..lli

IBM Curam Social Program Management

Curam Temporal Evidence Developers
Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008,2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
LT PUIMPOSE ...ttt ettt e e ab e se e e e ne e e e be e e sne e e e ne e e sane e e nanes 1

B (=01 S (=S PRS 1

B N o (1= 0o PR RS 1
Chapter 2 Server / Client Temporal Evidence COMPONENESccccceeveeeeieeiieseeseeeeeseeseeeneas 2
RIS = V= g o L= N () = £ 2
2.1.1 Standard Evidence INtErfaceccccveieeieiie s 2

AV =Y/ To (= g (o g o = S 5

2.1.3 Participant EVIidence INterfaceccoccevveieiesece e 6

2.1.4 Accessing Non-modeled FUNCLIONScccvieeiiciececceee e 8

2.2 ClIeNt SIAE ATTITACESeoveeiie et be e 8
Chapter 3 Developing an EVidence SOIULIONccocoiiienirieieeesese e 11
G0 (10101 = 1 o o S 11
SN = V/T0 (= g 1o 1 V1< = o= - S 11

3.1.2 Product EVIAENCE LINKcocveeeieseeee e 11

3.2 Common Evidence Maintenance OPErationscccoeveererereresesesiesee e 11
3.2.1 Create EVIAENCEooveieeeeecece ettt 11

3.2.2 MOITY EVIAENCE ..ot 14

TG & (== ol Y/ o (= oo R 18

I £ Vo o S 20

3.3 Evidence Dashboard and EvidenCeFlOWccooveevieieeeseece e 21

IR = o = 1 o1 S 22

RO |V Lo (=X @ g VA= 1T = (0] 22

3.6 EVIAENCE ATIHDULIONovieieeieeee ettt 24
3.6. L RE-EMDULION ..o 24

3.7 Evidence REGHONSNIP ..c.coiviiiiiiiiiiiee et 25

3.8 Registering Evidence Implementationscccoeverieieenenene e 25
3.8.1 Evidence Registrar MOUUIEcccoreririiieieee e 26

3.8.2 Legacy EVIAenCe REQISIIArcccoviieriririeieiese e 26

3.9 CUSLOM HOOKSuvieeieciieieeie ettt sttt e e an e sreenseeneenneenneeneas 27
3.9.1 Evidence Controller HOOKcccoieeieiieniein e 27

3.9.2 Evidence Controller Hook Registrar & Managerccoceeeeverveeieneneneneens 27

Chapter 4 Participant EVidence INEgrationccooieerenienieii e 29
A1 OVEIVIBW ..ttt ettt e s bt e st e sbe et e e st e be e eeeaeesbe e e e ase e beenbenaeenbeeneenneanbeeneas 29

Curam Temporal Evidence Developers Guide

4.2 Integration of Participant Dataas Temporal EVIdencecccovevvreeveniencenieenn, 30
TGl X0 (0011911 = (o] o USRS 30
4.3. 1 AdMINICEVIAENCELINK ...o..eiiiiieiieeee e e 30
4.3.2 ProdUCEEVIENCELINKooueeiieieeiesee et e 30

4.4 Integrating new Participant entities as Temporal Evidenceccccoceveeieneeneenen. 31
4.4.1 Implementing the ParticipantEvidencelnterfaceccoccvvevenieneeiinnniene 31
4.4.2 Register entity in aRegistrar MOAUIEcoeeiiieeiiieeeeee e 31
4.4.3 Applying Participant Evidenceto all Casesccocevveeveenenceneecee e 32
4.4.4 Modifications required to existing buSINESS ProCeSSESccevvevreereererseeene 32

4.5 Sequence Diagrams for Participant eVidenCeoccooeeveriinenenne e 33
4.5.1 Create Participant Evidence Sequence Diagramcccoceverceeneencsenseeene 33
4.5.2 Specific Processing For Participant Data when Creating Evidence 33
4.5.3 Modify Participant Evidence Sequence Diagramcccoccevevveneenenenseeene 34

N[0 o= SRR 36

1.1

1.2

1.3

Chapter 1

Introduction

Purpose

The purpose of this document is to provide assistance to developers intend-
ing to implement evidence solutions using Cuiram's Tempora Evidence
solution. It outlines common pieces of evidence maintenance functionality
and describes how a devel oper can design / implement such functionality.

Prerequisites

The readers should be familiar with the evidence capturing aspect of case
management as well asits use in determining eligibility and entitlement on a
case. They should also have read "The Tempora Evidence Pattern” in the
Cur am Tenpor al Evi dence Sol uti ons guide.

Audience

This document is targeted at a technical audience, both developers and ar-
chitects, intending to implement evidence solutions using Cdram’s Tempor-
a Evidence framework.

Chapter 2

Server / Client Temporal Evidence Components

2.1

2.1.1

Server Side Artifacts

All of the Temporal Evidence server side infrastructure artifacts are shipped
in the "curam.core.sl.infrastructure.impl” package. The key elements found
here include the Evidence Controller / Evidence Controller Hook (see sec-
tion 3.8) classes and the Evidence Interfaces. The Interfaces form part of the
Interface Hierarchy. The Participant Evidence Interface and Evidence Inter-
face both extend the parent Interface, Standard Evidence Interface. These
Evidence Interfaces will be the artifacts of most interest to designers / de-
velopers as each evidence entity will need to implement this interface.

Standard Evidence Interface

The Standard Evidence Interface defines the following methods which are
common to both inheriting interfaces. The interface and its associated meth-
ods are shown below with the appropriate javadoc comments:

/
Copyri ght 2005-2006, 2011 Cur am Sof t ware Lt d.
Al rights reserved.

This software is the confidential and proprietary information
of Curam Software, Ltd. ("Confidential Information"). You
shal |l not disclose such Confidential Information and shall use
it only in accordance with the ternms of the |icense agreenent
you entered into with Curam Software.

* % ok kX X X F

*

*/
package curamcore.sl.infrastructure.inpl;

i mport curamcore.sl.infrastructure.entity.struct
.AttributedDateDetails;

i mport curam core.sl.infrastructure.struct. El Evi dencekKey;

i mport curamcore.sl.infrastructure. struct. El Evi denceKeylLi st ;

i nport
curamcore. sl.infrastructure. struct. El Fi el dsForLi st Di spl ayDt | s;

i mport curamcore.sl.infrastructure. struct. Vali dat eMdde;

i mport curam core. struct. CaseKey;

i mport curamutil.exception. AppExcepti on;

i mport curamutil.exception.|nfornational Excepti on;

Curam Temporal Evidence Developers Guide

i mport curamutil.type. Date;

/

©
c

EEE I I R S T I I

*

This interface is a key conponent of the Curam Tenpor al

Evi dence Sol ution. |nplenentations hoping to manage evi dence
via the Tenporal Evidence Sol ution nust ensure that the
evidence entities contained within the solution inplenent the
Evi dence Interface. By doing this, the evidence is utilizing
the Evidence Controller pattern whereby a | ot of the common
busi ness functions for naintaining evidence are contai ned

wi thin the out-of-the-box evidence infrastructure.

This interface is the super interface that will be

ext ended by ot her evidence interfaces that wi sh to provide
custom functionality for that type of evidence. The nethods
defined on this evidence are common to any interface that
extends it.

o~

lic interface StandardEvi dencel nterface {

/1

/**
* Method for calculating case attribution dates. The
* cal cul ation of evidence attribution is an integral part of a
* tenporal evidence solution as it determ nes the period of
* tinme for which a piece of evidence is effective. The
* inmplementation of this function will contain the |ogic that
* derives the appropriate effective period for the evidence of
* a particul ar type.

*

* @ar am caseKey

* Contains a case identifier

* @ar am evKey

*

*

*

*

*

Cont ai ns the evidencel D / evi denceType pairing of
the evidence to be attributed

@eturn Case attribution details
/
AttributedDateDetails cal cAttri buti onDat esFor Case(
CaseKey caseKey, El Evi denceKey evKey)

t hrows AppException, |nfornmational Excepti on;

i
* Retrieves a sutmmary of evidence details which are used to
* popul ate the 'Details' colum on the foll ow ng evidence
* pages:

*

* - Al evidence workspace pages

* - Apply changes page

* - Apply user changes page

* - Approve page

* - Reject page

*

* @ar am key

* Cont ai ns an evi dencel D / evi denceType pairing
*

* @eturn A summary of the evidence details to be displayed
*

El Fi el dsForLi st Di spl ayDt| s get Det ai | sFor Li st Di spl ay(
El Evi denceKey key)
throws AppException, |nformational Excepti on;

/1

/**

* Method to get the business end date for this evidence
* record.

*

* @ar am key

* Cont ai ns an evi dencel D / evi denceType pairing
*

*

@eturn The end date for this evidence

*

Curam Temporal Evidence Developers Guide

/

Dat e get EndDat e(El Evi denceKey evKey) throws AppExcepti on,

—~—

L I I R e

I nf or mat i onal Excepti on;

*

Met hod to get the business start date for this evidence
record.

@ar am key
Cont ai ns an evi dencel D / evi denceType pairing

@eturn The start date for this evidence

Dat e get Start Dat e(El Evi denceKey evKey) throws AppExcepti on,

——

* %k ok k k F F F F kT~

*

El

/
/

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

El

* % ok kX X ok X F

*

I nf or mat i onal Excepti on;

*

Met hod for inserting case evidence.

@aramdtls
Cust om evi dence details to be inserted

@ar am par ent Key
Cont ai ns the evi dence type of the evidence being
i nserted

@eturn Contains the evidencel D/ evidenceType of the
evi dence inserted
/

Evi denceKey i nsert Evi dence(
Ohj ect dtls, ElEvidenceKey parent Key)
t hrows AppException, |nformati onal Excepti on;

*

Met hod for inserting case evidence on nodification. An
insert on nodification takes place when the record being
nodified is 'Active'.

@aramdtls
Evi dence details to be inserted

@ar am or i gKey
Cont ai ns the evidencel D / evi denceType pairing of
the evi dence being nodified

@ar am par ent Key
Cont ai ns the evi dence type of the evidence to be
i nserted

@eturn Contains the evidencel D/ evidenceType of the
evi dence inserted

Evi denceKey i nsert Evi denceOnMbdi fy(Obj ect dtls,
El Evi denceKey ori gKey, El Evi denceKey parent Key)
t hrows AppException, |nfornmational Excepti on;

*|

Met hod for nodifying case evidence. This function is called
when 'In Edit' evidence is being nodified in place.

@ar am key
Cont ai ns the evidencel D/ evidenceType pairing of
the evidence to be nodified
@aramdtls
Modi fi ed evi dence details
/

voi d nodi f yEvi dence(El Evi denceKey key, Cbject dtls)

[
| *

throws AppException, |nformational Excepti on;

*

*
*
*
*
*
*
*
*

*

El

—

b T I T T T)
~

Curam Temporal Evidence Developers Guide

Met hod for retrieving all child evidence for a specified
par ent

@ar am key
Contai ns a parent evidencel D/ evidenceType pairing

@eturn List of all child evidence (evidencelD /
evi denceType pairings) for the specified parent
/

Evi denceKeyLi st readAl | ByParent | D(El Evi denceKey key)
t hrows AppException, |nformational Exception

*

Met hod for readi ng case evi dence.

@ar am key
Cont ai ns the evidencel D / evi denceType pairing of
the evidence to be read

@eturn Custom evi dence details

Ohj ect readEvi dence(El Evi denceKey key)

H 0% ok ok k3 2k k k3 Ok kX X X F

*

El

t hrows AppException, |nformational Exception

*

Met hod for retrieving the list of evidence to be used in
the validation procedure. This is based on the evidencelD /
evi denceType palring passed into this function.

If the input evidence key was that of parent evidence, then
this function should return the parent and its associ ated
"Active' and 'In Edit' child evidence records, if they

exi st.

@ar am evKey
Contai ns the evidencel D/ evidenceType pairing of
the evi dence being "acted upon”.

@eturn List of evidencel D/ evidenceType pairings to be
used in the validation procedure
/

Evi denceKeyLi st sel ect For Val i dati on(El Evi denceKey evKey)
t hrows AppException, |nfornmational Exception

I/
/**
* Method for validating evidences based on the validate node
* setting
*
* @ar am evKey
* The evi dencel D / evidenceType pairing of the
* evi dence being "acted upon”
* @aram evKeylLi st
* The evi dence hierarchy structure for the evKey
* parameter. |f the evKey identified the parent
* evi dence, the evKeyList may contain this parent and
* its relevant children for validation purposes
*
* @ar am node
& The validation node (insert, nodify,
* val i dat eChanges, appl yChanges)
*
/

voi d val i dat e(El Evi denceKey evKey, El Evi denceKeyLi st evKeyli st,

Val i dat eMbde node)
throws AppException, |nformational Exception

2.1.2 Evidence Interface

Curam Temporal Evidence Developers Guide

The Evidence Interface and its associated methods are shown below with
the appropriate javadoc comments:

/*

Copyri ght 2005-2007 Curam Software Ltd.
Al rights reserved.

*
*
*
* This software is the confidential and proprietary

* information of Curam Software, Ltd. ("Confidential

* Information"). You shall not disclose such Confidenti al
* |nformation and shall use it only in accordance with the
* terms of the |icense agreenent you entered into with
*/Curam Sof t war e.

*

package curam core.sl.infrastructure.inpl;

/

nmport curam core.sl.infrastructure. struct
.Attribut edDat eDet ai | s;

nport curam core. struct. CaseHeader Key;

nport curamutil.exception. AppExcepti on;

nmport curamutil.exception.|nformational Excepti on;

* %

* This interface extends the StandardEvi dencel nterface,
* therefore any class that inplenents Evidencelnterface
* must provide its own inplenmentations of the methods
* defined in the standard interface. Any methods specific
* to "classic" (i.e. not participant) evidence are to be
* defined in this interface.
*
/

public interface Evidencelnterface

ext ends St andar dEvi dencel nterface {

/1
/**
* Transfers evidence fromone case to anot her.
*
* @aram details
* Cont ai ns the evidencel D/ evidenceType pairings of
* the evidence to be transferred and the transferred
* @ar am f r onCaseKey
* The case from which the evidence is being
* transferred
* @ar am t oCaseKey
* The case to which the evidence is being
& transferred
*
/

voi d transferEvi dence(Evi denceTransferDetails details,
CaseHeader Key fronCaseKey, CaseHeader Key toCaseKey)
t hrows AppException, |nfornmational Excepti on;

2.1.3 Participant Evidence Interface

The Participant Evidence Interface and its associated methods are shown be-
low with the appropriate javadoc comments:

/

* % ok 2k X X X F

Copyri ght 2007 Curam Sof tware Ltd.
Al rights reserved.

This software is the confidential and proprietary information
of Curam Software, Ltd. ("Confidential Information"). You
shall not disclose such Confidential Information and shall use
it only in accordance with the terns of the |icense agreenent

Curam Temporal Evidence Developers Guide

* you entered into with Curam Sof tware.

*/

package curamcore.sl.infrastructure.inpl;

/

nport java.util.ArraylList;

nport curam core.sl.infrastructure. struct. El Evi denceKey;
nport curamcore.sl.infrastructure. struct. El Evi denceKeylLi st ;
nport curam core. sl.struct. ConcernRol el DKey;

nport curamutil.exception. AppExcepti on;

nport curamutil.exception.|nformational Excepti on;

*

This interface extends the StandardEvi dencel nterface therefore
any class that inplenents ParticipantEvi dencel nterface nust
provide its own inplenentations of the nethods defined in the
standard interface. Any nethods specific to participant

evi dence be defined in this interface.

E I

*/

public interface Participant Evi dencel nterface

ext ends St andar dEvi dencel nterface {

/1

/**

* Method to check if the attributes that changed during a

* modify require reassessment to be run when they are appli ed.
*

* @aram attri but esChanged

* - Alist of Strings. Each represents the nane of an
* attri bute that changed

*

* @eturn true if Reassessnent required

*/

bool ean checkFor Reassessnent (ArraylLi st attri but esChanged)
t hrows AppException, |nformati onal Excepti on;

/1

/**

* Method for creating the snapshot record related to a
* participant evidence record.

*

* @aram key

* Cont ai ns an evi dencel D / evi denceType pairing
*

* @eturn The uni quel D and the evidence type of the Snapshot
* record.

*/

El Evi denceKey cr eat eSnapshot (El Evi denceKey key)
throws AppException, |nfornational Excepti on;

—~—
*

* ok ok ok k k F k F Sk Sk F F F T~

~

Met hod to conpare attributes on two records of the sane
entity type. It then returns an ArraylList of strings with
the nanmes of each attribute that was different between them

@ar am key
- Contains an evidencel D / evi denceType pairing
@aramdtls
- a struct of the sane type as the key containing
the attributes to be conpared agai nst

@eturn Alist of Strings. Each represents an attribute name
that differed.

ArraylLi st get ChangedAttri but eLi st (
El Evi denceKey key, nbject dtls)
throws AppException, |nformational Excepti on;

/11
/**
* Method to search for records on a participant entity by

2.1.4

2.2

Curam Temporal Evidence Developers Guide

* concernRol el D and st at us.

*

* @ar am key _ o

* - The uni que concernRol el D of the partici pant.

*

* @eturn A list of ElEvidenceKey objects each containing an
*

evi dencel D/ evi denceType palir.
*/
El Evi denceKeylLi st readAl | ByConcer nRol el D(Concer nRol el DKey key)
t hrows AppException, |nfornmational Excepti on;

I/

/**

* Met hod renoving partici pant evidence. This nmethod is called
* when participant evidence is being cancel ed

*

* @ar am key

* - Contains an evidencel D / evi denceType pairing

* @aramdtls

*

- Modified evidence details

*/
voi d renoveEvi dence(El Evi denceKey key, Cbject dtls)
throws AppException, |nformational Excepti on;

}

Adopting an interface approach enforces a pattern upon entity design / de-
velopment as each entity must implement the same interface. This approach
allows the Caram Enterprise Framework™ to provide as much common
functionality as possible so that custom implementations can concentrate
more on business aspects of evidence maintenance, e.g.validations. Each
evidence entity must implement the Evidence Interface to have access to the
Evidence Controller class.This class implements the common business logic
across al evidence entities and the custom business logic specific to each
evidence entity.

Accessing Non-modeled Functions

When the Evidence Interfaces are implemented by evidence entities, the
methods defined by these interfaces will be implemented by those entities.
These methods will of course be non-modeled so will only exist on the evid-
ence entity impl classes. In order to access the non-modeled functions, it's
necessary to cast from the impl class. Examples of this can be seen in the
entity program listings later in section 3.2 of this document. This casting
mechanism will not work though unless the factory class is extending the
impl class as opposed to the base class. The only way that this can be
achieved, if no non-stereotyped functions are being added to the class, isto
add a non-stereotyped dummy function. If thisis not done, it will result in a
runtime error when the casting is executed.

Client Side Artifacts

The client side infrastructure artifacts are located inside the
..\webclient\components\core\Evidence Infrastructure directory. This folder
primarily contains uim and vim client pages. The vim files will typicaly be
included inside solution specific uim pages to manage generic evidence de-

Curam Temporal Evidence Developers Guide

tails whereas the uim pages contain compl ete out-of-the-box evidence main-
tenance functionality.

The key benefit of the .im filesis that they can be changed in line with any
enhancements made to the evidence maintenance solution without any im-
pact on specific implementations, i.e. the upgrade is seamless.

Examples of infrastructural .vim files are as follows:

» Evidence createHeader.vim
» Evidence_modifyHeader.vim
» Evidence viewHeader.vim

» Evidence viewHeaderForModal.vim

These artifacts manage the infrastructural attributes of evidence mainten-
ance and should be included in create, modify and view evidence pages.
Thiswill be highlighted later when a sample implementation of the Tempor-
a Evidence solution is discussed. Some further examples of vim files in-
clude:

» Evidence_typeWorkspace.vim
» Evidence workspacel nEditHighLevel View.vim

» Evidence workspaceActiveHighLevel View.vim

These artifacts are used to populate evidence workspaces. An evidence
workspace is a central location for managing evidence. The above vim files
will be included by workspace .uim pages.

Some examples of infrastructural uim pages which provide entire evidence
maintenance functions are:

» Evidence applyChangesl.uim
e Evidence addNewEvidence.uim

» Evidence dashboard.uim

Evidence_applyChangesl lists all work-in-progress evidence, i.e. all new
and updated evidence or evidence that is pending removal. The display and
action bean on this page live on the Evidence facade which is part of the
centralized evidence maintenance functionality.

Evidence_addNewEvidence lists all possible evidence types, filtered by cat-
egory, and launches an appropriate create page for each.

Evidence_dashboard lists all evidence types on the given case broken into
categories. It highlights which types have In Edit evidence recorded and
which have verifications or issues outstanding.

]

H Note
It is important to note that in some cases .vim files found in the cli-

Curam Temporal Evidence Developers Guide

ent infrastructure package are actually included in infrastructure
pages. For instance, Evidence dashboardView.vim is included in-
side the Evidence _dashboard page and Evidence flowView.vim is
included inside the Evidence_flow page.

10

3.1

3.1.1

3.1.2

3.2

3.2.1

Chapter 3

Developing an Evidence Solution

Administration

Evidence Metadata

The Evidence Metadata entity contains metadata information relating to
each evidence type. This entity must be populated before evidence mainten-
ance can proceed. A number of evidence page names, including the view
and modify page names, are included in the metadata. These page names are
retrieved at runtime via evidence infrastructure resolve scripts and via im-
plementations of the Evidence Type interface on the server. The records on
the Evidence Metadata entity are effective dated to facilitate pages changing
over time, due to legislation for example.

Product Evidence Link

The Product Evidence Link entity links evidence to a product. In some cir-
cumstances, evidence may be stored at the Integrated Case level but only
some of this evidence may apply to a given product on the Integrated Case.
To know which evidence should be attributed to a given product, a lookup
of this entity is performed as part of the attribution processing and only
evidence linked to the product is attributed.

Common Evidence Maintenance Operations
In this section, some common evidence maintenance operations are out-
lined. This is done using sequence diagrams, client screenshots and server

code snippets from the a sample product implementation. This product is
used for demonstration purposes only.

Create Evidence

11

Curam Temporal Evidence Developers Guide

The development, both client and server, of a create evidence operation is
outlined here.

Create Evidence Sequence Diagram

Verification
Controller

Evidence
Controller Hook

Evidence
Relationship

Evidence Service
Layer Impl

Evidence Map
Impl

Evidence
Interface

Evidence
Controller
w

Product Level
Evidence facade

Evidence
Descriptor

Client
Application

| create<names _ !
Y create<name> |
4 insertEvidence

getEvidencetdap;

getEvidenceType

insertEvidence

U

createlink

insert U

performV alidations

=m—

recordEvidenceChangeHistory
osthserEvidence

verifyoninsert U

Figure 3.1 Sequence Diagram for Creating Evidence

Client - Screen to Be Developed

The client page to be developered must include the evidence infrastructure
page Evidence createHeader.vim. This included .vim page facilitates the
management of infrastructure attributes. For example, the Evidence
Descriptor's receivedDate attribute is currently managed through this infra-
structure page. If, at some point in the future, additional attributes which
need to be managed through the create function were added to the Evidence
Descriptor entity, then these attributes could be mapped through this infra-
structure page. Hence, this requires just a once-off infrastructure change
rather than many changes to custom artifacts.

Server - Methods to Be Implemented

» SEGEvidenceMaintainenance.createAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
/1

/**

* Creates an Asset evidence record.

@aramdtls Details of the new evidence record to be created.

* % ok ok

@eturn The details of the created record.

*/

publ i c ReturnEvi denceDetails createAsset Evi dence(
Asset Evi denceDet ai | s dtl s)

t hrows AppException, |nformati onal Exception {

/] set the informational manager for the transaction
Transact i onl nf 0. set | nf or mat i onal Manager () ;

12

}

Curam Temporal Evidence Developers Guide

/'l Asset evidence mani pul ati on obj ect
Asset evidenceCbj = Asset Factory. new nstance();

/1 return object
Ret ur nEvi denceDet ai | s creat edEvi denceDetails =
new Ret ur nEvi denceDet ai | s();

/] create the Asset record and popul ate the return details
creat edEvi denceDetail s =
evi denceObj . cr eat eAsset Evi dence(dtl s);

creat edEvi denceDet ai | s. war ni ngs =
Evi denceControl | er Fact ory. newl nst ance() . get War ni ngs() ;

return createdEvi denceDetail s;

Asset.createAssetEvidence service layer operations

These overloaded service layer operations call the Evidence Controller
infrastructure function for inserting evidence.

/
/

/

* %

* Creates a Asset record.

@aramdtls Contains Asset evidence record creation details.

@eturn the new evidence I D and war ni ngs.

* % ok kX

publ i ¢ ReturnEvi denceDetail s createAsset Evi dence(

~—

Asset Evi denceDet ai | s dtls)
t hrows AppExcepti on, | nf or mat i onal Excepti on {

return createAsset Evidence(dtls, null, null, false);

/

* %

* Creates a Asset record.

*

* @aramdtls Contains Asset evidence record creation details.
*

* @ar am sour ceEvi denceDescriptorDils If this function is called
* during evidence sharing, this parameter will be non-null and
* it represents the header of the evidence record being shared
* (i.e. the source evidence record)

*

* @aramtargetCase If this function is called during evidence
* sharing, this parameter will be non-null and it represents the
* case the evidence is being shared wth.

*

* @aram sharinglnd A flag to determine if the function is

* called in evidence sharing node. |If false, the function is

* being called as part of a regular create.

*

* @eturn the new evidence I D and war ni ngs.

*/

publ i ¢ ReturnEvi denceDetai |l s creat eAsset Evi dence(

Asset Evi denceDetai |l s dtl s,

Evi denceDescriptorDt|s sourceEvi denceDescriptorDtls,
CaseHeader Dt | s target Case, bool ean shari ngl nd)
throws AppExcepti on, | nf or mati onal Excepti on {

/] validate the mandatory fields
val i dat eMandat oryDet ai | s(dtls);

Evi denceControl |l erlnterface evi denceControl |l erChj =
(Evi denceControl | erl nterface)
Evi denceControl | er Fact ory. newl nst ance() ;
Evi denceDescriptorinsertDtls evidenceDescriptorlinsertDtls =

13

Curam Temporal Evidence Developers Guide

new Evi denceDescriptorlnsertDtls();

Ret ur nEvi denceDet ai | s creat edEvi dence =
new Ret urnEvi denceDetail s();

if (sharinglnd) {

Evi denceDescriptorDtls sharedDescriptorDtls =
evi denceControl | er Obj . shar eEvi dence(
sour ceEvi denceDescriptorDtl s,
t ar get Case) ;

/1l Return the evidence |ID and war ni ngs

cr eat edEvi dence. evi denceKey. evi dencel D =
shar edDescriptorDtls. rel at edl D

creat edEvi dence. evi denceKey. evType =
shar edDescriptorDtls. evi denceType;

} else {

/1l As there is no participant associated with this evidence
/1 we nmust retrieve the case participant to set the evidence
/1 descriptor participant.
CaseHeader Key caseHeader Key = new CaseHeader Key() ;
caseHeader Key. casel D = dtl s. casel DKey. casel D
evi denceDescriptorlnsertDtls. participantID =

CaseHeader Fact ory. newl nst ance() . readCaseParti ci pant Det ai | s(

caseHeader Key) . concer nRol el D

/1 Evidence descriptor details
evi denceDescriptorlnsertDtls.casel D = dtls. casel DKey. casel D;
evi denceDescri ptorlnsertDtl s. evi denceType =
CASEEVI DENCE. ASSET;
evi denceDescriptorlnsertDtls. recei vedDate =
dtls. descri ptor.recei vedDat e;

/1 Upon creation, the change reason should be Initial
evi denceDescri ptorlnsertDtl s. changeReason =
EVI DENCECHANGEREASON. | NI Tl AL;

/'l Evidence Interface details
El Evi dencel nsertDt| s ei Evi dencel nsertDtls =
new El Evi dencel nsertDt | s();
ei Evi dencel nsertDt| s. descri ptor. assi gn(
evi denceDescri ptorlnsertDtls);
ei Evidencel nsertDtl s. evi denceObj ect = dtls.dtls;

/] Insert the evidence
El Evi denceKey ei Evi denceKey =
evi denceControl | er bj . i nsert Evi dence(ei Evi dencel nsertDtl s);

/1l Return the evidence |ID and warni ngs
cr eat edEvi dence. evi denceKey. evi dencel D =
ei Evi denceKey. evi dencel D,
creat edEvi dence. evi denceKey. evType =
ei Evi denceKey. evi denceType;
creat edEvi dence. war ni ngs =
evi denceControl | er Cbj . get War ni ngs() ;

return createdEvi dence;

3.2.2 Modify Evidence

The development, both client and server, of a modify evidence operation is
outlined here.

14

Curam Temporal Evidence Developers Guide

Modify Evidence Sequence Diagram

Controller Hook

e War
impl

Eidence Service|
Layer Impl
|

Client
Application

Verifionti
Dageriptor Relationship || Controller

Product Level 4

E vidence Facad Controller Intertace

i modityenames. | i |
L modify<namer. | o ditEvid

readByRelstediDAnd Type

readCunenU—\DDI[o\ralRequesl 3 Ll

[

remo\reEDApprg\ra\Hequestcasc.%:de

[

getEvidencehtap

[

getEvidenee Type

readEuidence | 1

i

wvalidate EffectivéDate

i

cloneEvidenca

[

insertEvidenceOhMadify

clonelinks

! insertEvidance | 1]

recordEvidenceChangeHistory | |-|-|

[

madifyPendingUpdate

recordEvidencebhangeHistory | Ll
| iverifyDnModifyi

modif;rEvidencei

| modityReceive db ate

0

recordEvidenceChangeHistory |
| werifyOniadify o

[

perform¥alidatipns

|

checkF arlnfom ation als

|

getlCaseTypeCada

[

posthadifiEvidance

Figure 3.2 Sequence Diagram for Modifying Evidence

Client - Screen to Be Developed

The client page to be developed must include the evidence infrastructure
page Evidence_modifyHeaderl.vim. This included .vim page facilitates the
viewing / modification of some infrastructure attributes. For example, re-
ceived date can be viewed or modified via this .vim. Also, change reason
and effective date of change can be set on the edited record. If, at some
point in the future, additional attributes which need to be managed through
the modify function were added to the Evidence Descriptor entity, then
these attributes could be mapped through this infrastructure page. Hence,
this requires just a once-off infrastructure change rather than many changes
to custom artifacts.

The inclusion of Evidence modifyHeaderl.vim facilitates the following
three types of evidence modification:

» Editing Evidence In Place

15

Curam Temporal Evidence Developers Guide

This refers to the modification of incorrect data on a piece of evidence
which has not yet been activated. In this scenario, if the effective date is
modified an error will be thrown informing the user that the date can
only be modified when updating an active record.

* Evidence Correction

An evidence correction occurs when a piece of data on an active evid-
ence record is modified resulting in the current active record being su-
perseded. In this scenario, the effective date field must not be modified
as this will result in a new record in the succession being created - see
evidence succession.

» Evidence Succession

If the user modifies the effective date when updating a piece of active
evidence, they are specifying a new record in the succession s¢t, i.e. the
new record will have the same successionID as the active record. There-
fore, the active record will essentially be copied and made effective
from the effective date specified by the user and the update applied to
this record.

Note: Activation of newly created records in a succession will cause
reattribution of recordsin that succession set.

Server - Methods to Be Implemented

» SEGEvidenceMaintenance.modifyAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
/1

/**

* Modi fies an Asset evi dence record.

@aram details The nodified evidence details.

@eturn The details of the nodified evidence record.

* % ok X
~

publ i ¢ ReturnEvi denceDet ai | s nodi f yAsset Evi dence(
Asset Evi denceDet ai | s dtls)
t hrows AppException, |nformational Exception {

/1 set the informational nmanager for the transaction
Transacti onl nf o. set | nf or mat i onal Manager () ;

/'l Asset evidence nani pul ati on obj ect
Asset evidenceCbj = Asset Factory. new nstance();

/1 return object
Ret ur nEvi denceDet ai | s nodi fi edEvi denceDetails =
new Ret ur nEvi denceDetail s();

/1 modify the Asset record and popul ate the return details
nodi fi edEvi denceDetails =
evi denceQj . nodi f yAsset Evi dence(dt | s);

nmodi fi edEvi denceDet ai | s. war ni ngs =
Evi denceCont rol | er Fact ory. newl nst ance() . get War ni ngs() ;

16

Curam Temporal Evidence Developers Guide

return nodifi edEvi denceDet ai | s;

» Asset.modifyAssetEvidence service layer operation

This service layer operation calls the Evidence Controller infrastructure
function for modifying evidence.

Il

/**
* Modi fies an Asset record.

@aram dtls Contains Asset evidence record nodification
det ai | s.

@eturn The nodified evidence | D and war ni ngs.

* % ok kX F
~

publ i ¢ ReturnEvi denceDetails nodifyAsset Evi dence
(Asset Evi denceDet ai | s detail s)
throws AppException, |nformational Exception {

/1 validate the mandatory fi el ds
val i dat eMandat or yDet ai | s(detail s);

/] EvidenceController business object
Evi denceControl | erl nterface evidenceControl | erChj =
(Evi denceControl | erl nterface)
Evi denceControl | er Fact ory. newi nst ance();

El Evi denceKey ei Evi denceKey = new El Evi denceKey();

Call the EvidenceController to nodify the evidence

~— —
~

ei Evi denceKey. evi dencel D = details.dtls. evi dencel D;
ei Evi denceKey. evi denceType = CASEEVI DENCE. ASSET;

/] Create the evidence interface nodification struct and assign
[/ the details
El Evi denceModi fyDt | s ei Evi denceModi fyDtls =
new El Evi denceModi fyDt 1 s();
ei Evi denceModi fyDt| s. descriptor.recei vedDate =
detai |l s. descri ptor.recei vedDat e;
ei Evi denceModi fyDt| s. descri ptor.versi onNo =
detai |l s. descri ptor. versi onNo;
ei Evi denceModi fyDt| s. descriptor.effecti veFrom =
detail s. descriptor.effectiveFrom
ei Evi denceModi fyDt | s. descri pt or. changeRecei vedDat e =
det ai | s. descri pt or. changeRecei vedDat e;
ei Evi denceModi fyDt | s. descri pt or. changeReason =
detai | s. descri pt or. changeReason;
ei Evi denceModi fyDt | s. evi denceCbj ect = details.dtls;

evi denceControl | er Obj . modi f yEvi dence(
ei Evi denceKey, ei Evi denceModi fyDtls);

Return details fromthe nodify operation

—~——
~

Ret ur nEvi denceDet ai | s returnEvi denceDetails =
new Ret ur nEvi denceDetail s();

ret ur nEvi denceDet ai | s. evi denceKey. evi dencel D =
ei Evi denceKey. evi dencel D;

returnEvi denceDet ai | s. evi denceKey. evType =
ei Evi denceKey. evi denceType;

returnEvi denceDet ai | s. warni ngs =
evi denceControl | er Cbj . get War ni ngs() ;

17

Curam Temporal Evidence Developers Guide

return returnEvi denceDetail s;

3.2.3 Read Evidence

The development, both client and server, of a read evidence operation is
outlined here.

View Evidence Sequence Diagram

Product Level
Evidence Facade

Evidence Change
History

Evidence Service
Layer Impl

Evidence Map
Irnpl
H

Evidence

Client
Descriptor

Application

Evidence Evidence
Controller Interface

' read<name> :
read<names

| readEvidence

getEwdenceMapi

getEviddnceType
P———— e ———

read:ByRelatedIDJﬁ\nd'IJ pe
R

readCurrentApprb\/alRequest

readUserForLﬁatestChange

TR frossranszeseronesns foeserossasasecicnen frosmnierrnaanad
getUserFuHNamé
PER— i i : i

readEvidence |

Figure 3.3 Sequence Diagram for Viewing Evidence

Client - Screen to Be Developed

The client page includes the evidence infrastructure page Evid-
ence_viewHeaderForModal.vim. This included .vim facilitates the viewing
of some infrastructure attributes.

Server - Methods to Be Implemented

» SEGEvidenceMaintenance.readAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
/1

/**
* Reads an Asset evi dence record.

@aram key ldentifies the evidence record to read.

L

@eturn The details of the evidence record.

publ i c ReadAsset Evi denceDet ai | s readAsset Evi dence(

18

Curam Temporal Evidence Developers Guide

Evi denceCaseKey key)
t hrows AppException, |nformational Exception {

/'l Asset evidence mani pul ati on obj ect
Asset evidenceCbj = Asset Factory. new nstance();

/] return object
ReadAsset Evi denceDet ai | s readEvi denceDetails =
new ReadAsset Evi denceDet ai | s();

/1 read the Asset record and popul ate the return details
readEvi denceDet ai | s = evi dence(bj . readAsset Evi dence(key) ;

return readEvi denceDetail s;

}

This service layer operation calls the Evidence Controller infrastructure
function for reading evidence.

/1

/**

* Reads an Asset record.

@aram key contains ID of record to read.

@eturn Asset evidence details read.

* Ok ok X F

publ i c ReadAsset Evi denceDet ai |l s readAsset Evi dence(
Evi denceCaseKey key)
t hrows AppException, |nformational Exception {

/'l EvidenceControl |l er business object
Evi denceControl | erl nterface evidenceControl | erCbj =
(Evi denceControl | erl nterface)
Evi denceControl | er Fact ory. newl nst ance() ;

El Evi denceKey ei Evi denceKey = new El Evi denceKey();
ei Evi denceKey. evi dencel D = key. evi denceKey. evi dencel D;
ei Evi denceKey. evi denceType = CASEEVI DENCE. ASSET;

/'l Retrieve the evidence details
El Evi denceReadDt | s ei Evi denceReadDt | s =
evi denceControl | er Obj . readEvi dence(ei Evi denceKey) ;

/'l Retrieve the evidence descriptor details
Evi denceDescri pt or evi denceDescri ptor Qo] =
Evi denceDescri pt or Fact ory. newi nst ance() ;

Evi denceDescri pt or Key evi denceDescri ptor Key =
new Evi denceDescri ptorKey();
evi denceDescr i pt or Key. evi denceDescriptorl D =
ei Evi denceReadDt | s. descri ptor. evi denceDescri ptorl D;

Evi denceDescriptorDtls evidenceDescriptorDils =
evi denceDescri pt or Obj . read(evi denceDescri pt or Key) ;

Return the evidence

~— —
~—

ReadAsset Evi denceDet ai | s readEvi denceDetails =
new ReadAsset Evi denceDet ai | s();

readEvi denceDet ai | s. descri pt or
. assi gn(evi dencebDescriptorDtls);

readEvi denceDet ai | s. descri pt or. approval Request St at us =
ei Evi denceReadDt | s. descri pt or. appr oval Request St at us;
readEvi denceDet ai | s. descri pt or. updat edBy =
ei Evi denceReadDt | s. descri pt or. updat edBy;
readEvi denceDet ai | s. descri pt or. updat edDat eTi e =
ei Evi denceReadDt | s. descri pt or. updat edDat eTi ne;

19

Curam Temporal Evidence Developers Guide

/1 assign the evidence to the return object
readEvi denceDet ai | s. dt | s. assi gn(
(AssetDt | s) (ei Evi denceReadDt | s. evi denceObj ect)) ;

return readEvi denceDetail s;

3.2.4 List Evidence

The development, both client and server, of alist evidence operation is out-
lined here. The list operation is used to populate an evidence workspace
page.

List Evidence Sequence Diagram

Client Ewvidence EvidenceController Evidence EvidenceMaplmpl || EvidenceDescriptor|| EvidenceChangeHistory| EvidenceRelationship
Application Facade Interface
listBusinessObjectsFor ©isBusinessDbiectsFor._+ : | : :
BvidenceType EvidenceType : | listhislatedBusinegsObjects : !
i
gelELlsinesaObjeClDeai:riplDrs : . H
T 'u i H
[getParticipantName : :
searchiostREcentBusinessObjecdtChanges ;
cDﬁntAc:l\veUpdalasi ;
T 'u l
] getParticipanthame '
geiEvidenceType : :
1 :
etStartDate ; :
SaarchB Successmn\Di | '
: 1] i :
getParenteylist T | .
: ‘ 7
readUSerFDrLalestChanges | . H
T H
?

Figure 3.4 Sequence Diagram for Listing Evidence

Server - Methods to Be Developed

Much of the data displayed on the workspace page is retrieved via the Evid-
ence Descriptor entity. The description and period are retrieved via Evid-
ence | nterface methods which must be implemented for each evidence type.

» Asset.getDetailsForListDisplay entity operation

The description, or summary details, is retrieved via the getDetail sForlL -
istDisplay Evidence Interface method which isimplemented by the evid-
ence entities. The implementation of the getDetailsForListDisplay meth-
od for the Asset is shown below. This interface function is also used to
retrieve summary data when applying, approving, rejecting evidence as
well asin evidence sharing, verifications and issues screens.

/1

20

Curam Temporal Evidence Developers Guide

*

Gets evidence details for the |ist display

@ar am key Evi dence key containing the evidencel D and
evi denceType

* % ok kX X Ok F
~

@eturn Evidence details to be displayed on the |ist page

publ i c ElFi el dsForListDi splayDtls getDetail sForlListDi splay(
El Evi denceKey key)
t hrows AppException, |nformational Exception {

/1 Return object
El Fi el dsForLi st Di spl ayDt| s ei Fi el dsFor Li st Di spl ayDtls =
new El Fi el dsFor Li st Di spl ayDtl s();

/'l Asset entity key
final AssetKey asset Key = new Asset Key();
asset Key. evi dencel D = key. evi dencel D;

/!l Read the Asset entity to get display details
final AssetDtls assetDtls =
Asset Fact ory. newl nst ance() . read(asset Key) ;

/] Set the start / end dates
ei Fi el dsFor Li stDi spl ayDtls.startDate = assetDt|s. startDate;
ei Fi el dsFor Li st Di spl ayDt| s. endDate = assetDtl s. endDat e;

Local i sabl eString sumary = new Local i sabl eStri ng(
Bl ZOBJDESCRI PTI ONS. Bl Z_ OBJ_DESC_ASSET) ;

sunmary. ar g(
CodeTabl e. get Onel t en(SAMPLEASSETTYPE. TABLENANME,
assetDt| s. asset Type));

/1 Format the anount for display
TabDet ai | Formatter formatterChj =
TabDet ai | For mat t er Fact ory. newi nst ance() ;
Anount Det ai | amount = new Ampbunt Detail () ;
anount . anount = assetDtl s. val ue;
sunmary. arg(formatter Qoj . f ormat Curr encyAnmount (anount) . anount) ;

ei Fi el dsFor Li st Di spl ayDt| s. summary =
sunmary. t oCl i ent For mat t edText () ;

return ei Fi el dsForLi st Di spl ayDt | s;

3.3 Evidence Dashboard and EvidenceFlow

The Evidence Dashboard and EvidenceFlow are user interface constructs in-
troduced to assist user navigation to al evidence on a case. No custom code
is required in order to configure these for a custom case as these are infra-
structural .

From these pages, a user can select a particular evidence type which should
open the respective evidence workspace for that type of evidence. In the
case of the Dashboard, this will open in a new tab, whereas the Evidence-
Flow will redirect the bottom portion of the page.

The existence of 'In Edit' evidence records, outstanding verifications and
outstanding issues are al highlighted graphically.

The list of evidence types on the case may be split into categories on these
pages, by defining the category on the Adminl CEvidenceLink table for In-

21

3.4

3.5

Curam Temporal Evidence Developers Guide

tegrated Cases, or on the ProductEvidenceLink table for Product Deliveries.

Validations

The infrastructure facilitates the validation of work-in-progress changes.
The validate page can be used either at a case level or on an individual evid-
ence type.

The purpose of the case level validate page is to provide a means to test val-
idations in advance of applying the changes. For some products, the full
evidence set may be quite sizeable resulting in the apply changes listing
containing a considerable number of evidence changes of varying evidence
types. In that scenario, the individual evidence type validate page may make
it easier to associate a validation message with the correct evidence record.
The validate page alows a user to pre-test the evidence changes. The user
can see which validations will fail and fix them before applying the changes.

More On Validations

Two of the Evidence Interface functions which form part of the infrastruc-
ture support for evidence validation are selectForValidations and validate.

The selectForValidations function will typically be used to select all evid-
ences which are related to or are dependant on the piece of evidence being
validated. An example of this would be the modification of an amount on a
parent evidence record. As part of the validation of the parent evidence, a
check might need to be performed to ensure the sum of the child evidence
records does not exceed the modified parent amount.

When a user applies changes to evidence records, the Evidence Controller
cals out to the selectForValidations interface function on the entities for
each evidence record. The logic within this method retrieves all related 'Act-
ive' and 'In Edit' evidences within the hierarchy for validation. For instance,
if we are validating a child evidence record within a parent-child-grandchild
relationship structure, both parent evidence and grandchild evidence are re-
trieved for the validation processing.

Once processing returns to the Evidence Controller, afilter is applied to the
list of evidence. Thisfiltersthe input list and leaves only 'Active' records, or
'In Edit' records as appropriate depending on whether the function must val-
idate against work-in-progress or active only evidence. This filtered list is
then passed to the validate function where custom validation is applied.

The program listing below shows a selectForValidations implementation
used in the Asset demo.

Il
/

*

Sel ects all the records for validations

* % Ok ok X

@ar am evKey Contains an evidencel D/ evi denceType pairing

22

Curam Temporal Evidence Developers Guide

* @eturn List of evidencelD / evidenceType pairings
*/

publ i ¢ El Evi denceKeyLi st sel ect For Val i dati on(
El Evi denceKey evKey)
t hrows AppException, |nformati onal Exception {

/1 Return object
El Evi denceKey ei Evi denceKey = new El Evi denceKey();

/1 Casting to inpl due to calling non-nodel ed interface
curam seg. evi dence. entity.intf. Asset Ownership
asset Omer shi pQhj =
(curam seg. evi dence. entity.inpl.Asset Oawner shi p)
Asset Omner shi pFact ory. new nst ance() ;

ei Evi denceKey. evi dencel D = evKey. evi dencel D;
ei Evi denceKey. evi denceType =
CASEEVI DENCE. ASSET;

El Evi denceKeylLi st ei Evi denceKeyLi st =
asset Omer shi pQbj . readAl | ByPar ent | D(ei Evi denceKey) ;

ei Evi denceKeylLi st. dtls. add(0, evKey);

return ei Evi denceKeyli st ;

}

The code here, on the Asset parent entity, makes a call to the readAlIByPar-
entID interface method implementation on the child entity, Asset Owner-
ship. The implementation of the readAllByParentID function on the Asset
Ownership is shown in the program listing below.

*

~—

L I I

Read all Asset Ownership records
@ar am key Contains the evidencel D and evi denceType
@eturn A list of evidencel D and evi denceType pairs

/
blic El Evi denceKeyLi st readAl | ByParent | D(El Evi denceKey key)
t hrows AppException, |nformational Exception {

©
c

/1 Return object
El Evi denceKeylLi st ei Evi denceKeyLi st = new El Evi denceKeylLi st ();

/]l Create the link entity object
Evi denceRel ati onshi p evi denceRel ati onshi pGbj =
Evi denceRel ati onshi pFact ory. newl nst ance() ;

/] parent entity key

Par ent Key parent Key = new Par ent Key() ;
par ent Key. parent | D = key. evi dencel D;

par ent Key. parent Type = key. evi denceType;

/'l Reads all relationship details for the specified parent
Chi | dKeyLi st chi | dKeyLi st =
evi denceRel ati onshi pQbj . sear chByPar ent (par ent Key) ;

[l lterate through the link details |ist
for (int i =0; i < childKeyList.dtls.size(); i++) {

if (childKeyList.dtls.item(i).childType.equal s(
CASEEVI DENCE. ASSETONNERSHI P)) {

El Evi denceKey | i st Evi denceKey = new El Evi denceKey();
| i st Evi denceKey. evi dencel D =

chil dKeyList.dtls.iten(i).childlD
| i st Evi denceKey. evi denceType =

23

3.6

3.6.1

Curam Temporal Evidence Developers Guide

chi | dKeyList.dtls.iten(i).childType;
ei Evi denceKeyLi st. dt|s. addRef (| i st Evi denceKey) ;
}
}
return ei Evi denceKeyli st ;

}

The function above retrieves all child evidence keys for the specified parent.
The childID and childType pairings are returned to the calling mechanism.

Evidence Attribution

Evidence attribution refers to the assignment of a period of time to a given
piece of evidence during which that piece of evidence will be used for enti-
tlement calculations. The attribution period may range from a basic one to
one mapping from the business start and end dates through to a more soph-
isticated algorithm considering any number of factors. This custom logic
calculates the attribution period and the evidence controller takes care of
synchronizing these with the specified effective dates — see example(s) be-
low. It should also be noted that the attribution from and to dates can be null
in which case the piece of evidence is assumed effective from the case start
date to the expected end date.

One of the Evidence Interface functions is cal cAttributionDatesForCase and
the implementation of this function on an entity class is where the attribu-
tion from and to dates are determined for evidence on that entity.

Re-attribution

When evidence is modified as part of a succession and subsequently activ-
ated, re-attribution of the evidence records in the succession set occurs. A
basic example of how this worksis shown below:

Business Start Date: 3rd May 2006 (=attribution from date)
Business End Date: 30th July 2006 (=attribution to date)

A succession record is created effective from 5th June 2006. On activation
of this record, the evidence is re-attributed and the following attribution re-
cords created:

3rd May 2006 to 4th June 2006
5th June 2006 to 30th July 2006

Re-attribution also occurs if evidence in a succession set is removed. For ex-
ample, if the following three attribution records exist for records in the same
succession set

3rd May 2006 to 4th June 2006
5th June 2006 to 30th July 2006

24

3.7

Curam Temporal Evidence Developers Guide

31st July 2006 to 29th Sept 2006

and the evidence record associated with the middle one is removed, apply-
ing changes will cause the following re-attribution

3rd May 2006 to 30th July 2006
31st July 2006 to 29th Sept 2006

The attribution record from 5th June 2006 to 30th July 2006 remains on the
database but won't be picked up by eligibility processing as the associated
evidence isremoved, i.e. has a status of 'Canceled'.

Evidence Relationship

By default, the Temporal Evidence infrastructure facilitates the linking of
parent-child evidence via the EvidenceRelationship link entity. The struc-
ture of the EvidenceRelationship link entity is as follows:

Evidence Relationship

evidenceRelationshiplD
parent!D

parentType

childiD

childType

Table 3.1 Evidence Relationship Link Entity

This supports the relationship between any parent-child evidence and does
away with the necessity for customers to model their own link entities for
managing such relationships. When evidence is being inserted, the generic
EvidenceController.insertEvidence function makes a call to the business
process EvidenceRelationship.createlink. If a parent type has been spe-
cified, i.e. passed in from the client as part of the insert, then a record will
be written to the EvidenceRelationship entity linking the child evidence to
its parent. Also, a call is made to the business process EvidenceRelation-
ship.cloneLinks directly after the call to the interface operation insertEvid-
enceOnModify. From cloneLinks, two further calls are made to cloneLinks-
ForParent and cloneLinksForChild.

If customers are using their own link entities to manage relationships, they
will need to override the Evidence Relationship business processes for cre-
ating and cloning links. The evidence type is available in the input keys of
both these functions which means that responsibility can be delegated to the
appropriate custom relationship processing based on the evidence type in
the key.

3.8 Registering Evidence Implementations

25

3.8.1

3.8.2

Curam Temporal Evidence Developers Guide

The evidence maintenance pattern requires the set of evidence entities to be
registered before they can be used. Thisis so that the controller can access
these evidence entities at runtime.

The Core Curam Framework does not know in advance which evidence en-
tities will be used for the given evidence maintenance facility associated
with a particular product implementation. The evidence types and their im-
plementation must be paired at runtime.

Evidence Registrar Module

Google Guice dependency injection should be used in order to register the
different evidence types and their implementations. This can be done by
writing a new module class, or adding to a pre existing one. Once thisis ad-
ded to the ModuleCalssName table, then at runtime it will be loaded and the
evidence types registered.

Example

/*

* Copyright 2011 Cdiram Software Ltd.

* All rights reserved.

*

* This software is the confidential and proprietary information
* of Clram Software, Ltd. ("Confidential Information"). You

* shal |l not disclose such Confidential Information and shall use
* it only in accordance with the ternms of the |icense agreenent
* you entered into with Caram Sof t war e.

*

/

package curam seg. evi dence. servi ce.inpl ;

i mport curam codet abl e. CASEEVI DENCE;

i mport com googl e. i nj ect. Abst ract Modul e;

i mport curam core.inpl. Fact or yMet hodHel per;

i mport java.lang.reflect. Met hod;

i mport com googl e. i nject. multibindi ngs. MapBi nder ;
i mport curam core.inpl.Registrarlnpl;

i nport curam core.inpl.Registrar. Regi strarType;

/**
* A nodul e cl ass which provides registration for all of the
* evi dence hook i npl ementati ons.
*/

public class SEGRegi strar Modul e extends Abstract Modul e {

@verride
public void configure() {

/1 Register all hook inplenentations which inplenent the
/] interface Evidencelnterface.
MapBi nder <Stri ng, Mt hod> evi dencel nt er f aceMapBi nder =
MapBi nder . newMapBi nder (bi nder (), String. cl ass,
Met hod. cl ass, new Regi strar | npl (Regi strar Type. EVI DENCE)) ;

evi dencel nt er f aceMapBi nder
. addBi ndi ng(CASEEVI DENCE. ASSET)
.tol nst ance(Fact or yMet hodHel per . get New nst anceMet hod(
) curam seg. evi dence. entity. fact. Asset Factory. cl ass));
}

Legacy Evidence Registrar

26

3.9

3.9.1

3.9.2

Curam Temporal Evidence Developers Guide

The legacy mechanism for registration of evidence entitiesis still supported.
i.e. using the Application Properties to specify the factories to populate a
hashmap of the hook classes. The factory code will not change in order to
maintain backward compatibility but all out of the box, legacy implementa-
tions have been deprecated.

Custom Hooks

As the Evidence Controller functionality is generic to all evidence solutions,
the only way to facilitate an organization's unique requirements is by the
provision of hooks where custom logic can be located in order to extend the
core solution. Call outs to these hooks, or extension points, are made within
the Evidence Controller maintenance functions.

Evidence Controller Hook

Evidence Controller Hook is the evidence infrastructure class which con-
tains the extension points for the evidence maintenance pattern. An example
of ahook in this class is postRemoveEvidence. A call is made to this func-
tion inside the Evidence Controller removeEvidence operation. Customers
must override the hook with their custom version if they want to perform
post remove evidence processing.

Evidence Controller Hook Registrar & Manager

Following on from the Evidence Registrar and the underlying Dependency
Injection pattern, a similar approach has been taken for the registration of
the Evidence Controller Hook class. An Evidence Controller Hook Registrar
interface is shipped as part of the evidence infrastructure. As before, at
runtime, the Evidence Controller invokes the Registrar's register method
which performs the dependency injection of the associated custom Evidence
Controller Hook. This is the class which will have extended the out-
of-the-box Evidence Controller Hook and overridden the methods being
customized. This "injector” class is located through runtime configuration
where the injector class itself is referred to as the "Evidence Controller
Hook Registrar”.

The dependency injection involves two steps. First, a custom Evidence Con-
troller Hook Registrar, which implements the Evidence Controller Hook Re-
gistrar interface, must be located and the Registrar then invoked to register
the customized hook class. For example, the product type and custom Evid-
ence Controller Hook class pairing will be entered into a hashmap and then
the class looked up via the product type when it's required. In order to locate
the Evidence Controller Hook Registrar, its class name must be configured
using the environment variable
"curam.case.evidencecontrollerhook.registrars’. Note: additional entries
need to be added to this environment variable in acomma delimited format.

The implementation of the Registrar's register method must reference the

27

Curam Temporal Evidence Developers Guide

customized Evidence Controller Hook class. Doing this in code, rather than
as configuration, provides a compile time check that the referenced class ex-
ists. The existence of the Registrar, though, is only ascertained from the
provided configuration, and may result in aruntime failure if the application
is mis-configured.

The Evidence Controller Hook Manager class manages the static initializa-
tion of the Evidence Controller Hook mapping as well as the retrieval of the
subclass of the Evidence Controller Hook. If no subclass is found, the out-
of-the-box version of the Evidence Controller Hook classis returned.

28

Chapter 4

Participant Evidence Integration

4.1 Overview

Evidence is the term used for data in the calculation of eligibility and enti-
tlement. Participant data is also regarded as evidence, a concern's date of
birth for example, but in the past it wasn't always treated as classic evidence.
It is obvioudly correct for a concern's date of birth to be maintained within
the Participant Manager rather than being stored on a separate evidence en-
tity, i.e. one that is interfaced to the Evidence API, but it must also be
propagated across al cases belonging to the concern and any changes in
such evidence must trigger reassessment.

» A modification applied to Participant data will automatically apply to all
cases using this data

» Modifying such data will trigger reassessment of all cases using this data

The following Core Participant entities have been integrated with Temporal

Evidence:
e Address
e AlternatelD

» AlternateName

» BankAccount

» Citizenship

« ConcernRole

» ConcernRoleRelationship
* Education

« Employer

29

4.2

4.3

4.3.1

4.3.2

Curam Temporal Evidence Developers Guide

e Employment

* EmploymentWorkHour
» Foreign Residency

* Person

* ProspectEmployer

* ProspectPerson

Integration of Participant Data as Temporal Evid-
ence

Participant Evidence Integration is available out of the box but, like Tem-
poral Evidence, it requires a certain amount of configuration. If the config-
uration is not carried out, then all newly integrated Participant evidence will
not integrate with the Evidence API. It will, however, continue to function
as it aways has. Once configured, the Participant evidence will be linked to
one or more cases via an Evidence Descriptor. Asin the case of classic evid-
ence, the Evidence Descriptor can be associated with either an Integrated
Case or aProduct Delivery.

The required configuration links the Participant evidence types to the Integ-
rated Case(s) or Product(s) that will use them. Such datais stored on the Ad-
minl CEvidenceLink and ProductEvidencelLink respectively. Participant data
that will be stored at the Integrated Case level needs to be configured on the
Adminl CEvidenceLink entity whereas Participant evidence that will be used
by a Product needs to be configured on the ProductEvidencelLink entity.

Administration

AdminICEvidenceLink

Every integrated case type that wants to integrate the available 15 entities as
temporal evidence will need to insert an entry into the AdminlCEvid-
enceLink table. This table must link evidenceMetadatalD (from Evid-
enceMetadata table) and adminlintegratedCaselD (from Adminlntegrated-
Case table) for each participant entity required as evidence and for each in-
tegrated case type.

ProductEvidenceLink

Every product delivery case type that wants to integrate the available 15 en-
tities as temporal evidence will need to insert an entry into the ProductEvid-
enceLink table. This table must link evidenceMetadatalD (from Evid-
enceM etadata table) and productID (from Product table) for each participant

30

4.4

4.4.1

4.4.2

Curam Temporal Evidence Developers Guide

entity required as evidence and for each product type.

Integrating new Participant entities as Temporal
Evidence

Integrating new, or existing, Participant entities with Temporal Evidence re-
quires a number of steps. As mentioned above, meta-data needs to be con-
figured for Integrated Case types and Product types. As well as this, other
infrastructural support needs to be implemented by a developer in order for
the integration to work.

Implementing the ParticipantEvidencelnterface

A Participant entity being integrated into the Temporal Evidence solution
must implement the ParticipantEvidencel nterface. This means that the entity
will need to implement the following functions:

 calcAttributionDatesForCase
e getDetailsForListDisplay
» getEndDate

e getStartDate

* insertEvidence

* insertEvidenceOnModify
* modifyEvidence

» readAlIByParentlD

» readEvidence

» selectForValidation

« validate

» checkForReassessment

» createSnapshot

e getChangedAttributelL ist
» readAllIByConcernRolelD

* removeEvidence

Register entity in a Registrar Module

Participant entities being integrated to Temporal Evidence need to be re-
gistered via a Registrar Module as outlined in Section 3.8.1, Evidence Re-

31

4.4.3

4.4.4

Curam Temporal Evidence Developers Guide

gistrar Module . The out of the box participant evidence types has been con-
figured in CoreRegistrarModule. This binds the evidence type to it's entity.
These map bindings are loaded at runtime and are used by the Evidence
Controller when looking up the appropriate evidence entity for a given type,
i.e. the entity that has implemented the ParticipantEvidencel nterface.

Applying Participant Evidence to all Cases

A new hook class ApplyChangesForEvidence has been added.

The new ApplyChangesForEvidence class represents a hook which can be
overridden by custom code. The ApplyChangesForEvid-
ence.isApplyChangesAutomatedForEvidence method is called from Evid-
ence Controller to decide whether reassessment needs to be triggered when
evidence is applied. The default implementation defaults to false and there-
fore the user will have to manually apply the changes on the associated
cases. If the solutions wish to customize, the implementers should use Pro-
ductHookRegistrar.registerApplyChangesHooks method to add details of
the hooks to use for applying changes. The static map attribute, ap-
plyChangesHookMap present in ProductHookManager class is used to store
pairs of product type and the name of the class that implements the hook for
that product type. The method ProducHookM anager.getA pplyChangesHook
gets the implementation subclass of the ApplyChangesForEvidence class for
the specified product type. The method EvidenceControl-
ler.applyParticipantEvodence has been updated to obtain product delivery
and product details for the case and then call ProducHookMan-
ager.getApplyChangesHook to obtain correct instance of the Ap-
plyChangesForEvidence class for the given product.

Modifications required to existing business processes

In al places where there are existing calls to insert, modify, and less fre-
quently, remove methods, the code needs to be updated to invoke the Evid-
enceController as well as the insert, modify and remove methods as appro-
priate. An example of how an insert works with Tempora Evidence is
shown below:

/1 insert new citizenship entry
citizenshi pObj.insert(citizenshipDtls);

Figure 4.1 Before

/1
/1 Call the EvidenceController object and insert evidence
/1 Evidence descriptor details
Evi denceDescriptorinsertDtls evidenceDescriptorinsertDtls =
new Evi denceDescriptorlnsertDtls();
evi denceDescriptorlnsertDtls. participantlD =
detai | s. concer nRol el D;
evi denceDescriptorlnsertDtl s. evi denceType =
CASEEVI DENCE. ClI Tl ZENSHI P;
evi denceDescriptorlnsertDtl s. recei vedDate =
Dat e. get Current Dat e() ;

32

Curam Temporal Evidence Developers Guide

/] Evidence Interface details

El Evi dencel nsertDt| s ei Evi dencel nsertDtls =
new El Evi dencel nsertDtls();

ei Evi dencel nsertDt| s. descri ptor. assign(
evi denceDescri ptorlnsertDtls);

ei Evi dencel nsertDt| s. descriptor.participantlD =
citizenshi pDtls. concernRol el D

ei Evi dencel nsertDt | s. evi denceChj ect =
citizenshipDtls;

/'l EvidenceControll er business object
curamcore.sl.infrastructure.inpl.EvidenceControllerlnterface
evi denceControl l erhj =
(curamcore.sl.infrastructure.inpl.EvidenceControllerlnterface)
curamcore. sl.infrastructure.fact. Evi denceControl |l er Factory
. new nst ance();

/'l Insert the evidence
El Evi denceKey ei Evi denceKey =
evi denceControl | er Obj . i nsert Evi dence(ei Evi dencel nsertDtl s);

Figure 4.2 After

4.5 Sequence Diagrams for Participant evidence

The development, both client and server, of creating and modifying evid-
ence operations are outlined here:

4.5.1 Create Participant Evidence Sequence Diagram

Clignt Person
Application

M,
ifizenshi
l createCitizenship
createCitizenshi

Evidence Evidence Evidence
Relatinnship Descriptor Controller Hook

i
)

PRSI | e S

\
\
\
\
\
\
\
\
\
\
\
\
\
\
|
\
i
|
\
\
\
\
|
\
\

o
—_—
3

Figure 4.3 Participant Evidence Sequence

4.5.2 Specific Processing For Participant Data when Creating
Evidence

33

Curam Temporal Evidence Developers Guide

Evidence
Contraller

linkPart ichantDataTnEvidenc B

|

L=,

getlntegratedTaseanrF‘ar’[icipantData

|

getF'rndun:tCIisesFDrF'articipantData

T

applyF"f ticipantEvidence

|

Figure 4.4 Evidence Sequence Diagram

4.5.3 Modify Participant Evidence Sequence Diagram

34

Curam Temporal Evidence Developers Guide

Client. Parson Maintain Ewﬂeare Standard Evidence Evidence May Participant. Verifcation
[t] [| | |]) [[| | o) o

|
\

modiyEvidence.

| | |

| | |

| | |

geEvidencotlap | | |
| \ |

! |

|

|

|

U
i

| >U gelEvidenceType

epatiparosta \

Check 1o oe Tparicyat s, 150
calls getChangedAtiouteL
feodhimGosebyReledDBtausandTy
o, eacErdonce,
cieataSnapshotindEvidenceDescriptors
and applyParicipantEvidence

eise does pracessing as before

\

Aﬂc :Aiﬂ:

I wgcnangeummmu,«

i
I
I

readEsidento

f
|
|

| vertyonmtoai

mmsmmemusymmmsé‘nm

sppyPatic aniEidence

=

E,asmam‘t

chockProdupSecuiy

|
pefomValftionsOnModiyEviepce
|

cloneEviderke

I
I
I
I
e
I
I
|
T
I
I
I
———— ‘
I

ﬁTTWFﬁTT

1

nssnEsidncsOnvody |

cloneLnks

I
insert
}

ecordEvidenceChalgetistory

osiyPendngUpdate

e e

i

recorBrigenceChahgetistory
|

1

VerfyOnModiy

|
by Receiecdne

I

e

‘ﬂ

recondEuidenceChaoeHistory

verfyOnMoriy

modiyEvidence

peformValdations

|
chaciorrmatiodal:

i

getCaseTypaCade

|
|
|
|
|
|
|
i
I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
T
|
|
|
|
|
|
|
|
i
|

[f
|
|
|

| |
% m

T

Figure 4.5 Modify participant

35

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

36

Curam Temporal Evidence Developers Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

37

Curam Temporal Evidence Developers Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

38

Trademarks

Curam Temporal Evidence Developers Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other

company, product, and service names may be trademarks or service
marks of others.

39

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Temporal Evidence Developers Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Prerequisites
	1.3 Audience

	Chapter 2 Server / Client Temporal Evidence Components
	2.1 Server Side Artifacts
	2.1.1 Standard Evidence Interface
	2.1.2 Evidence Interface
	2.1.3 Participant Evidence Interface
	2.1.4 Accessing Non-modeled Functions

	2.2 Client Side Artifacts

	Chapter 3 Developing an Evidence Solution
	3.1 Administration
	3.1.1 Evidence Metadata
	3.1.2 Product Evidence Link

	3.2 Common Evidence Maintenance Operations
	3.2.1 Create Evidence
	Create Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.2 Modify Evidence
	Modify Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.3 Read Evidence
	View Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.4 List Evidence
	List Evidence Sequence Diagram
	Server - Methods to Be Developed

	3.3 Evidence Dashboard and EvidenceFlow
	3.4 Validations
	3.5 More On Validations
	3.6 Evidence Attribution
	3.6.1 Re-attribution

	3.7 Evidence Relationship
	3.8 Registering Evidence Implementations
	3.8.1 Evidence Registrar Module
	3.8.2 Legacy Evidence Registrar

	3.9 Custom Hooks
	3.9.1 Evidence Controller Hook
	3.9.2 Evidence Controller Hook Registrar & Manager

	Chapter 4 Participant Evidence Integration
	4.1 Overview
	4.2 Integration of Participant Data as Temporal Evidence
	4.3 Administration
	4.3.1 AdminICEvidenceLink
	4.3.2 ProductEvidenceLink

	4.4 Integrating new Participant entities as Temporal Evidence
	4.4.1 Implementing the ParticipantEvidenceInterface
	4.4.2 Register entity in a Registrar Module
	4.4.3 Applying Participant Evidence to all Cases
	4.4.4 Modifications required to existing business processes

	4.5 Sequence Diagrams for Participant evidence
	4.5.1 Create Participant Evidence Sequence Diagram
	4.5.2 Specific Processing For Participant Data when Creating Evidence
	4.5.3 Modify Participant Evidence Sequence Diagram

	Notices
	Trademarks

