
IBM Cúram Social Program Management

Cúram Intelligent Evidence
Gathering(IEG)™

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Chapters in this Guide .. 1

Chapter 2 Classic Intelligence Evidence Gathering(IEG) Overview 3
2.1 Introduction .. 3
2.2 IEG Development .. 3
2.3 The IEG Element Structure .. 4

2.3.1 Scripts ... 5
2.3.2 Pages and Child Pages .. 5
2.3.3 Preconditions ... 5
2.3.4 Postconditions ... 5
2.3.5 Question Groups ... 6
2.3.6 Questions ... 6
2.3.7 Labels .. 6
2.3.8 Sub-scripts ... 6

Chapter 3 Designing an IEG Script ... 7
3.1 Introduction .. 7
3.2 Identifying the Purpose of the IEG Script .. 7
3.3 Identifying the Users of the IEG Script ... 8
3.4 Identifying Previously Gathered Evidence .. 8
3.5 Identifying Required Cúram Functionality .. 8
3.6 Phrasing Questions Based on Required Information ... 8
3.7 Grouping Questions ... 9
3.8 Ordering Questions, Labels and Question Groups .. 10
3.9 Defining Preconditions .. 11
3.10 Defining Postconditions ... 11
3.11 Writing an IEG Functional Specification .. 11

3.11.1 Specifying the Basic Page Layout for IEG Execution Widget 12
3.11.2 Designing Pages and Question Groups ... 12
3.11.3 Defining Questions ... 13
3.11.4 Defining Labels ... 15
3.11.5 Designing the Finish Page .. 16

3.12 Defining a Reference to a Sub-Script. ... 16
3.13 Specifying the Use of Gathered Information ... 17

iii

Chapter 4 Creating an IEG Script .. 18
4.1 Introduction .. 18
4.2 The IEG Editor Script Tree View .. 18
4.3 Maintaining Scripts .. 18
4.4 Maintaining Pages .. 19

4.4.1 Maintaining Child Pages ... 19
4.5 Maintaining Preconditions ... 19
4.6 Maintaining Postconditions ... 20
4.7 Maintaining Question Groups .. 20
4.8 Maintaining Questions ... 21
4.9 Maintaining Labels .. 22
4.10 Translating Script Elements Into Other Languages ... 22
4.11 Defining Expressions and Using the Formula Helper ... 22

Chapter 5 Looping in IEG .. 24
5.1 Introduction .. 24
5.2 Loopsize expressions ... 24
5.3 FOR loop .. 24

5.3.1 Exclusive FOR loop .. 25
5.3.2 Inclusive FOR loop ... 25

5.4 WHILE loop ... 25
5.5 FOR-EACH loop ... 25
5.6 Nested loops ... 26

Chapter 6 Invoking an IEG Script ... 27
6.1 Introduction .. 27
6.2 Listing Available IEG Scripts .. 27
6.3 Initiating a Script Execution .. 27

6.3.1 Initializing a Script Execution From a UIM Page .. 28
6.3.2 Passing the Execution ID to the IEG Player Widget 29

6.4 Continuing an Interrupted Script Execution .. 30
6.5 Script Execution Status .. 30
6.6 Script Execution and RDO Support ... 30

6.6.1 Passing Preinitialized RDOs to a Script .. 31
6.6.2 Accessing Answers in Loaders ... 31

6.7 Pre-populating an IEG Script ... 32
6.7.1 Failures in pre-population ... 32

Chapter 7 Limiting IEG Script Modification ... 34
7.1 Introduction .. 34
7.2 Defining Validation Methods in the Application ... 34
7.3 Validation Processing at Runtime .. 35

Chapter 8 The IEG Editing API ... 36
8.1 Introduction .. 36
8.2 Creating a Script .. 36
8.3 Modifying a Script ... 36
8.4 Deleting a Script .. 37
8.5 Creating a Question Group .. 37

Cúram Intelligent Evidence Gathering(IEG)™

iv

8.6 Deleting a Question Group .. 37
8.7 Listing Scripts .. 37
8.8 Listing Question Groups .. 38
8.9 Deep-cloning a Script .. 38
8.10 Listing Questions ... 38
8.11 Listing Question Aliases .. 39

Chapter 9 The IEG Execution Widget ... 40
9.1 Introduction .. 40
9.2 IEG Execution Widget Layout ... 40

9.2.1 Tab Panel .. 40
9.2.2 Question Script Panel .. 41
9.2.3 Question Panel .. 41
9.2.4 Navigation Panel ... 41

9.3 XML Configuration File .. 42
9.4 Properties File for Text Resources ... 43
9.5 CSS File for Style Properties ... 44
9.6 IEG Test Player .. 47

Chapter 10 Using Gathered Evidence .. 48
10.1 Introduction .. 48
10.2 Retrieving XML Data .. 48
10.3 Removing Data from the Database .. 49
10.4 Extracting XML Data .. 49
10.5 Storing XML Data for Future Use ... 50

Chapter 11 Import and Export of IEG Definitions .. 51
11.1 Introduction .. 51
11.2 IEG Import Commands .. 52
11.3 IEG Export Commands .. 52

Chapter 12 Adding IEG Administration Pages .. 54
12.1 Introduction .. 54
12.2 IEG Section .. 54
12.3 IEG Tabs .. 55
12.4 IEG Menu ... 56
12.5 Inserting Tab Configuration ... 56

Appendix A Operations Supported for IEG Expressions .. 58
A.1 Introduction ... 58
A.2 Bracketing of Terms .. 58
A.3 Operator Precedence ... 58
A.4 Data Types and Supported Operations .. 59

Appendix B Answer Data Types ... 61
B.1 Available Answer Data Types ... 61
B.2 Defining Additional Answer Data Types .. 63

Notices ... 64

Cúram Intelligent Evidence Gathering(IEG)™

v

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to provide information on Cúram's Intelligent
Evidence Gathering(IEG) component. This guide covers IEG script design,
development, and execution.

Important

Please note this document covers a superseded version of IEG. This
version of IEG is in maintenance mode and the new version of IEG
is now the preferred technology for new development. Please refer
to the Authoring Scripts using Intelligent Evid-
ence Gathering(IEG) Developer's Guide for information on
script design, development, and execution using the new techno-
logy.

1.2 Audience

This guide is intended for the business analysts and IEG developers who are
responsible for the design and development of IEG scripts. It is assumed
that the reader has a good understanding of the organization's evidence map-
ping processes and is familiar with the organization's evidence gathering
processes. It is also assumed that the reader responsible for IEG develop-
ment has Java, XML, web application, and CSS development experience.

1.3 Chapters in this Guide

The following list describes the chapters within this guide:

Intelligence Evidence Gathering (IEG) Overview
This chapter provides an overview of IEG including information on the

1

development process and on the IEG element structure.

Designing an IEG Script
This chapter provides the business analyst with an overview of the pro-
cess of identifying and organizing the information that should be
gathered during script execution. It also provides a set of guidelines for
writing an IEG functional specification.

Creating an IEG Script
This chapter provides the IEG developer with a description of the pro-
cess of creating an IEG script using the IEG Editor.

Looping in IEG
This chapter provides the IEG developer with a description of looping
functionality.

Invoking an IEG Script
This chapter provides the IEG developer with information on how to in-
voke an IEG script.

Limiting IEG Script Modifications
This chapter provides the IEG developer with information on how to re-
strict users from making modifications to an IEG script during script ex-
ecution.

The IEG Editing API
This chapter provides information on the use of the IEG Editing API to
create and list remove IEG scripts and queston groups.

The IEG Execution Widget
This chapter provides information on the layout of the IEG Execution
Widget. It also provides the IEG developer with information on how to
configure IEG Execution Widget properties.

Using Gathered Evidence
This chapter provides the IEG developer with information on the IEG
Execution API and on processing and storing information gathered dur-
ing script execution.

Import and Export of IEG Definitions
This chapter provides the IEG developer with information on how ques-
tion script and question group definitions may be imported to and ex-
ported from the database.

Cúram Intelligent Evidence Gathering(IEG)™

2

Chapter 2

Classic Intelligence Evidence Gathering(IEG)
Overview

2.1 Introduction

Classic Intelligent Evidence Gathering(IEG) is an efficient alternative to tra-
ditional information gathering processes. With IEG, information is gathered
interactively by displaying a script of questions that a user can provide an-
swers to. Questions are only displayed if they are consistent with the user's
previous answers so that the user is only required to provide answers relev-
ant to his or her needs and situation. This creates a user-friendly environ-
ment that can be effectively implemented for a range of processes including
client information intake, benefit assessment triage, online eligibility assess-
ment, etc.

In contrast to traditional information gathering processes, IEG cuts down on
the organization's administrative work by creating the potential for several
routes through the same question script. This eliminates the necessity to de-
velop many scripts for gathering information from different types of users.

A further advantage of IEG is the flexibility of its implementation and the
range of its potential users. The IEG runtime environment can be set up for
access from any UIM page. This means that IEG can be accessed directly
from an organization application or remotely by an online user.

2.2 IEG Development

The two main components of IEG are the IEG Editor and the IEG Execution
Widget. The IEG Editor allows the developer to define and maintain IEG
elements including questions, question groups, preconditions, pages, and
scripts. The IEG Execution Widget presents a dynamic set of pages to the
user.

IEG can be easily developed by an organization for one or more of its in-

3

formation gathering processes. IEG development involves script design, cre-
ation, and implementation. The organization's business analysts design
question scripts based on the information that must be gathered. An IEG de-
veloper can then define the script elements using the IEG Editor, configure
the IEG Execution Widget, and invoke the script from the application. After
invocation, the script can be accessed by users using the IEG Execution
Widget.

The information collected at runtime can be extracted and processed or
stored to a file or database. Because script execution is separated from the
use of gathered information, the organization is provided with the flexibility
of using gathered information when and how it chooses. Gathered informa-
tion can also be stored indefinitely to satisfy traceability requirements.

2.3 The IEG Element Structure

The basic IEG elements are scripts, pages, preconditions, postconditions,
question groups, questions, labels and sub-scripts. The IEG elements are lo-
gically organized into an element tree structure:

To summarize, IEG scripts consist of a hierarchy of elements structured
something like this:

• Script

• Page 1

• Precondition

• Question Group

• Question 1

• Label 1

• Question 2

• Question 3

• Label 2

• Page 2

• Page 3

• Page 4

• Page 5

• Subscript

At the top of the tree structure is a script. Each script can contain one or
more pages. Each page can contain a set of preconditions, a question group,

Cúram Intelligent Evidence Gathering(IEG)™

4

and child pages. Each question group can have one or more questions or la-
bels, or any mixture of both.

Each of the following sections describes one IEG element.

2.3.1 Scripts

A script is an ordered set of pages. Although pages are ordered in a script, a
page may or may not be displayed at runtime. For example, if Page 4 in the
figure above is not displayed at runtime, the script order would be Page 1,
Page 2, Page 3, Page 5.

Information that is external to a script may be passed to the script at runtime
by using the RDO mechanism. When a script is defined, the RDOs that are
accessible to the script are declared as attributes of the script. The qualified
names of the data items of any declared RDO may be used anywhere ques-
tion IDs may be used. They may form part of precondition expressions or
default values etc. The RDO loader mechanism also provides IEG with the
ability to invoke other Cúram functionality.

2.3.2 Pages and Child Pages

A page consists of a set of preconditions and a question group. The set of
preconditions must be met in order for the page to be displayed. The ques-
tion group consists of the questions that will be asked if the page is dis-
played. By combining preconditions and question groups, pages ensure that
questions will only be asked if they are relevant to the user. For example, in
the figure above, the user will not see the questions on Page 1 unless the
preconditions for the page are met.

A page may have one or more dependent child pages. A child page has all
the preconditions of the parent page and may also have additional precondi-
tions. A child page will only be displayed if its parent page is displayed (and
if any additional preconditions are met). At runtime, this ensures that child
pages are not displayed unless the preconditions of both the child and parent
pages are met. In the figure above, Pages 2 and 3 are child pages of Page 1.

2.3.3 Preconditions

A precondition is a set of boolean conditions that are based on the answers
to previously asked questions. The evaluation of preconditions at runtime
determines whether or not a page will be displayed during script execution.

2.3.4 Postconditions

A postcondition is a set of boolean conditions that are based on the answers
to questions on the current page. The evaluation of postconditions at
runtime determines whether or not the script execution moves beyond this
page.

Cúram Intelligent Evidence Gathering(IEG)™

5

2.3.5 Question Groups

A question group is a logical set of questions that should be asked at the
same time. Question groups can exist outside of scripts and can be reused
across multiple scripts. At runtime, a question group appears as a list of
questions and/or labels on a single page. Question groups may contain one
or more questions or labels, or any combination of both.

2.3.6 Questions

A question is the most basic IEG element. It is used to collect a single piece
of information. At script execution, each question is associated with ques-
tion script text that phrases a question and a data entry field that allows the
user to provide an answer in a specified format, e.g., a radio button or check
box.

2.3.7 Labels

Labels are defined within question groups at the same level as questions.
Labels are intended to provide information to users. A label can be hyper-
linked. At runtime, a label appears as text (hyperlinked or otherwise) on a
question page, not necessarily associated with any particular data-entry
field.

2.3.8 Sub-scripts

Sub-scripts are simply IEG scripts included within a parent script or page.
At runtime, a sub-script is executed as if its constituent parts were defined in
the parent script.

Cúram Intelligent Evidence Gathering(IEG)™

6

Chapter 3

Designing an IEG Script

3.1 Introduction

The purpose of this chapter is to advise the business analyst on the IEG
script design process. The information provided is intended as a guideline
rather than as a set of instructions; the actual design process will be unique
for each implementation of IEG.

For the design process to be successful, the IEG script design must create a
bridge between the organization's business requirements and the implement-
ation of a script. In practical terms, this means that the business analyst must
create a functional specification that will be easily understood and imple-
mented by the IEG developer.

3.2 Identifying the Purpose of the IEG Script

The first step in the IEG design process is to identify the purpose for run-
ning an IEG script. This generally involves an analysis of the results that are
required from the script. The types of results that are required depends on
whether the script is an intake or a triage script.

Intake IEG scripts usually have one result, i.e., the collection of relevant in-
formation. For example, if a client is found eligible for benefits, an intake
IEG script can be used to collect additional information in order to determ-
ine the client's benefit amount.

Triage IEG scripts, in contrast, have more than one possible result. Triage
IEG scripts are used to sort claimants into categories based on their needs
and potential eligibility for benefits. After completing a triage IEG script, a
claimant will have reached one possible result and will be placed into a spe-
cific category. For example, a triage IEG script may identify a claimant as
potentially eligible for the non-resident commuter category of unemploy-
ment insurance. This would be one of several unemployment insurance eli-
gible categories.

7

3.3 Identifying the Users of the IEG Script

An IEG script must be designed for use by a specific user type. It is import-
ant to thoroughly analyze the needs of this user type as this can impact the
overall design of the IEG script. For example, an IEG script designed for
use by case workers will be significantly different from an IEG script de-
signed for use by a client. Each user type carries specific requirements for
wording, layout, help functionality, etc.

It is also important to design an IEG script in relation to the way in which it
will be accessed. A user accessing the IEG script from an organization loca-
tion will have different requirements from a user accessing it from a person-
al computer at home. For example, a home user may require a more com-
plete help structure than a case worker.

Depending on the type of user, localization might be required for a script.
Script translations can be defined using the IEG Editor.

3.4 Identifying Previously Gathered Evidence

There are circumstances where evidence may have been previously gathered
that may be relevant to an IEG script. Rather than gathering this evidence
multiple times it may be made available to a script. This evidence may form
part of a precondition or may be presented to the user for verification.

3.5 Identifying Required Cúram Functionality

There are circumstances where functionality provided elsewhere may need
to be made available to an IEG script. For example, a user may be asked
questions about their social security number, once this evidence is gathered
it needs to be verified with an external agency and if it passes verification
the IEG flow can continue. Access to external functionality is provided
through RDOs and loaders.

Loaders are hand-crafted Java classes used to populate RDOs. If IEG tries to
access a value of an RDO dataitem, the dataitem will first check if its value
has already been loaded. If the value has not been loaded yet, the dataitem
will invoke the loader. Answers supplied during script execution are avail-
able to loaders as they are registered in the Rules Context as they are en-
countered. See the Cúram Rules Codification Guide for more in-
formation on RDOs and loaders.

3.6 Phrasing Questions Based on Required Informa-
tion

After identifying the purpose and users of the IEG script, it is important to

Cúram Intelligent Evidence Gathering(IEG)™

8

identify the information required by the organization. The process for identi-
fying the information required involves an analysis of the conditions that
must be met in order to reach the result(s) of the script. Each condition is
phrased as a question. If designed well, the answers to these questions will
provide the organization will all required information.

For example, a claimant who completes an unemployment insurance triage
IEG script may be found potentially eligible or ineligible for unemployment
benefits. Additionally, there may be several potentially eligible subtypes.
One of these subtypes might indicate that a claimant is potentially eligible
for unemployment insurance in a state as a non-resident commuter to that
state. This would mean that the claimant lives in another state but regularly
commutes to work in this state. This outcome is based on the person satisfy-
ing the following conditions during the claim period:

• The claimant is not resident in this state AND

• The claimant crosses a state line to commute to work AND

• The claimant has wages in only one state AND

• The claimant has wages in this state.

These conditions, phrased as questions, are included in the IEG script:

• Are you a resident of this state during the claim period?

• Do you cross a state line to commute to work during the claim period?

• Have you worked in more than one state during the claim period?

• Have you worked in this state during the claim period?

The process of analyzing the conditions that must be met to reach a result
must be repeated for each possible result of the IEG script. When the condi-
tions for reaching all possible results have been identified and phrased as
questions, the designer can begin to organize these questions into an IEG
script.

3.7 Grouping Questions

Related questions in a script should be grouped into question groups. For a
user-friendly script, a question group should contain questions of a similar
topic. It is important to note that the list of questions that must be answered
for a particular result should not necessarily be grouped.

An analysis of all questions required for a script should be conducted so that
questions can be logically grouped by topic. For example, the questions ne-
cessary for a unemployment insurance triage script should be listed and then
sorted into topic-based groups such as resident state employment informa-
tion, additional state(s) employment information, commuting information,
etc.

Cúram Intelligent Evidence Gathering(IEG)™

9

Another important consideration when grouping questions is that questions
that are dependent on each other should not be grouped. This is because it is
impossible to limit the display of a question based on another question if
both questions are in the same group. For example, a question determining
whether a person commutes should not be grouped with questions about the
commute. It is more effective to separate these questions so that a person
who does not commute will not be asked questions that are irrelevant to his
or her situation.

It is important to note that question groups should be short enough that they
are easily manageable by the user. For example, an unemployment insur-
ance triage may include many questions involving a person's state of em-
ployment. Asking all of these questions at once would result in a single page
in the script containing an overwhelming number of questions. It is often ef-
fective to separate related questions into sub-groups that are displayed to the
user in sequence as separate pages or child pages.

3.8 Ordering Questions, Labels and Question Groups

The order of questions and question groups in a script is important to a
script's efficiency and user-friendliness. Both of these considerations must
be taken into account when ordering questions.

To reach an outcome as quickly as possible, “prerequisite” information that
immediately leads to a result should be collected early in an IEG script. Pre-
requisite information includes information that determines initial potential
eligibility or ineligibility. For example, a person is ineligible for unemploy-
ment insurance if he or she has been determined ineligible for another un-
employment insurance claim in the last quarter. If this information is collec-
ted early in the script, it may be possible to complete the script without ask-
ing unnecessary questions.

Reaching an outcome as quickly as possible must, however, be balanced by
the necessity to develop a user-friendly script. If all prerequisite information
is collected at the beginning of the script, the script might become off-
putting for the user or lead to confusing results when the script is ended. For
example, a person may be ineligible for unemployment insurance if he or
she has a disability, but it is not necessarily appropriate to ask a person
about his or her disability at the beginning of a script.

The organization may also wish to make the ordering of a script more or
less transparent based on the user type. For example, if a caseworker is run-
ning a script that is ended after a question group is presented, it should be
clear which question caused it to end. That is, two prerequisite questions
should not be asked in a row as this could lead to confusion as to which
question ended the script. On the other hand, if a claimant is running the
script from home, it may not be suitable for him or her to see exactly how an
outcome was reached.

Within the IEG Editor, when viewing a question group, the order in which
the questions/labels are displayed corresponds directly to the order they are

Cúram Intelligent Evidence Gathering(IEG)™

10

asked within the IEG Script. To change this order, simply select the desired
action, Up or Down, associated with the question/label you wish to move.
Repeat this process until the desired order is achieved.

3.9 Defining Preconditions

The circumstances under which pages will be displayed is another important
design consideration. The business analyst can define these circumstances
by defining preconditions for pages within a script (see Section 3.11.2,
Designing Pages and Question Groups). Because preconditions limit the
display of question groups rather than of individual questions, entire groups
of questions can be eliminated from a script execution based on the an-
swer(s) to a previous question(s). This allows the same script to be easily
used for a wide range of users. For example, if a claimant completing an un-
employment insurance triage script answers that he or she has only worked
in one state, a group of questions on multiple employment states will not be
displayed to that claimant. This group will, however, be displayed to users
who have worked in more than one state.

Properly defined preconditions will ensure that questions are not posed un-
necessarily. For each question in a script, the business analyst needs to map
the relationship between that question and every question group that occurs
later in the script. If the question has a significant impact on the relevancy of
a question group, a precondition should be defined. This ensures that the
question group will not be displayed if it is irrelevant to a user.

When defining preconditions, it is important to ensure that each page in a
script will be displayed under an achievable set of circumstances. That is,
preconditions should not be so limiting that it is impossible for a user to
reach a page.

3.10 Defining Postconditions

Postconditions are used to perform page validation. Script execution cannot
proceed unless all postconditions defined for a page are satisfied. Each post-
condition that fails will have an error message displayed. Postconditions are
particularly useful to check that the answers to the current page are compat-
ible with answers from previous pages.

3.11 Writing an IEG Functional Specification

After the design process has been completed, a functional specification
should be written. The functional specification should include all informa-
tion required by an IEG developer to define the IEG script using the IEG
Editor. This information should include an identification of all elements
contained within a script and a brief description of its purpose and intended
use. It should also define the layout of each page in the IEG runtime envir-
onment and any information passed into the script.

Cúram Intelligent Evidence Gathering(IEG)™

11

Generally, the functional specification will contain an introductory chapter
that identifies the purpose of the script, the users of the script, the possible
outcomes of the script, the information made available to the script and the
basic page layout of the IEG Execution Widget. It should also outline the re-
quirements for the finish page that will be displayed after a script has been
completed.

After the introductory chapter, a chapter is usually created for each page in
the script. This creates a table of contents that clearly represents the progres-
sion of the script from the start to all its possible results. This layout also
helps the IEG developer to develop the script page-by-page, which is the
most effective way of using the IEG Editor.

3.11.1 Specifying the Basic Page Layout for IEG Execution Wid-
get

The basic page layout for the IEG Execution Widget should be outlined in
the functional specification. Four panels can be configured for pages in a
script. These are the tab panel, question script panel, question panel, and
navigation panel. The specifications for each panel should be provided. (See
Chapter 9, The IEG Execution Widget for more information on the IEG Exe-
cution Widget.)

3.11.2 Designing Pages and Question Groups

The requirements for each page in a script must be documented. Each page
can have several attributes associated with it. These attributes help the IEG
developer develop the script using the IEG Editor and define the way in
which the script will execute at runtime.

Note that a question group can be reused across scripts. This preserves the
question group name, description, and the questions contained within it. It
does not, however, preserve the preconditions, loopsize, etc., because these
are associated with pages rather than question groups. Note also that a page
does not have its own name or description. The name and description of the
associated question group are used instead.

The following list includes each attribute that can be maintained for a page.
If one of these attributes is not needed for a particular IEG script, it is gener-
ally not documented in the functional specification.

Page Name
The page name is used to identify the page in the IEG Editor. If no page
name is specified, the page assumes the name of its associated question
group both in the IEG Editor and at runtime.

Question Group Name
The question group name is used to identify the question group in the
IEG Editor. Note that the question group name becomes the page name
at runtime if no page name is specified. For example, a question group

Cúram Intelligent Evidence Gathering(IEG)™

12

may be named “Employment State Information.”

Question Group Description
The question group description is used to describe the question group.
Note that the question group description becomes the page description
at runtime. The description can be used as needed by the organization.
For example, the description might be used as an overview of the ques-
tions that will be asked or it could be read aloud by a case worker as an
introduction to the questions that will be asked.

Child Page
A child page shares the preconditions of its parent page. It may also
have additional preconditions. It is important to document whether or
not a page is a child page as this has implications for the way in which
the IEG developer will create the page in the IEG Editor.

Loopsize
A loopsize can be defined for a page. The loopsize refers to the number
of times a question group should be displayed to the user. The loopsize
is based on a numerical answer given for a previously asked question.
For example, if a person specifies that he or she has worked in four dif-
ferent states, a page that collects information on states of employment
may be displayed four times. Where a page has child pages, the ques-
tion group on the page will be displayed the loopsize number of times.
Then, the script will iterate through the entire sequence of child page
question groups the loopsize number of times.

Legislation Link
If relevant legislation exists, the legislation link allows the user to ac-
cess the URL that contains this legislation.

Policy Link
If relevant policy exists, the policy link allows the user to access the
URL that contains this policy.

Preconditions
The preconditions for displaying a page should be defined. The precon-
ditions relate to specific questions contained on earlier pages. For ex-
ample, a precondition relating to the question, “Do you work in this
state?” might read, “The client works in this state.” It is also helpful to
include the relevant question number and page in the precondition so
that the question can be easily referenced.

Postconditions
The postconditions for leaving a page should be defined. The postcondi-
tions relate to specific questions contained on earlier pages and the cur-
rent page.

3.11.3 Defining Questions

The requirements for each question must be documented. Each question can
have several attributes associated with it. These attributes help the IEG de-

Cúram Intelligent Evidence Gathering(IEG)™

13

veloper define the script using the IEG Editor and define the way in which
the script will execute at runtime.

Questions are defined within the chapter for the page that they will appear
on. Each question is also defined as part of a question group. Note that ques-
tions can not be maintained independently of a question group and cannot
be reused across scripts.

Textual descriptions of questions (labels, descriptions, texts) can include
variables, e.g. text based on the answers to questions on previous pages. For
example, if a question of a question group on Page 1 asks the user's name,
the answer given can be used in the description of a question included in a
Question Group on Page 2.

To use this feature, the developer simply includes a reference to the required
variable in the value attribute of the desired textual description. If ther user
answers the question "What is your name?" with "John smith", then on a
following question page a question could resolve to "Address for John
Smith" by referencing a textual value of the original question:

Address for <PersonDetailsGroup.PersonName>

Questions can be assigned an identifier or number by the business analyst.
This is helpful in documenting preconditions and loopsizes. Note that this
number may differ from the question ID that will be assigned by the de-
veloper in the IEG Editor.

The following list includes each attribute that may be maintained for a ques-
tion. If one of these attributes is not needed for a particular IEG script, it is
generally not documented in the functional specification.

Question Name
The question name is used to identify the question in the IEG Editor.
For example, “Employment State.”

Question Script
The question script is the actual question text that will be displayed at
runtime. For example, “Do you work in this state?”

Help Text Script
Help text script provides the user with support for answering the ques-
tion. For example, “This is the state where you earn wages.”

Question Alias
A question alias is an alternative phrasing of the question script that can
be displayed at runtime.

Answer Data Type
The answer data type defines the data type that the answer will be given
in, e.g., a boolean, money, or string value. (A full list of answer data
types is provided in Appendix B, Answer Data Types.) Note that addi-
tional answer data types can be added if required by the organization.

Cúram Intelligent Evidence Gathering(IEG)™

14

The answer data type selected for a question is usually the data type that
will be required for processing the answer after script execution (see
Section 3.13, Specifying the Use of Gathered Information).

Data Entry Field Type
The data entry field type defines the kind of entry field that will be
provided for a question. The data entry field may be a check box, radio
buttons, a text entry field, or a date entry field (with a pop-up calender
widget). Note that more than one data entry field type may share an an-
swer data type. For example, check boxes and radio buttons can both re-
turn boolean values.

Default Answer
The default answer defines the answer value that will be used if no an-
swer value is entered by the user, e.g., False, True.

Mandatory Indicator
If the mandatory indicator is selected for a question, an answer will
have to be provided for the script to continue past the question. Note
that depending on the answer data type and the data entry field, the user
may not have to perform any action to answer a question. For example
if the default answer is False (unselected) and the data entry field is a
check box, the answer will be read as False unless the user checks the
box.

Record Unanswered Indicator
If the record unanswered indicator is selected, a check box will be
provided next to the question at runtime. If a client refuses to answer the
question, then the user must check the box in order for the script to con-
tinue past the page. Note that the record unanswered indicator is gener-
ally only used when the user is a case worker.

Legislation Link
The legislation link allows the user to access the URL that contains the
legislation relevant to the question.

Policy Link
The policy link allows the user to access the URL that contains the
policy relevant to the question.

3.11.4 Defining Labels

Each label is defined as part of a question group. Note that labels can not be
maintained independently of a question group and cannot be reused across
scripts.

Each label has attributes specifying whether or not it is a hyperlink and the
URL to use if it is a hyperlink. Textual aspects of labels (label texts, URLs)
may include substitution expressions. The substitution expressions can ref-
erence RDO data items and questions previously encountered in the script.
For example, if a question in a question group asks the user's name, the an-
swer to this question can be used in the URL of a label included in sub-

Cúram Intelligent Evidence Gathering(IEG)™

15

sequent question group.

To use this feature the developer simply includes a reference to the required
question, enclosed in angle brackets, as part of the URL. For example, if the
user answers the question "What is your place of birth?" with "Dublin", then
on a following question page a label URL could resolve to "ht-
tp://.../page2.do?birthpl=Dublin" by referencing a textual value of the ori-
ginal question.

http://.../page2.do?birthpl=
<PersonDetailsGroup.BirthPlace>

The following list includes each attribute that may be maintained for a label.
If one of these attributes is not needed for a particular IEG script, it is gener-
ally not documented in the functional specification.

Text
The text is the actual label text that will be displayed at runtime. For ex-
ample, “All questions are mandatory.”

URL
The URL attribute is the URL that the label will link to in the event that
the Hyperlink flag is enabled. The text is displayed, and the URL is at-
tached to it For example, “http://.../IEGScripts/question_information”

Hyperlink
This is a boolean flag that specifies if the Text of a Label will appear as
a hyperlink or as plain text. By default, it is set to true, enabling the hy-
perlink.

3.11.5 Designing the Finish Page

The requirements for the UIM finish page should be defined in the function-
al specification. The organization can add whatever functionality it requires
to the finish page.

3.12 Defining a Reference to a Sub-Script.

From within a Script it is possible to create a reference to another Script, re-
ferred to as a Sub-Script. Outside of the context of the enclosing Script a
Sub-Script is a stand alone Script that can be executed independtly. Con-
sequently if the Sub-Script is modified it will impact any Script that in-
cludes a reference to it.

It is possible for an enclosing Script to refer to the Questions and Labels of a
Sub-Script. However since a Sub-Script remains independent from the en-
closing Script, it is not possible for a Sub-Script to reference the enclosing
Script.

A reference to a Sub-Script can be created at the Root or Page level of a

Cúram Intelligent Evidence Gathering(IEG)™

16

Script. It should be noted that a Sub-Script can only be referenced once
within a Script. A Sub-Script should not include a Question Group that has
already been included elsewhere within the encluding Script.

3.13 Specifying the Use of Gathered Information

The information gathered from the execution of an IEG script can be used as
required by the organization (see Chapter 10, Using Gathered Evidence).
Cúram does not specify how information should be used but provides the fa-
cility to store information indefinitely or to access information for a specific
purpose.

Within the Cúram framework, information gathered using IEG can be
mapped onto Cúram case evidence (effective from a specific date). If a case
does not exist at execution time, information may be stored or sent for re-
view by a caseworker.

If the use of gathered information is specified during the design stage, the
script can be strengthened to better fulfill the requirements of that use. For
example, if data collected during a script execution is to be used as case
evidence, answers can be formatted to feed directly into a case.

Cúram Intelligent Evidence Gathering(IEG)™

17

Chapter 4

Creating an IEG Script

4.1 Introduction

This chapter provides information on using the IEG Editor to create and edit
IEG scripts. Using the functional specification written by the business ana-
lyst, the IEG developer will have the information required to maintain IEG
scripts, pages, preconditions, question groups, questions, labels, translations,
and expressions.

4.2 The IEG Editor Script Tree View

The IEG Editor provides a tree view that allows the IEG developer to easily
navigate among the elements contained within a script.

The view page for each element can be accessed by clicking on its name.
The currently selected item is indicated on the tree with an underline. In the
figure above, Question 1 is the currently selected element.

Note that question translations, label translations, question group transla-
tions, and script translations do not appear in the tree view. These can be
maintained from the relevant question, question group, or script.

4.3 Maintaining Scripts

When a script is created, it is assigned a script ID by the IEG developer. The
ID must be a unique, alphanumeric value with no spaces. Each script must
also be assigned a script name and description. These are specified in the
functional specification.

In order to allow for multiple versions of a basic script, using the IEG Editor
it is possible to create a script by cloning another. However it is important to
note that this process does not perform a 'deep' clone. Effectively the script
is cloned; however the constituent question groups are not. This is because

18

scripts have 'pointers' to question groups, not actual copies of each individu-
al question group.

Scripts may also be created using the IEG Editing API where a type for the
script may be optionally specified. Scripts defined with a type are not dis-
played when listing scripts in the administration application. However a list
of scripts of a given type can be obtained using the IEG Editing API, see
(see Section 8.2, Creating a Script for more information.)

For a script to be successfully executed at runtime, it must contain at least
one page. Each page must additionally have one preconditions section
(containing zero or more conjunct preconditions), one question group, and
zero or more child pages. Each question group must also have at least one
question.

4.4 Maintaining Pages

Pages can be created for a script.

A loopsize can be defined for a page. The loopsize attribute is specified as
an expression that relates to the answer provided for another question. For
example, the loopsize attribute may appear something like “QGRP1.Q3”, or
“QGRP1.Q3 - 1”. The loopsize attribute specifies the control variable for a
loop. For more information on creating expressions using the IEG Editor,
see Section 4.11, Defining Expressions and Using the Formula Helper.

Notes can also be defined for a page. The note text is specified in the func-
tional specification.

Legislation links and policy links can be defined for a page. These are spe-
cified in the functional specification and are absolute URLs linking to the
relevant legislation/policy.

Note that at runtime, pages inherit their names and descriptions from their
associated question group.

4.4.1 Maintaining Child Pages

One or more child pages can be created from another page or child page.
The process for creating a child page is identical to creating any other page;
loopsize, preconditions, notes, and legislation/policy links can all be defined
for a child page.

The advantage of creating child pages is that the developer will not have to
recreate the preconditions or loopsize of the parent page (those of the parent
page are automatically shared with its child pages). Note that additional pre-
conditions or another loopsize can be added to a child page, if necessary.

4.5 Maintaining Preconditions

A precondition can be created for a page. Preconditions are defined as ex-

Cúram Intelligent Evidence Gathering(IEG)™

19

pressions. A sample precondition may read “QGRP1.Q3 == true ”. For more
information on creating expressions using the IEG Editor, see Section 4.11,
Defining Expressions and Using the Formula Helper.

4.6 Maintaining Postconditions

Multiple postconditions can be created for a page. Postconditions are
defined as expressions. A sample postcondition may read “QGRP1.Q4 <=
15 ”. For more information on creating expressions using the IEG Editor,
see Section 4.11, Defining Expressions and Using the Formula Helper.

Each postcondition is associated with an ID (a meaningful description) and
a message (and its various translations) to be displayed if the postcondition
is false.

4.7 Maintaining Question Groups

There are three ways of creating a question group. The first uses the IEG
Editor to create a question group for a page. The second creates a question
group in the administration application. The third is through the IEG Editing
API. In all cases question groups are stored on the system so that they can
be reused across scripts.

Each question group must be assigned a question group ID that is created by
the IEG developer. The ID must be a unique, alphanumeric value with no
spaces. Each question group must also be assigned a name and description.
These are specified in the functional specification. Note that the question
group name and description are displayed as the page name and description
at runtime.

Question groups can be added to pages within the IEG Editor. A question
group created in the IEG Editor is added to the page it was created from. An
existing question group can also be added to a page. A selection page allows
the developer to select an existing question group from all stored question
groups. Note that the same question group cannot be added to more than one
page in a single script and that the selection page will not list question
groups that are already in the script.

Using the IEG Editor it is possible to reorder questions simply by moving
each individual question up or down within a question group. (see Sec-
tion 3.8, Ordering Questions, Labels and Question Groups for more inform-
ation.)

Question groups created with the IEG Editing API may have a type for the
question group optionally specified. Question groups defined with a type are
not displayed when listing question groups in the administration application.
However a list of question groups of a given type can be obtained using the
IEG Editing API, see (see Section 8.5, Creating a Question Group for more
information.)

Question groups can be maintained from both the IEG Editor and the ad-

Cúram Intelligent Evidence Gathering(IEG)™

20

ministration application. If a question group is modified in one location, all
other instances of the question group will also be modified.

Question groups that are used in IEG scripts cannot be deleted. To do that
you need to detach question group from script. There are a few ways to do
that:

• Delete question page;

• Update the question page in the IEG script to reference another question
group;

• Delete question script (not recommended unless absolutely necessary).

4.8 Maintaining Questions

Questions can be added to question groups using the IEG Editor. Each ques-
tion must have a minimum of an ID and an answer data type defined. The
question ID is created by the IEG developer and must be a unique, alphanu-
meric value with no spaces. The answer data type is used by the client infra-
structure to determine the type of control that should be used to record the
answer. An answer data type can be selected from a list of answer data types
provided in the IEG Editor. If required, additional answer data types can be
added to this list (see Appendix B, Answer Data Types for more informa-
tion). If the answer data type is a string, the input field presented to the user
can consist of multiple lines (the default is one).

If the selected answer data type is a CODETABLE_CODE, then the runtime
control displayed will be a drop-down list of possible answers. List meta
data can be specified to indicate the inclusion of a blank default row and the
number of visible rows. Other meta data settings indicate whether the list
should be single-select or multi-select, i.e. in the case of multi-select, the
user has the option to choose more than one entry from the list by holding
down the Ctrl key and clicking on the required answers.

A default value can also be defined for each question. If defined, the data
entry fields for this question will be prepopulated with this value upon script
execution. The default value is defined as an expression. A sample default
value may read “False”. For more information on creating expressions using
the IEG Editor, see Section 4.11, Defining Expressions and Using the For-
mula Helper.

The mandatory and record unanswered indicators should be selected as in-
dicated in the functional specification. Script text and question help text can
also be added if specified in the functional specification.

Legislation links and policy links can be defined for a question. These are
specified in the functional specification and are absolute URLs linking to
the relevant legislation/policy.

Question aliases can be defined for a question. Question aliases are an al-
ternative phrasing of the question, depending on the target audience of the

Cúram Intelligent Evidence Gathering(IEG)™

21

script. When an alias is created for a question, the type of alias is selected
from a list of types maintained in the AliasType code table.

Note that if a question is referenced in a precondition, loopsize, default an-
swer expression or postcondition, it cannot be deleted from a script until the
reference is deleted.

4.9 Maintaining Labels

Labels can be added to question groups using the IEG Editor. At a minim-
um, each label must have an ID and a Text defined. The label ID is created
by the IEG developer and must be a unique, alphanumeric value. It can con-
tain spaces. Once created, it cannot be modified.

A URL can be defined for a label. It is possible to use variable substitution
in this URL, including answers to questions defined previously in the IEG
script. When checked, the Hyperlink checkbox renders the Text as a Hyper-
link to the specified URL at runtime. When unchecked, Text appears as
plain text.

4.10 Translating Script Elements Into Other Languages

Script elements are initially created using the default server language. Script
elements can subsequently be localized so that the script can be executed in
multiple languages without the need to redevelop it.

A list of translations is maintained for each script element. Within an ele-
ment, a translation can be maintained for any field that contains text, e.g.,
question text, help text, etc. To create a translation from a script element, the
language of translation must be selected from a list of languages. These lan-
guages are maintained in a code table as part of application administration.
For each script element, only one translation is allowed per language.

At runtime, the script is localized according to the user's locale. For more in-
formation on localization, see the Cúram Administration Guide.

4.11 Defining Expressions and Using the Formula
Helper

Expressions are used to define precondition, loopsize, and question default
answer values. Expressions consist of one or more clauses which evaluate to
a discrete value (in the case of preconditions, a boolean value; in the case of
loopsize, an integer; in the case of question default values, a value appropri-
ate to the Question Type). Boolean expressions use case sensitive “and”,
“or” and “xor” conjunctions, while other expressions use comparison oper-
ators (==, <=, >=, >, <, !=) and arithmetic operators (+, -, /, *). Expressions
can contain an arbitrary number of clauses and can use opening and closing
brackets to control precedence. Expressions can also contain constant values

Cúram Intelligent Evidence Gathering(IEG)™

22

and the answers to previously asked questions. For more information on the
operations that are supported for IEG expressions, see Appendix A, Opera-
tions Supported for IEG Expressions.

A single text field is provided for entering a precondition, loopsize, or ques-
tion default value expression. This allows the IEG developer to enter the ex-
pression directly into the field. A formula helper is provided to assist in ex-
pression creation. The formula helper allows the IEG developer to search
for either a question group or an RDO. If a question group is searched for
the formula helper returns a list of all questions in that group. The IEG de-
veloper can copy the question ID of any of these questions to the clipboard
and then paste the ID into the expression text field. If an RDO is searched
for the formula helper returns a list of all data items in that RDO. The IEG
developer can copy the data item name of any of these data items to the clip-
board and then paste the ID into the expression text field.

A question ID used in an expression must be for a previously asked ques-
tion. An error will be thrown if an IEG developer attempts to insert a ques-
tion ID that does not occur earlier in the script. There are two circumstances,
however, when an expression cannot be validated until runtime. First, the
question default value formula helper is called for a question group which
may have been created outside of a script or may have been included in
many scripts. As such, it is not possible to validate which questions have
been asked previously until runtime. Second, an expression may include
question IDs for questions that are not displayed during a script execution
because the preconditions for the page on which they are contained were not
met. If this happens, the expression will be invalid at runtime.

An expression added within a string value for default answer will not be
evaluated. The expression will instead be dealt with as part of the string.

Cúram Intelligent Evidence Gathering(IEG)™

23

Chapter 5

Looping in IEG

5.1 Introduction

This chapter provides information on IEG's looping functionality. It sets out
to describe the various kinds of loops that can occur in execution; and to ex-
plain what situations will produce each particualar loop-type and why.

The loop types supported by IEG are:

• FOR loop;

• WHILE loop;

• FOR-EACH loop;

5.2 Loopsize expressions

The loopsize attribute is specified as an expression that relates to an answer
provided for another question, a dataitem of an RDO or a literal. For ex-
ample, the loopsize attribute may appear something like “QGRP1.Q3”, or
“QGRP1.Q3 - 1”. Loopsize expressions determine the number of times
question pages and questions are presented to the user. For more informa-
tion on creating expressions using the IEG Editor, see Section 4.11, Defin-
ing Expressions and Using the Formula Helper.

5.3 FOR loop

IEG's FOR loops are based on a loopsize expression that evaluates to an in-
tegral value. Depending on the type of For loop either the question page it-
self or the questions on the page will be repeatedly displayed a set number
of times. Irrespective of the FOR loop type the child pages of the question
page will also be repeatedly displayed.

24

The number of iterations of a FOR loop can only be changed by changing
the control variable, i.e. supplying a different answer to the loop question.
The loopsize expression is resolved before the first iteration of the loop

There are two types of FOR loop available in IEG. The type of FOR is con-
trolled by the following boolean property:
curam.iegruntime.questionpage.separatequestionsforl
oopstyle

5.3.1 Exclusive FOR loop

IEG's Exclusive FOR loop means that, if a page contains a integral loopsize
expression, the questions on that page will appear multiple times. The page
itself only appears once. The Exclusive FOR loop is the default FOR loop
type in IEG.

5.3.2 Inclusive FOR loop

The Inclusive FOR loop means that the question page that contains the loop-
size expression forms part of the loop. The page itself is displayed multiple
times and the questions on the page are not repeated. The Inclusive FOR
loop will be adopted as the looping style if the boolean property
curam.iegruntime.questionpage.separatequestionsforl
oopstyle is set to true.

5.4 WHILE loop

The WHILE loop bases its loop condition on any boolean expression, often
the answer to question asked within the loop. If care is not taken when de-
fining a WHILE loop an infinite loop may result.

In this case the loopsize expression is referencing a question within the loop,
with the answer indicating whether the loop should be iterated over again,
e.g. when compiling details for a household member, a question of boolean
answer data type asks "Are there any more people in the household?". The
size of such a WHILE loop can be changed by revisiting the loop in execu-
tion and answering the control question differently.

5.5 FOR-EACH loop

A FOR-EACH loop bases its loop condition on iterating across all items of a
list. In this case, a loopsize expression resolves to the answer(s) given to a
question that allows multiple answers, i.e. answers selected from a
codetable.

The size of FOR-EACH loops can only be changed by changing the size of
the control variable, i.e. the list.

Nested FOR-EACH loops present their own issues. When declaring a ques-

Cúram Intelligent Evidence Gathering(IEG)™

25

tion page in a loopsize, the for-each loop will iterate the number of times
that the original page was looped. If this page contains sub-pages, in order
to access particular instances of the sub-page a nested loop must be set up
within the parent loop. If one tries to access an instance of nested sub-page
while not operating within a loop of the parent, access will only be given to
the last iteration of the nested sub-page.

5.6 Nested loops

A nested loop is a loop within a loop; an inner loop within the body of an
outer one. In IEG, the first pass of the outer loop triggers the inner loop,
which then executes the list to completion. The second pass of the outer
loop triggers the inner loop again, and this repeats until the outer loop fin-
ishes.

Questions are registered one instance at a time - therefore, in a nested loop,
there is no way to refer to questions in different iterations of the enclosing
loop.

Cúram Intelligent Evidence Gathering(IEG)™

26

Chapter 6

Invoking an IEG Script

6.1 Introduction

When a valid script has been created using the IEG Editor, the script may be
executed. Script execution is controlled by the IEGRuntime class. The
IEGRuntime class also provides facilities to list the scripts that are avail-
able for execution, obtain the result of a script execution, and remove a
script execution when the script has completed.

6.2 Listing Available IEG Scripts

The listScripts method of the IEGRuntime class will return details
of the IEG scripts that are currently available for execution. The method re-
turns a ScriptList struct which is a list of scriptDetails structs. The
scriptDetails struct has two members. The ID of a script is held in the
scriptID member and the name of a script is held in the scriptName
member.

The following example shows how to list the details of scripts that are avail-
able for execution:

// List available scripts.

final IEGRuntime runtime = IEGRuntimeFactory.newInstance();
ScriptList scripts = runtime.listScripts();
int numberOfScripts = scripts.dtls.size();
ScriptDetails scriptDetails = null;
for (int x = 0; x < numberOfScripts; x++) {

...
scriptDetails = (ScriptDetails) scripts.dtls.get(x);
... = scriptDetails.scriptID;
... = scriptDetails.scriptName;

}

6.3 Initiating a Script Execution

27

To execute a script, the script must be identified and its execution ID ob-
tained. To initiate the script execution, the script ID is passed to the cre-
ateScript method of the IEGRuntime class. This method returns a
generated unique execution ID. The execution ID is then subsequently used
to refer to that particular instance of the script execution.

Two struct types are used with the createScript method, ScriptIdentifi-
er and ExecutionIdentifier. The script ID is assigned to the scriptID
member of a ScriptIdentifier struct to be passed to the method. The execu-
tion ID is contained in the executionIdentifier member of an Exe-
cutionIdentifier struct that is returned by the method.

The following sample server method will initiate a script execution. The
method is passed the script ID of the script that is to be executed.

// Initiate script execution.

public class ServerClass implements ...
{
public ExecutionIdentifier setupMethod (...
...
final ScriptIdentifier scriptIdentifier =
new ScriptIdentifier();
scriptIdentifier.scriptID = ... // id of the script to execute.
final IEGRuntime iegRuntime = IEGRuntimeFactory.newInstance();
ExecutionIdentifier executionIdentifier =
iegRuntime.createScript(scriptIdentifier);

6.3.1 Initializing a Script Execution From a UIM Page

Script execution is initialized from a UIM page. While the IEG Execution
Widget controls the script execution, it does not initiate it. Therefore, the
script execution is initialized on one UIM page and the execution ID is then
passed to another UIM page that contains the Execution Widget.

The following is an example of a UIM page that contains a script execution
initiation button. The ID of the script to be executed is passed to the UIM
page as a page parameter. The script ID is passed to the initialization code
and the execution ID is obtained. The execution ID can then be forwarded to
the page that contains the IEG Execution Widget.

<!-- Initial Script Execution UIM page -->

<SERVER_INTERFACE OPERATION="setupMethod"
CLASS="ServerClass"
NAME="ExecutionSetup"
PHASE="ACTION" />

<PAGE_PARAMETER NAME="scriptID" />

<CONNECT>
<SOURCE PROPERTY="scriptID" NAME="PAGE" />
<TARGET PROPERTY="scriptID" NAME="ExecutionSetup" />

</CONNECT>

<ACTION_SET>
<ACTION_CONTROL LABEL="ActionControl.Label.Execute"

IMAGE="Button.Execute"
TYPE="SUBMIT">

<LINK PAGE_ID="IEG_PlayerPage">

Cúram Intelligent Evidence Gathering(IEG)™

28

<CONNECT>
<SOURCE NAME="ExecutionSetup" PROPERTY="executionID" />
<TARGET NAME="PAGE" PROPERTY="executionID" />

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

The main parts to the above example UIM page are as follows:

• A SERVER_INTERFACE is defined to call the execution initialization
code (in this example the setupMethod method of the Server-
Class class) and return the results in a struct called ExecutionSetup.

• A PAGE_PARAMETER is passed to the page called “script”.

• Once the page is created, the page parameter containing the script ID is
passed to the setupMethod via the first CONNECT.

• An ACTION_CONTROL which is part of an ACTION_SET is defined to
provide a button used to confirm that the script is to be executed.

• When the button is pressed, the server interface method is invoked and
the execution ID is obtained and passed to the page that contains the Ex-
ecution Widget via the second CONNECT: In this example, the execution
ID is passed to the page IEG_PlayerPage in the page parameter called
executionID.

6.3.2 Passing the Execution ID to the IEG Player Widget

The IEG Execution Widget must be supplied the execution ID of the script
execution that it will assume control of.

The following is an example of a UIM page that contains the IEG Execution
Widget. The execution ID is passed to the UIM as a page parameter. The
WIDGET tags indicate a Widget of type IEG_PLAYER is being used. The
Widget accepts a single parameter, EXECUTION_ID, supplied from the
page parameter executionID via the CONNECT.

<!-- Passing execution id to IEG Player Widget -->

<PAGE_PARAMETER NAME="executionID"/>

<WIDGET TYPE="IEG_PLAYER">
<WIDGET_PARAMETER NAME="EXECUTION_ID">

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="executionID"/>

</CONNECT>
</WIDGET_PARAMETER>

</WIDGET>

Once the IEG Player has been invoked, it will assume control of the script
execution and ensure that all script criteria defined in the IEG Editor are im-
plemented. Navigational functionality allowing the user to navigate through
pages is inherent in the Widget so that no additional conditional code is re-
quired.

Cúram Intelligent Evidence Gathering(IEG)™

29

6.4 Continuing an Interrupted Script Execution

If a script execution has been interrupted due to a session timeout, browser
crash, etc., before it has completed, the questions already answered will still
be available on the database. In order to continue with the execution of an
interrupted script, the execution ID is required. As in Section 6.3.2, Passing
the Execution ID to the IEG Player Widget, the execution ID of the selected
script is passed to the UIM page that contains the Execution Widget
(IEG_PlayerPage in the previous example). Script execution will resume at
the last page that was presented to the user.

Since IEG is intended to be used in a number of different circumstances, no
assumptions can be made that script executions are associated with a partic-
ular case. It is the responsibility of the application developer to implement a
mechanism to maintain a link between the execution ID and information to
help the user identify a particular script. That association should allow the
user to identify an execution ID, to then pass into the appropriate UIM file
and restart the desired script.

6.5 Script Execution Status

The IEGRuntime class contains a method isExecutionCompleted
that will indicate if the script execution has finished. Execution is finished if
there are no further pages to be presented to the user.

The execution ID of the selected script is passed as a parameter to the
isExecutionCompleted method.

// Script execution status.

final ScriptIdentifier scriptIdentifier =
new ScriptIdentifier();

scriptIdentifier.scriptID = ... // id of the script to execute.
final IEGRuntime iegRuntime = IEGRuntimeFactory.newInstance();
ExecutionIdentifier executionIdentifier =

iegRuntime.createScript(scriptIdentifier);
...
boolean finished =

iegRuntime.isExecutionCompleted(executionIdentifier)

6.6 Script Execution and RDO Support

As a script is executing the RDOs that are declared to be accessible to the
script are loaded as their data items are encountered. For example, if a pre-
condition refers to a data item of an RDO, that RDO and all of its data items
are loaded into memory. As subsequent data items are encountered their val-
ues have already been loaded so they are just retrieved from memory. If a
user pages backwards in the script, new values for the data items will not be
loaded unless the user pages back to a point before the RDO was first refer-
enced. Therefore if the user pages backwards to a point where the RDO is

Cúram Intelligent Evidence Gathering(IEG)™

30

reloaded, new and up to date values can be obtained for the data items.

6.6.1 Passing Preinitialized RDOs to a Script

RDOs may be created, initialized and passed to a script when the script is
being created. The RDOs are passed as a list, along with the script ID to the
createScript method of the IEGRuntime class. The cre-
ateScript method that accepts a list of RDOs as a parameter is available
when an IEGRuntime object is instantiated directly rather than using the
newInstance method of the IEGRuntimeFactory class. The cre-
ateScript method returns a generated unique execution ID. The execu-
tion ID is then subsequently used to refer to that particular instance of the
script execution. Loaders are not invoked for RDOs that are preinitialized.

// Initiate script execution.
public class ServerClass implements ...
{
public ExecutionIdentifier setupMethod (...
...
// Create the preinitialized RDOs to be passed to the script.
final ArrayList rdoList = new ArrayList();
final ItemGroupGlobals globals = new ItemGroupGlobals();
... // initialize the RDO
rdoList.add(globals);
...

// Create the ID that identifies the script to be executed.
final ScriptIdentifier scriptIdentifier = new ScriptIdentifier();
scriptIdentifier.scriptID = ... // id of the script to execute.

// Create the IEG runtime object used to create
// the script execution.
final IEGRuntime iegRuntime = new IEGRuntime();

// Create the ID that identifies the script execution.
final PlayerExecutionByID playerExecutionByID =

new PlayerExecutionByID();

// Invoke the create script method passing the list
// of preinitialized RDOs.
playerExecutionByID.playerExecutionID =

iegRuntime.createScript(scriptIdentifier, rdoList).executionID;

6.6.2 Accessing Answers in Loaders

While the majority of loaders are paired with BPOs to retrieve information
from the database, loaders are simply Java classes and can implement any
functionality required and retrieve information from a range of other
sources. As script execution proceeds answers to questions are registered in
the Rules Context and as such are available to loaders. Information is then
passed back to the script execution by setting dataitems of the RDO associ-
ated with the loader.

public class MyLoader extends Loader {
...
protected void load(final RulesParameters dtls)

throws AppException,
InformationalException {

Cúram Intelligent Evidence Gathering(IEG)™

31

...
final String questionRef = "GroupID.QuestionID";
String answer = null;
// Check if answer exists.
if (dtls.getData().containsKey(questionRef)) {

final Object answerItem = dtls.getData().get(questionRef);
// Check the answer is the correct type.
if (answerItem instanceof ItemSVR_STRING) {
answer = ((ItemSVR_STRING) answerItem).getValue(dtls);

}
}

...

// Set dataitems to pass information back to IEG.
...

6.7 Pre-populating an IEG Script

It is possible to populate a script execution with answers provided in a pre-
vious script execution. This is achieved through API methods that execute a
script, supplying answers obtained from the previous execution.

Pre-population can proceed successfully in either of two scenarios:

• Pre-populating an exact replica of the previously executed script
Pre-population should complete correctly and all fields in the new exe-
cution should be populated correctly.

• Pre-populating a similar and compatible version of the previously ex-
ecuted script
The pre-population API receives an identifier or result XML string for
an execution along with a similar but still compatible script definition.
As the new script definition differs in some regards, e.g. different ques-
tionIDs and group IDs, these elements cannot be populated. All other
elements can be populated and execution will complete correctly.

The following API methods are available for this feature:

createPrepopulatedScript(executionId,
scriptDefinition);

where executionId is a long referring to the existing execution from which
the answer will be taken and scriptDefinition is the new IEGScriptDefini-
tion object to be populated.

createPrepopulatedScript(xml,
scriptDefinition);

where xml is a String containing the execution XML of the existing execu-
tion from which the answer will be taken and scriptDefinition is the new
IEGScriptDefinition object to be populated.

6.7.1 Failures in pre-population

Where possible, IEG endeavors to pre-populate the new script; however,
some changes to the script definition may result in the pre-population failing

Cúram Intelligent Evidence Gathering(IEG)™

32

to complete successfully. For example, if a new mandatory queston is added
without a default value, it is not possible for the pre-population to proceed
past the page on which the new question has been added. Another example
is the case of a post-condition added to a page; if that post-condition is not
satisfied, pre-population will stop at the page that contains the post-
condition.

Execution will fail on points of incompatibility between the scripts
(throwing the appropriate error message) until resolved by the modification
of the second script. For example, if a new page is added containing man-
datory questions without default answers, the following message will be dis-
played: 'The answers provided are not for the current page'.

The addition of pages and questions with default values is considered a
trivial change to a script and should not affect pre-population from an older
verison of the script definition. Changes that affect the flow of script execu-
tion are considered significant and can affect the ability to pre-populate. An
example of this is the introduction of loops around existing pages.

Cúram Intelligent Evidence Gathering(IEG)™

33

Chapter 7

Limiting IEG Script Modification

7.1 Introduction

The ability to limit the modification of scripts or question groups may be re-
quired by the organization. Modifications to a script or question group are
generally not allowed after a script has been executed. For example, case
workers should not be able to modify questions at runtime. An IEG de-
veloper can define validation methods in the application that will be invoked
at runtime if a modification is attempted.

7.2 Defining Validation Methods in the Application

IEG Editor actions can be limited by implementing a validation class and
setting an application property to point to that class. The validation class
used is defined by the application property,
curam.iegeditor.callback.class. This application property
should include the full class name including the Java package name. The
validation class should implement the Java interface
curam.util.ieg.impl.IEGApplicationCallBack. For more information on man-
aging properties in Cúram, see the Cúram Administration Guide.

A sample class that implements
curam.util.ieg.impl.IEGApplicationCallBack is provided below:

public class SampleValidation
implements curam.util.ieg.impl.IEGEditorPreEditCallBack {

public boolean canEditScript(String scriptID) {

if (checkIfScriptHasBeenExecuted(scriptID)) {
return false;

} else {
return true;

}
}

public boolean canEditGroup(String groupID) {

34

if (checkIfGroupIsInAnExecutedScript(groupID)) {
return false;

} else {
return true;

}
}

}

7.3 Validation Processing at Runtime

When a modification is attempted at runtime, the validation methods
defined in the application are invoked and the following processing occurs:

If the curam.iegeditor.callback.class property is set,

1. A check is performed to ascertain the existence of the class specified in
the property. If the class is missing, if it fails to instantiate, or if any
other error occurs, an AppException is thrown and the editing of the
script of question group is disallowed.

2. If the class exists and can be instantiated, a validation method is in-
voked and a boolean value is returned. If this boolean value is true,
editing is allowed. If it is false, an AppException is thrown and the
editing of the script or question group is disallowed.

If the curam.iegeditor.callback.class property is not set, valid-
ation is not performed and the modification of the script or group is allowed.

Cúram Intelligent Evidence Gathering(IEG)™

35

Chapter 8

The IEG Editing API

8.1 Introduction

This chapter provides imformation on how to use the IEG Editing API,
curam.util.ieg.impl.IEGEditingAPI. The Editing API provides
an alternative to the IEG Editor for maintaining script and question group
definitions.

8.2 Creating a Script

The IEGEditingAPI class provides the following methods for creating a
Script:

• createScript: This method accepts a ScriptDetails struct as a para-
meter and results in the creation of a script. The ScriptDetails struct con-
tains a type field that is ignored in this instance. Scripts that have been
defined without a type will be displayed when listing scripts in the ad-
ministration application. An AppException is thrown if an error occurs
when creating the script.

• createScriptWithType: This method accepts a ScriptDetails
struct as a parameter and results in the creation of a script with a desig-
nated type. Scripts that have been defined with a type will not be dis-
played when listing scripts in the administration application. An AppEx-
ception is thrown if an error occurs when creating the script.

8.3 Modifying a Script

The IEGEditingAPI class provides the following method for modifying
a Script:

• modifyQuestionScript: This method accepts a QuestionScriptDe-

36

tails struct as a parameter and results in the modification of a script. An
AppException is thrown if an error occurs when modifying the script.

8.4 Deleting a Script

The IEGEditingAPI class provides the following method for deleting a
Script:

• deleteScript: This method accepts a QuestionScriptByID struct as
a parameter and results in the deletion of a script, but not the question
groups associated. An AppException is thrown if an error occurs when
deleting the script.

8.5 Creating a Question Group

The IEGEditingAPI class provides the following methods for creating a
Question Group:

• createQuestionGroup: This method accepts a QuestionGroupDe-
tails struct as a parameter and results in the creation of a question group.
The QuestionGroupDetails struct contains a type field that is ignored
in this instance. Question groups that have been defined without a type
will be displayed when listing question groups in the administration ap-
plication. An AppException is thrown if an error occurs when creating
the question group.

• createQuestionGroupWithType: This method accepts a Ques-
tionGroupDetails struct as a parameter and results in the creation of a
question group with a designated type. Question groups that have been
defined with a type will not be displayed when listing question groups in
the administration application. An AppException is thrown if an error
occurs when creating the question group.

8.6 Deleting a Question Group

The IEGEditingAPI class provides the following method for deleting a
Question Group:

• deleteQuestionGroupByID: This method accepts a String con-
taining the groupd ID as a parameter and results in the deletion of a
question group if it is not associated with a script. An AppException is
thrown if an error occurs when deleting the question group.

8.7 Listing Scripts

The IEGEditingAPI class provides the following methods for listing

Cúram Intelligent Evidence Gathering(IEG)™

37

scripts:

• listQuestionScripts: This method accepts no parameters and re-
turns a list in the form of a QuestionScriptDetailsList containing all
scripts defined without a type.

• listQuestionScriptsByType: This method accepts a Ques-
tionDefinitionType as a parameter and returns a list in the form of a
QuestionScriptDetailsList containing all scripts defined with the spe-
cified type.

8.8 Listing Question Groups

The IEGEditingAPI class provides the following method for listing
question groups:

• listQuestionGroups: This method accepts no parameters and re-
turns a list in the form of a QuestionGroupDetailsList containing all
question groups defined without a type.

• listQuestionGroupsByType: This method accepts a Ques-
tionDefinitionType as a parameter and returns a list in the form of a
QuestionGroupDetailsList containing all question groups defined with
the specified type.

8.9 Deep-cloning a Script

The IEGEditingAPI class provides the following method for deep-
cloning a script:

• deepClone: This method accepts a DeepCloneDetails struct as a para-
meter and returns a QuestionScriptByID containing the details of the
newly created script. This will also clone the associated question groups
and subscripts. The version number provided will be appended after a $
to the question group and subscript names contained in the script. An
AppException is thrown if an error occurs when deep-cloning the script.
In particular, the following is checked to ensure no naming conflicts will
occur: if the version number already exists in the name of a question
group or subscript, it must be lower than the new number.

8.10 Listing Questions

The IEGEditingAPI class provides the following method for listing
questions:

• listQuestionsForScript: This method accepts a Question-
ScriptByID as a parameter and returns a list in the form of a Question-
DetailsList containing all questions defined in the specified script.

Cúram Intelligent Evidence Gathering(IEG)™

38

8.11 Listing Question Aliases

The IEGEditingAPI class provides the following method for listing
question aliases:

• listQuestionAliases: This method accepts a QuestionAliasesBy-
Locale as a parameter and returns a list in the form of a QuestionAli-
asDetailsList containing all aliases defined in the specified question.

Cúram Intelligent Evidence Gathering(IEG)™

39

Chapter 9

The IEG Execution Widget

9.1 Introduction

This chapter provides information on the layout of the IEG Execution Wid-
get. It also provides the IEG developer with information on how to config-
ure IEG Execution Widget properties. These properties are configured from
three separate files. The basic layout of the IEG Execution Widget is con-
figured from an XML file. Localizable properties such as panel names are
configured from a properties file. Style properties such as panel position,
color, and height are configured from a CSS file.

9.2 IEG Execution Widget Layout

The IEG Execution Widget is made up of four distinct panels. These are the
tab panel, the question script panel, the question panel, and the navigation
panel. The tab panel consists of a number of different views that display in-
formation relating to the execution of a script. The question script panel dis-
plays scripted text that has been defined for the current question. The ques-
tion panel displays the group of questions that have been defined for the cur-
rent page in a script. The navigation panel displays the controls that are used
to navigate through a script.

9.2.1 Tab Panel

The tab panel consists of the tab bar and the selected tab panel. The selected
tab panel displays the contents of the currently selected tab. There are five
configurable tab panels. These are the pages panel, the help panel, the notes
panel, the unanswered panel, and the summary panel. The following sec-
tions describe each of these panels in more detail.

Pages Panel

40

The pages panel displays a list of the pages that have been displayed during
the current script execution. The name of each page is displayed in the order
in which the pages were opened. In the case of looped pages, each individu-
al pass of the loop will be represented on the pages panel.

Help Panel

The help panel displays help text defined for the page currently open in the
question panel. The help text consists of the page name, the page help, and
the question help defined using the IEG Editor. In addition, images are used
to represent links to policy and legislation. These links can be defined for a
page or question using the IEG Editor. The image is not displayed if a link
has not been defined for a page or question.

Notes Panel

The notes panel is used to record miscellaneous information during the
script execution. A recorded note is associated with the complete script exe-
cution rather than with an individual page.

Unanswered Panel

The unanswered panel is used to list questions that have been marked by the
user as unanswered.

Summary Panel

The summary panel displays a list of the questions asked and the answers
given during the current script execution.

9.2.2 Question Script Panel

The question script panel displays scripted text that has been defined for the
current question. As the focus is moved from question to question, the ques-
tion script panel is updated to display the appropriate script.

9.2.3 Question Panel

The question panel can be broken down into three areas. These are the page
title bar, the page notes area, and the questions and answers area. The page
title bar displays the page name. The page notes area displays any notes that
are defined for the page. The questions and answers area displays the ques-
tions asked and the answers given on the page.

9.2.4 Navigation Panel

The navigation panel displays the controls that are used to navigate through
a script. The controls consist of the exit, next, and previous buttons. The exit

Cúram Intelligent Evidence Gathering(IEG)™

41

button is used to terminate the current script execution. The previous button
is used to return the user to the page that was displayed immediately before
the current page. The next button is used to submit the data entered on the
current page and to then open the next page.

9.3 XML Configuration File

A configuration file called IEGPlayer.xmldefines whether the tab-
panel element and its child elements (previous-pages-panel,
help-panel, notes-panel, unanswered-panel, summary-pan-
el) will be displayed at runtime. It also defines the finish-page ele-
ment that will be displayed when the exit button is clicked or the last ques-
tion page has been answered.

The configuration file must be saved in a component. If multiple versions of
this file exist in separate components, the version from the highest priority
component will be used.

The following is an example of a configuration file.
<!-- Example Configuration File -->

<ieg-player-config>

<finish-page page-id="IEGFinish"
execution-id-param-name="executionID"
case-id-param-name="caseID"
participant-id-param-name="participantID" />

<tab-panel visible="true">
<previous-pages-panel visible="true" />
<help-panel visible="true" />
<notes-panel visible="true" />
<unanswered-panel visible="true" />
<summary-panel visible="true" />

</tab-panel>

</ieg-player-config>

The tab-panel element and its child elements are all optional. If the
visible property on an element is set to true, the associated panel will be
displayed at execution. The visible property defaults to true on each ele-
ment. Note that if the visible property of the tab-panel element is set
to false, the entire left-hand panel is hidden and the child element properties
will have no effect.

The following table lists the properties that can be configured from the
XML file.

Property Name Description
tab-panel Defines if the tab panel is displayed.

previous-pages-panel Defines if the pages panel is dis-
played.

help-panel Defines if the help panel is dis-
played.

notes-panel Defines if the notes panel is dis-

Cúram Intelligent Evidence Gathering(IEG)™

42

Property Name Description
played.

unanswered-panel Defines if the unanswered panel is
displayed.

summary-panel Defines if the summary panel is dis-
played.

page-id The UIM page ID of the finish page.

execution-id-param-name Defines the name of the page para-
meter containing the script execution
ID. The execution ID will be passed
on to the finish page.

case-id-param-name Unique identifier of the associated
case. This defines the name of the
page parameter containing the case
ID. The case ID will be passed on to
the finish page. This property is op-
tional.

participant-id-param-name Unique identifier of the associated
participant. This defines the name of
the page parameter containing the
participant ID. The participant ID
will be passed on to the finish page.
This property is optional.

Table 9.1 XML File Properties

9.4 Properties File for Text Resources

The IEG Execution Widget contains various text properties which can be
localized. These properties are contained in a properties file which can be
found in the CuramCDEJ/
sample/JavaS-
ource/curam/omega3/i18n/IEGPlayer.properties.sample
file. This file displays comments and default values for each property.

To change the default values for a property, the above file must be copied to
the JavaSource/curam/omega3/i18n/ folder of the client project
and the .sample extension must be removed. The properties listed in the
following table can then be configured.

Property Name Description
previ-
ous.pages.button.label

The name associated with the previous
pages panel. This name is also used as
the label of the button used to display the
panel.

Cúram Intelligent Evidence Gathering(IEG)™

43

Property Name Description
previ-
ous.pages.button.alt

Alternative text for the button used to
display the previous pages panel.

help.button.label The name associated with the help panel.
This is also used as the label of the but-
ton used to display the panel.

help.button.alt Alternate text for the button used to dis-
play the help panel.

notes.button.label The name associated with the notes pan-
el. This is also used as the label of the
button used to display the panel.

notes.button.alt Alternative text for the button used to
display the notes panel.

notes.input.alt Alternative text for the text input control
used to enter notes.

un-
answered.button.label

The name associated with the un-
answered questions panel. This is also
used as the label of the button used to
display the panel.

unanswered.button.alt Alternative text for the button used to
display the unanswered questions panel.

summary.button.label The name associated with the summary
panel. This is also used as the label of the
button used to display the panel.

summary.button.alt Alternative text for the button used to
display the summary panel.

Table 9.2 Text Resource File Properties

9.5 CSS File for Style Properties

The IEG Execution Widget contains several style properties that can be con-
figured using CSS. CSS style properties control aspects such as font, height,
background color, etc.

The default style properties for the IEG Execution Widget can be accessed
in the CuramCDEJ/lib/curam/web/css/curam_ieg.css file.
These properties generally control fonts and images, but the developer can
customize the content of these properties with any currently supported CSS
feature.

The CSS file is commented to provide the IEG developer with information
on each property and on the default content of each property.

To customize the default style properties, a file with a suffix _ieg.css
must be created and placed in a component, e.g., the components/cus-

Cúram Intelligent Evidence Gathering(IEG)™

44

tom/custom_ieg.css component. More than one custom CSS file can
be created as long as they are named differently. For example, a developer
may chose to customize each panel separately using several CSS files.

Note that the CuramCDEJ/lib/curam/web/css/curam_ieg.css
file does not have to be duplicated in its entirety; only the properties that
will be changed must be added to the custom file. The properties in the new
file must have the same name as those in the original file in order to be
picked up by the build process. The content of the properties can, however,
be edited freely.

More than one property may have to be configured to control certain aspects
of the IEG Execution Widget. For example, to control the relative positions
of the tab panel and the question panel, both the .tab-panel and
.detail-panel properties must be configured.

The following table lists the properties that can be configured using the CSS
file.

CSS Property Name(s) Description
.tab-panel Used to control the tab panel style.

.tab-panel and

.detail-panel
Used to control the relative positions
of the tab panel and question panel.

div#question-script-panel Used to control the question script
panel style.

div#question-panel Used to control the question panel
style. Also used to control the ques-
tion panel's position. The question
panel can be displayed on either the
top or the bottom of the page.

div#navigation-panel Used to control the navigation panel
style. Also used to control the navig-
ation panel's position. The navigation
panel can be displayed on either the
top or the bottom of the page.

td#exit-button input Used to control whether or not the
exit button is displayed.

td#nav-buttons input Used to control whether or not the
next and previous buttons are dis-
played. Note that these two buttons
cannot be configured separately.

.page-notes Used to control the page notes style
and to define whether or not page
notes are displayed. Page notes are
always displayed immediately above
the question & answer area.

div#question-panel and
td#page-title

Used to control whether or not the
page title bar is visible or not.

Cúram Intelligent Evidence Gathering(IEG)™

45

CSS Property Name(s) Description
a.page Used to control the style of the icon

associated with a page. This is used
in any of the panels that display a
page name. It also defines whether or
not the icon is displayed.

a#previous-pages-panel-ta
b

Used to control the style of the pages
panel icon that is displayed in the tab
bar. It also defines whether or not the
icon is displayed.

a#help-panel-tab Used to control the style of the help
panel icon that is displayed in the tab
bar. It also defines whether or not the
icon is displayed.

a#notes-panel-tab Used to control the style of the notes
panel icon that is displayed in the tab
bar. It also defines whether or not the
icon is displayed.

.question-unans Used to control whether or not the
unanswered check box is displayed.

a#unanswered-questions-pa
nel-tab

Used to control the style of the un-
answered panel icon that is displayed
in the tab bar. It also defines whether
or not the icon is displayed.

a#summary-panel-tab Used to control the style of the sum-
mary panel icon that is displayed in
the tab bar. It also defines whether or
not the icon is displayed.

a.policy Used to control the style of the
policy image for a policy link on a
page or question. It also defines
whether or not the image is dis-
played.

a.legislation Used to control the style of the legis-
lation image for a legislation link on
a page or question. It also defines
whether or not the image is dis-
played.

td#page-title-help Used to control the style of the help
link Image. It also defines whether or
not the image is displayed.

Table 9.3 CSS File Properties

Cúram Intelligent Evidence Gathering(IEG)™

46

9.6 IEG Test Player

The IEG Test Player has been provided as a mechanism to conveniently test
question scripts defined in the IEG Editor without the need for any applica-
tion development. However, it is not possible to test scripts that require
preinitialized RDOs using the Test Player.

The IEG Test Player is invoked by selecting the 'Simulation' link from nav-
igation menu in the Cúram Application. The user is presented with a list of
scripts present in the database. Upon choosing one to run (and confirming
that choice), the IEG Execution Widget appears on screen and execution
commences.

When execution is finished, the user is given the choice of removing the
script execution object from the database or retaining it. Scripts will persist
in the database until they are explicitly removed. It is the responsibility of
the application developer to implement a mechanism to maintain a link
between the execution ID and information to help the user identify a partic-
ular test script execution.

Cúram Intelligent Evidence Gathering(IEG)™

47

Chapter 10

Using Gathered Evidence

10.1 Introduction

After a user has completed a script execution, the information gathered is
stored in the database as a serialized Java object. The IEG Execution API
converts this into XML so that it can be used for further processing. After
the XML is retrieved, the API is used to remove the IEG execution informa-
tion from the database. The API can then extract relevant elements from the
XML data for use in additional processing. Alternatively, the developer can
store the XML data to another file or database as required by the organiza-
tion.

It is recommended that the API be used to extract relevant elements from
the XML data rather than directly manipulating the XML. This will help re-
duce any impact from future possible changes to the XML structure.

10.2 Retrieving XML Data

The IEG Execution API converts the data stored from a script execution
from a serialized Java object to XML. The XML data can then be accessed
as a String using the getResult() method from within the IE-
GRuntime class. This method returns a
curam.util.ieg.struct.ScriptResult struct which in turn con-
tains the result String in its scriptResult member variable.

If IEG execution is interrupted, the partial results of the script (not including
the information on the interrupted page) will be returned as XML data in the
same way as for a completed script execution.

The following example shows how to retrieve the XML data gathered dur-
ing the script execution:

// retrieve the XML data gathered during the script execution

48

import curam.util.ieg.struct.ScriptResult;can be stored
import curam.util.ieg.struct.ExecutionIdentifier;
...
IEGRuntime iegRuntime;
ExecutionIdentifier executionIdentifier;
...
// Instantiate iegRuntime and populate executionIdentifier.
...
ScriptResult scriptResult = iegRuntime.getResult(executionId);
String xmlResult = scriptResult.scriptResult;

10.3 Removing Data from the Database

After the data gathered during execution has been converted to XML data, it
can be removed from the database using the removeScript() method
on the IEGRuntime class.

The following example shows how data is removed from the database:

// remove a execution data from the DB

import curam.util.ieg.struct.ExecutionIdentifier;
...
IEGRuntime iegRuntime;
ExecutionIdentifier executionIdentifier;
...
// Populate iegRuntime and executionIdentifier.
...
ScriptResult scriptResult = iegRuntime.removeScript(executionId);

10.4 Extracting XML Data

After the XML data is retrieved, it can be examined and the relevant ele-
ments (i.e., page results or question results) can be extracted using the class
curam.util.ieg.impl.IEGScriptResult. In order to create an
instance of this class, the XML data is passed from the ie-
gRuntime.getResult method to the constructor of the
curam.util.ieg.impl.IEGResultAccessor class.

The following example shows how to retrieve the XML data gathered dur-
ing the script:

// retrieve the XML data gathered during the script execution

xmlString = iegRuntime.getResult(executionId);
IEGScriptResult scriptResult =

IEGResultAccessor.getScriptResult(xmlString);

To access question page results, the getPageResult() method is called
with the question group ID associated with the page. Within the
curam.util.ieg.impl.QuestionPageResult class, any child
question pages can also be accessed by calling the getPageResult()
method.

To access question results, the getResult() method is called with the
question ID associated with the question. This returns a

Cúram Intelligent Evidence Gathering(IEG)™

49

curam.util.ieg.impl.QuestionResult object which contains
data such as the default answer (by calling the getDefaultAnswer()
method), the loop index (by calling the getLoopIndex() method), etc.

The following example shows how to access a page result object:

// get a page result object

QuestionPageResult pageResult = scriptResult.getPageResult("QP1");

// child page within page QP1
pageResult = pageResult.getPageResult("QP2");

If a child page has a loopsize of greater than 0, then the specific loopindex
must be included:

// get a page result object using the loop index

pageResult = pageResult.getPageResult("QP3", 0);

// The question result QP3_Q1 of within the question page QP2
QuestionResult result = pageResult.getResult("QP3_Q1");
assertEquals("Q4 Question", result.getDefaultAnswer());
assertEquals(1, result.getLoopIndex());

// Iterate through each of the question pages retrieving the
// question results.
for (int i = 0; i < pageResult.getLoopSize(); i++) {getLoopIndex()

result = pageResult.getResult("QP3", i);
}

10.5 Storing XML Data for Future Use

A developer can store XML data to any file or database. This XML data can
subsequently be accessed as required by the organization.

Cúram Intelligent Evidence Gathering(IEG)™

50

Chapter 11

Import and Export of IEG Definitions

11.1 Introduction

IEG script and question group definitions are stored in the database. It is
possible to import IEG definitions from the file system to the database. Con-
versely, it is also possible to export definitions from the database to the file
system in order to facilitate version control for example.

A number of the import targets rely in the script and question group defini-
tions being stored in a particluar directory. For example, when importing
from a component, definitions are imported from the ieg subdirectory of
the specified component. Similarly, the commands that deal with exporting
to a particualr component will place the script and group definitions in the
ieg subdirectory of the specified component.

The extensions of files containing the definitions are also significant for tar-
gets that import several files. Script definitions should be stored in files with
the extension '.sx' and question group definitions should be stored in
files with the extension '.gx'.

The command-line statements used for import and export functionality (see
also the Cúram Server Developer's Guide) are:

• exportiegscript

• exportiegscripttodir

• exportfulliegscript

• exportfulliegscripttodir

• exportquestiongroup

• importieg

• importiegscript

51

• importiegcomponent

• importiegsubdirs

• importquestiongroup

11.2 IEG Import Commands

IEG definitions can be imported from the file system to the database in a
number of ways. The following table lists the various import commands and
their parameters:

Command Description Parameters
importieg Imports script and ques-

tion group definitions
from a specified direct-
ory.

directory (mandatory),
overwrite

importiegscript Imports a script defini-
tion from the specified
file.

ieg.file (mandatory),
overwrite

importiegcompon-
ent

Imports script and ques-
tion group definitions
from the ieg subdirect-
ory of a specified com-
ponent.

component (mandatory),
overwrite

importiegsubdirs Imports script and ques-
tion group definitions
from the ieg subdirect-
ories of all the subdir-
ectories of a specified
directory.

directory (mandatory),
overwrite

importquestion-
group

Imports a question
group definition from
the specified file.

ieg.file (mandatory),
overwrite

Table 11.1 IEG Import Commands

Each of these targets allows an optional overwrite parameter, which de-
faults to 'false' and indicates whether any existing definitions with the same
ID as the import definitions should be overwritten.

11.3 IEG Export Commands

An IEG Script can be created in the editor and then exported to the file sys-
tem using one of the commands listed below. This allows definitions created
in the IEG editor to be placed under source control.

Cúram Intelligent Evidence Gathering(IEG)™

52

Exporting definitions causes files to be created in the target directory with
separate files for each definition. The name of the files corresponds to the
ID of the definition it contains with the extension '.sx' for scripts and
'.gx' for question groups.

Command Description Parameters
exportiegscript Exports an IEG script

definition to the file sys-
tem, given a script ID
and the component to
which the script should
be exported. Any ques-
tion group definitions
associated with the
script will not be expor-
ted.

scriptid (mandatory),
component (mandatory)

expor-
tiegscripttodir

Exports an IEG script
definition to the file sys-
tem, given a script ID
and the full path of the
directory to which the
script should be expor-
ted. Any question group
definitions associated
with the script will not
be exported.

scriptid (mandatory),
exportdirectory
(mandatory)

exportful-
liegscript

Exports an IEG script
definition and all its as-
sociated question group
definitions to the file
system, given a script
ID the and component
to which the script
should be exported.

scriptid (mandatory),
component (mandatory)

exportful-
liegscripttodir

Exports an IEG script
definition and all its as-
sociated question group
definitions to the file
system, given a script
ID the and the full path
of the directory to which
the script should be ex-
ported.

scriptid (mandatory),
exportdirectory
(mandatory)

exportquestion-
group

Exports an IEG question
group definition to the
file system.

groupid (mandatory),
component (mandatory)

Table 11.2 IEG Export Commands

Cúram Intelligent Evidence Gathering(IEG)™

53

Chapter 12

Adding IEG Administration Pages

12.1 Introduction

The version of IEG that this document covers has been superseded and has
been removed from the administration application. This version of IEG is in
maintenance mode and the new version of IEG is now the preferred techno-
logy for new development. Please refer to the Authoring Scripts
using Intelligent Evidence Gathering(IEG) Developer's
Guide for information on script design, development, and execution using
the new technology. Existing use of IEG within the application is unaffected
by this change and it is only the administration function that has been re-
moved. This chapter covers adding the administrative function of this super-
seded version of IEG back into the application.

Please see the Application Configuration chapter of the Cúram
Web Client Reference Manual for information on creating and an
explanation of Sections, Section Shortcuts and Tabs.

12.2 IEG Section

An appropriate Section should be indentified to which IEG tabs can be in-
serted by adding entries similar to the following:

<sc:tab id="SUPERSEDEDIEG"/>
<sc:tab id="IEGScript"/>

Example 12.1 Section.sec

An entry similar to the following can then be added to the Shortcuts for the
Section:

<sc:node type="group"
title="SUPERSEDED.IEG.Title"
id="SUPERSEDEDIEG ">

54

<sc:node type="leaf"
id="SUPERSEDEDListIEG"
page-id="IEG_ListQuestionScripts"
title="SUPERSEDED.ListIEG.Title">

</sc:node>
</sc:node>

Example 12.2 Shortcuts.ssp

Corresponding properties can be added to the Shortcuts properties file for
the Section:

SUPERSEDED.IEG.Title=SUPERSEDED Intelligent Evidence Gathering
SUPERSEDED.ListIEG.Title=IEG Scripts

Example 12.3 Shortcuts.properties

12.3 IEG Tabs

Two tab configurations are required to be added. One tab is used to list the
scripts and the other is used for simulating script execution. The tab config-
uration files should have corresponding properties files. The contents of the
tab configurations and properties will be similar to the following:

<tc:tab-config xmlns:tc=
"http://www.curamsoftware.com/curam/util/client/tab-config"

id="SUPERSEDEDIEG">
<tc:menu id="IEGMenu"/>
<tc:context tab-name="Details.Name.IEG"

tab-title="Details.Title.IEG"/>
<tc:navigation page-id="IEG_ListQuestionScripts"/>

</tc:tab-config>

Example 12.4 SUPERSEDEDIEG.tab

Details.Name.IEG=IEG
Details.Title.IEG=IEG

Example 12.5 SUPERSEDEDIEG.properties

<tc:tab-config xmlns:tc=
"http://www.curamsoftware.com/curam/util/client/tab-config"

id="IEGScript">
<tc:page-param name="questionScriptIDParam"/>
<tc:menu id="SimpleAdminMenu"/>
<tc:context tab-name="Details.Name.IEGScript"

tab-title="Details.Title.IEGScript"/>
<tc:navigation page-id="IEG_TreeWindow"/>

</tc:tab-config>

Example 12.6 IEGScript.tab

Details.Name.IEGScript=IEG Script

Cúram Intelligent Evidence Gathering(IEG)™

55

Details.Title.IEGScript=IEG Script

Example 12.7 IEGScript.properties

12.4 IEG Menu

The tab to list the IEG script also requires a menu to be defined so that ques-
tion groups may be created, script changes can be published and script exe-
cutions can be simulated. The menu configuration should be similar to the
following:

<mc:menu-bar xmlns:mc=
"http://www.curamsoftware.com/curam/util/client/menubar-config"

id="IEGMenu">
<mc:submenu id="NEW"

title="Submenu.Title.New"
tooltip="Submenu.Toolip.New">

<mc:menu-item id="QuestionGroup"
page-id="IEG_InsertQuestionGroup"
title="MenuItem.Title.QuestionGroup"
tooltip="MenuItem.Tooltip.QuestionGroup" />

</mc:submenu>
<mc:menu-item id="PublishScripts"

page-id="IEG_PublishChanges"
title="MenuItem.Title.PublishScripts"
tooltip="MenuItem.Tooltip.PublishScripts" />

<mc:menu-item id="SimulateScriptRun"
page-id="IEG_ListQuestionScriptsPlayerTest"
title="MenuItem.Title.SimulateScriptRun"
tooltip="MenuItem.Tooltip.SimulateScriptRun" />

</mc:menu-bar>

Example 12.8 IEGMenu.mnu

A corresponding properties file should be added for the menu containing
properties similar to the following:

Submenu.Title.New=New
Submenu.Toolip.New=New

MenuItem.Title.QuestionGroup=Question Group
MenuItem.Tooltip.QuestionGroup=Question Group

MenuItem.Title.PublishScripts=Publish Scripts
MenuItem.Tooltip.PublishScripts=Publish Scripts

MenuItem.Title.SimulateScriptRun=Simulate Script Run
MenuItem.Tooltip.SimulateScriptRun=Simulate Script Run

Example 12.9 IEGMenu.properties

12.5 Inserting Tab Configuration

Once the changes have been made to the Section, Section Shortcuts and
properties files and the Tab Menu and properties files have been created the

Cúram Intelligent Evidence Gathering(IEG)™

56

configuration should be loaded into the database by invoking the insert-
tabconfiguration command line target as described in Cúram Web
Client Reference Manual.

Cúram Intelligent Evidence Gathering(IEG)™

57

Appendix A

Operations Supported for IEG Expressions

A.1 Introduction

This appendix provides information on the operations that are supported for
IEG expressions. It also provides information on the bracketing of terms and
on operator precedence.

A.2 Bracketing of Terms

The bracketing of terms can have a significant impact on the result of a cal-
culation. The behavior is as normal for mathematical operations, but the ef-
fects of brackets can be combined with operator precedence (see below) and
may add complexity to an expression. Any operation that should be carried
out in advance of another operation should be bracketed, e.g., 5 * (3/4) =
3.75.

A.3 Operator Precedence

The precedence of operators is as defined for the Java programming lan-
guage. The operators in the following table are listed in order of precedence:

Operator Associatively Type
() left to right parentheses

* / left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equities

Table A.1 Operator Precedence

58

A.4 Data Types and Supported Operations

The operations that are explicitly supported between the data types are de-
tailed in the table below.

It is possible to perform operations between the data types not listed in the
table if the underlying data type of an attribute can be converted into one of
the types for which an operation is supported.

For example, the addition of SVR_INT8 and SVR_MONEY is possible, be-
cause SVR_INT8 is converted into SVR_DOUBLE and the addition of
SVR_DOUBLE and SVR_MONEY is supported.

It is possible to add or subtract integers from dates. Integers represent the
number of days to be added or subtracted.

The first para-
meter type

The second
parameter type

Operations
supported

Result type

SVR_STRING SVR_STRING ==, != SVR_BOOLEA
N

SVR_CHAR SVR_CHAR ==, != SVR_BOOLEA
N

SVR_MONEY SVR_MONEY ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_MONEY SVR_DOUBLE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DOUBLE SVR_MONEY ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DOUBLE SVR_DOUBLE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATE SVR_DATE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATE SVR_DATETIME ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATETIME SVR_DATETIME ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_DATETIME SVR_DATE ==, !=, <, >, <=,
>=

SVR_BOOLEA
N

SVR_MONEY SVR_MONEY +, -, /, * SVR_DOUBLE

SVR_MONEY SVR_DOUBLE +, -, /, * SVR_DOUBLE

SVR_DOUBLE SVR_MONEY +, -, /, * SVR_DOUBLE

SVR_DOUBLE SVR_DOUBLE +, -, /, * SVR_DOUBLE

SVR_FLOAT SVR_FLOAT +, -, /, * SVR_DOUBLE

SVR_INT8 SVR_INT8 +, -, /, * SVR_INT32

Cúram Intelligent Evidence Gathering(IEG)™

59

The first para-
meter type

The second
parameter type

Operations
supported

Result type

SVR_INT16 SVR_INT16 +, -, /, * SVR_INT32

SVR_INT32 SVR_INT32 +, -, /, * SVR_INT32

SVR_INT64 SVR_INT64 +, -, /, * SVR_INT64

SVR_DATE SVR_INT32 +, - SVR_DATE

Table A.2 Data Types and Supported Operations

Cúram Intelligent Evidence Gathering(IEG)™

60

Appendix B

Answer Data Types

B.1 Available Answer Data Types

The following table provides a list of answer data types currently supported
for use in IEG.

Domain Definition Answer Data Type Description
SVR_BOOLEAN Check box This type should be

used for questions re-
quiring only “yes”/“no”,
“true”/“false” as an an-
swer and corresponds to
the primitive java type
boolean.

SVR_CHAR Text entry box This type should be
used for questions re-
quiring a single charac-
ter as an answer and
corresponds to the prim-
itive java type char.

SVR_DATE Date selection box This type should be
used for questions re-
quiring a date as an an-
swer. For example, a
date of birth. This type
corresponds to java
class
curam.util.type.
Date.

SVR_DOUBLE Text entry box This type should be
used for questions re-
quiring a floating point

61

Domain Definition Answer Data Type Description
number as an answer.
For example, a housing
area. This type corres-
ponds to the primitive
java type double.

SVR_INT8 Text entry box This type should be
used for questions re-
quiring an integer an-
swer. This type corres-
ponds to the primitive
java type byte.

SVR_INT16 Text entry box This type should be
used for questions re-
quiring an integer an-
swer. This type corres-
ponds to the primitive
java type short.

SVR_INT32 Text entry box This type should be
used for questions re-
quiring an integer an-
swer. This type corres-
ponds to the primitive
java type int. This
should be used as the
default type for integers.

SVR_INT64 Text entry box This type should be
used for questions re-
quiring an integer an-
swer. This type orres-
ponds to the primitive
java type long.

SVR_MONEY Text entry box This type is a fixed
point numeric value
with two decimal places
and should be used for
questions requiring a
money amount as an an-
swer. For example, the
monthly income
amount. This type cor-
responds to java class
curam.util.type.
Money.

SVR_STRING Text entry box This type should be
used for questions re-

Cúram Intelligent Evidence Gathering(IEG)™

62

Domain Definition Answer Data Type Description
quiring text as an an-
swer. For example, a
person's name. This type
corresponds to the java
class
java.lang.String.

CODETABLE_CODE Single-select or multi-
select list or drop-down
list

This type should be
used for questions re-
quiring the user to
choose one or more an-
swers from a given list.
For example, a country
of residence.

Table B.1 IEG Answer Data Types

Note that Code Table Hierarchies are not supported in IEG.

B.2 Defining Additional Answer Data Types

Additional answer data types can be defined for use in IEG. To define addi-
tional types, a domain definition must be added to the “QuestionTypes”
code table. The domain definition can be new or can already exist within the
Cúram development environment. For information on how to specify a new
domain definition, see the Cúram Modeling Guide.

The domain definition can be added to the code table at development time
or as part of application administration. At development time, the code table
file CT_QuestionTypes.ctx can be modified to add the domain definition
(see the Cúram Server Modeling Guide). As part of application ad-
ministration, a new domain definition can be added to the list of domain
definitions stored as code table items (see the Cúram Administration
Guide).

Cúram Intelligent Evidence Gathering(IEG)™

63

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

64

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Intelligent Evidence Gathering(IEG)™

65

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-

Cúram Intelligent Evidence Gathering(IEG)™

66

marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Microsoft, Windows 7, Windows XP, Windows NT, Windows Serv-
er 2003, Windows Server 2008, Internet Explorer, Word, Excel, and
the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Oracle, Solaris, WebLogic Server, Java and all Java-based trade-
marks and logos are registered trademarks of Oracle and/or its affili-
ates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Intelligent Evidence Gathering(IEG)™

67

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Intelligent Evidence Gathering(IEG)
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Chapters in this Guide

	Chapter 2 Classic Intelligence Evidence Gathering(IEG) Overview
	2.1 Introduction
	2.2 IEG Development
	2.3 The IEG Element Structure
	2.3.1 Scripts
	2.3.2 Pages and Child Pages
	2.3.3 Preconditions
	2.3.4 Postconditions
	2.3.5 Question Groups
	2.3.6 Questions
	2.3.7 Labels
	2.3.8 Sub-scripts

	Chapter 3 Designing an IEG Script
	3.1 Introduction
	3.2 Identifying the Purpose of the IEG Script
	3.3 Identifying the Users of the IEG Script
	3.4 Identifying Previously Gathered Evidence
	3.5 Identifying Required Cúram Functionality
	3.6 Phrasing Questions Based on Required Information
	3.7 Grouping Questions
	3.8 Ordering Questions, Labels and Question Groups
	3.9 Defining Preconditions
	3.10 Defining Postconditions
	3.11 Writing an IEG Functional Specification
	3.11.1 Specifying the Basic Page Layout for IEG Execution Widget
	3.11.2 Designing Pages and Question Groups
	3.11.3 Defining Questions
	3.11.4 Defining Labels
	3.11.5 Designing the Finish Page

	3.12 Defining a Reference to a Sub-Script.
	3.13 Specifying the Use of Gathered Information

	Chapter 4 Creating an IEG Script
	4.1 Introduction
	4.2 The IEG Editor Script Tree View
	4.3 Maintaining Scripts
	4.4 Maintaining Pages
	4.4.1 Maintaining Child Pages

	4.5 Maintaining Preconditions
	4.6 Maintaining Postconditions
	4.7 Maintaining Question Groups
	4.8 Maintaining Questions
	4.9 Maintaining Labels
	4.10 Translating Script Elements Into Other Languages
	4.11 Defining Expressions and Using the Formula Helper

	Chapter 5 Looping in IEG
	5.1 Introduction
	5.2 Loopsize expressions
	5.3 FOR loop
	5.3.1 Exclusive FOR loop
	5.3.2 Inclusive FOR loop

	5.4 WHILE loop
	5.5 FOR-EACH loop
	5.6 Nested loops

	Chapter 6 Invoking an IEG Script
	6.1 Introduction
	6.2 Listing Available IEG Scripts
	6.3 Initiating a Script Execution
	6.3.1 Initializing a Script Execution From a UIM Page
	6.3.2 Passing the Execution ID to the IEG Player Widget

	6.4 Continuing an Interrupted Script Execution
	6.5 Script Execution Status
	6.6 Script Execution and RDO Support
	6.6.1 Passing Preinitialized RDOs to a Script
	6.6.2 Accessing Answers in Loaders

	6.7 Pre-populating an IEG Script
	6.7.1 Failures in pre-population

	Chapter 7 Limiting IEG Script Modification
	7.1 Introduction
	7.2 Defining Validation Methods in the Application
	7.3 Validation Processing at Runtime

	Chapter 8 The IEG Editing API
	8.1 Introduction
	8.2 Creating a Script
	8.3 Modifying a Script
	8.4 Deleting a Script
	8.5 Creating a Question Group
	8.6 Deleting a Question Group
	8.7 Listing Scripts
	8.8 Listing Question Groups
	8.9 Deep-cloning a Script
	8.10 Listing Questions
	8.11 Listing Question Aliases

	Chapter 9 The IEG Execution Widget
	9.1 Introduction
	9.2 IEG Execution Widget Layout
	9.2.1 Tab Panel
	Pages Panel
	Help Panel
	Notes Panel
	Unanswered Panel
	Summary Panel

	9.2.2 Question Script Panel
	9.2.3 Question Panel
	9.2.4 Navigation Panel

	9.3 XML Configuration File
	9.4 Properties File for Text Resources
	9.5 CSS File for Style Properties
	9.6 IEG Test Player

	Chapter 10 Using Gathered Evidence
	10.1 Introduction
	10.2 Retrieving XML Data
	10.3 Removing Data from the Database
	10.4 Extracting XML Data
	10.5 Storing XML Data for Future Use

	Chapter 11 Import and Export of IEG Definitions
	11.1 Introduction
	11.2 IEG Import Commands
	11.3 IEG Export Commands

	Chapter 12 Adding IEG Administration Pages
	12.1 Introduction
	12.2 IEG Section
	12.3 IEG Tabs
	12.4 IEG Menu
	12.5 Inserting Tab Configuration

	Appendix A Operations Supported for IEG Expressions
	A.1 Introduction
	A.2 Bracketing of Terms
	A.3 Operator Precedence
	A.4 Data Types and Supported Operations

	Appendix B Answer Data Types
	B.1 Available Answer Data Types
	B.2 Defining Additional Answer Data Types

	Notices
	Trademarks

