
IBM Cúram Social Program Management

Cúram Citizen Context Viewer Developer
Guide
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Citizen Context Viewer Developer
Guide
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 15

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Purpose 1
1.2 Audience 1
1.3 Prerequisites 1
1.4 Chapters in this Guide 1

Chapter 2. Adding Links to Launch the
Citizen Context Viewer 3
2.1 Introduction 3
2.2 Example 3

Chapter 3. Customizing the Citizen
Context Viewer. 5
3.1 Introduction 5
3.2 Injection Points in the CCV 5

3.2.1 ContextNodeRootEvent 5
3.2.2 ContextCaseHandlerEvent 5

3.3 Writing a Loader 5
3.3.1 Example 5

3.4 Writing a Case Handler 7

3.4.1 Example 7

Chapter 4. Adding Node Types and
Right-click Menu Options 9
4.1 Introduction 9
4.2 Adding Node Types. 9

4.2.1 Example 9
4.3 Adding Right-click Menu Options 9

4.3.1 Setting Attributes for Context Menu 9
4.3.2 Example. 10

Chapter 5. Localizing Citizen Context
Viewer Data. 11
5.1 Introduction 11

Appendix. Compliancy 13
A.1 Introduction 13
A.2 Public API 13
A.3 Identifying the API 13
A.4 Outside the API 13

Notices 15
Trademarks 17

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Figures

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Tables

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Chapter 1. Introduction

1.1 Purpose
The purpose of this guide is to provide instructions on how to customize the Citizen Context Viewer
(CCV). It includes information on adding links to launch the CCV, on adding new elements to the CCV,
and on localizing the CCV.

1.2 Audience
This guide is intended for developers responsible for integrating the CCV into specific components.
Business analysts may find the guide useful in understanding the aspects of the CCV that can be
customized to meet business requirements.

1.3 Prerequisites
There are two additional guides on the CCV: the Cúram Citizen Context Viewer Guide and the Cúram
Citizen Context Viewer Configuration guide.

1.4 Chapters in this Guide
The following list describes the chapters within this guide:

Adding Links to Launch the Citizen Context Viewer
This chapter describes how to add links to custom uim pages that can launch the CCV.

Customizing the Citizen Context Viewer
This chapter describes the injection points for customizing the CCV and provides instructions on
writing loaders and case handlers.

Adding Node Types and Right-click Menu Options
This chapter describes how a node type is defined for each element in the CCV tree and how to
add right-click menu options for the CCV elements.

Localizing Citizen Context Viewer Data
This chapter provides information on localizing the data that appears as text in the CCV.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Chapter 2. Adding Links to Launch the Citizen Context Viewer

2.1 Introduction
It may be necessary to launch the CCV from customized pages. This can be achieved by creating links in
the customized uims which reference the CCV javascript.

2.2 Example
The following code snippet outines the link that specifies the CCV to be opened. The SOURCE should
contain the field that holds the concern role ID for the person to be displayed in the CCV.

The TARGET should be as specified below:

<SCRIPT EVENT="ONCLICK"
ACTION="openContextViewer(this,event)"

SCRIPT_FILE="ContextViewerPopup.js"/>

<LINK URI="../flex/Citizen_resolveCitizenViewer.jsp">

<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="concernRoleID"/>

<TARGET NAME="PAGE" PROPERTY="concernRoleID"/>

</CONNECT>

</LINK>

© Copyright IBM Corp. 2012, 2013 3

4 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Chapter 3. Customizing the Citizen Context Viewer

3.1 Introduction
This chapter provides instructions on customizing the Citizen Context Viewer (CCV). The CCV interfaces
define default implementations that can be replaced by injecting a custom implementation for that
interface.

3.2 Injection Points in the CCV
Customization of the Citizen Context Viewer is facilitated via events and listeners. The following sections
describe the areas where listeners might be implemented to carry out certain customizations of the CCV.

3.2.1 ContextNodeRootEvent
A listener to the ContextNodeRootEvent can add an implementation of the ContextCategory interface that
will be used to populate the data displayed in the CCV. A implementation of the ContextCategory
interface will allow loaders to be defined to show information in the CCV.

3.2.2 ContextCaseHandlerEvent
Cases that are displayed in the CCV can be created by a number of different components. Retrieval of
information for these cases may therefore need variations depending on the type of case being read. The
IContextCaseHandler interface describes case handlers for specific case types. These case handlers will
know the specific retrieval methods for getting information such as the case name. A default case handler
exists that will get the case name from the case header table.

If the case type is not known by the OOTB CCV, then the default case handler will be used to read
information for that case. If the default details for the case shown in the CCV are not specific enough
then a customized case handler can be written. This case handler must implement the
IContextCaseHandler interface and can be added by listening for the ContextCaseHandlerEvent
setContextCaseHandlers method.

3.3 Writing a Loader
As previously mentioned, a loader class provides information that can be displayed in the CCV. Typically,
a loader is written for each leaf node of the root node in the CCV. For example, there are specific loaders
for each of the leaf node categories including, Care And Protection, Communities, Family, and Dealings.
These loaders gather all of the data for these categories. All loader classes must extend the ContextNode
abstract class. A listener of ContextNodeRootEvent can be implemented to add new loaders to the
existing set of CCV loaders via the method setChildNodesForContextType(Map<CONTEXT_TYPEEntry,
ContextCategory> contextCategory)

3.3.1 Example
This loader example shows how a loader might be defined that reads Core interactions and sets up the
data to be displayed in the CCV. Comments are denoted by /** **/.

© Copyright IBM Corp. 2012, 2013 5

class ContextInteractionLoader extends ContextNode {
/** The load method must be implemented by all loader classes. This
is what is called when the CCV is opened. **/ public ContextNode
load(Context_ID contextID) throws AppException,
InformationalException { /**Set up and read the list of interactions
from core for the context id, the context id in this instance is the
concern role id for the citizen being displayed **/
ClientInteraction clientInteractionObj =
ClientInteractionFactory.newInstance(); ClientInteractionKey
clientInteractionKey = new ClientInteractionKey();
ClientInteractionDtls clientInteractionDtls; ListInteractionKey
listInteractionKey = new ListInteractionKey();
listInteractionKey.concernRoleID = contextID.context_id;
InteractionDetailsList interactionDetailsList =
clientInteractionObj.list(listInteractionKey); /** If sensitivity
settings do not allow this citizen to be shown then indicate that no
interactions can be displayed **/ if
(!ContextUtil.checkUserAuthorizationForParticipant(
contextID.context_id)) { setLabelAllNotShown(
ContextUtil.getTextForLocale(BPOCONTEXTINTERACTION.ROOT),
interactionDetailsList.dtls.size()); return this; } /** Calling the
setLabelIncludingChildren will display the Interaction label as
defined in the interaction message file and the number of
interactions **/ setLabelIncludingChildren(
ContextUtil.getTextForLocale(BPOCONTEXTINTERACTION.ROOT),
interactionDetailsList.dtls.size()); /** Set the node type. Node
types define certain characteristics, including the menu that will
appear on right click **/ /** See Chapters 3 & 4 for more
information on Node Types and Menus **/
setNodeType(CONTEXTNODETYPE.DEFAULTNODE); /** Set the context ID. If
a context ID is set then this will be used when carrying out a
specific action. **/ /** Such as opening an new page from a menu
item click **/ setContextID(0); if
(interactionDetailsList.dtls.size() == 0) {
setLabelIncludingChildren(
ContextUtil.getTextForLocale(BPOCONTEXTINTERACTION.ROOT),
interactionDetailsList.dtls.size()); /** if there are no
interactions then add an empty child **/ addDefaultChild(new
ContextLabelLoader(), ContextUtil.getLocalisableStringForLocale((
BPOCONTEXT.EMPTY)) .arg(ContextUtil.getTextForLocale(
BPOCONTEXTINTERACTION.ROOT)).getMessage()); return this; } else {
Iterator interactionsIter = interactionDetailsList.dtls.iterator();
InteractionDetails interactionDetails = new InteractionDetails();
while (interactionsIter.hasNext()) { interactionDetails =
(InteractionDetails) interactionsIter.next();
ContextInteractionLoader contextInteractionChild = new
ContextInteractionLoader(); contextInteractionChild.setLabel(
curam.util.type.CodeTable.getOneItem(INTERACTIONTYPE.TABLENAME,
interactionDetails.interactionTypeCode));
clientInteractionKey.clientInteractionID =
interactionDetails.clientInteractionID; clientInteractionDtls =
clientInteractionObj.read(clientInteractionKey); if
(clientInteractionDtls.relatedType.equals(
curam.codetable.RELATEDINTERACTIONTYPE.COMMUNICATION)) { /** This is
a communication interaction so set the corresponding node type and
menu **/ /** See Chapters 3 & 4 for more information on node
types and menus **/ contextInteractionChild.setNodeType(
CONTEXTNODETYPE.COMM_INTERACTION_NODE); /** Set the context id for
this child node to be the interaction relatedID. This will be used
when opening any interaction pages from a CCV interaction menu **/
contextInteractionChild.setContextID(
clientInteractionDtls.relatedID); } else if
(clientInteractionDtls.relatedType.equals(
curam.codetable.RELATEDINTERACTIONTYPE.PAYMENT)) { /** This is a
payment interaction so set the corresponding node type and menu **/
/** See Chapters 3 & 4 for more information on node types and
menus **/ contextInteractionChild.setNodeType(
CONTEXTNODETYPE.PAY_INTERACTION_NODE); /** Set the context id for
this child node to be the interaction relatedID. This will be used
when opening any interaction pages from a CCV interaction menu **/
contextInteractionChild.setContextID(
clientInteractionDtls.relatedID); } else {
contextInteractionChild.setNodeType(CONTEXTNODETYPE.DEFAULTNODE);

6 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

3.4 Writing a Case Handler
A case handler can be used to get the name of a case where the retrieval of the case details is not covered
by the CCV default case handler. The case handler can also be used to check property settings defined for
a given case type. All case handlers must extend the abstract ContextCaseHandler class.

3.4.1 Example
This example outlines how a case handler might be defined for Integrated cases. Comments are denoted
by /** **/.

class IntegratedCaseHandler extends
ContextCaseHandler { @Inject private Provider<ContextCore>
contextCoreProvider; public String getCaseName(long caseID) throws
AppException, InformationalException { return
CodeTable.getOneItem(PRODUCTCATEGORY.TABLENAME,
this.readType(caseID)); } protected String getShowAllStatuses() {
/** check to see if CCV is configured to display all IC case
statuses **/ return ISEConfigurationUtility.getProperty(
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_STATUSES,
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_STATUSES_DEFAULT); } protected
String getShowAllTypes() { /** check to see if CCV is configured to
display all integrated case types **/ return
ISEConfigurationUtility.getProperty(
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_TYPES,
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_TYPES_DEFAULT); } protected
ArrayList<String> listAcceptableCaseStatuses() { return
ISEConfigurationUtility.getListPropertyValues(
EnvVars.ENV_CCV_IC_CASE_STATUSES_TO_DISPLAY,
EnvVars.ENV_CCV_IC_CASE_STATUSES_TO_DISPLAY_DEFAULT); } protected
ArrayList<String> listAcceptableTypes() { return
ISEConfigurationUtility.getListPropertyValues(
EnvVars.ENV_CCV_IC_CASE_TYPES_TO_DISPLAY,
EnvVars.ENV_CCV_IC_CASE_TYPES_TO_DISPLAY_DEFAULT); } protected
String readType(long caseID) throws AppException,
InformationalException { /** read the case type, how this is done
can be specific to the case type **/ ContextCore contextCore =
contextCoreProvider.get(); CaseHeaderDtls caseHeaderDtls =
contextCore.readCaseHeaderByCaseID(caseID); return
caseHeaderDtls.integratedCaseType; } public String
getShowAllCaseParticipantRoles() { return
ISEConfigurationUtility.getProperty(
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_CPROLES,
EnvVars.ENV_CCV_CASE_SHOW_ALL_IC_CPROLES_DEFAULT); } protected
ArrayList<String> listAcceptableCaseParticipantRoles() {
return ISEConfigurationUtility.getListPropertyValues(
EnvVars.ENV_CCV_IC_CPROLE_TYPES_TO_DISPLAY,
EnvVars.ENV_CCV_IC_CPROLE_TYPES_TO_DISPLAY_DEFAULT); }
}

Chapter 3. Customizing the Citizen Context Viewer 7

8 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Chapter 4. Adding Node Types and Right-click Menu Options

4.1 Introduction
This chapter provides instructions on adding node types to the Citizen Context Viewer tree and on
adding right-click menu options for menu items in each node.

4.2 Adding Node Types
When a loader retrieves data to be displayed by the context viewer, each element in the context viewer
tree will be assigned a node type. The node type describes the following about the element to which it is
assigned.

CONTEXTNODETYPE
This attribute holds the ID for the node type. The ID maps to a code table value in the
ContextNodeType code table to allow the node type to be referenced in code via its java
identifier.

Loadable
This boolean flag allows the context viewer to decide whether expanding an element results in a
server call to retrieve additional context data.

menuID
This is the ID for the menu to which this node type links.

isBranch
This boolean flag allows the context viewer to decide whether the node has children. A node can
have children as a result of a read from the CCV, or as a result of a user click (which results in a
read from the CCV to get the children). If loadable and isBranch are both true then the element
will indicate that children are available, but the children will not be read until the user clicks the
element.

4.2.1 Example
Example of a context node type:

4.3 Adding Right-click Menu Options
It is possible to add menu items that will appear upon right click of an element in the context viewer.
This is done via the contextmenu dmx files loaded as initial data.

4.3.1 Setting Attributes for Context Menu
The following attributes can be set for a context menu:

<?xml version="1.0" encoding="UTF-8"?>

<CONTEXTNODETYPE id="CNDT101">

<loadable value="true"/>

<menuID value="CNMU101"/>

<isBranch value="true"/>

</CONTEXTNODETYPE>

© Copyright IBM Corp. 2012, 2013 9

CONTEXTMENU
This attribute holds the ID for the menu. This ID is referenced from a node type definition.

MENUITEM
There can be none, one, or many menu items and they map to one of the right-click options
displayed in the context viewer.

MENUITEMLINK
This attribute defines the page or url that will be opened when the right click option is selected.

Menu item links can contain the following:

PAGEPARAM
This defines the page parameter required by the page being opened.

PAGECONFIG
This specifies the javascript window.open options when opening the page on right-click of the
menu item.

4.3.2 Example
Example of a context menu:

<?xml version="1.0" encoding="UTF-8"?>

<CONTEXTMENU id="CNMU103">

<MENUITEM value="View Contact Details">

<MENUITEMLINK
value="MultidisciplinaryTeamMember_viewModalPage.do">

<PAGEPARAM value="multidisciplinaryTeamMemberID"/>

<PAGECONFIG
value="height=450,width=800,top=100,

left=100,resizable=yes"/>

</MENUITEMLINK>

</MENUITEM>

</CONTEXTMENU>

10 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Chapter 5. Localizing Citizen Context Viewer Data

5.1 Introduction
Any data that is displayed by the context viewer that is not read directly from application database tables
is read via data loaded from message files. For example, the text that is displayed when case security is
set, and a case cannot be viewed in the context viewer, comes from the Context message file. Since the
content of the xml tree displayed by the context viewer is built on the server, the localization substitution
must also be performed on the server. 3.3, “Writing a Loader,” on page 5 includes sample code where
messages are read in localized form.

© Copyright IBM Corp. 2012, 2013 11

12 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Appendix. Compliancy

A.1 Introduction
This appendix explains how to develop in a compliant manner. By following these considerations,
customers will also find it easier to upgrade to future versions of Cúram.

A.2 Public API
The Citizen Context Viewer has a public API which you may use in your application code. This public
API will not have any components changed or removed without following Cúram standards for handling
customer impact.

A.3 Identifying the API
The JavaDoc shipped is the sole means of identifying which public classes, interfaces and methods form
the public API.

A.4 Outside the API
The Citizen Context Viewer also contains some public classes, interfaces and methods, which do not form
part of the API.

Important: To be compliant, dependencies on any class or interface should not be made. No methods
should be called other than those described in the JavaDoc.

Classes, interfaces and methods outside of the public API are subject to change or removal without
notice. Unless otherwise stated in the JavaDoc, you must not place any of your own classes or interfaces
in the same package as that of the Citizen Context Viewer.

© Copyright IBM Corp. 2012, 2013 13

14 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 15

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

16 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 17

http://www.ibm.com/legal/us/en/copytrade.shtml

18 IBM Cúram Social Program Management: Cúram Citizen Context Viewer Developer Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2. Adding Links to Launch the Citizen Context Viewer
	2.1 Introduction
	2.2 Example

	Chapter 3. Customizing the Citizen Context Viewer
	3.1 Introduction
	3.2 Injection Points in the CCV
	3.2.1 ContextNodeRootEvent
	3.2.2 ContextCaseHandlerEvent

	3.3 Writing a Loader
	3.3.1 Example

	3.4 Writing a Case Handler
	3.4.1 Example

	Chapter 4. Adding Node Types and Right-click Menu Options
	4.1 Introduction
	4.2 Adding Node Types
	4.2.1 Example

	4.3 Adding Right-click Menu Options
	4.3.1 Setting Attributes for Context Menu
	4.3.2 Example

	Chapter 5. Localizing Citizen Context Viewer Data
	5.1 Introduction

	Appendix. Compliancy
	A.1 Introduction
	A.2 Public API
	A.3 Identifying the API
	A.4 Outside the API

	Notices
	Trademarks

