
IBM Cúram Social Program Management

Cúram Cache
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Cache
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 13

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Purpose 1
1.2 Audience 1

Chapter 2. Cúram Cache 3
2.1 What is Cúram Cache 3
2.2 Configuration 3
2.3 Statistics 4
2.4 Shutting Down Cúram Cache 4

Chapter 3. Global Caches 5
3.1 Introduction 5
3.2 Global Cache Provider 5
3.3 Default Global Cache Group 5
3.4 Global Caches. 5
3.5 Usage Recommendations 6

3.6 Configuration 6
3.7 Using Global Caches in a Transactional Context . 6
3.8 Code Samples 6
3.9 Cache Loader 7
3.10 Cache Client 7
3.11 Cache Invalidation 7

Chapter 4. Thread Local Caches 9
4.1 Overview 9
4.2 Configuration 9
4.3 Code Samples 9

Chapter 5. Transaction Local Caches 11
5.1 Overview 11
5.2 Configuration 11
5.3 Code Samples 11

Notices 13
Programming Interface Information 15
Trademarks 15

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram Cache

Figures

1. Configuring a cache 4
2. Configuring all caches in a group 4
3. Disabling a cache for a batch process 4
4. Configuring a global cache 6
5. Using CacheLoaderAdapter to implement a

cache loader. 7
6. Registering a cache loader and using the cache 7

7. Invalidating a cache entry in server code . . . 8
8. Configuring a thread local cache with name

curam.myproject.mycache 9
9. Setting up and using a thread local cache 9

10. Configuring a transaction local cache with
name c uram.myproject.mycache 11

11. Setting up and using a transaction local cache 11

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Cache

Tables

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Cache

Chapter 1. Introduction

1.1 Purpose
The aim of this document is to introduce Cúram Cache, a generic caching service designed to satisfy the
requirement for short and long lived caches in the application.

1.2 Audience
This guide is intended for architects and developers interested in using Cúram Cache to satisfy their
caching requirements.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Cúram Cache

Chapter 2. Cúram Cache

2.1 What is Cúram Cache
Cúram Cache is a generic caching service that is designed to satisfy the requirement for short and long
lived caches in the application. The service is available in both the client and server containers of an
application server environment (online application) as well as in a standard standalone Java™ process
(batch programs).

Cúram Cache allows the creation of three types of caches:
v Global - these are global (at JVM level) caches.
v Thread local - these are caches that live as long as the thread that owns them.
v Transaction local - these are caches that exist for the duration of the current transaction.

The last two type of caches are collectively referred to in this document as multi-instance caches because
at any given moment there could be more than one instance of a cache with a given name (one for each
active transaction or thread).

2.2 Configuration
The configuration of all types of caches in Cúram Cache is entirely declarative and it is based on the
configuration mechanism provided by the application. Cache configuration parameters must be added to
the APP_CACHE property section.

In the current implementation, global caches support both size and time based eviction policies while the
multi-instance caches have support only for time based eviction policy.

The following cache configuration parameters can be adjusted:
v Size – the maximum number of elements in memory. The default value is 200. The type is INT32.
v Eviction policy – the policy used for evicting items from memory when the maximum number of

elements in memory is reached. The default value is LRU . The type is STRING . Valid values are:
– LRU – least recently used
– LFU – least frequently used
– FIFO – first in first out

v Time to live - the number of seconds an item is allowed to live in a cache. When this is set to a
non-zero positive value, any items that have been in the cache for longer than the value of this
parameter, in seconds, are discarded.

v Time to idle - the number of seconds an item in the cache is allowed to be unused before being
discarded. When this is set to a non-zero positive value, any items that have been unused for more
than the value of this parameter, in seconds, are discarded.

All cache configuration properties must conform to this notation:

curam.cache.<cache_group_name>.<cache_name>.<parameter>

where:
v <cache_group_name> - is the name of the cache group the cache belongs to.
v <cache_name> - is the name of the cache. This could also be "*" and then, the configuration parameter is

applied to all caches in this cache group.
v <parameter> - can be size , evictionPolicy, timeToIdle or timeToLive.

© Copyright IBM Corp. 2012, 2013 3

In the example below, the global cache curam.myproject.mycache in the default global cache group
curam-group is configured with a size of 1000 items and an eviction policy of Least Recently Used.

In this second example, the transaction local cache curam.myproject.mycache in the transaction local cache
group transaction-group is configured with a time to idle of 10 seconds while all other transaction local
caches are configured with a value of 5 seconds.

Cache configuration data stored in the application configuration repository can be overridden by passing
the relevant values as JVM system properties. This might be of interest for batch processes where the
application profile might be different than the online application.

The example below shows how to disable the global cache curam.myproject.mycache in the default global
cache group for a batch process.

2.3 Statistics
All caches in Cúram Cache are instrumented for statistics and these are integrated with the Cúram JMX
infrastructure. The following minimum set of statistics are exposed by each type of cache via the
CuramCacheStats MBean:
v Cache group - the name of the cache group
v Cache – the name of the cache
v Layer – the name of the cache layer (memory, disk,...)
v Size – the number of items in the cache
v Hits - the number of requests to the cache that returned an item already loaded in the cache
v Misses - the number of requests to the cache that returned an item which had to be loaded in the cache
v Evictions - the number of times items that have been evicted from the cache
v Average get time(ns) - the average elapsed time, in nanoseconds, that takes for an item to be read from

the cache. Note that some cache providers might only support millisecond resolution.

Multi-instance caches offer snapshot and aggregated statistics. Snapshot statistics are for all instances
alive at the moment of the query and aggregated statistics are calculated from all instances that have
been created.

2.4 Shutting Down Cúram Cache
Cúram Cache requires orderly shutdown on JVM exit . Cúram Cache installs automatically a JVM shut
down hook to clear the cache as the last resort solution but it is recommended, where possible, the use of
the explicit shutdown by invoking CacheManager.shutdown() when the application is shutdown.

curam.cache.curam-group.curam.myproject.mycache.size=1000
curam.cache.curam-group.curam.myproject.mycache.evictionPolicy=LRU

Figure 1. Configuring a cache

curam.cache.transaction-group.curam.myproject.mycache
.timeToIdle=10

curam.cache.transaction-group.*.timeToIdle=5

Figure 2. Configuring all caches in a group

ant -f app_batchlauncher.xml
-Dcuram.cache.curam-group.curam.myproject.mycache.size=0
-Dbatch.userna...

Figure 3. Disabling a cache for a batch process

4 IBM Cúram Social Program Management: Cúram Cache

Chapter 3. Global Caches

3.1 Introduction
Global caches are caches that exist in the scope of the JVM process or beyond. In the current version of
Cúram Cache, global caches exist only in the scope of the JVM process. An entry stored in a global cache
lives across transaction boundaries until it is removed explicitly, by the developer, or implicitly, as a result
of the eviction policy associated with the cache.

It is important to note that because global caches are long lived, their data is prone to short periods of
inconsistency when cached objects are updated. When an update is made in the application that affects a
cached object, the associated cache entry is invalidated asynchronously. The caching infrastructure
guarantees that the cache entry is, eventually, invalidated but it cannot guarantee a certain maximum
time frame. Understanding this behavior is very important when deciding if certain application data can
be cached in a global cache.

3.2 Global Cache Provider
Cúram Cache implements large parts of the global caching infrastructure using third party caching
solutions which are referred to in this document as caching providers. The default provider is Ehcache,
an open source, high performance, distributed caching infrastructure.

3.3 Default Global Cache Group
Global caches are grouped together based on common configuration requirements such as replication and
disk storage. All caches in the application should be created in the default cache group. The name of the
default cache group is curam-group.

In the current implementation, the default cache group is not self-replicating and does not support disk
overflow and disk persistence. Because self-replication is disabled, the cache operations are only visible to
the JVM where the global cache is located. However to keep all caches in the default cache group
consistent throughout the application server cluster, an explicit cache invalidation mechanism is provided.
The cache invalidation can only be triggered from the server code but it invalidates caches in both the
server and the client containers across all JVMs in the application server cluster.

3.4 Global Caches
Global caches are created with a call to the get() method of the cache group. If a cache does not exist
already, a cache is created and configuration data, if this exists, is applied to it before being returned.
Global caches are usually populated using cache loaders registered by cache clients. This approach
isolates the cache client from the management of concurrent access to the cache while the cache is
loading.

Cúram Cache does not enforce the use of serializable objects in its API, however certain features offered
by the caching infrastructure are only available if the key or the cached object are serializable. For this
reason, it is recommended that, whenever possible, serializable keys and values should be used in Cúram
Cache.

Usage of non-serializable keys: Cache entries that have non-serializable keys are only invalidated on the
local JVM and not throughout the application server cluster.

© Copyright IBM Corp. 2012, 2013 5

3.5 Usage Recommendations
The following is a list of recommendations on how a global cache should be used:
v Only cache immutable objects.
v Use serializable keys and values whenever possible. At the very least the keys should be serializable.
v Use a cache loader to populate the cache. This allows the cache to take advantage of the fine grain

concurrency optimizations built into the cache provider and it does not require the user to be
concerned with managing concurrent access to the cache.

v The loading of a cache without a loader (using get() and put() calls) must be avoided for two main
reasons:
– Concurrency management - In this case the user is responsible for managing concurrent access to

the cache while the cache is loading. The user has two choices:
- Control concurrent access to the get() and put() block of code – this approach is not

recommended in a performance sensitive part of the application but it offers the guarantee that on
object is only loaded once.

- Allow concurrent access to the get() and put() block of code – this approach supports higher
concurrency but an object might be loaded more than once by different threads.

– Efficient data management - without a cache loader, the cache must be pre-populated with all data.
With a cache loader, only required data is pulled into the cache.

v Use cache names that are prefixed with a package name unique to your project. For instance
curam.cpm.myCache would be a suitable name for a cache in the Curam Provider Management™ project.

3.6 Configuration
All global caches inherit the following default values for the configuration parameters.
v size - 200
v evictionPolicy - LRU
v timeToLive - 0 (not active)
v timeToIdle - 0 (not active)

These values can be overridden for any global cache. In the examples below curam-group is the name of
the default cache group and curam.myproject.mycache is the name of the cache.

3.7 Using Global Caches in a Transactional Context
When a global cache is used in a transactional context, care must be taken to ensure that the cache
maintains its consistency in case the current transaction is rolled back.

Cache invalidation in a transactional context: When modifying data that affects the content of a cache
do not remove or update the cached element directly; instead invoke the
CacheManagerEjb.postInvalidationMessage() method to post an invalidation message that will trigger
the cache invalidation.

3.8 Code Samples
This section contains code samples that show how to write a cache loader, how to use the cache and how
to invalidate a cache entry.

curam.cache.curam-group.curam.myproject.mycache.size=1000
curam.cache.curam-group.curam.myproject.mycache.evictionPolicy=LRU
curam.cache.curam-group.curam.myproject.mycache.timeToLive=3600
curam.cache.curam-group.curam.myproject.mycache.timeToIdle=300

Figure 4. Configuring a global cache

6 IBM Cúram Social Program Management: Cúram Cache

3.9 Cache Loader
In the example below, the CacheLoaderAdapter class is used to help in the implementation of
MyCacheLoader.

3.10 Cache Client
The example below shows the usual way of registering a cache loader and using the cache.

3.11 Cache Invalidation
The example below shows how to invalidate a cache entry in code running in a transactional context
(server code). As explained in 3.3, “Default Global Cache Group,” on page 5, cache invalidation for global
caches in the default cache group can only be triggered by server code.

...
public class MyCacheLoader extends

CacheLoaderAdapter<Integer, ReadWorkQueueDetails> {
/* (non-Javadoc)
* @see curam.util.cache.CacheLoader#load(java.lang.Object)
*/
public ReadWorkQueueDetails load(Integer workQueueID)

throws AppException, InformationalException {
WorkAllocation wa = (WorkAllocation)WorkAllocationFactory

.newInstance();
ReadWorkQueueKey key = new ReadWorkQueueKey();
key.key = new ReadWorkQueueKey();
key.key.key = new WorkQueueKey();
key.key.key.workQueueID = workQueueID;
ReadWorkQueueDetails item = wa.readWorkQueue(key);
if(item != null) {

return item.dtls;
}
return null;

}
}
...

Figure 5. Using CacheLoaderAdapter to implement a cache loader

...
public class MyCacheClient {

// keep a static reference to mycache
private static Cache<Integer,

ReadWorkQueueDetails> myCache;

static {
// retrieve a reference to mycache and register
// the cache loader
myCache = CacheManager.getDefaultCacheGroup()

.getCache("mycache");
myCache.registerCacheLoader(new MyCacheLoader());

}

public WorkAllocation() {
...

}
...

// use the cache
ReadWorkQueueDetails wq = myCache.get(1);

...

Figure 6. Registering a cache loader and using the cache

Chapter 3. Global Caches 7

...
CacheManagerEjb.postInvalidationMessage(

new CacheInvalidationMessage<Key>("mycache", 1));
...

Figure 7. Invalidating a cache entry in server code

8 IBM Cúram Social Program Management: Cúram Cache

Chapter 4. Thread Local Caches

4.1 Overview
These are caches that are closely tied to the thread used to create them. No other thread can access data
in these caches and caches are only destroyed when the thread that created them is terminated. Thread
local caches are very specialized. They must only be used for small caches where the overhead of
multi-threaded access control that exists for global cache cannot be tolerated.

4.2 Configuration
Thread local caches support only a time based eviction policy. The only two configuration parameters
that can be used and their default values are:
v timeToLive - 0 (not active)
v timeToIdle -0 (not active)

The name of the group for thread local caches is thread-group . This name must be used to configure
thread local cache as shown in the example below.

4.3 Code Samples
Thread local caches should only by accessed where the correct context (thread) exists. For instance, it is
not recommended to set up a thread local cache in static block of code as that thread might not be the
same as the thread using the cache later.

curam.cache.thread-group.curam.myproject.mycache.timeToLive=60
curam.cache.thread-group.curam.myproject.mycache.timeToIdle=10

Figure 8. Configuring a thread local cache with name curam.myproject.mycache

public void myMethod() {
...
Cache<String, String> threadCache = CacheManager.

getThreadLocalCacheGroup().getCache("mycache");
String value = threadCache.get("key");
if(value == null) {

// perform expensive operation to calculate value - this
// processing only happens once for each thread
...
// and store the result
threadCache.put("key", "value");

}
...

}

Figure 9. Setting up and using a thread local cache

© Copyright IBM Corp. 2012, 2013 9

10 IBM Cúram Social Program Management: Cúram Cache

Chapter 5. Transaction Local Caches

5.1 Overview
A transaction local cache is a cache that lives only for the duration of the current transaction. This type of
cache is only available in the server application.

5.2 Configuration
Transaction local caches support only a time based eviction policy. The only two configuration parameters
that can be used and their default values are:
v timeToLive - 0 (not active)
v timeToIdle -5

The name of the group for transaction local caches is transaction-group . This name must be used to
configure transaction local caches as shown in the example below.

5.3 Code Samples
Like thread local caches, transaction local caches should only by accessed where the correct context
(transaction) exists.

curam.cache.transaction-group.curam.myproject.mycache
.timeToLive=60

curam.cache.transaction-group.curam.myproject.mycache
.timeToIdle=10

Figure 10. Configuring a transaction local cache with name c uram.myproject.mycache

public void myMethod() {
...
Cache<String, String> txnCache = CacheManagerEjb.

getTransactionLocalCacheGroup().getCache("mycache");
String value = txnCache.get("key");
if(value == null) {

// perform expensive operation to calculate value - this
// processing only happens once per transaction
...
// and store the result
txnCache.put("key", "value");

}
...

}

Figure 11. Setting up and using a transaction local cache

© Copyright IBM Corp. 2012, 2013 11

12 IBM Cúram Social Program Management: Cúram Cache

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 13

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

14 IBM Cúram Social Program Management: Cúram Cache

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that allow the customer to write programs
to obtain the services of IBM Cúram Social Program Management.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 15

http://www.ibm.com/legal/us/en/copytrade.shtml

16 IBM Cúram Social Program Management: Cúram Cache

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Audience

	Chapter 2. Cúram Cache
	2.1 What is Cúram Cache
	2.2 Configuration
	2.3 Statistics
	2.4 Shutting Down Cúram Cache

	Chapter 3. Global Caches
	3.1 Introduction
	3.2 Global Cache Provider
	3.3 Default Global Cache Group
	3.4 Global Caches
	3.5 Usage Recommendations
	3.6 Configuration
	3.7 Using Global Caches in a Transactional Context
	3.8 Code Samples
	3.9 Cache Loader
	3.10 Cache Client
	3.11 Cache Invalidation

	Chapter 4. Thread Local Caches
	4.1 Overview
	4.2 Configuration
	4.3 Code Samples

	Chapter 5. Transaction Local Caches
	5.1 Overview
	5.2 Configuration
	5.3 Code Samples

	Notices
	Programming Interface Information
	Trademarks

