IBM Curam Social Program Management

Persistence Cookbook

Version 6.0.4

..ll

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2010-2011 Cdram Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
R 1 1= aTo (=0 N 00 = oot PR 1
1.2 BACKGIOUNG ...ttt sttt st et e b 1
1.3 FUINEr REAAING ..ottt st sae s 2
1.4 Structure Of thiSUOCUMENTccoiiiiiei e 2

Chapter 2 Making callSto Service-1ayer APIS ...t 3
2.1 You want to read some data from a database tablecocvevenininininicnenenene 3

P2 I =Y o o o] = o 3
2.1.2ThE SOIULION .uviiiiiiiieiiee ettt 4
2.2 You want to insert anew row onto adatabase tableccocverininininiencsee 9
P2 R I 4 1= o o o] = o S 9
2.2.2ThE SOIULIONviiiiiiieieiee ettt nre s 10
2.2.3Putting it @l togEtherccv e 12
2.3 You want to modify arow on adatabase tableccccoevveiieiicce v, 13
P2 T I 0 1= o o o] = o OSSP 13
2.3.2ThE SOIULION ...viiiiiiieieiee ettt nre s 13
2.3.3Putting it @l tOgELhErccvveeceee e 15
2.4°Y ou want to remove (physically delete) arow from adatabase table 16
N I 4 =Y o o o] = o OSSP 16
2.4.2ThE SOIULION ...vviiiiiiieieiiee ettt nre s 17
243 Putting it @l tOgEthErcov e 18
2.5 You want to cancel (logically delete) arow on adatabasetablecccevveeneeee. 18
B2 N I = o o o] = o OSSR 18
2.5.2ThE SOIULION ...viiiiiiieieiee e ettt nre s 19
2.5.3Putting it @l tOgEthErccvv e 20
2.6 Youwant tolist all rows of adatabasetableccocovvviiininininineee e 20
P20 I 0 = o o o] = o S 20
2.6.2ThE SOIULION ...viiiiiiieieiee ettt 21
2.6.3Putting it @l tOgELhErccvv e 22
2.7 You want to list al child rows of a database table belonging to some parent row (on
ANOLNEr TADIE) ... 23
A R I 4 1= oo o] = o OSSP 23
2.7.2THE SOIULION ...viviiiiieieiee e ettt nre s 24
2.7.3Putting it @l tOgEthErccv e 25
2.8 SUMIMAIY .eteeietieeitieessieee st e e st e e st e st st e s s st e e st e e e bt e e ese e e sabe e e eabeeesabeeesabeeenabeeenanee s 26

Persistence Cookbook

Chapter 3 Coding SErVICE-1ayer APIS ..o ottt 30
3.1 You want to start writing the API for anew database tablecc.ccccovvvevvenennnn. 30
TR I 0 T oo o] = o O PS 30

3. L2 ThE SOIULION ..viiiiiiiieieee e et nre s 30

3.2 You want to add getters and setters to your entity interfacecccocevvvcevvenenen. 32
TNt R I 0 = o o o] = o OSSR 32
3.2.2ThE SOIULION .ttt nre s 32
3.2.3Putting it @l tOgELhErcovv e 39

3.3 You want to add persistence methods to your entity interfaceccccceevveeenenen. 40
GG I 0 = oo o] = o OSSP 41

3. 3.2 ThE SOIULION ..eeiiiiiiiieeee e bttt nre s 41
3.3.3Putting it @l tOGELNErcooveeeeee e 44

3.4 Y ou want to specify searches on your entityccccocveverveieenecce e 44
R I = oo o] = o S 44
4.2 ThE SOIULION ..viiiiiiiiieiee e ettt nre s 44

G IS U 11117 Y OSSP 46
Chapter 4 Coding service-layer implementationsccoeeeieererene s 47
4.1You want to start implementing your entity APl ..o 47
A 1.1 TREPrOBIEM ... s 47
I I 7= o LU 11T o S 47

4.2 Youwant to implement gEIEEIS ..o e 56
A.2. 1 TheProBIEM ... s 56
A I = LU 11T o S 56
A4.2.3PUtting it @l TOgEINENocveieieeee s 59

4.3 You want to implement new row defaults ..o 62
A.3. 1 ThEPrOBIEM ... 62
TG I I 7= o LU 11T o S 62

A4.4°Y ouwant to impPlemMeNnt SELEENScocooireiirereeeeee e 63
A4 T TREPIOBIEM ... s 63
R I8 7= o LU 11T o S 63

A A3 PUtiNg it @l TOJEINES ..o s 65

4.5 Y ou want to implement single-field validation ... 67
A5 1 ThEProBIEM ... s 67
A I = o LU 11T o S 67
453 PUting it @l TOJELNEYoveiieeee s 71

4.6'Y ou want to implement mandatory-field validationccccooerririnnenencnenn 73
A.6. 1 TheProBIEM ... s 73
A I 7= o LU 11T o S 73

4.7 Y ou want to implement cross-field validationcccooevenineninieieeee e 75
A.7.1TheProBIEM ... s 75
O I == o LU 11T o 75

4.8 Y ou want to implement cross-entity validationcccoceverinenenienieiesee e 76
A.8. 1 ThEProBIEM ... s 76
G I I == o LU 11T o S 76
Chapter 5 Creating @ GUICE MOUIEooiiiiiiiee e 77
5.1 Create aclass extending AbStraCtModUIeooeiieieieie e 77
5.2 Storearow on ModuleCIaSSNEAIMEcoceiiireriinie e 78

Persistence Cookbook

O 0L Gl V= | USSR 80
6.1 Identify where an event must be raiSedc.cceeveeee e 81

6.2 Definethe EVent INtErfate ... e 81

6.3 Create an EventDiSpatCherFaCtoryccccceieeieeee et 82

5.4 RAISE BVENES ..o.viviieieiieieie ettt st sttt ettt e b bbbttt e et ne e 83

6.5 Create an eVent lISTENEN ..o e 84

5.6 CONFIGUIE GUICE ...ttt sttt sttt te s e ne et e neesreenseeneenneenneeneas 84

6.7 Writing listeners for automatic persistence eVentscccoceveeveeceeseesesseeseesieennns 85

6.8 Design Considerations With EVENESccvieeieeii e 86

6.9 Backward COmMPatibDilitycccceeeeieiiesieie e 87
Chapter 7UsiNg ENLItY CONTEXLcovviieieeieceeseerie e ete e see e sse e e e eeesseesseensesneens 88
R N 4T] o = o SR 88

A2 N 4TS o U 1o o S 88

7.3 Customising Inserts using entity CONTEXTcccurerirerieeierese e 89

7.4 Customising Reads using entity CONEEXTcccuvereririienieresie e 92

7.5 Customising other operations using entity CONEXTccccerererererenienieereese e %!
Chapter 8 Stat TrANSITIONSooeiiieiiiie ettt sse e b e tesaeesseeeesseesreesesneens 95
ST I 0T o] 0] o= o o USRS 95

ST I TSR o 11 14 To o SRR 96
8.2.1 SPECIHTY SIALES ..ttt 97

8.2.2 Specify storage mechanism for the state valueccccoeeeeeievenieneeneenen, 97

8.2.3 Identify transition MELhOAScooeeiiiiiiie e 98

8.2.4 Implement getLifeCyCleSLAecoveriiieiiiee e 100

8.2.5 Create amap to hold the permitted Statesccoooeverieniienieierereeee 100

8.2.6 Create an object for €aCh Statecccoeeieiieiiii e 100

8.2.7 Create an object for each permitted transitionccoccoeveieniinenenienens 101

8.2.8 Create a private getter to retrieve the current Stateccoeeeevveeeveeiienenns 102

8.2.9 Create a private setter to set the current Stateocceeveveeveniinicneeienns 103

8.2.10 Create a private helper method to perform a state transition 103

8.2.11 Implement state transition MELhodscccoeviiininieieee e 104

8.2.12 Specify the initial SEALecccoerieiieieeesee e 105

8.2.13 Add state transition validation [0QICcccoeeiiireiienieneeseee e 105

8.2.14 Override the modify method (if required)cccoooeriiiieniniinereeens 106

S.3 PUttiNg it @l tOGELNEN ..o e 107
Chapter 9 TNNEMTANCEcoveeeiee ettt a e e 112
9.1 1dentifying INNEITANCEccveviiriirieii e 112

9.2 Entity interfaCe iNNENTANCEcccoveiiieieseeeee e 113

9.3 DAO INLEITACES ...oviiiiieieiieieie ettt bbbt ne et b e 113

9.4 Deciding on database StOragEcceveeiueieerieeie e eree e ste et 115
9.4.10Netable PEr ClaSSccoeeieceece e 115

9.4.2 One table per CONCrEte ClaSSccvveeiieiiie et 124

9.4.3 Onetable for the whole hierarchycccocevieiiiiiecce e, 131

Chapter 10 Adding New Searchesto EXisting ENtitiescccooevveiivrieveesecese e 140
O o o] 07 o o 00 S 140

O DZA N o o] 0 o o 1SR 141

Persistence Cookbook

[N (o= 143

Vi

1.1

1.2

Chapter 1

Introduction

Intended Audience

This documented is intended to be read and used by designers and de-
velopers of server application functionality which:

» calls service-layer APIs developed using the Persistence Infrastructure;
and/or

* isdeveloped as service-layer APIs using the Persistence Infrastructure.

Background

The service layer in "classic" Curam was developed using an approach
which combined:

* "Process classes’, which contained processing logic only (i.e. no data);
and

e "Struct classes’, which contained data only (i.e. no processing logic).

By comparison, a service layer developed using the Persistence Infrastruc-
ture contains classes which contain both processing and data.

Thus a service layer developed using the Persistence Infrastructure looks
and feels very different to its classic-Caram counterpart, not only to those
designers and developers delivering such a service layer, but also to those
designers and developers who must make use of it. Code which calls ser-
vice-layer APIsistypically either:

« facade-layer logic, responsible for trandating the data received from a
user interface screen into aformat suitable for passing into a service-lay-
er API call, or similarly tranglating the data returned from a service-lay-
er APl call into aformat suitable for returning to a user interface screen;

1.3

1.4

Persistence Cookbook

or

* server logic in another system, which is designed to re-use the service
layer developed using the Persistence Infrastructure.

The purpose of this document is to show developers how to use and develop
service-layer APIs, through a series of scenarios and solutions, and how to
customize out-of -the-box software that uses the Persistence Infrastructure.

Further Reading

For more information about the classes and interfaces included in the Per-
sistence Infrastructure, see its JavaDoc.

Structure of this document

The scenarios in this cookbook are categorized (according to the task at
hand) as follows:

* making calsto service-layer APIs;
» coding service-layer APIs; and

» coding service-layer implementations.

Each of these categories enumerates a number of scenarios, and each scen-
ario describes the problem to be solved and walks through how to "cook up"
asolution.

One possible scenario is that you are customizing software provided out-
of-the-box. One common reason for doing this is to add attributes to data-
base entities provided out-of-the-box. If thisis what you are doing then you
may only need to read the following three chapters, after which you may se-
lectively read the rest of this guide as necessary:

» creating a Guice module;

s events,

e using entity context.

There are also chapters covering more advanced topics:
» statetransitions; and

* inheritance; and

» adding new searches to existing entities.

2.1

2.1.1

Chapter 2

Making calls to service-layer APIs

The scenarios in this section describe how to make calls into service-layer
APIsfrom other code. Typically this"other code" is fagade-layer logic.

Whilst service-layer APIs can perform a wide variety of functionality, very
typically the overwhelming majority of service-layer API calls are related to
the reading or writing of database data. Accordingly, the scenarios in this
section are described in terms of database tables.

These scenarios build up atypical facade which controls the
e read,

* insert;

* modification;

e removd,

 cancellation; and

o it

of adata stored on a database table.

You want to read some data from a database ta-
ble

The problem

Y ou are writing a fagade method which needs to:
* retrieve adatabase row based on its primary key; and

» format the data for return to the user interface, where it will be displayed
to the user.

2.1.2

Persistence Cookbook

Under classic Curam, you would have created a call to the generated "en-
tity" method as follows:

public class MyFacade {
I ..
public SoneEntityDetails viewSoneEntityDetail s(
final SoneEntityKey key) throws AppExcepti on,
I nf or mat i onal Exception {
/] create an instance of the return struct
final SoneEntityDetails soneEntityDetails =
new SoneEntityDetail s();
/1 objects for reading the database
final SoneEntity soneEntityQhj =
SoneEntityFact ory. newl nst ance() ;
final SoneEntityKey soneEntityKey = new SoneEntityKey();
final SonmeEntityDtls soneEntityDtl s;

/1l map the key
someEnt i tyKey. sonmeEntityl D = key. soneEntityl D

/] do the read
soneEntityDtls = soneEntityObj.read(soneEntityKey);

/1 map the details returned - in this situation the return
/] struct aggregates the generated entity Dtls struct
soneEntityDetails.details = soneEntityDtls;

[/ return to the client

return soneEntityDetails;

}

Figure 2.1 Facade calling classic Ciram entity to read a database
row

How do you read from a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution

Reading data from a service-layer APl (developed using the Persistence In-
frastructure) involves writing code using two interfaces, which will be intro-
duced by example:

» theinterface for the entity being read; and

» theinterface for the entity's Data Access Object ("DAQ").
Coding the solution involves these steps:

» create aclass variable to hold the DAQ;

» create aconstructor to request Guice to inject class variables

use the DAO to retrieve the instance of the entity; and

e accessthe entity instance to map field values to the client struct.

Create a class variable to hold the DAO

Persistence Cookbook

Firstly, you need to create a class member variable for the entity's DAO, and
annotate it with @ nj ect :

public class MyFacade {
1.

@ nj ect _
private SomeEntityDAO soneEntityDAG,

Figure 2.2 Creating an injected member variable for a DAO

(The @ nj ect annotation is provided by Guice, a dependency injector. At
runtime, Guice will initialize the soneEnt i t yDAOvariable to use the con-
figured implementation of SoneEnti tyDAO . You don't really need to
worry about any of this.)

ThesoneEnt i t yDAOobject "knows' how to create instances of the entity
interface. In this scenario, you'll use the DAO to retrieve the instance of the
entity from the database.

Create a constructor to request Guice to inject class variables

Because instances of your class are created outside of Guice's control, you
must code an explicit constructor which requests Guice to "inject" class
variables (in particular the sonmeEnt i t yDAO variable you created in the
previous step):

publi ¢ MyFacade() {
Cui ceW apper. getlnjector().injectMenbers(this);

}

Figure 2.3 Creating a public constructor to inject member
variables

If you fail to do this step, then when your application runs you will likely
see a Nul | Poi nt er Excepti on when your application attempts to ac-
cessthesonmeEnt i t yDAOvariable.

Use the DAO to retrieve the instance of the entity

In your fagade method, code a variable to hold an instance of the entity in-
terface, and set its value by calling .get() on the DAO, passing the key of the
database row:

/'l retrieve the instance of the entity
final SoneEntity soneEntity = soneEntityDAQ. get(key.soneEntitylD);

Figure 2.4 Calling a DAO to get an instance of an entity based on
its key

Here, the DAO instance has "dished up" the required instance of the entity
interface. someEnt i t y now holds an object which "knows" how to:

Persistence Cookbook

o et at data (via "getter" methods); and also
» "dothings' with that data (via other methods).

Access the entity instance to map field values to the client struct

Now code calls to the entity "getters’ to map fields values to your return
struct:

/1 map the details fromthe entity instance
soneEntityDetails.details.someEntityl D = sonmeEntity. getlD();
soneEntityDetail s. details. name = sonmeEntity. get Name();
soneEntityDetails.details.versionNo = soneEntity. getVersionNo();

final DateRange dat eRange = someEntity. get Dat eRange();
soneEntityDetails.details.startDate = dateRange.start();
soneEntityDetail s. details. endDat e = dat eRange. end();

/1 ...nmore mappings

Figure 2.5 Calling getter methods on an entity interface

Points to note:

* Every entity APl has a. get | D() method, which returns its primary
key. There will not be a specific getter for the entity's primary key field,
e.g. thereisnosoneEntity. get SonmeEnti tyl D() method.

e The APl for any entity which supports optimistic locking has a
. get Ver si onNo() method.

» Some getters do not return primitive types, but instead return objects,
eg. there ae no soneEntity.getStartDate() or
. get EndDat e() methods, only a . get Dat eRange() method
which returns a Dat eRange object which contains a start and end date,
but is aso capable of date-range processing such as validation and com-
parison.

Y ou must code a mapping for each field that you need to return to the client.
Code-completion in IDEs like Eclipse will help!

Putting it all together
Here's the complete code for this scenario solution:
pu;)}i c class MyFacade {

@ nj ect
private SoneEntityDAO soneEntityDAG,

publ i c MyFacade() {
Cui ceW apper . getlnjector().injectMenbers(this);
}

public SoneEntityDetails viewSoneEntityDetail s(
final SoneEntityKey key) throws AppException,
I nf or mat i onal Exception {

}

I/

}

Persistence Cookbook

/] create an instance of the return struct
final SoneEntityDetails soneEntityDetails =
new SoneEntityDetail s();

/1 retrieve the instance of the entity
final SoneEntity soneEntity =
soneEnt i t yDAO. get (key. soneEntityl D);

/'l map the details fromthe entity instance
someEntityDetails.details.someEntityl D = someEntity. getlD();
soneEntityDetail s. details. name = soneEntity. get Name();
someEntityDetails.details.versionNo = soneEntity. getVersionNo();

final DateRange dat eRange = soneEntity. get Dat eRange();
soneEntityDetails.details.startDate = dateRange.start();
soneEntityDetail s. details. endDat e = dat eRange. end();

[l ...nmore mappi ngs

// return to the client
return soneEntityDetails;

Figure 2.6 Complete listing for a facade "view" method

For thisfirst scenario only, here's a side-by-side ook at the classic approach
vs. the service-layer API approach:

Persistence Cookbook

pusrabueyaiep = a3EQPUS’

) oquotEraniak

¥ = [TR-
u.ﬂu:u_,u.._._om.

diyarasb-far

HlartfaTaugswes - foy) 32k ovoliraugswss - SlTaugswes LiTiumswos TRUTE

FONSTTERNdAITIVAGNOS MU = ST

b ouagg
b ifay Aewiataugawos TEUTF)STTEI

OO EWT0 T T

TIUASWOSMSTA STTEISTAIT

Lv_/

BT

8Tyl) sraquawisalur - () Todsalurialb - saddeamaoTng :

bl esesegfn orTand

fowafaTiugesucs owndlTiuzawos ejeatad

boBoeoelin sseTo opTand

[dV A1ua 19AR[-221A198 & SISy

g

(Ao Aawda

\I#M: PEUEIFUTMSU A

uInge

fordatiuzswos- fay - aTi3TIugswos -

) hawda

} epeoegfn sseTo orTand

Anus wenyy M1sse]o,, B wol Suipeay

Figure 2.7 Comparison of a fagade view calling a "classic" service

the Persistence

ing

layer developed usi

ing a service

layer vs. call

Infrastructure

2.2

2.2.1

Persistence Cookbook

Legend

1. The object which knows how to retrieve instances of the entity. Using
the persistence package, the object is called a Data Access Object
("DAQ") and is a class member variable initialized by Guice using
@ nj ect . The class constructor requests Guice to initialize this (and
any other) class variable(s).

2. Theretrieval of the entity from the database uses the DAO.
3. Thedataheld on the entity is mapped to the client struct.

Note that when using service-layer APIs, in general:

» Code to retrieve instances of these APIs is more terse than when using
classic Curam; but

* Code to map entity data to client structs is more verbose (but thisis after
all one of the main purposes of fagade logic).

You want to insert a new row onto a database
table

The problem

You are writing a facade method which needs to insert a new row onto a
database table.

Under classic Curam, you would have created a call to the generated "en-
tity" method as follows:

1.
publ i c SoneEntityKey createSonmeEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformational Exception {

// create an instance of the return struct
final SoneEntityKey key = new SoneEntityKey();

/] objects for witing to the database

final SoneEntity soneEntityQhj =
SoneEnt it yFact ory. newl nst ance() ;

final SoneEntityDtls soneEntityDtls;

[/l map the details
soneEntityDtls = details.details;

/'l do the insert
soneEntityQoj.insert(soneEntityDtls);

/'l check for informational exceptions
Transacti onl nf 0. get | nf or mat i onal Manager (). fail Operati on();

/1 map the key assigned
key.soneEntityl D = soneEntityDtls. someEntityl D;

/] return to the client

2.2.2

Persistence Cookbook

return key;

...
Figure 2.8 Facade calling classic Curam entity to create a
database row

How do you insert a new row onto a database table using a service-layer
API (developed using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

» create aclass variable to hold the DAQ;

» usethe DAO to create anew instance of the entity;

» accessthe entity instance to set field values from the client struct;
* instruct the entity instance to insert itself onto the database; and

* map the entity instance key back to the client (if required).

Create a class variable to hold the DAO

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

In general more than one fagade method will require to use the DAO object.
Of course, you only need to create the DAO object class member once for
the facade class!

Use the DAO to create a new instance of the entity

In your facade method, code a variable to hold an instance of the entity in-
terface, and set its value by calling .newlnstance() on the DAO, passing the
key of the database row:

/] create a new entity instance
final SoneEntity soneEntity = soneEntityDAQO new nstance();

Figure 2.9 Calling a DAO to create a new instance of an entity

Here, the DAO instance has "dished up" a new instance of the entity inter-
face, which does not (yet) exist on the database. The entity itself takes care
of setting its data fields to sensible defaults.

soneEnt i t y now holds an object which "knows" how to:

o et at data (via "getter" methods);
e set data (via"setter" methods); and

10

Persistence Cookbook

« "dothings" with that data (via other methods).

Access the entity instance to set field values from the client
struct

Now code calls to the entity "setters' to map fields values from your input
struct:

/]l map the details
soneEntity. set Nane(detail s. details. nange);
fi nal Dat eRange dat eRange = new Dat eRange(
details.details.startDate,

details.details.endDate);

soneEntity. set Dat eRange(dat eRange) ;
/1 ...nore mappings

Figure 2.10 Calling setter methods on an entity instance

Points to note:

» Often, an entity may have a getter to allow retrieval of a data field, but
have no corresponding setter. Thisis because the entity manages the set-
ting of such fields, and does not allow the field to be set by calling code.
Common examples include:

* theentity'slD;
» the"logical delete" record status, and
» lifecycle state.

» Some setters do not take primitive types, but instead take objects, e.g.
thereareno soneEntity. set Start Dat e() or. set EndDat e()
methods, only a . set Dat eRange() method which takes a Dat eR-
ange object which contains a start and end date.

* When you call a setter on an entity instance, the entity instance will per-
form any single-field validation on the field being set.

Y ou must code a mapping for each field that you need to populate from the
client.

Instruct the entity instance to insert itself onto the database

Once the entity instance has been populated with data supplied by the client,
you must code a call for the entity instance to store itself:

/! do the insert
sonmeEntity.insert();

Figure 2.11 Calling the insert persistence method on an entity
instance

11

2.2.3

Persistence Cookbook

The entity instance will:
« perform additional validation, including:

* mandatory field validation (i.e. check that all mandatory fields have
been set);

» cross-field validation; and

e cross-entity validation;

e assignaprimary key value; and
e insertitsdatainto the database.

Map the entity instance key back to the client (if required)

Some fagade methods require to return back to the client the key of a new
row stored.

If required, code a mapping to return the key:

/1 map the key assigned
key.soneEntityl D = soneEntity.getlD();

Figure 2.12 Retrieving the ID of an entity instance

Putting it all together

Here's the complete code for this scenario solution:

...
publ i c SoneEntityKey createSoneEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformati onal Exception {

/] create an instance of the return struct
final SoneEntityKey key = new SoneEntityKey();

/] create a new entity instance
final SoneEntity soneEntity = soneEntityDAQO new nstance();

/1l map the details
soneEntity. set Nane(detail s. details.nange);

final Dat eRange dat eRange =
new Dat eRange(details.details.startDate,
details. details.endDate);

soneEntity. set Dat eRange(dat eRange) ;

[l ...nmore mappi ngs

/1 do the insert
soneEntity.insert();

/1 map the key assigned
key. soneEntityl D = soneEntity.getl D();

/[l return to the client
return key;

12

2.3

2.3.1

2.3.2

Persistence Cookbook

Figure 2.13 Complete listing for a facade "create" method

Note that there IS no call to Transacti on-
I nf 0. get I nformati onal Manager () .fail Operation() - the
entity i nsert operation takes care of al error handling.

You want to modify a row on a database table

The problem

You are writing a fagade method which needs to modify the contents of an
existing row on the database.

Under classic Caram, you would have created a call to the generated "en-
tity" method as follows:

...
public void nodi fySoneEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformati onal Exception {

/1 objects for witing to the database

final SoneEntity soneEntityQoj =
SoneEnti tyFact ory. newl nst ance();

final SoneEntityDtls soneEntityDtls;

/1 map the details
soneEntityDtls = details.details;

/] create an instance of the key
final SoneEntityKey soneEntityKey = new SoneEntityKey();
soneEntityKey. soneEntityl D = someEntityDtls. soneEntityl D

/] do the nodify
soneEntityQoj . nodi fy(soneEntityKey, soneEntityDtls);

/] check for informational exceptions
Transacti onl nf o. get | nf or mat i onal Manager (). fail Operation();

}
...

Figure 2.14 Facade calling classic Caram entity to modify a
database row

How do you modify an existing row on a database table using a service-lay-
er APl (developed using the Persistence Infrastructure)?

The solution

The solution draws together elements of processing seen in the earlier scen-
arios:

* Section 2.1, You want to read some data from a database table ; and

e Section 2.2, You want to insert a new row onto a database table .

13

Persistence Cookbook

Coding the solution involves these steps:

» create aclassvariable to hold the DAG;

» usethe DAO to retrieve the instance of the entity;

» accessthe entity instance to set field values from the client struct; and

* instruct the entity instance to modify its data on the database.

Create a class variable to hold the DAO

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Use the DAO to retrieve the instance of the entity

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Access the entity instance to set field values from the client
struct

This step is identical to that in Section 2.2, You want to insert a new row
onto a database table above.

Itislikely that afacade class will contain both of the following methods:
» amethod which insert anew row onto a database table; and

» amethod which modifies an existing row on a database table.

For facades which contain both of these kinds of methods, it is likely that
the steps to map client data to setters are very similar. Any identical pro-
cessing should be factored into a common method:

11
/

% -

Maps client details to the setters on the service-layer API

@ar am sonmeEntity

the service-layer instance of the entity
@ar am sonmeEntityDtls

the client details to map

* % ok ok X X Xt

*

*/
private void set SomeEntityDetail s(final SoneEntity sonmeEntity,
final SoneEntityDtls someEntityDils) {

/] map the details
soneEntity. set Nane(soneEntityDt| s. nane) ;

final Dat eRange dat eRange =
new Dat eRange(soneEntityDtls. startDate,
soneEntityDtls. endDat e) ;
soneEntity. set Dat eRange(dat eRange) ;
/1 ...nore mappings

14

2.3.3

Persistence Cookbook

Figure 2.15 Factoring out common calls to setter methods

Note that this method cannot be modeled as the entity interface argument is
not present in the Ciram model; thus this method is private to the Java im-
plementation.

Instruct the entity instance to modify its data on the database

Once the entity instance has been popul ated with data supplied by the client,
you must code a call for the entity instance to store its changes.

/1 do the nodify, passing the version nunber fromthe client
someEntity. nodi fy(details.details.versi onNo);

Figure 2.16 Calling the modify persistence method on an entity
The entity instance will:
» perform additional validation, including:

* mandatory field validation (i.e. check that all mandatory fields have
been set);

» cross-field validation; and

e cross-entity validation;

» modify its data on the database.

o=

Important

For an entity which supports optimistic locking, you must pass the
version number held by the client struct. Do not be tempted to use
the version number on the entity instance which has been retrieved,
as this would render the optimistic lock mechanism useless and al-
low one user's updates to be overwritten by another user's updates:

[** *xkxxxxkxxx VERY VERY BAD - DO NOT DO THI SI ****xxxkks x/
/1 do the nodify, passing the version nunber fromthe entity
/1 instance
someEntity. nodi fy(sonmeEntity. getVersionNo());
[%% kkxxxxkkxx VERY VERY BAD - DO NOT DO THI SI ****xxxkks x/

Figure 2.17 Incorrect - bypassing optimistic locking safeguards

Putting it all together
Here's the complete code for this scenario solution:

I,
public void nodi fySoneEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformational Exception {

/'l retrieve the instance of the entity

15

2.4

2.4.1

Persistence Cookbook

final SoneEntity soneEntity = soneEntityDAO
.get(details.details.soneEntitylD);

/'l set the fields
set SoneEntityDetail s(soneEntity, details.details);

/1 do the nodify, passing the version nunber fromthe client
soneEntity. nodi fy(details.details.versi onNo);

}

/**

* Maps client details to the setters on the service-layer API
*

* @aram soneEntity

* the service-layer instance of the entity

* @aram soneEntityDtls

t the client details to map

*

*/

private void set SomeEntityDetails(final SoneEntity sonmeEntity,
final SoneEntityDtls sonmeEntityDtls) {

/1 map the details
soneEntity. set Nane(sonmeEntityDt| s. nane);

final DateRange dateRange =
new Dat eRange(soneEntityDt|s. start Date,
soneEntityDtl s. endDat e) ;
soneEntity. set Dat eRange(dat eRange) ;
[l ...nmore mappings

}
Il

Figure 2.18 Complete listing for a facade "modify" method

You want to remove (physically delete) a row
from a database table

The problem

You are writing a fagcade method which needs to remove an existing row
from the database.

Under classic Caram, you would have created a call to the generated "en-
tity" method as follows:

...
public void renpoveSoneEntityDetail s(final SomeEntityKey key)
t hrows AppException, |nformational Exception {

/] objects for witing to the database
final SoneEntity soneEntityQhj =
SoneEnt it yFact ory. newl nst ance();

/] create an instance of the key
final SoneEntityKey soneEntityKey = new SoneEntityKey();
soneEntityKey. soneEntityl D = key. soneEntityl D;

/1 do the renove
soneEntityQbj . renpve(soneEntityKey);

16

2.4.2

Persistence Cookbook

/'l check for informational exceptions
Transacti onl nf o. get | nf or mat i onal Manager (). fail Operati on();

}
...

Figure 2.19 Fagade calling classic Caram entity to remove a
database row

How do you remove an existing row from a database table using a service-lay-
er APl (developed using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

» createaclassvariableto hold the DAQ;
» usethe DAO to retrieve the instance of the entity;

* instruct the entity instance to remove its data from the database.

Create a class variable to hold the DAO

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Use the DAO to retrieve the instance of the entity

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Instruct the entity instance to remove its data from the database

Y ou must code a call for the entity instance to remove its data from the data-
base:

/1 do the renobve, passing the version nunber fromthe client
soneEntity. renmove(key. versi onNo) ;

Figure 2.20 Calling the remove persistence method on an entity
The entity instance will:

» perform cross-entity validation, allowing other entities to veto the re-
moval; and

* remove its data from the database.

For an entity which supports optimistic locking, you must pass the version
number held by the client struct. Note that this approach is stricter than the

17

2.4.3

2.5

2.5.1

Persistence Cookbook

classic Curam approach which does not require a version number.

| Important
@

Do not be tempted to use the version number on the entity instance
which has been retrieved, as this would render the optimistic lock
mechanism useless and allow one user's updates to be removed by
another user acting on out-of-date data:

[*¥% **xxxxkxxx VERY VERY BAD - DO NOT DO THI S! *****xxxkx x/
/1 do the renmpbve, passing the version nunber fromthe entity
/] instance
soneEntity. renove(soneEntity. getVersi onNo());
[*¥% **kkxkxxkx VERY VERY BAD - DO NOT DO THI Sl *****kkksx)

Figure 2.21 Incorrect - bypassing optimistic locking safeguards

Putting it all together
Here's the complete code for this scenario solution:

...
public void renoveSoneEntityDetail s(
final SoneEntityKeyVersion key)
throws AppException, |nformational Exception {
/] retrieve the instance of the entity
final SoneEntity someEntity =
sonmeEnt i t yDAO. get (key. soneEntityl D);

/1 do the renove, passing the version nunber fromthe client
soneEntity. renove(key. versi onNo) ;

}
...

Figure 2.22 Complete listing for a facade "remove" method

You want to cancel (logically delete) a row on a
database table

The problem

You are writing a fagade method which needs to cancel an existing row on
the database (i.e. set its "recordStatus’ to "Canceled").

Under classic Curam, you would have created a call to a non-stereotyped
"entity" method as follows:

1.,
publ i c void cancel SoneEntityDetail s(
final SoneEntityKeyVersion key)
t hrows AppException, |nformational Exception {

/'l objects for witing to the database

18

2.5.2

Persistence Cookbook

final SoneEntity soneEntityQhj =
SoneEntityFact ory. newl nstance();

/] create an instance of the key/version

final SoneEntityKeyVersion soneEntityKeyVersion =
new SoneEntit yKeyVersion();

sonmeEnt i t yKeyVer si on. someEntityl D = key. someEntityl D;

someEnt i t yKeyVer si on. ver si onNo = key. ver si onNo;

/1 do the cancel
someEnt it yQbj . cancel (sonmeEnt it yKeyVer si on);

/'l check for informational exceptions
Transacti onl nf o. get | nf or mat i onal Manager (). fail Operation();

}
...

Figure 2.23 Facade calling classic Curam entity to cancel a
database row

How do you cancel an existing row on a database table using a service-layer
API (developed using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

» createaclassvariableto hold the DAO;
» usethe DAO to retrieve the instance of the entity;

 instruct the entity instance to cancel its data on the database.

Create a class variable to hold the DAO

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Use the DAO to retrieve the instance of the entity

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Instruct the entity instance to cancel its data on the database

You must code a call for the entity instance to cancel its data on the data-
base:

/1 do the cancel, passing the version nunber fromthe client
soneEntity. cancel (key. versi onNo) ;

Figure 2.24 Calling the cancel method on an entity

The entity instance will:

19

2.5.3

2.6

2.6.1

Persistence Cookbook

« perform cross-entity validation, allowing other entities to veto the can-
cellation; and

e cancel its datafrom the database.

For an entity which supports optimistic locking, you must pass the version
number held by the client struct.

[Important

@
Do not be tempted to use the version number on the entity instance

which has been retrieved, as this would render the optimistic lock
mechanism useless:

[xx RxExxxxkkx \VERY VERY BAD - DO NOT DO THI Sl *#***xxxx% &/
/1 do the cancel, passing the version nunber fromthe entity
/] instance
soneEntity. cancel (sonmeEntity. getVersi onNo());
[xx RxExxxxkkx \VERY VERY BAD - DO NOT DO THI Sl *#***xxxx% &/

Figure 2.25 Incorrect - bypassing optimistic locking safeguards

Putting it all together
Here's the complete code for this scenario solution:

I,
publ i c void cancel SoneEntityDetail s(
final SoneEntityKeyVersion key)
t hrows AppException, |nformational Exception {
I/l retrieve the instance of the entity
final SoneEntity soneEntity =
soneEnt i t yDAO. get (key. soneEntityl D);

/1 do the cancel, passing the version nunber fromthe client
soneEntity. cancel (key. versi onNo) ;

}
...

Figure 2.26 Complete listing for a facade "cancel" method

You want to list all rows of a database table

The problem

Y ou are writing a fagade method which needs to:

* retrieve al rows from a database table; and

» format the data for return to the user interface, where it will be displayed
to the user.

Under classic Curam, you would have created a call to the generated "en-

20

2.6.2

Persistence Cookbook

tity" method as follows:

1.,
publ i ¢ SoneEntitySummaryDetail sList |istSoneEntityDetail s()
t hrows AppExcepti on, |nformational Exception {

/1 create an instance of the return struct

final SoneEntitySummaryDetail sList list =
new SoneEntitySummaryDet ai | sList();

/1 objects for reading the database

final SoneEntity soneEntityCoj =
SoneEntityFact ory. newl nst ance() ;

final SomeEntityDtlsList someEntityDtlsList;

/] do the read
someEntityDtl sList = sonmeEntityQoj.readAl();

/! map the details returned
for (int i = 0; i < someEntityDtlsList.dtls.size(); i++) {
final SoneEntitySummaryDetails soneEntitySumaryDetails =
new SoneEntitySummaryDetail s();

soneEnt it ySummar yDet ai | s. assi gn(
soneEntityDtlsList.dtls.iten(i));

list.details.addRef (someEntitySunmaryDetails);
}

// return to the client
return |ist;
}

...

Figure 2.27 Fagade calling classic Curam entity to list all
database rows

How do you list al rows from a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

» createaclassvariableto hold the DAO;
» usethe DAO to retrieve al the instances of the entity; and

» iterate the set of entity instances and access these instances to map field
valuesto the client struct.

Create a class variable to hold the DAO

This step isidentical to that in Section 2.1, You want to read some data from
a database table above.

Use the DAO to retrieve all the instances of the entity

In your fagade method, code a variable to hold a set of instances of the en-
tity interface, and set itsvalue by calling . r eadAl | () onthe DAO:

21

2.6.3

Persistence Cookbook

/1 retrieve all the instances of the entity
final Set<SomeEntity> soneEntities = soneEntityDAO readAll ();

Figure 2.28 Calling a DAO method to read multiple entity
instances

Note that (in this particular example):

 the DAOreadAl | method returns a Set , typed with the entity inter-
face (SoneEntity); and

 this scenario assumes that the API designer created ar eadAl | method
on the DAO (it does not have one by default).

Iterate the set of entity instances and access these instances to
map field values to the client struct

Now code aloop which iterates the set retrieved, and maps each instance to
the client struct. Note that since a Set is used, the Java 5 syntax for "for"
loops can be used:

/1 map the details returned
for (final SoneEntity sonmeEntity : soneEntities) {
final SoneEntitySumaryDetails soneEntitySumaryDetails =
new SoneEntitySummaryDetail s();
someEnt it ySummaryDet ai | s. soneEntityl D = soneEntity.getlD();
soneEnt it ySummaryDet ai | s. nane = soneEntity. get Nane();

list.details.addRef (sonmeEntitySunmaryDetails);
}

Figure 2.29 Iterating through multiple entity instances

Putting it all together
Here's the complete code for this scenario solution:

1.
publ i ¢ SoneEntitySummaryDetail sList |istSoneEntityDetail s()
t hrows AppException, |nformational Exception {

/] create an instance of the return struct
final SonmeEntitySummaryDetailsList |list =
new SoneEntitySummaryDet ai | sList();

/] retrieve all the instances of the entity
final Set<SomeEntity> soneEntities = soneEntityDAQ readAll ();

/! map the details returned
for (final SoneEntity sonmeEntity : soneEntities) {
final SoneEntitySummaryDetails soneEntitySumaryDetails =
new SoneEntitySummaryDetail s();
someEnt it ySummaryDet ai | s. soneEntityl D = soneEntity.getlD();
soneEnt it ySummaryDet ai | s. nane = soneEntity. get Nane();

list.details.addRef (someEntitySunmaryDetails);
}

/[l return to the client

22

2.7

2.7.1

Persistence Cookbook

return |ist;

Figure 2.30 Complete listing for a facade "list all" method

Note that the assignment to the someEntities set was shown for clarity only -
equivalent terser code is shown below:

...
publ i c SonmeEntitySunmmaryDetail sList |istSoneEntityDetail s()

throws AppException, |nformational Exception {

/] create an instance of the return struct

final SoneEntitySunmaryDetailsList |list =
new SonmeEntitySummaryDet ai | sLi st();

for (final SoneEntity soneEntity : soneEntityDAO readAll ()) {
/1 map the details returned
final SoneEntitySumaryDetails soneEntitySumaryDetails =

new SoneEntitySummaryDetail s();

soneEntitySumaryDetails. soneEntityl D = sonmeEntity. getlD();
soneEntitySummaryDetail s. nane = soneEntity. get Nane();

|list.details.addRef(sonmeEntitySunmaryDetails);

/] return to the client
return list;

}
...

Figure 2.31 Complete listing for a facade "list all" method (terser
version)

You want to list all child rows of a database ta-
ble belonging to some parent row (on another
table)

The problem

Y ou are writing a facade method which needs to:

» retrieve al rows from a database table for agiven "parent ID"; and

» format the datafor return to the user interface, where it will be displayed
to the user.

Under classic Caram, you would have created a call to the generated "en-
tity" method as follows:

I,
publ i ¢ SonmeChi | dSumar yDet ai | sLi st |i st SoneChil dDet ai | s(
final SoneParentKey key)
t hrows AppException, |nformational Exception {

23

2.7.2

Persistence Cookbook

/| create an instance of the return struct
final SoneChil dSummaryDetail sList list =
new SonmeChi | dSunmar yDet ai | sLi st () ;

/'l objects for reading the database

final SoneChild soneChil dObj = SoneChil dFactory. newl nstance();

final SoneChildDtlsList someChil dDtl sLi st;

/] set up the key

final SoneParent Key soneParent Key = new SonePar ent Key() ;

somePar ent Key. sonmeParent | D = key. sonePar ent | D;

/] do the read

someChi | dDt | sLi st =
soneChi | dObj . sear chBySonePar ent (sonePar ent Key) ;

/1 map the details returned

for (int i = 0; i < someChildDtlsList.dtls.size(); i++) {
final SonmeChil dSummaryDetails soneChil dSumraryDetails =

new SoneChi | dSummar yDet ai | s() ;

soneChi | dSummar yDet ai | s. assi gn(

soneChi | dDt | sList.dtls.item(i));
list.details.addRef(someChil dSummaryDetail s);

// return to the client
return |ist;

}
11

Figure 2.32 Fagade calling classic Curam entity to list all child
database rows for a given parent

How do you list child rows for a given parent using a service-layer API
(developed using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:
» create aclass variable to hold the DAO for the parent entity;
» usethe DAO to retrieve the instance of the parent entity;

» cal agetter on the parent entity instance to retrieve its set of child entity
instances; and

» iterate the set of child entity instances and access these instances to map
field values to the client struct.

Create a class variable to hold the DAO

@ nj ect
private SomePar ent DAO sonmePar ent DAG,

Figure 2.33 Declaring a variable to hold a DAO for an entity

Use the DAO to retrieve the instance of the parent entity

24

2.7.3

Persistence Cookbook

In your fagade method, code a variable to hold an instance of the entity in-
terface, and set its value by calling .get() on the DAO, passing the key of the
database row:

Il retrieve the instance of the parent entity
final SoneParent someParent =
sonePar ent DAQO. get (key. sonePar ent | D) ;

Figure 2.34 Retrieving an instance of a parent entity

Call a getter on the parent entity instance to retrieve its set of
child entity instances

Now code a call to the appropriate getter on the parent entity instance to re-
trieve its child entity instances:

/Il retrieve all the child instances of the entity for this parent
final Set<SomeChild> someChildren = soneParent. get SomeChil dren();

Figure 2.35 Calling a getter method on a parent entity instance
to retrieve its child entity instances

Iterate the set of child entity instances and access these in-
stances to map field values to the client struct

Now code aloop which iterates the set retrieved, and maps each instance to
the client struct:

/'l map the details returned
for (final SoneChild soneChild : soneChildren) {
final SoneChil dSunmaryDetails soneChil dSummaryDetails =
new SonmeChi | dSunmar yDet ai | s() ;
soneChi | dSummar yDet ai | s. sonmeChi | dI D = soneChi | d. get | () ;
soneChi | dSummar yDet ai | s. nane = soneChi |l d. get Nane() ;

list.details.addRef(soneChil dSummaryDetails);
}

Figure 2.36 Iterating through child entity instances

Putting it all together
Here's the complete code for this scenario solution:

Il ...
@ nj ect
private SonePar ent DAO sonePar ent DAG,
publ i ¢ SoneChi | dSummar yDet ai | sLi st |i st SonmeChi | dDet ai | s(

final SoneParent Key key)
t hrows AppException, |nformational Exception {

/'l create an instance of the return struct

final SoneChil dSunmaryDetail sList |ist =
new SoneChi | dSunmmar yDet ai | sLi st ();

25

Persistence Cookbook

I/l retrieve the instance of the parent entity
final SoneParent someParent =
sonePar ent DAQO. get (key. sonePar ent | D) ;

/] retrieve all the child instances of the entity for this
/| parent
final Set<SonmeChild> soneChildren =

sonmePar ent . get SomeChi | dren() ;

/! map the details returned
for (final SonmeChild soneChild : soneChildren) ({
final SoneChil dSummaryDetails soneChil dSumraryDetails =
new SoneChi | dSunmar yDet ai | s() ;
someChi | dSunmaryDet ai | s. soneChi | dI D = soneChi | d. get | D() ;
someChi | dSunmaryDet ai | s. nane = soneChi | d. get Name() ;

list.details.addRef(someChil dSunmaryDetail s);
}

/[l return to the client
return |ist;

}
11

Figure 2.37 Complete listing for a facade "list children"” method

Again, here is a briefer version which has no intermediate variable to hold
the Set of child entity instances:

...
publ i ¢ SoneChi | dSummar yDet ai | sLi st |i st SoneChil dDet ai | s(
final SoneParent Key key)
t hrows AppException, |nformational Exception {

/] create an instance of the return struct
final SomeChil dSunmaryDetail sList |ist =
new SoneChi | dSummar yDet ai | sLi st () ;

[l retrieve the instance of the parent entity
final SomeParent someParent =
sonePar ent DAQO. get (key. sonmePar ent | D) ;

for (final SomeChild someChild : sonmeParent.get SonmeChildren()) {
/1 map the details returned
final SoneChil dSummaryDetails soneChil dSumraryDetails =
new SoneChi | dSunmmar yDet ai | s() ;
soneChi | dSummar yDet ai | s. someChi | dl D = sonmeChi | d. get | D() ;
soneChi | dSummar yDet ai | s. nane = soneChi |l d. get Name() ;

list.details.addRef(someChil dSunmaryDetail s);

/l return to the client
return list;

}
Il

Figure 2.38 Complete listing for a fagade "list children" method
(terser version)

2.8 Summary

Hereisthe entire listing for the facade class:

26

Persistence Cookbook

package curam cookbook. f acade. per si st ence;

i mport curamutil . persistence. Gui ceW apper;
I

i mport curamuti

. t ype. Dat eRange;

i mport java.util. Set;

i mport com googl e.inject.Inject;

i mport curam cookbook. SonmeChi | d;

i mport curam cookbook. SomeEntity;

i mport curam cookbook. SomeEnt i t yDAG,

i mport curam cookbook. SonmePar ent ;

i mport curam cookbook. SomePar ent DAG,

i mport curam cookbook. facade. struct. SomeChi | dSummar yDet ai | s;

i mport curam cookbook. facade. struct. SomeChi | dSummar yDet ai | sLi st ;
i mport curam cookbook. facade. struct. SomeEntityDetail s;

i mport curam cookbook. f acade. struct. SomeEnt it yKeyVer si on;

i mport curam cookbook. f acade. struct. SoneEntitySumaryDet ai | s;

i mport curam cookbook. f acade. struct. SoneEntitySumaryDet ai | sLi st ;
i mport curam cookbook. sl .entity.struct. SoneEntityDtls;

i mport curam cookbook. sl .entity.struct. SomeEntityKey;

i mport curam cookbook. sl . entity. struct. SomePar ent Key;

i mport curamutil.exception. AppExcepti on;

i mport curamutil.exception.|nformational Excepti on;

public class MyFacade {

@ nj ect
private SoneEntityDAO soneEntityDAG,

publ i c MyFacade() {

Gui ceW apper . getlnjector().injectMenbers(this);

public SoneEntityDetails viewSoneEntityDetail s(

}

final SoneEntityKey key)
t hrows AppException, |nformational Exception {

/l create an instance of the return struct
final SoneEntityDetails soneEntityDetails =
new SoneEntityDetail s();

I/l retrieve the instance of the entity
final SoneEntity soneEntity =
soneEnt i t yDAO. get (key. soneEntityl D);

/1 map the details fromthe entity instance
someEntityDetails.details.someEntityl D = someEntity. getlD();
soneEntityDetail s. details. name = soneEntity. get Name();
someEntityDetails.details.versionNo = soneEntity. getVersionNo();

final Dat eRange dat eRange = soneEntity. get Dat eRange();
soneEntityDetails.details.startDate = dateRange.start();
soneEntityDetail s. details. endDat e = dat eRange. end();

[l ...nmore mappi ngs

// return to the client
return soneEntityDetails;

publi c SormeEntityKey createSoneEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformational Exception {

// create an instance of the return struct
final SoneEntityKey key = new SoneEntityKey();

/] create a new entity instance
final SoneEntity soneEntity = soneEntityDAO new nstance();

/1 map the details

27

}

Persistence Cookbook

soneEntity. set Nane(detail s. details.nange);

final Dat eRange dat eRange =
new Dat eRange(details.details.startDate,
details. details.endDate);
soneEntity. set Dat eRange(dat eRange) ;
[l ...nmore mappi ngs

/1 do the insert
soneEntity.insert();

/1 map the key assigned
key. soneEntityl D = soneEntity.getl D();

/] return to the client
return key;

public void nodifySonmeEntityDetail s(
final SoneEntityDetails details)
t hrows AppException, |nformational Exception {

/] retrieve the instance of the entity
final SoneEntity soneEntity = someEntityDAO
.get(details.details.sonmeEntitylD);

/] set the fields
set SoneEntityDetail s(soneEntity, details.details);

/1 do the nodify, passing the version nunber fromthe client
soneEntity. nodify(details.details.versi onNo);

* Maps client details to the setters on the service-layer API
*

* @aram soneEntity

* the service-layer instance of the entity
* @aram soneEntityDtls

* the client details to nmap

private void set SoneEntityDetails(final SoneEntity soneEntity,

}

final SoneEntityDtls sonmeEntityDtls) {

/1 map the details
soneEntity. set Nane(soneEntityDt| s. nane);

final Dat eRange dat eRange = new Dat eRange(
soneEntityDtls. start Date,
soneEntityDtls. endDat e) ;
soneEntity. set Dat eRange(dat eRange) ;
[/ ...nmore mappi ngs

public void renpveSoneEntityDetail s(

}

final SoneEntityKeyVersion key)
t hrows AppException, |nformational Exception {

/] retrieve the instance of the entity
final SoneEntity soneEntity =
soneEnt i t yDAO. get (key. sonmeEntityl D);

/1 do the renove, passing the version nunber fromthe client
soneEntity. remove(key. versi onNo) ;

public void cancel SoneEntityDetail s(
final SoneEntityKeyVersion key)
throws AppException, |nformational Exception {

28

Persistence Cookbook

I/l retrieve the instance of the entity
final SoneEntity soneEntity =
soneEnt i t yDAO. get (key. soneEntityl D);

/1 do the cancel, passing the version nunber fromthe client
soneEntity. cancel (key. versi onNo) ;

}

public SomeEntitySummaryDetail sList |istSoneEntityDetail s()
t hrows AppException, |nformational Exception {

/] create an instance of the return struct
final SomeEntitySummaryDetailsList list =
new SoneEntitySummaryDet ail sList();

[/ retrieve all the instances of the entity
final Set<SomeEntity> someEntities = soneEntityDAQO readAll ();

/1 map the details returned
for (final SonmeEntity someEntity : soneEntities) {
final SoneEntitySummaryDetails soneEntitySumaryDetails =
new SoneEntitySummaryDetail s();
soneEntitySummaryDetail s. soneEntityl D = soneEntity. getlD();
soneEnt it ySummaryDet ai | s. nane = soneEntity. get Nane();

list.details.addRef (someEntitySunmaryDetails);

/[l return to the client
return |ist;

}

@ nj ect
pri vate SonePar ent DAO sonePar ent DAG,

publ i ¢ SoneChi |l dSummar yDet ai | sLi st |i st SoneChil dDet ai | s(
final SoneParent Key key)
t hrows AppException, |nformational Exception {

/] create an instance of the return struct
final SoneChil dSummaryDetail sList list =
new SoneChi | dSunmar yDet ai | sLi st () ;

Il retrieve the instance of the parent entity
final SoneParent soneParent =
somePar ent DAQO. get (key. someParent | D) ;

[l retrieve all the child instances of the entity for this
/| parent
final Set<SomeChild> soneChildren =

sonePar ent . get SoneChi | dren() ;

/! map the details returned
for (final SonmeChild soneChild : soneChil dren)
final SonmeChil dSummaryDetails soneChil dSumraryDetails =
new SoneChi | dSunmmar yDet ai | s() ;
soneChi | dSummar yDet ai | s. someChi | dl D = sonmeChi | d. get | D() ;
soneChi | dSummar yDet ai | s. nane = soneChi |l d. get Name() ;

list.details.addRef(someChil dSummaryDetail s);

// return to the client
return |ist;

}
Figure 2.39 Facade class listing

29

3.1

3.1.1

3.1.2

Chapter 3

Coding service-layer APIs

The scenarios in this section describe how to write service-layer APISs,
which may be called from other code such as:

* implementations of other service-layer APIs;
e "classic" Curam service layersin other components; and/or

» facadelayer code.

You want to start writing the API for a new data-
base table

The problem

You identify the need for a new database table and you want to control ac-
cess to this database table through a service-layer API.

How do you start?

The solution

The interface for interacting with your database table breaks down as fol-
lows:

 DAO interface - responsible for describing how to search your database
table for rows matching certain criteria ("readmultis'); and

» Entity interface - responsible for describing what calling code can "do"
with your entity once row(s) have been retrieved.

Coding the solution involves these steps:

» create an entity interface javafile; and

30

Persistence Cookbook

» create an entity DAO interface javafile.

Create an entity interface java file

Create a new java file named after your entity, and declare an interface ex-
tending St andar dEntity :

package curam nypackage;

i mport curamutil . persistence. StandardEntity;
/**

* Description of my wonderful new entity.
*/

public interface MyNewEntity extends StandardEntity {
}

Figure 3.1 Creating an entity interface file

The St andar dEnt i t y super-interface provides a standard API for all en-
tities, and must be extended by al entity APIs.

As far as callers of your code are concerned, this interface "is" your entity,
which is why (by convention) you name the entity interface after your en-
tity. Ensure that the interface is well-commented.

So far your new entity APl doesn't do very much, but that'll change during
later the scenarios.

Note that not all interfaces need to be public - if the interface does not need
to be visible outside of its package then remove the "public" declaration and
make the interface "package-private". Typicaly this can only be done with
entities which are not exposed to calling code, e.g. link tables which do not
(directly) appear on Ul screens. Only make an interface public if it needs to
be (which isusually the case).

Only include methods in your interface which must be visible to other
classes - implementation-only methods will exist only in your implementa-
tion class (see Chapter 4, Coding service-layer implementations).

Create an entity DAO interface java file

Create another interface in the same java package, named after your entity
but suffixed with "DAQ", extending St andar dDAO (typed with your en-
tity interface):

package curam nypackage;

i mport curamutil . persistence. St andar dDAQ

/**

* Data access for {@inkplain M/NewEntity}.

*/
public interface MyNewentityDAO extends Standar dDAO<MyNewEntity> {
}

Figure 3.2 Creating an entity DAO interface file

31

3.2

3.2.1

3.2.2

Persistence Cookbook

The St andar dDAO super-interface must be extended by all entity DAO
APIs. It provides two DAO API methods "for free":

« new nstance() - creates anew instance of MyNewEnt i t y suitable
for inserting onto the database; and

e get(Long id) - retrieves the instance of MyNewEnt i ty with the
primary key value specified by i d

Your DAO declares that it is responsible for managing MyNewent i ty in-
stances by virtue of the type argument to St andar dDAQ.

In alater scenario you will add additional methods to the DAO interface.

You want to add getters and setters to your en-
tity interface

The problem

Y our database table contains a number of data columns. Y ou need to alow
callers of your codeto:

» get the values held in some of these columns; and

* et thevalues held in some of these columns.

Y ou a'so need to support navigation to related entity instances.

In classic Caram, callers of your code had access full access to each field on
the entity Dtls struct, and so there was no need (nor any way) to decide
whether a particular field was:

e hidden;
* read-only; or
e read/write.

Regarding navigation, in classic Curam callers of your code had to perform
their own navigation by executing queries on related entities, and seeding
those queries with foreign key fields from an entity Dtls struct.

How do you add getters and setters to your entity interface?

The solution

You must code getters and setters on your entity interface, and make an in-
formed decision asto the level of visibility of each field.

For each column on your database table, you must decide:

» whether callers of your entity must be able to read the data - if so you

32

Persistence Cookbook

must code a getter method; and

» whether callers of you entity must be able to write the data - if so you
must code a setter method; and

» whether access to the column is on a "per-column” basis or whether
there is some logical grouping of columns which should be combined in-
to asingle object (see the date range example below).

Example

You'll step through an example database table and code getters/setters in
your API.

Let's say that the database table MyNewEntity has these columns:

* nyNewEtntityl D- primary key;

* nane - String;

e start Dat e - date;

» endDat e - date

» typeCode - codetable code, specifying the "type" of the entity; and

« nmyParentEntityl D- foreignkey to arow on adifferent database ta-
ble.

Let's go through the attributes on MyNewEnt i t y and flesh out the entity
APIL.

myNewEntitylD

In general, getters and setters for your primary key column are straightfor-
ward - you don't write any.

You rarely need to code anything for the primary key of an entity, because
each entity already has a get | D method (inherited from St andar dEn-

tity).
[Important
@
Do not be tempted to write your own getter for the ID:

[*% *xxkxxk*x% VERY VERY BAD - DO NOT DO THI S| ****%xxx%* %/
/z*@eturn the primary key of My/NewEntity.
pu/bl ic Long get MyNewEntityl D();
[%% xxxkxxxxx* \VERY VERY BAD - DO NOT DO THI Sl *******x%% %/

Figure 3.3 Incorrect - redundant getter method for entity ID

Similarly, each entity implementation typically takes care of assigning its

33

Persistence Cookbook

own primary key, and so callers of the entity API do not require afacility to
set the primary key themselves.

| Important
@
Do not be tempted to write your own setter for the ID:

/** RIEE R o VERY VERY BAD - m ’\D‘I’ m THl S] kkkkkkhkkk*k */

/**

* @ar am val ue

* the primary key of MyNewEntity.

*/

public void set WNewkntityl D(final Long val ue);

/** kkkkkhkkkkk*k VERY VERY BAD - m ’\D‘I’ m THI S] *kkkkkkkkk*k */

Figure 3.4 Incorrect - setter method for entity ID

name
After analysis of requirements, you determine that callers of your APl re-
guire to both get and set the name column of a database row.

Code afield getter as follows:

/**

* Gets the nane.

*

* @eturn the nane
*/

public String get Name();

Figure 3.5 Interface declaration for a simple get method

Note that:

* by convention, the method is named get <Fi el dnanme> with the first
letter of the field name upper-cased (one exception is that getters that re-
turn abool ean value often read better asi s<Condi ti on>); and

» the name column holds a String, so the getter must return a String.

Code afield setter as follows:

/**
* Sets the nane.

*

* @aram val ue
* t he nane
*/

public void setNanme(final String val ue);

Figure 3.6 Interface declaration for a simple set method

Note that:

* by convention, the method is named set <Fi el dnane> , with the first
letter of the field name upper-cased;

34

Persistence Cookbook

* by convention, the variable name of the value passed inis "value";
» the setter returns void; and

» the name column holds a String, so the setter must take a String value.

startDate and endDate
After analysis of requirements, you determine that:

« calersof your API require to get the start and end dates, to compare the
range of dates covered with dates supplied by other processing;

» the start date is always set to the current business date when a new row
is created; and

» theenddateisonly set (to a specified date) when the entity enters a state
of "closed".

Accordingly, you decide that:

« the start date and end date should be returned to calers as a Dat eR-
ange "helper" object; and

» calersshould not be free to set the start and end dates - manipulation of
these end dates should be taken care of by specialized methods on the
entity (see e.g. Chapter 8, State Transitions).

Y ou require your entity to return a Dat eRange helper object - rather than
coding aget Dat eRange method, instead it's better to change your API to
extend Dat eRanged :

/**
* Description of my wonderful new entity.
*/

public interface MyNewEntity extends StandardEntity, DateRanged {

Figure 3.7 Extending the DateRanged interface

The Dat eRanged interface provides your entity with a get Dat eRange
method and also allows access to helper functions which provide com-
monly-used processing on entities which contain a date range.

typeCode

After analysis, you determine that your entity stores a codetable code de-
scribing the "type" of the entity instance.

Create a codetable specifying the permitted values:

<?xm version="1.0" encodi ng="UTF-8"?>
<codet abl es package="cur am nypackage. codet abl e" >
<codet abl e
java_identifier="MYNEVWENTI TYTYPE"
nanme=" MYNEVEENTI TYTYPE"
>

35

Persistence Cookbook

<code
defaul t ="f al se"
java_identifier="SOVETYPE"
st at us=" ENABLED"
val ue="TYPE1"

>
<l ocal e
| anguage="en"
sort_order="0"
>
<descri pti on>Sone type</description>
<annot ati on/ >
</l ocal e>
</ code>
<code
defaul t ="fal se"
java_identifier="SOVEOTHERTYPE"
st at us="ENABLED'
val ue="TYPE2"
>
<l ocal e
| anguage="en"
sort _order="0"
>
<descri pti on>Sone ot her type</description>
<annot at i on/ >
</l ocal e>
</ code>

</ codet abl e>
</ codet abl es>

Figure 3.8 Codetable for the type of an entity

The Persistence Infrastructure includes a code generator to generate a class
per codetable. These classes provide a type-safe mechanism for passing
around an entry from the codetable, and each class is named after its
codetable suffixed with theword Ent ry :

package curam nmypackage. codet abl e. i npl ;
/**

* Represents an entry fromthe

* { @i nkpl ai n curam mypackage. codet abl e. MYNEVEENTI TYTYPE} code

*

*/table

public class MYNEVWENTI TYTYPEEntry extends
curamutil.type. CodeTabl eEntry {

I/

/**

* Private constructor.

*/

private MYNEVENTI TYTYPEEntry(final String code) {
super (TABLENAME, code);

/ *
Gets the
{@i nkpl ai n curam nypackage. codet abl e. i npl . MYNEVENTI TYTYPEEnNt r y}
for the specified code val ue.

@ar am code
the String representation of the code val ue required

@eturn a
{@i nkpl ai n curam nypackage. codet abl e. i npl . MYNEVENTI TYTYPEEnt r y}
representati on of the specified code val ue

d 0% Ok 3k kX X 2k X X *

36

Persistence Cookbook

@hrows curamutil.exception. AppRunti meExcepti on
if the specified code value is not present in the
{@i nkpl ai n curam nypackage. codet abl e. MYNEVENTI TYTYPE}
*/ code table.
*
public static curam nypackage. codet abl e. i npl . MYNEVENTI TYTYPEEntry get (
//final String code) {

* % X *

}
/**

* The nane of the
* {@inkpl ai n curam nmypackage. codet abl e. MYNEVENTI TYTYPE} table -

:/{@al ue}.

public static String TABLENAME =
cur am nmypackage. codet abl e. MYNEVENTI TYTYPE. TABLENAMNE;

/**

* Not specified (i.e. blank).
*/

cur am nmypackage. codet abl e. i npl . MYNEVEENTI TYTYPEEnt ry

al
= get(null);

public static fin
| ED

NOT_SPECI F

/**
* TYPE1 en = Sonme type
*/
public static final curam mypackage. codet abl e. i npl. MYNEVENTI TYTYPEEnt ry
SOVETYPE =
get (cur am nmypackage. codet abl e. MYNEVEENTI TYTYPE. SOVETYPE) ;

/**

* TYPE2 en = Sonme ot her type

*/

public static final curam mypackage. codet abl e. i npl . MYNEVENTI TYTYPEEnt ry

SOMEOTHERTYPE =
get (cur am nmypackage. codet abl e. MYNEVEENTI TYTYPE. SOVECTHERTYPE) ;

}

Figure 3.9 Excerpts from a generated "Entry" class for a
codetable

Use of this generated class is preferable to using a St r i ng to pass around
the value, as (in particular) a St ri ng can be constructed with any text
whereas the generated class only permits values corresponding to the under-
lying code table.

Code:
e agetter to return an instance of this generated class; and

* asetter which takes an instance of this generated class:
/**

* Gets the type of this entity instance.

* @eturn the type of this entity instance

publ i ¢ MYNEVENTI TYTYPEEntry get Type();

/**
* Sets the type of this entity instance.
*

* @aram val ue

37

Persistence Cookbook

*/ the type of this entity instance
public void set Type(final MYNEVWENTI TYTYPEEntry val ue);
Figure 3.10 Getter and setter methods for a codetable-based

value

i Note

Getter and setter methods do not have to be named exactly after
their database columns (in this example, the data column
t ypeCode is accessed via methods named get Type and set -
Type , not get TypeCode and set TypeCode .

In particular, some database column names are abbreviated to com-
ply with database name length constraints, and for these the getter
and setter names should not slavishly repeat the abbreviation, e.g.
use get SoneVer yVer yLongDat abaseCol uimNane rather
than get Smvy VyLgDbCol Nm.

myParentEntityID

For foreign keys to related entity instances, in general you should not create
getters and setters for the entity 1D, but instead code getters and setters
which deal with the API of the related entity:

/**
* Gets the parent instance of MyParentEntity.
*
* @eturn the parent instance of MyParentEntity, or null if not
* yet set
*/
public M/ParentEntity get MyParentEntity();

/**

* Sets the parent instance of MyParentEntity.
*

* @aram val ue
* the parent instance of M/ParentEntity
*/

public void set MParentEntity(final M/ParentEntity val ue);
Figure 3.11 Interface declaration for getting/setting a related
entity instance

Note that this code assumes that the MyPar ent Ent ity APl has aready
been coded. If not, you must create a skeletal API:

public interface MyParentEntity extends StandardEntity {

}
Figure 3.12 Creating a skeletal API for a related entity

| Important
@
Do not be tempted to expose the related entity 1D directly:

38

3.2.3

Persistence Cookbook

/** RIEE R e o VERY VERY BAD - m ’\D‘I’ m THl S] kkkkkkhkkk*k */
/**

* @eturn the foreign key to the parent MyParentEntity instance
*/

public Long get MyParentEntityl D();

/**
* @aram val ue
* the foreign key to the parent MyParentEntity instance
*/

public void set MyParentEntityl D(final Long val ue);

/** kkkkkhkkkkk*k VERY VERY BAD - m ’\D‘I’ m THI S] kkkkkkkkk*k */

Figure 3.13 Incorrect - getting/setting a related ID instead of the
related entity

Child instances

Each instance of your entity has a set of associated child entity instances
(from a different database table).

If callers of your API require to navigate to these child instances, code a get-
ter which returns a Set, typed with the API of the child entity:
/**

: Gets the MyChil dEntity children of this entity instance.

* @eturn the MyChildEntity children of this entity instance

*/

public Set<MyChi |l dEntity> get MyChil dren();

Figure 3.14 Interface declaration for getting a set of related
entities

Note that this code assumes that the MyChi | dEnt ity APl has aready
been coded. If not, you must create a skeletal API:

public interface MyChil dEntity extends StandardEntity {

}

Figure 3.15 Creating a skeletal API for another related entity

Putting it all together

Here's the complete code for this scenario solution, showing the getters, set-
ters and changes to the interface inheritance hierarchy:

package curam nypackage;
i mport java.util. Set;
i nport com googl e. i nj ect. | npl ement edBy;

i mport curamu
i nport curamu

i |.persistence. StandardEntity;
il.type. Dat eRanged;

— —+

39

Persistence Cookbook

/**
* Description of my wonderful new entity.
*/

@ npl enent edBy(MyNewEnt i tyl npl . cl ass)
public interface MyNewEntity extends StandardEntity, DateRanged {

/**

* Gets the nane.

*

* @eturn the nane
*/

public String get Name();
/**

* Sets the nane.
*

* @aram val ue

t t he name

*/
public void setNane(final String val ue);
/**

* Gets the parent instance of MyParentEntity.
*

* @eturn the parent instance of MyParentEntity, or null if not
* yet set
*/

public MyParentEntity get MyParentEntity();

/**

* Sets the parent instance of MyParentEntity.
*

* @aram val ue
* the parent instance of MyParentEntity
*/

public void set MParentEntity(final M/ParentEntity val ue);

/**

* Gets the MyChildEntity children of this entity instance.

* @eturn the MyChildEntity children of this entity instance
*/

public Set<MyChil dEntity> get MyChil dren();

/**

* Gets the type of this entity instance.

*

* @eturn the type of this entity instance

*/
publ i ¢ MYNEVENTI TYTYPEEntry get Type();

/**

* Sets the type of this entity instance.
*

* @aram val ue
* the type of this entity instance
*/

public void set Type(final MYNEWENTI TYTYPEEntry val ue);
}

Figure 3.16 Complete listing for an entity API with getter and
setter methods

3.3 You want to add persistence methods to your
entity interface

40

3.3.1

3.3.2

Persistence Cookbook

The problem

Cdllers of your entity API need to be able to ask instances of your entity to
store data on the database.

In classic Cdram, callers of your code made calls to model ed methods which
were generated onto entity "process’ classes.

How do you add persistence to your entity interface?

The solution

You must first analyze your requirements and decide which types of data-
base write must be publicly supported by your API:

* insert - typicaly every entity APl contains an insert() operation, to cre-
ate anew row on the database;

* modify - typically required if your entity API contains setter methods.
Y ou must decide whether the modify requires optimistic lock support;

o cancel - typicaly required if your entity must allow callers to request
that the entity instance be "logically deleted"; and

* remove - (rare) typically required if your entity must allow callersto re-
guest that the entity instance be "physically deleted”. You must decide
whether the remove requires optimistic lock support;

Note that it is quite in order not to publish any persistence methods on your
entity interface, and instead create your own specialized methods instead.

In practice, entities often combine a mixture of exposing some persistence
methods (for what are known as "CRUD" operations) and other specialized
methods for business operations such as controlling the change of an entity's
State.

Insert

If your entity API contains setter methods, then typically calling code will
require an i nsert method to store new instances of your entity on the
database:

@ nj ect
private Myl nsertabl eEntityDAO nyl nsert abl eEnti t yDAG,

public void soneCal | ToAnl nsert () throws |nformational Exception {
final Mylnsertabl eEntity nylnsertabl eEntity =
nmyl nsert abl eEnt i t yDAO. newl nst ance() ;

/'l set some field values on the new instance
nyl nsertabl eEntity. set SoneFi el d("sone val ue");
nyl nsertabl eEntity. set SomeQ her Fi el d("sone ot her val ue");

/1 ask the new entity instance to store itself on the database
nyl nsertabl eEntity.insert();

41

Persistence Cookbook

}
Figure 3.17 Sample code calling an entity insert

If your entity API must publish ani nsert method, change the entity API
declaration to extend the | nser t abl e interface;

/**

* This entity supports callers asking it to insert itself.

*/

public interface Myl nsertabl eEntity extends StandardEntity,
Insertable {

}
Figure 3.18 Extending the Insertable interface
Note that the . i nsert () method (inherited from | nsert abl e) throws

I nf or mat i onal Excepti on , in the case that validation errors are de-
tected.

Modify

If your entity API contains setter methods, then typically calling code will
require a. nodi f y method to store changes on the database any changes to
field values.

If modify support is required, you must decide whether your API should
support:

* an optimistic-lock modify - (common) the modify only succeeds if the
version number held by the caller matches that on the database - this
mechanism prevents users from over-writing each others concurrent
modifications;

* anon-optimistic-lock modify - (less common) no version number check-
ing is performed; or

* both (rare).
Change the entity API declaration to extend (as appropriate):

e OptimsticLockModi fi abl e ;and/or
« Modifiable

eg.

/**
* This entity supports callers asking it to nodify itself.
*/
public interface MyModifi abl eEntity extends StandardEntity,
Optim sticLockModi fiable {
}

Figure 3.19 Extending the OptimisticLockModifiable interface

42

Persistence Cookbook

Note that database tables which store historical data (e.g. a history of state
changes or other events) typically should not support modify.

Cancel

If your entity supports the concept of logical deletion, then typically calling
code will requirea. cancel method to logicaly delete an instance of your
entity.

If cancel support is required, change the entity APl declaration to extend
Logi cal | yDel et eabl e :

/**
* This entity supports callers asking it to cancel itself.
*/
public interface M/Logi cal |l yDel et eabl eEntity extends
StandardEntity, LogicallyDel eteable {

}
Figure 3.20 Extending the LogicallyDeleteable interface

Note that support for logical deletes requires support for optimistic locking.

Remove

If your entity supports the concept of physical deletion, then typically call-
ing code will requirea. r enove method to physically delete an instance of
your entity.

Business tables in Curam rarely support physical deletion (favoring logical
deletion instead). Technical tables (such as link tables) may support physical
removal.

If remove support is required, you must decide whether your APl should
support:

e an optimistic-lock remove - the remove only succeeds if the version
number held by the caller matches that on the database - this mechanism
prevents one user deleting data containing updates that another user has
concurrently made;

e a non-optimistic-lock remove - no version number checking is per-
formed; or

* both.
Change the entity API declaration to extend (as appropriate):

e OptimsticLockRenovabl e ; and/or

e Renobvabl e

eg.

43

3.3.3

3.4

3.4.1

3.4.2

Persistence Cookbook

/**
* This entity supports callers asking it to renove itself.
*/
public interface My/Physicall yDel et eabl eEntity extends
StandardEntity, Optim sticlLockRenovabl e {
}

Figure 3.21 Extending the OptimisticLockRemovable interface

Putting it all together

Typically your entity APl will support a number of persistence operations,
as evidence by itsinheritance hierarchy:

/**

* Description of nmy wonderful new entity.
*/

public interface MyNewEntity extends StandardEntity, DateRanged,
Li fecycl e<sMyNewEntity. State>, Insertable,
Optim sticLockModifiable, LogicallyDeleteable {

Figure 3.22 Entity APl extending multiple interfaces for
persistence

You want to specify searches on your entity

The problem

Instances of your entity need to be retrieved using data other than the
primary key of your entity, which may include:

o searches ("readmultis’) of your entity, which may return zero or more
matches; and/or

e singleton reads ("nsreads') of your entity, which may return zero
matches or exactly one match.

In classic Caram, you would model readmulti and nsread operations on your
entity. Callers of your nsread would be expected to handle a RecordNot-
FoundException (or use the NotFoundindicator mechanism).

How do you add non-key retrievals to your entity?

The solution

Y ou must code retrievals of your entity on your entity DAO API, not on the
entity itself.

A singleton read method must return your entity API, and should specify
that nul | will be returned if no matching entity instance is found:

44

Persistence Cookbook

/**

Reads the instance with the specified nane.

*

*

* @ar am nane
* the nane to find o _

* @eturn the instance with the specified nane, or null if not
*

f ound.
*/

public MyNeweEntity readByNane(final String nane);

Figure 3.23 DAO interface declaration for a singleton read

A search method (which can return zero, one or many instances) must return
acollection of your entity API (typically a Set):

/**

Searches all the instances which have the specified type.

the type to search for
@eturn all the instances which have the specified type, or an

*
*
* @aram type
*
*
& enpty set if none found.

*/
public Set <MyNewEntity> searchByType(
final MYNEWENTI TYTYPEEntry type);

Figure 3.24 DAO interface declaration for a search

Y our method names must follow the naming standards for modeled entity
operations.

Use entity APIsin preference to passing primary keys, e.g. do this:

/**

Searches all the instances belonging to the specified parent.

the parent to search for
@eturn all the instances belonging to the specified parent, or

*

*

* @aram nyParentEntity

*

*

* an enpty set if none found.

*/
publ i c Set <MyNewEntity> sear chByPar ent (
final MyParentEntity nyParentEntity);

Figure 3.25 DAO interface taking an entity instance as a
parameter

not this:

/** kkkkkhkkkk*k VERY VERY BAD - m ’\UI' m THl S] kkkkkkhkkk*k */

/**

* Searches all the instances which have the specified parent ID.
*

* @aram nyParentEntityl D

* the parent ID to search for

* @eturn all the instances which have the specified parent |D,
* or an enpty set if none found.
*/

publ i c Set <MyNewEntity> sear chByParent | X
final Long nyParentEntitylD);
[** **xxxxkxx% VERY VERY BAD - DO NOT DO THI SI *****xxxkx x/

Figure 3.26 Incorrect - DAO interface taking an entity ID value as

45

3.5

Persistence Cookbook

a parameter

Summary

At this point you have developed the API for your entity and its DAO.

Because entities interact with each other through their APIs, it is possible to
develop the service layer APIs for an entire component before commencing
implementation. Such an approach alows you to publish the APIsto any in-
terested parties and/or generate navigable JavaDoc for your APIs.

Alternatively, you may wish to create a limited number of entity APIs and
proceed to implement these APIs.

46

4.1

4.1.1

4.1.2

Chapter 4

Coding service-layer implementations

The scenarios in this section describe how to implement your service-layer
APIs.

You want to start implementing your entity API

The problem

Y ou have created interfaces for your entity and its DAO. You now need to
create implementations of these interfaces.

Where do you start?

The solution

Y ou must:

* model your database table in the Ciram model; and

» create the following classes:

e anadapter for generated data access methods;
» animplementation for your entity DAO interface; and

« animplementation for your entity interface.

Model your database table in the Ciram model

You must model your database table in the Ciram model using Cdram's
modeling tools.

Ensure that:

» you model asingle primary key attribute for the table, which unwinds to

47

Persistence Cookbook

al ong;
* you model astandard r ead operation;

» any write operations that you require to model are standard write opera-
tions(i nsert ,nodi fy andr enove);

o if you model a standard i nsert operation, that it specifies an
AUTO | Dstrategy (if required);

« if your entity supports optimistic locking (i.e. your entity specifies AL-
LOW OPTI M STI C_LOCKI NG=yes) and if you model a standard
modify operation, that optimistic locking is switched on for this opera-
tion (i.e. your modify operation specifies OPTI M ST-
| C_LOCKI NG=yes);

» if your entity supports any non-standard read operations, then you model
a struct to hold the search criteria and specify the return struct as the full
Dtls struct;

« if your entity supports any search operations, then you model a struct to
hold the search criteria (you do not need specify any return struct - by
default the DtlsList struct will be used); and

« if your entity supports logical deletes, then you model a r ecor d-
St at us attribute (using the RECORD _STATUS CODE domain).

Do not mode!:
e any non-stereotyped operations;
¢ any non-standard write operations,

« any standard write operations which are not required (e.g. r enove is
only rarely required);

» any read or search operations which return anything other than the full
Dtlsor DtlsList struct; nor

e any pre- or post- exit points.

Extract and generate your model using the standard command-line tools.

Create an adapter for generated data access methods

You must create an adapter which wraps the generated code for reading,
searching and writing database rows.

The Persistence Infrastructure includes a code generator which generates ad-
apter code using information extracted from the Ciram model. To generate
a new adapter, add the name of your database table to the file EJBSer v-

er/ conponent s/ <your conpon-

ent >/ properti es/ adapters. properties.

The adapter code generator runs automatically as part of the server build

48

Persistence Cookbook

Sscripts.

Create an implementation for your entity DAO interface

Y ou must create an implementation class for your entity DAO interface.

Create a class in the same package as your DAO interface, and name the
class after your entity, suffixed with DAOImpl:

package curam nypackage;
/**

* Standard inpl ementati on of {@i nkplain MyNewEntityDAC}.
*/

public class MyNewentityDAQ npl {

}

Figure 4.1 Creating a DAO implementation file
Y our DAO implementation must implement the DAO interface:

public class MyNewentityDAQ npl inplenments MyNewEntit yDAO {

Figure 4.2 Implementing the entity DAO interface

However, if you were to directly implement this interface, you would have
to write a huge amount of "plumbing" code. A great deal of plumbing is
supplied by St andar dDAO npl , so extend this class, supplying the en-
tity API and the generated Dtls struct for the database table as type paramet-
ers:

i mport curam nypackage. struct. MyNewEntityDtl s;
i mport curamuti| . persistence. St andar dDAO npl ;

/**
* Standard i npl enentati on of {@inkplain MyNewEntityDAGC}.
*/
public class My/NewentityDAO npl extends
St andar dDAO npl <MyNewEntity, MyNewEntityDtl s>
i npl ements MyNewEnt i t yDAO {

Figure 4.3 Extending StandardDAOImpl
Annotate the classwith @i ngl et on :

@i ngl et on

public class MyNewkntityDAO npl extends
St andar dDAO npl <MyNewEntity, MyNewEntityDtl s>
i mpl ements MyNewEnt i t yDAO {

Figure 4.4 Annotating the DAO implementation as a Singleton

Create a private static variable to hold an instance of your entity adapter:

/**
* Single instance of the entity adapter shared across all DAO
* inplenmentations.
*/
private static MyNewkntityAdapter adapter =

49

Persistence Cookbook

new MyNewEntityAdapter();

Figure 4.5 Declaring a static member variable for the entity
adapter

Create a protected constructor which passes the adapter and the class of the
entity API to St andar dDAQ npl

/**
* @ee Standar dDAO npl
*
/
protected MyNewentityDAO mpl () {
super (adapter, MyNewEntity.cl ass);

Figure 4.6 Creating a protected constructor

Use the "Add unimplemented methods' feature in Eclipse to add in the
methods you must implement:

public MyNewEntity readByNane(String name) {
/1 TODO Aut o- gener at ed met hod stub
return null;

}

publ i c Set <MyNewEntity> sear chByParent (
M/Parent Entity nmyParentEntity) {
/1 TODO Aut o- gener at ed met hod stub
return null;

}

public Set<MyNewEntity> searchByType(
final MYNEVWENTI TYTYPEEntry type) {
/] TODO Aut o- gener at ed net hod stub
return null;

Figure 4.7 Adding unimplemented methods

The implementation of the non-standard singleton r eadByNane calls the
adapter to return a Dtls struct (by reading the database), and passes thisto a
St andar dDAO npl method to create an instance of your entity interface:

/**
* {@nheritDoc}
*/

public MyNeweEntity readByNane(final String nane) ({
return getEntity(adapter.readByNanme(nane));

Figure 4.8 Implementing a singleton read

The implementation of the readmulti sear chByPar ent calls the adapter
to return an array of Dtls structs (by reading the database), and passes this to
a St andar dDAQ npl method to create set of instances of your entity in-
terface:

/**

* {@nheritDoc}
*
/

50

Persistence Cookbook

publ i c Set <MyNewEntity> sear chByPar ent (
final M/ParentEntity myParentEntity) ({
return newSet (adapt er. sear chByPar ent (myParent Entity.getlD()));

Figure 4.9 Implementing a search

The implementation of the readmulti sear chBy Type must translate from
the codetable value supplied to the St ri ng representation stored on the
database:

/**

*/{@nheritDoc}

public Set <MyNewEntity> sear chByType(
final MYNEVENTI TYTYPEEntry type) {
return newSet (adapt er. sear chByType(type. get Code()));

Figure 4.10 Implementing a search based on a codetable value

Your implementation of the DAO interface is now complete. However,
there is a final important step, which is to specify your DAO implementa-
tion as the default implementation of the DAO interface.

Open the DAO interface and add an annotation prescribing the default im-
plementation:

/**

* Data access for {@inkplain M/NewEntity}.
*/
@ npl enent edBy(MyNewEnt i t yDAO npl . cl ass)
public interface MyNewEntityDAO extends Standar dDAO<MyNewENntity> {

Figure 4.11 Specifying the DAO implementation as the default
implementation of the DAO interface

If you fail to do this step, then when your application runs you will likely
see a Nul | Poi nt er Except i on when Guice fails to inject instances of
your DAOQ interface:

/*
* This variable will be null if you don't specify the default
* inmplementati on of MyNewEntityDAO properly...
*/

@ nj ect

private MyNewEntityDAO myNewEnt it yDAG,

Figure 4.12 Null pointer exceptions will occur if no default DAO
implementation is specified on the DAO interface

Putting it all together
Here's the complete code for the DA O implementation:

package curam mypackage;

51

Persistence Cookbook

i mport java.util. Set;
i nport com googl e. i nj ect. Si ngl eton;

i mport curam nypackage. struct. MyNewEntityDtl s;
i mport curamuti| . persistence. Standar dDAO npl ;

/**

* Standard inpl ementati on of {@i nkplain MyNewEntityDAC}.
*/

@i ngl et on

public class MyNewEntityDAO npl extends
St andar dDAQO npl <MyNewEntity, MyNewEntityDt| s> inplenents
MyNewEnt i t yDAO {

/**

* Single instance of the entity adapter shared across all DAO
* inplenmentations.
*/
private static MyNewkntityAdapter adapter =
new MyNewEnt it yAdapter();

/**

* @ee Standar dDAO npl
=

prot ected MyNewentityDAO nmpl () {
super (adapter, MyNewEntity.cl ass);

/**
* {@nheritDoc}
*/

public MyNewEntity readByNane(final String name) {
return getEntity(adapter.readByNane(nane));

/**
* {@nheritDoc}
*
/
publ i c Set <MyNewEntity> sear chByPar ent (

final MyParentEntity myParent Entity)
return newSet (adapt er. sear chByPar ent (myParentEntity.getlD()));

}
Figure 4.13 Complete listing for an entity DAO implementation

Create an implementation for your entity interface

You must create an implementation class for your entity interface. In this
scenario you will only create the skeleton of your implementation class - it
will be fleshed-out in later scenarios.

Create a class in the same package as your entity interface, and name the
class after your entity, suffixed with Impl:

package curam nypackage;

/**

* Standard i npl enentation of {@inkplain M/NewEntity}.
*/

public class MyNewentityl npl

}

Figure 4.14 Creating an entity implementation file

52

Persistence Cookbook

Y our entity implementation must implement the entity interface:

public class MyNewentitylnpl inplenents MyNewEntity {

Figure 4.15 Implementing the entity API

There are a number of common development patterns in the Clram server
layer, and the Persistence Infrastructure comes with a number of helper im-
plementations that implement these patterns.

A common pattern is that an entity:

» dtoresitsdataon asingle database table;
» supportslogical deletes; and

» requireslogic for single-field, cross-field and cross-entity validations.

These patterns are implemented by the Si ngl eTabl eLogi cal | yDe-
| et eabl eEnti tyl npl helper class, so let's base your entity implement-
ation on it:

package curam nypackage;
I nport curam nypackage. struct. MyNewentityDtl s;

i nmport
curam util . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl ;
/**

* Standard i npl enentati on of {@inkplain M/NewEntity}.
*/
public class MyNewentityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEnti tyl npl <MyNewEntityDt| s>
i npl ements MyNewEntity {

Figure 4.16 Entity implementing extending
SingleTableLogicallyDeleteableEntitylmpl

Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl provides a
standard implementation of these methods:

* insert ;
e nodify;
e cancel ;
 lock;

e getlD;

+ get RecordSt at us ; and

e get VersionNo.
Add a protected no-argument constructor:

protected MyNewentitylnpl () {
/* Protected no-arg constructor for use only by Guice */
}

53

Persistence Cookbook

Figure 4.17 Adding a protected constructor to the entity
implementation

Use the "Add unimplemented methods' feature in Eclipse to add in the
methods you must implement, and categorize them to aid readability:

package curam nypackage;

i mport java.util.HashMap;
i mport java.util.Map;
i mport java.util. Set;

i mport com googl e.inject.Inject;

i mport curam nessage. i npl . MYNEVENTI TYExcept i onCr eat or ;
i mport curam nypackage. codet abl e. i npl . MYLI FECYCLEENTI TYSTATEEnt ry;
i mport curam nypackage. struct. MyNewEntityDtl s;
i mport curamuti| . persistence. Val i dati onHel per;
i mport curamutil. persistence. hel per. Codet abl eSt at e;
i npor t
curam util . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl;
i mport curamutil.persistence. hel per. State;
i mport curamutil . persistence. hel per. Transition;
i mport curamutil .type. Dat eRange;
i mport curamutil.type. StringHel per;

/**
* Standard i npl ementation of {@inkplain M/NewEntity}.
*/
public class MyNewentityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEnti tyl npl <MyNewEntityDt| s>
i npl ements MyNewkEntity {

protected MyNewentityl nmpl () {
/* Protected no-arg constructor for use only by Guice */
}

/*
* Field getters
*/

public String getNane() {
/1 TODO Aut o- gener at ed met hod stub
return null;

publ i ¢ Dat eRange get Dat eRange() {
/1 TODO Aut o- gener at ed met hod stub
return null;

public State getLifecycleState() {
/1 TODO Aut o- gener at ed met hod stub
return null;

publ i ¢ MYNEVENTI TYTYPEEntry get Type() {
/1 TODO Aut o- gener at ed met hod stub
return null;

/*
* Rel ated-entity getters
*/
public Set <MyChil dEntity> get MyChildren() {
/1 TODO Aut o- gener at ed met hod stub
return null;

}
public MyParentEntity get MyParentEntity() ({

54

Persistence Cookbook

/1 TODO Aut o- gener at ed met hod stub
return null;

/*

* Setters

*/

public void set MParentEntity(M/ParentEntity val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

public void setNane(String val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

public void set Type(final MYNEWENTI TYTYPEEntry val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

/*
* Validation
*/
public void mandat oryFi el dval i dati on() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossFieldValidation() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossEntityValidation() {
/1 TODO Aut o- gener at ed met hod stub

}

Figure 4.18 Adding unimplemented methods to the entity
implementation

Your implementation of the skeletal entity interface is now complete.
However, there is afinal important step, which is to specify your entity im-
plementation as the default implementation of the entity interface.

Open the entity interface and add an annotation prescribing the default im-
plementation:

/**
* Description of my wonderful new entity.
*/
@ npl enent edBy(MyNewEnt i t yl npl . cl ass)
public interface MyNewEntity extends StandardEntity, DateRanged,
Insertable, OptimsticLockModifiable, LogicallyDeleteable {

Figure 4.19 Specifying the entity implementation as the default
implementation of the entity API

If you fail to do this step, then when your application runs you will likely
see exceptions when Guice callers of your API attempt to read or create in-
stances of your entity:

55

4.2

4.2.1

4.2.2

Persistence Cookbook

/*
* These attenpts to construct instances of the entity interface
*will fail if you don't specify the default inplenentation of
* MyNewkntity properly...
*
/
final 1ong sonelD = 123;
final MyNewEntity tryi ngToRead = nyNewEntityDAQ. get (sonel D);
final MyNeweEntity tyringToCreate = nmyNewEntityDAO new nstance();
Figure 4.20 Exceptions will occur if no default entity

implementation is specified on the entity API

You want to implement getters

The problem

You have created a skeletal implementation for your entity. You now need
to implement getter methods.

How do you implement getters?

The solution

You must create implementations for your skeletal getter methods created
above. Each getter method is responsible for retrieving one or more fields
from an underlying Dtls struct and returning a value (either primitive or ob-
ject) to calling code.

The implementation of your entity has at its heart an instance of a Row
Manager . The Rowvanager instance contains a generated Dtls struct
and manages the manipulation of this struct.

Getter methods must use the Rowivanager . get Dt | s method to get at
the Dtls struct. For implementations extending Si ngl eTabl eEnti ty-
I mpl (which the example doesvia Si ngl eTabl eLogi cal | yDel et e-
abl eEnti tyl npl), thereis aconvenience get Dt | s method which can
be used directly as a shorthand.

Our example requires these getters to be implemented:
e get Nane;

 get Dat eRange ;

« getType;

« get MyParentEntity ;and

e getMChildren.

In general the JavaDoc for your getter implementations can simply inherit
from your entity APl JavaDoc.

56

Persistence Cookbook

getName

The getter for name is a straight-forward mapping of the name held in the
Dlts struct:

/**
* {@nheritDoc}
*/

public String getNarme() {
return getDtls().nane;

Figure 4.21 Implementation of a simple get method

getDateRange

The getter for your entity's date range must use the st ar t Dat e and end-
Dat e held on the generated Dtls struct and construct a new Dat eRange
object:
/**

:/{@nheri t Doc}

publ i ¢ Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);

Figure 4.22 Implementation of a get method which returns a
single object representing multiple database column values

getType

The getter for your entity's type must retrieve the relevant MYNEVENTI TY-
TYPEENt ry value based on the codetable code String value held in the
t ypeCode field on the Dtls struct:

/**

* {@nheritDoc}
*/

publ i c MYNEWENTI TYTYPEEnt ry get Type() {
return MYNEVENTI TYTYPEEntry. get (getDtls().typeCode);

Figure 4.23 Implementation of a get method which returns a
codetable entry value

getMyParentEntity

The getter for a single record must retrieve that related record and return it.
However, the getter must check whether the key is currently zero (which is
used throughout the server application to signify that a unique ID value has
not been set), and if so instead return nul | .

Create a class member variable for the related record's DAO:

57

Persistence Cookbook

@ nj ect
private MyParent EntityDAO nmyParent EntityDAG,

Figure 4.24 Creating a member variable for a related entity's
DAO

In the getter, conditionally call the DAO, depending on whether the value of
nyPar ent Enti tyl Diszero:

/**
* {@nheritDoc}
*/

public MyParentEntity get MyParentEntity() {
final long nmyParentEntitylD = getDtls().nyParent Entityl D

if (myParentEntitylD == 0) {
return null;

} else {
return nyParent EntityDAQ. get (nmyParentEntitylD);

}

Figure 4.25 Implementing a get method to retrieve a related
entity instance

getMyChildren

The getter for a set of related records must call a DAO method to perform a
search.

Create a class member variable for the related records DAO:

@ nj ect
private MyChil dEntityDAO myChil dEntityDAQ

Figure 4.26 Creating a member variable for another related
entity's DAO

In the getter, call the DAO passing in this object:
/**
:/{@nheri t Doc}

public Set<MyChil dEntity> get MyChil dren() {
return nmyChil dEntityDAO sear chByParent (this);

Figure 4.27 Implementing a get method to retrieve a set of
related entity instances

You must add the sear chByPar ent method to the DAO:

/**
* Data access for {@inkplain MyChildEntity}.
*/
public interface M/Chil dEntityDAO
ext ends St andar dDAO<MyChi | dEntity> {

58

4.2.3

Persistence Cookbook

*

Searches all the instances belonging to the specified parent.

@ar am nyNewEnti ty
the parent to search for

@eturn all the instances belonging to the specified parent, or
an enpty set if none found.

E R I

*/
publ i c Set <MyChi | dEntity> sear chByParent (
final MyNewEntity nyNewEntity);

Figure 4.28 Adding a search method to the related entity's DAO
interface

| Important

@
Do not be tempted to take Eclipse's suggestion of using the
MyNewEnt i t yl npl class as an argument:

/** ER R I o VERY VERY BAD - m ’\D‘I’ m THl S] R R O O */
/**
* Searches all the instances belonging to the specified parent.
*
* @aram i npl
* the parent to search for
* @eturn all the instances belonging to the specified parent, or
* an enpty set if none found.
*/

publ i c Set <MyChi | dEntity> sear chByParent (MyNewEntitylnpl inpl);
/** Kk kkkkkkk*k VERY VERY BAD - m ’\D‘I’ m THI S] * kkkkkkk kK */

Figure 4.29 Incorrect - adding a search method taking the entity
implementation as a parameter

(The underlying principle here is that entity and DAO interfaces are alowed
to be dependent on other entity and DAO interfaces, but are not allowed to
be dependent on implementations.)

If an implementation exists for MyChi | dEnt i t yDAO, then you must im-
plement the new method, and model a new search operation (a readmulti) to
retrieve the required records.

Putting it all together

Y ou now have afull set of implemented getter methods. In doing the imple-
mentation, you have:

o fleshed out MyNewEnt i tyl npl ; and
» added anew method to MyChi | dEnt i t yDAO.

The full code for these classes is shown below:
MyNewEntitylmpl

package curam nmypackage;

59

i nmport
i mport
i mport

i mport
i mport

Persistence Cookbook

java.util. Set;
com googl e. i nj ect.|nject;

curam nypackage. struct. MyNeweEntityDtls;
curamuti|.exception.|nfornational Exception;

curam util . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl;

i mport
i mport

/**

curamutil.type. Dat e;
curamutil .type. Dat eRange;

* Standard i npl enentati on of {@inkplain M/NewEntity}.

*/

public class MyNewEntityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl <MyNewEntityDt| s>
i mpl enents MyNewentity {

@ nj ect
private MyParent EntityDAO myParent EntityDAG,

@ nj ect
private MyChil dEntityDAO myChil dEntityDAG

protected MyNewentityl mpl () {
/* Protected no-arg constructor for use only by Guice */

}
/*

* Field getters
*/

/**

*/{@nheritDoc}

public String getNane() {
return getDtls().naneg;

/**

*/{@nheritDoc}

publ i ¢ Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);

/**

* {@nheritDoc}
*/

publ i ¢ MYNEVENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get (getDtl s().typeCode);

/*

* Rel ated-entity getters

*/

/**

* {@nheritDoc}
*
/

public Set<MyChil dEntity> get MyChil dren() {
return myChil dEntityDAQO sear chByParent (this);

/**

* {@nheritDoc}
*/

public MyParentEntity get MyParentEntity() {
final long nyParentEntitylD = getDtls().

nmyPar ent Enti tyl D;

if (myParentEntityl D == 0) {

return null;

} else {

60

Persistence Cookbook

return nyParent EntityDAQ. get (nmyParentEntitylD);

}

/*

* Setters

*/

public void set MParentEntity(M/ParentEntity val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

public void setNane(String val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

public void set Type(final MYNEWENTI TYTYPEEntry val ue) {
/1 TODO Aut o- gener at ed met hod stub
}

/*
* Validation
*/
public void mandat oryFi el dval i dati on() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossFieldValidation() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossEntityValidation() {
/1 TODO Aut o- gener at ed met hod stub

}

Figure 4.30 Complete listing for an entity implementation with
implemented getter methods

MyChildEntityDAO

package curam nypackage;
i nport java.util. Set;

i mport curamutil . persistence. St andar dDAQ

/**
* Data access for {@inkplain M/ChildEntity}.
*/
public interface MyChil dEntityDAO ext ends
St andar dDAO<MyChi | dEnti ty> {

*

Searches all the instances belonging to the specified parent.

@ar am nyNewEntity
the parent to search for

@eturn all the instances belonging to the specified parent, or
an enpty set if none found.

* Ok Ok F Ok ok X

*/
publ i c Set <MyChil dEntity> sear chByParent (

61

4.3

4.3.1

4.3.2

Persistence Cookbook

final MyNewEntity nyNewEntity);
}

Figure 4.31 Complete listing for changes made to a related entity
DAO arising from implementation of a getter which calls a new
search

You want to implement new row defaults

The problem

You have an entity which has one or more fields which require defaulting
when new instances are inserted into the database.

How do you specify new row defaults for your entity?

The solution

You must override the set Newl nst anceDef aul t s method and initial-
ize any fields which require defaulting before a new instance is inserted
onto the database.

In the example, the initial t ypeCode of MyNewEnt i t y must be defaulted
to "SomeType", and the date range set to start on today's date and no end
date specified:

/**
Def aul t s:

the type to {@i nkpl ai n MYNEVEENTI TYTYPEEnt r y#SOVETYPE} ;
and
the date range to { @i nkpl ai n Dat eRange#t odayOnwar ds()}.
</[li>
*
*/
public void set Newl nst anceDefaul ts() {
set Type(MYNEVEENTI TYTYPEENt ry. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

* % ok X X

Figure 4.32 Setting default values on new instances of an entity

i Note

Be sure to include a call to Su-
per. set Newl nst anceDef aul t s() .

For example, for logically-deleteable entities, this super implement-
ation defaultsther ecor dSt at us to "active".

Note that this implementation of new instance defaults calls a new private
setter (set Dat eRange - this setter is not available in the entity API but is
local to the entity implementation class. (Recall that you do not want callers

62

4.4

4.4.1

4.4.2

Persistence Cookbook

of your class to be able to set its dates directly.)

The Dat eRange class contains the convenience method t oday Onwar ds
to return a data range that starts on the current business date and has no end
date specified.

Create a skeletal implementation of this private setters - you'll flesh it out
later:

publi c voi d set Dat eRange(Dat eRange val ue) {
/1 TODO Aut o- gener at ed met hod stub

}

Figure 4.33 Creating a skeletal implementation of a private
setter method

You want to implement setters

The problem

Y ou have created a skeletal implementation for your entity. You now need
to implement setter methods.

How do you implement setters?

The solution

You must create implementations for your skeletal setter methods created
above. Each setter method is responsible for taking a value (either primitive
or object) supplied by calling code and setting one or more fields in an un-
derlying Dtls struct.

Our example requires these setters to be implemented:

e setNane;

* set Dat eRange (private, not present in the entity interface);
» setType;and

« setMyParentEntity.

i Note
In general the JavaDoc for your setter implementations can simply
inherit from your entity APl JavaDoc.
Private setters must detail their own JavaDoc (as there is no API
JavaDoc to inherit from).
setName

The setter for the name field maps the value provided to the nane field on

63

Persistence Cookbook

the Dtls struct. The setter must trim/compress white space and convert any
nul | value passed to an empty string:

/**
* {@nheritDoc}
*/

public void setNane(final String value) {
getDtls().nanme = StringHel per.trin(val ue);

Figure 4.34 Implementation of a simple setter method

The St ri ngHel per class contains the convenience method trim which
converts a null to an empty string, trims white space from the ends of genu-
ine strings passed and compresses any contiguous embedded spaces down to
asingle space.

setDateRange

The setter for the date range field must set two values on the underlying Dtls
struct:

/**

* Sets the start and end fields fromthe date range suppli ed.

*

* @ar am val ue
* the date range supplied
*/

private void setDat eRange(final DateRange val ue) {

getDtls().startDate = val ue.start();
getDtls().endDate = val ue. end();

Figure 4.35 Implementation of a setter method which sets
multiple database column values from one object

setType

The setter for the typeCode database column must convert the state supplied
into its codetable code for storage on the database:

/**

* {@nheritDoc}
*/

public void set Type(final MYNEWENTI TYTYPEEntry val ue) {
getDtls().typeCode = val ue. get Code();

Figure 4.36 Implementation of a setter which translates an
codetable entry to a codetable code String value

setMyParentEntity

The setter for arelated record must retrieve the object's ID and store it in the
appropriate field on the Dtls struct. A nul | value must be converted to
zero:

64

4.4.3

Persistence Cookbook

/**

*/{@nheritDoc}

public void set MParentEntity(final M/ParentEntity val ue) {
final |ong nmyParent Entityl D

if (value == null) {
nmyParent Entityl D = O;
} else {

nmyParent Entityl D = val ue. get |l D();

getDtls().myParentEntityl D = myParent Entityl D;
}

Figure 4.37 Implementation of a setter which sets a related
entity

Putting it all together

You now have a full set of implemented setter methods. Here's the code so
far:

package curam nypackage;
i mport java.util. Set;
i mport com googl e.inject.Inject;

i mport curam nypackage. struct. MyNewEntityDtl s;
i mport curamutil.exception.|nformational Excepti on;
I nport
curam util . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl ;
i mport curamutil.type. Date;
i mport curamutil.type. Dat eRange;
import curamutil.type. StringHel per;

/**

* Standard i npl enentati on of {@inkplain M/NewEntity}.
*/

public class MyNewEntityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEnti tyl npl <MyNewEntityDt!| s>
i mpl enents MyNewentity {

@ nj ect
private M/Parent EntityDAO nmyParent Entit yDAG,

@ nj ect
private MyChil dEntityDAO myChil dEntityDAG

protected MyNewentityl mpl () {
/* Protected no-arg constructor for use only by Guice */

/*
* Field getters
*/
/**

* {@nheritDoc}
*/

public String getNane() {
return getDtls().naneg;

/**

* {@nheritDoc}

65

Persistence Cookbook

*/
publ i ¢ Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);

/**

* {@nheritDoc}
*/

publ i ¢ MYNEVENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get (getDtl s().typeCode);

/*
* Rel ated-entity getters
*
i

* {@nheritDoc}
*/

public Set<MyChil dEntity> get MyChil dren() {
return myChil dEntityDAQO sear chByParent (this);

/**

* {@nheritDoc}
*/

public MyParentEntity get MyParentEntity() {
final long nyParentEntityl D = getDtls().nyParentEntityl D;

if (myParentEntitylD == 0) {
return null;
} else {
return nyParent EntityDAQ. get (nmyParent EntitylD);

}
}
/*
* Setters
=
/**

*/{@nheritDoc}

public void set MParentEntity(final M/ParentEntity val ue) {
final |ong nmyParent Entityl D

if (value == null)
nmyParent EntitylD = 0
} else {

nmyParent Entityl D = val ue. get |l D();

getDtls(). myParentEntityl D = myParent Entityl D;

/**

* {@nheritDoc}
*/

public void setNanme(final String value) {
getDtls().nane = StringHel per.trin(val ue);

/**
* Sets the start and end fields fromthe date range suppli ed.
*
* @aram val ue
* the date range supplied
*/
private void set Dat eRange(fi nal DateRange val ue) ({
getDtls().startDate = val ue.start();
getDtl s().endDate = val ue. end();

/**

66

4.5

4.5.1

4.5.2

Persistence Cookbook

*/{@nheritDoc}

public void set Type(final MYNEWENTI TYTYPEEntry val ue) {
getDtls().typeCode = val ue. get Code();

/*
* Validation
*/
publi c voi d mandat oryFi el dVval i dati on() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossFi el dVvalidation() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossEntityValidation() {
/1 TODO Aut o- gener at ed met hod stub

}
/**
* Defaul ts:

the type to {@i nkpl ai n MYNEVENTI TYTYPEEnt r y#SOVETYPE} ;
and</1li >
the date range to {@ i nkpl ai n Dat eRange#t odayOnwar ds()}.
</[li>
*
*/
public void set New nst anceDefaul ts() {
set Type(MYNEVEENT| TYTYPEEnNt r y. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

* % ok Xk F

}
}

Figure 4.38 Complete listing for an entity implementation with
implemented setter methods

You want to implement single-field validation

The problem

Y ou have created an implementation for your entity setters. You now need
to implement single-field validation logic.

How do you implement single-field validation logic?

The solution

Each field setter is responsible for ensuring that the value being set is appro-
priate. In general, errors arising from single-field validation should be "accu-
mulated" using the InformationalManager, so that callers can be notified of
all the single-field validation errors found. This is particularly useful to on-
line users who may have entered several fieldsin error - if single-field valid-
ation errors are reported one-by-one then it would be frustrating for the user

67

Persistence Cookbook

to be presented with a series of single-error messages instead of alist of al
known single-field validation errors.

One important corollary of thisis that each field setter should only attempt
to validate the field being set. It should make no reference to other fields.

For the purposes of single-field validation, a field corresponds to the value
received by the setter. Generally, there is one setter per underlying database
field; however, in cases where database fields are grouped together (notably
with Dat eRange), it isthe object received by the setter which is validated,
not the individual underlying database fields. In the case of aset Dat eR-
ange method, it isthe date range which is validated. This single-field valid-
ation of the Dat eRange typically includes start/end date validation which
under classic Curam would have been considered "cross-field" validation.

One other point to note is that the validation of whether mandatory fields
have been set is deferred to a specia "mandatory field validation" method
(see Section 4.6, You want to implement mandatory-field validation below);
this is because you cannot guarantee which (if any) setters have been called
from calling code.

Y ou must add single-field validation logic to the setters:

« set Nane;

 set Dat eRange ; and

« setType;and

« setMyParentEntity.

setName

After analyzing requirements, you determine that the setter for the name
must validate that the name length is within acceptable bounds.

First create a message catal og:

<?xm version="1.0" encodi ng="UTF-8"?>
<nessages package="curam nessage" >
<message name="ERR_MY_NEW ENTI TY_FV_NAMVE_EMPTY" >
<l ocal e | anguage="en" >
The nane nust be specified.
</l ocal e>
</ message>
<nessage name="ERR_MY_NEW ENTI TY_FV_NAME_ SHORT" >
<l ocal e | anguage="en" >
The name nust be at |east %n characters.
</l ocal e>
</ message>
<nessage name="ERR_MY_NEW ENTI TY_FV_NAME LONG'>
<l ocal e | anguage="en" >
The nanme nmust be no nore than %ln characters.
</l ocal e>
</ message>
</ messages>

Figure 4.39 Creating a message catalog with validation error
messages

68

Persistence Cookbook

Note that the validation messages for minimum/maximum length take as ar-
gument the minimum/maximum lengths permitted, rather than hard-coding
these bounds into the messages.

Now code validation logic in the setter and raise errors using the Val i da-
ti onHel per :

/**

* Mnimumvalid nane | ength

*/

private static final |ong kM ni numNameLength = 3;
/**

* {@nheritDoc}
*/

public void setNane(final String value) {
getDtls().nane = StringHel per.trin(val ue);

final |ong naneLength = getDtls().name.|ength();
i f (naneLength > 0 && nanelLength < kM ni munNanmeLengt h) {
Val i dati onHel per. addVal i dati onError (
MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_SHORT(kM ni mumNanmeLengt h)) ;
} else if (naneLength > MyNewEntityAdapter. kMaxLengt h_name) {
Val i dati onHel per. addVal | dati onError (
MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_LONE
My/NewEnt i t yAdapt er . kMaxLengt h_nane)) ;

}
Figure 4.40 Implementing single field validation logic

Note that:

 validation regarding whether the name has been set at all will occur dur-
ing mandatory-field validation; and

» constants for the maximum length of database text columns are automat-
icaly generated into the entity adapter. These constants should be used
in preference to creating your own, as they will automatically be up-
dated should the length of the database column be customized (by chan-
ging the domain definition in the model).

The Val i dati onHel per class contains the convenience method ad-
dVval i dat i onErr or toformat an error message and add it to the inform-
ational manager. It takes an AppExcept i on or Cat Ent ry (shown here).
It also has a deprecated overload which takes a St ri ng , which can be
used asa"quick and dirty" way of writing error messages.

[** **** NMyst be "cleaned up" prior to testing and rel ease ** */
final |ong nanmeLength = getDtls().nane.|ength();
if (naneLength > 0 && nanelLength < kM ni munNanmeLengt h) {
Val i dati onHel per. addVal i dati onError (" Nanme too short!");
} else if (nameLength > MyNewEntityAdapt er. kMaxLengt h_name) {
Val i dati onHel per. addVal i dati onError (" Nane too |ong!");

[** **** Must be "cleaned up" prior to testing and rel ease ** */

Figure 4.41 Using ValidationHelper to create temporary error
messages

69

Persistence Cookbook

You must convert these Strings to message catalog entries prior to testing
and release. This facility exists purely to minimize the "switching" you
might have to do between editing Java and editing/generating message files
that you might otherwise have to do when writing validation logic.

setDateRange

After analyzing requirements, you determine that the date range requires the
following validation logic:

» therangeisvalid (i.e. that the start date is not after the end date); and

» the start date has been specified (but the end date is optional, or, more to
the point, whether the end date is required is dependent on the value of
other fields).

The first of these is amenable to single-field validation; the second is more
appropriate for mandatory-field validation.

Code validation logic to use the standard validation message on Dat eR-
ange :

/**

* Sets the start and end fields fromthe date range suppli ed.
*

* @aram val ue
* the date range supplied
*/
private void set Dat eRange(fi nal DateRange val ue) ({
getDtls().startDate = val ue.start();
getDtl s().endDate = val ue. end();

val ue. val i dat eRange();

}
Figure 4.42 Using DateRange to perform standard validation

The Dat eRange class contains the convenience method val i dat eR-
ange which validates the start and end dates of the range and rai ses a stand-
ard error message if the start date is after the end date. If you require a spe-
cific message, then use Dat eRange. i sVal i dRange instead.

setType

After analyzing requirements, you determine that the type field has no
single-field validation requirements. Mandatory field validation will be re-
quired to ensure that the type has been set.

Note that the caller of this method must supply an instance of
MYNEVEENTI TYTYPEEnt ry , and will fail with a runtime error if it at-
tempts to retrieve an entry value which from a value which is not present in
the corresponding code table.

setMyParentEntity

70

Persistence Cookbook

After analyzing requirements, you determine that the parent entity 1D field
has no single-field validation requirements. Mandatory field validation will
be required to ensure that the parent entity has been set.

4.5.3 Putting it all together
Here's the entity implementation code with the single-field validation logic:

package curam nypackage;
i mport java.util. Set;
i mport com googl e.inject.Inject;

i mport curam nessage. i npl . MYNEVENTI TYExcept i onCr eat or ;
i mport curam nypackage. struct. MyNewEntityDtl s;
i mport curamuti| . persistence. Vali dati onHel per;
i mport
curam util . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl ;
i mport curamutil.type. Dat eRange;
import curamutil.type. StringHel per;

/**

* Standard i npl enentati on of {@inkplain M/NewEntity}.
*/
public class MyNewentityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEnti tyl npl <MyNewEntityDt!| s>
i mpl enents MyNewentity {

@ nj ect
private MyParent EntityDAO myParent EntityDAG,

@ nj ect
private MyChil dEntityDAO myChil dEntityDAG
/**

* Mnimmvalid nane | ength
*/
private static final |ong kM ni numNanmeLength = 3;
protected MyNewentityl nmpl () {
/* Protected no-arg constructor for use only by Guice */
}

/*
* Field getters
*/

/**
* {@nheritDoc}
*/

public String getNane() {
return getDtls(). naneg;

/**
* {@nheritDoc}
*/

publ i ¢ Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);

/**

* {@nheritDoc}
*/

publ i ¢ MYNEVENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get (getDt! s().typeCode);

71

Persistence Cookbook

/*
* Rel ated-entity getters
*/

/**

* {@nheritDoc}
*/

public Set<MyChil dEntity> get MyChil dren() {
return myChil dEntityDAQ sear chByParent (this);

/**

* {@nheritDoc}
*/

public MyParentEntity get MyParentEntity() {
final long nyParentEntitylD = getDtls().nyParentEntityl D

if (myParentEntitylD == 0) {
return null;
} else {
return nyParent EntityDAQ. get (myParent EntitylD);

}
}
/*
* Setters
*/
/**

* {@nheritDoc}
*
/

public void set MyParentEntity(final MyParentEntity val ue) {
final |ong nyParent Entityl D

if (value == null)
myParent Entityl D = O;
} else {

myParent Entityl D = val ue. get 1 X);

getDtls(). myParentEntityl D = myParent Entityl D;

/**

* {@nheritDoc}
*/

public void setNane(final String value) {
getDtls().nane = StringHel per.trin(val ue);

final |ong naneLength = getDtls().nane.|length();
i f (naneLength > 0 && nanelLength < kM ni munNameLengt h) {
Val i dat i onHel per
.addVal i dat i onError (MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_SHORT(kM ni mumNaneLengt h)) ;
} else if (nameLength > MyNewEntityAdapt er. kMaxLengt h_nane) {
Val i dat i onHel per
.addVal i dat i onError (MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_LONE
My/NewEnt i t yAdapt er . kMaxLengt h_nane)) ;

}
}
/**

* Sets the start and end fields fromthe date range suppli ed.
*

* @aram val ue
* the date range supplied
*/
private void set Dat eRange(fi nal DateRange val ue) ({
getDtls().startDate = val ue.start();
getDtl s().endDate = val ue. end();

val ue. val i dat eRange();

72

4.6

4.6.1

4.6.2

Persistence Cookbook

}
/**

* {@nheritDoc}
*/

public void set Type(final MYNEWENTI TYTYPEEntry val ue) {
getDtls().typeCode = val ue. get Code();

/*
* Validation
*/
publi c void mandat oryFi el dval i dati on() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossFieldValidation() {
/1 TODO Aut o- gener at ed met hod stub

}

public void crossEntityValidation() {
/1 TODO Aut o- gener at ed met hod stub

}
/**
* Defaul ts:

the type to {@i nkpl ai n MYNEVENTI TYTYPEEnt r y#SOVETYPE} ;
and
the date range to { @i nkpl ai n Dat eRange#t odayOnwar ds()}.
</[li>
* <ful >
*/
public void set Newl nstanceDefaul ts() {
set Type(MYNEVEENTI TYTYPEENt ry. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

* % ok Xk F

}
}

Figure 4.43 Complete listing for an entity implementation with
implemented single-field validation logic

You want to implement mandatory-field valida-
tion

The problem

Your entity is only valid if certain fields have values specified (commonly
known as "mandatory" fields).

How do you implement mandatory-field validation logic?

The solution

Each class that implements Val i dat or (which MyNewEnt it yl npl
does via Si ngl eTabl eEnti tyl npl) must implement standard meth-

73

Persistence Cookbook

ods for validation logic.

(Note that in general, implementation classes may implement Val i dat or
but that entity APIs should not extend Val i dat or - you do not want call-
ing code to be able to call validation methods directly.)

One of these Val i dat or methodsismandat or yFi el dval i dati on,
where you must place any logic which detects whether any field value has
not been set. It is up to your logic to determine how to detect whether or not
afield valueis "set" (typically with reference to the defaulted values of the
generated Dtls struct).

The persistence infrastructure automatically calls mandat or yFi el d-

Val i dati on priortoany i nsert or nodi f y operation (but not before a
physical r enove operation), and fails the operation if any validation errors
have been raised. These errors include those raised by setter methods as well
asby mandat or yFi el dval i dati on . In particular, processing will not
proceed to cross-field or cross-entity validation if any single-field or man-
datory-field validation errors have been found.

Logic placed in mandat or yFi el dVal i dati on must consider each
field on afield-by-field basis; logic which checks one field value against an-
other must instead be placed in cross-field validation. In particular, the per-
sistence infrastructure will prevent any database access occurring during
mandat or yFi el dval i dati on.

After analyzing requirements, you determine that in order to be valid your
entity must always have the following specified:

* name

e start date of the date range;

e type and

e parent entity instance.

You add the following code to implement mandat or yFi el dval i da-
tion:

/**

* {@nheritDoc}
*/
public void mandat oryFi el dval i dati on() {
/*
* Nane cannot be enpty
*/

if (StringHel per.isEnpty(getDtls().name)) {
Val i dati onHel per. addVal i dati onErr or (
MYNEVENTI TYExcept i onCr eat or

! . ERR_MY_NEW ENTI TY_FV_NAME_EMPTY());

/*
* Start date nmust be specified

*/

get Dat eRange() . val i dateStarted();

/*
* Type nmust be specified

74

4.7

4.7.1

4.7.2

Persistence Cookbook

*/
i f (getType().equal s(MPNEVENTI TYTYPEEnt ry. NOT_SPECI FI ED)) {
Val i dat | onHel per
.addVal i dati onError (" Type nmust be specified");
}

/*
* Parent entity instance nust be specified
*/
if (get WParentEntity() == null) {
Val i dati onHel per
.addVal i dati onError (
"Parent entity instance nust be specified"

}
}

Figure 4.44 Implementing mandatory field validation logic

Note that:

» thefields are tested sequentially, raising validation errors via Val i da-
ti onHel per , so that al errors are accumulated and reported in one
"batch” to calling code;

 theStringHel per class contains the convenience method i sEnpt y
to check whether the string isempty or nul | ;

« MYNEVENTI TYTYPEEntry contains the generated constant
NOT_SPECI FI ED , which is the vaue returned if a null or empty
String is passed to MYNEVEENTI TYTYPE. get ; and

» the Dat eRange class contains the convenience method val i dat e-
St art ed which raises a standard error message if no start date has
been specified. If you require a specialized message, use Dat eR-
ange. i sSt art ed instead.

You want to implement cross-field validation

The problem

Your entity is only valid if the data in certain groups of fields obeys busi-
ness rules (commonly known as "cross-field" validation).

How do you implement cross-field validation logic?

The solution

Each class that implements Val i dat or has a cr ossFi el dval i da-
t i on method where you must place any logic which validates the value in
one field against one or more others.

If single-field and mandatory-field validation has succeeded, then the per-
sistence infrastructure automatically callscr ossFi el dval i dati on pri-

75

4.8

4.8.1

4.8.2

Persistence Cookbook

ortoany i nsert or nodi fy operation (but not before aphysical r enove
operation), and fails the operation if any validation errors have been raised.
In particular, processing will not proceed to cross-entity validation if any
cross-field validation errors have been found. The persistence infrastructure
will prevent any database access occurring during cr ossFi el dval i da-
tion.

You want to implement cross-entity validation

The problem

Your entity is only valid if its data obeys business rules with regard to data
on other entities (commonly known as "cross-entity” validation).

How do you implement cross-entity validation logic?

The solution

Each class that implements Val i dat or hasacrossEntityVali da-
t i on method where you must place any logic which validates the value in
your entity against data on other entities.

If cross-field validation has succeeded, then the persistence infrastructure
automatically calls crossEntityVal i dati on after any i nsert or
nodi fy operation (but not after a physical r enove operation), and fails
the operation if any validation errors have been raised. The persistence in-
frastructure permits database access occurring during cr ossEnt i t yVal -

i dati on, so that your validation logic can retrieve data on other entities
required to implement the validation.

76

5.1

Chapter 5

Creating a Guice module

In earlier chapters you saw how Guice's @ npl enent edBy annotation is
used to designate the default implementation of an interface.

Guice has another more flexible configuration mechanism, namely a Guice
Module which you code yourself.

Moreover, the configuration that you place in a Guice Module takes preced-
ence over any @ npl enent edBy annotations in the code, which allows
you to configure Guice to use your custom implementation instead of the
default implementation. This may be useful for customisation or testing pur-
poses.

To create your own Guice Module, follow these steps:

e createaclass extending Abst r act Modul e ; and

 storearow on Modul eCl assNane .

Create a class extending Abst r act Modul e
Create aclass asfollows:

package curam nmypackage;

i mport com googl e. i nj ect. Abst ract Modul e;
/**
* Contains ny Guice bindings.
*
/
public class MyMdul e extends Abstract Modul e {
/**

* {@nheritDoc}
*

/
@verride

public void configure() {
/1 no explicit bindings
}
}

77

5.2

Persistence Cookbook

Figure 5.1 Skeleton Guice Module

Y ou can how add new Guice "bindings" to the configure method to override
default implementations:

@verride
public void configure() {
bi nd(MyNewEntity.cl ass).to(M/CustonNewEntityl npl.class);

Figure 5.2

This configuration will cause Guice to dish up an instances of MyCust om
NewEnt i tyl npl instead of the default implementation (
MyNewent i tyl npl), whenever an MNewENt i ty interface instance is
@njected.

You will also add configuration code if your application uses events (see
Chapter 6, Events).

] Important

-]

Each interface can only be bound to a single implementation. If the
set of runtime Guice modules attempts to bind the same interface
more than once, Guice will raise a runtime exception.

As such, code which is delivered to customers should not use this
mechanism to bind an interface to an implementation in any situ-
ation where the customer should be permitted to specify their own
binding for the interface.

Store a row on Mbdul eCl assNane

The Persistence Infrastructure reads from a database table named Modul e-
Cl assNane to identify Guice modules which should be loaded.

You must add a row to this database table with the name of your module.
The most straightforward way to do thisis to use the Data Manager, by cre-
ating a custom DM X file containing the row required:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane="Mdul ed assNane" >
<col um
name="nodul eCl assNane"
type="text"
/>
<r ow>
<attri bute nane="nodul ed assNang" >
<val ue>
cur am nmypackage. MyModul e
</ val ue>
</attribute>
</ row>
</t abl e>

Figure 5.3 DMX file to create a row for your module on

78

Persistence Cookbook

Modul ed assNane

79

Chapter 6

Events

The Persistence Infrastructure provides some helper classes which allow
you to raise and listen for events. Y ou can define your own events or write
listeners for ones that are already defined " out-of-the-box".

Events can be a useful tool in removing an explicit dependency from one
class (the event raiser) to another (the event listener). If you require to add
another listener to an event, you can do so without having to "open up" the
code that raises the event - the event raiser and listener only depend on the
event interface, not on each other's implementation.

The Persistence Infrastructure supports:
« aninstance of aclassraising events declared on an interface;

e zero, one or more "listener" instances wired to listen for these events;
and

» gpecia classes of "persistence events' which are automatically raised for
all persistence operations, signalling when various standard operations
are performed on entities.

To implement events and listeners, follow these steps (described in detail
below):

e identify where an event must be raised;

* definethe Event interface;

* createan Event Di spat cher Factory ;
s raiseevents

» create an event listener; and

» configure Guice.

After these steps there is a description of how to add a listener for generic
persistence events.

80

6.1

6.2

Persistence Cookbook

|ldentify where an event must be raised
Let's take as an example a simple class which has a simple method:

package curam nypackage;
public class M/Event Source {
public void doSonething() {

/! do whatever it is that needs to be done
System out. println("Do sonething!");

}
Figure 6.1 A simple class which performs an action

Y ou decide that events should be rai sed:

» beforedoSonet hi ng performsitslogic (pr eDoSonet hi ng); and

» after doSonet hi ng performsitslogic (post DoSonet hi ng).

Define the Event interface

Y ou must define an interface to contain your event methods.
The event interface will be:

» used by the event source to raise events; and

* implemented by event listenersto listen to and react to events.

Note that we are using the word "interface" loosely here. A very important
consideration is whether you might ever change the event interface to create
additional methods. If you do, all existing implementations of the interface
are forced to implement the new methods. In this case, you are strongly ad-
vised to use abstract classes rather than Java interfaces. These classes should
provide empty implementations of event methods, rather than declare them
abstract, so that newly added methods do not cause compilation problems
for existing implementations. This approach also means that you can group
many related events together in a single abstract class declaration, knowing
that only those methods of interest to a particular customer need to be im-
plemented, since default empty implementations for all methods are inher-
ited.

The event interface is typically publ i ¢ so that class in any code package
can listen to its events. The interface can be created as an inner interface, in
which case it can simply be named Event without fear of name collision
with other event interfaces. Typically your entity implementations are pack-
age-protected, and so the event interface should be declared as an inner in-

81

6.3

Persistence Cookbook

terface of your entity's public interface . However, here for brevity an inner
interface is shown declared on the simple class:

package curam nypackage;
public class M/Event Source {
publ i c abstract class Event ({

publ i c void preDoSornet hi ng(MyEvent Source rai ser) {
/1 intentionally enpty

public voi d post DoSonet hi ng(M/Event Source raiser) {
/1 intentionally enpty
public void doSonething() {

/1 do whatever it is that needs to be done
Systemout . println("Do sonething!");

}

Figure 6.2 Defining the Event interface

You must carefully think about the signature of your event methods. The
event method is free to pass any number of parameters and/or throw excep-
tions; note though that the Event Di spat cher Fact ory (see below) ig-
nores any return values, so if you require listeners to return a value then you
have to supply your own custom event dispatch logic.

Because each listener is a single instance, typically each event method
should pass the instance which raised the event, so that the listener can
identify the source of the event. In the example both pr eDoSonet hi ng
and post DoSonet hi ng take an instance of MyEvent Sour ce , namely
the instance which raised the event.

Create an Event D spat cher Fact ory

Y our class needs a mechanism for dispatching events to listeners.

Create an instance of Event Di spat cher Fact ory parameterized with
your Event interface:

package curam nypackage;
i mport com googl e.inject.Inject;
i mport curamutil . persistence. hel per. Event Di spat cher Fact ory;
public class M/Event Source {
public abstract class Event {

publ i c void preDoSornet hi ng(MyEvent Source raiser) {
/] intentionally enpty

}
publ i c voi d post DoSonet hi ng(M/Event Source raiser) {

82

6.4

Persistence Cookbook

/1 intentionally enpty

}
} :
@ nj ect
private Event Di spat cher Fact or y<Event > di spat cher;
public void doSonething() {

/! do whatever it is that needs to be done
Systemout . println("Do sonething!");

Figure 6.3 Creating an Event Di spat cher Factory

Raise events

Y ou must now raise events at appropriate pointsin the classslogic. Retrieve
an instance of your di spat cher to call the methods on your Event in-
terface:

package curam nypackage;
i nport com googl e.inject.Inject;
i mport curamutil . persistence. hel per. Event Di spat cher Fact ory;
public class M/Event Source {

public abstract class Event {
publ i c void preDoSornet hi ng(MEvent Source rai ser) {
[/l intentionally enpty

publ i c voi d post DoSonet hi ng(M/Event Source raiser) {
[/l intentionally enpty

}

@ nj ect
private Event Di spat cher Fact or y<Event > di spat cher;

public void doSonet hing() {

/1 notify listeners that something is about to happen
di spat cher. get (Event . cl ass) . preDoSonet hi ng(t hi s) ;

/] do whatever it is that needs to be done
System out . println("Do something!");

/1 notify listeners that something has just been done
di spat cher. get (Event . cl ass) . post DoSomnet hi ng(t hi s);

}

Figure 6.4 Raising events

Note how the di spat cher . get method took the class of the Event inter-
face as a parameter. Calling this method returned an event "multiplexer” in-
stance on which any method call will be dispatched to each of the registered
listeners for that event interface.

83

6.5

6.6

Persistence Cookbook

This completes the coding to raise events. Y ou can now move on to create
listeners.

Create an event listener

You can create as many event listener classes as you require. These classes
can be in any code package and each event listener can react to the event in
its own way.

package curam nypackage;
i nport com googl e. i nj ect. Singl eton;
@i ngl et on
final class MyListener inplenents
curam nmypackage. MyEvent Sour ce. Event {

protected M/Listener() {
/1 Protected constructor for use only by Guice

}
@verride
public void preDoSonet hi ng(fi nal MyEvent Source raiser) {
Syst em out
.println("prebDoSonet hi ng event was rai sed from object "
+ raiser);
}
@verride
public void post DoSonet hi ng(fi nal M/Event Source raiser) {
Syst em out
.println("postDoSonet hi ng event was rai sed from object "
+ raiser);
}

}
Figure 6.5 Creating an event listener class

Note that the listener class implements the Event interface from the event
source, and uses the event methods to respond to the events as required.

You have created a listener class which will listen for events raised from
MyEventSource instances. However, in order for these events to be dis-
patched to your listener instance, you must first perform some Guice config-
uration.

Configure Guice

Y ou must add code to the conf i gur e method of your Guice Module (see
Chapter 5, Creating a Guice module) to "wire" your listeners to your
events.

Note that no Guice configuration is required to simply declare an event in-
terface and dispatch events on it. Configuration is only required for imple-
mentations of the event interface. You need similar configuration for each

84

6.7

Persistence Cookbook

implementation of the event interface, although this can be split across as
many Guice modules as you want. The Mul t i bi nder syntax in the figure
below ensures that no matter how many implementations and modules you
provide, they all end up in the same set of event listeners.

@verride
public void configure() {

/*
* Get the |istener set

*/

Mul ti bi nder <MyEvent Sour ce. Event > nmyEvent Li steners = Ml ti bi nder
. newSet Bi nder (bi nder (), MyEvent Sour ce. Event. cl ass) ;
/*
* Add a listener
*/
myEvent Li st ener s. addBi ndi ng() .t o(M/Li st ener. cl ass) ;

}
Figure 6.6 Adding wiring

The wiring is now complete, and a cal to MyEvent-
Sour ce. doSonet hi ng() will result in output resembling the following:

pr eDoSonet hi ng event was rai sed from

obj ect curam nypackage. MyEvent Sour ce@25d06e
Do sonet hi ng!
post DoSoret hi ng event was rai sed from

obj ect curam nypackage. MyEvent Sour ce@25d06e

Writing listeners for automatic persistence
events

The Persistence Infrastructure provides automatically dispatched events for
all entity classes. To use these events all you need to do iswrite event listen-
ers and wire them using Guice, very much as described in the previous sec-
tion. The event interface for persistence events differs from the previous ex-
ample in that it is a parameterized abstract class called Per si st -

enceEvent , which takes the name of the entity as atype parameter.

See the Javadoc for the Per si st enceEvent class for a complete list of
methods. Default empty implementations are provided for all event meth-
ods. In the example following, a listener is written which implements just
the post | nsert method of Per si st enceEvent for an entity called

MyEntity:
package curam mypackage;

i mport com googl e. i nj ect. Si ngl et on;
i mport curamutil . persistence. PersistenceEvent;

@i ngl et on
final class MListener inplenments
Per si st enceEvent <MyEntity> {

prot ected M/Listener() {
/1 Protected constructor for use only by Guice
}

85

Persistence Cookbook

@verride
public void postlnsert(final MEntity entity) throws
I nf or mat | onal Excepti on, AppException {
/1 handl e the event here

}
}

Figure 6.7 Creating a persistence event listener class

As for other events, you have to wire your listener implementation in a
Guice module:

@verride
public void configure() {

/*
* CGet the listener set
*/
Mul ti bi nder <Per si st enceEvent <MyEnti t y>> nyEventLi steners =

Mul ti bi nder . newSet Bi nder (bi nder (),
new TypelLit eral <Persi stenceEvent <MyEntity>>() { /**/ });

* Add a l|istener
*/
myEvent Li st ener s. addBi ndi ng() .t o(M/Li st ener. cl ass) ;

}
Figure 6.8 Adding wiring for persistence event listeners

Design Considerations with Events

Some things to think about when defining events or writing listeners for
them:

» Likeany other class or interface in Java, it is possible to create package-
protected event interfaces. This allows you to use Eventsin your design,
without making them freely availableto all API clients.

» Itismore efficient to implement a listener class as a singleton (either us-
ing the @i ngl et on Guice annotation on the class, or binding the
class in singleton scope in the Guice module). Singletons need to be im-
plemented in athread-safe way, but even if you don't use singletons you
should still assume that your listener should be thread-safe, since the
safety requirements are imposed by the class which raises events. In
short, unless an Event interface is documented as not requiring thread-
safe listeners, you should assume thread-safety is required.

o It will rarely be appropriate for your listener methods to modify argu-
ments passed to them. Remember that the same arguments are passed to
all listeners, and that furthermore you have no control over the order in
which different registered listeners will be called. Changing the contents
of alistener method parameter (for instance, calling mutator methods on
it) can have negative consequences and cause unexpected results or viol-

86

Persistence Cookbook

ate validation requirements. Unless an Event interface documents what
can validly be changed, assume nothing can.

6.9 Backward compatibility

Previous versions of the Persistence Infrastructure provided event dispatch-
ing functionality via the Event Di spat cher and St andar dEvent -
Di spat cher classes. These provided similar functionality but were harder
to configure. Their use is now deprecated but they are still supported for
backward compatibility. The approach described in this chapter is recom-
mended for all new event handling.

87

7.1

7.2

Chapter 7

Using Entity Context

The Persistence Infrastructure alows you to add additional information to
any entity instance at runtime. This facility has a number of possible uses
which are described later. First we describe the facility and how to useit.

The Problem

You want to attach additional information to an entity instance at runtime,
so that it is available to event handlers and other custom code. However, the
entity interface itself is not easily customizable.

The Solution

Use Entity Context. Every entity instance allows you to attach additional
context information. In fact, you can store a whole variety of different types
of information, indexed by the class of the information.

In practice the context information is stored in a Cont ext Cont ai ner
which is essentially a Map attached to the entity. The key of the Map is the
JavaCl ass of the stored information:

" voi d someMet hod(M/Entity entity) ({

/] Get the string stored in the entity's context:
String s = entity. get Context Container().get(String.class);
System out . println(s);

/1 Store an updated string in the entity context:
s += " longer context";

entity. get Cont ext Container().put(String.class, s);
}

Figure 7.1 Manipulating entity context

As will be clear from the code above, you can only have one String value
stored at any given time in the entity context. It is up to you to make sure

88

7.3

Persistence Cookbook

that you "own" any class that you use as context on an entity, and that it will
not interfere with other customizations. In practice, it may be wise to define
your own classes for use as context, rather than using built-in classes such
asString.

What if you want to store a set or a list as context? The Java Li st isa
built-in class, and there are no class literals for Lists of your own types, i.e.
noLi st<Myd ass>. class . YoucanuseaTypelLi teral asakeyin
this case, and it will be distinct from Lists of any other type which may aso
be stored in the entity context:

" "Void someMet hod(MENtity entity) {

/] Get the List<MyCl ass> stored in the entity's context:
TypeLi teral <Li st <MyC ass>> type =

new TypelLiteral <Li st<Myd ass>>() { /**/ };
Li st<Myd ass> |list = entity. get Context Container().get(type);
Systemout.printin(list);

}
Figure 7.2 Manipulating parameterized types in context

The Cont ext Cont ai ner class lets you retrieve, set, or remove context
information by Cl ass or by TypeLi t eral . When you set the contents
of the context container (using the Cont ext Cont ai ner . put (Cl ass)
method) the previous contents of the context container for that class, if any,
are returned.

Customising Inserts using entity context

A common customisation pattern is that you want to store additional inform-
ation on the application database whenever a Clram entity is inserted. In
"classic" Cdram you might have extended the out-of-the-box entity but this
is discouraged for code constructed using Persistence Infrastructure because
of the undesirable dependencies it creates between custom code and out-
of-the-box code. Instead, you'll create a whole separate entity that gets up-
dated in synch with the original.

Let's take a typical use case. A method of a facade class is called by the
Cuaram client to insert data collected on a UIM page. The fagade method
gets data from its parameters, and invokes service layer APIs to create a
new entity instance and persist it. Y ou want to collect additional information
and persist it on a new entity along with the original, using the same primary
key value.

The initial steps you will take are as follows, and are the same as described
for "classic" Cdram code in the Clram Server Developer's Guide:

» customize therelevant UIM page to add new fields;

» make corresponding changes to the facade method parameters to add
new attributes;

89

Persistence Cookbook

» subclass the facade and override the particular method in question;

The remaining steps are particular to code using the Persistence Infrastruc-
ture:

» define anew entity to store the additional attributes,
» store additional attributes collected in the fagade as entity context;

» write a listener for insert events on the original entity (as described in
the earlier chapter on Events), and have its implementation insert on the
new entity using the stored entity context information;

* register thelistener.

Here's how that works in practice. In order to keep the program listings con-
cise we assume that you've already declared a new "classic" entity called
MyAdditionalEntity and have extended the fagade parameters to take the
new details.

Here's the original facade:

bhbl ic class MyFacade {
@ nj ect
protected MyEntityDAO nyEntityDAG

public void createM/Entity(final MyEntityDetails details) throws
AppException, |nformational Exception {
M/Entity nmyEntity = nmyEntityDAO newl nstance();
setDetall s(nmyEntity, details.dtls);
myEntity.insert();

protected void setDetail s(final MEntity e,
final MyEntityDtls dtls)
throws AppException, |nformational Exception {
e.setFirstnane(dtls.firstnane);
e. set Surname(dtl s. surnane) ;

}
}

Figure 7.3 A fagade which stores MyEntity

Here's our override of the fagade:

publ i c class MyCust onfFacade extends
curam cust om f acade. base. MyCust onfFacade {

@verride
public void createM/Entity(final MyEntityDetails details)
throws AppException, |nformational Exception {
M/Entity nyEntity = nyEntityDAO newl nstance();
setDetall s(nyEntity, details.dtls);

/*
* Store additional details in entity context
*/
nyEnti ty. get Cont ext Cont ai ner (). put (MyAddi ti onal EntityDtls. cl ass,
details.additionalDtls);
nmyEntity.insert();

90

Persistence Cookbook

}
Figure 7.4 A fagade subclass which uses entity context

Here's our listener for inserts on the original entity. Note the handling when
we find that no entity context has been passed. Thisis a design decision that
must be made in each case - do we store blank additional details, or do we
store nothing. If we choose to store nothing, then the application must know
how to handle the situation later when we retrieve an entity and there are no

additional detailsto be read.

Of course we know that there will always be context if the insert that is oc-
curring was triggered via the fagcade we've just customized. But we always
have to cater for the situation where the insert is occurring on code other

than our fagade.

@5 ngl et on
cl ass MyEntityLi stener extends PersistenceEvent <MyEntity> {
/**

* After MyEntity is inserted, also insert MyAdditional Entity.
*/

@verride

public void postlnsert(final MEntity e) throws AppException,

I nf or mat | onal Excepti on {

/*

* Retrieve the stored details fromentity context

*/

MyAddi tional EntityDtls dtls = e.get Context Contai ner (). get(
MyAddi tional EntityDtls. cl ass);

/*

* Note - don't store null details; on reads, the application

* must handl e having no additional details for a M/Entity
* jnstance

*/
if (dtls '=null) {
/*
* Use sane id as original entity
*/
dtls.id = e.getlD();
/*
* |Insert additional details
*/

MyAddi tional Entity additional Entity =
MyAddi ti onal EntityFactory. newl nstance();

addi tional Entity.insert(dtls);

}
}
}

Figure 7.5 A listener for inserts on MyEntity
Here's how we register our listener:

public class MyMddul e extends Abstract Modul e {

@verride
protected void configure() {

91

7.4

Persistence Cookbook

/*
* CGet the listener set
*/
Mul ti bi nder <Per si st enceEvent <MyEnti ty>> nyEventLi steners =
Mul ti bi nder . newSet Bi nder (bi nder (),
new TypelLit eral <Persi st enceEvent <MyEntity>>() {/**/});

/*
* Add a listener
*/
nyEvent Li st ener s. addBi ndi ng() .t o(M/Enti tyLi stener.cl ass);

}

Figure 7.6 A Guice module to register the listener in the
previous listing

In summary, what we've done is to provide a listener which receives insert
events for one entity and performs inserts on another, supplemental entity.
The data for the supplemental entity was piggybacked on "entity context",
and will normally have been provided via a fagade. However, it's important
to note that this listener pattern works no matter where the insert was in-
voked from, although you'll find you have to decide how to handle the situ-
ation where an insert was performed but no entity context was provided.

Customising Reads using entity context

If you've customized an entity Insert to store additional information, you'll
typically want to also customize the Read operation to retrieve the addition-
al attributes. Thisis very much like the Insert operation in reverse. You'll do
the following:

* retrieve additional attributes from entity context and return them from
your subclassed facade method,;

» write alistener for read events on the original entity and have its imple-
mentation read from the new entity, storing the results in entity context
for use by the fagade;

* register thelistener.

Note that in the sample code that follows, the facade and listener classes can
be the same classes as from our Insert example. We're just looking at differ-
ent methods. By the same token, if you just have a single Listener class to
handle both Insert and Read then you only have to do the Listener registra-
tion once. Here's how it all looks in practice. As before, we're assuming that
you've aready declared a new "classic" entity called MyAdditional Entity
and have extended the facade parameters to take the new details.

Here's the original fagade:

bhblic cl ass MyFacade {
@ nj ect
protected MyEntityDAO nyEntityDAO

92

Persistence Cookbook

public MyEntityDetails readWEntity(final MEntityKey key)
t hrows AppException, |nformational Exception {

M/EntityDetails details = new M/EntityDetail s();
M/Entity nyEntity = nmyEntityDAQO get (key.id);
getDetall s(nmyEntity, details.dtls);

return details;

}

protected void getDetail s(final M/Entity nyEntity,
final MyEntityDtls dtls)
t hrows AppException, |nformational Exception {
dtls.firstnane = nmyEntity. getFirstname();
dtls.surname = nyEntity. get Surname();

}
}

Figure 7.7 A facade which reads MyEntity

Here's our override of the fagade:

bﬂbl i c class MyCustonfacade extends
curam cust om facade. i npl . MyFacade {

@verride
public MyEntityDetails readMEntity(final MEntityKey key)
t hrows AppException, |nformational Exception {
M/EntityDetails details = new M/EntityDetails();
M/Entity nyEntity = myEntityDAQO. get (key.id);
getDetall s(myEntity, details.dtls);

/*
* Retrieve additional details fromentity context
*/

details.additional Dtls = nyEntity. get Cont ext Cont ai ner (). get (
MyAddi tional EntityDtls. cl ass);

return details;

}
Figure 7.8 A fagade subclass which uses entity context

Here's our listener for reads on the original entity. Note, we're assuming that
there will always be a corresponding record on the new entity. Your design
may have to cater for the situation where thisis not the case.

@i ngl et on
class M/EntityListener extends PersistenceEvent<MyEntity> {

/**

* After M/Entity is read, also read MyAdditional Entity.
*/

@verride
public void postRead(final MyEntity e) throws AppException,
I nf or mat i onal Excepti on {
/*
* Read additional details from database
*/
M/Addi tional Entity additional Entity = M/Additional EntityFactory
. newl nst ance() ;
MyAddi ti onal EntityKey key = new MyAddi tional EntityKey();
key.id = e.getlD);

93

7.5

Persistence Cookbook

NgAdditionaIEntity[Ils dtls = additional Entity.read(key);
/: Store additional details in entity context
e.gethntexthntainer().put(NyAdditionaIEntity[lls.class, dtls);
}
Figure 7.9 A listener for reads on MyEntity
Here's how we register our listener. Note that if you combined the listener

from the Insert example and the Read example into a single listener class,
you won't need this step. Y ou only register each listener class once:

public class MyMddul e extends Abstract Modul e {

@verride
protected void configure() {
/*
* Get the listener set
*/

Mul ti bi nder <Per si st enceEvent <MyEnti ty>> nyEventLi steners =
Mul ti bi nder . newSet Bi nder (bi nder (),
new Typeliteral <Persi stenceEvent <MyEntity>>() {/**/});

/*
* Add a listener
*/
nyEvent Li st ener s. addBi ndi ng().to(M/Enti tyLi stener.cl ass);

}

Figure 7.10 A Guice module to register the listener in the
previous listing

In summary, we've created a listener which receives read events for one en-
tity and performs reads on another, supplemental entity. The data from the
supplemental entity is piggybacked on "entity context”, and is available to a
facade method which returns the detailsto a client.

Customising other operations using entity con-
text

We've shown how to customize entity Insert and Read operations to handle
additional data. It is just as easy to handle additional data with other opera-
tion types using very similar approaches.

For modifications on an entity, perform the same facade-level customiza-
tions, and handle the Per si st enceEvent . post Modi f y(ENTI TY)
event.

There are also persistence events for readmulti, remove, and cancel opera
tions.

94

8.1

Chapter 8

State Transitions

The Persistence Infrastructure provides support for implementing entities
which are state machines. These entities each have their own "lifecycle’,
and the state of a particular entity instance is held in a database column.

Typicaly, the state of an entity instance may be retrieved , but changes to
the state must be controlled through specialized methods.

This chapter explains how to implement an entity which has a state-based li-
fecycle.

The problem

Let's take an example: you analyze requirements to determine that your en-
tity should support the following state transitions:

95

8.2

Persistence Cookbook

Open ——suspend——» Suspended

—resume

close
close
—— Closed -

Figure 8.1 State transition diagram for the example cookbook
code

Moreover, each of these transitions has its unique validation, data manipula-
tion and notification requirements.

The solution

Y ou must follow these steps to implement state transitions using the Persist-
ence Infrastructure helper classes:

e Specify states;

» Specify storage mechanism for the state value;

* Identify transition methods,

 Implementget Li fecycl eSt at e ;

» Create amap to hold the permitted states;

» Create an object for each state;

» Create an object for each permitted transition;

» Create aprivate getter to retrieve the current St at e ;

» Create aprivate setter to set the current St at e ;

» Create aprivate helper method to perform a state transition;

* Implement state transition methods;

96

8.2.1

8.2.2

Persistence Cookbook

o Specify theinitial state;
» Add state transition validation logic; and
* Overridethe nodi f y method (if required).

Specify states

Firstly you must identify the possible states of your entity. The possible
states are:

s open;
* suspended; and
» closad.

Specify storage mechanism for the state value

Your entity must store its state in some form. A typical storage mechanism
IS to enumerate the states in a codetable and store the code's String value on
a database column.

In this example, you'll enumerate these states in a new codetable called
MYLI FECYCLEENTI TYSTATE , and present the value as an instance of
the generated MYLI FECYCLEENTI TYSTATEENt ry class.

Create the codetable:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<codet abl es package="curam nypackage. codet abl e" >
<codet abl e
java_identifier="MYLI FECYCLEENTI TYSTATE"
nanme=" MYLlI FECYCLEENTI TYSTATE"
>
<code
defaul t="f al se"
java_identifier="C0OPEN"
st at us="ENABLED'
val ue=" OPEN"
>
<l ocal e
| anguage="en"
sort_order="0"
>
<descri pti on>Open</ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code
defaul t ="f al se"
java_identifier="SUSPENDED"
st at us=" ENABLED"
val ue=" SUSPENDED"
>
<l ocal e
| anguage="en"
sort_order="0"
>
<descri pti on>Suspended</ descri pti on>
<annot ati on/ >
</l ocal e>

97

8.2.3

Persistence Cookbook

</ code>
<code
defaul t ="f al se"
java_identifier="CLOSED'
st at us=" ENABLED"
val ue=" CLOSED"'
>
<l ocal e
| anguage="en"
sort_order="0"
>
<descri pti on>Cl osed</ descri pti on>
<annot at i on/ >
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Figure 8.2 Creating a code table file listing the states of an entity

Now mark your entity's interface to extend the Li f ecycl e interface, para-
meterized with the data type used to present the state (in this case, MYLI -
FECYCLEENTI TYSTATEENntry):

/**

* Description of nmy state-nmachine entity.
*/

@ npl enent edBy(MyLi f ecycl eEntityl npl . cl ass)

public interface M/Lifecycl eEntity extends StandardEntity,
Li f ecycl e<MyYLlI FECYCLEENTI TYSTATEENt r y>

Figure 8.3 Extending the Lifecycle interface

Identify transition methods

Typically an entity must carefully control its transitions between states. As
such, it is often better to create specialized methods for state transitions
rather than expose a set St at e method. Typically the name of each spe-
cialized method will reflect the state being transitioned to .

Since a state-transition method will modify the entity's data on the database,
each such method should take the entity's version number (assuming that the
entity supports optimistic locking). Each specialized method is free to spe-
cify additional arguments which may be required, e.g.:

» suspend (taking a suspension reason);
* resume (no arguments); and

» close (taking the end date of the entity).

Suspend

/**

* Suspends busi ness pendi ng investigation.
*

* Transitions the state to
* {@inkpl ai n MYLI FECYCLEENTI TYSTATEENt r y#SUSPENDED}, if it is

98

Persistence Cookbook

valid to suspend.

@ar am r eason _
the reason for suspension

@ar am ver si onNo _ _
the version nunber as previously retrieved

@hrows | nformational Exception
if the entity is not in a valid state to transition
to
{@i nkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#SUSPENDED} ,
or if any other validation errors are found

* Ok 3k O X 3k kX X 2k kX X F

public void suspend(final String reason, final int versi onNo)
t hrows | nfornmati onal Excepti on;

Figure 8.4 Interface declaration of a "suspend" state transition
method

Resume
/**
* Resumes business following a suspension investigation resulting
* in acquittal.
*
* Transitions the state to
* {@inkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#OPEN}, if it is valid
* to resume business.
*
* @aram ver si onNo
* the version nunber as previously retrieved
*
* @hrows | nformational Exception
* if the entity is not in a valid state to transition
* to {@i nkpl ain MYLI FECYCLEENTI TYSTATEEnNt r y#OPEN}, or
* if any other validation errors are found
*

~

public void resume(final int versionNo)
t hrows | nformati onal Excepti on;

Figure 8.5 Interface declaration of a "resume" state transition
method

Close
/**
* Ceases business with the agency.
*
* Transitions the state to
* {@inkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED}, if it is
* valid to cease conducting business.
*
* @ar am endDat e
* the date on whi ch business with the agency was ceased
*
* @ar am ver si onNo
* the version nunber as previously retrieved
*
* @hrows |Informational Exception
* if the entity is not in a valid state to transition
* to {@inkplain MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED} ,
*

or if any other validation errors are found

99

8.2.4

8.2.5

8.2.6

Persistence Cookbook

*/
public void close(final Date endDate, final int versionNo)
t hrows | nformati onal Excepti on;

Figure 8.6 Interface declaration of a "close" state transition
method

Implementations of these methods are free to perform method-specific val-
idations and notifications, e.g. whenever suspend iscalled, to notify an in-
vestigations worker to launch an investigation.

Note that this approach of having specialized methods (e.g. controlling the
setting of st at e and endDat e through the cl ose method) is far "clean-
er" than an aternative approach of alowing a public setter methods for
set EndDat e and set St at e and having complex validation to ensure
that whenever the st at e is modified (by caling code), that the endDat e
IS set.

Implement get Li f ecycl eSt at e

You must implemented a get Li f ecycl eSt at e method, as required by
theLi f ecycl e interface:

/**

* {@nheritDoc}
*/

publ i ¢ MYLI FECYCLEENTI TYSTATEEntry getLifecycleState() {
return MYLI FECYCLEENTI TYSTATEEntry. get (getDtl s().state);

Figure 8.7 Implementing get Li f ecycl eSt at e

Create a map to hold the permitted states

Each state will be represented by an instance of the St at e helper class.
Y ou must create a map to hold your entity's St at e instances.

/ * %
* A map of the states for this entity
*/
private final Map<MyLl FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEntry>> states =
new HashMap<MYLl FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEnt ry>>() ;

Figure 8.8 A map of permitted states

Create an object for each state
Each permitted state for your class is represented by an instance of the

St at e> helper class. Here you'll use the Codet abl eSt at e> helper
class:

100

8.2.7

Persistence Cookbook

/**

* Actively conducting business with the agency.
*/

private final State<MyLlI FECYCLEENTI TYSTATEEntry> OPEN =
new Codet abl eSt at e<MYL| FECYCLEENTI TYSTATEENt r y>(
states, MyL|I FECYCLEENTI TYSTATEEntry. OPEN, true, true) {

b

/**
* Busi ness has been suspended pendi ng investigation.
*/
private final State<MYLlI FECYCLEENTI TYSTATEEnNtry> SUSPENDED =
new Codet abl eSt at e<MYLl FECYCLEENTI TYSTATEENt r y>(
states, MyrLI FECYCLEENTI TYSTATEEntry. SUSPENDED, true, false) {
b5

/**
* No | onger conducting business with the agency.
*/
private final State<MYLI FECYCLEENTI TYSTATEEntry> CLOSED =
new Codet abl eSt at e<MyLl FECYCLEENTI TYSTATEENt r y>(
states, MYLI FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

Figure 8.9 Creating an object for each permitted state

Each St at e object isan anonymous class, constructed with:

1. themap to which the object will be added (st at es);

2. the value used to identify the state object in the map (typically, the

code table entry value);
whether the entity may be modified when in this state; and

4. whether the entity may be removed when in this state.

Note

There is no automatic processing surrounding the use of the "entity
may be modified/removed" values.

=

If you require to prevent modifications or removals when your en-
tity isin a particular state, you must override the nodi f y and/or
r emove methods as appropriate, and in them put validation logic
which may make use of callsto St at e. i svbdi f yAl | owed or
St at e. i sRenpoveAl | owed as appropriate.

See Section 8.2.14, Override the modify method (if required) below.

Create an object for each permitted transition

Each permitted transition between states is represented by an instance of the
Transi ti on helper class.

From the state-transition diagram, you can see that the following transitions
arerequired:

101

8.2.8

Persistence Cookbook

« from opento closed;
» from open to suspended ;
» from suspended back to open ; and

» from suspended to closed .

private final Transition<MYLI FECYCLEENTI TYSTATEEntry>
OPEN2CLCSED =
new Transiti on<MyLl FECYCLEENTI TYSTATEENt r y>(
OPEN, CLCSED) {

H

private final Transition<MyLl FECYCLEENTI TYSTATEEntry>
OPEN2SUSPENDED =
new Transiti on<MyLl FECYCLEENTI TYSTATEENt r y>(

! OPEN, SUSPENDED) {

private final Transition<MYLI FECYCLEENTI TYSTATEEntry>
SUSPENDED2OPEN =
new Transiti on<MyLl FECYCLEENTI TYSTATEENt r y>(
SUSPENDED, OPEN) {
iE

private final Transition<MyLl FECYCLEENTI TYSTATEEntry>
SUSPENDED2CLOSED =
new Transi ti on<MYLI FECYCLEENTI TYSTATEENt r y>(
SUSPENDED, CLOSED) ({
}

Figure 8.10 Creating an object for each permitted transition

Each Tr ansi t i on object is an anonymous class, constructed with:

1. theSt at e being exited (i.e. transitioned from); and
2. the St at e being entered (i.e. transitioned to).

i Note

Specifying the set of permitted transitions is typically more straight-
forward than crafting logic to prevent unsupported transitions from
occurring.

Y ou do not need to specify atransition to the initial state - the initial
state will be specified in set New nst anceDef aul t s (see be-
low).

Create a private getter to retrieve the current St at e

This method retrieves the St at e object representing the entity's current
state. Note that the method is private, as the St at e object is not exposed
outside of the entity - callers which require to know the entity's state must
useget Li f ecycl eSt at e instead.

Therelevant St at e object isretrieved by looking it up in the map of states.

102

8.2.9

8.2.10

Persistence Cookbook

/**

* @eturn The State object representing the current state of
* this entity
*/

private State<MYLI FECYCLEENTI TYSTATEEntry> getState() {
return states.get(getLifecycleState());

Figure 8.11 Creating a private getter to retrieve the current
State

Create a private setter to set the current St at e

This method sets the entity's state value from a St at e object. Note that the
method is private.

/**
* Sets the state codetable code field fromthe State object
* suppl i ed.
*
* @aram val ue
* the State supplied
*/

private voi d set Stat e(
final State<MYLI FECYCLEENTI TYSTATEEntry> state) {
getDtls().state = state. getVal ue(). get Code();

}

Figure 8.12 Creating a private setter to set the current St at e

Create a private helper method to perform a state
transition

Y ou must create a hel per method which performs the state transition.

/**

Transitions this entity to the new state specified.

*
*
* @ar am newsSt at e
* the state to transition to
* @ar am ver si onNo
* the version number of this entity as previously
* retrieved
* @hrows | nformational Exception
* if validation errors occur during the transition
*
/
private void transitionTo(
final State<MYLI FECYCLEENTI TYSTATEEntry> newsSt at e,
final |nteger versionNo) throws |nformational Exception {

// get the current state of this entity
final State<MYLI FECYCLEENTI TYSTATEEntry> ol dState =
getState();

// set the field which stores the state val ue
set St at e(newSt at e) ;

/1 validate the state transition
ol dState. transiti onTo(newsSt ate);

/'l update the database, bypassing any pre-nodify validation

103

8.2.11

Persistence Cookbook

/1 in this class
super . nodi fy(versi onNo) ;

Figure 8.13 Creating a private helper method to perform a state
transition

Points to note:

the validation of whether the transition is permitted is performed by the
State.transitionTo method (i.ee in the line ol d-
State.transitionTo(newSt at e) ; in thefigure above). See be-
low for how to add your own validation logic; and

your entity may have overridden the nodi f y method to add validation
to be applied when calling code invokes nodi f y - often thislogicisin-
appropriate to state transitions, and so typically the storage of a state
change is accomplished by a call to super . nodi fy (as shown in the
figure above) rather thent hi s. nodi fy .

Implement state transition methods

Now you can code the implementations of your specialized state transition
methods:

/**

*/{@nheritDoc}

public void close(Date endDate, int versi onNo)
throws | nformational Exception {
/] store the date of closure
set EndDat e(endDat e) ;

/l transition to "cl osed"
transiti onTo(CLOSED, versi onNo);
}

/**

* {@nheritDoc}
*/

public void resunme(int versionNo) throws |Informational Exception {
/1 bl ank the suspension reason
set Suspensi onReason(nul) ;

/] transition to "open"
transiti onTo(OPEN, versionNo);

}
/**

* {@nheritDoc}
*/

public void suspend(String reason, int versionNo)
throws | nformational Exception {
/] store the suspension reason
set Suspensi onReason(reason) ;

/1 transition to "suspended"
transiti onTo(SUSPENDED, versi onNo);

Figure 8.14 Implementing state transition methods

104

8.2.12

8.2.13

Persistence Cookbook

These methods are publicly visible and callable through the entity's inter-
face. Note that in the figure above, additional setter methods (set End-
Dat e and set Suspensi onReason) are assumed.

Specify the initial state

Y ou must specify the initial state for new instances of your entity:

/**

* Defaults the state to
* {@inkpl ai n MYLI FECYCLEENTI TYSTATEENt r y#OPEN} .
*/

public void set Newl nstanceDefaul ts() {
set St at e(OPEN) ;
}

Figure 8.15 Specifying the initial state

i Note

If you find that new instances have a number of possible initial
states, then consider whether:

» caling code should be responsible for creating a new instance of
your entity with a default state, and then immediately transition-
ing it to the required state; or

* you are trying to force logically different concepts to be stored
on the same physical entity, and perhaps should instead consider
using inheritance/polymorphism to separate out different behavi-
or.

Add state transition validation logic

The Codet abl eSt at e and Tr ansi ti on helper classes provide the fol-
lowing standard validation to disallow any transition which is not explicitly
specified. For example, the state transition diagram does not permit an entity
instance in the cl osed state to transition to any other state; by default, any
attempts to . suspend() an entity instance which is currently closed will
result in this error being raised: Cannot transition from
"Closed' to 'Suspended' .

You can add logic (typicaly to perform validations and/or notifications) to
the following places:

e inyour St at e objects:

« onEnt er -thismethod is called whenever atransition occurs which
attemptsto enter thisSt at e ;

« onlLeave - thismethod is called whenever atransition occurs which
attemptsto leavethis St at e ; and

 onUnsupportedTransitionFrom - this method is called

105

8.2.14

Persistence Cookbook

whenever an unsupported transition is attempted which attempts to
transition to this St at e from the one specified; by default, the
Codet abl eSt at e helper class raises a default message, but you
arefree to provider your own validation/notification logic; and

* inyour Transi ti on objects:

e onTransition - this method is caled whenever this Tr ans-
i ti on occurs.

See the Javadoc for the St at e , Codet abl eStat e and Transi ti on
helper classes for more information.

For example, if you want your logic to send an email whenever your entity
is closed (regardless of whether it was previously open or suspended), over-
ride the onEnt er method of your CLOSED state:

/**
* No | onger conducting business with the agency.
*/
private final State<MYLI FECYCLEENTI TYSTATEEntry> CLOSED =
new Codet abl eSt at e<MyL| FECYCLEENTI TYSTATEENt r y>(
states, MyLI FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

@verride
protected void onEnter() {

/'l whenever the entity is closed, send an enmi l
sendC osur eEmai | ();

15
Figure 8.16 Adding state transition validation logic

Override the nodi f y method (if required)

If you require logic to prevent modifications to the entity if it isin an inap-
propriate state, then you must override your entity's modi f y method:
/**
:/{@nheri t Doc}
@verride
public void nmodi fy(lnteger versionNo)
throws | nformational Exception {
if (lgetState().isMdifyAl lowed()) {
Val i dat i onHel per

.addVal i dati onError (
"You are not allowed to nodify this record when it is in this state"

}

super . nodi fy(ver si onNo) ;
Figure 8.17 Overriding the nodi f y method

i Note

106

8.3

Persistence Cookbook

Only explicit callsto your entity's nodi f y method (e.g. through its
interface) will hit this logic - state transitions will typically call su-
per . nodi fy directly and thus bypass thislogic.

Putting it all together

Here are full listings of the entity interface and implementation example
used in this chapter:

package curam nypackage;

i nport com googl e. i nject. | npl enent edBy;

i mport curam nypackage. codet abl e. i npl . MYLI FECYCLEENTI TYSTATEEnt ry;
i mport curamuti|.exception.|nfornational Excepti on;
i mport curamutil.persistence.|nsertable;

i mport curam ut
i mport curamu
i mport curamu
i mport curamu
i mport curamu

/**

i|l.persistence. Optim sticLockModifiable;
i |.persistence. StandardEntity;

i |.persistence. hel per. Lifecycle;

i : .type. Dat e;

il.

t
t
t
t t ype. Dat eRanged,;

* Description of nmy state-nachine entity.
*/

@ npl enent edBy(MyLi f ecycl eEntityl npl . cl ass)

publ

H 0% ok 3k k3 o 3k kX 3k 2k X X X kX F

*

ic interface M/Lifecycl eEntity extends StandardEntity,
Dat eRanged, Lifecycl e<MrLI FECYCLEENTI TYSTATEEntry>, Insertabl e,
Opti m sticLockModi fiable {

*

Suspends busi ness pendi ng i nvestigation.

Transitions the state to
{@i nkpl ai n MYLI FECYCLEENTI TYSTATEEnNt r y#SUSPENDED}, if it is
valid to suspend.

@ar am r eason _
the reason for suspension

@ar am ver si onNo _ _
the version nunber as previously retrieved

@ hrows | nformational Exception
if the entity is not in a valid state to transition
to
{@i nkpl ai n MYLI FECYCLEENTI TYSTATEEnNt r y#SUSPENDED} ,
or if any other validation errors are found
/

public void suspend(final String reason, final int versi onNo)

* O3k ok Xk F ok 2k X X Ok F X X X F

throws | nformational Excepti on;

*

Resumes business fol |l owing a suspension investigation resulting
in acquittal.

Transitions the state to
{@i nkpl ai n MYLI FECYCLEENTI TYSTATEEnt ry#OPEN}, if it is valid
to resune busi ness.

@ar am ver si onNo _ _
the version nunber as previously retrieved

@hrows | nformational Exception
if the entity is not in a valid state to transition
to {@inkplain MYLI FECYCLEENTI TYSTATEEnt r y#OPEN}, or
if any other validation errors are found

107

“f
publ

*

* 5% ok kX Ok 3k X X 3k ok X X 2k F X F

*/
publ

}

Persistence Cookbook

ic void resunme(final int versi onNo)
throws | nfornmational Excepti on;

Ceases business with the agency.

Transitions the state to

{@i nkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED}, if it is
valid to cease conducti ng busi ness.

@ar am endDat e

the date on which business with the agency was ceased

@ar am ver si onNo

the version nunber as previously retrieved

@ hrows | nformational Exception

if the entity is not in a valid state to transition
to {@inkpl ain MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED} ,
or if any other validation errors are found

ic void close(final Date endDate, final int versionNo)
throws | nformational Excepti on;

Figure 8.18 Lifecycle entity interface example

package curam nmypackage;

i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

/**

java. util . HashMap;
java. util . Mp;

curam nypackage. codet abl e. MYLI FECYCLEENTI TYSTATEEnt r y;
curam nypackage. struct. MyLi f ecycl eEntityDtl s;
curamuti | . exception. | nformational Excepti on;
curamutil . exception. Uni npl enent edExcepti on;
curamutil . persistence. Val i dati onHel per;

curamutil . persistence. hel per. Codet abl eSt at e;
curamutil . persistence. hel per. Si ngl eTabl eEnti tyl npl ;
curamutil . persi stence. hel per. St at e;

curamutil . persistence. hel per. Transition;

curamutil . type. Dat e;

curamutil .type. Dat eRange;

* Standard i npl enentation of {@inkplain M/Lifecycl eEntity}.

*/

public class M/Lifecycl eEntityl npl extends

Si

ngl eTabl eEnti tyl npl <MyLi f ecycl eEntityDt| s> i npl ements

M/Li fecycl eEntity {

protected M/LifecycleEntitylnmpl () {
/*

* Protected no-arg constructor for use only by Guice

*/
}
/*
* Persi stence nethods
*/
/**
* {@nheritDoc}
*/
@verride
public void nodi fy(lnteger versionNo)

i f

throws | nformational Exception {

(!getState().ishMdifyA lowed()) {

108

Persistence Cookbook

Val i dati onHel per
.addVal i dati onError (
"You are not allowed to modify this record when it is in this state"

) 5
super . nodi fy(versi onNo) ;

/*
* CGetters
2
/**

* {@nheritDoc}
*/

publ i c MYLI FECYCLEENTI TYSTATEEntry getLifecycleState() {
return MYLI FECYCLEENTI TYSTATEEntry. get(getDtls().state);

}

publ i c Dat eRange get Dat eRange() {
t hr ow new Uni npl ement edExcepti on();

/*
* Setters
*/
private void set EndDate(final Date value) {
t hr ow new Uni npl ement edExcepti on();

private void set Suspensi onReason(final String val ue) {
t hr ow new Uni npl ement edExcepti on();

voi d sendC osur eEnmail ()
t hr ow new Uni npl enent edExcepti on();

/*
* State transitions
*/

/**

* {@nheritDoc}
*/

public void close(Date endDate, int versi onNo)
throws | nformational Exception {
/] store the date of closure
set EndDat e(endDat e) ;

/l transition to "cl osed"
transiti onTo(CLOSED, versi onNo);

/**

* {@nheritDoc}
*/

public void resume(int versionNo) throws |nformational Exception {
/1 bl ank the suspension reason
set Suspensi onReason(nul |');

[/l transition to "open"
transiti onTo(OPEN, versionNo);

}
/**
* {@nheritDoc}
*/
public void suspend(String reason, int versionNo)
throws | nformational Exception {

/'l store the suspension reason
set Suspensi onReason(reason) ;

109

Persistence Cookbook

/1 transition to "suspended"
transiti onTo(SUSPENDED, versi onNo);

/*
* State Transitions
*/
/**
* A map of the states for this entity
*/
private final Map<MyLl FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEnt r y>>
states =
new HashMap<MYLl FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEnt ry>>() ;

/**

* @eturn The State object representing the current state of this
* entity

*/

private State<MYLI FECYCLEENTI TYSTATEEntry> getState() {
return states.get(getLifecycleState());

/**

* Sets the state codetable code field fromthe State object
* suppl i ed.
*

* @aram val ue
* the State supplied
*/

private void set State(
final State<MYLI FECYCLEENTI TYSTATEEntry> state) {
getDtls().state = state. getVal ue(). get Code();

/**
* Transitions this entity to the new state specifi ed.
*
* @aram newSt at e
* the state to transition to
* @ar am ver si onNo
* the version nunber of this entity as previously
@ retrieved
* @hrows | nfornational Exception
, if validation errors occur during the transition
*
private void transitionTo(
final State<MYLI FECYCLEENTI TYSTATEEntry> newsSt at e,
final Integer versionNo) throws |Informational Exception {

/] get the current state of this entity
final State<MYLI FECYCLEENTI TYSTATEEntry> ol dState = getState();

/]l set the field which stores the state val ue
set St at e(newSt at e) ;

[/l validate the state transition
ol dState.transitionTo(newSt at e) ;

/] update the database, bypassing any pre-nodify validation in
Il this class
super . modi fy(ver si onNo) ;

}
/**

* Actively conducting business with the agency.
*/
private final State<MYLI FECYCLEENTI TYSTATEEntry> OPEN =
new Codet abl eSt at e<MyL| FECYCLEENTI TYSTATEEnNt r y>(st at es,

110

Persistence Cookbook

MYLI FECYCLEENTI TYSTATEEntry. OPEN, true, true) {

/**
* Busi ness has been suspended pendi ng investigation.
*/
private final State<MrLI FECYCLEENTI TYSTATEENt ry> SUSPENDED =
new Codet abl eSt at e<MyL| FECYCLEENTI TYSTATEENt r y>(st at es,
MYL| FECYCLEENTI TYSTATEENt ry. SUSPENDED, true, false) {
15

/**
* No | onger conducting business with the agency.
*/
private final State<MyLI FECYCLEENTI TYSTATEEntry> CLOSED =
new Codet abl eSt at e<MyLl FECYCLEENTI TYSTATEENt r y>(st at es,
MyL| FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

@verri de

protected void onEnter (
/] whenever the entit
sendC osur eEmai |l ();

}

) {
y is closed, send an enail

}

private final Transition<MYLlI FECYCLEENTI TYSTATEEntry>
OPEN2CLCSED =
new Transiti on<MyLl FECYCLEENTI TYSTATEEnt r y>(OPEN, CLOSED) {
}

private final Transition<MYLlI FECYCLEENTI TYSTATEEntry>
OPEN2SUSPENDED =
new Transi ti on<MYLI FECYCLEENTI TYSTATEEnNt r y>(OPEN, SUSPENDED) {

private final Transition<MYLI FECYCLEENTI TYSTATEEntry>
SUSPENDED2OPEN =
new Transiti on<MyLlI FECYCLEENTI TYSTATEEnNt r y>(SUSPENDED, OPEN) {

private final Transition<MYLI FECYCLEENTI TYSTATEEntry>
SUSPENDED2CLCSED =
new Transi ti on<MYLI FECYCLEENTI TYSTATEEnNt r y>(SUSPENDED, CLOSED) ({

/*
* Validation
*/
public void mandat oryFi el dval i dati on() {
t hrow new Uni npl enent edExcepti on();

}

public void crossFi el dVvalidation() {
t hrow new Uni npl enent edExcepti on();

public void crossEntityValidation() {
t hr ow new Uni npl ement edExcepti on();

/**

* Defaults the state to

* {@inkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#OPEN} .
=

public void set Newl nstanceDefaul ts() {
set St at e(OPEN) ;

}
Figure 8.19 Lifecycle entity implementation example

111

9.1

Chapter 9

Inheritance

The Persistence Infrastructure includes support for ssimple inheritance. This
support allows you to:

» gpecify that an entity interface extends another entity interface; and

» dlows you to store the data held (in your base and concrete entity
classes) in anumber of different ways.

|ldentifying inheritance

If you are lucky, you will be able to directly identify concepts in your re-
quirements which fall into a natural inheritance hierarchy. Requirements
which mention phrases like“X isaY” / “X isakind of Y” / “X isatype of
Y” arelikely candidates for inheritance.

Often, though, you may only discover an inheritance hierarchy during im-
plementation, and you should refactor accordingly. Tell-tale signsinclude:

» one or more methods whose behavior differs depending on the "type" of
the entity instance;

» aneed to link each row on a database table (A) to exactly one of either :
« arow ontableB; or
¢ arow ontable C (but not both);

» aneed to pass around lists of entity instances, which may be made up of
instances of entities of more than one type.

It is often a good ideato look out for refactoring opportunities during imple-
mentation to take advantage of appropriate object-oriented design tech-
niques.

112

9.2 Entity interface inheritance

9.3

Persistence Cookbook

Let's take a simple example: You require to store information about Cats
and Dogs. You identify that Cats and Dogs have a number of behaviorsin

common, and so you identify acommon Animal interface.

You need to code three interfaces, Cat, Dog and Animal with the Cat and

Dog interfaces both extending the Animal interface.

package curam i nheritance;

i nmport
i nmport
i nmport
i nmport

public interface Aninal

curamutil . persistence
curamutil . persistence
curamutil . persistence
curamutil . persistence

Opti m sticLockModi fi abl e,

public void speak();

}

. I nsertabl g;

.OptimsticLockModifiable;

. St andardEntity;
. hel per . Naned,;

ext ends StandardEntity,

Nanmed {

Figure 9.1 The Animal Interface

package curam i nheritance;

public interface Cat extends Ani mal {

public int getNunmber O Li vesRenmi ni ng();

public void set Nunber O Li vesRenmi ni ng(fi nal

}

Figure 9.2 The Cat Interface

package curam i nheritance;

public interface Dog extends Ani mal
public String getFavouriteTrick();

public void setFavouriteTrick(final

}

Figure 9.3 The Dog Interface

DAO interfaces

Y ou require to:

» create new Cat instances;
e retrieveaCat, based onits|D;

» create new Dog instances,

I nsert abl e,

i nt val ue);

String val ue);

113

Persistence Cookbook

* retrieve aDog, based onitsID; and

* retrieve ageneric Animal, based on its ID (and receive a concrete Cat or
Dog instance as appropriate).

The creation and retrieval of Cat and Dog instances is straightforward - cre-
ate DAO interfaces for Cats and Dogs (you can aso include other retrievals
too):
package curam i nheritance;
i mport java.util.Set;
i mport curamutil.persistence. St andar dDAG,
public interface Cat DAO extends StandardDAO<Cat > {
public Set<Cat> readAll Cats();
}

Figure 9.4 The DAO interface for Cat

package curam i nheritance;
import java.util. Set;
i mport curamutil.persistence. St andar dDAG,

public interface DogDAO extends Standar dDAO<Dog> {
publ i c Set <Dog> readAl | Dogs();

}
Figure 9.5 The DAO interface for Dog

The DAO interface for Animal is dightly different in that callers can re-
trieve a generic Animal based on its ID (and the implementation will be re-
sponsible for creating a Cat or Dog object as appropriate), but callers cannot
create an Animal (all creations must create either a concrete Cat or a con-
crete Dog).

Use the Reader DAOinterface instead of St andar dDAO:

package curam i nheritance;

import java.util. Set;

i mport curam util.persistence. Reader DAG

public interface Aninal DAO ext ends Reader DAO<Long, Ani mal > {
publ i ¢ Set <Ani mal > readAl | Ani mal s();

}

Figure 9.6 The read-only DAO interface for Animal

2

H Note
Unlike the Animal/Cat/Dog interfaces, the DAO interfaces for An-

114

9.4

9.4.1

Persistence Cookbook

imal/Cat/Dog do not form an inheritance hierarchy.

Deciding on database storage

The Persistence Infrastructure has support for the following data storage op-
tions:

e oOnetable per class;
* onetable per concrete class; and

» onetablefor the whole hierarchy.

These options are described in more detail below.
The option you choose will depend on a number of factors:

e the amount of commonality or disparity between the data storage re-
quirements for your classes;

« dataretrieva requirements; and

» volumetric and performance concerns.

One table per class

If you choose this option, you will create one physical database table per
class (whether abstract or concrete) in your hierarchy.

This option makes use of a disciminator value in the form of the attribute
Ani mal . ani mal Type . This attribute stores a String value which will al-
low the implementation to determine whether a particular Ani mal isaCat
or a Dog without further reads. This data is denormalized (it can be determ-
ined by attempting to read rows on the Cat and Dog tables and seeing
which one succeeds), however processing is greatly smplified and perform-
ance increase by the use of a discriminator.

This option also assumes that all the tables in the hierarchy share the same
key value (ani mal |1 D). It is possible (though very unwieldy) to alow dif-
ferent key values on the tables; for this example assume that the primary key
value of an abstract Ani mal row is the same as its corresponding concrete
Cat or Dog row.

You must provide the following implementation classes (listed in depend-
ency order):

e Animallnpl ;
e Catlnpl ;
e Dogl npl ;
e Cat DAQ mpl ;

115

Persistence Cookbook

¢ DogDAQ npl ; and
e Ani mal DAQ npl

These classes are described in detail below. The concrete (Cat and Dog)
implementation classes are reasonably straightforward, but the abstract (
Ani mal) classes are more complex.

Ani mal | npl

package curam i nheritance;

I mport curam i nheritance. Ani mal ;

i mport curam i nheritance. struct. Ani mal Dt | s;

i mport curamutil . persistence. EntityAdapter;

i mport curamutil . persistence. hel per. BasePl usConcr et eTabl el npl ;
i mport curamutil.type. DeepC oneabl e;

abstract class Ani mal | npl <CONCRETE_ENTI TY ext ends Ani mal ,
CONCRETE_CLASS DTLS_STRUCT ext ends DeepC oneabl e> ext ends
BasePl usConcr et eTabl el npl <Long, CONCRETE_ENTI TY,

Ani mal Dt | s, CONCRETE _CLASS DTLS STRUCT>
i mpl ements Ani mal {

?rotected Ani mal | mpl () {

@verride
protected void setDiscrimnator(final String value) {

set Ani mal Type(val ue);

@verride
protected EntityAdapter<Long, Aninal Dtl s> getBaseEntityAdapter() {
return new Ani mal Adapter();

public String get Name()
return get BaseRowDt | s(). nane;

public void setNane(final String value) {
get BaseRowDt | s() . nane = val ue;

protected void set Ani mal Type(final String val ue) {
get BaseRowDt | s() . ani mal Type = val ue;

}
}
Figure 9.7 One table per class - implementation of abstract base
class

There are a number of important features of this implementation which are
explained below.

Class declaration

abstract class Ani mal | npl <CONCRETE_ENTI TY ext ends Ani mal ,
CONCRETE_CLASS DTLS STRUCT ext ends DeepC oneabl e> ext ends
BasePl usConcr et eTabl el npl <Long, CONCRETE_ENTI TY, Ani mal Dtl s,

CONCRETE_CLASS DTLS STRUCT>

The implementation class extends the helper class BasePl usCon-

116

Persistence Cookbook

cret eTabl el npl , which provides support for simple two-level class
hierarchies (such as the one in this example).

BasePl usConcr et eTabl el npl is parameterized with the key type,
the concrete entity interface and the Dtls structs used to store the abstract
and base rows. Ani mal | npl can directly supply two of these parameters
(namely Long and Ani mal Dt | s), but the name of the concrete interface
and Dtls struct must be specified by the subclass implementations, and so
the Ani mal class takes these types as parameters.

The class is package-protected and marked abst r act . In this example the
subclasses will be placed in the same code-package; if you require some of
your subclasses to be in a different package, you will need to mark your ab-
stract implementation classpubl i c .

The class implements the Ani mal interface; note that the class implements
only some of the methods required by the interface, leaving others to the
subclass implementation, e.g:

e Aninmal I npl provides an implementation for get Nane and set -
Nane , asthe behavior isidentical for all Ani mal instances; but

« Ani nmal I npl does not provide an implementation for speak , as the
behavior will differ between Cat and Dog instances.

Protected constructor

?rotected Ani mal | mpl () {

Store discriminator value

@verride
protected void setDiscrimnator(final String value) {
set Ani mal Type(val ue) ;

}
The class must override the BasePl usConcreteTabl elm
pl . set Di scri m nat or method to store the discriminator in an appro-
priate column (in this example the ani mal Type column). A pr ot ect ed
setter is used to set the column value.

Base entity adapter

@verride
protected EntityAdapter<Long, Aninmal Dtls> getBaseEntityAdapter() {
return new Ani mal Adapter();

The class must override the BasePl usConcreteTabl elm
pl . get BaseEnt it yAdapt er method to provider an entity adapter for
retrieving and storing the database row for the base class.

Getters and Setters

117

Persistence Cookbook

The getters and setters make use of the BasePl usConcr et eTabl el m
pl . get BaseRowDt | s to retrieve the Dtls struct for the base row (in this
examplean Ani mal Dt | s struct).

Cat | npl

package curam i nheritance;

i mport curam inheritance. Cat;

i mport curam inheritance. struct. CatDtl s;
i mport curamtest. codetabl e. ANl MAL_TYPE;

public class Catlnpl extends Animallnpl<Cat, CatDtls>
i mpl enents Cat {

?rotected Catlnpl () {
@verri de

protected String getDi scrim natorValue() {
return AN MAL_TYPE. CAT;

}

@verride
protected void mapBaseKeyToConcreteDt| s() {
get Concr et eRowDt | s() . ani mal I D = get BaseRowDt | s() . ani nal | D;

public int getNumber Of Li vesRemai ni ng()
return get ConcreteRowbDt | s(). number Of Li vesRemai ni ng;

public void set Nunber O Li vesRemai ni ng(final int value) {
get Concr et eRowDt | s() . nunber O Li vesRemai ni ng = val ue;

public void speak() {
Systemout.printin("Maow M nane is " + getNane()
+ " and | have " + getNunber O Li vesRenai ni ng()
+ " lives renuining");

}

public void set Newl nst anceDefaul ts() {// none required
public void crossFieldValidation() {// none required
public void crossEntityValidation() {// none required

publ i c void mandat oryFi el dval i dation() {// none required

}
Figure 9.8 One table per class - implementation of concrete class

Class declaration

final class Catlnpl extends Aninmallnpl<Cat, CatDtl s>
i mpl ements Cat {

The class:

» extends the Ani mal | npl class created above, specifying the Cat in-

118

Persistence Cookbook

terface and Cat Dt | s struct as parameters; and

* implementsthe Cat interface (which in turn extends the Ani mal inter-
face).

Constructor

pr?tected Catlnpl () {

The class has a protected constructor, as is the norm for the implementation
classes.

Specifying the discriminator value

@verride
protected String getDiscrimnatorValue() {
return ANl MAL_TYPE. CAT;

}
The class must overide the BasePlusConcreteTabl elm
pl . get Di scri m nat or Val ue method to specify the discriminator
String value which distinguishes Cat instances from other types of Ani m
al .

In this example a code-table constant is used to provide the String value.

Mapping the base key

@verride
protected voi d mapBaseKeyToConcreteDt| s() {
get Concr et eRowDt | s() . ani mal I D = get BaseRowDt | s() . ani mal | D;

The class overrides the BasePl usConcr et eTabl el m
pl . mapBaseKeyToConcr et eDt | s method, which is called when a
new entity instance is stored on the database. Typicaly, the base row uses
the AUTO I D facility to assign a primary key value on insert, and since (in
this example) Ani mal and Cat share key values, the key value assigned to
the Animal.animal I D column must aso be stored on the
Cat . ani mal | Dcolumn.

The method makes use of these methods from BasePl usCon-
creteTabl el npl :

 get BaseRowDt | s, to accessthe Ani mal Dt | s row data; and

 get ConcreteRowDt | s, toaccesstheCat Dt | s row data.

Getters and Setters

The getters and setters make use of the BasePl usConcr et eTabl el m
pl . get Concr et eRowDt | s method to accessthe Cat Dt | s row data.

Implementations for the getters and setters for the Ani mal fields are inher-
ited from Ani mal | npl .

119

Persistence Cookbook

speak

public void speak() {
Systemout.println("Maow M nane is " + getNane() +
" and | have "+ get Nunmber O Li vesRenai ni ng() +
lives remaining");

}

This class must provide an implementation of the Ani mal . speak method
- recall that this method is not implemented in Ani mal | npl , asthe logic
differs between Cat | npl and Dogl npl

Dogl npl

package curam i nheritance;

i mport curam i nheritance. Dog;

i mport curam i nheritance. struct. DogDt! s;

i mport curam test.codet abl e. ANl MAL_TYPE;

cl ass Dog extends Ani mal <Dog, DogDtl| s> inpl enents Dog {
protected Dog() {
}
@verri de

protected String getDi scrimnatorValue() {
return AN MAL_TYPE. DOG

@verride
protected voi d napBaseKeyToConcreteDt|s() {
get Concret eRowDt | s(). ani mal I D = get BaseRowDt | s() . ani nal | D;

public String getFavouriteTrick() {
return get ConcreteRowDt| s().favouriteTrick;

public void setFavouriteTrick(final String value) {
get Concret eRowDxt | s().favouriteTri ck = val ue;

public void speak() {
Systemout.println("Wof! M nanme is " + getNanme()
+" and | like to " + getFavouriteTrick());

}
public void set Newl nst anceDefaul ts() {// none required
public void crossFieldValidation() {// none required

public void crossEntityValidation() {// none required

public void mandat oryFi el dval i dation() {// none required

}

Figure 9.9 One table per class - implementation of another
concrete class

120

Persistence Cookbook

The structure of thisclassissimilar to Cat | npl above.

Cat DAQ npl and DogDAQ npl

package curam i nheritance;
import java.util. Set;
i mport com googl e. i nj ect. Si ngl eton;

i mport curam inheritance. Cat;

i nport curam i nheritance. Cat DAG

i mport curam inheritance. struct. CatDtl s;

i mport curamutil . persistence. Standar dDAO npl ;

@5 ngl et on
public class Cat DAO ext ends StandardDAO npl <Cat, CatDtl s> inpl enents
Cat DAO {

private static final CatAdapter adapter = new Cat Adapter();
/**
* Protected no-arg constructor for use only by Guice
*/
pr ot ect ed Cat DAQ()
super (adapter, Cat.cl ass);

public Set<Cat> readAl |l Cats() {
return newSet (adapter.readAl ());

}

package curam i nheritance;

i mport java.util. Set;

i nport com googl e. i nj ect. Singl eton;
i nport curam i nheritance. Dog;

i mport curam i nheritance. DogDAG

i mport curam i nheritance. struct. DogDtl s;
i mport curamutil . persistence. Standar dDAO npl ;

@i ngl et on
public class DogDAO ext ends Standar dDAO npl <Dog, DogDtl| s> i npl enents
DogDAO {

private static final DogAdapter adapter = new DogAdapter();
/**
* Protected no-arg constructor for use only by Guice
*
/
prot ect ed DogDAQ() {
super (adapt er, Dog. cl ass);

public Set <Dog> readAl | Dogs() {
return newSet (adapter.readAl ());
}

}

Figure 9.10 One table per class - DAO implementations for the
concrete classes

The DAO classes for the concrete classes are straightforward DAO imple-
mentations.

121

Persistence Cookbook

Cat DAO npl and DogDAQ npl each support the creation of new in-
stances of thelir respective entities, as well as retrieval of existing instances,
by making use of the St andar dDAQ npl class.

Ani mal DAQ npl

package curam i nheritance;

i mport java.util.HashMap;
i mport java.util.Map;
i mport java.util. Set;

i mport com googl e.inject.Inject;
i mport com googl e. i nj ect. Si ngl et on;

i mport curam i nheritance. Ani nal ;

i mport curam i nheritance. Ani mal DAG,

i mport curam i nheritance. Cat DAG,

i mport curam i nheritance. DogDAG,

i mport curam inheritance. Ani mal Dt | s;

i mport curam test.codet abl e. ANl MAL_TYPE;

i mport curamutil . persistence. BaseDAO npl ;
i mport curamutil . persistence. Reader DAG,

i mport curamutil . persistence. RowManager ;

@i ngl et on
public class Ani mal DAQ npl extends

BaseDAQ npl <Long, Aninal, Aninal Dtls> inplenents Ani mal DAO {
private static final Aninal Adapter adapter = new Ani mal Adapter();

@ nj ect
private Cat DAO cat DAG,

@ nj ect
private DogDAO dogDAG,

/**

* Protected no-arg constructor for use only by Guice
*/

prot ected Ani mal DAQ() {
super (adapter, Ani mal . cl ass);

@verride
protected String getDiscrimnator(
final Rowivanager<Long, Ani mal Dtls> rowivanager) ({
return rowivanager.getDtl s(). ani nmal Type;

@verride
protected Map<String, Reader DAC<Long, ? extends Ani mal >>
get Concr et eReader DAGs() {

final Map<String, Reader DAC<Long, ? extends Ani mal >>
concr et eReader DAGCs =
new HashMap<String, Reader DAC<Long, ? extends Animal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO);
return concr et eReader DAGCs;

}

publ i c Set <Ani mal > readAl | Ani mal s
return newSet (adapter.readAll ()

0 {
)

}
}
Figure 9.11 One table per class - DAO implementation for the

122

Persistence Cookbook

abstract class

Class declaration

final class Aninmal DAO npl extends

BaseDAQ npl <Long, Aninmal, Aninal Dtls> inplenments Ani mal DAO
The class extends the BaseDAO npl class, which provides support for
reading instances of abstract classes (by calling back to the implementation
to decide which concrete class to instantiate). Ani mal DAQ npl is re-
sponsible for retrieving a Cat or Dog instance, according to the value of the
discriminator column, i.e. Ani mal . ani mal Type .

Adapter

private static final Aninal Adapter adapter = new Ani mal Adapter();

The class contains an adapter variable, asisthe norm for DAO implementa
tions.

DAO instances

@ nj ect
private Cat DAO cat DAG,

@ nj ect

pri vate DogDAO dogDAG,
The class contains injected instances of the DAO interfaces for the concrete
classes.

These DAOs will be used to "dish up" the appropriate concrete type when a
calling requests to read or search for Ani mal instances.

Protected constructor

/**
* Protected no-arg constructor for use only by Guice
*/

prot ected Ani mal DAQ() {
super (adapt er, Ani mal . cl ass);

The class contains a protected constructor, as is the norm for DAO imple-
mentations. This constructor passes the adapter and the entity class to the
super constructor.

Get discriminator value from a row read from the database

@verride
protected String getDi scrim nator (
final RowManager<Long, Ani mal Dt| s> rowManager) ({
return rowivanager.getDtl s(). ani mal Type;

You must override the BaseDAO npl . get Di scri m nat or method to

return the discriminator value from an abstract row read from the database
(in this example, the value of Ani mal . ani mal | D is returned from the

123

9.4.2

Persistence Cookbook

row read).

Map discriminator values to DAO instances

@verride
prot ected Map<String, Reader DAC<Long, ? extends Ani mal >>
get Concr et eReader DAGs() {
final Map<String, Reader DAO<Long, ? extends Ani nal >>
concr et eReader DAGs =
new HashMap<String, Reader DAC<Long, ? extends Ani mal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO);
return concr et eReader DAGs;

You must override the BaseDAQO npl . get Concr et eReader DACs
method to return a map of DAOs which can read the concrete instances of
your entity.

The persistence infrastructure uses this map to retrieve aCat or Dog as ap-
propriate, depending on the value of Ani mal . ani mal 1 D.

One table per concrete class

If you choose this option, you will create one physical database table for
each concrete class, in this example Cat and Dog. The abstract class will
have no table of its own; instead, the abstract fields will be replicated on
each of the concrete tables.

You must provide the following implementation classes (listed in depend-
ency order):

e Aninmallnpl (optional) ;

e Catlnpl ;
 Dogl npl ;
o Cat DAQ npl ;

¢ DogDAA npl ; and
* Ani mal DAQ npl .
These classes are described in detail below. The concrete (Cat and Dog)

implementation classes are reasonably straightforward, but the abstract (
Ani mal) classes are more complex.

Ani mal | npl

package curam i nheritance;

i mport curam i nheritance. Ani mal ;

i mport curamutil . persistence. hel per. Si ngl eTabl eEntityl npl ;
i mport curamutil.type. DeepC oneabl e;

abstract class Animal | npl <DTLS_STRUCT ext ends DeepC oneabl e>
ext ends Singl eTabl eEntityl npl <DTLS_STRUCT> i npl enents Ani mal {

124

Persistence Cookbook

public void printName() {

}

Systemout.printin("My nane is " + getNanme());

Figure 9.12 One table per concrete class - implementation of
abstract base class

You may provide this implementation if there is any common behavior
between your concrete classes which isidentical.

]

1

Note

Although the behavior of attribute getters and setters for the base
classis conceptually identical for all Ani mal instances, technically
they differ since:

e Cat instances will store their Ani nmal attributes on the Cat ta-
ble; and

* Dog instances will store their Ani mal attributes on the Dog ta-
ble.

Hence the implementation of Ani mal getters and setters cannot be
implemented in a central place.

The class is parameterized with the name of the Dtls struct, to be supplied
by the implementing subclass.

The class is package-protected and marked abst r act . In this example the
subclasses will be placed in the same code-package; if you require some of
your subclasses to be in a different package, you will need to mark your ab-
stract implementation classpubl i ¢ .

If there is no common implementation logic, you may omit this class, and
instead concrete classes will inherit from Si ngl eTabl eEnti tyl npl (or
some other suitable class) directly.

Cat | npl

package curam i nheritance;

i mport curam i nheritance. Cat;
i mport curam inheritance. struct. CatDtl s;

public class Catlnpl extends Animallnpl<CatDtls> inplements Cat {

protected Catlnpl () {

}

public int getNumber Of Li vesRemai ni ng() {

return getDt! s().nunber O Li vesRemai ni ng;

public void set Nunber O Li vesRerai ni ng(final int value) {

getDtl s() . nunber O Li vesRerai ni ng = val ue;

125

Persistence Cookbook

public String getNane() {
return getDtls().naneg;

public void setNane(String val ue) {
getDtls().nane = val ue;

public void speak() {
Systemout.println("Maow M nane is " + getNane()
+ " and | have " + getNumber O Li vesRenai ni ng()
+ " lives remaining");

}

public void crossFieldValidation() {
/1 none required

}

public void crossEntityValidation() {
/1 none required

public void mandat oryFi el dval i dati on() {
/1 none required

public void set Newl nstanceDefaul ts() {
/1 none required

}
}

Figure 9.13 One table per concrete class - implementation of
concrete class

Class declaration

public class Catlnpl extends Animallnpl<CatDtls> inplenents Cat {
Theclass:

* extends the Ani mal | npl class created above, specifying the Cat -
Dt | s struct as a parameter; and

* implements the Cat interface (which in turn extends the Ani mal inter-
face).

Protected constructor
pr?tected Catlmpl () {

The class has a protected constructor, as is the norm for the implementation
classes.

Getters and Setters

The getters and setters make use of the regular Si ngl eTabl eEnti ty-
I mpl . get Dt | s method to accessthe Cat Dt | s row data.

126

Persistence Cookbook

Getters and setters are supplied for both:
o Cat -specificfields; and

o fieldscommon acrossall Ani mal types.

speak

public void speak() {
Systemout.printin("Maowi M nane is " + getName() +
" and | have " + get Number O Li vesRemai ni ng() +
lives remaining");

}
This class must provide an implementation of the Ani mal . speak method.

Dogl npl

package curam i nheritance;

i mport curam i nheritance. Dog;
i nport curam i nheritance. struct. DogDtl s;

public class Dogl npl extends Animal |l npl <DogDt| s> i npl enents Dog {
prot ected Dogl mpl () {
}

public String g
return getDtl

et FavouriteTrick() {
s().favouriteTrick;

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = val ue;

}

public String getNanme() {
return getDtls().nane;

public void setNane(String val ue) {
getDtls().nane = val ue;

public void speak() {
Systemout.println("Wof! M name is " + getName()
+ " and | like to " + getFavouriteTrick());

}

public void crossFieldValidation() {
/1 none required

public void crossEntityValidation() {
/1 none required
}

public voi d nmandat oryFi el dval i dati on() {
/1 none required

public void set Newl nstanceDefaul ts() {
/1 none required

127

Persistence Cookbook

Figure 9.14 One table per concrete class - implementation of
another concrete class

The structure of thisclassissimilar to Cat | npl above.

Cat DAQ npl and DogDAQ npl

package curam i nheritance;
import java.util. Set;
i mport com googl e. i nj ect. Si ngl eton;

i mport curam inheritance. Cat;

i nport curam i nheritance. Cat DAG

i mport curam inheritance.struct. CatDtl s;

i mport curamutil . persistence. Standar dDAO npl ;

@i ngl et on
public class Cat DAO npl extends StandardDAO npl <Cat, CatDtl s>
i mpl ement' s Cat DAO {
private static final CatAdapter adapter = new Cat Adapter();

/**

* Protected no-arg constructor for use only by Guice
*/

prot ected Cat DAO npl () {
super (adapter, Cat.cl ass);

public Set<Cat> readAl |l Cats() {
return newSet (adapter.readAl ());

}

package curam i nheritance;
i mport java.util. Set;
i nport com googl e. i nj ect. Si ngl eton;

i nport curam i nheritance. Dog;

i mport curam i nheritance. DogDAG

i mport curam i nheritance. struct. DogDt! s;

i mport curamutil . persistence. Standar dDAO npl ;

@i ngl et on
public class DogDAO npl extends Standar dDAO npl <Dog, DogDt| s>
i mpl ements DogDAO {
private static final DogAdapter adapter = new DogAdapter();

/**
* Protected no-arg constructor for use only by Guice
*
/
pr ot ect ed DogDAO npl () {
super (adapt er, Dog. cl ass);

public Set <Dog> readAl | Dogs() {
return newSet (adapter.readAl ());

}
}

Figure 9.15 One table per concrete class - DAO implementations
for the concrete classes

128

Persistence Cookbook

The DAO classes for the concrete classes are straightforward DAO imple-
mentations.

Cat DAO npl and DogDAQ npl each support the creation of new in-
stances of their respective entities, as well as retrieval of existing instances,
by making use of the St andar dDAQ npl class.

Ani mal DAQ npl

package curam i nheritance;

i mport java.util.HashSet;
import java.util. Set;

i mport com googl e.inject.Inject;
i mport com googl e. i nj ect. Si ngl et on;

i mport curamutil.exception.Uni npl enent edExcepti on;

@i ngl et on
public class Ani mal DAO npl i npl enments Ani mal DAO {

@ nj ect
private Cat DAO cat DAG,

@ nj ect
privat e DogDAO dogDAQG,

/**
* Protected no-arg constructor for use only by CGuice
*
/
prot ect ed Ani mal DAO npl () {
}
publ i c Set <Ani nal > readAl | Ani mal s() {
final Set<Cat> cats = catDAO. readAll Cats();
final Set<Dog> dogs = dogDAO.readAl | Dogs();
final Set<Aninal> animals = new HashSet <Ani mal >(cats. si ze()
+ dogs. si ze());
ani mal s. addAl | (cat s) ;
ani mal s. addAl | (dogs) ;

return ani mals;

}

public Animal get(final Long id) {
t hrow new Uni npl enent edExcepti on();

}

Figure 9.16 One table per concrete class - DAO implementation
for the abstract class

Class declaration

public class Ani mal DAO npl i npl ements Ani mal DAO {
The class does not make use of any superclasses for its implementation.

Adapter

129

Persistence Cookbook

Unlike most DAO implementations, there is no adapter variable because
thereis no physical Ani mal database table.

DAO instances

@ nj ect
private Cat DAO cat DAG,

@ nj ect
privat e DogDAO dogDAQG,

The class contains injected instances of the DAO interfaces for the concrete
classes.

These DAOs will be used to delegate searches to.

Protected constructor

/**
* Protected no-arg constructor for use only by Guice
*/

prot ect ed Ani mal DAO npl () {
}

The class contains a protected constructor, as is the norm for DAO imple-
mentations.

Performing a search across Ani mal types

publ i ¢ Set <Ani mal > readAl | Ani mal s() {
final Set<Cat> cats = catDAO readAll Cats();
final Set<Dog> dogs = dogDAO.readAl | Dogs();
final Set<Aninmal> animals =
new HashSet <Ani nal >(cats. si ze() + dogs. size());
ani mal s. addAl | (cat s) ;
ani mal s. addAl | (dogs) ;

return ani mal s;

}

A search of Ani mal instances across the Cat and Dog tables is performed
by naively delegating the searches and combing the results.

Unsupported - retrieval of an Ani mal by its ID

public Aninmal get(final Long id) {
t hr ow new Uni npl ement edExcepti on();

o=

Important

It is not possible to retrieve a generic Ani mal by itsID. Thisis be-
cause the Cat and Dog database tables maintain their own IDs -
there is no concept of an ani mal | D as such.

If you require to be able to retrieve a generic Ani mal by its ID,
then do not choose to store your data using this "One table per con-
crete class' method.

130

Persistence Cookbook

9.4.3 One table for the whole hierarchy

If you choose this option, you will create one physical database table to
store al typesin the hierarchy. The single table, in this example Animal will
store al attributes required by any type, with default/null values stored
where not applicable to a particular type.

This option requires a disciminator value in the form of the attribute Ani m
al . ani mal Type . This attribute stores a String value which will allow
the implementation to determine whether a particular Ani mal isaCat or a

Dog .

You must provide the following implementation classes (listed in depend-
ency order):

e Animallnpl ;

e Catlnpl ;

e Dogl npl ;

e Cat DAQ mpl ;

* DogDAA npl ; and
 Ani mal DAQ npl .
These classes are described in detail below. The concrete (Cat and Dog)

implementation classes are reasonably straightforward, but the abstract (
Ani mal) classes are more complex.

Ani mal | npl

package curam i nheritance;

i mport curam inheritance. Animal;

i mport curam i nheritance.struct. Animal Dt|s; _

i mport curam util.persistence. hel per. Si ngl eTabl eEntityl npl ;

abstract class Aninallnpl extends SingleTabl eEntityl npl <Ani mal Dt| s>
i mpl enents Ani mal {

?rotected Ani mal | mpl () {

public String get Name() {
return getDtls().nane;

public void setNane(final String value) {
getDtl s().nane = val ue;

}

Figure 9.17 One table for the whole hierarchy - implementation
of abstract base class

131

Persistence Cookbook

Class declaration

abstract class Animal |l npl extends SingleTabl eEntityl npl <Ani mal Dt | s>

i mpl ements Ani mal {
The implementation class extends the standard class Sing-
| eTabl eEntityl npl , parameterized with the Dtls struct from the
single database table (Ani mal Dt | s).

The class is package-protected and marked abst r act . Inthis example the
subclasses will be placed in the same code-package; if you require some of
your subclasses to be in a different package, you will need to mark your ab-
stract implementation classpubl i ¢ .

The class implements the Ani mal interface; note that the class implements
only some of the methods required by the interface, leaving others to the
subclass implementation, e.g:

 Aninmal I npl provides an implementation for get Nane and set -
Name , asthe behavior isidentical for all Ani mal instances; but

e Ani mal | npl does not provide an implementation for speak , as the
behavior will differ between Cat and Dog instances.

Protected constructor

frotected Ani mal | npl () {

Getters and Setters

The getters and setters make use of the Si ngl eTabl eEntityl m
pl . get Dt | s to retrieve the Dtls struct for the single row (in this example
an Ani mal Dt | s struct).

Cat | npl

package curam i nheritance;

i mport curam inheritance. Cat;

i mport curam inheritance. struct. Ani mal Dt s;

i mport curamtest. codetabl e. ANl MAL_TYPE;

i mport curamutil.persistence. Entitylnfo;

i mport curam util.persistence. hel per. Si ngl eTabl eEntityl npl;

public class Catlnpl extends Animallnpl inplements Cat {
protected Catlnpl () {
}
/**
* {@nheritDoc}
*/
@verride
public void setEntitylnfo(
Entityl nfo<Long, Singl eTabl eEntityl npl <Ani mal Dt | s>,

Ani mal Dt | s>
entitylnfo) {

132

Persistence Cookbook

super.setEntitylnfo(entitylnfo);

/'l check that this object has been constructed with an
/| appropriate row

if (getlD() !'= null
&& !'getDtl s().ani mal Type. equal s(ANI MAL_TYPE. CAT)) {
t hrow new Runt i neExcepti on("Expected to be a cat");

}

}

public int getNumber Of Li vesRemai ni ng() {
return getDtl s().nunber O Li vesRemai ni ng;

public void set Nunber Of Li vesRemai ni ng(final int value) {
getDtl s(). nunber O Li vesRerai ni ng = val ue;

public void speak() {
Systemout.println("Maow M nane is " + getNane()
+ " and | have " + getNunmber O Li vesRenai ni ng()
+ " lives renunining");

}

public void crossFieldValidation() {
/1 none required
}

public void crossEntityValidation() {
/1 none required

public voi d nmandat oryFi el dval i dati on() {
/] none required

public void set Newl nstanceDefaul ts() {
getDtls().ani mal Type = ANl MAL_TYPE. CAT,;

}

Figure 9.18 One table for the whole hierarchy - implementation
of concrete class

Class declaration

public class Catlnpl extends Animallnpl inplenents Cat {
The class:

» extendsthe Ani mal | npl class created above. Asthereisonly asingle
database table, no parameters are required; and

* implements the Cat interface (which in turn extends the Ani mal inter-
face).

Protected constructor

protected Catlnpl () {
}

The class has a protected constructor, as is the norm for the implementation
classes.

133

Persistence Cookbook

Confirming that the correct type has been retrieved

/**

* {@nheritDoc}
*/

@verride
public void setEntitylnfo(
Entityl nfo<Long, Singl eTabl eEntityl npl <Ani mal Dt| s>,
Ani mal Dt | s>
entitylnfo) {
super.setEntitylnfo(entitylnfo);

/1 check that this object has been constructed with an

/| appropriate row

if (getlD() !'= null &

I'getDtl s(). ani nal Type. equal s(ANl MAL_TYPE. CAT)) {
) t hrow new Runti neExcepti on("Expected to be a cat");
}

If the Cat DAO s used to retrieve a Cat instance, it is important to check
that the Ani mal row retrieved actually contains the correct discriminator
value for aCat , to guard against client code trying to retrieve a Cat based
onaDog 'sID.

Getters and Setters

The getters and setters make use of the Si ngl eTabl eEntityl m
pl . get Dt | s method to accessthe Ani mal Dt | s row data.

Implementations for the getters and setters for the Ani mal fields are inher-
ited from Ani mal | npl .

speak

public void speak() {
Systemout.println("Maoww M/ nane is " + getNane() +
" and | have " + get Number Of Li vesRemai ni ng() +
" lives renmining");

}

This class must provide an implementation of the Ani mal . speak method
- recall that this method is not implemented in Ani mal | npl , asthe logic
differs between Cat | npl and Dogl npl .

Specifying the discriminator value for new instances

public void set Newl nst anceDefaul ts() {
getDtl s(). ani mal Type = ANl MAL_TYPE. CAT,;
}

When anew Cat iscreated, its discriminator value must be set. Thisis done
intheset Newl nst anceDef aul t s method.

Dogl npl

package curam i nheritance;

i mport curam i nheritance. Dogl npl ;

134

Persistence Cookbook

i mport curam i nheritance. struct. Ani nal Dt s;

i mport curam test.codetabl e. ANl MAL_TYPE;

i mport curamutil.persistence. Entitylnfo;

i mport curam util. persistence. hel per. Si ngl eTabl eEntityl npl ;

public class Dogl npl extends Animallnpl inplenents Dog {
prot ected Dogl mpl () {
}

/**

* {@nheritDoc}
*/

@verri de
public void setEntitylnfo(
Entityl nfo<Long, Singl eTabl eEntityl npl <Ani mal Dt| s>,
Ani mal Dt | s>
entitylnfo) {
super.setEntitylnfo(entitylnfo);

/'l check that this object has been constructed with an
/| appropriate row

if (getID() !'= null
&& !'getDtl s(). ani mal Type. equal s(ANI MAL_TYPE. DOG)) {
t hrow new Runt i neExcepti on("Expected to be a dog");

}
}
public Strin

g FavouriteTrick() {
return getDt

get
I's().favouriteTrick;

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = val ue;
}

public void crossFieldValidation() {
/1 none required

public void crossEntityValidation() {
/1 none required

publi c void mandat oryFi el dval i dati on() {
/1 none required

public void speak() {
Systemout.println("Wof! M nanme is " + getNanme()
+ " and | like to " + getFavouriteTrick());

}

public void set Newl nstanceDefaul ts() {
getDtl s(). ani mal Type = ANl MAL_TYPE. DOG,

}

Figure 9.19 One table for the whole hierarchy - implementation
of another concrete class

The structure of thisclassissimilar to Cat | npl above.

Cat DAA npl and DogDAQ npl

package curam i nheritance;

135

Persistence Cookbook

i mport java.util. Set;
i nport com googl e. i nj ect. Si ngl eton;

i mport curam inheritance. Cat;

i mport curam i nheritance. Cat DAG

i mport curam inheritance. struct. Ani mal Dt s;

i mport curamtest.codetabl e. ANl MAL_TYPE;

i mport curamutil . persistence. Standar dDAO npl ;

@i ngl et on
public class Cat DAO npl extends StandardDAO npl <Cat, Ani nal Dt s>
i mpl enents Cat DAO {
private static final Aninmal Adapter adapter = new Ani mal Adapter();

/**

* Protected no-arg constructor for use only by Guice
*/

prot ected Cat DAO npl () {
super (adapter, Cat.cl ass);

public Set<Cat> readAll Cats() {
return newSet (adapt er. sear chByAni mal Type(ANl MAL_TYPE. CAT)) ;

}

package curam i nheritance;
i mport java.util. Set;
i mport com googl e. i nj ect. Si ngl et on;

i mport curam inheritance. struct. Ani mal Dt s;
i nport curam test.codet abl e. ANl MAL_TYPE;
i mport curamutil . persistence. Standar dDAO npl ;

@i ngl et on
public class DogDAO npl extends StandardDAO npl <Dog, Ani nal Dt | s>
i mpl ements DogDAO {
private static final Aninal Adapter adapter = new Ani mal Adapter();

/**
* Protected no-arg constructor for use only by Guice
*/
prot ect ed DogDAQ npl () {
super (adapt er, Dog. cl ass);

publ i ¢ Set <Dog> readAl | Dogs() {
return newSet (adapt er. sear chByAni mal Type(ANl MAL_TYPE. DOG)) ;

}

Figure 9.20 One table for the whole hierarchy - DAO
implementations for the concrete classes

The DAO classes for the concrete classes are straightforward DAO imple-
mentations.

Cat DAO npl and DogDAQ npl each support the creation of new in-
stances of their respective entities, as well as retrieval of existing instances,
by making use of the St andar dDAQO npl class (parameterized with An-
i mal Dt | s, the single database table).

136

Persistence Cookbook

Note that the searches to retrieve e.g. al Cat instances make use of a
modeled sear chByAni mal Type method, as there is no Cat table from
which to retrieve all rows. All searches performed by Cat DAQ npl should
ensure that they return only Cat rows, otherwise an error will be thrown
fromCat I npl . setEntitylnfo.

Ani mal DAQ npl

package curam i nheritance;

i mport java.util.HashMap;
i mport java.util.Map;
i mport java.util. Set;

i mport com googl e.inject.Inject;
i mport com googl e. i nj ect. Si ngl et on;

i mport curam inheritance. struct. Ani mal Dt s;
i mport curam test.codet abl e. ANl MAL_TYPE;

i mport curamutil . persistence. BaseDAO npl ;
i mport curamutil . persistence. Reader DAG,

i mport curamutil . persistence. RowManager ;

@i ngl et on
public class Animallnpl extends

}

BaseDAQ npl <Long, Ani nal, Aninal Dtls> inplenents Ani mal DAO {

private static final Aninmal Adapter adapter = new Ani mal Adapter();

@ nj ect
private Cat DAO cat DAG,

@ nj ect
privat e DogDAO dogDAQG,

/**

* Protected no-arg constructor for use only by Guice
*/

protected Animal I npl () {
super (adapt er, Ani nal . cl ass);

@verride
protected String getDiscrimnator(
final RowManager <Long, Ani mal Dt| s> rowManager) ({
return rowivanager.getDtl s(). ani nmal Type;

@verride
protected Map<String, Reader DAC<Long, ? extends Ani mal >>
get Concr et eReader DAGs() {
final Map<String, Reader DAO<Long, ? extends Ani nal >>
concr et eReader DAGs =
new HashMap<String, Reader DAO<Long, ? extends Ani mal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO) ;
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO) ;
return concr et eReader DAGCs;

publ i c Set <Ani mal > readAl | Ani ma

Is() {
return newSet (adapter.readAll ())
}

Figure 9.21 One table for the whole hierarchy - DAO
implementation for the abstract class

137

Persistence Cookbook

Class declaration

public class Animallnpl extends BaseDAO npl <Long, Ani mal, AnimalDtl s>
i mpl ement' s Ani mal DAO {

The class extends the BaseDAO npl class, which provides support for

reading instances of abstract classes (by calling back to the implementation

to decide which concrete class to instantiate). Ani nmal DAQ npl is re-

sponsible for retrieving aCat or Dog instance, according to the value of the

discriminator column, i.e. Ani mal . ani mal Type .

Adapter

private static final Aninmal Adapter adapter = new Ani mal Adapter();

The class contains an adapter variable, asis the norm for DAO implementa
tions.

DAO instances

@ nj ect
private Cat DAO cat DAG,

@ nj ect

pri vate DogDAO dogDAG,
The class contains injected instances of the DAO interfaces for the concrete
classes.

These DAOs will be used to "dish up" the appropriate concrete type when a
calling requests to read or search for Ani mal instances.

Protected constructor

/**
* Protected no-arg constructor for use only by Guice
*/

prot ected Ani mal DAQ() {
super (adapt er, Ani mal . cl ass);

The class contains a protected constructor, as is the norm for DAO imple-
mentations. This constructor passes the adapter and the entity class to the
super constructor.

Get discriminator value from a row read from the database

@verri de
protected String getDi scrim nator (
final RowManager<Long, Ani mal Dt| s> rowManager) ({
return rowivanager.getDtl s(). ani mal Type;

You must override the BaseDAO npl . get Di scri m nat or method to
return the discriminator value from an abstract row read from the database
(in this example, the value of Ani mal . ani mal | D is returned from the
row read).

138

Persistence Cookbook

Map discriminator values to DAO instances

@verride
prot ected Map<String, Reader DAC<Long, ? extends Ani mal >>
get Concr et eReader DAGs() {
final Map<String, Reader DAC<Long, ? extends Ani nal >>
concr et eReader DAGs =
new HashMap<String, Reader DAC<Long, ? extends Ani mal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO);
return concr et eReader DAGs;

}

You must override the BaseDAQO npl . get Concr et eReader DACs
method to return a map of DAOs which can read the concrete instances of
your entity.

The persistence infrastructure uses this map to retrieve aCat or Dog as ap-
propriate, depending on the value of Ani mal . ani mal 1 D.

139

10.1

Chapter 10

Adding New Searches to Existing Entities

Curam ships with a number of entities which have service layers implemen-
ted using the Persistence Infrastructure.

Curam recognizes that in certain circumstances, customers may wish to add
additional read SQL (select statements) to the Clram-shipped database en-
tities behind PI-based service layer code, to retrieve data in new ways using
existing Cdram-shipped database columns and/or columns on a custom data-
base table.

Curam supports a choice of approaches that allow you to implement new
searches, described below.

| Important
@

Cliram does not support the addition of write SQL
(insert/update/del ete statements) to the Caram-shipped database en-
tities behind Pl-based service layer code (as the invocation of such
SQL would bypass the very service layer code that exists to protect
the integrity of such data).

Approach 1

In the custom model package structure, model an extension entity which ex-
tends the Curam-shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation
(read/readmulti/nsread/nsmulti/ns). The retrieval operation must return the
full generated Dtls struct for the Curam-shipped entity (or the corresponding
DtlsList struct for multi operations); moreover, any hand-crafted SQL for
the operation must correctly populate every field in the return struct, includ-
ing versionNo (if present). Note that hand-crafted is free to join to custom
database tables if necessary to filter results (but not to return data from cus-
tom database tables).

In the custom code package structure, create a hand-crafted custom DAO in-

140

10.2

Persistence Cookbook

terface/implementation to house the new search operations. Note that unlike
standard DAO interface/implementations, your hand-crafted classes will not
extend PI-supplied infrastructure classes.

In your custom DAO interface, declare your new search methods.

In your custom DAO implementation, implement your new search methods.
The methods will delegate to the generated code for your custom entity ex-
tension. Note that there is no generated adapter support for operations con-
tributed by extension classes, and so your implementation will need to
provide the exception wrapping and struct mapping traditionally performed
by the generated adapters.

In your client code which requires to execute your custom search, inject an
instance of your new custom DAO interface and use your new search meth-
ods to return instances of the Curam-shipped interface for the entity's ser-
vice layer class. You may access the entity's data via the accessor (getter)
methods on the service layer class, including any derived data, and access
any side-saddle tables using the entity's context, just as you would for in-
stances returned by the Curam-shipped DAO interface.

(Optional) If you find that your client code ends up having to inject in-
stances of both the Curam-shipped DAO interface and your new custom
DAO interface, you might consider mimicking some or all of the Curam-
shipped DAO methods on your new custom interface. The implementation
of these mimicked methods may delegate to the Curam-shipped DAO im-
plementation. Curam does not recommend that you allow your new custom
DAO interface to extend the Curam-shipped DAO interface, nor that you al-
low your new custom DAO implementation to subclass the Curam-shipped
DAO implementation, as to do so may present future upgrade difficulties.

Approach 2

In the custom model package structure, model an extension entity which ex-
tends the Curam-shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation
(read/readmulti/nsread/nsmulti/ns). The retrieval operation is free to return
any data that it requires, including data joined from custom database tables,
and to use any suitable return struct (i.e. the restrictions in Approach 1 do
not apply here)..

In your client code which requires to execute your custom search, invoke
the generated DAL code directly. Note that:

e you must not invoke any database write methods directly from your cli-
ent code;

» derived data which might ordinarily be provided by a service-layer class
will not be available; and

» data held on custom side-saddle table will only be available via a separ-

141

Persistence Cookbook

ate call to the generated DAL code for that custom side-saddle table.

142

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

143

Persistence Cookbook

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

144

Persistence Cookbook

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

145

Trademarks

Persistence Cookbook

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Actuate is aregistered trademark of Actuate Corporation.

Adobe, the Adobe logo, Adobe SVG Viewer, Adobe Reader, Adobe
Flash Player, and Portable Document Format (PDF), are either re-
gistered trademarks or trademarks of Adobe Systems Incorporated in
the United States, other countries, or both.

Apacheis atrademark of Apache Software Foundation.

Safari isaregistered trademark of Apple Inc.

BIRT isaregistered trademark of Eclipse Foundation.

JAWS is aregistered trademark of Freedom Scientific.

HP-UX isaregistered trademark of Hewlett-Packard Company.

Microsoft, Windows 7, Windows XP, Windows NT, Windows Serv-
er 2003, Windows Server 2008, Internet Explorer, Word, Excel, and
the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United
States, other countries, or both.

Firefox is aregistered trademark of Mozilla Foundation.

Novell, the Novell logo, the N logo, and SUSE Linux Enterprise
Server are registered trademarks of Novell, Inc. in the United States
and other countries.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

Oracle, Solaris, WebLogic Server, Java and all Java-based trade-
marks and logos are registered trademarks of Oracle and/or its affili-
ates.

Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc.
in the United States and other countries.

NetWeaver CE is aregistered trademark of SAP AG.
Other names may be trademarks of their respective owners. Other

146

http://www.ibm.com/legal/us/en/copytrade.shtml

Persistence Cookbook

company, product, and service names may be trademarks or service
marks of others.

147

	Persistence Cookbook
	Table of Contents
	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Background
	1.3 Further Reading
	1.4 Structure of this document

	Chapter 2 Making calls to service-layer APIs
	2.1 You want to read some data from a database table
	2.1.1 The problem
	2.1.2 The solution
	Create a class variable to hold the DAO
	Create a constructor to request Guice to inject class variables
	Use the DAO to retrieve the instance of the entity
	Access the entity instance to map field values to the client struct
	Putting it all together

	2.2 You want to insert a new row onto a database table
	2.2.1 The problem
	2.2.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to create a new instance of the entity
	Access the entity instance to set field values from the client struct
	Instruct the entity instance to insert itself onto the database
	Map the entity instance key back to the client (if required)

	2.2.3 Putting it all together

	2.3 You want to modify a row on a database table
	2.3.1 The problem
	2.3.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to retrieve the instance of the entity
	Access the entity instance to set field values from the client struct
	Instruct the entity instance to modify its data on the database

	2.3.3 Putting it all together

	2.4 You want to remove (physically delete) a row from a database table
	2.4.1 The problem
	2.4.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to retrieve the instance of the entity
	Instruct the entity instance to remove its data from the database

	2.4.3 Putting it all together

	2.5 You want to cancel (logically delete) a row on a database table
	2.5.1 The problem
	2.5.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to retrieve the instance of the entity
	Instruct the entity instance to cancel its data on the database

	2.5.3 Putting it all together

	2.6 You want to list all rows of a database table
	2.6.1 The problem
	2.6.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to retrieve all the instances of the entity
	Iterate the set of entity instances and access these instances to map field values to the client struct

	2.6.3 Putting it all together

	2.7 You want to list all child rows of a database table belonging to some parent row (on another table)
	2.7.1 The problem
	2.7.2 The solution
	Create a class variable to hold the DAO
	Use the DAO to retrieve the instance of the parent entity
	Call a getter on the parent entity instance to retrieve its set of child entity instances
	Iterate the set of child entity instances and access these instances to map field values to the client struct

	2.7.3 Putting it all together

	2.8 Summary

	Chapter 3 Coding service-layer APIs
	3.1 You want to start writing the API for a new database table
	3.1.1 The problem
	3.1.2 The solution
	Create an entity interface java file
	Create an entity DAO interface java file

	3.2 You want to add getters and setters to your entity interface
	3.2.1 The problem
	3.2.2 The solution
	Example
	myNewEntityID
	name
	startDate and endDate
	typeCode
	myParentEntityID
	Child instances

	3.2.3 Putting it all together

	3.3 You want to add persistence methods to your entity interface
	3.3.1 The problem
	3.3.2 The solution
	Insert
	Modify
	Cancel
	Remove

	3.3.3 Putting it all together

	3.4 You want to specify searches on your entity
	3.4.1 The problem
	3.4.2 The solution

	3.5 Summary

	Chapter 4 Coding service-layer implementations
	4.1 You want to start implementing your entity API
	4.1.1 The problem
	4.1.2 The solution
	Model your database table in the Cúram model
	Create an adapter for generated data access methods
	Create an implementation for your entity DAO interface
	Putting it all together

	Create an implementation for your entity interface

	4.2 You want to implement getters
	4.2.1 The problem
	4.2.2 The solution
	getName
	getDateRange
	getType
	getMyParentEntity
	getMyChildren

	4.2.3 Putting it all together
	MyNewEntityImpl
	MyChildEntityDAO

	4.3 You want to implement new row defaults
	4.3.1 The problem
	4.3.2 The solution

	4.4 You want to implement setters
	4.4.1 The problem
	4.4.2 The solution
	setName
	setDateRange
	setType
	setMyParentEntity

	4.4.3 Putting it all together

	4.5 You want to implement single-field validation
	4.5.1 The problem
	4.5.2 The solution
	setName
	setDateRange
	setType
	setMyParentEntity

	4.5.3 Putting it all together

	4.6 You want to implement mandatory-field validation
	4.6.1 The problem
	4.6.2 The solution

	4.7 You want to implement cross-field validation
	4.7.1 The problem
	4.7.2 The solution

	4.8 You want to implement cross-entity validation
	4.8.1 The problem
	4.8.2 The solution

	Chapter 5 Creating a Guice module
	5.1 Create a class extending AbstractModule
	5.2 Store a row on ModuleClassName

	Chapter 6 Events
	6.1 Identify where an event must be raised
	6.2 Define the Event interface
	6.3 Create an EventDispatcherFactory
	6.4 Raise events
	6.5 Create an event listener
	6.6 Configure Guice
	6.7 Writing listeners for automatic persistence events
	6.8 Design Considerations with Events
	6.9 Backward compatibility

	Chapter 7 Using Entity Context
	7.1 The Problem
	7.2 The Solution
	7.3 Customising Inserts using entity context
	7.4 Customising Reads using entity context
	7.5 Customising other operations using entity context

	Chapter 8 State Transitions
	8.1 The problem
	8.2 The solution
	8.2.1 Specify states
	8.2.2 Specify storage mechanism for the state value
	8.2.3 Identify transition methods
	Suspend
	Resume
	Close

	8.2.4 Implement getLifecycleState
	8.2.5 Create a map to hold the permitted states
	8.2.6 Create an object for each state
	8.2.7 Create an object for each permitted transition
	8.2.8 Create a private getter to retrieve the current State
	8.2.9 Create a private setter to set the current State
	8.2.10 Create a private helper method to perform a state transition
	8.2.11 Implement state transition methods
	8.2.12 Specify the initial state
	8.2.13 Add state transition validation logic
	8.2.14 Override the modify method (if required)

	8.3 Putting it all together

	Chapter 9 Inheritance
	9.1 Identifying inheritance
	9.2 Entity interface inheritance
	9.3 DAO interfaces
	9.4 Deciding on database storage
	9.4.1 One table per class
	AnimalImpl
	Class declaration
	Protected constructor
	Store discriminator value
	Base entity adapter
	Getters and Setters

	CatImpl
	Class declaration
	Constructor
	Specifying the discriminator value
	Mapping the base key
	Getters and Setters
	speak

	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl
	Class declaration
	Adapter
	DAO instances
	Protected constructor
	Get discriminator value from a row read from the database
	Map discriminator values to DAO instances

	9.4.2 One table per concrete class
	AnimalImpl
	CatImpl
	Class declaration
	Protected constructor
	Getters and Setters
	speak

	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl
	Class declaration
	Adapter
	DAO instances
	Protected constructor
	Performing a search across Animal types
	Unsupported - retrieval of an Animal by its ID

	9.4.3 One table for the whole hierarchy
	AnimalImpl
	Class declaration
	Protected constructor
	Getters and Setters

	CatImpl
	Class declaration
	Protected constructor
	Confirming that the correct type has been retrieved
	Getters and Setters
	speak
	Specifying the discriminator value for new instances

	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl
	Class declaration
	Adapter
	DAO instances
	Protected constructor
	Get discriminator value from a row read from the database
	Map discriminator values to DAO instances

	Chapter 10 Adding New Searches to Existing Entities
	10.1 Approach 1
	10.2 Approach 2

	Notices
	Trademarks

