. If this step is not run syntactical (and semantic) mis-
takes in hand-crafted SQL will not be determined until run-time because
of the dynamic nature of JDBC (Java Database Connectivity)1. This step
operates by producing an SQLJ file and completely relies on the syntax
checking provided by the particular database. The checksql target uses
the output that is built during the database target. So it is a pre-requisite

Cúram Server Developer's Guide

29

to have run database target before running checksql. Any errors that are
discovered while running the checksql target are logged to the console
and to a timestamped log file in the buildlogs directory. More detail on
this target is provided in Chapter 6, SQL Checker.

• deprecationreport - The command-line Java compiler deprecation
warnings have been extended to apply to certain Cúram builds and val-
idations. This helps to quickly pinpoint where custom dependencies ex-
ist on deprecated out-of-the-box artefacts. This target combines all the
Cúram builds and validations that support deprecation warnings. As
such, the build output from this target provides a comprehensive over-
view of all deprecation warnings for all supported builds (server and cli-
ent builds, workflow validations, rules validations, etc). Please note that
this target starts with a clean (as the Java compiler does not produce
warnings for incremental builds). See Chapter 12, Deprecation for more
information.

• foreignkeycheck - In a production environment it is not desirable to en-
able foreign keys on the database because of the result performance de-
gradation. As a result it is possible for referential integrity to be violated
as a result of program bugs or manual intervention by a Database Ad-
ministrator. This target validates that the Referential Integrity has not
been violated. It performs this task by loading the generated foreign key
constraints for the application and verifying that for each child record of
each foreign key the referenced parent key exists. The key values of any
missing parent key records are reported.

• test - Execute the tests associated with the application.

• If Clover is available a code coverage report can also be generated.
More details on the usage of Clover are available in Section 3.7,
Clover Targets.

• The JUnit forkmode controls the number of Java Virtual Machines
that gets created if you want to fork some tests; and it can be set dy-
namically by specifying junit.fork.mode property, while ex-
ecuting the test target.

For Example:

build test -Djunit.fork.mode=once

Possible values for this property are:

perTest - creates only a single JavJava VM for all tests.

perBatch - creates a Java VM for each nested batch test and one
collecting all nested tests.

once - creates only a single Java VM for all tests.

Default value of perTest is used if junit.fork.mode property
is not set.

Cúram Server Developer's Guide

30

• It is possible to exclude or include set of tests while running the
test target. To Exclude/Include tests, copy the Exclude-
Tests.txt or IncludeTests.txt file located in the
CuramSDEJ\util\ directory. This new file can then be modified
to add the tests that you want to exclude or include and can be refer-
ence using the property override.

For Example:

build test
-Dexclude.test.file=<PATH_TO_THE_FILE>\ExcludeTests.txt

build test
-Dinclude.test.file=<PATH_TO_THE_FILE>\IncludeTests.txt

• configtest - Examine the current environment to ensure that the various
environment settings and property files have been established correctly.
This tool attempts to diagnose any problems in the environment which
would be an impact. It checks the validity of the:

• versions of third party tools including Java® SE Runtime Environ-
ment (JRE), Ant, application server and database.

• Bootstrap.properties including properties
curam.db.name or curam.db.oracle.servicename,
curam.environment.bindings.location,
curam.db.username, curam.db.password and
curam.db.type

• database connectivity by attempting to connect to the database de-
scribed by properties in Bootstrap.properties and ensures it
is a valid database.

• database configuration e.g. DB2 buffer pools and tablespaces, Or-
acle privileges for the Cúram user

• application server variables: WAS_HOME and WLS_HOME dependen-
cies are also checked i.e. if using WebSphere the IBM® JDK and
IBM® Java EE must be used.

• Ant variables i.e. ANT_HOME and ANT_OPTS

• server and client environment variables

• configreport - Create a config_report.zip file containing all the
relevant settings and software versions on the machine. This can be used
if remote support is required.

• javadoc - Produce the Java Documentation (JavaDoc) from the applica-
tion. To produce useful JavaDoc, comments must have been placed in
the model as well as in the code.

Cúram Server Developer's Guide

31

• apijavadoc - Generates the javadoc for black/grey box components, this
is based on the javadoc.properties files.

• release - Gathers all the files together that are necessary to run Cúram
on another machine in the <SERVER_DIR>/release directory. This
target is used when building for a target platform (e.g. building on Win-
dows for deployment on IBM® z/OS®) or moving the application
between machines. On moving the release directory to another machine
a Bootstrap.properties and AppServer.properties prop-
erty files must be placed in a release/project/properties dir-
ectory and the following environment variables must be set: SERV-
ER_DIR must point at the release directory, SERVER_MODEL_NAME
must be set to the name of the application model, and CURAMSDEJ must
be set to the location of the SDEJ before any of the scripts can be used.
The SERVER_COMPONENT_ORDER environment variable must be set
on your target environment where you plan to work with the resulting
release directory, and this value must be the same as the value used in
your source environment. The files that are copied are:

• Ant Build files;

• Project jars;

• DDL files;

• SQL files;

• Code Tables files;

• Batch Launcher;

• Data Manager;

• Application EAR files.

• XML Server files.

• insertproperties - Merges all the properties (.prx) files defined under
the properties directory for each of the application's components,
and inserts them into the database. See Section 4.2, Application Proper-
ties for more details.

• extractproperties - Extracts the properties from the database, and stores
them into a database independent prx file. The generated prx file is
stored at <SERVER_DIR>/build/propertiesextractor/

• mergeuserpreferenceproperties - Merge the user preference properties
files.

• model - Extract the model and generate source code and other artefacts
from the XML representation of a Cúram application. The model target
combines the modelext and modelgen targets.

• runbatch - Runs the Batch Launcher. For more information refer to the

Cúram Server Developer's Guide

32

Cúram Batch Processing Guide.

• runstatistics - Runs statistics for the database. For more information
refer to Section 5.8, Statistics.

• supplement - Compiles and jars all the Java files contained within any
supplementary directory specified by the -Dsupple-
ment=<DIRECTORY_NAME> parameter. A
<DIRECTORY_NAME>.jar file will be created and stored in the
<SERVER_DIR>/build/jar/ directory.

• police.access.restrictions - Provides a report of accesses to restricted
APIs within the Cúram application. The APIs that are restricted are
marked by annotations within the Javadoc and indicate areas that should
not be accessed by custom code. This policing tool highlights any code
that accesses restricted APIs and out-of-the-box code containing a re-
stricted annotation. During development these restrictions are further
backed by the non-delivery of sample Java files, Eclipse access restric-
tions and that there is no JavaDoc available.

3.7 Clover Targets

Clover is a code coverage tool that can easily be integrated into the Cúram
build environment. A number of Ant targets are provided to aid in the integ-
ration of Clover. For these targets to work correctly the clover.jar and
clover.license files must be obtained and installed in the
<ANT_HOME>/lib directory. More information on obtaining and using
Clover can be found at http://www.atlassian.com/software/clover/overview.

• clover.server - This is the equivalent of the server target and also in-
cludes instrumenting the compiled .java files with the necessary
Clover information.

• clover.supplement - This is the equivalent of the supplement target and
also includes instrumenting the compiled .java files with the neces-
sary Clover information.

• clover.report.html - This target will generate a html report detailing
code coverage. The report is generated into the
<SERVER_DIR>/clover/clover_html folder.

• clover.report.viewer - This target will launch the Clover viewer with
details of the code coverage.

3.8 Rules Targets

The Cúram Rules Codification Guide and the Cúram Rules Editor Guide
provide an introduction to the support for rules in Cúram. A rule set is the
fundamental structure which describes the rules within a Cúram application.
It is the database that is the system of record for rule sets. This allows the

Cúram Server Developer's Guide

33

http://www.atlassian.com/software/clover/overview

rule sets to be changed at run-time via an administration client. However,
support is also provided for representing rule sets as .xml files. These
.xml files can be used for source control management. To allow for the
synchronization between these .xml files and the database a number of ex-
tra targets have been introduced:

Representing Rulesets as XML Files

Support for ruleset import and export is only there to allow source
control management and to exchange rulesets between machines.
Direct editing of the ruleset XML files is not supported in any way.

• listrulesets - Produce a listing of the names and identifiers of the rule-
sets that are present on the database.

• exportruleset - This target exports a ruleset definition (.xml file) from
database to the file system. This command takes two parameters - rule-
setid and component. Exported ruleset will be saved as [specified rule-
setid].xml in <SERVER_DIR>/components/[specified com-
ponent]/rulesets folder.

rulesetid- Identifier of the ruleset that is to be exported from the
database.

component- Name of the component to which the rule set has to be
exported (copied).

For example:

build exportruleset
-Drulesetid=PRODUCT_1
-Dcomponent=custom

Where 'PRODUCT_1' denotes the identifier of the ruleset that is to be
exported from the database and 'core' denotes the name of the compon-
ent to which the rule set has to be exported (copied).

• importruleset - This target imports a ruleset definition (.xml file) from
a file system to the database. It validates the rule set ID for uniqueness
before importing the rule set, it does this by searching for existing IDs in
the SERVER_DIR/components/../rulesets directories. This
command takes two parameters- ruleset.file and overwrite.

ruleset.file - This parameter denotes the path of the ruleset that is
to be placed on the database.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the ruleset already exists.

For example:

build importruleset
-Druleset.file=

<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
-Doverwrite=true

Cúram Server Developer's Guide

34

Where
<SERVER_DIR>/components/core/rulesets/PRODUCT_1.
xml denotes the path of the ruleset definition file and #true# denotes the
flag to overwrite the database, if ruleset already exists.

• validateallrulesets - Validates all the rule sets in the Cúram application.
This target has to be invoked from the SERVER_DIR directory, where it
scans all the components for rule set files and validates them. For
schema validation this target uses the rule set schema located in
CURAMSDEJ/lib directory by default, unless another schema is spe-
cified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER_DIR/components/../rulesets dir-
ectories.

schema.file (Optional) - This optional parameter specifies the
rule set schema that has to be used for validating the rule sets.

For example:

ant validateallrulesets

ant validateallrulesets
-Dschema.file=C:/Rules/ruleset.xsd

• validaterulesets - Validates all the rule sets in the specified directory.
The property 'rulesets.dir' has to be specified when invoking the target.
For schema validation this target uses the rule set schema located in
CURAMSDEJ/lib directory by default, unless another schema is spe-
cified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER_DIR/components/../rulesets dir-
ectories.

schema.file (Optional) - This optional parameter specifies the
rule set schema that has to be used for validating the rule sets.

rulesets.dir - This parameter specifies the directory within which
rule sets are to be validated.

For example:

ant validaterulesets
-Drulesets.dir=

<SERVER_DIR>/components/core

ant validaterulesets
-Drulesets.dir=

<SERVER_DIR>/components/core
-Dschema.file=C:/Rules/ruleset.xsd

• validateruleset - Validates the specified rule set. The property 'rule-
set.file' that denotes the rule set path and file name has to be specified
when invoking the target. For schema validation this target uses the rule
set schema located in CURAMSDEJ/lib directory by default, unless

Cúram Server Developer's Guide

35

another schema is specified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for ex-
isting IDs in the SERVER_DIR/components/../rulesets dir-
ectories.

schema.file (Optional) - This optional parameter specifies the
rule set schema that has to be used for validating the rule set.

ruleset.file - This parameter specifies the rule set path and file
name.

For example:

ant validateruleset
-Drulesets.file=
<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml

ant validateruleset
-Drulesets.file=

<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
-Dschema.file=C:/Rules/ruleset.xsd

• rulesfunctionsmerge - Merge rules custom function meta-data from
.xml files.

3.9 Classic IEG Targets

The Classic Intelligent Evidence Gathering Guide provides an introduction
to scripts and question groups within Classic IEG. The database can be pop-
ulated by using the Classic IEG editor to define these scripts. However, sup-
port is also provided for representing the groups and scripts as xml data. Al-
though the files are consistent with well and fully formed xml, the file ex-
tensions are modified to denote the contents as script (.sx) and question
group(.gx). These xml data files can be created and manipulated directly to
allow for the synchronization between these files, and the database. A num-
ber of extra targets have been introduced to enable this:

• importieg - This target imports all IEG files in a specified directory to
the database. This command takes two parameters - directory and over-
write.

directory - This parameter denotes the directory from which IEG
scripts and question groups are imported.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if an imported script or group already exists.

For example:

build importieg
-Ddirectory=

<SERVER_DIR>/components/core/ieg
-Doverwrite=true

Cúram Server Developer's Guide

36

Where <SERVER_DIR>/components/core/ieg denotes the path
to the import directory and #true# denotes the flag to overwrite the data-
base if a file already exists.

• importiegscript - This target imports an IEG script from a file system to
the database. This command takes two parameters - IEG file and over-
write.

ieg.file - This parameter denotes the full path of the IEG script to
be imported.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the script already exists.

For example:

build importiegscript
-Dieg.file=

<SERVER_DIR>/components/core/ieg/PRODUCT_1.sx
-Doverwrite=true

Where
<SERVER_DIR>/components/core/ieg/PRODUCT_1.sx de-
notes the path of the script definition file and 'true' denotes the flag to
overwrite the database if the question script already exists.

• importiegcomponent - This target imports all IEG data (IEG scripts
and question groups) from the ieg subdirectory of a specified compon-
ent to the database. This command takes two parameters - component
and overwrite.

component - This parameter denotes the component from which to
import all IEG data to the database.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the IEG data already exists.

For example:

build importiegcomponent
-Dcomponent=core
-Doverwrite=true

Where core denotes the path of the component and 'true' denotes the
flag to overwrite the database if the question script already exists.

• importiegsubdirs - This target imports all IEG data (IEG scripts and
question groups) from the ieg subdirectory of subdirectories of a spe-
cified directory to the database. This command takes two parameters -
directory and overwrite. This target is used when it is required to import
IEG data from multiple components.

Cúram Server Developer's Guide

37

directory - This parameter denotes the directory whose subdirector-
ies will be searched for IEG data to import to the database.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the IEG data already exists.

For example:

build importiegsubdirs
-Ddirectory=<SERVER_DIR>/components
-Doverwrite=true

Where <SERVER_DIR>/components denotes the path of the direct-
ory and 'true' denotes the flag to overwrite the database if the IEG data
already exists.

• importquestiongroup - This target imports an IEG question group from
a file system to the database. This command takes two parameters - IEG
file and overwrite.

ieg.file - This parameter denotes the full path of the IEG question
group to be imported.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if IEG import data already exists.

For example:
build importquestiongroup

-Dieg.file=
<SERVER_DIR>/components/core/ieg/PRODUCT_1.gx

-Doverwrite=true

Where
<SERVER_DIR>/components/core/ieg/PRODUCT_1.gx de-
notes the path of the question group definition file and #true# denotes
the flag to overwrite the database, if the question group already exists.

• exportiegscript - This target exports a script definition (.sx file) from a
database to the file system. This command takes two parameters - script-
id and component. Exported scripts will be saved and named as
[specified rulesetid].sx in the
<SERVER_DIR>/components/[specified compon-
ent]/ieg folder.

scriptid- Identifier of the script that is to be exported from the data-
base.

component- Name of the component to which the script has to be ex-
ported (copied).

For example:

Cúram Server Developer's Guide

38

build exportiegscript
-Dscriptid=PRODUCT_1
-Dcomponent=core

Where 'PRODUCT_1' denotes the identifier of the script that is to be ex-
ported from the database and 'core' denotes the name of the component
to which the script has to be exported (copied).

• exportiegscripttodir - This target exports a script definition (.sx file)
from a database to the file system. This command takes two parameters -
scriptid and exportdirectory. Exported scripts will be saved and named
as [specified rulesetid].sx in the specified export directory.

scriptid- Identifier of the script that is to be exported from the data-
base.

exportdirectory- Full path of the directory to which the script has
to be exported (copied).

For example:

build exportiegscripttodir
-Dscriptid=PRODUCT_1
-Dexportdirectory=C:/exportedscripts

Where 'PRODUCT_1' denotes the identifier of the script that is to be ex-
ported from the database and 'C:/exportedscripts' denotes path to the dir-
ectory to which the script has to be exported (copied).

• exportfulliegscript - This target exports a specific script definition (.sx
file) and its associated group definitions(.gx files) from the database to
the file system. If any of the files exported are read only, a warning will
be reported and the file will not be overwritten. The exportfulliegscript
command takes two parameters - scriptid and component. The exported
script is named as [specified scriptid].sx and the associated question
groups are saved and named as [associated questiongroupid].gx in the
<SERVER_DIR>/components/[specified compon-
ent]/ieg folder.

scriptid- Identifier of the script that is to be exported from the data-
base.

component- Name of the component to which the script has to be ex-
ported (copied).

For example:

build exportiegscript
-Dscriptid=PRODUCT_1
-Dcomponent=core

Where 'PRODUCT_1' denotes the identifier of the script that is to be ex-
ported from the database and 'core' denotes the name of the component
to which the script and its associated question groups has to be exported

Cúram Server Developer's Guide

39

(copied).

• exportfulliegscripttodir - This target exports a specific script definition
(.sx file) and its associated group definitions(.gx files) from the database
to the file system. If any of the files exported are read only, a warning
will be reported and the file will not be overwritten. The exportful-
liegscripttodir command takes two parameters - scriptid and exportdir-
ectory. The exported script is named as [specified scriptid].sx and the as-
sociated question groups are saved and named as [associated question-
groupid].gx in the specified export directory.

scriptid- Identifier of the script that is to be exported from the data-
base.

exportdirectory- Full path of the directory to which the script has
to be exported (copied).

For example:

build exportfulliegscripttodir
-Dscriptid=PRODUCT_1
-Dexportdirectory=C:/exportedscripts

Where 'PRODUCT_1' denotes the identifier of the script that is to be ex-
ported from the database and 'C:/exportedscripts' denotes the path to the
directory to which the script and its associated question groups has to be
exported (copied).

• exportquestiongroup - This target exports a question group definition
(.gx file) from database to the file system. This command takes two
parameters - groupid and component. Exported question groups will be
saved as [specified rulesetid].gx in
<SERVER_DIR>/components/[specified compon-
ent]/ieg folder.

groupid- Identifier of the question group that is to be exported from
the database.

component- Name of the component to which the rule set has to be
exported (copied).

For example:
build exportquestiongroup

-Dgroupid=PRODUCT_1
-Dcomponent=core

Where 'PRODUCT_1' denotes the identifier of the question group that is
to be exported from the database and 'core' denotes the name of the com-
ponent to which the question group has to be exported (copied).

• listiegscripts - Produces a list of all the IEG scripts available in the data-
base.

• listquestiongroups - Produces a list of all the question groups available

Cúram Server Developer's Guide

40

in the database.

• migrateiegscript - Migrate a Classic IEG script definition to an IEG2
script definition (use -Dscriptfilename= -Dinputdir= -Doutputdir=).

scriptfilename - denotes the name of the file to import.

inputdir - denotes the directory to import from.

outputdir - denotes the directory to write the migrated script to.

• validatealliegscripts - Validates the IEG scripts.

3.10 IEG2 Targets

• validateieg2scripts - Validates the IEG2 scripts in the specified direct-
ory. Requires IntelligentEvidenceGathering component to run.

3.11 Application Configuration Import and Export Tar-
gets

The application configuration information for the Cúram web client is
stored as a series of XML and properties files in the server source directory.
It is merged and loaded into the database at build time from where it is read
by the client tier at run time.

The rules for merging are as follows:

• Files in the clientapps directory take precedence over files in the
tab directory, regardless of component order. E.g: if a file named
CaseHome.nav exists in the clientapps directory of any compon-
ent of the application, then any files named CaseHome.nav which ex-
ist in the tab directory of any component are ignored.

• Files in the clientapps directory are selected (not merged) based on
the component order. E.g: if a file name CaseHome.nav exists in the
clientapps directory of components Custom1 and Custom2, and
Custom1 is ahead of Custom2 in the component order, then the version
of CaseHome.nav from Custom1 is used and the version from Cus-
tom2 is ignored.

• Files in the tab directory are merged according to the component order
- provided that a corresponding file in a clientapps directory does
not exist. E.g: if a file named SearchTab.nav exists in the tab dir-
ectory of components CustomA and CustomB, but not in the cli-
entapps directory of any component, then the contents of the two files
are merged together.

Note

Note that only OOTB Cúram components may use the tab dir-

Cúram Server Developer's Guide

41

ectory to store application configuration files; this directory may
not be used by custom components. Custom components may
use only the clientapps directory for application configura-
tion files.

One target controls the import and export of application configuration to and
from the database:

inserttabconfiguration

Merges application configuration files from disk and inserts the data into the
database. The default action of this target is to insert the application config-
uration data onto the database but it can also be used to:

• Merge the application configuration files and write the merged files to a
directory on disk.

If property dir.tab.merge is set then it denotes a directory into
which the application configuration files from the various components
of your application will be merged. In this mode, nothing is written to
the database. E.g: build inserttabconfiguration -
Ddir.tab.merge=C:/EJBServer/tabExtract

• Extract the application configuration data from the database and write it
to a directory on disk.

If property dir.tab.extract is set then it denotes a directory into
which the application configuration data from the database will be ex-
tracted. In this mode the application configuration data is read from the
database and nothing is written to the database. E.g: build inserttabcon-
figuration -Ddir.tab.extract=C:/EJBServer/tabExtract

3.12 Workflow Targets

The Cúram Workflow Reference Guide provides an introduction to the sup-
port for workflow in Cúram. A workflow process definition is the funda-
mental structure which describes the workflow process within a Cúram ap-
plication. Workflow process definitions are stored on the database, but can
also be represented as .xml files and loaded onto the database as needed. A
number of targets exist to allow for the validation of workflow process
definition .xml files:

Prerequisites for validating workflow process definition
files

Workflow process definitions can make reference to rule sets (see
Cúram Rules Codification Guide) and Cúram events (See
Chapter 18, Events and Event Handlers) in the process xml files.
Therefore, all rule sets and events that are referenced in workflow
process definitions being validated must already be loaded onto the
database before the associated workflow process definition files can
be validated using the targets outlined below.

Cúram Server Developer's Guide

42

• validateworkflows - supports validation of the workflow process defini-
tion files in the specified directory. The property 'workflow.dir' has to be
specified when invoking the target.

workflow.dir - This parameter denotes the directory within which
workflow process definition files are to be validated.

validate.schema.only - This optional parameter, if set to true,
only performs schema validation on the workflow xml files and by-
passes the full semantic validation that would otherwise be performed.

For example:

ant validateworkflows
-Dworkflow.dir=

<SERVER_DIR>/path to workflow directory

• validateallworkflows - performs validation of all workflow process
definitions files in the Cúram application.

validate.schema.only - This optional parameter, if set to true,
only performs schema validation on the workflow xml files and by-
passes the full semantic validation that would otherwise be performed.

For example:

ant validateallworkflows

• validateworkflow - supports validation of the specified workflow pro-
cess definition file. The property 'workflow.file' has to be specified
when invoking this target.

workflow.file - This parameter denotes the full path to the work-
flow process definition file that is to be validated.

validate.schema.only - This optional parameter, if set to true,
only performs schema validation on the workflow xml file and bypasses
the full semantic validation that would otherwise be performed.

For example:

ant validateworkflow
-Dworkflow.file=

<SERVER_DIR>/path to workflow file to be validated

• importworkflow - Import a workflow process definition (use -
Dworkflow.file= -Doverwrite=).

workflow.file - This parameter denotes the full path to the work-
flow process definition file that is to be imported.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the workflow process definition already exists.

• importworkflows - Import the workflow definitions in the specified dir-
ectory (use -Dworkflow.dir= -Doverwrite=).

Cúram Server Developer's Guide

43

workflow.dir - This parameter denotes the directory from which the
workflow definitions should be imported.

overwrite (Optional) - This is an optional flag with the default
value as false, indicating whether the database should be overwritten
if the workflow process definitions already exist.

• listworkflows - List all process definitions available in the database.

3.13 Deployment Targets

A number of extra targets exist which allow an application to be deployed
on an application server. These commands are fully described in the Cúram
Deployment Guide2, but a summary is provided here.

• weblogicEAR - Produce an .ear file that can be deployed on WebLo-
gic.

• websphereEAR - Produce an .ear file that can be deployed on Web-
Sphere Application Server.

• weblogicHelpEAR - Produce an Online Help application Curam-
Help.ear file that can be deployed on WebLogic.

• websphereHelpEAR - Produce an Online Help application Curam-
Help.ear file that can be deployed on WebSphere Application Server.

• weblogicWebServices - Produce an .ear file that can be deployed on
WebLogic that supports Web Services invocation.

• websphereWebServices - Produce an .ear file that can be deployed
on WebSphere that supports Web Services invocation.

• weblogicEARGSS - Build GSS ear for WebLogic

• websphereEARGSS - Build GSS ear for WebSphere Application Server

• configure - Automatically configures the application server.

• installapp - Installs and starts a specified EJB application. (Note: the
EAR file (Curam.ear) containing the server module must be deployed
before installing any other (client-only) EAR files.)

• precompilejsp - Precompiles all JSPs in the specified .ear file.

• prepare.application.data - Must be run after the database target is run
and before starting the application server for the first time. Failing to run
this sequence will likely result in transaction timeouts during first login
and a failure to initialize and access the application. Whenever the data-
base target is rerun (e.g. in a development environment) this target must
also be rerun.

• startserver - Starts an application server.

Cúram Server Developer's Guide

44

• restartserver - Restarts an application server.

• stopserver - Stops an application server.

• uninstallapp - Stops and uninstalls the specified EJB application.

3.14 Extending the Build

This section describes how Ant can be used to introduce new targets, en-
hance existing targets or override OOTB build targets.

This is achieved by creating a script hierarchy using Ant's import task and
can be seen in the OOTB application. Examples include the build.xml
files found in the webclient and EJBServer directories that extend,
through an import, the build.xml files from the CuramCDEJ and
CuramSDEJ directories respectively.

The delivered build.bat or .sh files invoke Ant against the web-
client or EJBServer build.xml. This allows for these build.xml
files to introduce new targets not available in the scripts delivered in the
CDEJ and SDEJ. It also allows these targets to be enhanced as required due
to the principal of the import task, which is that "If a target in the
main file is also present in at least one of the
imported files, the one from the main file takes
precedence".

3.14.1 Introducing a new script

The following section details the steps to create a new top level script which
can be used to introduce new targets, enhance existing targets or override
OOTB build targets.

Two Environment variables CDEJ_BUILDFILE and SDEJ_BUILDFILE
are used to control the script that is invoked by the build.bat or .sh
files. A new script can be invoked by setting the appropriate environment
variable. For example:

Introducing a new server script:
SDEJ_BUILDFILE=%SERVER_DIR%/components/custom/scripts/build.xml

This script must then import it's parent in the hierarchy EJBServ-
er\build.xml, for example:

<?xml version="1.0" encoding="UTF-8"?>
<project name="custom">

<!-- Relative path to EJBServer\build.xml -->
<import file="./../../../../build.xml"/>

</project>

Cúram Server Developer's Guide

45

New targets can then be added to the script as required. These targets can
also utilize existing targets or properties in the inherited script hierarchy.

To enhance or override an existing target the same target name is chosen as
that which is being enhanced or overriden. When enhancing a target, the ex-
isting target is then either added as a dependency of the new target or in-
voked during a point in the new target. The previous target's name used is
formed from the project name of the script where the target being en-
hanced exists. For example:

Enhancing the database target, where the project name of the SDEJ
script containing the database target is app_database.

Before target usage:

<target name="database" >
<!-- Some further processing before the SDEJ database target -->
...
<antcall target="app_database.database"/>

</target>

After target usage:

<target name="database" depends="app_database.database">
<!-- Some further processing after the SDEJ database target -->
...

</target>

Example 3.2 Before/After Target usage

Ant Target API

Only targets that are documented i.e. those visible through the -
projecthelp for a script should be enhanced, overriden or invoked.
Other targets are considered internal are subject to change without
notice.

3.15 Overridden Targets

Some targets in the SDEJ are overridden by application build scripts. Such
targets appear in the report produced by the -projecthelp command quali-
fied by the SDEJ sub project name such as app_auxiliary, serverbuild, etc.
Only the unqualified version of these targets should be used, otherwise the
target may not work correctly. E.g. always use weblogicEAR instead of
serverbuild.weblogicEAR.

This applies to the following targets:

• app_auxiliary.ctgen

• app_auxiliary.msggen

• app_runtimewas.configure

Cúram Server Developer's Guide

46

• serverbuild.clean

• serverbuild.generated

• serverbuild.implemented

• serverbuild.model

• serverbuild.release

• serverbuild.weblogicEAR

• serverbuild.websphereEAR

3.16 Application Targets

This section lists targets which are available in the OOTB application and
which are displayed when the -projecthelp command is given.

3.16.1 BI App

• biapp.BIRTViewerEARs - Builds deployable EAR files for Web-
Sphere and WebLogic

• biapp.configure.birtviewer - Configures the Cúram Business Intelli-
gence and Reporting Tools (BIRT) Viewer application (use -
Dserver.name= -Dear.file= -Dapplication.name=)

server.name - The name of the server to deploy the application onto.

application.name - The name of the BIRT Viewer application.

• biapp.release - Copies BIRT build files required to run
biapp.configure.birtviewer (post install step for WebSphere)

3.16.2 CREOLE

• creole.check.initial.database - Checks the structure of rule set XML
data uploaded from DMX files and runs lax validation.

• creole.compile.test.classes - Compiles the test classes generated from
the CREOLE rule sets.

• creole.consolidate.resource - Consolidates together resource bundles
for CREOLE rule sets.

• creole.consolidate.rulesets - Inlines any included CREOLE rule sets
and consolidates the rule sets into one build directory.

• creole.copyresourceto.cls - Copies resource files for CREOLE rule sets
into the build\svr\cls directory.

• creole.generate.catalog - Generates an XML catalog file for CREOLE

Cúram Server Developer's Guide

47

rule sets.

• creole.generate.ruledoc - Generates rule documentation for all
CREOLE rule sets.

• creole.generate.schema - Generates an XML schema file for CREOLE
rule sets.

• creole.generate.test.classes - Generates test classes from the CREOLE
rule sets.

• creole.report.coverage - Reports CREOLE rule set coverage informa-
tion gathered from CREOLE rule executions.

• creole.report.unused.attributes - Reports CREOLE rule attributes
which are not used directly by any other rule attributes.

• creole.upload.rulesets - Uploads new CREOLE rule sets and/or
changes to existing CREOLE rule sets to the database.

• creole.validate.rulesets - Performs full validation of all CREOLE rule
sets.

3.16.3 Evidence Generation

• egtools.assign.resourceID - Allocate resourceID values for the Create
Wizard AppResource.dmx.

• egtools.clean - Calls on the EG Tool to delete all generated components.

• egtools.client.clean - Calls on the EG Tool to delete all generated client
evidence screens on the product.

• egtools.client.generate - Generate target for client evidence generation.

• egtools.generate - Main generate target for evidence generator. Gener-
ates all evidence components.

• egtools.server.clean - Calls on the EG Tool to delete all generated com-
ponents on the server.

• egtools.server.generate - Generate target for server evidence genera-
tion.

• egtools.wizard.dmx - Generate target for creation of AppResource.dmx
for Create Wizard pages.

• post.modelgen - Calls on the EG Tool to perform any steps required
after the modelgen.

• add.rootnode.to.appresource.dmx - APPRESOURCE.dmx gets appen-
ded to by each product's evidence generation. This adds the root node 'ta-
ble'.

• add.rootnode.to.initialappresource.dmx - INITIALAPPRE-

Cúram Server Developer's Guide

48

SOURCE.dmx gets appended to by each product's evidence generation.
This adds a root node to make a valid xml file.

• add.rootnode.to.products.xml - Product.xml gets appended to by each
product's evidence generation. This adds the root node 'products'.

• build.all.component.dirs - Builds all components.

• build.all.evidence.dirs - Builds all evidence directories.

• build.evidencebroker.resources - Builds the evidencebroker resources
for domains and labels.

• call.egtools.transformer - Calls on the XSLT transformer.

• generate.resolve.scripts - Calls any XSLT transformations that require
the cross products summary defined in Products.xml.

• makedir - Creates directory structure for an evidenceEntities.xml file in
the EJBServer/build folder if none exists. Should only be necessary if an
appbuild clean has been performed.

Cúram Server Developer's Guide

49

Notes
1JDBC (Java Database Connectivity) is part of the Java Development Kit
which defines an application programming interface for Java for standard
SQL access to databases from Java programs.
2For your particular application server, i.e. WebSphere and WebLogic. The
deployment guides are named Cúram Deployment Guide for WebSphere Ap-
plication Server, Cúram Deployment Guide for WebSphere Application
Server on z/OS, and Cúram Deployment Guide for WebLogic Server.

Cúram Server Developer's Guide

50

Chapter 4

Cúram Configuration Settings

4.1 Overview

This chapter details the environment variables that can be set in your IBM
Cúram Social Program Management environment.

4.2 Application Properties

This section describes the property files associated with developing or run-
ning a Cúram application.

4.2.1 Application.prx

The Application.prx contains the properties used when running a
Cúram application. The properties contained in this file are loaded to the
database during the build database target and at runtime are cached from
the database for use by the Application. An Application.prx can be
loaded separately via the build insertproperties target.

The properties defined in Application.prx can be dynamic or static.
Dynamic properties will have effect immediately if changed and published
using the administration interface during runtime. Modifying static proper-
ties will have no effect until a restart of the server is performed.

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_ultra_verbose</value>
<default-value>trace_ultra_verbose</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="US">

<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
</locales>

51

</property>

Example 4.1 PRX Entry

The file is organized as follows:

Property Element
There is a property element for each property used.

Name Attribute
Attribute specifying the name of the property.

Dynamic Attribute
Indicator as to whether a change to the property value will require
an Application restart.

Type Element
Refers to a code entry on the codetable DomainType.

Value Element
The property value.

Default-Value Element
The default value of a property used when properties are reset.

Category Element
Refers to a code entry on the codetable
EnvPropertyCategory.

Locales Element
Contains one or more locale specific elements for the display name
and description.

Language Attribute
Language Code for this locale specific entry.

Country Attribute
(Optional) Country Code for this locale specific entry.

Display Name Element
Locale specific display name for the property.

Description Element
Locale specific entry for the property.

Merging an Application prx File

Prx files are located in the /properties directory of a component and
the root /project/properties directory. The Social Program Man-
agement Platform is shipped with a set of prx files. These may be overrid-
den by placing new prx files in the SERV-
ER_DIR/components/<custom>/properties directory, where

Cúram Server Developer's Guide

52

<custom> is any new directory created under components that conforms to
the same directory structure as components/core. This mechanism
avoids the need to make changes directly to the out-of-the-box application,
which would complicate later upgrades.

This override process involves merging all prx files according to a preced-
ence order. The order is based on the SERVER_COMPONENT_ORDER en-
vironment variable. This environment variable contains a comma-separated
list of component names: the left most has the highest priority, and the right
most the lowest.

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Example 4.2 SERVER_COMPONENT_ORDER example

The order shows that the precedence of Appeal is higher than that of the
sample component. The core component always has the lowest priority
and as such does not need to be specified. Any components which are not
specified are placed alphabetically above core and below those which are
specified.

Note

After changing the component precedence order in SERV-
ER_COMPONENT_ORDER it is necessary to preform a re-insert of
the merged properties. This is done by invoking build insertprop-
erties.

When merging prx files, the components listed in the SERV-
ER_COMPONENT_ORDER are taken in order of highest to lowest priority.
In the above example the Application.prx file from the sample com-
ponent is merged with the Application.prx located in the core com-
ponent. The Application.prx from ISProduct is then merged into
the intermediate results and the merge process continues until the Applic-
ation.prx in the custom component is merged.

Rules of PRX Merges

PRX files are merged based on precedence order. As described above there
is always a more important main/source Application.prx file, and a
file which is being merged into it. The second file is called the merge file in
the following sections.

An Application.prx files can be customized by:

• Adding a property providing mandatory property values.

• Overriding an existing properties description.

• Overriding an existing properties display name.

• Override an existing properties value or default value.

• Adding a new locale to provide a new display name and description for

Cúram Server Developer's Guide

53

that locale.

• Removing a property by setting the property tag removed to be true.

An Application.prx files cannot be customized by:

• Changing an existing property name.

• Changing an existing properties type.

• Changing an existing properties category.

• Changing the static or dynamic setting of a property .

Duplicate property nodes will always be overwritten by the Applica-
tion.prx file in the component with the highest precedence order. The
main Application.prx example file below and the merge Applica-
tion.prx file below illustrate these rules:

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_ultra_verbose</value>
<default-value>trace_ultra_verbose</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="US">

<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
</locales>

</property>

Example 4.3 Sample main Application.prx file

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_off</value>
<default-value>trace_off</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="GB">

<display-name>New Trace Display Name</display-name>
<description>New Description</description>

</locale>
</locales>

</property>
<property name="property2" dynamic="true">

<type>STRING</type>
<value>value</value>
<default-value>default</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="GB">

<display-name>Display Name</display-name>
<description>Description</description>

</locale>
</locales>

</property>

Example 4.4 Sample merge Application.prx file

Cúram Server Developer's Guide

54

As a result of the merge process the new Application.prx produced
would be:

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_off</value>
<default-value>trace_off</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="US">

<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
<locale language="en" country="GB">

<display-name>New Trace Display Name</display-name>
<description>New Description</description>

</locale>
</locales>

</property>
<property name="property2" dynamic="true">

<type>STRING</type>
<value>value</value>
<default-value>default</default-value>
<category>CODETABLE</category>
<locales>
<locale language="en" country="GB">

<display-name>Display Name</display-name>
<description>Description</description>

</locale>
</locales>

</property>

Example 4.5 Resulting Application.prx File

4.2.2 Bootstrap.properties

The Bootstrap.properties file mainly contains the minimum set of
properties necessary for obtaining a connection to the database. These prop-
erties will generally have no effect if set in the Application.prx file
and are only picked up directly from the Bootstrap.properties file.

The Bootstrap.properties file may also contain properties that can
be defined in Application.prx file. If such a property is defined in the
Bootstrap.properties file and is a dynamic property, it can be over-
ridden by setting it on database using the administration interface.

Note

Properties defined in the following are cached: Applica-
tion.prx, Bootstrap.properties and Java System proper-
ties at runtime. Properties defined in Application.prx are
loaded into the database and can be updated at runtime using the ad-
ministration interface. A publish is required to rebuild the property
cache and allow the changes to take effect.

The property cache loads its contents with the following priority:

1. Java System properties,

Cúram Server Developer's Guide

55

2. Application.prx,

3. Bootstrap.properties;

For example, if a property is set in the Java System properties
(either via the Application Server or using
java.lang.System.setProperty()) and also in Applic-
curam.util.resources.Configuration.g
ation.prxetProperty(), the value of the property defined in
the Java System properties will always be returned when using the
Application.prx and Bootstrap.properties, the value
of the property in Application.prx is what will take effect.

Tnameserv Port
curam.environment.tnameserv.port=900
curam.environment.bindings.location=C:/Bindings

curam.db.username=db2admin
curam.db.password=wWw5UTMnFOe1SeCBEQy/Zg==
curam.db.type=DB2
curam.db.name=CURAM
curam.db.serverport=50000
curam.db.servername=localhost

property to specify Oracle service name.
curam.db.oracle.servicename=orcl.<host_name>

Properties specific to H2
Mode remote|embedded
curam.db.h2.mode=embedded
For remote mode also specify:
curam.db.serverport=9092
curam.db.servername=localhost
Lock Time Out in ms. Default is 1000, i.e. 1 second. (Optional)
curam.db.h2.locktimeout=20000
Property to disable MVCC. Default: true. (Optional)
curam.db.h2.mvcc=true

Example 4.6 Bootstrap.properties

An automatically generated version of Bootstrap.properties is
packed in the Enterprise Archive (EAR) when building the EAR file. This
file chooses it's properties from the default Bootstrap.properties
and is extended with extra properties relating to the Application Server be-
ing used.

curam.db.type=DB2
curam.environment.as.vendor=IBM

Example 4.7 Bootstrap.properties in an EAR file

Note

The EAR file cannot be built for H2 database. 1

4.3 Support for Multiple Time Zones

Cúram Server Developer's Guide

56

To enable multiple time zone support, the time zone ID must be specified
for each user in the user preferences.

Only DateTimes are processed and displayed in the user's preferred time
zone. Date only and Time only fields are not affected and for these fields it
is the responsibility of the business logic to ensure that the time zone is not
relevant. If the time zone is relevant then a DateTime field should be used.
An example of a date where the time zone is not relevant is someone's date
of birth; it doesn't vary no matter what time zone that person was born. An
example of a date where the time zone is relevant is the current date; this
will be different for two user's working either side of the international date
line, in this case a DateTime must be used.

The server's time zone is basically the underlying operating system's con-
figured time zone, however the server stores date/times in a time zone inde-
pendent manner, i.e the number of milliseconds since 1/1/1970 00:00 GMT
(also known as the epoch). It is the responsibility of the web tier to convert
all DateTimes passed to it from the server into the user's preferred time zone
and also to convert all DateTimes to be passed back to the server into milli-
seconds since the epoch.

The preferred time zone for each user is configured based on the time zone
ID specified in the user preferences for the particular user. The time zone ID
must conform to one of the time zones returned from the Java method
java.util.TimeZone.getAvailableIDs().

Some of the Java supported time zones returned by
java.util.TimeZone.getAvailableIDs() method are as listed
below:

• GMT+x ,where x can take value from 1 to 12.

• GMT-x ,where x can take value from 1 to 12.

• America/Chicago

• America/Mexico_City

• America/Indiana/Indianapolis

• America/New_York

• America/Los_Angeles

• Australia/Canberra

• Australia/North

• Australia/South

• Australia/West

• Australia/Adelaide

• Australia/Melbourne

Cúram Server Developer's Guide

57

• Australia/Brisbane

• Africa/Casablanca

• Africa/Johannesburg

• Brazil/West

• Canada/Pacific

• Canada/Saskatchewan

• Canada/Eastern

• Canada/Atlantic

• Canada/Central

• Canada/Eastern

• Europe/London

• Europe/Dublin

• Europe/London

• Europe/Paris

• Europe/Vatican

• Europe/Moscow

• Europe/Amsterdam

• Indian/Chagos

• Indian/Cocos

• NZ

• Pacific/Auckland

For information on server time zone configuration consult the Time Zone
Configuration chapter in the Cúram Deployment Guide for the appropriate
application server.

4.4 Dates and date/times in Cúram

This section describes the behavior of dates and date/times in Cúram.

Take a look at these examples:

• The server is in time zone "GMT". A user is in time zone "GMT -01".
At 15:00 GMT the user registers a new person, and the server-side pro-
cessing timestamps a resulting database record with the time 15:00.
Twenty seconds later the user performs a query and sees the timestamp
displayed in the client user interface as 14:00. The user's clock is show-

Cúram Server Developer's Guide

58

ing 14:00:20 - the new record's timestamp is twenty seconds in the past -
just what the user expected.

• The user registers a new case at 23:30 local time on 01-Jul-2003. The
server's local time is 00:30 on 02-Jul-2003, so it creates the case with a
case start date of 02-Jul-2003. The user immediately performs a query
on all cases registered on 01-Jul-2003. The newly registered case is not
found.

In the second example, the server processing which records the current date
as the case start date must convert from the current date (which is time zone
dependent) to some fixed value that will henceforth be taken as the case
start date. On the grounds of both simplicity and higher likelihood of meet-
ing requirements, the server's local date is recorded.

The basis for how dates and date/times are handled is as follows:

• Dates are processed and displayed in a time zone-independent manner.

• Date/times are processed and displayed in the user's preferred time zone.

• The time zone of the server is used when converting from a date/time to
a date (or vice versa).

The second issue was mentioned with an earlier example :- the fact that the
user, on performing a search for today's cases, fails to find a record just re-
gistered. What caused this situation is as follows:

• The user carried out a transaction just before midnight, local time, on
day 1. The server recorded a "start date" of day 2, based on converting
it's current local date/time to a date.

• The user requested a list of transactions with a start date of day 1. Be-
cause this is a date, not a date/time the server treats it in a time zone in-
dependent manner. The newly registered record does not match the
search criteria.

Searches on date/time ranges (such as the start/end of the user's local day)
are only feasible if the column being searched on is itself date/time. Users
will need to be aware that the current "business day" may not be the same
date as the date in their local time zone. Fortunately, such situations are
likely to be rare.

Cúram Server Developer's Guide

59

Notes
1For more information on H2 database consult the Cúram Third-Party Tools
Installation Guide for Windows.

Cúram Server Developer's Guide

60

Chapter 5

Data Manager

5.1 Overview

The Data Manager is a tool delivered as part of IBM Cúram Social Pro-
gram Management, which allows a developer to conveniently create a data-
base which contains a set of initial and/or test data. It is based around data-
base independent .xml files so any setup done by a developer can be ap-
plied to any of the supported databases.

5.2 Intended Data Manager Process

The Data Manager is intended to provide assistance as part of an overall
process for initial database creation. At a high level, that process includes
the following three main steps:

1. Create the database, tablespaces and so on.

2. Use the Data Manager to create tables and complete initial data load-
ing.

3. DBA tasks to complete database creation such as handcrafting scripts
to tune the tables (ALTER) and set constraints.

The aim of the Data Manager is to help establish a skeletal database. Sub-
sequently a DBA can then write handcrafted scripts to complete the data-
base by modifying tables and settings such as LOCKSIZE or BUFFER-
POOL.

Note

The SQL generated by the Data Manager is not intended to replace
the role of a DBA. It is expected that there would be site-specific
tweaking required in order to achieve production readiness.

A DBA would not be expected to manipulate the Cúram model to

61

define extra entity options such as LOCKSIZE, BUFFERPOOL,
and so on, in order for the desired SQL to be generated. This is due
to a number of factors. The modeling tooling is designed to be un-
aware of the final deployment environment, and DBAs would not be
expected to have the skill-sets for using the modeling environment.

The Data Manager is not intended to be used to upgrade an existing
database; it exists simply to reset the database to a known state.

5.2.1 Planning for MBCS Data

The use of multi-byte character set (MBCS) data with Oracle, DB2, or
IBM® DB2® for z/OS® has specific database considerations, which are
covered in the Cúram Third-Party Tools Installation Guide for Windows
and Cúram Third-Party Tools Installation Guide for UNIX. However, for
MBCS support with DB2 or DB2 for z/OS specific Curam configuration is
required, which impacts the behavior of the Data Manager.

Cúram support for MBCS data with DB2 and DB2 for z/OS is enabled out-
of-the-box to ensure error-free operation for users with languages requiring
MBCS data and for users who find they require MBCS data when copying/
pasting data from other applications. This support entails expanding the size
of string columns in the database because DB2 column sizes are based on
bytes, which is not necessarily the length required when MBCS data is used.
This is explained in more detail in the Cúram Third-Party Tools Installation
Guide for Windows and Cúram Third-Party Tools Installation Guide for
UNIX. However, these default expansion settings may not be appropriate for
those using only Western languages (i.e., SBCS data) and you should con-
sider disabling this support or, for MBCS data, reducing the default expan-
sion factor. Whether database expansion is applied by the Data Manager is
controlled by the curam.db.multibyte.expansion property in
Bootstrap.properties. The amount of expansion (a factor of 1.0 to
4.0) is set with the curam.db.multibyte.default.factor prop-
erty in Bootstrap.properties. These properties are described in Ap-
pendix A, Cúram Configuration Parameters.

To be 100% sure of no processing errors when processing MBCS data the
maximum expansion factor is the default out-of-the-box. However, for
many languages and data profiles it's unlikely that every database column
character would require MBCS data or that all characters would require the
maximum size of 4 bytes. Since there is a cost associated with using the
maximum expansion factor in terms of disk space used, network overhead,
memory utilization, buffer pool performance, CPU utilization, etc., it is best
to use an expansion factor that balances resource utilization and perform-
ance while avoiding or minimizing the possibility of application errors
caused by data overruns. There are no strict rules for achieving a balance
between resource utilization and the possibility of application errors; but,
some considerations can help you choose a reasonable expansion factor and
your testing should confirm your choice.

Depending on your language, locale, and encoding the number of required

Cúram Server Developer's Guide

62

MBCS characters will vary. For instance, if you are using English with only
a few special characters (e.g. smart quotes) you will require very little ex-
pansion. Or, if you are using a language that shares the Latin alphabet with
some additional characters (e.g. German) then you will need more space for
MBCS data. A language (e.g. Chinese) that utilizes characters at the higher
end of the Unicode range will require more space per character, which needs
to be tempered by the number of characters required per word; i.e., the lan-
guage may convey more information in each character than a typical Latin
alphabetic character. In other words, consider the average bytes required per
character, word, etc. Typically this average is only a rough estimate be-
cause, as studies have shown, character usage can vary depending on a num-
ber of factors; e.g. data context, data that is more numeric (phone numbers),
versus more textual data (names) and even free-form comments. So, some
additional safety factor should be considered in choosing your expansion
factor.

You also have the ability to control the expansion factor at a more fine-
grained level in the modeling environment by specifying the Multi-
byte_Expansion_Factor option for a string domain and/or entity
string attribute, which may be appropriate for your customizations. See the
Cúram Modeling Reference Guide for more information on setting these op-
tions. You may need to set these fine-grained expansions at this level due to
various limits within DB2 and DB2 for z/OS regarding the size of rows, in-
dexes, etc. that can be exceeded by large expansion factors (see the relevant
DB2 or DB2 for z/OS SQL reference for more information on these limits).

5.3 Invocation

The Data Manager is invoked by executing a build command of build
database.

DB2 development database optimization tip.

During iterative development with DB2 on distributed platforms the
dropping and creation of tables performed during the build data-
base target can be optimized to run quicker by running the script:

ant -f %CURAMSDEJ%\util\db2_optimizedbrecreation.xml

once per database. Internally this runs:

ALTER TABLESPACE USERSPACE1 DROPPED TABLE
RECOVERY OFF;

ALTER TABLESPACE CURAM_L DROPPED TABLE RE-
COVERY OFF;

This step should not be performed on a production database.

5.4 Database Artefacts

The Data Manager uses a number of generated and hand-crafted artefacts to

Cúram Server Developer's Guide

63

setup the database. This section introduces those artefacts. It does not de-
scribe the artefacts that are related rules as these are described in the Cúram
Rules Codification Guide.

5.4.1 Data Definition XML Files

These generated files were briefly introduced in Section 3.5, What is hap-
pening under the hood?. The .xml files describe the database tables and the
constraints that should be placed on them.

Example 5.1, Table Definitions, shows a sample table definition. An entity
can have any number of attribute elements. Not all elements will have
all the attributes (the size attribute is only present for strings and Large
Objects).

<entities>
<entity tablename="Fully qualified tablename"

<attribute ddltype="DD Type from the UML Model"
notnull="Indicator whether Nulls are allowed"
size="Size qualifier for the DDL Type"
/>

</entity>
</entities>

Example 5.1 Table Definitions

Example 5.2, Foreign Key Constraints, shows a sample foreign key con-
straint. There can be any number of key, association and foreign-
keypair elements.

Note

If foreign keys are applied to a DB2 for z/OS database by the Data
Manager manual intervention will be required to move the tables
from the check_pending state. Please consult with your local
Database Administrator (DBA) to resolve this.

<foreignkeys>
<key>
<association tablename="Local Table name"

othertablename="Remote table name"
>

<foreignkeypair localfield="Local field name"
remotefield="Remote field name"/>

</association>
</key>

</foreignkeys>

Example 5.2 Foreign Key Constraints

Example 5.3, Primary Key Constraints, shows a sample primary key con-
straint. There can be any number of key and attribute elements.

<primarykeys>
<key tablename="Fully qualified tablename">

<attribute keyname="Field name"/>
</key>

</primarykeys>

Cúram Server Developer's Guide

64

Example 5.3 Primary Key Constraints

Example 5.4, Index Constraints, shows a sample index constraint. There can
be any number of index and indexattribute elements.

<indices>
<index>

<indexdetails tablename="Fully qualified tablename"
indexname="Name for the Index" >

<indexattribute attribute="Field name"/>
</indexdetails>

</index>
</indices>

Example 5.4 Index Constraints

Example 5.5, Unique Constraints, shows a sample Unique Constraint. This
can have any number of constraint, association and attribute
elements as necessary.

<uniqueconstraints>
<constraint>

<association tablename="fully qualified tablename">
<attribute field="field name on table for constraint">

</association>
</constraint>

</uniqueconstraints>

Example 5.5 Unique Constraints

Example 5.6, Batch Metadata, shows a sample of the metadata that is gener-
ated to support the batch processes that have been modeled by the de-
veloper. There may be any number of batch processes which have any num-
ber of parameters.

<batches>
<batch process="Process Name"

operation="Operation Name"
application="Application Name"
>

<parameter name="Parameter name"
type="Domain Type"/>

</batch>
</batches>

Example 5.6 Batch Metadata

Example 5.7, Security Metadata, shows a sample of the metadata that is
generated to support the security that has been modeled by the developer.
There may be any number of function identifiers (FIDs).

<fids>
<fid

name="Function identifier name"
operation="Operation to allow access to"
fidenabled="Indicate whether enabled by default or not"
iswebservice="Indicate whether this is a web service"

/>
</fids>

Example 5.7 Security Metadata

Cúram Server Developer's Guide

65

Example 5.8, Field Level Security Metadata, shows a sample of the
metadata that is generated to support the field level security that has been
modeled by the developer. There may be any number of fields returned.

<fieldsreturned>
<fieldreturned
operationname="Function identifier name"
fieldname="Field name"
sidname="Associated SID"
/>

</fieldsreturned>

Example 5.8 Field Level Security Metadata

5.4.2 Data Contents DMX Files

As well as creating the tables on the database, the Data Manager allows the
developer to specify sample and test data which should be placed on the
database. The format of the .DMX file is introduced in Example 5.9, Data
Contents File. The developer will typically edit this file using a standard
XML editor.

<table name = fully qualified tablename>
<column name = column name

type = One of:
number
text
bool
id
blob
clob
date
timestamp

>
</column>
<row>

<attribute name = field name>
<value>Field value</value>

</attribute>
</row>

</table>

Example 5.9 Data Contents File

The Data Contents DMX file is made up of a number of elements described
in the following sections, some of these elements/attributes are necessary to
enable customization of DMX files, described in further detail in Sec-
tion 5.4.2.2, Customizing a DMX file.

The table Element

The <table> element has the following attributes:

Attribute
Name

Re-
quired

Default Description

name Yes None Specifies the name of the database
table.

Cúram Server Developer's Guide

66

Attribute
Name

Re-
quired

Default Description

override No false Used to customize or completely
override existing DMX files from
within a component lower down in
the
SERVER_COMPONENT_ORDER.

Table 5.1 Attributes of the table Element

The <column> Element

The <column> element has the following attributes:

Attribute
Name

Re-
quired

Default Description

name Yes None Specifies the name of the column.

type Yes None Specifies the data type of a column.
Table 5.6, Attribute Values describes
the type that a column can be set
to.

encoding No UTF-8 Specifies the clob data file encoding
type.Check Section 5.9, Lob Man-
ager.

Table 5.2 Attributes of the column Element

The <row> Element

The <row> element has the following attributes:

Attribute
Name

Re-
quired

Default Description

remove No false Enables the removal of a row from a
DMX file from within a component
lower down in the SERV-
ER_COMPONENT_ORDER.

locales No None If omitted, the row will be applicable
to all locales.

If present, this must be set to a
comma-separated list of locales en-
suring there are no spaces between
each locale. The following example
indicates the <row> is applicable
for the en and en_US locales:

Cúram Server Developer's Guide

67

Attribute
Name

Re-
quired

Default Description

<row locales="en,en_US">.

Table 5.3 Attributes of the row Element

The row element also encapsulates a collection of attribute elements.

The <attribute> Element

The <attribute> element has the following attribute:

Attribute
Name

Re-
quired

Default Description

name Yes None Specifies the name of the column.

encoding No UTF-8 Specifies the clob data file encoding
type.Check Section 5.9, Lob Man-
ager.

Table 5.4 Attributes of the attribute Element

Note

If the number of attributes defined for a row does not match the
number of columns defined the DMX processing will fail.

Note

Also, when processing DMX files, the name of each attribute is not
taken into account, the order is taken from the column definition at
the start of the file, therefore the ordering of the attributes should
match the ordering of the columns.

The attribute element has a required sub-element: value.
The <value> Element

The <value> element is the value to be inserted into the column for this
row. For a BLOB the value should be a pointer to a file. To be meaningful
the name attribute of the attribute element must take its value from one
of the column elements' name attributes within the same DMX file. Order-
ing is also important as when the database is being built, database columns
will be updated with content defined by the row elements in the order the
column elements are listed within the DMX file.

The <column> elements' type attribute determines the valid attrib-
ute values. Table 5.6, Attribute Values, describes the relation between the
column type and attribute value.

The <value> element has the following attributes:

Cúram Server Developer's Guide

68

Attribute
Name

Required Default Description

language No None The language attribute,
along with the country at-
tribute, make up the locale
for an <attribute> ele-
ment.

country No, but if the
language at-
tribute is spe-
cified this attrib-
ute must also be
specified.

None The country attribute,
along with the language
attribute, make up the locale
for an <attribute> ele-
ment.

Table 5.5 Attributes of the value Element

Important

The primary key/composite key for a record must never be localized
within the DMX file for that record. For example, if AddressID is
the primary key for the Address table, the AddressID value ele-
ment within the Address.DMX file must not be localized.

Column Type Attribute Value
number Value must be numeric.

text Value must be text or multi-line text.

bool Value must be TRUE or FALSE.

id Value must be numeric.

blob Value must be a relative path from the
DMX file to the blob file.

clob Value must be a relative path from the
DMX file to the clob file.

date Value must be a valid date or system date.
For system date, value must be represented
as SYSDATE.

timestamp Value must be a valid time or system time.
For system time, value must be represented
as SYSTIME.

Table 5.6 Attribute Values

Customizing a DMX file

The Data Manager processing allows for the customization of DMX files for
the initial, demo and test targets, Supported customizations include

Cúram Server Developer's Guide

69

the ability to add a row, update a row, remove a row, localize at a row/
attribute level and completely override a DMX file. This process allows for
DMX files that are shipped with the Cúram application to be easily custom-
ized by adding new DMX files to new components in the relevant directory.

The DMX files to be customized must be in the following directory struc-
ture:

• <SERVER_DIR>/components/<custom>/data/initial

• <SERVER_DIR>/components/<custom>/data/demo

• <SERVER_DIR>/components/<custom>/data/test

To customize DMX files that are delivered out-of-the-box, new DMX files
must be created and added to new components in the relevant directory
within SERVER_DIR/components/<custom>/data/initial
(or /demo or /test).

This mechanism avoids the need to make changes directly to the out-of- the-
box application, which would complicate later upgrades.

The customization process involves the merging of DMX files of the same
name within the specified directory structure according to a precedence or-
der. The order is based on the SERVER_COMPONENT_ORDER environment
variable which contains a comma separated list of component names, the
left-most having the highest priority.

Note

It is possible that more than one DMX file will contain data for a
particular database table. As the merging of DMX files is based on
file names it may be necessary to customize multiple DMX files in
order to achieve a desired data customization for an individual en-
tity.

Only DMX files placed within the structure above will be included
in the merging process for DMX files. If sub-directories are used
within the initial, demo and test directories, then these will
not be included in the merging process.

The merged DMX file is output to the
%SERVER_DIR%/build/datamanager/data/initial(or /
demo or /test) directory.

Rules of DMX file merging

DMX files are merged based on precedence order. There is always a more
important main/source DMX file, and a file which is being merged into it.
The second file is called the merge file in the following sections.

The merging rules described below are applied to decide if the rows, attrib-
utes or DMX files should be merged into the new DMX file.

• A DMX file will only be considered for merging if the new DMX file

Cúram Server Developer's Guide

70

does not have the override attribute on the <table> element set to
true.

• A <row> will be inserted into the new DMX file if is determined, by
using the primary key information for the record, that the <row> is not
already present in the new file.

• If a <row> already exists in the new DMX file and the remove attrib-
ute is set to true, then no merging will occur. If the remove attribute
is set to false or is not present, then the attribute values for that row will
be considered for merging.

• If the <value> element does not exist in the new DMX file, then
the <value> element will be copied.

• If the <value> contains a different locale, then this <value>
entry will be copied into the new file. The locale is specified by the
language and country attributes on the <value> element.

All examples below assume custom is before core in the SERV-
ER_COMPONENT_ORDER.

The Example 1 below illustrates how merging works when using the
<table> level override attribute. To use the override attribute,
copy the contents of the existing DMX file, i.e. the core DMX file and place
it in a DMX file of the same name in a <custom> component. Then add
the following to the table element:

<table override="true">

This indicates that only DMX files in this <custom> component or in a
component higher up in the SERVER_COMPONENT_ORDER will be in-
cluded in the merged DMX file output produced from the Data Manager
processing.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>22</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 record</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>23</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>

Cúram Server Developer's Guide

71

<attribute name="COMMENTS">
<value>Concern 2 record</value>

</attribute>
</row>

</table>

Example 5.10 Example 1 - Core DMX File.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>55</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>My custom comment</value>

</attribute>
</row>

</table>

Example 5.11 Example 1 - Custom DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>55</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>My custom comment</value>

</attribute>
</row>

</table>

Example 5.12 Example 1 - Resulting Merge DMX File.

In the resulting merge file, no rows are taken from the core DMX file as the
custom DMX file is completely overriding the core DMX file through the
following: <table override="true"> , resulting in all entries in the core file
being excluded.

The Example 2 below illustrates how the merging process works when the
<row> level remove attribute is set. To remove a row, copy the row from
the existing DMX file and place it in a DMX file of the same name in a
<custom> component. Then set the remove attribute on that row to
true.

Cúram Server Developer's Guide

72

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 2 core</value>

</attribute>
</row>

</table>

Example 5.13 Example 2: Core DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 5 custom</value>

Cúram Server Developer's Guide

73

</attribute>
</row>

</table>

Example 5.14 Example 2 : Custom DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 5 custom</value>

</attribute>
</row>

</table>

Example 5.15 Example 2 : Result merge file.

For Example 2, the <row> where the CONCERNID is set to 2, does not
merge the <row> from the core DMX file. When processing the merged
DMX file in Example 2, the <row> where the CONCERNID is set to 2 will
not be included when creating the SQL insert statements, thus ensuring no
entry will exist on the database for this <row>.

Example 3 below illustrates the setting and merging of the language and
country attributes on the <value> element.

In this example, the COMMENTS attribute for the CONCERNID=2 has a
value for the fr and the en_GB locales.

<?xml version="1.0" encoding="UTF-8"?>

Cúram Server Developer's Guide

74

<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Example 5.16 Example 3: Core DMX file.

In this example, the COMMENTS attribute for the CONCERNID=2 has a
value for the en locale only. The COMMENTS attribute for the CON-
CERNID=5 has a value for the en_US locale only.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>

</attribute>
</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">

Cúram Server Developer's Guide

75

<value/>
</attribute>
<attribute name="COMMENTS">
<value language="en"

country="US">Concern 5 en_US custom</value>
</attribute>

</row>
</table>

Example 5.17 Example 3 : Custom DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en"

country="US">Concern 5 en_US custom</value>
</attribute>

</row>
</table>

Example 5.18 Example 3 : Result merge file.

In Example 3 above, for the <row> where the CONCERNID is set to 2, the
resulting merge file has values for the en, fr and the en_GB locales, i.e. a
merge of both core and custom <value> elements.

Example 4 below illustrates the <row> level locales attribute.

<?xml version="1.0" encoding="UTF-8"?>

Cúram Server Developer's Guide

76

<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>

</attribute>
</row>
<row locales="en_GB">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Example 5.19 Example 4: Core DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row locales="en,en_US">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>

</attribute>
</row>

</table>

Example 5.20 Example 4 : Custom DMX file.

<?xml version="1.0" encoding="UTF-8"?>

Cúram Server Developer's Guide

77

<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
</row>
<row locales="en,en_US">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Example 5.21 Example 4 : Result merge file.

In Example 4 above, the value for the locales attribute is taken from the
row in the component that is higher up in the SERV-
ER_COMPONENT_ORDER, i.e. the custom component.

The primary key/composite key for a record is used to determine the over-
riding/merging process for DMX files. DMX files will be merged based on
the definition of the primary key for the table/entity the DMX file repres-
ents. For all modelled entities, the primary key information is stored in the
generated <SERVER_MODEL_NAME>_PrimaryKeys.xml file in the
build directory, i.e. %SERVER_DIR%/build/svr/gen/ddl. For all
non-modelled components, the primary key information for entities must be
stored in a file called <SomeName>_PrimaryKeys.xml within
%SERVER_DIR%/components/<custom>/data/ddl directory. If
this file is named correctly in the specified location, the DMX processing
will contain the relevant primary key information for the non-modelled
component.

Retrieving values from DMX files for database insertion

The Data Manager uses the <row> level remove attribute to determine if
an entry will be inserted onto the database for that row. If the remove at-
tribute is set to true, then the Data Manager will not insert an entry for that
row. The row will be ignored.

DMX files store the locale information for the attributes for the database ta-
ble. As the database must be built for only one locale, the Data Manager

Cúram Server Developer's Guide

78

uses the curam.dmx.locale property to determine the locale that must
be used when inserting data specified in DMX files onto the database. This
property can be set in either the Bootstrap.properties file or as a
system variable. If set in both the Bootstrap.properties file and as a
system variable, the system variable will override the setting in the Boot-
strap.properties file. This property must be set to a valid locale, i.e.
in the format language_Country, where language is mandatory and country
is optional. For example,

curam.dmx.locale=en_US

If this property is not set, the infrastructure will fallback on the en locale.

As mentioned, the Data Manager processing uses the
curam.dmx.locale to determine the value to insert for an attribute in a
DMX file. The locale can be specified at a <row> or <attribute> level.
If specified at a row level, then this takes precedence over the attribute level.
For example, given the following:

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>

</attribute>
</row>
<row locales="en_GB">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">
<value/>

</attribute>
<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

In this example, if the curam.dmx.locale environment variable is set to
the fr locale, then there will be no entry inserted for the record where
CONCERNID is set to 2, as the locales attribute for the <row> is only
applicable for the en_GB locale, even though the attribute for COMMENTS
has an entry for the fr locale.

The Data Manager attempts to match the locale specified by the
curam.dmx.locale environment variable with the locales attribute
for the <row> element within a DMX file. If this attribute is not set, then
the Data Manager attempts to match on the <value> for an

Cúram Server Developer's Guide

79

<attribute>, i.e. it tries to match on the language and country at-
tributes of the <value> element.

Since DMX files are not guaranteed to contain an entry for every locale, a
fall back mechanism is in place. This fallback mechanism is only applicable
to the attribute <value> element, i.e. it is not applicable to the <row>
locales attribute. Once a <value> has been found and there is no direct
match with the locale specified by curam.dmx.locale, the rules for fall
back are as follows:

• If the curam.dmx.locale is set to include a language and country
part, the processing looks for an attribute where the language and
country attributes are set on the <value> element. If this is not
found, then the country is removed and the search looks for a
<value> where the language attribute matches, if this is not found,
then the search looks for a <value> that does not have the language
and country attributes set, i.e. a default match. If this is not found,
then no entry is inserted onto the database for this <value>.

<row>
<attribute name="ADDRESSELEMENTID">

<value>3227</value>
</attribute>
<attribute name="ELEMENTTYPE">

<value language="en">EN_TYPE</value>
<value country="US" language="en">EN_US_TYPE</value>

</attribute>
<attribute name="ELEMENTVALUE">

<value language="fr">French Value</value>
</attribute>

</row>

Example 5.22 Locale Fallback Example

In Example 5.22, Locale Fallback Example, lets assume the
curam.dmx.locale is set to en. The following is set for each attribute:

• ELEMENTTYPE - EN_TYPE is the value inserted onto the database for
this attribute, as this is the value set for the en locale.

• ELEMENTVALUE - null is inserted onto the database for this attribute.
This attribute has the language attribute set to fr. The locale that is
being searched for is en, a value for en is not found, so a <value>
that contains no language or country attributes is searched for, i.e.
the default value, as this does not exist, null is inserted for this attribute.

Validation of DMX files

All DMX files in
%SERVER_DIR%/components/componentName/data directories
will be validated against a DMX schema file when the build database target
is run. This schema file is located in %CURAMSDEJ%/lib/DMX.xsd. For
any DMX file that is not in the correct format, a warning will be displayed.

Cúram Server Developer's Guide

80

The validation of DMX files is controlled by the
curam.dmx.disable.validation system variable. Validation is en-
abled by default, to disable the validation, this system variable should be
passed into the database build setting it to true, as follows:

build database -Dcuram.dmx.disable.validation="true"

The ability to treat these warnings as errors is available by setting the
prp.warningstoerrors property. If this is set to true, the warnings
will be treated as errors and the build database will fail.

Tracing Information for the DMX Merging Process

It is possible to turn tracing on for the DMX merging process. This can help
assist in debugging any issues that may occur, as a result of merging DMX
data. The system property curam.dmx.tracing, if set to true, pro-
duces tracing information to the console for the DMX file being processed.
This property is false by default.

The tracing output includes:

• The name of the file being processed;

• The key value for a row that is being merged (only where duplicate rows
exist);

• Information indicating the merging process has finished for a DMX file.

The following is an example of setting this property:

build database -Dcuram.dmx.tracing=true

Example 5.23 Set tracing for DMX files.

When set to true, this property outputs a large amount of data to the con-
sole and must therefore only be used for debugging purposes.

5.5 Database Object Naming

Typically the names of the objects on the database are clearly visible from
the Data Manager XML Files (for example, table names and column
names). The Data Manager does provide support for the naming of objects
which are not directly visible in these files.

5.5.1 Short Name Substitution

The Short Name Substitution feature will be removed in a future version of
IBM Cúram Social Program Management. The third party databases now
supported no longer have the SQL identifier limitations that originally ne-
cessitated the feature. Consequently, it is no longer necessary to use this fea-

Cúram Server Developer's Guide

81

ture and it has been removed from the product documentation. If you still
require this feature please contact Support for the information that previ-
ously was available in this document. Please refer to the Cúram Supported
Prerequisites document for comprehensive details of the supported versions
of database management systems.

5.5.2 Primary Key Indices

By default the primary key index will have the same name as its correspond-
ing table.

If required, a prefix can be specified for the primary key index name using
the generator command line option -primarykeyindexprefix. For example
setting the property ex-
tra.generator.options=-primarykeyindexprefix PI_ in
Bootstrap.properties will result in the primary key index for a table
named Person being named PI_Person. If the index name length is greater
than the SQL identifier limit supported by your database you will encounter
an error during SQL processing.

5.5.3 Primary Key Constraints

By default, the generated DDL for adding a primary key to a table takes the
form:

alter table TTTT add primary key (AAAA)

where

TTTT is the table name.

AAAA is a comma-delimited list of the primary key attributes.

By specifying the command line option -usenamedprimarykeyconstraint
through the extra.generator.options this DDL can be made take the form:

alter table TTT add constraint CCCC primary key
(AAAA)

where

CCCC is the name of the primary key constraint.

In this case the name of the primary key constraint defaults to the same as
the name of its corresponding table. Also, like primary key index names, a
prefix can be applied to this name using the -primarykeyconstraintprefix
command line option. If the constraint name length is greater than the SQL
identifier limit supported by your database you will encounter an error dur-
ing SQL processing.

5.5.4 Tablespaces

Note

Cúram Server Developer's Guide

82

This section is specific to DB2 for z/OS.

By default the behavior is for tablespaces to be created implicitly during ta-
ble creation. The exceptions to this are:

1. The tablespace named by the curam.db.zos.32ktablespace
property is created explicitly by the datamanager and tables exceeding
the 4K row limit are placed in this tablespace.

2. Tablespaces identified in the Tablespace.properties file are
created explicitly by the datamanager. If the table specified for the ta-
blespace exceeds the 4K row limit the tablespace is defined in the 32K
BUFFERPOOL. Otherwise, it will take the default setting.

When using the Tablespace.properties file the format of the entries
is:

tablename=tablespacename

Comments are specified by the "#" character in column one.

Note

If the tablespace for the table that exceeds the 4K row limit is
defined in the Tablespace.properties file then this ta-
blespace will be used over the one defined in the property
curam.db.zos.32ktablespace.

Note

When using DB2 for z/OS version 8 the use of the default 32K ta-
blespace (curam.db.zos.32ktablespace) can result in
SQLCODE -913 errors during login, but could also occur in other
contexts. To avoid these errors you should do one of the following:

1. Ensure your Cúram default 32K tablespace is segmented
(SEGSIZE; see the DB2 Universal Database for z/OS SQL
Reference Version 8 for more information).

2. Explicitly define tablespaces for each Cúram table that defaults
to the 32K tablespace (e.g. SELECT * FROM SYS-
IBM.SYSTABLESPACE WHERE NAME =
<curam.db.zos.32ktablespace value>) and assign
each table to a specific tablespace via the Ta-
blespaces.properties file.

(This is not an issue when using DB2 for z/OS version 9 be-
cause tablespaces are segmented by default.)

Note

In DB2 for z/OS version 9 the behavior of the ALTER TABLE
DROP PRIMARY KEY SQL statement changed as follows: "If the
table space was implicitly created, the corresponding enforcing in-

Cúram Server Developer's Guide

83

dex is dropped if the primary key is dropped." Most production
users would typically explicitly create their tablespaces and would
not be impacted by this change, but in test environments this may
not be the case. The symptom of this issue is an SQLCODE -551 er-
ror on a DROP INDEX statement following the ALTER TABLE
DROP PRIMARY KEY statement. To avoid this error you can
either:

• Manually remove the generated DROP INDEX SQL statement
from the Data Manager-generated SQL to take into account the
new behavior; or,

• Explicitly define the tablespace and specify it in the Ta-
blespace.properties file. For example, for the USERS
table, your Tablespace.properties file would contain:

USERS=USERSTS

5.6 Data Manager Configuration

Typically the Data Manager sets up the database from a number of different
components:

• SDEJ Tables

• Application Tables

• Initial Data

• Demo Data

• Test Data

The selection of which set of data to apply effectively depends on the task
the developer wishes to perform.

The Data Manager is configured using the datamanager_config.xml
configuration file. The file is located at:

SERVER_DIR\project\config\datamanager_config.xml

The structure of datamanager_config.xml is shown in Example 5.24,
Data Manager Configuration.

<datamanager>
<compositetarget name="target name">

<subtarget name="subtarget name"/>
</compositetarget>
<target name="subtarget name">

<entry name="relative filename or relative directory"
type="sql, DMX or xml"
base="sdejscripts or basedir"/>

</target>

Cúram Server Developer's Guide

84

</datamanager>

Example 5.24 Data Manager Configuration

The file is organized as follows:

Target Tag
This has a name attribute specifying the name of the target and a set of
associated entry tags.

Entry Tag
This has three attributes associated with it.

Name Attribute
This specifies the file or directory associated with this attribute and
its offset from the base attribute.

Type Attribute
This specifies whether the file is an SQL script, a .DMX file or an
.xml file.

Base Attribute
This specifies the system dependent offset of the file on the local
machine. It may be specified as one of basedir (the directory
above the Data Manager) or sdescripts (the location of the
SDEJ installation).

Any of the targets listed in this configuration file can be passed to the build
database target.

The datamanager_config.xml file is used when running the the
build database target. When this target is run, composite targets specified
within the datamanager_config.xml can be called. By default, the all
composite target is called within the datamanager_config.xml file.
To call a different composite target the prm.target can be passed to the
build database target specifying the composite target to be called. For ex-
ample, to call the initial composite target, the following could be executed:

build database -Dprm.target=initial

New composite targets can be added to the datamanager_config.xml
file. The composite target can contain any number of subtargets. The fol-
lowing is an example of specifying a new composite target mycompositetar-
get that calls mynewtarget.

<target name="mynewtarget">
<entry base="basedir"

name="components/core/data/initial/
handcraftedscripts/NewScript.sql"

type="sql"
/>

</target>
<compositetarget name="mycompositetarget">

<subtarget name="mynewtarget"/>

Cúram Server Developer's Guide

85

</compositetarget>

5.7 Database Synchronization

Typically the Data Contents XML files are hand crafted by a developer.
However the infrastructure provides Ant targets to create a Data Contents
XML file from the database. The Data Extractor is invoked by executing a
build command of build extractdata. By default the full database is extrac-
ted and DMX files are created for any tables that contain data. An optional
parameter of tablename can be passed to specify that only one or more
tables should be extracted e.g. build extractdata -Dtablename=Users. If
you want to extract multiple tables during the one run, pass a comma separ-
ated list of tables to the tablename parameter.

The generated .DMX files are placed in a
%SERVER_DIR%/build/dataextractor folder. Under this folder the
contents of any clobs or blobs are also extracted and stored in a file which is
based on the naming format: <tablename><rownumber>.

5.8 Statistics

Databases use an optimizer to determine the most efficient access path to
data on the database. The optimizer uses statistics about the physical charac-
teristics of a table and the associated indexes to determine this information.
These characteristics include number of records, number of pages, and aver-
age record length. If no statistics are available on the database, then the op-
timizer makes a guess as to the best access path to use and this can often
lead to performance issues, including unnecessary deadlock and timeout ex-
ceptions. The runstatistics target is available to gather these necessary stat-
istics on the database and will be run against all Cúram database tables.

Note

The "runstatistics" target is not supported with DB2 for z/OS due to
the architectural differences of this platform. Consult with your loc-
al database administrator in regard to invoking the equivalent DB2
for z/OS functionality.

5.9 Lob Manager

The LOB Manager is part of the Data Manager which enables Clobs and
Blobs to be loaded onto the database.

In the data contents file Blob and Clob fields are handled slightly differently
to other fields, in that the value element will not contain the literal data
but will instead contain a reference to a file containing the data.

The Example 5.25, Blob Data Contents File, illustrates how a table with a
numeric and blob column can be populated with one record using a binary

Cúram Server Developer's Guide

86

file from disk.

<table name = "BlobEntity">
<column name = "imageID" type = "number"/>
<column name = "imageData" type = "blob"/>
<row>

<attribute name = "imageID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "binaryData">
<value>./images/1.jpg</value>
</attribute>

</row>
</table>

Example 5.25 Blob Data Contents File

Note that to load Blobs, the LOB Manager can only be used on tables for
which the primary key fields are known. This is because inserting a LOB in-
volves an SQL insert followed by an SQL update, and the SQL update must
be capable of addressing a single record by means of its primary key.

The Example 5.26, Clob Data Contents File, illustrates how a table with a
numeric and clob column can be populated with one record using a charac-
ter data file from disk.Here, the clob data file is encoded with UTF-16
format, and this is specified in the attribute element with encoding as UTF-
16 for that row, so the clob content gets encoded before it gets inserted.

<table name = "Entity">
<column name = "ID" type = "number"/>
<column name = "content" type = "clob"/>
<row>

<attribute name = "ID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "content" encoding = "UTF-16">
<value>./clobcontentdir/1.txt</value>
</attribute>

</row>
</table>

Example 5.26 Clob Data Contents File

The Example 5.27, Clob Data Contents File in encoded format, illustrates
how a table with a numeric and clob column can be populated with two re-
cords using the character data files from disk.Here, if all the clob data files
are encoded in UTF-16 format, then this can be specified at column level,
using encoding attribute, so all the rows for clob type uses the same encod-
ing type of that column. To override this for only a single row, the encoding
type can be specified as in previous example at attribute element level of
that row element.

Cúram Server Developer's Guide

87

<table name = "Entity">
<column name = "ID" type = "number"/>
<column name = "Data" type = "clob"

encoding = "UTF-16"/>
<row>

<attribute name = "ID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "Data">
<value>./clobcontentdir/4.txt</value>
</attribute>

</row>
<row>

<attribute name = "ID">
<value>2</value>

</attribute>
</row>
<row>

<attribute name = "Data">
<value>./clobcontentdir/2.txt</value>
</attribute>

</row>
</table>

Example 5.27 Clob Data Contents File in encoded format

The LOB manager identifies primary keys by means of the dataman-
ager_config.xml file, so this file must contain a reference to the gener-
ated _PrimaryKeys.xml relating to table containing the LOB.

Cúram Server Developer's Guide

88

Chapter 6

SQL Checker

6.1 Overview

The IBM Cúram Social Program Management SDEJ produces a database
access layer which is based around JDBC. JDBC is dynamic SQL from the
viewpoint of database and as such there is no ability to check the syntax and
semantics of the statements prior to their first execution. The SQL checker
provides a method of validating the syntax and semantics of these SQL
statements before they are first exercised.

6.2 Under the Hood

The SQL checker is invoked by an Ant target and generates a simple Java
program which uses SQLJ rather than JDBC. This program is generated into
/build/sqlcheck/SQLJTemp.sql. This Java program contains all
the elements that should be checked, namely the hand crafted SQL in the
model and the Data Manager. Because SQLJ is static SQL the program can
be compiled in advance of deployment, provided the database is already cre-
ated and populated.

The SQL checker can also check the contents of the model for database
portability. This is useful in situations where primary development is against
one kind of database (for example DB2) but final deployment is against an-
other database (for example DB2 for z/OS). The elements checked for in-
clude:

• Comparison of Host Variables to NULL

This check is performed because hand-crafted SQL can use the SQL is
Null keyword on a host variable. If this is done the Cúram Generator auto-
matically produces a cast to the correct fundamental SQL datatype for the
database that is being built against. However, this means that the resultant
.ear file cannot be deployed against a database of a different type unless it

89

is completely re-built.

6.3 Limitations

The SQL Checker is designed to reduce the number of syntax and portabil-
ity errors that remain until deployment as this reduces the effort expended in
testing for and removing these errors. However, it is not a replacement for a
comprehensive test suite as it does not catch all the possible errors. There
are a number of reasons for this:

Reliance on the SQLJ Check
The SQL Checker is only as good as the SQLJ compiler that it invokes.
Any syntactical or semantic errors which are not reported by the com-
piler will not be reported by the SQL Checker.

Portability Warnings
The SQL Checker is only designed to capture and report the most com-
mon portability errors. It is not a replacement for early and comprehens-
ive testing on the final target database.

Limitation with H2
H2 doesn't provide an implementation of an SQLJ checker; therefore, it
only performs a portion of the perceived checks that the SQL Checker
does.

Cúram Server Developer's Guide

90

Chapter 7

Eclipse

7.1 Overview

Eclipse is the core IDE for development of IBM Cúram Social Program
Management. It is the underlying technology in:

• IBM® Rational® Application Developer for WebSphere;

• Rational Software Architect;

• Rational Software Architect for WebSphere.

This chapter describes relevant aspects of Eclipse as well as providing some
tips and tricks. It does not attempt to describe the general features or usage
of Eclipse; e.g., the Java Editor or debugging as that information is provided
by the vendor, see http://www.eclipse.org/ for more information.

The term “Eclipse” which is used throughout this chapter applies to all sup-
ported tooling based on Eclipse; e.g., Rational Software Architect.

The supported version of Eclipse or its usage through the Rational product
versions can be found in the Cúram Supported Prerequisites.

7.2 Curam Projects in Eclipse

Four projects are provided that should be imported into Eclipse:

Project Name File System
directory

Contents

CuramSDEJ CuramSDEJ The Server Development librar-
ies.

CuramCDEJ CuramCDEJ The Client Development librar-
ies, depends on the CuramSDEJ
project.

91

http://www.eclipse.org/

Project Name File System
directory

Contents

EJBServer EJBServer The Cúram Server application,
depends on the CuramSDEJ
project.

Curam webclient The Cúram Client application,
depends on the CuramCDEJ
project.

Table 7.1 Transaction settings

Dependencies allow for exposed jar libraries in referenced projects to be
used in code developed in the dependent project.

The CuramCDEJ and CuramSDEJ are non-development projects that are
only containers for libraries. All development should be done within the
EJBServer and Curam projects.

7.3 Eclipse Configuration Files

Each Eclipse project is configured through two XML files; a .project
and a .classpath file. Also a number of preferences and settings can be
configured at a project level rather than workspace level; the effect of set-
ting these at a project level means that this configuration, which form files
and entries in a .settings folder under the project, can be distributed which
the project in a team environment.

The configuration mentioned in section is maintained by right-clicking on a
Project within the Project Explorer view in Eclipse and selecting Proper-
ties.

7.3.1 .project File

The .project file holds the project nature and builders and for a typical
Java project holds a single nature and builder corresponding a Java project.
Additionally in the Curam project there is a Apache Tomcat nature to signi-
fy the project can be configured for and deployed on Tomcat. The project's
dependencies are also maintained in the .project file.

7.3.2 .classpath File

The .classpath maintains the Project's source and target references for
Java compilation and jar or project dependencies.

This configuration is maintained through the Java Build Path page in the
Project's properties. Source entries can be added, ordered or new jar file de-
pendencies can all be managed through this page.

Optionally, Access Rules and JavaDoc references can be configured on jar

Cúram Server Developer's Guide

92

files. Access Rules are discussed further in Section 7.4, Access Rules.

7.3.3 .settings Directory

The .settings folder maintains a number of the other preferences that
can be maintained at the project level e.g. Compiler warning/error levels,
Code style settings, etc. The preference pages offering this ability to main-
tain at a project level can be seen to have an Enable project spe-
cific settings at the top of the page.

This directory can be added to SCM control and settings distributed to team
members as required.

7.4 Access Rules

The Access Rules option allows jar files within an Eclipse project
.classpath to define an access level for packages and classes. There are
three different levels of access: non-accessible, discouraged and accessible.
When the compiler within Eclipse detects access to a type that should not be
accessed, it will create a problem marker rather than compile failure:

• Non-accessible rules define types that must not be referenced. The com-
piler typically creates an error marker for accesses to these types;

• Discouraged rules define types that should not be referenced. The com-
piler typically creates a warning marker for accesses to these types;

• Accessible rules define types that can be referenced.

Access rules are applied and provided rules for a number of the jar files in
the .classpath files of the Eclipse projects. These access rules comple-
ment each jar file's API and through the accessible rule indicate ac-
cess that is compliant1 as per the Cúram Development Compliancy Guide.
Classes defined as non-accessible or discouraged are not suppor-
ted for usage and are subject to change without notice and may not respect
their API; hence they can impact the ability to easily integrate IBM Cúram
Social Program Management upgrades.

Note

A large number of discouraged accesses exist in the out of the box
Social Program Management Platform that may have been copied
into your codebase as part of sub-classing or extension work. In a
future release it is expected that these accesses will be removed and
appropriate alternative APIs provided where none currently exist. In
order to reduce future impact to your codebase, in regard access to
discouraged code, you should treat these accesses as non-accessible
and work to seek an alternate API.

7.5 Working Sets

Cúram Server Developer's Guide

93

A common problem in Eclipse is that as the content in your workspace
grows it can be overwhelming to navigate through all the directories and
difficult to focus on the areas of interest to you. Eclipse solves this through
Working Sets which is a way to specify, in a global location, which working
set you are currently interacting with. The following views and dialogs in
Eclipse support the concept of working sets:

• The Navigator;

• The Package Explorer;

• The Projects View;

• The Packages View;

• The Types View;

• The Problems View;

• The Open Type Dialog.

Working sets can be especially useful for example on the Problems View, in
terms of viewing what problems relate to your owned code. The following
steps detail how to set a working set on the Problems view to only display
problems related to the custom component:

1. From the Problem View menu select Configure Contents;

2. In the Configure Contents dialog you must first add a filter from the
Configurations panel. Click the New... button and name this filter (e.g.
Custom) and click OK. This will create the filter checking it in the
Configurations: list. Under Scope: select the On Working Set: Window
Working Set radio button and click the Select... button to add a new
working set;

3. In the Select Working Set dialog select the Selected Working Sets radio
button and click the New... button;

4. The New Working Set wizard can then be used to add types to the
working sets. In this instance we want to add a Java type and select the
custom source directory.

5. In the Select a working set type panel, select Java from the Working set
type: and click the Next > button. In the Java Working Set panel, select
items in the Workspace content: list and add them to the Working set
content: list using the Add --> button. Use the other buttons in the list
to manage the Workspace content: list. Specify a name in the Working
set name: text box. Click the Finish button. You can invoke the New
Working Set wizard again to create more working sets. Before clicking
the OK button to exit the Wizard ensure your Selected Working Sets are
checked.

6. On clicking OK to exit the Configure Contents dialog your Problems
View will be updated to only display errors, warnings or informationals

Cúram Server Developer's Guide

94

relating to the newly created Custom filter.

Cúram Server Developer's Guide

95

Notes
1Access Rules can only be applied to jar files so should not be treated as a
complete solution to police compliancy.

Cúram Server Developer's Guide

96

Chapter 8

Logging

8.1 Overview

Logging facilities in an IBM Cúram Social Program Management applica-
tion are provided by the curam.util.resources.Trace class which
provides a convenient wrapper onto the Apache log4j 1 API.

This allows developers to log any information without concerning them-
selves with whether the program is being run in on-line or batch mode. The
final destination of the trace information is highly configurable and may be
a log file associated with the application server, a standalone log file, a con-
sole or even a database.

8.2 Usage

The main interface into the tracing API is through an instance of the
org.apache.log4j.Logger class. The infrastructure provides a num-
ber of named instances which match the categories described in Table 8.1,
Logging Hierarchy. The top level category is accessed through
curam.util.resources.Trace.kTopLevelLogger as shown in
Example 8.1, Usage of the loggers.

curam.util.type.DateTime timeNow;
timeNow = curam.util.type.DateTime.getCurrentDateTime();
curam.util.resources.Trace.kTopLevelLogger.info(

"This function was called at ");
curam.util.resources.Trace.kTopLevelLogger.info(timeNow);

Example 8.1 Usage of the loggers

It should be noted that the above code produces two trace records. This will
not be easily visible if log4j is configured to use a flat file or the console.
However if a log4j viewer is used then the two trace records will result in a
needless entry which will complicate the view without any added benefit.

97

As such it is recommended that trace statements which contain logically de-
pendent data are performed in a single call.

A formatted textual representation of a Cúram struct class object may be ob-
tained through a call to the class
curam.util.resources.Trace.objectAsTraceString call.
For example:

curam.util.struct.ProcessNameKey someKey =
new curam.util.struct.ProcessNameKey;

someKey.processName="someValue";

curam.util.resources.Trace.kTopLevelLogger.info("DEBUG\n");
curam.util.resources.Trace.kTopLevelLogger.info(

curam.util.resources.Trace.objectAsTraceString(someKey));

Example 8.2 Tracing a Cúram Struct

8.3 Logging Hierarchy

The Cúram infrastructure produces trace records in specific categories with
specific levels. This allows them to be easily filtered in a log4j viewer. The
categories and levels supported are described in the following table where
<BPO>, <Entity> and <Facade> are the names of the relevant Cúram
class. The <CodePackage> field is left empty if the class is not located in a
code package.

Category Level Meaning
Trace Error Loggable exceptions

which have not been
caught in the code.

Trace.BatchLauncher Info Progress of Batch Launch-
er

Trace.BatchLauncher Error Errors in Batch Launcher

Trace.CodeTable Debug Tracing information about
code table lookups.

Trace.DataAccess.<Entity> Info SQL statements executed
by entity objects.

Trace.DataAccess.<Entity> Debug Results of SQL select
statements.

Trace.Methods.<CodePackage>.<B
PO>

Info Business Object method
invocation.

Trace.Methods.<CodePackage>.<B
PO>

Debug Arguments and types of
arguments for Business
Object method invocation.

Trace.Rules Info Progress of Rules Engine.

Trace.ServerCalls.<CodePackage>.
<Facade>

Info Server method invocations
by remote clients.

Cúram Server Developer's Guide

98

Category Level Meaning
Trace.ServerCalls.<CodePackage>.
<Facade>

Debug Arguments and types of
arguments for server meth-
od invocation.

Trace.Tools Info Progress of build time
tools. E.g: configtest

Trace.Tools Warning Warnings from build time
tools

Trace.Tools Error Errors from build time
tools

Table 8.1 Logging Hierarchy

8.4 Logging Level

When logging the Cúram server, trace level should be taken into considera-
tion. These settings can be used to guard the calls made into log4j to im-
prove the performance in environments where tracing is not required2.

The current level of tracing can be checked by calling the method:

curam.util.resources.Trace.atLeast(Trace t)

where the parameter to this method can be one of the following:

• curam.util.resources.Trace.kTraceOff

• curam.util.resources.Trace.kTraceOn

• curam.util.resources.Trace.kTraceVerbose

• curam.util.resources.Trace.kTraceUltraVerbose

The trace level for your application can be specified by setting the
curam.trace property as defined in Chapter 4, Cúram Configuration
Settings. Valid values for this property are:

• trace_on

• trace_verbose

• trace_ultra_verbose

The amount of logging done by your application code should reflect the cur-
rent logging level of the application. The following code extract demon-
strates this:

if (curam.util.resources.Trace.atLeast(
curam.util.resources.Trace.kTraceOn)) {

curam.util.resources.Trace.kTopLevelLogger.info(
"hello world.");

}

Cúram Server Developer's Guide

99

Example 8.3 Logging example in application code

The Cúram infrastructure provides support for a number of standard trace
options which provide a convenient view on top of the trace levels. All of
the options result in significant information being written to the log and will
have a significant impact on the performance of the application. The follow-
ing are the properties that may be set as described in Chapter 4, Cúram Con-
figuration Settings, and the level at which they are set at default (O is On, V
is Verbose, U is Ultra).

Property Name Meaning En-
abled

curam.trace.servercalls Trace server method invocations by
remote clients. This includes the name
of the user requesting the invocation.

O

curam.trace.methods Trace all business object method in-
vocation.

V

curam.trace.method_args Dump arguments, including their
types, to BO method invocations.

U

curam.trace.sql Trace SQL statements executed by en-
tity objects.

V

curam.trace.sql_args Dump results of SQL select state-
ments.

U

curam.trace.rules For more information refer to the
Runtime Rules Logging in the Cúram
Rules Codification Guide.

U

curam.trace.smtp Trace the messages that are sent to the
mail server.

Table 8.2 Diagnostic Tracing Options

8.5 Configuration

log4j provides extensive support for configuring the destination of the trace
information. This section does not attempt to duplicate the log4j documenta-
tion but places this information in the context of IBM Cúram Social Pro-
gram Management. The configuration information should be placed in a file
pointed at by the curam.trace.configfile.location property.

If the curam.trace.configfile.location property is not set, the
default log4j setting is to use a Console Appender. The Console Appender
simply outputs everything output at the default (or higher) log4j level to
System Out. The default log4j level for the top level logger (and all inher-
ited loggers) is set to DEBUG. 3

Example 8.4, Configuring log4j will result in trace information being writ-

Cúram Server Developer's Guide

100

ten to a rolling file appender. This means the output is placed in a file until it
reaches a specified size. Once it reaches this size it is “rolled-over”, and it is
renamed by appending a .1 to the file name. If a .1 file exists it is first re-
named to .2 and so on.

This is suitable for development environments where a historical trace can
be useful.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--

| For more configuration information and examples
| see the Jakarta Log4j website:
| http://jakarta.apache.org/log4j

-->

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/"
debug="false">

<!-- ========================== -->
<!-- Append messages to a File -->
<!-- ========================== -->
<appender name="OutputToFile"

class="org.apache.log4j.RollingFileAppender">
<param name="File"

value="d:/CuramProps/CuramAppLog.log" />
<param name="Threshold"

value="debug"/>
<param name="MaxBackupIndex"

value="3"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
</layout>

</appender>

<!-- ======================= -->
<!-- Setup the Root category -->
<!-- ======================= -->
<root>

<level value="INFO"/>
<appender-ref ref="OutputToFile"/>

</root>

</log4j:configuration>

Example 8.4 Configuring log4j

There are a number of customizable values in this file:

• The name of the log file is set to be
d:/CuramProps/CuramAppLog.log.

• The maximum number of previously rolled back files which are pre-
served is set to 3.

• The maximum file size is not explicitly set so the default of 10Mb is
used.

• The Conversion pattern means the following is output:

• %-5p : The level of the trace message after being left padded to be a
5 character string.

Cúram Server Developer's Guide

101

• %c : The category of the trace message.

• %m : The trace message itself.

• %n : A platform specific line separator.

• The log4j level is set to INFO, which means that all items logged at the
DEBUG level will be ignored. This overwrites the default level of DE-
BUG set by the infrastructure.

However, direct access to a file may not be an ideal mechanism if the trace
output should be monitored. Example 8.5, Configuring log4j to log to a
socket will result in trace information being written to a socket. A listener
(such as Apache Chainsaw which is delivered with log4j) can then be used
to display the resultant information.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--

| For more configuration information and examples
| see the Jakarta Log4j website:
| http://jakarta.apache.org/log4j

-->

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/"
debug="false">

<!-- =========================== -->
<!-- Append messages to a Socket -->
<!-- =========================== -->
<appender name="OutputToSocket

class="org.apache.log4j.net.SocketAppender">
<param name="RemoteHost"

value="localhost" />
<param name="Port"

value="4445"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
</layout>

</appender>

<!-- ======================= -->
<!-- Setup the Root category -->
<!-- ======================= -->
<root>

<level value="INFO"/>
<appender-ref ref="OutputToFile"/>

</root>

</log4j:configuration>

Example 8.5 Configuring log4j to log to a socket

The Conversion pattern used in this file is the same but some extra custom-
izable values have been introduced:

• The host name and port of the remote server are set to localhost and
4445 respectively.

Numerous other possibilities exist for this configuration and this section

Cúram Server Developer's Guide

102

does not attempt to duplicate the existing log4j documentation. However, it
is worth noting that Nested Diagnostic Contexts are not currently supported.

8.6 Statistics

Tracing facilities are provided to allow server-related information and dia-
gnostics to be output to a central location. It is possible to use this informa-
tion to collect performance information about client visible Cúram server
functions, i.e. any operations invoked by the Cúram web client. However
writing trace informational typically has an impact on performance, because
the log4j appender should always be configured to maintain the contents
after a server crash (for example buffered file access should not be used).
For performance benchmarking it is highly desirable that the benchmarking
process should not itself impose a performance overhead on the application
being measured. For this reason, A way to collect server function perform-
ance statistics is provided that imposes less overhead than server tracing,
and which produces output in a format more amenable for automated pro-
cessing as part of benchmark analysis.

To avoid performance overhead on the server output is written to separate
log files, one per Session Bean (Cúram Facade) in the application. Each log
file has an associated 4Kb memory buffer, so there is a memory overhead
imposed by the collection of server benchmarks. It is assumed that a realist-
ic benchmark configuration will involve application server machines with a
significant amount of physical memory.

The statistics files are created in the directory specified by the
curam.test.trace.statistics.location property if the
curam.test.trace.statistics property is set. They are named
<MachineName>_<SessionBeanName>_0.<TimeStamp>. Each
(tab-delimited) entry in the file contains the following format:

Summary Meaning
Timestamp This timestamp is in a sortable format (ISO

8601 complete) and indicates the time at which
the method was invoked. The International
Standard for the representation of dates and
times is ISO 8601. It displays the timestamp
with the accuracy to seconds. The format of
the timestamp is YYYYMMDDTHHMMSS.
Note that the "T" appears literally in the string,
to indicate the beginning of the time element,
as specified in ISO 8601.

Machine name The name of the application server machine on
which this function executed.

Session Bean Name The name of the statistics class, Statistics, is al-
ways printed.

Process ID Currently hard-coded to zero.

Cúram Server Developer's Guide

103

Summary Meaning
Server function signature The function signature including class and

method name, and method argument types.

Success indicator A flag indicating whether the server function
succeeded with no error returned to the client.
A value of 1 indicates success, a value of 0 in-
dicates failure. The specific error message is
not recorded

Elapsed time in milli-
seconds

This is the time spent (in milliseconds) execut-
ing this function excluding time spent by the
middleware software in dispatching the func-
tion call and marshaling arguments

Table 8.3 Statistics File Elements

8.7 Localization

In cases where log messages should be localizable, class Localis-
ableString can be used. See Section 9.9, Localized Output. However it
is important to note that logged messages are typically targeted at a system
administrator who may have a different locale to the current user. For ex-
ample if the user uses English and the administrator uses French, then the
Cúram default locale will be French and the log message should be written
in French. In the following example, the default server locale is explicitly
passed into getMessage, otherwise getMessage would return a string
corresponding to the users locale rather than the Cúram server locale.

import curam.util.resources.ProgramLocale;

// Create a localizable message
curam.util.exception.LocalisableString e =

new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);
e.arg(someIdentifier);

// WRONG! This logs the message in the current users locale,
// not that of the Cúram server.
curam.util.resources.Trace.kTopLevelLogger.info(e.getMessage());

// RIGHT: The message is logged using the Cúram server locale.
curam.util.resources.Trace.kTopLevelLogger.info(

e.getMessage(ProgramLocale.getDefaultServerLocale()));

Example 8.6 Localizable logging example in application code

Cúram Server Developer's Guide

104

Notes
1log4j is a logging framework provided by the Apache Jakarta project (see
The complete manual - log4j, Gulcu).
2While log4j is designed to impose a minimal overhead it cannot avoid the
cost of the parameter construction inside the method invocation. Application
developers must take this into consideration.
3The set of possible levels (in order of priority) defined by log4j are ALL,
DEBUG, INFO, WARN, ERROR, FATAL and OFF. Only those items
logged at the specified level or higher levels will be included in the log.

Cúram Server Developer's Guide

105

Chapter 9

Using Exceptions

9.1 Overview

As the Java language provides full support for exceptions, they are the re-
commended mechanism for handling errors in an IBM Cúram Social Pro-
gram Management application. The advantage of using exceptions to handle
errors is that it saves the developer from having to check the status of each
operation attempted. A single try..catch construct can enclose many
statements, each of which could raise an exception.

In a Cúram application, exceptions can originate from various parts of gen-
erated code. For example the Database Access Layer (DAL) throws excep-
tions in the event of a database error, application developers can throw pre-
defined exceptions or customized exceptions. There are two basic forms of
exceptions used; checked and unchecked.

Checked exceptions are subclasses of
curam.util.exception.AppException and
curam.util.exception.InformationalException. These ex-
ceptions must be explicitly caught or listed in the throws clause of the
method.

Unchecked exceptions are subclasses of
curam.util.exception.AppRuntimeException. These excep-
tions do not have to be explicitly handled as they inherit from the Java Ex-
ception and RuntimeException classes respectively. Typically, data-
base problems (such as a RecordLockedException) are thrown as un-
checked exceptions. This means that there is no need for code to tediously
check for a RecordLockedException each time the database is ac-
cessed.

In a Cúram application, checked exceptions can arrive at the Remote Inter-
face Layer (RIL), despite being checked, a throws clause can unwind all
the way to the RIL. Once here they are converted to a different form of ex-
ception which is thrown to the client, and may write information from the

106

exception to the log file. To avoid this a developer can write code to catch
exceptions and handle them and/or re-throw them before the exception
reaches the RIL.

The following happens when the RIL catches a checked exception:

• The text for the exception is loaded from a message catalog file.

• If the exception is loggable, then the text will be formatted, with argu-
ments inserted and written to the log file in the default server language.

• If the exception is loggable and includes a stack trace this will be written
to the log file.

• An exception is created and thrown to the client. This contains the name
of the message catalog, the ID of the message, and the exception argu-
ments if any.

• The client receives the exception and uses the catalog name and message
ID to look-up a localized version of the message. It then inserts and
formats the arguments into a message and displays the message.

The RIL also catches unchecked exceptions to perform default actions.

• The text for the exception is loaded from a message catalog file.

• The text is formatted with arguments inserted and written to the log file
in the default server language.

• A stack trace is written to the log file.

• A new exception is created and thrown to the client. This exception
states that the original exception was Unhandled. The original exception
is mapped because the descriptive text is at too low a level to make
sense to a user.

The newly created exception contains a nested exception which has the
details of the original exception - namely the name of the message cata-
log, the ID of the message, and the exception arguments if any.

This mapping happens for all but four unchecked exceptions. These ex-
ceptions are left untouched because the descriptive text produced is
readable to a user. These are RecordChangedException. Re-
cordDeletedException, RecordLockedException and
ReadmultiMaxException.

• When the client receives the exception and uses the catalog name and
message ID to look-up a localized version of the message. It then inserts
and formats the arguments into the message and displays the message.

9.2 Constructing an Exception

Exceptions1 are typically created with a catalog name and message identifi-
er. If these are not specified default values are used. The server infrastruc-

Cúram Server Developer's Guide

107

ture will take care of delivering the message text to the client and/or log file.
For example:

if (DatabaseFieldIsNull()) {
curam.util.exception.AppException e = new

AppException(MAINTENANCE.ID_NULL_INDICATOR);
throw e;

}

// This can also be written as follows
if (DatabaseFieldIsNull()) {

throw new curam.util.exception.AppException
(INFRASTRUCTURE.ID_NULL_INDICATOR);

}

Example 9.1 Constructing an AppException

The purpose of exceptions is to communicate the fact that an error has oc-
curred and to communicate information about that error. Often it is neces-
sary to include additional information as well as the error code. This can be
done using arguments.

Arguments are attached to an exception before it is thrown and are intended
to be ultimately included in the error message displayed at the client and/or
the server log file.

To attach an argument to an exception, the arg method (.arg()) is used.
Example 9.2, Using the arg method with a primitive type shows a code ex-
ample of how to use the arg method to attach an argument to an exception.

// set a status code for the error which occurred
long lngErrorCode = -1;

// create the exception.
curam.util.exception.AppException e = new

AppException(MAINTENANCE.ID_SYSTEM_ERROR);

// Include this status code with the exception.
e.arg(lngErrorCode);

// now throw the exception
throw e;

Example 9.2 Using the arg method with a primitive type

The arg method supports the addition of many different types of arguments
to an exception. Such primitive types include long, boolean or double while
complex types e.g. Date, DateTime, Money and
CodeTableItemIdentifier objects can also be added. See the
JavaDoc for curam.util.exception.AppException for more de-
tails.

// Create a codetable identifier to describe domain type.
curam.util.type.CodeTableItemIdentifier aCodeIdentifier =

new CodeTableItemIdentifier
(DOMAINTYPE.TABLENAME, DOMAINTYPE.INT32);

// create the exception to flag an invalid data type
curam.util.exception.AppException e = new

AppException(WORKFLOW.ERR_ANSWER_NOT_VALID_DATATYPE);

// Include the domain type code with the exception.

Cúram Server Developer's Guide

108

e.arg(aCodeIdentifier);

// now throw the exception
throw e;

Example 9.3 Using the arg method with a complex type

9.3 Creating Messages with Argument Placeholders

Argument place holders are tokens which are included in the error message
source text and are replaced by an argument at runtime.

Place holders are of the form %nc, where n is the argument number (of 1 or
more), and c is a single character denoting the argument type as follows:

• s - string

• n - numeric

• d - date

• t - time

• z - date/time

• c - code table item

For example, the source message:

“The first name is %1s and the surname is %2s”

would be displayed as:

“The first name is John and the surname is Smith”

The fact that the place holders are numbered means that they can appear in
the message in any order. For example, the source message:

“The second name is %2s and the first name is %1s”

would be displayed as:

“The second name is Smith and the first name is John”

The exception would be constructed and thrown as shown in Example 9.4,
Exception message with argument placeholders.

curam.util.exception.AppException e = new
AppExeption(EXAMPLE.ID_EXAMPLE_MESSAGE);

e.arg(Person.FirstName);
e.arg(Person.Surname);
throw e;

Example 9.4 Exception message with argument placeholders

9.4 Handling Exceptions

Cúram Server Developer's Guide

109

When an exception is thrown in an application, it may be caught within a
try..catch construct or it may be allowed to filter up to the RIL.

The try..catch construct will typically handle the exception in one of
the following ways:

• Ignore it and carry on with the next processing step.

An example of this is where the program must check for the existence of
a record on the database. If the DAL throws a RecordNotFoundEx-
ception, then this indicates that the record does not exist. This excep-
tion will not be allowed to reach the client, instead it controls how pro-
cessing is done.

bPersonExists = true;
try {

dtls = myPerson.read(key);
}
catch(RecordNotFoundException rnfe) {

bPersonExists = false;
}

• Pass it upwards to a higher try..catch construct by re-throwing the
actual exception.

An example of this is a try..catch construct which is interested in
only a specific exception. If any other exception is caught then it can be
passed on upwards for some other handler to deal with.

try {
myPerson.checkCompleteness(dtls);

}
catch(curam.util.exception.AppException e) {
if(e.equals(APP.ID_INCOMPLETE_DATA)) {

// set this flag and continue
bIncompleteData = true;

} else {
// do not know how to handle this exception,
// pass it straight through.
throw e;

}
}

• Create a new exception and throw the new exception.

An example of this is where the handler would replace a generated DAL
exception with an application exception containing a more user-friendly
application-specific error message.

catch(RecordNotFoundException rnfe)
{

curam.util.exception.AppException e = new
AppException(APP.NO_SUCH_PERSON);

// substitute the message for the exception.
// (The new message includes the ID number of
// the record we searched for.)
e.arg(dtls.personIDNumber);
throw e;

}

• Create a new exception, attach the original exception to this new excep-

Cúram Server Developer's Guide

110

tion, and raise the new exception.

An exception can be constructed with a pointer to another exception as
follows:

catch(curam.util.exception.AppException
origException) {

curam.util.exception.AppException newException = new
AppException(MYAPP.ID_MYMESG, origException);

throw newException;
}

This has the effect of creating a linked list of exceptions with the most
recent exception at the head of the list. This allows a detailed history of
an exception to be built up for auditing or debugging purposes.

9.5 Logging Exceptions

Exceptions can be optionally logged to the application log file by setting its
loggable flag using the setLoggable method.

Loggable exceptions are written to the application log file by the RIL. The
exception message is read from the error message catalog file, the exception
arguments, if any, are inserted into the text and this parsed text is written to
the log file.

An exception is treated as loggable if its loggable flag is set or if the log-
gable flag is set on any attached exceptions.

If the exception being logged has any other exceptions attached, then these
exceptions are also logged.

9.6 General Exception Guidelines

• Follow the processing specification for the method, this should describe
the error situations that can be encountered. When actually writing and
testing the code, look out for sources of errors that might have been
overlooked.

• Do not try to add a “catch-all” for unanticipated errors; the server infra-
structure can handle these better than you can. Do not wrap entire opera-
tions with error handlers.

• Do handle exceptions where you are in a position to add more specific
information about what has happened, such as converting “record not
found” into “bank account not found”.

• Do gain an understanding of the standard exceptions defined in the core
infrastructure. Be aware of the types of exceptions that can be thrown
by generated database manipulation operations of entity objects:

• RecordNotFoundException can be thrown by singleton reads,
updates and removes of the database (entity read, nsread, modify, ns-

Cúram Server Developer's Guide

111

modify, remove and nsremove operations). A non standard operation
(for example nsmodify and nsremove) will throw this exception irre-
spective of the uniqueness of the key that is passed into it.

• RecordNotFoundException can be thrown by nonkeyed up-
dates and removes of the database (entity nkremove and nkmodify).

• RecordDeletedException is always thrown in precedence to
a RecordNotFoundException.

• RecordDeletedException can be thrown when an optimistic
update fails because the target record has been deleted.With optim-
istic locking enabled the record is re-read to obtain the version num-
ber. If the record is no longer present this exception is thrown.

• DuplicateRecordException can be thrown by insert and up-
date operations (entity insert, nsinsert, modify, nsmodify, nkmodify
operations).

• RecordChangedException and RecordDeletedExcep-
tion can be thrown by update operations with optimistic locking.
RecordDeletedExceptionis thrown by entities which have
optimistic locking enabled in preference to RecordLockedEx-
ception.

• MultipleRecordException can be thrown by singleton reads
of the database (entity read, nsread, nkread operations) if multiple
records are found which meet the specified selection criteria.

• ReadmultiMaxException can be thrown by multiple reads of
the database (entity readmulti, nsmulti, nkreadmulti operations) if
more record are retrieved than the maximum specified in the applic-
ation model.

• RecordLockedException can be thrown by any of the entity
operations if a deadlock or lock timeout occurs.

• OtherDatabaseException can be thrown by any of the entity
operations if the database reports an error which does not map to one
of the above exceptions.

9.7 Coding Conventions for Exceptions

• Under normal circumstances don't create your own subclasses of
AppException or AppRuntimeException.

• Use exception chaining and exception logging when handling serious er-
rors (the definition of “serious” is application-specific).

• When writing the text of errors in a message file, be aware of localiza-
tion issues. Do not write code which simply replaces placeholders with

Cúram Server Developer's Guide

112

hard-coded literals as shown in Example 9.5, Incorrect usage of hard-
coded literals.

//Check that BankAccount entity exists:
bankAccountKey.accountNumber = argIn.accountNumber;
try {

bankAccountDtls = bankAccount.read(bankAccountKey);
} catch (RecordNotFoundException rnf) {

//This is a SERIOUS error
curam.util.exception.AppException e = new AppException(

COOKBOOK.ID_NO_SUCH_ACCOUNT, rnf);
e.setLoggable(true); //make sure it gets logged
e.arg("not found"); // NOT LOCALIZABLE!!!
throw e;

}

Example 9.5 Incorrect usage of hard-coded literals

9.8 Using Record Not Found Indicator

Each of the singleton reads of the database (entity read, nsread, nkread oper-
ations) which could potentially throw a RecordNotFoundException
has overloads added to take a Record Not Found Indicator variable.

The reasons for providing a Record Not Found Indicator are:

• To save the overhead of creating and throwing an exception whenever a
record cannot be found, as this is an expensive process in some JVMs.

• To make it easier to write code which simply checks for the existence of
a record.

This indicator (curam.util.type.NotFoundIndicator) wraps a
boolean value which indicates whether the required record could not be
found. When this indicator is passed into one of the above read operations,
the operation will never throw a RecordNotFoundException if the re-
cord does not exist but will instead set the boolean flag inside Not-
FoundIndicator to true, and return a value of null. If the record is
found, the boolean flag inside NotFoundIndicator is set to false,
and the record is returned.

Whenever a developer wishes to pass a NotFoundIndicator into a
singleton read operation, it is always passed in as the first argument. This is
shown in the following examples:

try {
bankAccountDtls = bankAccount.read(bankAccountKey);

} catch (RecordNotFoundException rnf) {
// record was not found...

}

Example 9.6 A typical read operation which may throw a
RecordNotFoundException

Cúram Server Developer's Guide

113

final NotFoundIndicator notFoundInd =
new curam.util.type.NotFoundIndicator();

bankAccountDtls = bankAccount.read(notFoundInd, bankAccountKey);
if (notFoundInd.isNotFound()) {

// record was not found...
} else {

// record was found...
}

Example 9.7 The overloaded version of the one above, using the
NotFoundIndicator

try {
bankAccountDtls = bankAccount.read(bankAccountKey, true);

} catch (RecordNotFoundException rnf) {
// record was not found...

}

Example 9.8 A typical read operation for update which may
throw a RecordNotFoundException

bankAccountDtls =
bankAccount.read(notFoundInd, bankAccountKey, true);

if (notFoundInd.isNotFound()) {
// record was not found...

} else {
// record was found...

}

Example 9.9 The overloaded version of the one above, using the
NotFoundIndicator

9.9 Localized Output

In IBM Cúram Social Program Management the client is responsible for
converting the text of an exception into the language that a user has chosen.
However certain situations do exist where the server must present data to
the client for localization. To facilitate these situations the
curam.util.exception.LocalisableString class has been in-
troduced. This class is used in a similar manner to AppException as is
shown in Example 9.10, Use of LocalisableString.

curam.util.type.CodeTableItemIdentifier someIdentifier =
new CodeTableItemIdentifier("someTable", "someCode");

curam.util.exception.LocalisableString e =
new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);

e.arg(someIdentifier);
return e.toClientFormattedText();

Example 9.10 Use of LocalisableString

This string can be passed back to the client as an output parameter and will
be localized by the client.

Cúram Server Developer's Guide

114

9.10 Informational Manager

The standard exception handling and string presentation features described
in this chapter do not address one scenario. In a number of situations it is
useful to present multiple informational messages at one time. For example,
during the course of validation a number of warnings, or errors, may occur
independently as they are based on different elements of the user input.
These should be reported together to simplify the corrective actions that a
user must take. The InformationalManager class allows for excep-
tions and informationals to be grouped together in this manner. Ex-
ample 9.11, Use of the Informational Manager shows the use of this class to
group informational messages for presentation:

import curam.util.exception.InformationalElement;
import curam.util.exception.InformationalException;
import curam.util.exception.InformationalManager;
import curam.util.exception.LocalisableString;
import curam.util.internal.security.struct.LoginMessage;
import curam.util.internal.security.struct.LoginMessageList;
import curam.util.message.INFRASTRUCTURE;
import curam.util.resources.GeneralConstants;

class InformationalManagerDemo {

public LoginMessageList checkLoginStatus()
throws InformationalException {

// Create an informational manager to store the
// results of the validation checks. A transaction wide
// version can be obtained via
// TransactionInfo.getInformationalManager().
final InformationalManager informationalManager =
new InformationalManager();

// Informational #1
// Create an informational string for presentation to
// the client: this specifies the password will expire
// in 6 days
LocalisableString infoMessage1 = new LocalisableString(

INFRASTRUCTURE.INFO_ID_PASSWORD_EXPIRING);
infoMessage1.arg(6);
// Add this informational string to the informational
// manager
informationalManager.addInformationalMsg(infoMessage1,

GeneralConstants.kEmpty,
InformationalElement.InformationalType.kWarning);

// Informational #2
// Create an informational string for presentation to
// the client: this specifies the user will be locked
// out if they do not change their password in the next
// 10 logins.
LocalisableString infoMessage2 = new LocalisableString(

INFRASTRUCTURE.INFO_ID_LOG_ATTEMPTS_EXPIRING);
infoMessage1.arg(10);
// Add this informational string to the informational
// manager
informationalManager.addInformationalMsg(infoMessage2,

GeneralConstants.kEmpty,
InformationalElement.InformationalType.kWarning);

// The informationals must now be converted to a format
// suitable for return to the client.
final String[] informationalArray = informationalManager

Cúram Server Developer's Guide

115

.obtainInformationalAsString();
// The array of informational strings must be
// transferred to an array of structs because we
// cannot return an array of strings directly. Each
// string goes into one struct (LoginMessage) and
// this is aggregated into a list by struct
// LoginMessageList.
// LoginMessage : A struct containing one string
// named 'message'.
// LoginMessageList : A struct which aggregates
// LoginMessage as member 'dtls'.
final LoginMessageList result = new LoginMessageList();
for (int i = 0; i != informationalArray.length; i++) {
LoginMessage warning = new LoginMessage();
warning.message = informationalArray[i];
result.dtls.addRef(warning);

}
return result;

}

}

Example 9.11 Use of the Informational Manager

There are a number of points worth emphasizing in this code fragment:

• This sample is based around the presentation of informationals to the cli-
ent. It does not throw an exception, and therefore it is a successful in-
vocation of the method. This means the transaction will be committed
and any database updates will be made permanent. It is the responsibil-
ity of the client screen for this sample to handle the return value of the
operation as a collection of informationals.

• InformationalManager.failOperation() can be used to fail
the invocation depending on whether or not the informational manager
contains any warnings or errors. If the informational manager contains
an error or warning then this method will throw an exception which
means the transaction will be rolled-back. Otherwise this method does
nothing and the transaction is allowed to continue. The full details of
this operation are described in the API documentation (JavaDoc)
shipped with IBM Cúram Social Program Management.

• The second parameter to InformationalMan-
ager.addInformationalMsg currently populated with General-
Constants.kEmpty (as in Example 9.11, Use of the Informational Man-
ager) is intended to name a field. However, this is not supported in the
current release

The Cúram Web Client Reference Manual should be consulted to determine
the client side configuration that is necessary to use the Information-
alManager; at its simplest the field in the struct containing the informa-
tionals must be named in the UIM.

The InformationalManager logs informationals to the Curam log.
Please see Chapter 8, Logging for details on Logging.The informationals are
logged in the following way:

• Logging of the informationals is only performed at the time when they

Cúram Server Developer's Guide

116

are added to the InformationalManager (i.e. when calling In-
formationalManager.addInformationalMsg()).

• Fatal errors and errors are logged at the top level logger using the error
level.

• Warnings are logged at the top level logger using the info level.

Cúram Server Developer's Guide

117

Notes
1The following sections focus on use of AppException rather than Ap-
pRuntimeException as this is typical of production code. However,
AppRuntimeException can be created and manipulated in the same
way.

Cúram Server Developer's Guide

118

Chapter 10

Message and Code Table Files

10.1 Overview

This chapter describes message catalog and code table files and how they
are used in the IBM Cúram Social Program Management application.
Cúram message catalogs allow an application to be localized without ma-
nipulating hand-crafted code, while Cúram code table files allow an applica-
tion to use a level of indirection when storing commonly used constants on
the database, e.g., Ms., Mr. This chapter introduces message and code table
fundamentals, and explains how they can be augmented to produce custom-
ized messages and code tables in a Cúram application.

10.2 Message Files

Traditionally message files or catalogs are binary files used for holding text
messages associated with an application. Each message catalog had a one-
to-one association with a symbol definition file. The symbol definition file
was examined at compile time and the message catalog at run-time. Using
this form of indirection allows an application to be localized without a re-
compilation being necessary.

In keeping with this approach, Cúram message catalogs are generated from
message .xml files using a command-line build utility called msggen
(build msggen). Generating from a message .xml file produces two out-
puts: a message catalog file (one Java .properties file is generated for
each locale specified) and a symbol definition file (a standard Java class
file). The symbol definition file is a Java file containing constants (in Java
terms, a constant is a static final) for message identifiers enumerated
in the message.xml file, and the name of the message file itself. This file
should be imported into any Java source files which use that catalog. The
message catalog is a properties file opened by the Cúram application at
runtime.

119

The msggen build target performs the merge of message files and then
translates the resultant message file (which are stored in /
build/svr/message/scp) into symbol definition (Java code) and
message catalog (property) files.

msggen is automatically invoked by the provided build scripts, against those
message files which are placed in the suggested source locations, i.e., the /
message directory of a component.

10.2.1 The Format of Message Files

The message .xml file is an XML document which is made up of a number
of distinct elements combined with the core message elements; see Ex-
ample 10.1, Example of Message text file.

As a standard XML document, the encoding attributed indicates that the
file is encoded in UTF-8. It should be noted that this encoding will be re-
spected and maintained by an XML aware editor. However, other editors
(such as TextPad) do not maintain this encoding by default. A file which
contains UTF-8 characters may have to be specifically saved as UTF-8 with
these editors.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A sample message file. -->
<messages package="curam.message">

<message name="ERR_XRV_EXISTING_OVERLAP">
<locale country="US" language="en">
More than 1 overlapping Assessment has been found.

</locale>
</message>

<message name="ERR_CREATION_DATE_EMPTY">
<locale country="US" language="en">
You must enter a creation date

</locale>
</message>

</messages>

Example 10.1 Example of Message text file

The following sections detail the message.xml file elements and attrib-
utes.

The <messages> Element

The <messages> element is the root element of a message file, and it
groups all other elements together. The messages element has the follow-
ing attribute:

Attribute
Name

Re-
quired

Default Description

package Yes None The Java package name to use for
the generated Java file.

Table 10.1 Attributes of the messages Element

Cúram Server Developer's Guide

120

The <message> Element

The <message> element groups a number of <locale> elements togeth-
er. The message element has the following attributes:

Attribute
Name

Re-
quired

Default Description

name Yes None Uniquely identifies the message.

removed No false Set to true to indicate if the mes-
sage is to be removed and hence not
included in the generated artefacts.

Table 10.2 Attributes of the message Element

The <locale> Element

The <locale> element details the text of the message for one of the sup-
ported locales. Since the message files are XML, it is not necessary to use
Java escape characters. Special characters can be inserted by using the
XML entity references in the message files. These will be converted to the
actual characters in the properties file. For example ¢ and $ will
result in the cent and dollar symbols, respectively, being put in the proper-
ties file. Care must be taken to only specify characters that can be supported
by the target properties file on your platform and for your operating system
locale.

The locale element has the following attributes:

Attribute
Name

Re-
quired

Default Description

language Yes None To be included during generation of
the message artefacts each
<locale> element must specify a
language (and optional country) at-
tribute that corresponds to a suppor-
ted locale. The SERV-
ER_LOCALE_LIST environment
variable is a comma separated list
defining the set of locales that are
supported, where the locale is either
simply language or lan-
guage_country. For example:
SERVER_LOCALE_LIST=en,
en_US, en_GB.

country No None Set to the country relevant to the loc-
ale language attribute.

Cúram Server Developer's Guide

121

Table 10.3 Attributes of the locale Element

10.2.2 Customizing a Message File

Message text files are located in the /message directory of a component.
The Social Program Management Platform is shipped with a set of message
files. These may be overridden by placing new message files in the SERV-
ER_DIR/components/<custom>/message directory, where <custom>
is any new directory created under components that conform to the same
directory structure as components/core. This mechanism avoids the
need to make changes directly to the out-of-the-box application, which
would complicate later upgrades.

Note

If the package attribute in the overridden message file is modified,
then the customization will not work.

This override process involves merging all message files of the same name
according to a precedence order. The order is based on the SERV-
ER_COMPONENT_ORDER environment variable. This environment variable
contains a comma separated list of component names: the left most has the
highest priority, and the right most the lowest.

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Example 10.2 SERVER_COMPONENT_ORDER example

The order in Example 10.2, SERVER_COMPONENT_ORDER example,
shows that the precedence of Appeal is higher than that of the sample
component. The core component always has the lowest priority and as
such does not need to be specified. Any components that are not specified
are placed alphabetically above core and below those that are specified.

Note

After changing the component precedence order in SERV-
ER_COMPONENT_ORDER it is necessary to perform a clean build
to ensure that you are using the appropriate files. This is done by in-
voking build clean server.

When merging message files, the components listed in the SERV-
ER_COMPONENT_ORDER are taken in order of highest to lowest priority.
In Example 10.2, SERVER_COMPONENT_ORDER example message files
from the sample component are merged with the message files located in
the core component. The message files from ISProduct are then
merged into the intermediate results and the merge process continues until
the messages in the custom component are merged.

Rules of Message Merges

Cúram Server Developer's Guide

122

Message files are merged based on precedence order. As described above
there is always a more important main/source message file, and a file which
is being merged into it. The second file is called the merge file in the fol-
lowing sections.

The merging rules described below are applied to decide if the <message>
and <locale> elements should be merged into the new message file.

• A <message> will be merged into a new message file if the
<message> is not already present in the new file.

• A <locale> will be merged into a named <message> element in the
new message file if the <locale> is not already present in the
<message> of the new message file.

Duplicate messages will always be overwritten by the message file in the
component with the highest precedence order. The main message file of Ex-
ample 10.3, Sample main message file, and the merge file of Example 10.4,
Sample merge message file, illustrate these rules:

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="US" language="en">
The specified color is not valid.

</locale>
</message>
<message name="ERR_SAMPLE_ERROR_MSG">

<locale country="US" language="en">
An external resource is not available.

</locale>
</message>

</messages>

Example 10.3 Sample main message file

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="GB" language="en">
The specified colour is not valid.
</locale>

</message>
<message name="ERR_SAMPLE_NEW_MSG">

<locale country="GB" language="en">
An example of localisation.

</locale>
</message>
<message name="ERR_SAMPLE_REMOVED_MSG" removed="true">

<locale language="en">
This message will be removed.
</locale>

</message>
</messages>

Example 10.4 Sample merge message file

As a result of the merge process the new message file produced would be:

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="GB" language="en">
The specified colour is not valid.

Cúram Server Developer's Guide

123

</locale>
<locale country="US" language="en">
The specified color is not valid.

</locale>
</message>
<message name="ERR_SAMPLE_ERROR_MSG">

<locale country="US" language="en">
An external resource is not available.

</locale>
</message>
<message name="ERR_SAMPLE_NEW_MSG">

<locale country="GB" language="en">
An example of localisation.</locale>

</locale>
</message>
<message name="ERR_SAMPLE_REMOVED_MSG" removed="true">

<locale language="en">
This message will be removed.

</locale>
</message>

</messages>

Example 10.5 Resulting Message File

10.2.3 Artefacts Produced by msggen Build Target

The Java artefacts (symbol definition and message catalog files) produced
from a merged message file, are placed in the /build/
svr/message/gen/<package> directory, where <package> is the
package attribute specified in the message file. For example, pack-
age="curam.message" would result in the Java artefacts being placed in the
/build/svr/message/gen/curam/message directory.

The directory contains the Java files (which are locale independent) and the
property files (which are locale dependent) which are named <Message
File name>_<specific language>_<specific coun-
try>.properties.

Note

If message files of the same name exist in different components with
a different package attribute value, then the generated artefacts
(symbol definition and message catalog files) produced are placed in
the package specified by the message file of the component with the
highest precedence order (as listed in the SERV-
ER_COMPONENT_ORDER environment variable).

These artefacts are best illustrated by example:

package curam.message;
import curam.util.message.CatEntry;
import curam.util.message.MessageCatalog
public final class SampleMessages {

private static final MessageCatalog kCat =
new MessageCatalog("curam.message.SampleMessages");

/**
* BpoActivity:ERR_SAMPLE_VALIDATION_MSG
* en_UK = The specified colour is not valid.

Cúram Server Developer's Guide

124

* en_US = The specified color is not valid.
*/
public static final CatEntry ERR_SAMPLE_VALIDATION_MSG

= kCat.entry("ERR_SAMPLE_VALIDATION_MSG");

/**
* BpoActivity:ERR_SAMPLE_ERROR_MSG
* en_US = An external resource is not available.
*/
public static final CatEntry ERR_SAMPLE_ERROR_MSG

= kCat.entry("ERR_SAMPLE_ERROR_MSG");

/**
* BpoActivity:ERR_SAMPLE_NEW_MSG
* en_GB = An example of localisation.
*/
public static final CatEntry ERR_SAMPLE_NEW_MSG

= kCat.entry("ERR_SAMPLE_NEW_MSG");
}

Example 10.6 Java file produced from merged message file

ERR_SAMPLE_VALIDATION_MSG=The specified colour is not valid.
ERR_SAMPLE_NEW_MSG=An example of localisation.

Example 10.7 Sample (UK) Properties produced from message
file

At the end of the msggen step these property files are placed into a .jar
file which is used by the client to localize the messages that are returned to
it.

10.2.4 Retrieving Messages from Message Files

A message file can contain any number of locales for a named message, and
as a result a mechanism needs to be in place to return the correctly localized
message for a running instance of Cúram. Messages are retrieved from a
message file based on the locale property which includes a language and,
optionally, a country. The message file look up returns a matching localized
message for a named message identifier. For example, if the runtime locale
is set to en_US where “en” is the language and “US” is the country, a mes-
sage look up for the message named A_MESSAGE (Example 10.8, Mes-
sage File Search) will return the text “The message”. If however the
runtime locale was set to “fr” the text “Le message” would be returned.

<messages package="curam.message">
<message name="A MESSAGE">

<locale country="US" language="en">The message</locale>
<locale language="fr">Le message</locale>

</message></messages>

Example 10.8 Message File Search

Since message files are not guaranteed to contain an entry for each message
that matches the runtime locale, a fall back mechanism is in place to guaran-
tee that if possible a localized message is returned when a look up is per-

Cúram Server Developer's Guide

125

formed. Once a message of a given name has been found, and there is no
direct match with the specified locale, the rules for fall back are as follows:

• If the runtime locale is set to include a language and country, the coun-
try is removed and the search looks for a matching language only. Look-
ing up the message named A_MESSAGE in Example 10.9, Message
File FallBack One with runtime locale en_US will return the message
text “The message”.

<messages package="curam.message">
<message name="A_MESSAGE">

<locale language="en">The message</locale>
</message>

</messages>

Example 10.9 Message File FallBack One

The underlying message lookup mechanism is provided by the JDK class
java.util.ResourceBundle. Please refer to the relevant JDK
JavaDoc for details of this classes functionality and further details of the
fallback mechanism provided.

There is no default behavior for message file lookup. If the runtime locale
does not find a match in the message file after applying the fall back rules
described by java.util.ResourceBundle, a MissingRe-
sourceException is returned and server logs are updated if appropriate.

10.2.5 Writing Messages To Server Logs

Messages from message catalogs are used in many instances in Cúram and
localized at runtime as described in Section 10.2.4, Retrieving Messages
from Message Files. Localization of server log messages is different in that
it is performed by the server infrastructure based on the default server loc-
ale. In this case, the locale used when writing to Cúram server logs is set by
configuring the curam.environment.default.locale property in
Application.prx.

10.2.6 Localizing SDEJ Message Files

It is possible to localize or modify the message files shipped with the Cúram
SDEJ. These message files are located in the message directory of the
SDEJ and are in the same format as Cúram application message files but
with the extension .iml.

To localize these files copy the particular .iml message file to be modified
from the SDEJ to the message directory of a component in your Cúram ap-
plication, for example, SERV-
ER_DIR/components/custom/message. The .iml message file
can then be modified in the same way as any message file, overriding a mes-
sage or adding a new locale for all the messages.

Note

Cúram Server Developer's Guide

126

If the package attribute in the message file is modified the localiz-
ation will not work.

The msggen target, when run, will merge the localized .iml message file
with the original one located in the SDEJ. The localized message file will
have the higher precedence order. It will then generate the properties files
only and include them in the messages.jar file created. The mes-
sages.jar file will always be on the classpath before the default SDEJ
messages in a runtime application.

10.3 Code Table Files

Code table files allow a Cúram application to use a level of indirection when
storing commonly used constants on the database. Like message files, code
table files are shipped with Cúram and can be customized by adding new
code table files to new components in the SERV-
ER_DIR/components/<custom>/codetable directory, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core. Code table files
can contain one code table or a number of code tables that are linked as a
hierarchy.

Generating code tables produces two outputs: a code table SQL file to place
the codes on the database, and a symbol definition file (a standard Java
class file). The symbol definition file is a Java file containing constants for
code table identifiers used in the code table XML file. The generation of
code table hierarchies also produces .properties files as described in Sec-
tion 10.3.3, Artefacts Produced by ctgen Build Target.Generating code
tables is supported by the build target ctgen.

For more information on code tables also consult the Domain Definitions
chapter in the Cúram Modeling Reference Guide and the Cúram Web Client
Reference Manual.

10.3.1 The Format of Code Table Files

The code table file is an XML document which is made up of a number of
distinct elements. Example 10.10, Sample Main Code Table File 1, shows a
sample code table.

As a standard XML document, the encoding attributed indicates that the
file is encoded in UTF-8. It should be noted that this encoding will be re-
spected and maintained by an XML aware editor. However, other editors
(such as TextPad) do not maintain this encoding by default. A file which
contains UTF-8 characters may have to be specifically saved as UTF-8 with
these editors.

The following sections detail the elements and attributes of a code table file.

The <codetables> Element

Cúram Server Developer's Guide

127

The <codetables> element is the root element of a code table file and it
groups all other elements together. The codetables element has the fol-
lowing attributes:

Attribute
Name

Re-
quired

Default Description

package Yes None Specifies the package the generated
symbol definition Java file will be
part of.

hier-
archy_name

No None Identifies the code table file as con-
taining a hierarchy of code tables.

Table 10.4 Attributes of the codetables Element

The <description> Element

The <description> element is an optional sub-element below the
<codetables> root. It is used to define a description for the code tables.
It should be listed first, before the other sub-element, <codetable>, of
<codetables>. It should only be listed once. There are no attributes for
the description element.

The <codetable> Element

The <codetable> element is a sub-element below the <codetables>
root. The <codetable> element should follow the <description>
element, if it's specified. For an ordinary code table file definition only a
single <codetable> element can be defined. If a hierarchy_name at-
tribute has been specified in the <codetables> multiple <codetable>
elements are allowed as long as they are linked correctly in a hierarchy.

The codetable element groups a number of <code> elements together
and an optional <codetabledata> element.

The <codetable> element has the following attributes:

Attribute Name Re-
quired

Default Description

name Yes None A unique identifier for the
code table. The name attrib-
ute is trimmed of leading and
trailing spaces on code table
generation. Some restrictions
apply to the name attribute
when the
<displaynames> element
is specified. Please see Sec-
tion 10.3.3, Artefacts Pro-

Cúram Server Developer's Guide

128

Attribute Name Re-
quired

Default Description

duced by ctgen Build Target
for further details.

java_identifier Yes None The name of the generated
symbol definition Java file.

parent_codetable No None Used to define the name of
the parent code table in the
hierarchy, where the code ta-
ble file has been defined as a
hierarchy of code tables.

Table 10.5 Attributes of the codetable Element

The <codetabledata> Element

The <codetabledata> element is an optional sub-element of
<codetable> that groups the locale-specific comments for a codetable.
Each <codetable> element can have one optional <codetabledata>
element. The <codetabledata> element can contain multiple optional
<locale> elements.

Note

The <codetabledata> element and its child elements are op-
tional elements.

The <codetabledata> element has the following attributes:

Attribute
Name

Re-
quired

Default Description

language Yes None Specifies the language portion of the
locale for the codetabledata
element.

country No None Specifies the country portion of the
locale for the codetabledata
element.

Table 10.6 Attributes of the codetabledata Element

The <locale> Element

The optional <locale> element can occur multiple times for the
<codetabledata> element. Each <locale> element can contain one
optional <comments> element.

The locale element has the following attributes:

Cúram Server Developer's Guide

129

Attribute
Name

Re-
quired

Default Description

language Yes None Specify a language that corresponds
to a supported locale.

country No None Specify a country that corresponds
to a supported locale and language.

Table 10.7 Attributes of the locale Element

The <comments> Element

The optional <comments> element is used to store the locale-specific
comments for a code table.

The comments element has no attributes.
The <displaynames> Element

The <displaynames> element groups a number of code table hierarchy
<name> elements together. It is an optional element. However, if present it
must contain at least one <name> element. The displaynames element
has no attributes.
The <name> Element

The <name> element is required when the <displaynames> element is
present. When displaying the <name> values on the client, the name that
contains the locale for the current user is displayed. However, if the current
user's locale does not match any of the locales specified within the <name>
element, then the <codetable> name attribute is displayed.

The name element has the following attributes:

Attribute
Name

Re-
quired

Default Description

language Yes None Specifies the language portion of the
locale for the name element.

country No None Specifies the country portion of the
local for the name element.

Table 10.8 Attributes of the name Element

The <code> Element

The <code> element is a sub-element of <codetable> and groups a
number of <locale> elements together. The code element has the fol-
lowing attributes:

Cúram Server Developer's Guide

130

Attribute
Name

Re-
quired

Default Description

value Yes None A unique identifier for the code in
the code table.

status Yes None Indicates if the code table is enabled
and selectable in the list of codes as
displayed on the client. It can be set
to either ENABLED or DISABLED
and if set to anything else it is con-
sidered to be DISABLED.

default No None Indicates if this is the default code
for the code table. There should only
ever be one default specified. The
default code is used to define the ini-
tially selected value in an editable
code table list in the client. For more
information consult the Cúram
Web Client Reference
Manual.

java_identi
fier

No None Used as part of the generated symbol
definition Java file

removed No false Set to true to indicate if the code is
to be removed and hence not in-
cluded in the generated artefacts

parent_code No None Used to define the name of the code
in the specified parent code table in
the hierarchy that this code is linked
to. See Section 10.3.4, Code Table
Hierarchy for more information on
defining a code table hierarchy.

Table 10.9 Attributes of the code Element

The <locale> Element

The <locale> element contains two mandatory sub-elements
(<description> and <annotation>) and one optional sub-element
<comments>, which are used to describe the code.

To be included during generation of the code table artefacts, each
<locale> element must specify a language (and optional country) attrib-
ute that corresponds to a supported locale. The SERVER_LOCALE_LIST
environment variable is a comma separated list of locales that are supported,
where the locale is either simply of the form language or lan-
guage_country as shown in this example:

SERVER_LOCALE_LIST=en, en_US, en_GB

Cúram Server Developer's Guide

131

The locale element has the following attributes:

Attribute
Name

Re-
quired

Default Description

language Yes None Specifies a language that corres-
ponds to a supported locale.

country No None Specifies a country that corresponds
to a supported locale and language.

sort_order No None Specifies the order in which the
codes in a code table will be dis-
played in the drop-down list on an
edit page in the client.

Table 10.10 Attributes of the locale Element

The <description> Element

The <description> element is used to provide a description for the
code. The description element has no attributes.
The <annotation> Element

The <annotation> element is used to provide an annotation to the code.
The annotation element has no attributes.
The <comments> Element

The optional <comments> element is used to store the locale-specific
comments for a code table item. This element can be used to provide local-
ized information to aid in understanding the usage for a code table item, and
any implication of change to it.

The comments element has no attributes.

10.3.2 Customizing a Code Table File

Code table files are located in the /codetable directory of a component.
The Social Program Management Platform is shipped with a set of code ta-
ble files. These may be overridden by placing new code table files in the
SERVER_DIR/components/<custom>/codetable directory,
where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

This mechanism avoids the need to make changes directly to the out-
of-the-box application, which would complicate later upgrades. Typically
code table files are customized to add new entries, localize descriptions or to
add new locales.

This override process involves merging all code table files of the same name
according to a precedence order. The order is based on the SERV-
ER_COMPONENT_ORDER environment variable which contains a comma-
separated list of component names: the left most has the highest priority,

Cúram Server Developer's Guide

132

and the right most the lowest1

Rules of Code Table Merges

Code table files are merged based on precedence order. There is always a
more important main/source code table file, and a file which is being
merged into it. The second file is called the merge file in the following sec-
tions.

The merging rules described below are applied to decide if the <code>,
<locale>, <displaynames>, and <name> elements should be merged
into the new code table file.

• A <code> will be merged into a new code table file if its associated
<codetable> is present in the new file and its value attribute is not
already present in the new file.

• The <codetabledata> element is merged into the
<codetabledata> element in the new code table file if the
<locale> element is not already present in the <codetabledata>
element of the new code table. The <codetabledata> element is ad-
ded into the new code table file even if the <codetabledata> is not
already present in the new code table file.

• A <locale> will be merged into a named <code> element in the new
code table file if the <locale> is not already present in the <code>
of the new code table.

• A <displaynames> element will be merged into a new code table
file if its associated <codetable> is present in the new file and it is
not already present in the new file.

• If the <displaynames> element is already present in the new file,
then the <name> elements will need to be merged. If the <name> ele-
ment with its language and country attributes is not already present
in the new file, then it will be merged into the new file.

The main code table file of Example 10.10, Sample Main Code Table File 1,
and the merge code table file of Example 10.11, Sample Merge Code Table
File 1, illustrate the rules of merging <code>, <codetabledata> and
<locale> elements.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">

<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">

<code default="true" java_identifier="ACCEPTED"
status="ENABLED" value="ACS1">

<locale language="en" country="US" sort_order="0">
<description>Accepted</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="US" sort_order="0">

<description>Provisional</description>

Cúram Server Developer's Guide

133

<comments>Comments for PROVISIONAL in EN_US</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Rejected</description>
<comments>Comments for Rejected in EN_US</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REMOVED" removed="true"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Removed</description>
<annotation>This message will be removed</annotation>

</locale>
</code>
<codetabledata>
<locale language="en">

<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale> language="en" country="US">

<comments>Code table comments for
Country in US.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Example 10.10 Sample Main Code Table File 1

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">

<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">

<code default="true" java_identifier="ACCEPTED"
status="ENABLED" value="ACS1">

<locale language="en" country="GB" sort_order="0">
<description>Passed</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="GB" sort_order="0">

<description>Pending</description>
<comments>Comments for PROVISIONAL in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="GB" sort_order="0">

<description>Failed</description>
<comments>Comments for REJECTED in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="UNKNOWN"

status="ENABLED" value="ACS4">
<locale language="en" sort_order="0">

<description>Unknown</description>
<annotation></annotation>

</locale>
</code>
<codetabledata>
<locale language="en">

Cúram Server Developer's Guide

134

<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale language="en" country="GB">

<comments>Code table comments for
Country in GB.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Example 10.11 Sample Merge Code Table File 1

As a result of the merge process the resulting code table file would be:

<codetables package="curam.codetable">
<codetable java_identifier="ACCEPTANCESTATUS"

name="AcceptanceStatus">
<code default="true" java_identifier="ACCEPTED"

status="ENABLED" value="ACS1">
<locale language="en" country="US" sort_order="0">

<description>Accepted</description>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Passed</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="US" sort_order="0">

<description>Provisional</description>
<comments>Comments for PROVISIONAL in EN_US</comments>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Pending</description>
<comments>Comments for PROVISIONAL in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Rejected</description>
<comments>Comments for REJECTED in EN_US</comments>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Failed</description>
<comments>Comments for REJECTED in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="UNKNOWN"

status="ENABLED" value="ACS4">
<locale language="en" sort_order="0">

<description>Unknown</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REMOVED" removed="true"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Removed</description>
<annotation>This message will be removed</annotation>

Cúram Server Developer's Guide

135

</locale>
</code>
<codetabledata>
<locale language="en">

<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale> language="en" country="US">

<comments>Code table comments for
Country in US.</comments>

</locale>
<locale language="en" country="GB">

<comments>Code table comments for
Country in GB.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Example 10.12 Resulting Code Table File 1

The main code table file of Example 10.13, Sample Main Code Table File 2,
and the merge code table file of Example 10.14, Sample Merge Code Table
File 2, illustrate the rules of merging <displaynames> and <name> ele-
ments.

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable">
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>

</displaynames>
<code default="false" java_identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"

parent_codetable="CarMake">
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort_order="0">

<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort_order="0">

<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>

Cúram Server Developer's Guide

136

</codetables>

Example 10.13 Sample Main Code Table File 2

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable"

>
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>
<name language="en">Car Make Core</name>
<name language="en" country="GB">Car Make CoreGB</name>

</displaynames>
<code default="false" java_identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"

parent_codetable="CarMake">
<displaynames>

<name language="en">Car Model</name>
</displaynames>
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort_order="0">

<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort_order="0">

<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Example 10.14 Sample Merge Code Table File 2

As a result of the merge process, the resulting code table file would be:

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable">
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>

</displaynames>
<code default="false" java_identifier="MITS"

Cúram Server Developer's Guide

137

status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"
parent_codetable="CarMake">
<displaynames>

<name language="en">Car Model</name>
</displaynames>
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort_order="0">

<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort_order="0">

<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Example 10.15 Resulting Code Table File 2

10.3.3 Artefacts Produced by ctgen Build Target

The artefacts produced from the code table file of Example 10.11, Sample
Merge Code Table File 1, are a symbol definition file (Java class) and an
SQL file.

The symbol definition file is a Java file containing constants for code table
identifiers used in the code table XML file. This file can be used in conjunc-
tion with the curam.util.CodeTable interface to access code table in-
formation programmatically.

The Java file is generated to /
build/svr/codetable/gen/<package> directory, where
<package> is the package attribute specified in the codetable file. For ex-
ample, package="curam.codetable" would result in the Java artefacts being
placed in the /build/svr/codetable/gen/curam/codetable
directory.

The code table SQL file contains inserts for the CodeTableHeader and
CodeTableItem database tables. All SQL file artefacts are placed in a
common directory: /build/svr/codetable/sql/.

Note

Cúram Server Developer's Guide

138

If code table files of the same name exist in different components
with different package attribute values then the symbol definition
file (Java class) artefacts are placed in the package specified by the
code table file of the component with the highest precedence order
(as listed in the SERVER_COMPONENT_ORDER environment vari-
able).

These artefacts are best illustrated by example:

package curam.codetable;

/**
* Generated AcceptanceStatus codetable file.
*
*/
public final class ACCEPTANCESTATUS {

/**
* TABLENAME=AcceptanceStatus.
*/
public static final String TABLENAME

= new String("AcceptanceStatus");

/**
* DEFAULTCODE=ACS1.
*/
public static final String DEFAULTCODE

= new String("ACS1");

/**
* Retrieves the defaultCode from the cache.
*
* @returns the default code value
*
* @throws curam.util.exception.AppException
* Generic Exception Signature.
* @throws curam.util.exception.InformationalException
* Generic Exception Signature.
*/
public static String getDefaultCode()

throws curam.util.exception.AppException,
curam.util.exception.InformationalException {

return curam.util.type.CodeTable.getDefaultItem(TABLENAME);
}

/**
* ACS1=Accepted.
*/
public static final String ACCEPTED

= new String("ACS1");
/**
* ACS2=Provisional.
*/
public static final String PROVISIONAL

= new String("ACS2");
/**
* ACS3=Rejected.
*/
public static final String REJECTED

= new String("ACS3");
/**
* ACS4=Unknown.
*/
public static final String UNKNOWN

= new String("ACS4");
}

Example 10.16 Sample Java file produced from code table file

Cúram Server Developer's Guide

139

It should be noted that this pattern of generation means that the Strings will
not be interned by the Java compiler. This allows the dependency checking
in the build scripts to operate correctly. If an empty string is provided for a
Java Identifier the code is only mapped into persistent data (SQL file) and is
not reflected in the Java artefacts.

The persistent data associated with code tables is generated into the com-
mon /build/svr/codetable/sql/ directory.

--
-- Cúram Code Table SQL Data File
--

--
-- CODETABLE AcceptanceStatus
--
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,

ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS1', 'Accepted', '', '1',
0, 'en_US', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS2', 'Provisional', '', '1',
0, 'en_US', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS3', 'Rejected', '', '1',
0, 'en_US', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS1', 'Passed', '', '1',
0, 'en_GB', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS2', 'Pending', '', '1',
0, 'en_GB', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS3', 'Failed', '', '1',
0, 'en_GB', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES ('AcceptanceStatus', 'ACS4', 'Unknown', '', '1',
0, 'en', CURRENT_TIMESTAMP(''));

INSERT INTO CodeTableHeader (TableName, TimeEntered,
DefaultCode, LASTWRITTEN)

VALUES ('AcceptanceStatus', CURRENT_TIMESTAMP(''),
'ACS1', CURRENT_TIMESTAMP(''));

Example 10.17 Sample SQL file produced from code table file

Note

If any <locale> entries specify a language (and optional country)
which are not contained in the SERVER_LOCALE_LIST environ-
ment variable they will be ignored during generation and a warning
will be produced.

Cúram Server Developer's Guide

140

Also, while generating the codetable SQL artefacts containing the
contents for the CodeTableItem and CodeTableHeader database
tables, the LASTWRITTEN field with an initial value will be popu-
lated. The initial value is a time stamp which is set to the time when
the data is inserted into the database.

The same artefacts are produced for the code table file of Example 10.15,
Resulting Code Table File 2, also, because the file contains a
<displaynames> element, additional artefacts are created, i.e. a proper-
ties file is generated for each <name> element it contains.

The ctgen target produces one properties file for each locale (composite of
language and country attributes) and <name> element within the
<displaynames> element of a code table definition. Locale is defined by
the language and country attributes of the <name> element. These
properties files define the display names associated with each code table in a
code table hierarchy.

The properties files are generated into /
build/svr/codetable/gen/. If no <displaynames> element is
specified for a code table hierarchy, no properties file is generated, and a
warning will be displayed. The name of the generated properties file con-
sists of the code table name along with the locale. Since a code table name
with spaces renders a properties file invalid and unlocalizable, any spaces
specified in the code table name will be replaced with the underscore char-
acter.

The warning, i.e. warning where a <displaynames> element is not spe-
cified, is only treated as a warning and never an error, regardless of the set-
ting of the property prp.warningstoerrors.

If the locale specified for the <name> element is not supported, then the ct-
gen will display a warning and no properties file for that locale will be gen-
erated.

The following is an example of properties files produced by the ctgen on the
Example 10.15, Resulting Code Table File 2. Each properties file is gener-
ated to /build/svr/codetable/gen/

CarMake=Car Make US

Example 10.18 CarMake_en_US.properties

CarMake=Marque

Example 10.19 CarMake_fr.properties

CarMake=Car Make CustomGB

Example 10.20 CarMake_en_GB.properties

CarMake=Masinos Gamintojas

Cúram Server Developer's Guide

141

Example 10.21 CarMake_lt.properties

CarMake=Car Make Custom

Example 10.22 CarMake_en.properties

CarModel=Car Model

Example 10.23 CarModel_en.properties

10.3.4 Code Table Hierarchy

Code table files can define a single code table or a hierarchy of code tables.
A hierarchy is where multiple code tables are linked into a number of levels.
Selecting a code at a particular level will reduce the number of selections
available at the next level. Any number of levels in a code table hierarchy is
supported.

For example, Table 10.11, Address Hierarchy shows a sample hierarchy.
Selecting Ireland as the country will return a sub-list of Meath and Wexford
and selecting Meath as the county will return sub-list of Trim and Navan.
Alternatively, selecting England will return a sub-list of Stafford and Lon-
don, etc.

Level 1 Level 2 Level 3
Country County Town

Ireland Meath Navan

Trim

Wexford Gorey

Enniscorthy

England Stafford Bednall

Stone

London Earlsfield

Eltham

Table 10.11 Address Hierarchy

To define a code table hierarchy a code table (CTX) file should be created
with a code table defined for each level in the hierarchy. To indicate that the
code table file contains a hierarchy, the hierarchy_name attribute
should be defined on the <codetables> element.

<codetables package="curam"
hierarchy_name="AddressHierarchy">

<description>
A description of the hierarchy.

</description>

Cúram Server Developer's Guide

142

Example 10.24 Usage of hierarchy_name attribute

Each <codetable> defined must then be linked using the par-
ent_codetable attribute of the <codetable> element. The par-
ent_codetable value should be set to the name of an existing
<codetable> in the file, where the specified code table is the parent in
the hierarchy. All code tables defined in the file, excluding the top level
code table, must have a valid parent_codetable attribute defined for
them. A <codetable> can be linked to only one parent <codetable>
and cannot be used in more than one code table hierarchy.

<codetable java_identifier="COUNTY"
name="County" parent_codetable="Country">

Example 10.25 Usage of parent_codetable attribute

Each <code> entry in a code table is finally linked to a <code> entry in
the parent code table, using the parent_code attribute. The par-
ent_code value must be the value of a <code> existing in the specified
parent code table. A child <code> cannot be linked to more than one par-
ent <codetable>.

<code java_identifier="MEATH"
value="MEATH" parent_code="IRELAND" status="ENABLED">

Example 10.26 Usage of parent_code attribute

The hierarchy defined in Table 10.11, Address Hierarchy can be represented
as follows in a code table file.

<?xml version="1.0" encoding="UTF-8" ?>
<codetables package="curam" hierarchy_name="AddressHierarchy">

<description>
A description of the hierarchy.

</description>

<codetable java_identifier="COUNTRY" name="Country">
<displaynames>
<name language="en">Country</name>

<displaynames>
<code java_identifier="IRL" value="IRLND" default="true"

status="ENABLED">
<locale language="en" sort_order="1">

<description>Ireland</description>
</locale>

</code>
<code java_identifier="GB" value="ENGLND" status="ENABLED">
<locale language="en" sort_order="2">

<description>England</description>
</locale>

</code>
</codetable>

<codetable java_identifier="COUNTY" name="County"
parent_codetable="Country">

<displaynames>
<name language="en">County</name>

</displaynames>
<code java_identifier="MEATH" value="MTH"

parent_code="IRLND" status="ENABLED">
<locale language="en" sort_order="1">

Cúram Server Developer's Guide

143

<description>Meath</description>
</locale>

</code>
<code java_identifier="WEXFORD" value="WXFD"

parent_code="IRLND" status="ENABLED">
<locale language="en" sort_order="1">

<description>Wexford</description>
</locale>

</code>
<code java_identifier="STAFFORD" value="STFFRD"

parent_code="ENGLND" status="ENABLED">
<locale language="en" sort_order="1">

<description>Stafford</description>
</locale>

</code>
<code java_identifier="LONDON" value="LNDN"

parent_code="ENGLND" status="ENABLED">
<locale language="en" sort_order="2">

<description>London</description>
</locale>

</code>
</codetable>

<codetable java_identifier="TOWN" name="Town"
parent_codetable="County">

<code java_identifier="NAVAN" value="NVN"
parent_code="MTH" status="ENABLED">

<locale language="en" sort_order="2">
<description>Navan</description>

</locale>
</code>
<code java_identifier="TRIM" value="TRM"

parent_code="MTH" status="ENABLED">
<locale language="en" sort_order="2">

<description>Trim</description>
</locale>

</code>
<code java_identifier="GOREY" value="GRY"

parent_code="WXFD" status="ENABLED">
<locale language="en" sort_order="2">

<description>Gorey</description>
</locale>

</code>
<code java_identifier="ENNISCORTHY" value="ENC"

parent_code="WXFD" status="ENABLED">
<locale language="en" sort_order="2">

<description>Enniscorthy</description>
</locale>

</code>
<code java_identifier="ELTHAM" value="ELTM"

parent_code="LNDN" status="ENABLED">
<locale language="en" sort_order="2">

<description>Eltham</description>
</locale>

</code>
<code java_identifier="EARLSFIELD" value="ELFD"

parent_code="LNDN" status="ENABLED">
<locale language="en" sort_order="2">

<description>Earlsfield</description>
</locale>

</code>
<code java_identifier="BEDNALL" value="BDNL"

parent_code="STFFRD" status="ENABLED">
<locale language="en" sort_order="4">

<description>Bednall</description>
</locale>

</code>
<code java_identifier="STONE" value="STN"

parent_code="STFFRD" status="ENABLED">
<locale language="en" sort_order="4">

<description>Stone</description>
</locale>

Cúram Server Developer's Guide

144

</code>
</codetable>

</codetables>

Example 10.27 Code Table Hierarchy Example

The artefacts listed in Section 10.3.3, Artefacts Produced by ctgen Build
Target are also generated for code table files that define a hierarchy.

Properties files are generated for <displaynames> elements. A symbol
definition Java file is generated for each code table in the hierarchy. A
single SQL file is generated, containing the relevant inserts to the
CodeTableHeader and CodeTableItem database tables for all
defined code tables. These insert statements will include the population of
the parentCode field in the CodeTableItem table and the par-
ent_codetable field in the CodeTableHeader table. An insert entry
is also generated for the CodeTableHierarchy database table. This ta-
ble is used for administration purposes only.

Note

The code table hierarchies can only be created through code table
(CTX) files and not through the admin screens. The admin screens
can only be used to maintain the code table hierarchies.

10.3.5 Retrieving Codes from Code Table Files

Since a code table file can contain any number of locales for a named code a
mechanism needs to be in place to return the correctly localized code for a
running instance of Cúram. Codes are retrieved from a code table file based
on the locale property which includes a language and or a country. The code
table file look up returns a matching localized code for a named value. For
example, if the runtime locale is set to en_US where “en” is the language
and “US” is the country, a code look up for the code named ACODE in Ex-
ample 10.28, Code File Search, will return the text “The code”. If, however,
the runtime locale was set to “fr”, the text “Le code” would be returned.

<codetables package="curam.codetable">
<codetable java_identifier="AN_ID" name="ANAME">

<code default="true" java_identifier="ACODE"
status="ENABLED" value="ACODE">

<locale language="en" country="US" sort_order="0">
<description>The code</description>
<annotation></annotation>

</locale>
<locale language="fr">

<description>Le code</description>
<annotation></annotation>

</locale>
</code>

</codetable
</codetables>

Example 10.28 Code File Search

Since code table files are not guaranteed to contain an entry for every coun-

Cúram Server Developer's Guide

145

try, a fall back mechanism is in place. Once a code of a given name has
been found and there is no direct match with the specified locale, the rules
for fall back are as follows:

• If the runtime locale is set to include a language and country, the coun-
try is removed and the search looks for a matching language only. Look-
ing up the code named ACODE in Example 10.28, Code File Search,
with runtime locale fr_CN would return the text “Le code”.

There is no default behavior for code tables. If the runtime locale does not
find a match in the code table after applying the fall back rule an empty
string is returned.

10.3.6 Localizing SDEJ Code Table Files

It is possible to localize or modify the codetable files shipped with the
SDEJ. These codetable files are located in the codetable directory of the
SDEJ and are in the same format as Cúram application codetable files but
with the extension .itx.

To localize these files copy the particular .itx codetable file to be modi-
fied from the SDEJ to the codetable directory of a component in your
Cúram application, for example, SERV-
ER_DIR/components/custom/codetable. The .itx codetable
file can then be modified in the same way as any codetable file; overriding a
code or adding a new locale for all the codes.

Note

If the package attribute in the codetable file is modified the local-
ization will not work.

The ctgen target, when run, will merge the localized .itx codetable file
with the original one located in the SDEJ. The localized codetable file will
have the higher precedence order. It will then generate the sql files only. No
Java artefacts will be generated for codetable files with the extension .itx.

The datamanager_config.xml file, located in the project/con-
fig directory specifies the location of the common directory for generated
SQL artefacts. There is no requirement to update this entry for localized
code tables as all .sql files are generated to the same location.

< entry
name="build/svr/codetable/sql/"
type="sql"
base="basedir"/>

Example 10.29 Datamanager entry for the code table SQL
artefacts location

Note

The <description> sub-element is an optional element for the

Cúram Server Developer's Guide

146

<codetables> element in the codetable (CTX) files. The
<description> element is mainly used to define a description for the
code tables for developers information. The description is not saved
into any database tables for normal code tables. However, for Code
Table Hierarchies, if the description is defined in the CTX file, then
the <description> value is saved to the description attribute in the
CODETABLEHIERARCHY table. This value will be displayed on the
Code Table Hierarchy page of the Cúram Administration screens.

Cúram Server Developer's Guide

147

Notes
1See Section 10.2.2, Customizing a Message File, for further explanation of
SERVER_COMPONENT_ORDER.

Cúram Server Developer's Guide

148

Chapter 11

Specialized Readmulti Operations

11.1 Overview

Generated readmulti operations in IBM Cúram Social Program Manage-
ment servers execute SQL SELECT statements and return the resulting re-
cord set as an ArrayList. In fact, readmulti operations are implemented as
two very distinct pieces:

• a Data Access Layer function which establishes the result set, through
building up the statement, executing an executeQuery on it, and fi-
nally a series of getResultObject statements, and

• a Business Object Layer function which assembles the results into the
required in-memory vector of structures.

The Business Object Layer function is a specialization of a general class of
functions called readmulti operations, which can perform arbitrary pro-
cessing on the contents of SQL cursors. You can view the definitions of
these function classes in
curam.util.dataaccess.ReadMultiOperation. This Read-
MultiOperation is the parent abstract class, while
curam.util.dataaccess.StandardReadMultiOperation is a
concrete subclass providing an implementation of “normal” readmulti func-
tions.

“Specialized readmulti operations” are simply hand-crafted functions
“plugged into” the Data Access Layer using generated helper classes. The
pattern in use here is similar to the Visitor design pattern described in
Design Patterns by Gamma et al. Readmulti operations are “plugged into”
the appropriate Data Access Layer functions by generated readmulti helper
classes, which insulate the operation from knowledge about the specific
Data Access Layer functions used.

149

11.2 When to Use Readmulti Operations

“Normal” readmulti operations return a set of database records as an Ar-
rayList. There are several situations in which you might want to replace
this type of standard “normal” readmulti operation with your own special-
ized processing.

An example is in batch processing where you want to iterate across a large
number of records on a database table, and process each record in turn. It is
not feasible to use a standard readmulti operation to assemble an in-memory
vector of all of the records read before processing. Another common ex-
ample is where you want to lock or delete records from the result set as they
are processed. In each of these examples you can write your own readmulti
operations to process records individually as they are retrieved from the
database rather than relying on the standard processing supplied by Stand-
ardReadMultiOperation.

11.3 How to Define Your Own Readmulti Operations

The steps that you follow to define your own specialized readmulti opera-
tions are as follows:

1. Add the readmulti operation to your UML application model. We will
assume for this example that you add a standard readmulti operation
called readmulti to an entity called E. The standard readmulti oper-
ation whose “details” structure will be called EDtls. However, this
example applies equally to <<readmulti>>, <<nsreadmulti>>,
<<nkreadmulti>> and <<nsmulti>> operations in the UML ap-
plication model, where the “details” structure might not be a generated
entity details structure.

2. Write the specialized readmulti operation class, as follows:

static class MyReadmultiOperation extends
curam.util.dataaccess.ReadmultiOperation {

public boolean operation(Object objDtls) throws
AppException, InformationalException {

// No implementation for the moment

return true;

}

}

Note

If the readmulti operation specifies a 'Post Data Access' or 'On-
fail' operation then your readmulti operation must be a subclass
of
curam.util.dataaccess.StandardReadMultiOpe

Cúram Server Developer's Guide

150

ration. This is because this class builds up an in-memory list
of the structs which are read by the readmulti operation in order
to make it available to the Post Data Access and On-
fail operations.

If your readmulti operation processes large numbers of records
then this could cause an excessive memory usage overhead; so
caution is advised if using specialized readmulti operations in
conjunction with Post Data Access or On-fail opera-
tions.

3. Implement MyReadMultiOperation.operation to perform
your specific processing. This method will be called automatically for
each record retrieved from the database.

In general, always return true from readmulti operations. In un-
usual cases, where you want to stop processing before you hit the end
of the record set, return false. This means the operation method will
not be called again.

4. Write the code that will invoke the readmulti operation. This will ap-
pear in a BPO implementation and look like this:

// instance of specialized operation class
MyReadMultiOperation op = new MyReadMultiOperation();

// instance of readmulti key structure
EReadmultiKey key;

// set key fields for search
key.id = 99;

// construct helper and call operation
E.newInstance().readmultiHelper(key, op);

Each generated readmulti function is associated with a generated “helper”
class which exists solely for use in code like that above. The helper class is
scoped inside the entity class and has an execute method that begins a read-
multi.

11.4 Extra Features of Readmulti Operations

• The READMULTI_MAX option in the model limits the number of re-
cords processed by a standard “normal” readmulti operation. It has
however no effect when you hand-craft your own operations. As a result
none of the overrides for this option (defined in Chapter 4, Cúram Con-
figuration Settings) have any effect. To limit the number of records re-
turned within your readmulti subclass you must override the following
method:

public int getMaximum();

• You can filter out records from the database result set by overriding the
following method of your readmulti subclass:

Cúram Server Developer's Guide

151

public boolean filter(Object dtls) throws AppEx-
ception, InformationalException;

Each record is passed to filter before being passed to your opera-
tion method. Any record which results in filter returning false is
not passed to operation. The default filter always returns true.

• If you want to write code that is called before the first row is passed to
operation, you can override:

public void pre() throws AppException, Informa-
tionalException;

If you want to write code that is called with the first row read from the
database, you can override:

public void first(Object dtls) throws AppExcep-
tion, InformationalException;

The same record is also passed to the operation method.

Note

Note that first is called as long as there is at least one row in
the result set, regardless of whether or not filter returns
true for this row.

• If you want to write code that is called after the last call to operation,
you can override:

public void post() throws AppException, Informa-
tionalException;

Be aware, this function is always called once, regardless of the value re-
turned by the operation method.

• An optional third parameter to the execute method of readmulti help-
er classes is a boolean which specifies whether records read from the
database will be updated later in the transaction. This can be used as in :

E.newInstance().readmultiHelper(key, op, true);

This means that each record read from the database is locked for write
access as it is read.

You can use a combination of the above methods, with your own data mem-
bers, to achieve many common styles readmulti operation. For instance, Ex-
ample 11.1, Specialized readmulti example shows a readmulti operation that
produces a report grouped by department:

static class MyReadmultiOperation
extends curam.util.dataaccess.ReadmultiOperation

{
// Remember last dept, for grouping
private String lastDepartment;

// Department salary accumulator

Cúram Server Developer's Guide

152

private curam.util.type.Money salaryDeptTotal;

// Total Salary Accumulator
private curam.util.type.Money salaryGrandTotal;

public void pre()
throws AppException, InformationalException {
// initialization
lastDepartment = "";
salaryGrandTotal = 0.0;

}

public void first (Object dtls)
throws AppException, InformationalException {

// per-department group initialization
salaryDeptTotal = 0.0;

// remember last department for grouping.
lastDepartment = dtls.department;

}

public boolean operation(Object dtls)
throws AppException, InformationalException {

// Change of department group
if (!(lastDepartment.equals(dtls.department))) {
printGroupTotals();

// redo per-dept initialization
first(dtls);

}

// detail report line
curam.util.resources.Trace.kTopLevelLogger.info("Emp ");
curam.util.resources.Trace.kTopLevelLogger.info(
dtls.employeeId);
curam.util.resources.Trace.kTopLevelLogger.info(
" salary: ");

curam.util.resources.Trace.kTopLevelLogger.info(
dtls.salary);

// accumulate dept salary
salaryDeptTotal += dtls.salary;

// accumulate total salary
salaryGrandTotal += dtls.salary;

return true;
}

public void post()
throws AppException, InformationalException {
// only if there was at least one department
if (!(lastDepartment.empty())) {
printGroupTotals();
// final group
// Grand total report line:
curam.util.resources.Trace.kTopLevelLogger.info(

"Grand total salary: ");
curam.util.resources.Trace.kTopLevelLogger.info(

salaryGrandTotal);
}

}

public int getMaximum() {
// Explicitly enforce that all matching records are
// considered. Any number other than zero would limit
// the number of records.
return 0;

}

private void printGroupTotals() {

Cúram Server Developer's Guide

153

// group report line
curam.util.resources.Trace.kTopLevelLogger.info(
"Department ");

curam.util.resources.Trace.kTopLevelLogger.info(
lastDepartment);

curam.util.resources.Trace.kTopLevelLogger.info(
" total salary: ");

curam.util.resources.Trace.kTopLevelLogger.info(
salaryDeptTotal);

}
}

Example 11.1 Specialized readmulti example

11.5 An Alternative

Specialized Readmulti operations and non-standard operations allow the de-
veloper a greater level of freedom when handcrafting database access code.
However in certain situations this may prove to be too limiting. For example
where the SQL string will be derived from the input parameters to a method;
parts of the 'where' clause will be optional or expressed differently depend-
ing on the input. In these situations the developer can obtain the Connection
being used for database communication through the
TransactionInfo.getInfoConnection interface. Once this con-
nection has been obtained it is possible to execute any form of handcrafted
JDBC in the context of the Cúram transaction.

To enable this style of database access to be visible in the model it should be
placed in an entity which has the NO_SQL option enabled. This is detailed
in the Cúram Modeling Reference Guide.

11.6 Summary

The order in which your readmulti operation methods are called is:

• pre- always called once before anything else;

• first- called once with the first record, provided at least one record
exists;

• filter- called for each record (including the first);

• operation- called for each record for which filter returns true;

• post- always called once after everything else;

• getMaximum- specifies the maximum number of records that should
be matched.

If you are designing processing that maintains locks remember that there are
performance implications when you do so.

Cúram Server Developer's Guide

154

Chapter 12

Deprecation

12.1 Introduction

IBM®IBM Cúram Social Program Management uses deprecation as a
means of reducing the impact of change on custom applications. This
chapter describes deprecation in Cúram: what it is, how it can affect custom
code, what it means for support and the build infrastructure that helps pin-
point custom artefact dependencies on deprecated Cúram artefacts.

12.2 Overview

In enhancing Cúram in a Major Version release or fixing defects in a Ser-
vice Pack, the necessity occasionally arises where the contract of a Cúram
development artifact has to be changed. In this context the contract of an ar-
tifact is its API or signature (e.g. name, parameters, return values, etc) in
conjunction with its documented statement of functionality (e.g. JavaDoc).

Prior to Cúram 6.0, such changes would typically have been made in place,
potentially causing compilation errors or unexpected runtime behavior in a
custom application. This policy changed in 6.0 to favor adding a new arti-
fact which implements the changed behavior while preserving the original
artefact and marking it 'deprecated'. This has two main benefits for custom
applications. Primarily, it provides back-compatibility for any references in
custom code to the deprecated artefact (n.b. it does not provide back-
compatibility for a custom override of the deprecated artefact). It also elim-
inates a source of compilation failures during upgrades, which can hamper
the development of a reliable upgrade plan. These effects are described in
more detail in this chapter.

Finally, infrastructure is provided in Cúram that extends Java's command-
line compiler deprecation warnings to certain Cúram builds. This helps pin-
point dependencies in custom applications on deprecated Cúram artefacts. It
also helps distinguish between references-to and customizations-of deprec-

155

ated artefacts in custom code. That build infrastructure is also described in
this chapter.

12.2.1 Other Sources of Information

Information about specific deprecated artefacts, can be found in the artefact
itself and also in the 'Notes on Deprecation' section of the Cúram release
notes.

In the artefact itself, the deprecated element will be marked as described in
Section 12.4.1, Artefact Types that can be Deprecated. This marker includes
space for a short 'deprecation comment' about the replacement functionality
for the deprecated item and a reference to any associated release note con-
taining more context. To make your analysis easier, Cúram validation and
compilation steps will include this comment in the build warning, to save
you looking up the deprecated artefact. However, this enhanced build warn-
ing is only available from Cúram compilers/validations, the command-line
Java compiler does not have equivalent functionality. It is recommended
you view Java warnings in your IDE for fast navigation between artefacts.

If the information in the artefact's deprecation comment does not provide
enough context, additional information can be found in the Cúram Release
Notes. You can search these by the name of the deprecated artefact or by the
release note ID referenced in its deprecation comment.

12.3 Effect of Deprecation on a Custom Application

In Cúram, a 'deprecated' artefact means an artefact that has been replaced by
other functionality and is no longer part of the default flow of Cúram. De-
precated artefacts remain present in the application codebase, but they are
not referenced by the out-of-the-box runtime application. If deprecated arte-
facts are referenced in the out-of-the-box application codebase, it is only by
other deprecated artefacts.

To quickly pinpoint where custom dependencies exist on deprecated Cúram
artefacts, the command-line Java compiler has been extended to provide de-
precation warnings to Cúram builds and validations. This will be described
in more detail later in this chapter.

12.3.1 Customizations and References

Custom artefacts can depend on deprecated Cúram artefacts either by refer-
encing them, or by customizing (overriding) them. Reference and customiz-
ation dependencies have different characteristics and it is important to un-
derstand the difference. To illustrate:

• Examples of References

• A custom method can call a deprecated Cúram server interface
method

Cúram Server Developer's Guide

156

• A custom workflow can reference a deprecated Cúram method as an
automatic activity

• A custom UIM client page can link to a deprecated Cúram UIM
page

• Examples of Customizations

• A custom class can subclass a Cúram class and replace (override)
deprecated Cúram methods

• A custom UIM client page can customize (override) a deprecated
Cúram UIM client page

The impact of deprecation on custom code depends on whether that code is
referencing or customizing a deprecated artefact.

Where code references a deprecated Cúram artefact (e.g. calls a deprecated
method), the deprecated artefact still exists and functions in a backwardly-
compatible way. This is the same as for regular Java deprecation where the
immediate impact is minimal or nil.

Where code customizes (overrides) a deprecated Cúram artefact, the base
Cúram Application no longer invokes that artefact - it is no longer part of
the "default flow" of the base application. It is reasonably likely that it has
been removed from the default flow of custom applications. In short, cus-
tomizations of deprecated artefacts do not function as before and there is a
strong likelihood that some corrective action will be needed. That action
could include dropping the customization (e.g. if equivalent functionality
has since been implemented), re-applying the customization to the artefact
that replaces the deprecated one, etc.

The deprecation build infrastructure provided uses special tags in depreca-
tion warnings to help distinguish between references-to and customizations-
of deprecated artefacts. This will be described in more detail later in this
chapter.

12.3.2 Support for Deprecated Artefacts

Deprecated artefacts will continue to be supported as long as the version in
which they were deprecated remains in-support. Customer-raised defects
will continue to be addressed in the deprecated artefacts during this period.
All future enhancement requests will be directed toward the replacement
functionality.

Deprecation of an artefact is an indication of the intent to remove it in a fu-
ture version. However, a deprecated artefact will remain in- support as long
as the version it was deprecated in remains in-support. After that, it is sub-
ject to removal without further notice. Extended support for specific arte-
facts will be considered as long as the request is made in good time (no less
than 6 months in advance of the relevant version falling out of general sup-
port).

Cúram Server Developer's Guide

157

You are advised to address any dependencies from Custom code on deprec-
ated Cúram artefacts at the earliest opportunity. The replacement functional-
ity offers better support and better upgrades in future. When deprecated
artefacts are removed in a future release, it can cause compilation failures
and this can seriously hamper effective planning of upgrade tasks.

12.3.3 Effect of Deprecation on the User Interface

When client pages are deprecated, this changes the default flow of the client
application to include the replacement functionality. This has two results
that do not occur when other artefacts are deprecated:

Consistency of the User Interface: If existing client pages have been cus-
tomized or new pages added which are used in conjunction with deprecated
pages, then the resultant user experience may be changed with the replace-
ment pages. If this is the case it will be necessary to consider updating the
customizations to be consistent with the replacement pages, or reverting the
default flow to use the deprecated pages.

Documentation/Training Materials: If descriptions and/or screen shots of
the deprecated pages have been included in custom documentation/training
materials, these may need to be updated to describe/show the replacement
pages.

12.4 Scope

12.4.1 Artefact Types that can be Deprecated

The following artefact types may be deprecated:

Area Artefact Type
Modeled Artefacts Process Class, Entity Class, Struct Class, Process

Method, Entity Method.

Java Code Identical to Java deprecation (Class, Interface,
Method, Attribute, etc)

Client Artefacts UIM Page, VIM file, Page Property (.property as-
sociated with a UIM or VIM file)

Messages Message Catalog Entry

Table 12.1 Artefact Types that can be Deprecated

All of these artefact types support explanatory comments attached to the de-
precation tag. These can be easily found by searching for the string 'deprec-
ated' within the artefact in question. For .java files (and model artefacts),
the @deprecated JavaDoc tag is used in the normal way. For XML files
such as UIM/VIM files and message catalog entries, the
<?curam-deprecated XML processing instruction is used. Finally, in prop-

Cúram Server Developer's Guide

158

erty files, the string .deprecated is appended to the name of a property to
denote that that property is deprecated.

Entity Classes

Please note that for Entity Classes, the term 'deprecation' refers en-
tirely to the generated Java artefacts derived from the Entity and
does not refer to data associated with that entity. The Cúram Gener-
ator produces no database schema representation for a deprecated
Entity, it is expected that this data has migrated to another Entity (or
Entities). Entities are deprecated in order to minimize the code im-
pact of changes to the data model. The deprecated Entity's purpose
is to re-route method calls to the appropriate replacement Entity (or
Entities). As such, deprecated Entities follow the same pattern as
other classes - references to the entity will continue to function as
before, customizations (overrides) will not.

12.4.2 Limitations

There are certain limitations of the deprecation infrastructure to be aware of:

• No build warnings will be produced for non-typed references to deprec-
ated artefacts. For example, if the UIM page Parti-
cipant_viewAddress.uim was deprecated and a Java method
contained a "Participant_viewAddress" string literal - this would not be
picked up by the build warnings because the reference is not typed - the
compiler cannot know that the String refers to a UIM page.

• The deprecation infrastructure is comprised of a deprecation tagging
capability and build/validation warning capability (reporting dependen-
cies on tagged artefacts). The build/validation warning capability is in-
tended for customer use. The deprecation tagging capability is not inten-
ded for customer use and is therefore not supported. For example, using
the <?curam-deprecated processing instruction in custom XML files is
not supported.

12.5 Running a Deprecation Report

Cúram has developed infrastructure that extends Java's command-line com-
piler deprecation warnings to certain Cúram builds. This helps pinpoint de-
pendencies in custom applications on deprecated Cúram artefacts. It also
helps distinguish between references-to and customizations-of deprecated
artefacts in custom code.

12.5.1 Configuring the Deprecation Report

Deprecation reporting in Cúram is controlled by two properties:

• Ensure the prp.warningstoerrors build property, is set to false or the
build may be unable to complete (false is the default for this property, so

Cúram Server Developer's Guide

159

if you do not override the property then the default is fine).

• The curam.deprecation.reporting property in the boot-
strap.properties file controls the reporting of deprecation warn-
ings. Warnings are not displayed if this property is set to false. The
property defaults to true so if it is not specified deprecation warnings
will be displayed.

• It is recommended you remove "Sample" components (Sample, CPM-
Sample, etc) from the CLIENT_COMPONENT_ORDER environment
variable before running the commands below. These components may
generate spurious warnings that are not relevant to identifying your ex-
posure to deprecated Curam artefacts.

12.5.2 Prerequisites for running the Deprecation Report

The deprecationreport build target calls a sequence of Cúram build targets in
order to provide build output containing a complete set of deprecation warn-
ings. As there are dependencies between some of the build steps the follow-
ing builds should complete successfully before running the deprecationre-
port target.

• build clean server

• build clean client

• build database

12.5.3 Generating the Deprecation build output

Execute the build target below, it will capture the build output to a
%SERVER_DIR\buildlogs\%Deprecation<timestamp>.log
file for further analysis.

• cd %SERVER_DIR%

• build deprecationreport

12.5.4 Identifying deprecation warnings in the build output.

Since the build output has all been directed into the Depreca-
tion<timestamp>.log file, check that file, to ensure that the overall
build succeeded. Ant prints either a 'BUILD SUCCESSFUL' marker in the
last few lines of that file if all parts of the build completed (or 'BUILD
FAILED' if any failed).

Since you have already confirmed that the server, client and database builds
complete successfully, the only issues that are expected to cause this target
to fail are validation issues. Since the validation of one file has no bearing
on the next, the these targets do not stop on a failed validation. They aim to

Cúram Server Developer's Guide

160

provide as complete a picture as possible by validating all files and only re-
porting success or failure at the end of the build. So the deprecation inform-
ation will still be produced for all files that pass validation.

Finally, to get a summary report of all exposure to deprecated artefacts, fil-
ter the deprecation.log for the [deprecation] tag. You can use
grep or the Windows find utility for this, or your preferred text editor. e.g.:

grep "\[deprecation\]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1
or
find "[deprecation]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1

Example 12.1 Getting a Summary Report

The resulting deprecation_summary.log file will contain only the
deprecation warnings produced by the build.

Tip:

Since some warnings can be broken over more than one line, it is
useful to hold on to the original deprecation.log as well.

12.5.5 Notes on running the Deprecation Report

• This build can take some time to run, as it has to do a clean followed by
server and client build, in order to identify all dependencies. The target
also does the validations for several artifact types.

• Although the deprecationreport target generates the deprecation
build log, it is not always necessary to rerun the entire build in case
it fails. If the build fails due any validation, the validation target can be
ran in isolation. After fixing all the validation issue, deprecationreport
target should be executed to ensure the deprecation build log is com-
plete.

• The deprecationreport calls the validation target. For example: The
deprecationreport will fail if validateallworkflows target will report
an error, as the build output from other builds is not available.

[deprecation] The client has not been built and therefore it
cannot be determined if UIM pages referenced are
deprecated.

• By default the Java compiler limits the number of compiler warnings
displayed. The Cúram build specifies this limit as 10,000, which means
that the compiler will display 10,000 warnings followed by a message
that, there were further warnings. This value can be overridden by
passing -Dcmp.maxwarnings to the build.

• IEG scripts can also contain dependencies on server and/or client arti-

Cúram Server Developer's Guide

161

facts that have become deprecated. However, this scenario is not
covered by validation targets at this time. If you have IEG scripts, you
will need to manually inspect UIM page and server interface references
to identify any dependencies on deprecation pages or interfaces.

Note

Since some warnings can be broken over more than one line, it is
useful to hold on to the original deprecation.log as well.

12.6 Analyzing Deprecation Warnings

Once you have produced a summary deprecation build log you need to
identify the deprecation warnings contained in it. This section describes how
to identify and categorize the deprecation warnings

12.6.1 Identifying overrides of deprecated artefacts

As described in Section 12.3.1, Customizations and References there are
significant differences between the effects of deprecation on references and
on customizations. Identifying overrides of deprecated artefacts is relatively
simple. The deprecation summary report you produced in Section 12.5, Run-
ning a Deprecation Report pinpoints all dependencies on deprecated arte-
facts using the standard Java [deprecation] tag in the build log. Curam
code generators and command-line validations also check for dependencies
on deprecated artefacts and produce the same build warning as Java (using
the same [deprecation] tag).

In addition to this, Curam code generators augment the [deprecation]
tag with an additional [customization] tag where your custom artefact
is overriding a Curam artefact, rather than referencing it.

Any lines in your deprecation summary report tagged with
[deprecation] [customization] indicate places where you are
overriding an artefact that Curam has since deprecated (i.e. removed from
the default flow of the base application). Since Cúram has removed this
artefact from the default flow of the out-of-the-box application, it is reason-
ably likely that it has also been removed from the flow of your custom ap-
plication. Where this happens, it will be necessary to address the override.

The example below shows a custom VIM file that is overriding an out-
of-the-box Curam VIM file. The Curam VIM file has become deprecated, so
the client build is producing this warning. The warning follows the Java de-
precation message format: the first part is the path of the file that references
the deprecated artefact, followed by the [deprecation] tag and, in this case, a
[customization] tag also. This is followed by the name of the artefact that
has been deprecated. Finally (and this differs from the Java format) where
possible, any comments attached to the deprecated artefact are also printed.
This saves you having to locate the file and look up the associated com-
ments.

Cúram Server Developer's Guide

162

[processUim]
C:/webclient/components/custom/Case_listView.vim warning:
[deprecation] [customization]
C:/webclient/components/core/Case_listView.vim has been
deprecated. [deprecation comment] Since Curam 6.0,
replaced with Case_listAnotherView.vim. See release note:
CR12345

Example 12.2 Example: override of a deprecated artefact

In the above example, the VIM file is no longer used in the default flow of
the out-of-the-box Curam application. If your application relies on the out-
of-the-box flow, your customization of this file will no longer appear in that
flow.

Addressing overrides of deprecated artefacts

There is no single approach to addressing overrides of deprecated artefacts.
You must analyze the modifications you made to the original
(now-deprecated) artefact and determine a suitable course of action for your
customization. Some options are to drop the customization (e.g. if Cúram
have since implemented equivalent functionality), to re-apply the customiz-
ation to the artefact that replaces the deprecated one, etc. There are sources
of information that can help you when deciding the appropriate course for
your customization, please see Section 12.2.1, Other Sources of Information

12.6.2 Identifying references to deprecated artefacts

References (e.g. calls to) to deprecated artefacts can also be easily identified
in your deprecation log - they are lines tagged with a [deprecation] marker,
but no [customization] marker.

[processUim] C:\Curam\webclient\components\custom\
Custom Benefit\Deduction\listThirdPartyDeduction.uim
warning: [deprecation] UIM ProductDelivery_cancelDeduction
has been deprecated. [deprecation comment]
Since Curam 6.0, replaced with ProductDelivery_cancelDeduction1

Example 12.3 Example: reference to a deprecated artefact

In the above example, the UIM page is no longer used in the default flow of
the out-of-the-box Curam application and is deprecated.

12.6.3 Notes on analyzing deprecation warnings

• You should not see any deprecation warnings from out-of-the-box
Curam files. However, there are instances where a deprecation issue in
your custom file can appear, as if it came from an out-of-the-box Curam
file. If you overrode a .VIM client file that is being used by an out-
of-the-box .UIM page, any warnings from your VIM file will appear as

Cúram Server Developer's Guide

163

if they came from the out-of-the-box UIM page. This is because the cli-
ent build imports .VIM content into UIM pages before validating it. If
you see deprecation warnings from out-of-the-box UIM pages, please be
aware that they may be referring to issues in a custom VIM file.

• If you have included sample components in your build (such as Sample,
CPMSample, etc), you may also see deprecation warnings from these
components. Curam does not recommend including sample components
in your builds.

• You will find [deprecation comment] marker, if the tag @depreceted in
documentation field has a comment. This save you having to look up the
file and then look up the file it's referencing and then get the comment.

• Please be aware that any deprecation warnings marked [bopigen] in the
build log are duplicates of warnings produced earlier in the log and
marked as [servercodegenerator]. You can safely ignore deprecation
warnings marked as [bopigen].

• Warnings coming from generated java classes (those in build/svr/gen)
are by-products of the [customization] warnings produced by the gener-
ator and can generally be ignored. Resolving the "[deprecation]
[customization]" issues should also resolve these generated file warn-
ings.

Note

It is easier to work with java deprecation warnings in Eclipse, than it
is to use the command-line deprecation build logs.

Cúram Server Developer's Guide

164

Chapter 13

User Preferences

13.1 Overview

User preferences are name-value options which specify settings that can be
customized for a particular user. A set of DefaultPreferences is as-
signed to each user of the Cúram application.

A user preferences editor is available in the web client. This editor allows
each user to update values for the preferences. Examples of user preference
usage include setting the time zone, or providing a flag to turn a custom op-
tion on or off.

A set of user preferences are defined out-of-the-box in Cúram:

Name Description Default
Value

Time Zone The user's time zone. Europe/
Dublin

High Contrast
Mode

The high contrast accessibility feature ad-
justs the colors and images used in the ap-
plication to ensure all visual content is ac-
cessible to users with limited color vision.

false

Table 13.1 Out of the box user preferences

13.2 User Preferences Definition

13.2.1 Data definition XML file

It is possible to create new user preferences, or override existing user prefer-
ences, by creating a custom DefaultPreferences.xml file.

165

A custom DefaultPreferences.xml file should be placed in the
EJBServ-
er\components\<component_name>\userpreferences direct-
ory, where <component_name> is the name of a component within the
component directory.

The following sample DefaultPreferences.xml file illustrates how a
user preference is defined:

<Preferences>
<PreferenceSet id="default"

description="The default preferences">
<Preference name="sample.pref" category="DefaultPreferences">
<type>SVR_BOOLEAN</type>
<value>false</value>
<readonly>false</readonly>
<visible>true</visible>
<externalVisible>false</externalVisible>

</Preference>
</PreferenceSet>

</Preferences>

Example 13.1 Example of user preference definition

In the user preferences definition example above the preference
"sample.pref" is defined in an XML document with a root Preferences
node.

The Preferences document may contain only one
<PreferenceSet> element, with the id attribute set to “default”. The
<PreferenceSet> contains any number of <Preference> elements,
each defining a new preference or overriding an existing one.

The name attribute of <Preference> defines the internal name of the
user preference. This attribute forms a unique name for the preference
stored in the database. In the example above the name is “sample.pref”.

A <Preference> element contains a number of child elements, listed in
the table below.

Element Description Mandat-
ory

Default
Value

type Indicates the preference type, which
should be a valid Domain Defin-
ition type.

yes N/A

value The initial default value of the user
preference.

yes N/A

readonly A boolean value (true or false) that
indicates whether the preference
should be editable in the user prefer-
ence editor in the web client.

no false

visible A boolean value (true or false) that
indicates whether the preference

no true

Cúram Server Developer's Guide

166

Element Description Mandat-
ory

Default
Value

should be displayed in the user pref-
erence editor in the web client for an
internal user, i.e. a user on the Users
table.

externalVisible A boolean value (true or false) that
indicates whether the preference
should be displayed in the user pref-
erence editor in the web client for an
external user.

no false

Table 13.2 User Preference options

If multiple DefaultPreferences.xml files exist (in different compon-
ents), the contents of these files are merged together during a server build.
The files are merged according to the SERVER_COMPONENT_ORDER. Du-
plicated preferences in a component with higher precedence in the SERV-
ER_COMPONENT_ORDER will take priority over those duplicates in com-
ponents with lower precedence.

The results of the merged user preferences are added to the database by the
database build target for usage at runtime.

Note

Only the default value of the out of the box user preferences in
Cúram should be overridden.

Although the ability to override all elements of a user preference ex-
ists it is strongly recommended that only the actual value, as defined
by the <value>some_value</value> element, should be up-
dated.

13.2.2 Properties files

When defining a user preference in the DefaultPreferences.xml file
a corresponding entry should also be made in an accompanying Default-
Preferences_<locale>.properties file. where, <locale> rep-
resents the intended locale of the properties. This file specifies the display
name that will be displayed when accessing the user preferences in the web
client user preferences editor. The ability to localize the display name for
each of the user preferences is possible by creating a DefaultPrefer-
ences_<locale>.properties file for each supported user locale. See Sec-
tion 13.5, Localizing Display Names for more details on localizing user
preferences display names.

A DefaultPreferences_<locale>.properties file should be
created if it does not already exist. The DefaultPrefer-
ences_<locale>.properties should be placed in the EJBServ-

Cúram Server Developer's Guide

167

er\components\<component_name>\userpreferences direct-
ory with the corresponding DefaultPreferences.xml.An entry for
the user preference defined in the previous example would be:

sample.pref=Sample Preference Display Name:

DefaultPreferences_<locale>.properties files in multiple
components will be merged using the same SERV-
ER_COMPONENT_ORDER merge rules that apply to DefaultPrefer-
ences.xml files.

13.3 Development Support

User Preferences can be accessed at development time using the get-
Value() and setValue() methods in the
curam.util.userpreference.impl.UserPreference class.

A user preference must have been previously created before invoking the
setValue() method. See Section 13.2, User Preferences Definition for
more details on creating user preferences.

13.4 External Users

To make user preferences available to an external user, you need to make
both client and server changes. These changes are described below.

For the client, you need to set the USER_PREFS_PAGE attribute to true
within a <link> element. Please see the Cúram Web Client Reference
Manual for further details on setting this element.

The ExternalAccessSecurity interface is used to retrieve informa-
tion for an external user. This class contains 2 new methods, getUser-
PreferenceSetID() that reads user preferences for an external user
and modifyUserPreferenceSetID() that updates user preferences
for an external user. These methods must be implemented in order to re-
trieve user preferences for an external user. Please see the Customizing Ex-
ternal User Applications chapter in the Cúram Security Handbook guide for
further details on the ExternalAccessSecurity interface.

Once the client and server changes have been implemented, you must en-
sure that the relevant user preferences are visible to the external user. The
<externalVisible> element within the DefaultPrefer-
ences.xml allows you to manage the visibility of each user preference to
an external user. This element is described in Section 13.2, User Prefer-
ences Definition.

If you want to make user preferences available for external users and
<externalVisible> is set to false or is not defined for all user prefer-
ences, then there will be no user preferences displayed for an external user.
If you do not wish to have any user preferences displayed for external users,
it is recommended that the User Preferences link should not be available
within the external user application.

Cúram Server Developer's Guide

168

13.5 Localizing Display Names

Localized display names can be added by creating new DefaultPrefer-
ences_<locale>.properties files for each DefaultPrefer-
ences.xml file created under directory EJBServ-
er\components\<component_name>\userpreferences.
<locale> represents the intended locale of the properties file and
<component_name> is the name of a component within the component
directory.

For example, to support the en_US locale, you should create the following
default preference properties file

DefaultPreferences_en_US.properties

As there may exist multiple DefaultPrefer-
ences_<locale>.properties files in different components, the con-
tents of these default preference properties will be merged to a MergedDe-
faultPreferences_<locale>.properties file according to the
SERVER_COMPONENT_ORDER 1 . This merging happens when running
either of the following targets: mergeuserpreferenceproperties,
server.

Before merging the .properties files, the following validations will cause an
error during a build where:

• The specified <locale> is not present in the SERV-
ER_LOCALE_LIST 2.

• More than one display name is specified for the same locale.

For example, two display names are specified for locale en_US.

DefaultPreferences_en_US.properties:
Timezone=TimeZone:
Timezone=TimeZone US:

• The <locale> in the property file name includes a country part with
more than 2 characters.

For Example:

DefaultPreferences_en_USA.properties

• The <locale> in the property file name includes a language part with
more than 2 characters.

For Example:

DefaultPreferences_eng_US.properties

• The .properties file is empty.

Cúram Server Developer's Guide

169

• The .properties file contains invalid properties.

For Example:

DefaultPreferences_en_US.properties:
Timezone

The infrastructure will attempt to display the correct localized name by
matching the country part and language part of the user's locale. If the coun-
try part does not exist, the infrastructure will attempt to match the language
part only, and if this does not exist it will fall back to a default language.
The localization of display names is illustrated below.

If the user is associated with the locale fr_CA, then the application searches
the MergedDefaultPreferences_<locale>.properties files
for the display names in the following order:

1) MergedDefaultPreferences_fr_CA.properties
2) MergedDefaultPreferences_fr.properties
3) MergedDefaultPreferences_en.properties
4) MergedDefaultPreferences.properties

The system first attempts to locate the correct display name for the fr_CA
locale in a MergedDefaultPreferences_fr_CA.properties file. If this file does
not exist, or if the display name for the user preference does not exist within
this file, then the system looks for MergedDefaultPreferences_fr.properties.
If this file does not exist, then the system will search for a MergedDe-
faultPreferences_en.properties file where locale is set to the
default system locale. If the display name is not present the system will fall
back to the MergedDefaultPreferences.properties file.

In the case where the display name is not found in any of the properties files
(or the properties files do not exist), the value defined for the name attribute
for a user preference in the DefaultPreferences.xml file will be used as the
display name. See Section 13.2, User Preferences Definition for more de-
tails on the name attribute.

Similarly, if the user is associated with the locale en_US, then the applica-
tion searches for the display names in MergedDefaultPrefer-
ences_<locale>.properties files with the following priority.

1) MergedDefaultPreferences_en_US.properties
2) MergedDefaultPreferences_en.properties
3) MergedDefaultPreferences.properties

13.6 Localizing Infrastructure Preferences Display
Names

There are a number of Infrastructure Preferences used in the application and
their display names can be localized in a manner similar to User Prefer-
ence's display names. Localized display names can be added by creating
new InfrastructurePreferences_<locale>.properties

Cúram Server Developer's Guide

170

files under the directory EJBServ-
er\components\<component_name>\userpreferences.
Where <locale> represents the intended locale of the properties file and
<component_name> is the name of a component within the component
directory. A sample file, containing all the properties available for localisa-
tion, can be found in
SDEJ\lib\InfrastructurePreferences.properties.

Cúram Server Developer's Guide

171

Notes
1See Section 10.2.2, Customizing a Message File, for further explanation of
SERVER_COMPONENT_ORDER.
2See Section 10.2.1, The Format of Message Files, for further explanation
of SERVER_LOCALE_LIST.

Cúram Server Developer's Guide

172

Chapter 14

Transaction Control

14.1 Overview

The IBM Cúram Social Program Management Server Development Envir-
onment (SDEJ) abstracts transaction management from the average de-
veloper. This section provides a brief overview for the developer and then
details what is happening “under the hood”. This is a difficult task because
of multiple database support, which provide significantly different ways of
supporting the ACID nature of a transaction. A transaction should be Atom-
ic1, its result should be Consistent2, Isolated3 and Durable4.

14.2 Developer's View

14.2.1 Transactions and Method Invocations

Typically in Cúram a Facade method invocation maps to a single transac-
tion. The exception to this is where the method invokes a deferred process
or workflow. See the Cúram Workflow Management System Developers
Guide for more details. The single transaction starts at the beginning of the
Facade method invocation and finishes at the end.

The transaction demarcation in Cúram is bean managed rather than contain-
er managed and as such the developer must use the APIs in the infrastruc-
ture to checkpoint transactions.

One exception to this general rule is the Key Server. When a Unique ID
block is obtained from the Key Server a separate transaction is started to
govern this database access. This guarantees that long running transactions
do not place locks on the Key Server tables as this would provide an unac-
ceptable bottleneck.

14.2.2 Optimistic Locking and the forUpdate Flag

173

When a developer creates operations on an entity they must first determine
if that entity supports optimistic locking. Optimistic locking is described in
the Cúram Modeling Reference Guide and provides a suitable method of en-
suring that transactions are ACID. However there are situations when using
optimistic locking can unnecessarily impact on the performance of a trans-
action. If a record is read and then modified later in the transaction it is un-
likely (though not impossible) that the record will have changed underneath
the developer. Rather than using the version number it is often more suitable
to lock the record when it is read. This means that it is impossible for anoth-
er transaction to change the record, so there is no need to guard the modify
with a version number. However it also means that the possibility of locks
and deadlocks increases.

This form of locking is supported in Cúram via an extra parameter which
can be passed to any of the standard read operations. This parameter
(forUpdate), when set to true, will result in an update lock being taken on
the record(s) that are being accessed as part of this query. These locks will
not be released until the end of a transaction.

14.2.3 General Guidelines

There is a golden rule relating to locking and performance in database trans-
actions. Any records you lock should remain locked for the minimum pos-
sible period of time to reduce database contention caused by other users
seeking the same records. This means that operations that take out locks
should be called as late as possible in your transactions. For example, if you
read several records to validate a transaction, followed by updates to several
more records, always perform the validations first followed by the updates.
Try to defer update operations (or reads with locks) until as late as possible:
don't scan a million-record table after taking out a record lock that ought to
be short-lived.

14.3 Underlying Design

Transaction management happens on the server, rather than the client side.
Client-initiated transactions would involve complicated and largely unne-
cessary communication overhead. However, this imposes a requirement on
the application to guarantee that the database data remains consistent across
a series of client/server calls. In practice this usually involves deferring the
database updates done by a business function until the last client/server in-
teraction in a series.

Transactions typically have to encompass interactions with more than one
resource manager even if legacy systems are not used. The server database
is one resource manager and the queues used for deferred processing and
workflow are another. In order to guarantee atomicity of a transaction that is
distributed across multiple resource managers, a two-phase-commit protocol
is required to coordinate the distributed transaction.

Cúram Server Developer's Guide

174

14.3.1 DB2

At the beginning of a transaction Cúram obtains a single connection to the
database. This connection runs at a specific isolation level:

• Repeatable Read - This guarantees that dirty data is not read and that a
second read will read the same thing as a first.

However specific categories of statements are run at a lower isolation level:

• Cursor Stability - Cursor stability is the DB2 implementation of the SQL
standard Read Committed isolation level. This guarantees that a
transaction cannot read a row with uncommitted changes in it. However
it does not guarantee that a second read will read the same thing as a
first.

This is not a separate connection to the database rather the DB2 keyword
WITH CS is automatically appended to the SELECT statement.

All queries which do not have the forUpdate flag set run at the “Cursor
Stability” isolation level. All modifies and queries with the forUpdate flag
set run at “repeatable read” isolation level. This means that they place a lock
on the row(s) that have been read so that they cannot be updated by anyone
else, and in the case of modify operations be read by anyone else. This lock
is not released until the transaction commits.

14.3.2 Oracle

Oracle does not really support the JDBC Isolation levels (mainly because its
underlying support does not truly map to these levels). For this reason Or-
acle's default isolation level is used for all statements. In Oracle there is no
possibility of a dirty read occurring.

Cúram Server Developer's Guide

175

Notes
1Atomicity requires that all of the operations of a transaction are performed
successfully for the transaction to be considered complete. If all of a trans-
action's operations cannot be performed, then none of them may be per-
formed.
2Consistency refers to data consistency. A transaction must transition the
data from one consistent state to another. The transaction must preserve the
data's semantic and physical integrity.
3Isolation requires that each transaction appear to be the only transaction
currently manipulating the data. Other transactions may run concurrently.
However, a transaction should not see the intermediate data manipulations
of other transactions until and unless they successfully complete and com-
mit their work. Because of interdependencies among updates, a transaction
might get an inconsistent view of the database were it to see just a subset of
another transaction's updates. Isolation protects a transaction from this sort
of data inconsistency.
4Durability means that updates made by committed transactions persist in
the database regardless of failures that occur after the commit operation and
it also ensures that databases can be recovered after a system or media fail-
ure.

Cúram Server Developer's Guide

176

Chapter 15

Transaction SQL Query Cache

15.1 Overview

Benchmarking has identified that the same database query is often per-
formed numerous times during one transaction in an IBM Cúram Social
Program Management application. This is costly in performance terms and
to counteract this a transaction SQL query cache is now available in the
Server Development Environment (SDEJ). This cache, when enabled, oper-
ates at the data access layer and endures for the lifetime of any one transac-
tion. The cache stores the results of any SELECT SQL queries for the dura-
tion of the transaction in which the operation was invoked. Subsequent calls
in the same transaction will retrieve the required results from the SQL query
cache and will not read the results from the database.

15.2 Populating the Cache

The SQL query cache will store the results in memory of any SQL query
that executes a SELECT statement on a database table. Invocation of the
following entity operation stereotypes will result in the results of that query
being stored in the cache:

• <<read>>

• <<nsread>>

• <<nkread>>

• <<readmulti>>

• <<nsreadmulti>>

• <<nkreadmulti>>

• <<nsmulti>>

177

• <<ns>> with handcrafted SQL containing a SELECT statement

There are two exceptions to this rule:

• SQL queries that have the FOR UPDATE flag set to true will not have
their results cached. These queries will always result in direct database
access. This is due to the fact that this data is being read for modification
and the subsequent update operation will result in that cache entry being
invalidated.

• The results of specialized <<readmulti>> operations, where the op-
eration is not an instance of StandardReadMultiOperation
class, will not be cached. This is due to the fact that a customized
ReadMultiOperation can modify the result set for a SQL query be-
ing executed. Since these results are not yet present in the cache, the
cache cannot be invalidated which results in invalid data in the cache
(i.e. the data cached for the SQL query does not reflect the data for that
SQL query on the database).

15.3 Invalidating the Cache

The SQL query cache is associated with a transaction and is not global.
When any specified transaction is committed or rolled back, the SQL query
cache associated with that transaction is invalidated.

Any time an update (i.e. an insert, modify or remove operation) is made to a
table associated with a transaction SQL query cache entry, that entry is in-
validated from the cache. For most update operations (i.e. <<modify>>,
<<nsmodify>>, <<remove>> etc.), the invalidation of cache entries is
somewhat intelligent. The table affected by the update is determined from
the SQL statement being executed and used to directly invalidate only the
cache entries relating to the table. However, for <<ns>> operations that are
executed and contain anything other than a SELECT SQL statement, the
complete SQL query cache associated with that transaction is invalidated.

The following entity operations therefore cause the cache entries containing
the table affected by that operation to be invalidated:

• <<insert>>

• <<nsinsert>>

• <<modify>>

• <<nsmodify>>

• <<nkmodify>>

• <<remove>>

• <<nsremove>>

• <<nkremove>>

Cúram Server Developer's Guide

178

• <<ns>> operation with handcrafted SQL that does not contain a SE-
LECT statement

• <<batchinsert>>

• <<batchmodify>>

As detailed above the transaction SQL query cache endures for the lifetime
of a transaction only. Database updates will result in the invalidation of as-
sociated entries in the local transaction cache only. As a result, any sub-
sequent reads within a different transaction will return data from the cache
and not as updated on the database.

15.4 Properties

The transaction SQL cache is enabled by default, meaning that the results of
SQL queries will be cached. To disable it, the
curam.transaction.sqlquerycache.disabled property must
be set to true in the Application.prx file.

Storing the results of SQL queries that return large result sets may lead to
memory problems in transactions that endure for a long period of time. The
most likely queries that could lead to such problems are those that return
data of type CLOB and BLOB. To cater for SQL queries that return large res-
ult sets, a property is available to control the size of fields of type CLOB or
BLOB that may be stored in the transaction SQL query cache. This property
is called curam.sqlquerycache.lob.max.size and it's default size
is set to 500KB.

Further details concerning these properties may be found in Appendix A,
Cúram Configuration Parameters.

15.5 SQLQueryCacheAdmin API

A public API is available for the transaction SQL query cache. The class,
curam.util.transaction.SQLQueryCacheAdmin, provides
functions that allow developers to manipulate the transaction SQL query
cache at runtime. These methods include the following:

• enableSQLQueryCache(): this function enables the SQL query cache for
the current transaction.

• disableSQLQueryCache(): this function disables the SQL query cache
for the current transaction.

• clearSQLQueryCacheForTable(String tableName): this function flushes
all entries from the transaction SQL cache that contain the specified ta-
ble name for the current transaction.

• clearSQLQueryCache(): this function flushes all of the entries from the
transaction SQL cache for the current transaction.

Cúram Server Developer's Guide

179

15.6 SQLQueryCacheUtil API

A public API is available which contains utility methods for the transaction
SQL query cache. The class,
curam.util.transaction.SQLQueryCacheUtil, provides utility
methods for the transaction SQL query cache. These methods include the
following:

• isSQLQueryCacheEnabled(): This function returns a flag to indicate if
the transaction SQL query cache has been enabled or not.

• runWithSQLQueryCacheDisabled(Runnable run): This function runs
the runnable bypassing the SQL query cache. SQLQueryCache may be
needed to be disabled when there is a need to read the same row mul-
tiple times in a transaction to see if it has changed. For example, in the
batch infrastructure it is required to read the same row multiple times in
a transaction to see if it has changed.

15.7 Logging

When the tracing level for the Cúram application is set to
curam.util.resources.Trace.kTraceUltraVerbose (see
Section 8.4, Logging Level for more details on logging), various lifecycle
events concerning the transaction SQL query cache are logged. These
entries may be diagnosed in the logs by the following starting statement:
Transaction SQL Query Cache:. The following events are logged
during the lifecycle of the SQL query cache:

• When an entry is added to the transaction SQL query cache.

• When an entry is invalidated from the transaction SQL query cache.

• When the complete SQL query cache is invalidated as a result of a trans-
action being either committed or rolled back.

Cúram Server Developer's Guide

180

Chapter 16

Deferred Processing

16.1 Objective

In this chapter you will learn how to achieve deferred processing for appoin-
ted Business Process Objects (BPOs) in your IBM Cúram Social Program
Management application.

16.2 Prerequisites

Before reading this chapter you should be familiar the Cúram Modeling Ref-
erence Guide and the Server Development Environment (SDEJ).

16.3 Introduction

In Cúram, describing a Business Process method as a Deferred Process
means that this method is invoked asynchronously. A BPO within your
Cúram application that calls a method of another BPO, configured for de-
ferred processing, does not wait for it to return. Deferred Processing is ac-
complished, in part, by configuring queues in the middleware1. Any request
over the queued enactment interface is deferred.

The structure of this guide is a step-by-step walk-through and explanation of
what you must do in order to achieve deferred processing in your applica-
tion.

16.4 Model Your Deferred Processes

A deferred process is identified in your application model by selecting the
<<wmdpactivity>> stereotype on a method of a <<process>> class.
Each deferred processing method must be defined to take the following in-
put parameters:

181

Note

The application does not invoke a deferred process method using
these parameters. These are the parameters passed to the method by
the deferred processing server once the process is enacted.

• The ticket ID of the DPTicket record generated by the deferred pro-
cessing engine (long datatype).

• The instance data ID (type of long) of the WMInstanceData record
associated with the deferred process method at the time of enactment.
This gives the deferred process method access to any information you
wish it to have in order to carry out the required processing (long data-
type).

• A boolean flag. This parameter is internal to the deferred processing in-
frastructure. It should be ignored, but must be part of the signature of the
method (boolean datatype).

public void sampleDeferredMethod(long ticketID,
long instDataID,
boolean flag)

{
// Method logic goes here

}

Example 16.1 <<wmdpactivity>> stereotype method

Example 16.1, <<wmdpactivity>> stereotype method shows the code that is
generated for a method that is stereotyped as <<wmdpactivity>>. The
required parameters must be specified in the model by the developer. You
are not concerned with how these parameters are provided to the deferred
process (that is taken care internally by the deferred processing engine fol-
lowing the enactment request). You, however, must code the logic of your
deferred process into this method.

Note

Your deferred process should not attempt to perform any begin,
commits or rollbacks via the TransactionInfo class or attempt
any other forms of Java EE Transactional Control. This also applies
to any methods that are invoked by workflows or deferred pro-
cesses, regardless of how deep in the call stack. As well as deferred
processes the examples of the methods include implementations of
workflow or deferred processing interfaces (such as Notifica-
tionDelivery, WorkResolver, DPCallback, etc.) and any
methods called by either of the above.

16.5 Deferred Process Enactment

Deferred processes are enacted via the Deferred Processing Enactment Ser-
vice.

Cúram Server Developer's Guide

182

Consider the situation where a BPO within your Cúram application needs to
call a deferred process in order for it to do some other processing. The call
must be made as shown in Example 16.2, Using DeferredPro-
cessing.startProcess. Within the calling BPO you should populate a WMIn-
stanceData record (see Section 16.5.1, WMInstanceData, how to define
this entity) with the information that you want to be accessible to the de-
ferred process.

The class DeferredProcessing is available to you from the SDEJ.

import curam.util.AppException;
import curam.core.fact.WMInstanceDataFactory;
import curam.core.intf.WMInstanceData;
import curam.core.struct.UsersDtls;
import curam.core.struct.WMInstanceDataDtls;
import curam.util.fact.DeferredProcessingFactory;
import curam.util.intf.DeferredProcessing;
import curam.util.resources.GeneralConstants;
import curam.util.resources.KeySet;
import curam.util.type.UniqueID;

public class MyBPO extends curam.core.base.MyBPO {

public void doOnlineOperation(int caseID,
UsersDtls usersDtls)
throws AppException {

DeferredProcessing deferredProcessingObj
= DeferredProcessingFactory.newInstance();

WMInstanceData wmInstanceDataObj=
WMInstanceDataFactory.newInstance();

WMInstanceDataDtls wmInstanceDataDtls
= new WMInstanceDataDtls();

// Create a new instance data record
wmInstanceDataDtls.wmInstDataID
= UniqueID.nextUniqueID(KeySet.kKeySetDefault);

wmInstanceDataDtls.caseID = caseID;
wmInstanceDataDtls.enteredByID = usersDtls.userName;
wmInstanceDataDtls.enteredByName = usersDtls.firstName

+ GeneralConstants.kSpace
+ usersDtls.surname;

wmInstanceDataObj.insert(wmInstanceDataDtls);
deferredProcessingObj.startProcess(

"DO_DEFERRED_OPERATION",
wmInstanceDataDtls.wmInstDataID);

}

Example 16.2 Using DeferredProcessing.startProcess

Example 16.2, Using DeferredProcessing.startProcess shows a Cúram ap-
plication BPO that calls a deferred process method. The key points to note,
however, are that the WMInstanceData record is set up as part of the
calling BPO implementation. The DeferredPro-
cessing.startProcess() is then used to request the enactment of
the deferred process method. The parameters of this method are:

1. The name of the deferred process method being requested. This string
value is configured by you in the DPProcess table. The exact config-
uration of the DPProcess table for deferred processing is dealt with
in Section 16.7, Configuration of Deferred Processing Table.

Cúram Server Developer's Guide

183

2. The instance data ID of the WMInstanceData record that is popu-
lated with information that you deem necessary to be used by the de-
ferred process.

3. OptionalThe Error Handler that implements the TicketCall-
back interface that should be invoked if an error occurs. If the para-
meter is not provided the global error handler set through the property
curam.custom.workflow.ticketcallback is called.

16.5.1 WMInstanceData

WMInstanceData allows the definition of application data that is particu-
lar to each deferred process, so that values can be supplied for that data for
each instance of the deferred process.

Consider the situation where you want to develop a deferred method for
processing a Case. The deferred processing engine has no knowledge of any
cases (or even what a case is), so it cannot supply the ID of the case to your
deferred method. It does, however, know about WMInstanceData and
supplies the ID of a WMInstanceData record to every deferred method it
invokes. This record should be created and populated by you before enact-
ing the deferred process and the ID of the populated record should then be
supplied to the enactment API. When the deferred processing engine in-
vokes your deferred method, it will pass in that ID as a parameter.

Table 16.1, WMInstanceData Properties shows the WMInstanceData en-
tity class and its properties. As you can see, apart from the unique identifier
attribute of this class, all other information must be defined by you. This is
done using the modeling environment. The WMInstanceData entity
should be created in your model, in a package of your choice. WMInstan-
ceData facilitates in the definition of your application specific informa-
tion.

Property Description Type Require-
ment

wmInstDataID The unique identifier
of the instance data.

WM_INST_DATA
_ID

M

myInstan-
ceData1

Property to be in-
cluded as instance
data

Your application
domain definition
for the property.

O

myInstan-
ceData2

etc.

Property to be in-
cluded as instance
data

Your application
domain definition
for the property.

O

Table 16.1 WMInstanceData Properties

16.6 Offline Unit-Testing of Deferred Processes

Cúram Server Developer's Guide

184

If the application is deployed in an Application Server, the deferred methods
will be invoked asynchronously. However, if the Application is not execut-
ing in an Application Server container (for example, for off-line unit-test-
ing), you may wish to invoke the deferred method synchronously (i.e. not
deferred). This can be done by setting the property
curam.test.stubdeferredprocessing to true.

Note

The invocation of the deferred method is dependent on a successful
commit of the the caller's transaction context. If the calling method's
transaction rolls back, the deferred process will not be invoked.

Setting
curam.test.stubdeferredprocessinsametransacti
on property to true ensures that the deferred processes gets in-
voked in the same transaction. If this property is not set, the deferred
processes will still be invoked, but in a different transaction.

16.7 Configuration of Deferred Processing Table

When using deferred processing functionality in your Cúram application,
you need to configure the DPProcess table prior to runtime in order for it
to work correctly.

The DPProcess table, provided as part of the SDEJ, must contain names
for the methods within your application that have been modeled and defined
as being deferred using the <<wmdpactivity>> stereotype. For each de-
ferred method, you must define a name that describes it, for the process-
Name field. This string value is what must be used when requesting for a
deferred process method to be enacted. The primary key of this table is a
processName field.

Table 16.2, DPProcess Properties details the properties of the DPProcess
table.

Property Description Type Require-
ment

processName Name that describes your
deferred processing meth-
od.

String M

interfaceName Fully-qualified interface
name of a BPO with a
<<wmdpactivity>>
method corresponding to
the deferred process.

String M

methodName The name of the
<<wmdpactivity>>
method corresponding to
the deferred process.

String M

Cúram Server Developer's Guide

185

Property Description Type Require-
ment

ticketType Code table value describ-
ing the type of deferred
process. The meaning of
this is Application-defined,
for example, see the Cúram
TicketType code table.

String O

subject Short description of what
the deferred process meth-
od does.

String O

Table 16.2 DPProcess Properties

Table 16.3, Example DPProcess Table shows an example of how a DP-
Process table might be populated.

process-
Name

interface-
Name

method-
Name

ticketType Subject

DO_DEFERR
ED_OPERATI
ON

serv-
er.curam.bizint
er-
face.SomeProc
ess

doSomething CLAIM This method
does
something.

DO_ANOTHE
R_DEFERRE
D_OPERATI
ON

serv-
er.curam.bizint
er-
face.SomeOth
erProcess

doSomethin-
gElse

CASE-
REVIEW

This method
does
something
else.

Table 16.3 Example DPProcess Table

16.8 TicketCallback.dpHandleError()

The Deferred Processing Engine provides an error handling callback mech-
anism for when deferred processes fail (i.e. the deferred method you defined
throws an exception). The DPCallback interface is provided with the in-
frastructure. It has a single method definition: dpHandleError.

dpHandleError() gives application developers control over error hand-
ling when the invocation of a deferred process fails. This callback is in-
voked once the deferred processing message has been moved to the DPEr-
ror queue (usually after the failing process has been retried several times).
An implementation example is provided in Example 16.3, TicketCall-
back.dpHandleError() below.

There are two ways an error handler can be configured. Firstly, a single

Cúram Server Developer's Guide

186

(global) error handler callback can be defined for deferred processing by
setting the curam.custom.deferredprocessing.dpcallback
property to the fully- qualified name of a class that implements the DP-
Callback interface. The dpHandleError() method on that class will
then be invoked when any deferred method fails. Alternately, you can sup-
ply the fully-qualified name of any class that implements the DPCallback
interface when enacting a deferred process. This allows you to specify a
specific error handler for a single deferred process, or even a subset of the
instances a deferred process.

void dpHandleError(String processName, long instDataID)
throws AppException {
// Method logic goes here

}

Example 16.3 TicketCallback.dpHandleError()

This callback operation could be used to:

• Notify the client that a deferred process failed.

• Take some remedial action.

16.9 Security

Deferred processes run under the username 'SYSTEM'; therefore the effect-
ive locale for deferred processes is the default locale for this user as spe-
cified in field 'defaultLocale' on the Users table.

In the case of offline unit-testing of deferred processes, the username is
blank and the effective locale is the default locale for the Cúram server.

16.10 Summary

• The incorporation of Deferred Processing into your application is largely
achieved by:

1. Modeling appointed BPO methods with <<wmdpactivity>>
stereotype;

2. Configuring the DPProcess table in your database;

3. Using the DeferredProcessing to request deferred process
methods.

• The appropriate deferred processing queues must be set up prior to
runtime by following the steps given in the Cúram Installation Guide2.

• Application specific error handling can be achieved using the Ticket-
Callback.dpHandleError() method. An error handler can then
be targeted in the code by passing the error handler class name when in-

Cúram Server Developer's Guide

187

voking the DeferredProcessing.startProcess() method.

Cúram Server Developer's Guide

188

Notes
1WebSphere Application Server and WebLogic. For exact details on the ver-
sions of these products, see the Cúram Supported Prerequisites document.
2You should refer to the installation guide for your particular platform type,
i.e. Windows or UNIX.

Cúram Server Developer's Guide

189

Chapter 17

Timer Bean

17.1 Overview

Generic EJB Timer Bean functionality is provided as part of IBM Cúram
Social Program Management, which allows users to start timers which will
invoke client-visible methods at a specified point in the future either once or
multiple times. This is based on the timer service provided by the EJB con-
tainer. This chapter gives details about all major aspects of implementing
Cúram Generic EJB Timer Bean.

17.2 EJB Timer Bean Definition

The EJB container provides the timer service, which is the infrastructure for
the registration and callbacks of timers and, hence, provides the methods for
creating and canceling them. The timer service of the enterprise bean con-
tainer enables you to schedule timed notifications for all types of enterprise
beans except for stateful session beans. You can schedule a timed notifica-
tion to occur at a specific time, after duration of time, or at timed intervals.
For example, you could set timers to go off at 10:30 AM on May 23, in 30
days, or every 12 hours.

The EJB container provides different types of timers. The timer can be a
single-event timer, which can occur at a specific time or after a specific
elapsed duration, or an interval timer, which may occur on a regular sched-
ule. Essentially, three types of timers are possible, as outlined in the table
below:

Type of Timer Description
Single-event timer Create a single-action timer that expires after a

specified duration.

Single event with expira-
tion date

Create a single-action timer that expires at a
given point in time.

190

Type of Timer Description
Interval timer with initial
expiration Duration

Create an interval timer whose first expiration
occurs after a specified duration, and whose
subsequent expirations occur after a specified
interval.

Interval timer with initial
expiration Date

Create an interval timer whose first expiration
occurs at a given point in time and whose sub-
sequent expirations occur after a specified in-
terval.

Table 17.1 Types of Timers

17.3 Development Support

The Cúram infrastructure provides the following classes and interface to de-
velop Timer Bean functionality.

• curam.util.transaction.TimerInfo

• curam.util.timer.TimerTask

• curam.util.timer.TimerCallback

17.3.1 TimerInfo Class

The class curam.util.transaction.TimerInfo contains methods
for starting and stopping timers. This class also contains a number of intern-
al methods and methods reserved for future use. The following table de-
scribes the API's that are currently supported by the infrastructure:

Method Name Description
startTask(long,
TimerTask)

Create a single-action timer that expires after a
specified duration.

startTask(long,
long, TimerTask)

Create an interval timer whose first expiration
occurs after a specified duration, and whose
subsequent expirations occur after a specified
interval.

start-
Task(DateTime,
TimerTask)

Create a single-action timer that expires at a
given point in time.

start-
Task(DateTime,
long, TimerTask)

Create an interval timer whose first expiration
occurs at a given point in time and whose sub-
sequent expirations occur after a specified in-
terval.

cancel() Cancels the timer which invoked the current
method. Should only be called by methods

Cúram Server Developer's Guide

191

Method Name Description
which were invoked by a timer, calling this
method from a non-timed method will have no
effect.

getID() Gets the identifier for the timer which is run-
ning the current thread.

isTimerTransac-
tion()

Indicates whether the current transaction is be-
ing run by a timer.

Table 17.2 List of API's in TimerInfo Class

17.3.2 TimerTask Class

The class curam.util.timer.TimerTask contains information about
the timed operation, such as which server operation to invoke, parameters to
pass into it, whether a callback is required, etc. The following table de-
scribes the parameters that are available in this class.

Name Description
methodName Mandatory. The name of the method to invoke

when timer expires.

argument Optional. A struct parameter for the method
being invoked.

timerName Optional. A name for this timer. This can be
used as an identifier to query or cancel a timer.

errorHandlerName Optional. The name of a class, which imple-
ments interface TimerCallback which will
get called if the timed method fails.

userID Read-only. The ID of the user who started off
the task. This gets automatically populated
when the timer is started.

taskID Read-only. A unique identifier for each task.
This is automatically populated when the timer
is requested.

creationTime Read-only. The time at which this timer was
requested. This is automatically populated
when the timer is requested.

initialDelay Read-only. The initial delay time in milli-
seconds which was specified when this timer
was created.

initialEventTime Read-only. The absolute time of the first event
for this timer, or null if none was specified
when this timer was created.

Interval Read-only. The repeat interval which was spe-

Cúram Server Developer's Guide

192

Name Description
cified when this timer was created, or zero if it
is a one event timer.

Table 17.3 List of parameters from TimerTask Class

17.3.3 TimerCallback Interface

This is an interface for which developers can provide an implementation and
which will get invoked if a timed operation fails. The interface
curam.util.timer.TimerCallback has only one method
handleError(Exception, TimerTask) defined and uses can
provide implementation to this method.

17.3.4 Code sample:

// Create the task, specifying the name of the server
// operation to invoke:
final TimerTask task = new TimerTask();
task.methodName =

"curam.core.facade.intf.ProductDelivery.close";

// This operation takes one struct parameter,
// so instantiate the struct and add it to the task:
final curam.core.facade.struct.CloseCaseDetails caseDetails

= new curam.core.facade.struct.CloseCaseDetails();
caseDetails.caseID = 12345;
task.argument = caseDetails;

// Start off the timer, specifying that it invokes the
// method in 10 seconds time:
final long timerID = TimerInfo.startTask(10000, task);

// Every timer is assigned a unique ID which can be used
// to manipulate it and also to help track the timer
// in any diagnostic logs.
System.out.println("Created a timer with ID " + timerID);

17.4 Rules for using SDEJ Timers

There are some considerations and limitations to Generic Timer Bean
provided as part of Cúram infrastructure and they are listed below.

1. SDEJ timers can invoke any client visible operation in the application
meta-model, provided that:

a. The operation has zero or one parameter.

b. The operation has its Transactional option set to No.

c. The user has access rights to that operation.

Cúram Server Developer's Guide

193

2. SDEJ timers do not have any facility to return a value from an opera-
tion.

3. Timer creation and cancellation are transactional; i.e., if you create a
timer, it only becomes active after the transaction gets committed. Sim-
ilarly if you cancel a timer, it only gets cancelled when that transaction
gets committed.

4. Transactions invoked by timers execute using the same Cúram user ID
as the user who created that timer.

5. The transaction type of a timer transaction is reported by Transac-
tionInfo.getTransactionType() as being 'online'. (i.e. not
deferred/batch/etc)

6. Timers should only be started by online transactions or other timer
transactions. i.e. deferred processes, workflows or batch programs can-
not start timers.

7. Timers are persistent and remain active until they are cancelled by the
user, even if the application server is stopped and restarted.

8. If the application server is stopped for a time and then restarted later,
all timers which were active before the shutdown will resume follow-
ing the restart but the timer will not try to 'catch up' with any missed
ticks. Instead it will tick at the next scheduled time.

9. If a timed operation throws an exception, the transaction will be rolled
back. If the developer has specified a callback handler for the excep-
tion, the callback handler will get called if it has been configured, but it
cannot be used to prevent the transaction from being rolled back.

10. If a timed operation throws an exception, the timer does not get can-
celled and will continue to tick as before until it is cancelled from with-
in a transaction which gets committed.

Therefore it is important for developers to ensure that timed operations
cannot repeatedly throw exceptions, as otherwise they could continue
to be attempted indefinitely.

11. Timers should not be used to drive batch style processing. A timer
driven transaction will have the same timeout as a deferred processing
transaction (30 seconds by default) and should therefore be used only
for reasonably short running pieces of processing.

12. Timers in the SDEJ are provided by the javax.ejb.TimerService of the
application server. Currently it is not possible to start a timer from out-
side an application server which means that SDEJ timers are not avail-
able in the development environment. Attempting to start a timer from
outside an application server will have no effect.

17.5 Timer Behavior

Cúram Server Developer's Guide

194

Timer can behave differently depending on the scenario at with they are
started. Some of the scenarios and Timer behavior is as described below.

• For a repeating timer, if a timed transaction continues past the point at
which the next tick is due, then that tick is discarded and the next due
tick will be used.

For example:

A timer is configured to tick every 20 seconds. So this means that the
timer will normally tick at the following times:

20, 40, 60, 80, 100, etc

Now let's say that on the second tick, the timed transaction took 25
seconds to complete. This means that the transaction which started at the
40 second mark completed at the 65 second mark, and is therefore
deemed to have 'missed' the 60 second mark. So the next time the timer
will tick will be at the 80 second mark. So the actual times the timer will
have ticked are:

20, 40, 80, 100

• When a timer is specified with an initial duration, that duration is relat-
ive to the time at which the timer was created. It is not relative to the
time at which the transaction was committed - even though the timer
cannot actually begin ticking until the transaction in which it was cre-
ated has been committed.

For example, the user invokes a rather long online transaction which
does the following:

• Creates Timer A with an initial duration of 60 seconds.

• Does some processing which takes 20 seconds.

• Creates timer B with an initial duration of 60 seconds.

• Commits the transaction.

Next the following will happen:

• 60 seconds after it was created, Timer A will start ticking.

• 20 seconds later, Timer B will start ticking.

i.e. even though these timers were committed at the same time, each re-
tains its own individual start time.

17.6 FAQ

• How do I see which timers are active?

Different Java EE application servers implement their timer mechanism

Cúram Server Developer's Guide

195

in different ways and there is no standard way to administer timers via
their admin consoles. The TimerInfo API provides a number of func-
tions to find and query active timers.

• How do I stop a timer?

A single-event timer will stop automatically after one successful execu-
tion. (i.e. if it executes a transaction which committed successfully.) For
repeating timers, the TimerInfo class contains a number of methods for
stopping these timers. Note that stopping a timer will only take effect
when the transaction which requested the stop is committed.

• Can I ensure that my operation will be invoked only by a timer?

Cúram timer beans can only invoke methods which are in the model and
are client visible, therefore it is possible for the HTML client to also ac-
cess these methods, which may not be desirable.

If you want to ensure that only only a timer transaction executes your
method, you can use the TimerInfo API to check for this at run time as
illustrated by the following sample code extract:

// Ensure that this transaction is a timer:
if (!TimerInfo.isTimerTransaction()) {
// throw an exception to report that an
// invalid attempt was made to execute
// this operation outside of a timer.
throw new AppException(....);

}

• How many timers can be active at a time?

The Cúram timer bean API is a wrapper for the Java EE Timer API and
it is worth noting that the Java EE Timer API uses arrays of timers and
as such is not designed for dealing with very large volumes of timers.

As an extreme example: if an application contained several million cus-
tomer records on the database, it would be unadvisable to use timers as
the mechanism for controlling when an invoice is issued to each custom-
er, because this would result in having several million timer objects act-
ive in memory.

In general it is recommended that timers be kept as few and as short
lived as possible.

• How accurate is a timer?

The parameters used when creating a timer allow a developer to specify
a granularity of milliseconds with regard to when and how often the
timer will fire. However the application server cannot guarantee to fire
the timer at exactly the expected time because there may be conditions
which prevent this from being achieved. For example the server may be
down at the scheduled time, it may be delayed by other transactions, a
large number of timers may be scheduled to fire at exactly the same mo-
ment, etc. The rule of thumb is that the application server will fire the

Cúram Server Developer's Guide

196

timer event as close to the designated time as possible, so the developer
should not assume that the timer will fire at an exact time.

• Can I use timers in the development environment?

No. Currently timers only operate in deployed applications because the
underlying implementation is provided by the application server.

• How can I debug timers?

Timers cannot be executed in the development environment as this is
currently not supported. However Cúram timers can output extensive
logging data if required. The fact that each timer has a unique identifier
means that its execution and life cycle can be traced via the log output.

This logging data can be captured by configuring a log4j appender for
category 'Trace.TimerInfo'.

• Can a timer be configured to start automatically?

No. The life cycle of a timer is controlled by the developer. i.e. the de-
veloper is responsible for starting each timer and for ensuring that it
stops.

Cúram Server Developer's Guide

197

Chapter 18

Events and Event Handlers

18.1 Overview

Events provide a mechanism for loosely-coupled parts of the IBM Cúram
Social Program Management application to communicate information about
state changes in the system. When one module in the application raises an
event, one or more other modules receive notification of that event having
occurred provided they are registered as listeners for that event.

To make use of this functionality, some events have to be defined, some ap-
plication code must raise these events, and some event handlers have to be
defined and registered as listeners to such events. Developers must write
and register event handlers (classes that perform some action when an event
is raised) and optionally event filters (logic that determines whether or not
to invoke the handler for a given event). Event handlers and filters are
classes that implement callback interfaces in much the same way as in the
classic observer pattern 1.

18.2 The Format of Event Files

18.2.1 Event Definition

Events are defined in Cúram in XML files that specify both the event
classes and the event types. These files are created with a .evx extension
and are placed in the events of a Cúram component from where they are
picked up and processed by the build scripts. The format of an event file is
shown below:

<events package="curam.util.events">
<event-class identifier="EVENT_CLASS_ONE" value="CLASS1">
<annotation>Some event class.</annotation>
<event-type identifier="EVENT_TYPE_ONE" value="EVENT1"/>

198

<event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>
</event-class>
<event-class identifier="EVENT_CLASS_TWO" value="CLASS2">
<event-type identifier="EVENT_TYPE_ONE" value="EVENT1">

<annotation>Some event type.</annotation>
</event-type>
<event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>
<event-type identifier="EVENT_TYPE_THREE" value="EVENT3"/>

</event-class>
</events>

Example 18.1 Event definition file

events
This is the root tag of an event definition file under which all the event
classes and types are defined.

package
This specifies the Java code package into which the Java constants
for event classes and their types are generated.

annotation
This is an optional element specified for both event classes and types in-
tended for descriptive text for the element. The text specified in an an-
notation is generated into the Java constant files as javadoc comments.

event-class
Defines an event class, which qualifies all the event types associated
with that class.

identifier
This is the identifier of the event class for code generation and will
be the class name for the constant class containing all the event
types in the class. Since this will be a Java class name it must be a
valid Java identifier.

value
This is how an event class is referenced at runtime and it is this
value that event handlers are registered against. This value should
be unique in the system and is a 100 character string.

event-type
Defines an event type within a given class. Since an event is identified
by it's own name and that of it's parent class, an event type only needs
to be unique within a given class.

identifier
This is the identifier of the event type for code generation and will
be the field name for the constant containing the value of the event
type. Since this will be a Java field name it must be a valid Java
identifier.

Cúram Server Developer's Guide

199

value
This is how an event type is referenced at runtime and the value
should be unique within a given event class and is a 100 character
string.

18.2.2 Event Handler Registration

Event handlers and their associated (optional) filters have to be registered
against a particular event class to be invoked when the an event of the spe-
cified class is raised. This is done in file named handler_config.xml
placed in the events folder of a Cúram component.

<registrations>
<event-registration handler="curam.impl.SomeEventHandler">
<event-classes>

<event-class identifier="CLASS1"/>
</event-classes>

</event-registration>
<event-registration handler="curam.impl.AnotherEventHandler"

filter="curam.impl.AnotherEventFilter">
<event-classes>

<event-class identifier="CLASS2"/>
</event-classes>

</event-registration>
<event-registration handler="curam.impl.RemovedEventHandler"

removed="true">
<event-classes>

<event-class identifier="CLASS2"/>
</event-classes>

</event-registration>
</registrations>

Example 18.2 Event handler registration file

registrations
This is the root tag of an event handler registration file under which in-
dividual registrations are defined.

event-registration
Specifies an event handler registration.

handler
The fully qualified name of an event handler class (see: Sec-
tion 18.6, Event handlers).

filter
The fully qualified name of an optional event filter class (see: Sec-
tion 18.7, Event filters).

removed
An optional attribute used by components of a higher precedence to
disable previously registered event handlers, (see: Section 18.3.2,
Rules of Event Handler Merges).

Cúram Server Developer's Guide

200

event-classes
This is a list of all the event classes against which the handler is re-
gistered.

event-class
A specific event class against which the specified handler is registered.
When any event with the specified class is raised the event handler
(providing the event filter approves) is invoked.

identifier
This identifies the event that the handler is registered against. This
value should corresponds to the value attribute of an event-
class element in the event definition files.

18.3 Merging Event Files

Both event definition and handler registration files are located in the /
events directory of a component. The Cúram reference application is
shipped with a set of event files. These may be augmented by placing new
event files in the SERVER_DIR/components/<custom>/events
directory, where <custom> is any new directory created under compon-
ents that conforms to the same directory structure as components/core.
This mechanism avoids the need to make changes directly to the out-
of-the-box application, which would complicate later upgrades.

The override process involves merging all event files of the same name ac-
cording to a precedence order. The order is based on the SERV-
ER_COMPONENT_ORDER environment variable. This environment variable
contains a comma-separated list of component names: the left most has the
highest priority, and the right most the lowest.

After changing the component precedence order in SERV-
ER_COMPONENT_ORDER it is necessary to perform a clean build to ensure
that you are using the appropriate files. This is done by invoking build
clean server.

18.3.1 Rules of Event Definition Merges

For event definitions to be merged, the files provided to customize the
events must be named the same as the existing files containing the event
classes to customize. Placing event classes with the same name in files with
different names will result in errors occurring when loading the event defini-
tions onto the database.

The customizing behavior for events is very simple; events cannot be re-
moved as existing functionality might be using an event that other compon-
ents then decide to remove. Such code would subsequently fail to compile.
This being the case the only change that can be made to existing event
definitions is that event types can be added to an event class by other com-
ponents.

Cúram Server Developer's Guide

201

18.3.2 Rules of Event Handler Merges

The event handler (and filter) configurations used at runtime are those from
the component with the highest precedence that specifies the event handler
in question (for the purpose of merging the event handler is the identifier).
Event classes that are to be processed by each handler as specified in the
handler configuration in all the components are amalgamated into a merged
configuration. It is also possible for higher precedence components to dis-
able handler specified by lower precedence components by setting the re-
moved attribute of the event-registration element to true.

18.4 Artefacts produced by generate events

There are two types of output generated by the evgen command: .java
files (for code constants that make the use of events less error prone) and
.dmx files (database scripts for loading event definitions onto the database).

The Java artefacts produced from a merged event files are placed in the /
build/svr/events/gen/[package] directory. Where [package] is
the package attribute specified in the event definition file. For example,
package="curam.events" would result in the Java artefacts being placed in
the /build/svr/events/gen/curam/events directory.

The database scripts produced from a merged event files are placed in the /
build/svr/events/gen/dmx directory.

18.4.1 Database Scripts

Events are primarily a development time concept they are defined in XML
files, raised in application code and handled by application defined call-
backs. However some administration utilities in the application need access
to the list of events defined and available in a running system; thus they are
also loaded onto the data base.

Below are examples of the DMX files generated from the event definitions
for the two entities used to store the event definitions.

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVENTCLASS">

<column name="EVENTCLASS" type="text"/>
<row>
<attribute name="EVENTCLASS">

<value>CLASS1</value>
</attribute>

</row>
<row>
<attribute name="EVENTCLASS">

<value>CLASS2</value>
</attribute>

</row>
</table>

Cúram Server Developer's Guide

202

Example 18.3 Generated event class database script

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVENTTYPE">

<column name="EVENTCLASS" type="text"/>
<column name="EVENTTYPE" type="text"/>
<row>
<attribute name="EVENTCLASS">

<value>CLASS1</value>
</attribute>
<attribute name="EVENTTYPE">

<value>EVENT1</value>
</attribute>

</row>
<row>
<attribute name="EVENTCLASS">

<value>CLASS2</value>
</attribute>
<attribute name="EVENTTYPE">

<value>EVENT2</value>
</attribute>

</row>
</table>

Example 18.4 Generated event type database script

18.4.2 Java Code

Events are identified in the system by their names as specified by the
value attribute of the event-class and event-type elements.
However simply using text in application code to reference events would be
error prone. In particular, an event is fully identified by its type as well as its
class. Thus, using string literals to reference an event could be ambiguous,
as an event type is only unique when qualified by its associated event class.

Below is an example of the generated constants file for an event class, the
class name is the same as the event class, the attributes are the event types.
This prevents the use of incompatible values.

package curam.util.testmodel.events;
/**
* Generated EVENT_CLASS_ONE events file.
* Some event class.
*
*/
public final class EVENT_CLASS_ONE {

/** Some event type. */
public static final
curam.util.events.struct.EventKey EVENT_TYPE_ONE

= new curam.util.events.struct.EventKey();

static {
EVENT_TYPE_ONE.eventClass = "CLASS1";
EVENT_TYPE_ONE.eventType = "EVENT1";

}

Cúram Server Developer's Guide

203

/** Another event type. */
public static final
curam.util.events.struct.EventKey EVENT_TYPE_TWO

= new curam.util.events.struct.EventKey();

static {
EVENT_TYPE_TWO.eventClass = "CLASS1";
EVENT_TYPE_TWO.eventType = "EVENT2";

}
}

Example 18.5 Generated event Java constants

18.5 Raising events

Raising an event is simply a matter of creating an event struct, populating it
with data, then calling the event service API to raise the event. The event in-
frastructure will notify any registered handlers that the event has been
raised. An example of how to raise an event is shown below.

import curam.util.events.struct.Event;
import curam.util.events.impl.EventService;
curam.util.events.EVENT_CLASS_ONE;

...

Event event = new Event();
event.eventKey = EVENT_CLASS_ONE.EVENT_TYPE_TWO;
event.primaryEventData = 12300838;
event.secondaryEventData = 23413081;

EventService.raiseEvent(event);

Example 18.6 Raising an event

eventKey
This is the unique identifier of the event within the system. It is made
up of two constituent parts: the event class and the event type. As men-
tioned earlier and as shown in the example, though the event key is two
parts it is best to specify it using one generated constant to avoid mis-
matching event classed and types.

eventClass
The class of the event being raised: this is the value on which hand-
lers are registered.

eventType
The type of the event being raised: this identifies the specific type
of the event in the given class.

primaryEventData

Cúram Server Developer's Guide

204

This is the primary payload of the event and is a 64-bit integer. Typic-
ally this will be (though not necessarily) the identifier of an entity in
Cúram, the entity in question being identified by the class of the event.
The event type is commonly used to indicate the action that has taken
place on the entity.

secondaryEventData
This is any additional data that may be associated with an event when it
is raised. Unlike the primary event data the secondary event data is op-
tional.

18.6 Event handlers

We have already seen how to register handlers. To create an event handler
one simply needs to implement the interface:
curam.util.events.impl.EventHandler, which is shown below.

The action taken by an event handler when the event is raised is up to the
developer. It should be noted that event handlers are invoked synchronously
when the event is raised (and hence run within the same transaction context
as the code raising the event). This has two implications:

• Throwing exceptions from an even handler will result in the transaction
from which the event was raised being rolled back.

• Long running actions should be avoided in event handlers as they will
affect the running time of the code raising the event.

package curam.util.events.impl;

import curam.util.events.struct.Event;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public interface EventHandler {
void eventRaised(Event event)
throws AppException, InformationalException;

}

Example 18.7 Event handler interface

18.7 Event filters

As mentioned previously, an event handler can be configured to have a fil-
ter. The purpose of a filter is to decide whether or not the handler needs be
notified about the event being raised. To create an event filter one simply
needs to implement the interface:
curam.util.events.impl.EventFilter which is shown below.

If the accept method returns true the event will be passed on to the

Cúram Server Developer's Guide

205

event handler (that is the eventRaised method of the associated event
handler will be invoked), otherwise the event is ignored.

package curam.util.events.impl;

import curam.util.events.struct.Event;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public interface EventFilter {
boolean accept(Event event)
throws AppException, InformationalException;

}

Example 18.8 Event filter interface

Cúram Server Developer's Guide

206

Notes
1 The observer pattern is one of the design patterns made popular by the
landmark book Design Patterns: Elements of Reusable Object-Oriented
Software. It describes a generic listener framework.

Cúram Server Developer's Guide

207

Chapter 19

Unique IDs

19.1 Overview

This chapter describes what Unique IDs (Identifiers) are in the context of
IBM Cúram Social Program Management and how to use them in your ap-
plication.

19.2 What are Unique IDs?

Unique IDs are numbers generated by the Cúram infrastructure for use as
unique database keys. They come in two flavors:

• Human-readable Unique IDs are ascending sequences of numbers, usu-
ally starting at 1, and are used as database keys where the key value
might need to be presented in a User Interface to a human user.

• Non-human-readable Unique IDs are typically large positive or negative
values in the approximate range 1E-19 to 1E+19. The sequence of non-
human-readable Unique IDs does not repeat (for 2^64 key values), but is
random in a way that can improve database performance in some cir-
cumstances.

A Unique ID key set is a named non-repeating set of 2^64 Unique ID key
values. Key sets can be configured by developers and used to generate
Unique IDs for a particular purpose. Each key set can be configured to be
human-readable or non-human-readable. The infrastructure uses a number
of predefined key sets which must be configured as part of a Cúram installa-
tion.

19.3 What are Unique IDs for?

Cúram-generated Unique IDs address a perennial problem in application

208

design - how to co-ordinate multiple processes each of which needs to alloc-
ate a number guaranteed to be unique throughout the application. One clas-
sic approach involved locking and updating a key control database table
each time a key needs to be allocated. Unfortunately, this can lock the con-
trol table for the duration of long-lived transactions, preventing other pro-
cesses from accessing it. This technique is almost always the source of seri-
ous database contention problems in an application (see “Allocating Se-
quence Numbers” from Chapter 12 of High Performance Client/Server,
Loosley and Douglas).

Unique IDs are served out in blocks of 256 keys using a unique ID generat-
or, also know as the Key Server 1. A process requests a block of Unique IDs
by calling the key server. This updates a database control table each time it
returns a block of Unique IDs to a requesting process. Once a block has
been allocated, the requesting process can allocate keys from this block loc-
ally, i.e. without calling the server again, until the Unique ID block is ex-
hausted. Furthermore, the key server operates in its own transaction so it
never locks the key control table for longer than it takes to allocate and up-
date a next Unique ID block value.

It should be noted, however, that a process which requests a Unique ID
block may or may not use the keys from that block. If it does not, then the
unused keys represent holes in the key sequence. Processes which use, say,
one key value before shutting down will leave quite large holes in the key
sequence. Note also that there is no time limit on how long a process can
wait between allocating a Unique ID block, and using the key values in it.
Thus, even for human-readable keys which are in an ascending sequence
starting at 1, the sort order of keys on the database has no direct bearing on
the chronological order in which they were inserted. Obviously, programs
should not assume that this is the case.

19.4 Can I run out of Unique IDs?

In short, no! A process which used only one key out of each Unique ID
block, and allocated one thousand of these per second non-stop, would take
over two million years to exhaust one Unique ID key set. For all practical
purposes, the set of Unique IDs in a key set can be considered to be inex-
haustible.

19.5 When should I use Unique IDs?

Use Unique IDs in your design when each of the following criteria are met:

• you need a unique key for a database entity

• the database key has no “business meaning”

• instances of the entity may be created by multiple contending on-line or
batch functions

Cúram Server Developer's Guide

209

• holes in the key sequence are acceptable (which should always be true if
the key has no business meaning).

19.6 When should I not use Unique IDs?

Do not use Unique IDs in your design when:

• you need a unique key for a database entity, but have a business require-
ment for an ascending sequence without holes (Cúram-generated Unique
IDs are not guaranteed to be contiguous), or

• your key requires something other than a simple numeric format, or

• contending processes will not create instances of the entity (in which
case there is no need for key control at all).

19.7 Should my keys be human-readable?

This is up to you. The rule of thumb is that Unique ID values that will be
displayed to a user should be human-readable. Otherwise, you may choose
to use non-human readable Unique IDs. The advantage of these is that their
values are spread across a very large range, so that database indexes are not
always being extended at the end, as for ascending sequences.

19.8 What if I require contiguous human-readable
Unique IDs?

Human-readable IDs allocated by the key server are sequential, but can have
gaps for two reasons:

• the IDs are allocated in blocks of 256 keys. When the server is restarted,
the remaining values in any block for any key set that has been loaded
are discarded.

• if a transaction that requests a human readable ID from the key server is
rolled back, the ID that was served up is discarded (as the key server
runs in a separate transaction, its transaction commits irrespective of
what happens to the application transaction - this is important for per-
formance reasons).

In instances where there is a requirement to generate human-readable IDs,
where the numbers must be both sequential and have no gaps, Cúram uses
an application defined "key" table for each set of IDs (for example, Intern-
alPersonID, InternalEmployerID, etc). An example of such a business re-
quirement is the one around the issuing of "Social Security Numbers".
These tables are read and updated in the context of the application transac-
tion, meaning, the ID is only allocated if the record bearing that ID is com-
mitted to the database. Otherwise, the whole business transaction, including

Cúram Server Developer's Guide

210

the ID allocation, is rolled back. It is worth noting that there is a perform-
ance overhead because of this, as the single row ID table is a database hot
spot that must be updated every time the record bearing that ID is commit-
ted to the database.

Thus it is recommended that:

• this method of ID generation is used only when absolutely necessary and

• your design should strive to ensure that transactions using this mechan-
ism are kept as short as possible to minimize contention on the key ta-
ble.

19.9 How do I use Unique IDs?

Designing Unique IDs into your Cúram application is straightforward. In
your UML application model, set the appropriate domain definitions to be
of the data type SVR_INT64. The developer's view of this is as a Java
Long primitive. To allocate a new Unique ID call
UniqueID.nextUniqueID(), passing a key set name as a string. This
call transparently looks after allocating a new Unique ID block if necessary.
If no key set name is passed to the nextUniqueID() method the default
key set, curam.util.resources.KeySet.kKeySetDefault, is
used. This key set allocates non human-readable Unique IDs.

Key sets are defined by configuring entries in the KeyServer database ta-
ble. This can be done by creating a DMX file defining all key entries. Ta-
ble 19.1, KeyServer Database Table details the fields of the KeyServer
database table.

Field Description
keySetCode An identifier for the key set, e.g. MYKEYSET.

nextUniqueIdBlock The next Unique ID block that should be allocated.
For human-readable IDs this field can be used to
skip pre-allocated Unique IDs.

humanReadable True if the Unique IDs should be human-readable.

lastUpdated The timestamp for when the entry was last updated.

strategy Represents strategy used to generate next unique id
block for a given key set.

Annotation A description of the key set.

Table 19.1 KeyServer Database Table

If you are using human-readable Unique IDs, and non-Cúram-generated
keys have already been allocated, then you can guarantee that these values
will never be re-allocated by Cúram (i.e. Unique IDs will never “clash”).
This is achieved by setting the nextUniqueIdBlock field on the Key-
Server database table to be Ceiling(N/256), where N is the number of

Cúram Server Developer's Guide

211

Unique IDs which have already been pre-allocated.

The strategy field is used to specify whether the standard Key Server or the
Range Aware Key Server is used for the key set. If the field is set to null,
the standard Key Server is used. If the field is set to a specific value
KB1002 then the Range Aware Key Server will be used to generate next
unique id block for the key set. The Range Aware Key Server is explained
in more detail in Section 19.10, Range Aware Key Server.

Warning

Care should be taken when defining and using custom key sets. The
same key set should always be used when using Unique IDs as the
primary key for a particular database table. If two key sets are used
to generate Unique IDs for the same database table, duplicate record
problems may occur. Unique IDs are only unique within a particular
key set.

Note

The conversion routine for hexadecimal numbers that are used as
Unique IDs on a DB2 for z/OS database can only support numbers
between Long.MAX_VALUE and Long.MIN_VALUE + 1.

19.10 Range Aware Key Server

19.10.1 Overview

The Range Aware Key Server is a new Key Server implementation intro-
duced to support Configuration Transport Manager (CTM). CTM is used to
transport administrative configuration data (Business Objects) between sys-
tems. Each Business Object is comprised of a number of entities. Each of
these entities has a primary key. The standard Key Server implementation
only guarantees uniqueness of a primary key within a single system installa-
tion. This means that when a Business Object is transported from a Source
System and applied on a Target System, there is the strong possibility of key
clashes between the transported entities and the existing entities on the sys-
tem.

The Range Aware Key Server implementation is responsible for creating
primary keys to meet the following requirements:

• Prevent clashes in primary keys between new entities transported to a
system and existing entities on that system.

• Identify where there is an existing version of a transported entity on a
system, so that the existing entity is updated with the transported entity
data.

19.10.2 How does the Range Aware Key Server work?

Cúram Server Developer's Guide

212

The approach used by the Range Aware Key Server to generate primary
keys hinges on ensuring that non-overlapping key ranges are allocated to
every system. The Range Aware Key Server will then ensure that all of the
primary keys on a given system are generated from the range(s) assigned to
that system. Therefore, the primary keys generated by each system will be
unique.

So, at system install (or upgrade) time, the system administrator allocates a
unique primary key range from which all primary keys provided by the
Range Aware Key Server implementation will be generated. Please refer to
the CTM Setup Guide chapter in the Configuration Transport Manager
guide for information on how the range allocations are configured.

19.10.3 Where is the Range Aware Key Server used?

The Range Aware Key Server is only used for Key Sets that have been cre-
ated specifically for the entities that form part of transportable Business Ob-
jects. Existing Key Sets continue to use the current SDEJ Key Server imple-
mentation, unchanged. Note that it is important that existing Key Sets are
not changed to use the Range Aware Key Server - the Range Aware Key
Server should only be used with new Key Sets.

The Range Aware Key Server supports both non-human readable and hu-
man-readable generated keys, so the value of the humanReadable attribute
in the KeyServer table is set to either 0 or 1 depending on the entity's re-
quirements.

Cúram Server Developer's Guide

213

Notes
1 The design is loosely based on the Sequence Block pattern described by
Floyd Marinescu in EJB Design Patterns (ISBN: 0471208310).

Cúram Server Developer's Guide

214

Appendix A

Cúram Configuration Parameters

A.1 Overview

This section describes configuration parameters for Curam applications that
you can (or in some cases must) set to control characteristics of application
execution. Generally, and unless otherwise noted, these parameters are set in
property and prx files associated with your application. The following con-
figuration parameter descriptions are organized according to the file that
they should be set in and also in functionally-related groups. Some paramet-
ers are of a "BOOLEAN" type, where noted. This means that the value
"true" or "yes" in upper-, lower-, or mixed-case, equates to a "true" value;
all other values (or none) equate to "false". The configuration parameter de-
scriptions are grouped into functionally-related groups.

A.2 Bootstrap.properties

The following properties relate to the Bootstrap.properties file.

A.2.1 Database

These settings configure Curam for database communication.

Property Name Type Meaning
curam.db.type STRING The property which specifies the

database type. Suggested:
DB2/ORA/ZOS.

curam.db.password STRING The encrypted password that cor-
responds to the user name spe-
cified above. The database pass-
word is never stored in plaintext
in the various Curam property

215

Property Name Type Meaning
files.

curam.db.username STRING A valid database username.

curam.db.oracle.cachesiz
e

INT32 The size of the prepared state-
ment cache used by batch pro-
grams when run against Oracle
(the prepared statement cache is
based around implicit caching).

curam.db.oracle.connecti
oncache.enabled

BOOLEAN Turn on connection caching for
Oracle outside of an Application
Server.

curam.db.oracle.connecti
oncache.minlimit

INT32 Set Min Limit for the Cache.
This sets the minimum number
of PooledConnections that the
cache maintains. This guarantees
that the cache will not shrink be-
low this minimum limit.

curam.db.oracle.connecti
oncache.maxlimit

INT32 Set Max Limit for the Cache.
This sets the maximum number
of PooledConnections the cache
can hold. There is no default
MaxLimit assumed meaning con-
nections in the cache could reach
as many as the database allows.

curam.db.oracle.connecti
oncache.initiallimit

INT32 Set the Initial Limit. This sets the
size of the connection cache
when the cache is initially cre-
ated or reinitialized. When this
property is set to a value greater
than 0, then that number of con-
nections are pre-created and are
ready for use.

curam.db.oracle.connecti
oncache.name

STRING The name used to identify the
cache uniquely.

curam.db.zos.32ktablespa
ce

STRING Property which specifies the
name of the table space used for
32k storage on DB2 z/OS.

curam.db.zos.enableforei
gnkeys

BOOLEAN Controls whether foreign keys
are generated for a z/OS database
when running the Data Manager.
Note on usage - If Foreign Keys
are used against a z/OS database,
the tables are put in a
CHECK_PENDING state, caus-
ing failures when the tables are

Cúram Server Developer's Guide

216

Property Name Type Meaning
accessed. The state can only be
changed through direct DBA in-
tervention on the target platform
(hence it cannot be scripted into
the Data Manager which can run
on remote clients). In normal us-
age the Data Manager invokes
LOB Manager after applying the
foreign keys. This means the
LOB manager should be re-run
after the this
CHECK_PENDING state has
been resolved.

curam.db.disableforeignk
eys

BOOLEAN Controls whether foreign keys
are generated in SQL statements.
By default this property is false,
which means foreign key genera-
tion is enabled. However, for z/
OS foreign keys will not be gen-
erated if
curam.db.zos.enableforeignkeys
is set to false.

curam.db.disableInvalidL
obFileError

BOOLEAN This property controls the report-
ing of invalid LOB file paths in
DMX files. The default value is
FALSE. By default a build ex-
ception will be thrown, when set
to TRUE a warning will be re-
ported.

curam.db.zos.encoding STRING Property which specifies whether
the database being used on z/OS
requires processing for EBCDIC,
ASCII, or UNICODE encoding.
This should be set to EBCDIC,
ASCII, or UNICODE depending
on the appropriate database en-
coding in use. EBCDIC is the de-
fault value.

curam.db.zos.dbname STRING The name of the database on z/
OS.

curam.database.shortnam
es

BOOLEAN It is strongly recommended that
this property be set to false. The
functionality for this property is
planned for removal in a future
version of Curam. If you have
utilized this property in previous

Cúram Server Developer's Guide

217

Property Name Type Meaning
versions of Curam please contact
Curam Support for more inform-
ation.

curam.db.oracle.servicen
ame

STRING The Oracle database service
name. Setting this will create
database connection using Oracle
service name.

curam.db.name STRING The database name. This setting
will be overridden if property
"curam.db.oracle.servicename" is
set for Oracle database.

curam.db.servername STRING The database server name.

curam.db.serverport INT32 Suggested: 1521 (Oracle)/ 50000
(DB2). The database server TCP/
IP port.

curam.db.enable.bindings
.generation

BOOLEAN Suggested: false. Causes a bind-
ings file to be generated for the
JDBC data source when a data-
base connection is made outside
of the application server, e.g. by
the Batch Launcher. Has no ef-
fect if property
'curam.db.disable.bindings.gener
ation' is set. Intended to be used
to produce a starter bindings file
which can then be customized.

curam.db.disable.binding
s.generation

BOOLEAN Suggested: false. Prevents re-
generation of the JDBC data
source bindings file and instead
causes the data source to be
looked up from a customized
bindings file when a database
connection is made outside of the
application server, e.g. by the
Batch Launcher.

curam.dmx.locale STRING Default: en. Property that spe-
cifies the locale that will be used
when inserting dmx data onto the
database. The locale should be
specified in the format: lan-
guage_country, for example
en_US.

curam.db.multibyte.expa
nsion

BOOLEAN Enables the multi-byte expansion
feature. Default value is true.

Cúram Server Developer's Guide

218

Property Name Type Meaning
curam.db.multibyte.defau
lt.factor

FLOAT Specifies the default expansion
factor for multi byte string fields
if multi byte expansion is en-
abled. Must be a float between
the values of 1 and 4. Default
value is 4.

Table A.1 Database settings

A.2.2 Environment

These settings configure the environment for your Curam application.

Property Name Type Meaning
curam.environment.as.ve
ndor

STRING Suggested: Should be set to BEA
or IBM to reflect the Application
Server which is being used. If
running outside an application
server this should be empty.
Defines the Application Server in
which Curam will be deployed.
This is setup automatically when
the EAR file is built using the
build targets.

curam.environment.tnam
eserv.port

INT32 Suggested: 900. Port on which
the tnameserv is running.

curam.environment.bindi
ngs.location

STRING Suggested: C:/Temp. Name of
the file system location contain-
ing data sources.

curam.environment.defau
lt.dateformat

STRING Default: yyyy MM dd. The date
format. Can be set to one of: "d
M yyyy", "M d yyyy", "yyyy M
d", "dd MM yyyy", "MM dd
yyyy", "yyyy MM dd", "d MMM
yyyy", "MMM d yyyy", "yyyy
MMM d", "d MMM yyyy",
"MMMM d yyyy", "yyyy
MMMM d", "dd MMM yyyy",
"MMM dd yyyy", "yyyy MMM
dd".

curam.environment.defau
lt.dateseparator

STRING The date separator. Can be set to
one of: ".", ",", "/", "-".

curam.disable.dynamic.pr
operties

BOOLEAN Indicates if dynamic properties
should be enabled or disabled.
This is used by command line

Cúram Server Developer's Guide

219

Property Name Type Meaning
tools that require access to prop-
erties but cannot access the data-
base.

curam.deprecation.reporti
ng

BOOLEAN Indicates if deprecation reporting
should be enabled or disabled.
This is used by all tools (both on-
line and offline) that report de-
precation warnings to the user
(e.g. rules and workflow valida-
tion).

curam.entity.struct.deprec
ation

BOOLEAN Indicates if generated entity
standard structs should be de-
precated if an entity is deprec-
ated. This is used by generators
which generate standard entity
structs.

curam.environment.round
ingprecision.enable

STRING Indicates if when rounding
money types in Curam, the
HALF_UP algorithm will be
used. This means that all Money
will be rounded up. If set to true,
the HALF_UP algorithm will be
used. If not set, a default of true
is used.

Table A.2 Environment settings

A.2.3 Test

These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as
they will either degrade performance or cause failures.

Property Name Type Meaning
curam.test.override.date STRING This property allows the date and

time to be set to a known value
for testing. In order to override
the date and time the property
should be in the format
YYYYMMDDThhmmss. The 'T'
character is the separator
between the date and the time. It
is valid to only specify the date.
If the time portion of the prop-
erty is not explicitly set the time

Cúram Server Developer's Guide

220

Property Name Type Meaning
will be automatically default to
midnight (00:00:00). For ex-
ample, the string value
20070101T175930 represents
17:59:30 on 1st January 2007.
The string value 20070101 rep-
resents 00:00:00 on 1st January
2007.

curam.test.treatreadmulti
maxaserror

BOOLEAN Default: false. Specifies that a
run time error should be thrown
as well as a log message when
the result size of Readmulti oper-
ation exceeds the maximum. This
does not apply when the Treat
readmulti-max as Informa-
tionalException option is enabled

Table A.3 Test settings

A.2.4 Custom

These settings allow a developer to replace elements of the Curam infra-
structure with their own customized handlers.

Property Name Type Meaning
curam.custom.workflow.
webservicebpo

STRING The name of the application BPO
that workflow process enactment
web services go through.

Table A.4 Custom settings

A.3 Application.prx - Dynamic properties

The following properties relate to the available dynamic properties in the
Application.prx file.

A.3.1 Environment

These settings configure the environment for your Curam application.

Property Name Type Meaning
curam.environment.defau
lt.locale

STRING Default: en. The default value of
the language code for the server.

curam.environment.recor BOOLEAN Specifies whether a RecordLock-

Cúram Server Developer's Guide

221

Property Name Type Meaning
dlocked.systemexception edException should be set to a

System exception. The default is
false here, that it is a Application
exception.

curam.environment.read
mul-
timax.systemexception

BOOLEAN Specifies whether a Readmul-
tiMaxException should be set to
a System exception. The default
is false here, that it is a Applica-
tion exception.

curam.transaction.sqlquer
ycache.disabled

BOOLEAN Specifies whether any SQL quer-
ies that do a SELECT on a data-
base table will have their results
cached for the duration of the
transaction in which the opera-
tion was invoked. Subsequent
calls using the same SQL query
will then retrieve the results from
this thread local transaction SQL
query cache and not read the res-
ults from the database. The de-
fault setting for disabling this
cache is false so that the results
of SQL queries will be cached.

curam.sqlquerycache.lob.
max.size

INT64 Specifies the maximum size of a
field of type CLOB or type
BLOB in a result set that is al-
lowed to be cached in the trans-
action SQL query cache.

curam.enable.logging.clie
nt.authcheck

BOOLEAN Default: false. When set to true,
all client authorization checks
will be logged to the Authorisa-
tionLog database table.

curam.audit.audittrail.dat
acompressionthreshold

INT32 Specifies the size of the audit
data stored in the detailinfo
column of the audittrail database
table that causes data compres-
sion to be invoked. Default: -1
(off). This value is checked per
audit operation. To turn compres-
sion on for all audittrail detail-
info data set this value to 0.
When turned on rows that con-
tain compressed data have the
boolean attribute ISCOM-
PRESSED set to true. Note that
short audit data is not likely to

Cúram Server Developer's Guide

222

Property Name Type Meaning
see performance gains, but will
for large data rows. The perform-
ance of Curam auditing OOTB
should not require compression,
but if you add additional auditing
you should evaluate your audit-
ing selections for performance to
determine the best setting for this
value. Compression is done via
the
curam.util.resources.ByteArrayU
til.byteArrayToBase64EncodedS
tring method and decompression
can be done via the correspond-
ing ByteArray-
Util.base64EncodedStringToByt
eArray method.

Table A.5 Environment settings

A.3.2 JMX

These settings configure the JMX infrastructure for your Curam application.

Property Name Type Meaning
curam.jmx.monitoring_e
nabled

BOOLEAN Whether JMX monitoring is en-
abled or not in the application.

curam.jmx.transaction_tr
acing_enabled

BOOLEAN Whether transaction tracing is
enabled or not in the application.
When this is enabled, in-flight
data collection is enabled as well.

curam.jmx.transaction_tr
acing_url_filter

STRING Regular expression to identify
URLs for which transaction tra-
cing data is collected.

curam.jmx.transaction_tr
acing_max_recorded_thr
eads

INT32 The maximum number of threads
for which transaction tracing data
is collected. Note that at any one
moment there could be more than
this number of threads in the
transaction tracing data but a sig-
nificant amount of entries will
only be preserved for this num-
ber of threads.

curam.jmx.transaction_tr
acing_purge_period

INT32 The period of time, in seconds,
between checks to ensure that

Cúram Server Developer's Guide

223

Property Name Type Meaning
only the number of threads spe-
cified in
curam.jmx.transaction_tracing_
max_recorded_threads are pre-
served in the transaction tracing
data.

curam.jmx.transaction_tr
acing_max_thread_idle_t
ime

INT32 The maximum amount of time,
in seconds, a thread is allowed to
be idle before its transaction tra-
cing data can be cleared.

curam.jmx.configured_m
beans_ejb

STRING The list of MBeans configured in
the EJB container.

curam.jmx.configured_m
beans_web

STRING The list of MBeans configured in
the WEB container.

curam.jmx.per_user_stati
stics_filter

STRING Regular expression to identify
users for which individual statist-
ics are collected.

curam.jmx.in_flight_stati
stics_enabled

BOOLEAN Whether or not statistics about
in-flight transactions are collec-
ted.

curam.jmx.sql_statement
_statistics_enabled

BOOLEAN Whether or not SQL statement
statistics collection is enabled.

curam.jmx.download_stat
istics_allowed

BOOLEAN Whether or not the download of
JMX statistics is allowed.

curam.jmx.download_stat
istics_username

STRING The username of the user who is
allowed to download the JMX
statistics.

curam.jmx.end_user_stati
stics_enabled

BOOLEAN Whether or not end user statistics
collection is enabled.

curam.jmx.end_user_stati
stics_user_filter

STRING Regular expression that selects
users for which end user statistics
are collected.

curam.jmx.end_user_stati
stics_display_enabled

BOOLEAN Whether or not the end user stat-
istics are displayed in the
browser. If true, the statistics for
the current page are displayed in
the top left corner of the page.

curam.jmx.end_user_stati
stics_upload_delay

INT32 The delay in seconds between the
page reporting being loaded and
the moment the statistics are up-
loaded.

Table A.6 JMX settings

Cúram Server Developer's Guide

224

A.3.3 Test

These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as
they will either degrade performance or cause failures.

Property Name Type Meaning
curam.test.store.entitykey
s

BOOLEAN Default: false. Specifies that the
values written to the database
should be stored in memory for
retrieval by tests. They can be ac-
cessed through
curam.util.DataAccess.KeyRepos
itory.

curam.test.trace.statistics BOOLEAN Default: false. Place a compact
trace of BO method invocations
in a buffered log. This represent-
ation is suitable for obtaining
performance measurements.

curam.test.trace.statistics.
location

STRING The name of the file which will
have the statistics information
generated into it.

curam.test.singleuser BOOLEAN Indicates whether only a single
user will be active. This is the
only mode supported if an IDE is
used to execute Curam as a stan-
dalone Java program.

curam.test.stubdeferredpr
ocessing

BOOLEAN Default: false. Specifies that it
needs to use deferred processing
without en-queuing in App Serv-
er.

curam.test.stubdeferredpr
ocessinsametransaction

BOOLEAN Default: false. Specifies that
stubbed deferred process calls
should be run in the current
transaction using the current
database connection. If true, a
new transaction will not be star-
ted for each stubbed deferred
process call.

Table A.7 Test settings

A.3.4 Rules

These settings configure the rules infrastructure of Curam.

Cúram Server Developer's Guide

225

Property Name Type Meaning
curam.rules.file.access.lo
cation

STRING The directory where the XML
representation of rule sets will be
created.

curam.rules.file.access.m
ultilocation

BOOLEAN Specifies that rule set files exist
in multiple locations.

curam.rules.model.file.rd
o.access

BOOLEAN Specifies that RDOs should be
retrieved from a Curam model
file.

curam.rules.default.locale STRING Default: en_US. Default locale
used when creating the XML
representation of rule sets.

curam.rules.globals.descr
iption

STRING The display/user friendly name
associated with the pre-defined
Globals Rules Data Object. The
default value is the localized
message text associated with the
infrastructure catalog entry:
RULES:ID_GROUP_DISPLAY
_NAME_GLOBALS

curam.rules.enable.optim
ization

BOOLEAN Specifies the rules optimization.

curam.rules.enable.fulltex
t

BOOLEAN Specifies the rules engine con-
struction of full result text.

curam.debug.rules BOOLEAN Default: false. Specify whether
the rules debugging should be
enabled.

curam.disable.empty.obje
ctivelistgroups

BOOLEAN Default: true. Specify whether
the rules decision should include
empty Objective list groups.

curam.rules.date.range.in
cludes.calculation.date

BOOLEAN Specifies the new objective cal-
culation.

Table A.8 Rules settings

A.3.5 IEG

These settings configure the properties which relate to the IEG Environ-
ment.

Property Name Type Meaning
curam.iegeditor.callback.
class

STRING Specifies the IEG Editor Applic-
ation Callbacks class.

curam.iegruntime.questio BOOLEAN Specifies whether to use separate

Cúram Server Developer's Guide

226

Property Name Type Meaning
npage.separatequestionsf
orloopstyle

question pages when "for" loop-
ing.

Table A.9 IEG settings

A.3.6 Custom

These settings allow a developer to replace elements of the Curam infra-
structure with their own customized handlers.

Property Name Type Meaning
curam.custom.deferredpr
ocessing.dpcallback

STRING The name of the application class
that implements the DPTicket-
Callback interface.

curam.custom.workflow.
workresolver

STRING The name of the application class
that implements the WorkRe-
solver interface.

curam.custom.workflow.
processcachesize

INT32 Default: 250. Specifies the max-
imum size of the process defini-
tion cache.

curam.audit.audittrail.nox
mlaudit

BOOLEAN If set to true this property will
disable the existing audit writer.

curam.custom.notificatio
ns.notificationdelivery

STRING Specifies the name of the applic-
ation class that implements the
NotificationDelivery interface.

curam.custom.dataaccess.
databasewritecallback

STRING The name of the application class
that implements the Database-
WriteCallback interface.

curam.custom.dataaccess.
transactioncallback

STRING The name of the application class
that implements the Transaction-
Callback interface.

curam.custom.disable.dat
abase.callback

BOOLEAN If set to true this property will
disable the database callback.

Table A.10 Custom settings

A.3.7 Trace

These control what diagnostic information (in addition to errors which are
always logged) is written to the application server's diagnostics file. Note
that you can set the "curam.trace.*" settings independently of the
"curam.trace" settings, resulting in the union of these settings.

Cúram Server Developer's Guide

227

Property Name Type Meaning
curam.trace STRING Default: trace_off. Tracing is off

by default. Turn tracing on by
setting the property to trace_on,
trace_verbose or
trace_ultra_verbose. The value
trace_on is equivalent to setting
curam.trace.servercalls to true.
The value trace_verbose is equi-
valent to setting
curam.trace.servercalls,
curam.trace.methods and
curam.trace.sql to true, while the
highest trace level
"trace_ultra_verbose" is equival-
ent to setting curam.trace.* to
true

curam.trace.servercalls BOOLEAN Default: false. Trace server meth-
od invocations by remote clients.

curam.trace.methods BOOLEAN Default: false. Trace all business
object (BO) method invocations.

curam.trace.method_args BOOLEAN Default: false. Dump arguments
to BO method invocations, in-
cluding the argument type. This
option is only valid if
curam.trace.methods is set to true
or curam.trace is set to at least
trace_verbose.

curam.trace.sql BOOLEAN Default: false. Trace SQL state-
ments executed by entity objects.

curam.trace.sql_args BOOLEAN Default: false. Dump results of
SQL select statements.

curam.trace.rules BOOLEAN Default: false. Trace Curam rules
execution.

curam.trace.smtp BOOLEAN Default: false. Trace the calls to
the SMTP server.

curam.trace.configfile.loc
ation

STRING The location of the ".xml" con-
figuration file which controls the
output of logging within Curam.

curam.trace.oracle.cacheh
its

BOOLEAN Default: false. An indicator as to
whether the cache hits and
misses of the Oracle prepared
statement cache should be out-
put.

curam.trace.ejb.invocatio STRING Comma separated list of invoca-

Cúram Server Developer's Guide

228

Property Name Type Meaning
n_differentiators tion differentiator implementa-

tions.

curam.trace.suppress_opt
imistic_locking_detail

BOOLEAN Default: false. Suppress SQL de-
tail from being dumped when op-
timistic locking exceptions oc-
cur.

curam.trace.suppress_dat
abase_exception_detail

BOOLEAN Default: false. Suppress SQL de-
tail from being dumped when
database exceptions occur.

Table A.11 Trace settings

A.3.8 Security

These settings configure the authentication behavior of Curam.

Property Name Type Meaning
curam.security.breakInTh
reshold

INT32 Default: 3. The number of con-
secutive break-in attempts that
are allowed before an account is
locked out.

curam.security.passworde
xpiry.warningperiod

INT32 The number of days, in advance,
that a user should be warned (on
login) that their password is
about to expire.

curam.security.loginatte
mpts.warningperiod

INT32 Default: 1. The number of logins,
in advance, that a user should be
warned (on login) that they have
a limited number of logins in
which they must change their
password.

curam.security.cache.fail
ure.callback

STRING Specifies the security cache fail-
ure callback class.

curam.security.disable.ca
che.failure.callback

BOOLEAN If set to true this property will
disable the security cache failure
callback.

curam.security.identifier.
minsearch.stringlength

INT32 Specifies the security Identifier
Minimum Search String Length.

Table A.12 Security settings

A.3.9 SMTP

These settings configure the environment in which the SMTP client element

Cúram Server Developer's Guide

229

of Curam operates.

Property Name Type Meaning
curam.mail.smtp.serverh
ost

STRING The default mail server that is
used by Curam.

curam.mail.smtp.serverp
ort

INT32 The port on which the default
mail server is addressed.

curam.mail.smtp.connecti
ontimeout

INT32 The socket connection timeout
value (in seconds) of the mail
server.

curam.mail.smtp.timeout INT32 The socket I/O timeout value (in
seconds) of the mail server.

Table A.13 SMTP settings

A.3.10 XMLServer

These settings configure the environment in which the XML Server will be
used.

Property Name Type Meaning
curam.xmlserver.host STRING The host on which the XML

Print Server resides. The prop-
erty may also be specified as a '/'
separated list of host names in
order to use multiple XML Serv-
ers. For further information
please refer to the Curam XML
Infrastructure Guide.

curam.xmlserver.port STRING The port on which the XML
Print Server is listening. The
property may also be specified as
a '/' separated list of ports in or-
der to use multiple XML Servers.
For further information please
refer to the Curam XML Infra-
structure Guide.

curam.xmlserver.printer STRING The printer name that will be
provided to the XML Server.

curam.xmlserver.tray STRING The printer tray that will be
provided to the XML Server.

curam.xmlserver.fileenco
ding

STRING The encoding that should be used
for the encoding of files provided
to the XMLServer.

curam.xmlserver.serialize BOOLEAN Specify that xml server data will

Cúram Server Developer's Guide

230

Property Name Type Meaning
localeneutral be serialized in a locale-neutral

way instead of being based on
the locale properties on the serv-
er.

Table A.14 XMLServer settings

A.3.11 Database

These settings configure Curam for database communication.

Property Name Type Meaning
curam.db.readmultimax INT32 Default: 100. Allows the de-

veloper to override the default
maximum number of records re-
turned by the readmulti
(readmulti, nsreadmulti, nkread-
multi and nsmulti) operations in
an application. This default value
is only used if an explicit value is
not set in the model.

curam.db.locktimeout INT32 Default: 30. Allows the de-
veloper to set the lock timeout in
seconds on an Oracle database
when performing a singleton se-
lect FOR UPDATE. The syntax
here is to append a WAIT XX
clause to the statement. This de-
fault value is only used if an ex-
plicit value is not set.

curam.db.batch.limit INT32 Default: 10. Globally defines the
number of updates that can be
grouped together as part of a
batch update.

Table A.15 Database settings

A.3.12 KeyServer

These settings allow a customer to configure the behavior of the KeyServer.

Property Name Type Meaning
curam.keyserver.default.u
nique.set

STRING The name of the default key set
used by the application.

curam.keyserver.retry INT32 Default: 5. The number of retries

Cúram Server Developer's Guide

231

Property Name Type Meaning
that will be performed if there is
a problem communicating with
the key server before that prob-
lem is reported to the user.

curam.keyserver.support BOOLEAN Default: false. The range aware
key server algorithm allows us-
age of group from 3 to 32,768.
But as group 2 is to allocated for
Cúram support.This property can
be set to true to state keys gener-
ated are for Cúram support pur-
pose.

curam.keyserver.remaini
ng.keyblock.notification

INT64 Default: 100000000. The range
aware key server algorithm sup-
ply a notification to administrat-
ors when a particular key set is
nearing the end of the systems al-
located range.This notification
would be sent repeatedly at
defined magnitude intervals be-
fore exhaustion e.g. the first mes-
sage sent when there are X key
blocks remaining for the key set,
the next when there are X/10 key
blocks remaining etc. Range
Aware Key Server send these no-
tifications only in case if there
are no further ranges allocated to
the system.

curam.keyserver.keyset.c
achesize

INT32 Default: 1 : Specifies the number
of unique ID keysets to be con-
sumed and cached per Key Serv-
er transaction.

Table A.16 KeyServer settings

A.3.13 BatchLauncher

These settings configure the behavior of Curam when problems occur in-
voking batch programs.

Property Name Type Meaning
curam.batchlauncher.erro
remail.recipient

STRING The email address of the recipi-
ent of error emails from Curam.

curam.batchlauncher.erro BOOLEAN Default: false. Suppress the stack

Cúram Server Developer's Guide

232

Property Name Type Meaning
remail.nostacktrace trace in the error emails.

curam.batchlauncher.defa
ult.error.code

INT32 Default: 1. The default error code
returned by a batch program.

curam.batchlauncher.dbto
jms.enabled

BOOLEAN Default: false. Specifies whether
deferred processing and work-
flow functionality for batch pro-
grams should be enabled. When
set to true the
curam.batchlauncher.dbtojms.not
ification.host and
curam.batchlauncher.dbtojms.not
ification.port properties must
also be set.

curam.batchlauncher.dbto
jms.notification.host

String Default: localhost. Specifies
whether the host on which the
database-to-JMS listener is avail-
able. This property must be set
when the
curam.batchlauncher.dbtojms.ena
bled property is set to true.

curam.batchlauncher.dbto
jms.contextroot

STRING The context root used by the
Curam web client. Default value
= 'Curam'.

curam.batchlauncher.dbto
jms.notification.port

INT32 Default: 9044. Specifies whether
the port on which the database-
to-JMS notification listener is
available. This property must be
set when the
curam.batchlauncher.dbtojms.ena
bled property is set to true.

curam.batchlauncher.dbto
jms.notification.ssl

BOOLEAN Default: true. Specifies that the
database-to-JMS notification
listener on the application server
is using SSL.

curam.batchlauncher.dbto
jms.notification.encoding

String Specifies the encoding of the
database-to-JMS listener.

curam.batchlauncher.dbto
jms.notification.batchlau
nchermode

String Specifies the db-to-jms mode for
the batch launcher. 0=none,
1=once per batch launcher ses-
sion, 2=once per batch job.

curam.batchlauncher.dbto
jms.notification.disabled.
in.standalone

BOOLEAN Specifies that the batch launcher
should not perform a db-to-jms
notification when run in stan-
dalone mode.

Cúram Server Developer's Guide

233

Property Name Type Meaning
curam.batchlauncher.dbto
jms.notification.test.stubt
rigger

BOOLEAN Default: false. For debugging
batch jobs which use DBtoJMS:
stubs out DBto-
JMS.beginTransfer() to prevent it
from creating deferred processes.
JMSLiteEngine must be started
to process the messages.

curam.batchlauncher.dbto
jms.messagespertransacti
on

INT32 Default: 512. The number of
messages per transaction pro-
cessed by the database-to-JMS
conversion.

Table A.17 BatchLauncher settings

A.3.14 Workflow

These settings configure the properties which relate to the Workflow Envir-
onment.

Property Name Type Meaning
curam.workflow.disable.a
udit.wdovalueshistory.bef
ore.activity

BOOLEAN When specified to true, this flag
will ensure that no WDO values
history audit information will be
written before an activity is ex-
ecuted.

curam.workflow.disable.a
udit.wdovalueshistory.aft
er.activity

BOOLEAN When specified to true, this flag
will ensure that no WDO values
history audit information will be
written after an activity is ex-
ecuted.

curam.workflow.disable.a
udit.wdovalueshistory.tra
nsition.evaluation

BOOLEAN When specified to true, this flag
will ensure that no WDO values
history audit information will be
written before the transitions
from an activity are evaluated.

Table A.18 Workflow settings

A.3.15 CTM

These settings configure the properties which relate to configuration trans-
port manager.

Property Name Type Meaning
curam.ctm.landscape.nam STRING Default: nolandscape. The land-

Cúram Server Developer's Guide

234

Property Name Type Meaning
e scape name for configuration

transport manager to transport
change set from source to target
systems with in the configured
landscape.

Table A.19 CTM settings

A.4 Application.prx - Static properties

The following properties relate to the available static properties in the Ap-
plication.prx file.

A.4.1 Custom

These settings allow a developer to replace elements of the Curam infra-
structure with their own customized handlers.

Property Name Type Meaning
curam.custom.audit.write
r

STRING Default:
curam.util.internal.misc.Standard
DatabaseAudit. The name of the
class which will handle the gen-
erated audit information. This
class must extend
curam.util.audit.AuditLogInterfa
ce.
curam.util.audit.DisabledAudit
may be used to globally disable
auditing.

curam.custom.predataacc
ess.hook

STRING The name of the class that imple-
ments the interface
curam.util.audit.DataAccessHoo
k.

curam.custom.external.op
eration.hook

STRING Specifies the fully qualified class
name of the customized external
operation Hook which imple-
ments
curam.util.audit.ExternalOperatio
nHook. An external operation is
an operation callable as a remote,
batch, webservice or deferred
process call.

Table A.20 Custom settings

Cúram Server Developer's Guide

235

A.4.2 Security

These settings configure the authentication behavior of Curam.

Property Name Type Meaning
curam.security.disable.au
thorisation

STRING Default: false. Suppress the au-
thorization checks normally per-
formed by Curam.

curam.security.casesensit
ive

BOOLEAN Authentication and authorization
of usernames is case sensitive by
default. When this property is set
to false the authentication and
authorization mechanisms will
ignore the case of the user. If du-
plicate case insensitive user
names exist (e.g. caseworker,
CaseWorker), authentication will
fail due to an ambiguous user
name. Such duplicate names will
also cause the security cache to
fail to initialize.

curam.custom.externalac
cess.implementation

STRING The fully qualified name of the
class implementing the
curam.util.security.ExternalAcce
ssSecurity interface. This class
implements the custom authen-
tication mechanism for External
Users.

curam.custom.authenticat
ion.implementation

STRING The fully qualified name of the
class implementing the
curam.util.security.CustomAuthe
nticator interface. This class im-
plements custom authentication
verifications that will be invoked
during the authentication pro-
cess.

curam.custom.userscope.i
mplementation

STRING The fully qualified name of the
class implementing the
curam.util.security.UserScope in-
terface. This class determines the
type of User logging into the ap-
plication, i.e. INTERNAL or EX-
TERNAL.

Table A.21 Security settings

Cúram Server Developer's Guide

236

A.4.3 Trace

These control what diagnostic information (in addition to errors which are
always logged) is written to the application server's diagnostics file.

Property Name Type Meaning
curam.trace.method_hand
ler

STRING Default:
curam.util.resources.Trace.Cura
mMethodInvocationHandlerDe-
fault. Name of a class imple-
menting
curam.util.resources.Trace.Cura
mMethodInvocationHandler to
perform custom method tracing.

curam.trace.dataaccess.m
axstringlength

STRING Default: 1000. Maximum length
of a String or CLOB logged by
the Data Access Layer when
SQL tracing is enabled.

Table A.22 Trace settings

A.4.4 Environment

These settings configure the environment for your Curam application.

Property Name Type Meaning
curam.project.name STRING This parameter is required by the

Rules and Workflow engines to
dynamically invoke methods in
the application.

curam.disable.tab.cache BOOLEAN Default: false. Indicates if tab
caching should be disabled.
Note, this only applies to caching
on the server side.

Table A.23 Environment settings

A.5 Variable Property Settings

The following properties whose name is defined variably.

A.5.1 Transaction

Contains properties connected with the runtime setting of transactional op-
tions.

Cúram Server Developer's Guide

237

Property Name Type Meaning
<fully qualified class-
name>.intf.<method
name>.transaction.timeou
t

INT32 Used to control the transaction
timeout for a single operation.
The value is the number of
seconds before the transaction
should timeout. Format: PRO-
JECT-
NAME.CODEPACKAGE.CLAS
SNAME.intf.OPERATIONNAM
E.transaction.timeout e.g.
curam.core.facade.intf.Person.cre
ateAd-
dress.transaction.timeout=60

Table A.24 Transaction settings

A.5.2 Audit

Contains properties connected with the runtime setting of auditing options.

Property Name Type Meaning
curam.audit.opaudittrail BOOLEAN Specify whether operation level

auditing for the operation 'OPER-
ATIONNAME', within the client
visible class 'CLASSNAME' of
the code package 'CODEPACK-
AGE' is enabled or disabled.
Format:
curam.audit.opaudittrail.PROJEC
TNAME.CODEPACKAGE.CL
ASS-
NAME.OPERATIONNAME
Default: determined by the op-
tion set in the model.

curam.audit.audittrail BOOLEAN Specify whether table level
auditing for the operation 'OPER-
ATIONNAME' of entity
'CLASSNAME' within the code
package 'CODEPACKAGE' is
enabled or disabled. Format:
curam.audit.audittrail.PROJECT
NAME.CODEPACKAGE.CLAS
SNAME.OPERATIONNAME
Default: determined by the op-
tion set in the model.

curam.custom.external.op
eration.hook

STRING Specify the name of a class
which implements

Cúram Server Developer's Guide

238

Property Name Type Meaning
'curam.util.audit.DataAccessHoo
k' and which will be used to audit
client-visible operation calls.

curam.custom.predataacc
ess.hook

STRING Specify the name of the class
which implements
'curam.util.audi.DataAccessHook
' and is used to audit data access
calls.

curam.custom.audit.write
r

STRING Specify the name of a class
which implements
curam.util.audit.AuditLogInterfa
ce and will be used to capture
and write audit information.

curam.audit.audittrail.nox
mlaudit

BOOLEAN Specify whether the XML audit
writer is disabled for data access
operations. This saves XML
from being generated for each in-
vocation of the operation done so
far. Default: false.

Table A.25 Audit settings

Note

There are two ways to turn off auditing:

• Set the 'curam.custom.predataaccess.hook' property in the Ap-
plication.prx to be blank and set the
'curam.audit.audittrail.noxmlaudit' property to be true.

• Set the value of the property 'curam.custom.audit.writer' to be
'curam.util.audit.DisabledAudit'. The
'curam.util.audit.DisabledAudit' is a class that is provided by the
Infrastructure that contains empty methods. Therefore the class
will be called but no auditing will take place. This ensures that
the 'Audit.logDataAccess' class gets called and builds up the xml
that will form part of the auditing but it does not actually insert
any audit records onto the database.

The first option is the preferred option.

Cúram Server Developer's Guide

239

Appendix B

Infrastructure Auditing Settings

B.1 Default table-level-audit setting

The following tables list the database operations in the IBM® Cúram Social
Program Management infrastructure and the default value of their table-
level auditing flag. This value may be overridden by setting application
properties, see the Cúram Modeling Reference Guide for more details. Cer-
tain database operations do not support auditing, for example operations
with stereotype <<ns>> which have handcrafted SQL - and these are listed
with a default value of N/A

Operation Name Default
Auditing
Setting

ActivityInstance.getActivityVersionDetailsByTaskID N/A

ActivityInstance.getTaskID False

ActivityInstance.insert False

ActivityInstance.modify False

ActivityInstance.read False

ActivityInstance.readActivityInstanceByTaskID False

ActivityInstance.readByActivityInstanceCompoundKey N/A

ActivityInstance.readByTaskID False

ActivityInstance.readIterationID False

ActivityInstance.remove False

ActivityInstance.searchByProcessInstanceID False

ActivityInstance.searchByProcessInstanceIDAndStatus False

ActivityInstance.setActivityInstanceStatusAndEndDate False

ActivityInstance.setTaskID False

240

Operation Name Default
Auditing
Setting

ActivityOccurrence.insert False

ActivityOccurrence.read False

ActivityOccurrence.remove False

AppResource.insert False

AppResource.modify False

AppResource.read False

AppResource.readAllResources False

AppResource.readByCategory False

AppResource.readByEmptyCategory N/A

AppResource.readByIEGScriptDefinitionID N/A

AppResource.readByLikeName N/A

AppResource.readByName False

AppResource.readByNameAndLocale N/A

AppResource.readResourceNameByID False

AppResource.remove False

AppResource.removeByIEGScriptDefinitionID N/A

AppResource.removeByName False

AppResource.removeByNameAndLocale N/A

AuditTrail.insert False

AuditTrail.readAll False

AuthenticationLog.countEntries N/A

AuthenticationLog.insert False

AuthenticationLog.modify True

AuthenticationLog.read False

AuthenticationLog.readmulti False

AuthenticationLog.remove True

AuthorisationLog.countEntries N/A

AuthorisationLog.insert False

AuthorisationLog.readmulti False

BPOMethodLibrary.insert False

BPOMethodLibrary.modify False

BPOMethodLibrary.read False

BPOMethodLibrary.remove False

BPOMethodLibrary.searchBPOMethodReferences N/A

Cúram Server Developer's Guide

241

Operation Name Default
Auditing
Setting

BPOMethodLibrary.searchByCompoundKey False

BatchErrorCodes.getAllErrorCodes N/A

BatchErrorCodes.insert False

BatchErrorCodes.modify False

BatchErrorCodes.read False

BatchErrorCodes.remove False

BatchGroupDesc.insert True

BatchGroupDesc.read False

BatchGroupDesc.readmulti False

BatchGroupDesc.remove True

BatchGrpGrpAssoc.insert False

BatchGrpGrpAssoc.readmulti False

BatchGrpGrpAssoc.readmultichildid False

BatchGrpGrpAssoc.remove False

BatchParamDef.read False

BatchParamDef.readmulti False

BatchParamDesc.insert True

BatchParamDesc.modify True

BatchParamDesc.read False

BatchParamDesc.readmulti False

BatchParamDesc.remove True

BatchParamValue.insert False

BatchParamValue.read False

BatchParamValue.readmulti False

BatchParamValue.remove False

BatchProcDef.read False

BatchProcDef.readAllProcesses False

BatchProcDesc.insert True

BatchProcDesc.modify True

BatchProcDesc.read False

BatchProcDesc.readAll False

BatchProcDesc.remove True

BatchProcGrpAssoc.insert True

BatchProcGrpAssoc.readmulti False

Cúram Server Developer's Guide

242

Operation Name Default
Auditing
Setting

BatchProcGrpAssoc.readmultionprocessname False

BatchProcGrpAssoc.remove True

BatchProcRequest.insert False

BatchProcRequest.read False

BatchProcRequest.readallrequests False

BatchProcRequest.readmulti False

BatchProcRequest.readmultiuserid False

BatchProcRequest.remove False

BizObjAssociation.countOpenTasksByBizObjectTypeAndID N/A

BizObjAssociation.insert False

BizObjAssociation.modify False

BizObjAssociation.modifyBusinessObjectID False

BizObjAssociation.read False

BizObjAssociation.remove False

BizObjAssociation.searchByBizObjectTypeAndID False

BizObjAssociation.searchByTaskID False

CacheVersion.insert False

CacheVersion.modify False

CacheVersion.read False

CodeTableData.changeTableName False

CodeTableData.insert True

CodeTableData.modify False

CodeTableData.read False

CodeTableData.removeOneCodeTable False

CodeTableHeader.getChildCode False

CodeTableHeader.insert True

CodeTableHeader.joinCTHeaderCTItem N/A

CodeTableHeader.modifyDefaultCode False

CodeTableHeader.modifyParentCodetable False

CodeTableHeader.modifyTableName False

CodeTableHeader.modifyTimestamp False

CodeTableHeader.read False

CodeTableHeader.readChildCodeTable False

CodeTableHeader.readDefaultCode False

Cúram Server Developer's Guide

243

Operation Name Default
Auditing
Setting

CodeTableHeader.readEntireTable False

CodeTableHeader.readTableName False

CodeTableHeader.remove True

CodeTableHeader.searchByCodeTableName N/A

CodeTableHierarchy.insert False

CodeTableHierarchy.modify False

CodeTableHierarchy.modifyCodetable False

CodeTableHierarchy.read False

CodeTableHierarchy.readAll False

CodeTableHierarchy.readByCodetable False

CodeTableHierarchy.remove False

CodeTableItem.changeTableName False

CodeTableItem.countCodeTableItems N/A

CodeTableItem.countDescriptionSameParentCodeDifferentCo
de

N/A

CodeTableItem.countDescriptionSameParentCodeOnTable N/A

CodeTableItem.countDescriptionsOnTable N/A

CodeTableItem.countDescriptionsWithDifferentCodeOnTable N/A

CodeTableItem.insert True

CodeTableItem.insertWithoutTimestamp True

CodeTableItem.listUnlinkedCodesExcludeLocale N/A

CodeTableItem.read False

CodeTableItem.readAllLocales False

CodeTableItem.readAllWithoutAnnotations False

CodeTableItem.readChildren False

CodeTableItem.readChildrenOneLocale False

CodeTableItem.readChildrenOneLocaleExcludeDuplicates N/A

CodeTableItem.readDisabled False

CodeTableItem.readEnabled False

CodeTableItem.readOneLocale False

CodeTableItem.readOneLocaleExcludeDuplicates N/A

CodeTableItem.readUnlinkedCodes False

CodeTableItem.readmulti False

CodeTableItem.remove True

CodeTableItem.removeOneCodeTable False

Cúram Server Developer's Guide

244

Operation Name Default
Auditing
Setting

CodeTableItem.update True

CodeTableItem.updateWithCommentWithoutParentCode True

CodeTableItem.updateWithoutParentCode True

DPErrorInformation.insert False

DPErrorInformation.read False

DPErrorInformation.remove False

DPProcess.insert False

DPProcess.nkreadmulti False

DPProcess.read False

DPProcess.remove False

DPProcessInstance.insert False

DPProcessInstance.nkreadmulti False

DPProcessInstance.read False

DPProcessInstance.setFinishTime False

DPTicket.insert False

DPTicket.modify False

DPTicket.nkreadmulti False

DPTicket.read False

EventClass.insert False

EventClass.modify False

EventClass.read False

EventClass.readAllEventClasses False

EventClass.remove False

EventType.insert False

EventType.modify False

EventType.modifyByEventClass N/A

EventType.read False

EventType.remove False

EventType.removeByEventClass False

EventType.searchByEventClass False

EventWait.countEventWaitsByActivityInstanceID N/A

EventWait.countEventWaitsByEventMatchKey N/A

EventWait.insert False

EventWait.readByActivityInstanceID False

Cúram Server Developer's Guide

245

Operation Name Default
Auditing
Setting

EventWait.readByEventMatchKey False

EventWait.readEventMatchDataByActivityInstanceID False

EventWait.remove False

EventWait.removeByActivityInstanceID False

FailedMessage.getAllMessages False

FailedMessage.insert False

FailedMessage.read False

FailedMessage.remove False

FailedMessage.searchByMessageType False

FailedMessage.searchByProcessInstID False

FieldLevelSecurity.getAllOperations N/A

FieldLevelSecurity.getAllReturnedFieldNamesByOperation False

FieldLevelSecurity.getAllReturnedFieldsAndSidsByOperation False

FieldLevelSecurity.getAllSecuredFields N/A

FieldLevelSecurity.getSidForReturnedField False

FieldLevelSecurity.getSidVersionNoForReturnedField False

FieldLevelSecurity.insert True

FieldLevelSecurity.setSidForReturnedField True

FunctionIdentifier.joinFidSecurityFidSid N/A

FunctionIdentifier.read False

FunctionIdentifier.readAllFids False

GroupInformation.getVersionNoForGroup False

GroupInformation.insert False

GroupInformation.listExcludingScript N/A

GroupInformation.modify False

GroupInformation.nkreadmulti False

GroupInformation.read False

GroupInformation.remove False

GroupRange.insert False

GroupRange.readAll False

GroupRangeValid.insert False

GroupRangeValid.readAll False

GroupRangeValid.removeAll False

IEGDefinitionInfo.insert False

Cúram Server Developer's Guide

246

Operation Name Default
Auditing
Setting

IEGDefinitionInfo.nsmultiGroupByType N/A

IEGDefinitionInfo.nsmultiGroupWithoutType N/A

IEGDefinitionInfo.nsmultiScriptByType N/A

IEGDefinitionInfo.nsmultiScriptWithoutType N/A

IEGDefinitionInfo.readmulti False

IEGDefinitionInfo.remove N/A

IEGExecutionInfo.insert False

IEGExecutionInfo.modify False

IEGExecutionInfo.nkreadmulti False

IEGExecutionInfo.read False

IEGExecutionInfo.readExec False

IEGExecutionInfo.remove False

IEGExecutionInfo.searchBeforeDate N/A

Iteration.insert False

Iteration.modifyEndDateTime False

Iteration.read False

Iteration.readIterationID False

Iteration.readIterationSummary False

Iteration.remove False

JMSLiteMessage.insert False

JMSLiteMessage.read False

JMSLiteMessage.readAllByType False

JMSLiteMessage.remove False

JoinInstance.insert False

JoinInstance.modify False

JoinInstance.readByJoinMetaID False

JoinInstance.remove False

KeyServer.insert False

KeyServer.modify False

KeyServer.read False

KeySetRange.insert False

KeySetRange.modify False

KeySetRange.read False

MatchedEvtArchive.getMatchedEventsForActivityInstance False

Cúram Server Developer's Guide

247

Operation Name Default
Auditing
Setting

MatchedEvtArchive.insert False

MatchedEvtArchive.read False

MatchedEvtArchive.readByActivityInstanceID False

MatchedEvtArchive.searchByActivityInstanceID False

OpAuditTrail.insert False

ProcEnactEvtData.insert False

ProcEnactEvtData.modify False

ProcEnactEvtData.read False

ProcEnactEvtData.readByProcessStartEventID False

ProcEnactEvtData.remove False

ProcEnactEvtData.removeByProcessStartEventID False

ProcEnactmentEvt.insert False

ProcEnactmentEvt.modify False

ProcEnactmentEvt.read False

ProcEnactmentEvt.readAllRecords False

ProcEnactmentEvt.readByEnabled False

ProcEnactmentEvt.readByEvent False

ProcEnactmentEvt.readByProcessToStart False

ProcEnactmentEvt.remove False

ProcInstOverflow.getWDOSnapshot False

ProcInstOverflow.insert False

ProcInstOverflow.removeAllRecordsForProcessInstanceWDO False

ProcInstWDOData.getAllContextWDOForActivity False

ProcInstWDOData.getAllWDODataForOneProcessInstance False

ProcInstWDOData.insert False

ProcInstWDOData.modify False

ProcInstWDOData.read False

ProcInstWDOData.readAllRecords False

ProcInstWDOData.readOverflowInd False

ProcInstWDOData.remove False

ProcInstWDOData.removeAllContextWDOForActivity N/A

ProcessDefinition.countDefinitionsByName N/A

ProcessDefinition.countDefinitionsByNameAndVersion N/A

Table B.1 Audit settings 1

Cúram Server Developer's Guide

248

Operation Name Default
Auditing
Setting

ProcessDefinition.countUnreleasedDefinitionsByID N/A

ProcessDefinition.countUnreleasedDefinitionsByName N/A

ProcessDefinition.getHighestReleasedVersionNumber N/A

ProcessDefinition.getHighestUnReleasedVersionNumber N/A

ProcessDefinition.getHighestVersionNumber N/A

ProcessDefinition.insert False

ProcessDefinition.modify False

ProcessDefinition.modifyByNameAndVersion False

ProcessDefinition.read False

ProcessDefinition.readByNameAndVersion False

ProcessDefinition.readDefinitionByID N/A

ProcessDefinition.readDefinitionByName N/A

ProcessDefinition.readLatestVersionDefinitionDetailsByName N/A

ProcessDefinition.readProcessIdentifier False

ProcessDefinition.readProcessReleased False

ProcessDefinition.readUnreleasedDefinitionByName N/A

ProcessDefinition.remove False

ProcessDefinition.removeByNameAndVersion False

ProcessDefinition.searchAllDefinitionsSummaryDetails N/A

ProcessDefinition.searchAllVersions False

ProcessDefinition.searchAllVersionsByName False

ProcessDefinition.searchByNameAndReleasedInd False

ProcessDefinition.searchByReleasedIndicator False

ProcessDefinition.searchDefinitions False

ProcessDefinition.searchLatestDefinitions N/A

ProcessDefinition.searchLatestReleasedProcesses N/A

ProcessDefinition.searchProcesses False

ProcessIn-
stance.countProcessInstancesByProcessDefinitionDetails

N/A

ProcessInstance.insert False

ProcessInstance.modify False

ProcessInstance.modifyStatus False

ProcessInstance.read False

ProcessInstance.readOne False

ProcessInstance.readStatus False

Cúram Server Developer's Guide

249

Operation Name Default
Auditing
Setting

ProcessInstance.remove False

ProcessInstance.searchByBizObject N/A

ProcessInstance.searchByEventWaitDetails N/A

ProcessInstance.searchByParentProcessInstanceID N/A

ProcessInstance.searchByProcessDetails N/A

ProcessInstance.searchByProcessIDAndVersion N/A

ProcessInstance.searchByTaskID N/A

ProcessInstance.searchByTaskUser N/A

PropDescription.countDescriptions N/A

PropDescription.insert True

PropDescription.modify True

PropDescription.read False

PropDescription.readDescriptionByID False

PropDescription.remove True

PropDescription.removeAllDescriptionsByPropertyID False

Properties.countOccurrencesOfName N/A

Properties.insert True

Properties.modify True

Properties.read False

Properties.readAllByLocaleOrCategory N/A

Properties.readName False

Properties.readNameAndValueList N/A

Properties.readbyName False

Properties.readlAllPropertiesTable False

Properties.remove True

Properties.resetAllProperties N/A

Reminders.clearSentRemindersByActivityInstanceID False

Remind-
ers.clearSentRemindersByReminderAndActivityInstanceID

False

Reminders.insertReminder False

Reminders.scanReminders N/A

RuleSetInformation.insert False

RuleSetInformation.listByType False

RuleSetInformation.modify False

RuleSetInformation.read False

Cúram Server Developer's Guide

250

Operation Name Default
Auditing
Setting

RuleSetInformation.readDetailsWithoutDefinition False

RuleSetInformation.remove False

RuleSetLink.insert False

RuleSetLink.read False

RuleSetLink.readmultiByMasterRuleSet False

RuleSetLink.readmultiBySubRuleSet False

RuleSetLink.remove False

ScriptGroupRels.dropGroupsForScript N/A

ScriptGroupRels.insert False

ScriptGroupRels.read False

ScriptGroupRels.readmulti False

ScriptGroupRels.readmultiForScript False

ScriptInformation.insert False

ScriptInformation.modify False

ScriptInformation.nkreadmulti False

ScriptInformation.read False

ScriptInformation.remove False

SecurityFidSid.insert True

SecurityFidSid.joinFidSidFunctionIdentifier N/A

SecurityFidSid.modifySid True

SecurityFidSid.readAllFid False

SecurityFidSid.readAllFidSid False

SecurityFidSid.readAllSid False

SecurityFidSid.readFid False

SecurityFidSid.readSid False

SecurityFidSid.remove True

SecurityFidSid.removeSid True

SecurityGroup.insert True

SecurityGroup.modify True

SecurityGroup.read False

SecurityGroup.readAllGroups False

SecurityGroup.readGroupsInRole N/A

SecurityGroup.readGroupsNotInRole N/A

SecurityGroup.remove True

Cúram Server Developer's Guide

251

Operation Name Default
Auditing
Setting

SecurityGroupSid.getFunctionSIDsForGroup N/A

SecurityGroupSid.getNonFunctionSIDsForGroup N/A

SecurityGroupSid.getUnlinkedFunctionSIDsForGroup N/A

SecurityGroupSid.insert True

SecurityGroupSid.modifyGroup True

SecurityGroupSid.modifySid True

SecurityGroupSid.read False

SecurityGroupSid.remove True

SecurityGroupSid.removeGroupName True

SecurityGroupSid.removeSid True

SecurityIdentifier.insert True

SecurityIdentifier.modify True

SecurityIdentifier.modifyNameAndDescription True

SecurityIdentifier.read False

SecurityIdentifier.readAllSids False

SecurityIdentifier.readMatchSid False

SecurityIdentifier.readSidType False

SecurityIdentifier.readSidsInGroupSid N/A

SecurityIdentifier.readSidsNotInGroupSid N/A

SecurityIdentifier.remove True

SecurityRole.getNonUsersRoles N/A

SecurityRole.getRolesAndFunctionSIDs N/A

SecurityRole.getRolesAndNonFunctionSIDs N/A

SecurityRole.getUnlinkedFunctionSIDs N/A

SecurityRole.insert True

SecurityRole.modify True

SecurityRole.read False

SecurityRole.readAllRoles False

SecurityRole.readRolesNotInGroup N/A

SecurityRole.remove True

SecurityRoleGroup.insert True

SecurityRoleGroup.modifyAllOccurrencesOfARoleName True

SecurityRoleGroup.modifyGroup True

SecurityRoleGroup.read False

Cúram Server Developer's Guide

252

Operation Name Default
Auditing
Setting

SecurityRoleGroup.readRolesInGroup False

SecurityRoleGroup.remove True

SecurityRoleGroup.removeGroupName True

SecurityRoleGroup.removeRole True

SuspendedActivity.insert False

SuspendedActivity.read False

SuspendedActivity.readmulti False

SuspendedActivity.remove False

SuspendedActivity.removeActivitiesForProcessInstance False

TabSession.insert False

TabSession.modify False

TabSession.read False

TabSession.remove False

Task.countAllByBizObjectAndStatus N/A

Task.countAllByBizObjectDueDateAndStatus N/A

Task.countAssignedByBizObjectAndStatus N/A

Task.countAssignedByBizObjectDueDateAndStatus N/A

Task.countByUserAndPriority N/A

Task.countByUserAndStatus N/A

Task.countByUserDueDateAndStatus N/A

Task.countReservedByCategory N/A

Task.countReservedByStatus N/A

Task.countReservedByUsername N/A

Task.countReservedByUsernameAndDueDate N/A

Task.countReservedByUsernameAndPriority N/A

Task.countReservedByUsernameAndStatus N/A

Task.countReservedByUsernameBizObjectAndStatus N/A

Task.countReservedByUsernameBizObjectStatusAndDueDate N/A

Task.countTasksForReservedByUser N/A

Task.insert False

Task.modify False

Task.modifyAssignedDateTime False

Task.modifyPriority False

Task.modifyReservedBy False

Cúram Server Developer's Guide

253

Operation Name Default
Auditing
Setting

Task.modifyRestartTime False

Task.modifyStatus False

Task.modifyTotalTimeWorked False

Task.read False

Task.readAllTasks False

Task.readAssignedDateTime False

Task.readReservedBy False

Task.readStatus False

Task.readSummaryDetails False

Task.readTaskWithDueDate N/A

Task.readTotalTimeWorked False

Task.readVersionNo False

Task.searchAllByBizObjectAndStatus N/A

Task.searchAllByBizObjectDueDateAndStatus N/A

Task.searchAssignedByBizObjectAndStatus N/A

Task.searchAssignedByBizObjectDueDateAndStatus N/A

Task.searchReservedByCategory N/A

Task.searchReservedByDueOnDate N/A

Task.searchReservedByPriority N/A

Task.searchReservedByStatus N/A

Task.searchReservedByUsername N/A

Task.searchReservedByUsernameAndDueDate N/A

Task.searchReservedByUsernameAndPriority N/A

Task.searchReservedByUsernameAndStatus N/A

Task.searchReservedByUsernameBizObjectAndStatus N/A

Task.searchReservedByUsernameBizObjectStatusAndDueDate N/A

Task.searchTasksByBizObject N/A

Task.searchTasksByBizObjectAndDueDate N/A

Task.searchTasksByBizObjectAndReservationStatus N/A

Task.searchTasksByBizObjectUserAndStatus N/A

Task.searchTasksByDueDate N/A

Task.searchTasksDueInTheNextWeek N/A

Task.searchTasksReservedDueInTheNextTimePeriod N/A

TaskHistory.insert False

Cúram Server Developer's Guide

254

Operation Name Default
Auditing
Setting

TaskHistory.read False

TaskHistory.search False

TaskHistory.searchByTaskID N/A

TaskWDOOverflow.getWDOSnapshot False

TaskWDOOverflow.insert False

TaskWDOOverflow.removeAllEntriesForTask False

TransitionInstance.insert False

TransitionInstance.modify False

TransitionInstance.read False

TransitionInstance.remove False

TransitionInstance.removeByTransitionID False

TransitionInstance.searchByProcessInstanceID False

UserPreferenceInfo.getAllUserPrefNamesForPrefSetID N/A

UserPreferenceInfo.getAllUserPreferences False

UserPreferenceInfo.getAllUserPreferencesForUser N/A

UserPreferenceInfo.getUserPreference False

UserPreferenceInfo.insertUserPreference False

UserPreferenceInfo.modifyUserPreference False

UserPreferenceInfo.removeUnusedUserPreferences N/A

UserPreferenceInfo.removeUserPreferencesForUser False

Users.countOccurrencesOfRole N/A

Users.modify True

Users.modifyAllOccurrencesOfARoleName True

Users.read False

Users.readAllUsers False

Users.readCaseInsensitiveUser N/A

Users.readLocale False

Users.readUserAndRoleNames N/A

Users.readUsersByRole False

Users.remove True

WDOTemplateLibrary.countTemplatesByName N/A

WDOTemplateLibrary.insert False

WDOTemplateLibrary.modify False

WDOTemplateLibrary.read False

Cúram Server Developer's Guide

255

Operation Name Default
Auditing
Setting

WDOTemplateLibrary.readAll False

WDOTemplateLibrary.readTemplateByName False

WDOTemplateLibrary.remove False

WDOTemplateLibrary.searchByCategory False

WDOValuesHistory.insert False

WDOValuesHistory.modify False

WDOValuesHistory.read False

WDOValuesHis-
tory.readByActivityInstanceIDAndExecutionPeriod

False

WDOValuesHistory.remove False

WDOValuesHistory.searchByActivityInstanceID False

WDOValuesHistory.searchByProcessInstanceID False

WDOValuesHis-
tory.searchByProcessInstanceIDAndCreationTime

N/A

WorkflowDeadline.insert False

WorkflowDeadline.modify False

WorkflowDeadline.modifySuspended False

WorkflowDeadline.read False

WorkflowDeadline.readDeadlineDetailsByActivityInstanceID False

WorkflowDeadline.readDeadlineDetailsByTaskID False

WorkflowDeadline.readDeadlineIDAndTimeByTaskID False

WorkflowDeadline.readDeadlineIDByTaskID False

WorkflowDeadline.remove False

WorkflowDeadline.scanWorkflowDeadlines N/A

WorkflowHistory.insert False

WorkflowHistory.modify False

WorkflowHistory.read False

WorkflowHistory.readmulti False

WorkflowHistory.remove False

WorkflowHistory.searchByEvent False

WorkflowHistory.searchByProcessInstanceIDAndEventTime False

WorkflowHistory.searchByProcessInstanceIDAndUserID False

WorkflowHistory.searchByUser False

WorkflowHistory.searchByUserAndEvent False

XMLArchiveDoc.insert False

Cúram Server Developer's Guide

256

Operation Name Default
Auditing
Setting

XMLArchiveDoc.read False

XSLTemplate.insert False

XSLTemplate.modify False

XSLTemplate.read False

XSLTemplate.readAllByType False

XSLTemplate.readByIDCode False

XSLTemplate.readByName False

XSLTemplate.readLatestVersionAndTemplateName False

XSLTemplate.readLatestVersionByTemplateID False

XSLTemplate.readmulti False

XSLTemplate.remove False

XSLTemplateInst.deleteUsingTemplateIDAndLocale False

XSLTem-
plateInst.getAllTemplateInstDetailsForTemplateIdAndLocale

False

XSLTemplateInst.getAllVersionDetails False

XSLTemplateInst.insert False

XSLTemplateInst.modify False

XSLTemplateInst.read False

XSLTemplateInst.remove False

Table B.2 Audit settings 2

Cúram Server Developer's Guide

257

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

258

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Server Developer's Guide

259

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Server Developer's Guide

260

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

BIRT is a registered trademark of Eclipse Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

Oracle, WebLogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Red Hat Linux is a registered trademark of Red Hat, Inc. in the
United States and other countries.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Server Developer's Guide

261

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Server Developer's Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Content Summary
	1.3 Overview of Compliant Development Artifact Changes

	Chapter 2 Directory Structure
	2.1 Overview
	2.2 Application Components
	2.2.1 Component Folders
	2.2.2 Component Order
	Localized Components

	2.3 Application Directory Structure
	2.3.1 Source Artefacts of the Cúram Application
	2.3.2 Cúram Application Build Structure

	2.4 Artefacts of the SDEJ

	Chapter 3 Build Files and Their Targets
	3.1 Overview
	3.2 Performing the Build
	3.3 Overriding default JUNIT JAR
	3.4 Configuring the Build
	3.4.1 Cúram Build Settings
	3.4.2 Java Compiler Settings
	3.4.3 Java Task Settings
	3.4.4 Generator Settings
	3.4.5 Other Environment Settings

	3.5 What is happening under the hood?
	3.5.1 generated
	wsconnector
	emx2xml
	modelgen
	Data Definition XML Files
	Java Code
	Deployment Artefacts
	Web Service Artefacts

	msggen
	ctgen
	evgen
	compile.generated

	3.5.2 implemented
	compile.implemented

	3.6 Extra Targets
	3.7 Clover Targets
	3.8 Rules Targets
	3.9 Classic IEG Targets
	3.10 IEG2 Targets
	3.11 Application Configuration Import and Export Targets
	3.12 Workflow Targets
	3.13 Deployment Targets
	3.14 Extending the Build
	3.14.1 Introducing a new script

	3.15 Overridden Targets
	3.16 Application Targets
	3.16.1 BI App
	3.16.2 CREOLE
	3.16.3 Evidence Generation

	Chapter 4 Cúram Configuration Settings
	4.1 Overview
	4.2 Application Properties
	4.2.1 Application.prx
	Merging an Application prx File
	Rules of PRX Merges

	4.2.2 Bootstrap.properties

	4.3 Support for Multiple Time Zones
	4.4 Dates and date/times in Cúram

	Chapter 5 Data Manager
	5.1 Overview
	5.2 Intended Data Manager Process
	5.2.1 Planning for MBCS Data

	5.3 Invocation
	5.4 Database Artefacts
	5.4.1 Data Definition XML Files
	5.4.2 Data Contents DMX Files
	The table Element
	The column Element
	The row Element
	The attribute Element
	The value Element

	Customizing a DMX file
	Rules of DMX file merging

	Retrieving values from DMX files for database insertion
	Validation of DMX files
	Tracing Information for the DMX Merging Process

	5.5 Database Object Naming
	5.5.1 Short Name Substitution
	5.5.2 Primary Key Indices
	5.5.3 Primary Key Constraints
	5.5.4 Tablespaces

	5.6 Data Manager Configuration
	5.7 Database Synchronization
	5.8 Statistics
	5.9 Lob Manager

	Chapter 6 SQL Checker
	6.1 Overview
	6.2 Under the Hood
	6.3 Limitations

	Chapter 7 Eclipse
	7.1 Overview
	7.2 Curam Projects in Eclipse
	7.3 Eclipse Configuration Files
	7.3.1 .project File
	7.3.2 .classpath File
	7.3.3 .settings Directory

	7.4 Access Rules
	7.5 Working Sets

	Chapter 8 Logging
	8.1 Overview
	8.2 Usage
	8.3 Logging Hierarchy
	8.4 Logging Level
	8.5 Configuration
	8.6 Statistics
	8.7 Localization

	Chapter 9 Using Exceptions
	9.1 Overview
	9.2 Constructing an Exception
	9.3 Creating Messages with Argument Placeholders
	9.4 Handling Exceptions
	9.5 Logging Exceptions
	9.6 General Exception Guidelines
	9.7 Coding Conventions for Exceptions
	9.8 Using Record Not Found Indicator
	9.9 Localized Output
	9.10 Informational Manager

	Chapter 10 Message and Code Table Files
	10.1 Overview
	10.2 Message Files
	10.2.1 The Format of Message Files
	The messages Element
	The message Element
	The locale Element

	10.2.2 Customizing a Message File
	Rules of Message Merges

	10.2.3 Artefacts Produced by msggen Build Target
	10.2.4 Retrieving Messages from Message Files
	10.2.5 Writing Messages To Server Logs
	10.2.6 Localizing SDEJ Message Files

	10.3 Code Table Files
	10.3.1 The Format of Code Table Files
	The codetables Element
	The description Element
	The codetable Element
	The codetabledata Element
	The locale Element
	The comments Element

	The displaynames Element
	The name Element

	The code Element
	The locale Element
	The description Element
	The annotation Element
	The comments Element

	10.3.2 Customizing a Code Table File
	Rules of Code Table Merges

	10.3.3 Artefacts Produced by ctgen Build Target
	10.3.4 Code Table Hierarchy
	10.3.5 Retrieving Codes from Code Table Files
	10.3.6 Localizing SDEJ Code Table Files

	Chapter 11 Specialized Readmulti Operations
	11.1 Overview
	11.2 When to Use Readmulti Operations
	11.3 How to Define Your Own Readmulti Operations
	11.4 Extra Features of Readmulti Operations
	11.5 An Alternative
	11.6 Summary

	Chapter 12 Deprecation
	12.1 Introduction
	12.2 Overview
	12.2.1 Other Sources of Information

	12.3 Effect of Deprecation on a Custom Application
	12.3.1 Customizations and References
	12.3.2 Support for Deprecated Artefacts
	12.3.3 Effect of Deprecation on the User Interface

	12.4 Scope
	12.4.1 Artefact Types that can be Deprecated
	12.4.2 Limitations

	12.5 Running a Deprecation Report
	12.5.1 Configuring the Deprecation Report
	12.5.2 Prerequisites for running the Deprecation Report
	12.5.3 Generating the Deprecation build output
	12.5.4 Identifying deprecation warnings in the build output.
	12.5.5 Notes on running the Deprecation Report

	12.6 Analyzing Deprecation Warnings
	12.6.1 Identifying overrides of deprecated artefacts
	Addressing overrides of deprecated artefacts

	12.6.2 Identifying references to deprecated artefacts
	12.6.3 Notes on analyzing deprecation warnings

	Chapter 13 User Preferences
	13.1 Overview
	13.2 User Preferences Definition
	13.2.1 Data definition XML file
	13.2.2 Properties files

	13.3 Development Support
	13.4 External Users
	13.5 Localizing Display Names
	13.6 Localizing Infrastructure Preferences Display Names

	Chapter 14 Transaction Control
	14.1 Overview
	14.2 Developer's View
	14.2.1 Transactions and Method Invocations
	14.2.2 Optimistic Locking and the forUpdate Flag
	14.2.3 General Guidelines

	14.3 Underlying Design
	14.3.1 DB2
	14.3.2 Oracle

	Chapter 15 Transaction SQL Query Cache
	15.1 Overview
	15.2 Populating the Cache
	15.3 Invalidating the Cache
	15.4 Properties
	15.5 SQLQueryCacheAdmin API
	15.6 SQLQueryCacheUtil API
	15.7 Logging

	Chapter 16 Deferred Processing
	16.1 Objective
	16.2 Prerequisites
	16.3 Introduction
	16.4 Model Your Deferred Processes
	16.5 Deferred Process Enactment
	16.5.1 WMInstanceData

	16.6 Offline Unit-Testing of Deferred Processes
	16.7 Configuration of Deferred Processing Table
	16.8 TicketCallback.dpHandleError()
	16.9 Security
	16.10 Summary

	Chapter 17 Timer Bean
	17.1 Overview
	17.2 EJB Timer Bean Definition
	17.3 Development Support
	17.3.1 TimerInfo Class
	17.3.2 TimerTask Class
	17.3.3 TimerCallback Interface
	17.3.4 Code sample:

	17.4 Rules for using SDEJ Timers
	17.5 Timer Behavior
	17.6 FAQ

	Chapter 18 Events and Event Handlers
	18.1 Overview
	18.2 The Format of Event Files
	18.2.1 Event Definition
	18.2.2 Event Handler Registration

	18.3 Merging Event Files
	18.3.1 Rules of Event Definition Merges
	18.3.2 Rules of Event Handler Merges

	18.4 Artefacts produced by generate events
	18.4.1 Database Scripts
	18.4.2 Java Code

	18.5 Raising events
	18.6 Event handlers
	18.7 Event filters

	Chapter 19 Unique IDs
	19.1 Overview
	19.2 What are Unique IDs?
	19.3 What are Unique IDs for?
	19.4 Can I run out of Unique IDs?
	19.5 When should I use Unique IDs?
	19.6 When should I not use Unique IDs?
	19.7 Should my keys be human-readable?
	19.8 What if I require contiguous human-readable Unique IDs?
	19.9 How do I use Unique IDs?
	19.10 Range Aware Key Server
	19.10.1 Overview
	19.10.2 How does the Range Aware Key Server work?
	19.10.3 Where is the Range Aware Key Server used?

	Appendix A Cúram Configuration Parameters
	A.1 Overview
	A.2 Bootstrap.properties
	A.2.1 Database
	A.2.2 Environment
	A.2.3 Test
	A.2.4 Custom

	A.3 Application.prx - Dynamic properties
	A.3.1 Environment
	A.3.2 JMX
	A.3.3 Test
	A.3.4 Rules
	A.3.5 IEG
	A.3.6 Custom
	A.3.7 Trace
	A.3.8 Security
	A.3.9 SMTP
	A.3.10 XMLServer
	A.3.11 Database
	A.3.12 KeyServer
	A.3.13 BatchLauncher
	A.3.14 Workflow
	A.3.15 CTM

	A.4 Application.prx - Static properties
	A.4.1 Custom
	A.4.2 Security
	A.4.3 Trace
	A.4.4 Environment

	A.5 Variable Property Settings
	A.5.1 Transaction
	A.5.2 Audit

	Appendix B Infrastructure Auditing Settings
	B.1 Default table-level-audit setting

	Notices
	Trademarks

