
IBM Cúram Social Program Management

Cúram Development Compliancy Guide
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Development Compliancy Guide
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 29

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Purpose 1
1.2 Intended Audience 1
1.3 Prerequisites 1

Chapter 2. Developing Compliantly with
Cúram 3
2.1 Overview 3
2.2 Starting a New Project 3

2.2.1 Understand the Development Directory
Structure. 3
2.2.2 Source Code Control 3

2.3 Changing Server Source Artifacts 4
2.3.1 Write Source Code for New Methods and
Classes 4
2.3.2 Changing Cúram Express Rules (CER) Rule
Sets 4
2.3.3 Extending Codetables 4

2.4 Source Code and APIs 5
2.4.1 Internal APIs 5
2.4.2 External APIs 5
2.4.3 Extension Mechanisms 6
2.4.4 Summary. 8

2.5 Avoiding Common Compliancy Pitfalls 8
2.5.1 Use Project-specific Prefixes in Artifact
Names 8
2.5.2 Use Numeric Identifiers in Custom Initial,
Demo Data 9
2.5.3 Never Make In-Place Modifications to
Application Files 10
2.5.4 Never Create Dependencies on Sample or
Demo Artifacts 10

2.5.5 Reflecting Changes to Dynamic Artifact
Types Back to Development System 10
2.5.6 Don't Create New Dependencies on Internal
APIs 11

Appendix A. Component Compliance
Details 13
A.1 Introduction 13

Appendix B. Discouraged Extension
Mechanisms 15
B.1 Introduction 15
B.2 Extension Classes 15

B.2.1 Entity 15
B.2.2 Struct 16
B.2.3 Process, Facade, WebService, WSInbound 17

B.3 Subclass With Replace 18
B.3.1 Entity 18
B.3.2 Process, Facade, WebService, WSInbound 20

B.4 Subclass Without Replace 21
B.4.1 Entity 21
B.4.2 Process, Facade, WebService, WSInbound 23

B.5 Domain Overriding 25
B.5.1 Domain Definitions 25

B.6 Relationships 26
B.6.1 Assignable 26
B.6.2 Aggregation 27
B.6.3 Foreign Key 27
B.6.4 Index 27
B.6.5 Unique Index 27

B.7 Other Mechanisms. 27
B.7.1 Exclusions 27

Notices 29
Trademarks 31

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Figures

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Tables

1. Component Compliance Details 13
2. Extension Classes as Applied to Entity Classes 15
3. Extension Classes as Applied to Struct Classes 16
4. Extension Classes as Applied to Other

Modeled Classes 17
5. Subclass With Replace as Applied to Entity

Classes 18
6. Subclass With Replace as Applied to Other

Modeled Classes 20
7. Subclass Without Replace as Applied to Entity

Classes 21

8. Subclass Without Replace as Applied to Other
Modeled Classes 23

9. Overriding Domain Definitions 25
10. Assignable Relationships 26
11. Aggregations 27
12. Foreign Keys 27
13. Indexes 27
14. Unique Indexes 27
15. Exclusions 27

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Chapter 1. Introduction

1.1 Purpose
This document provides guidelines on how to build custom functionality in a compliant manner.

Note that from version 6.0.3, some of these guidelines have changed. Whereas all application
customization mechanisms continue to be supported for customers who have already used them, some of
them are now discouraged for new development.

1.2 Intended Audience
This document is intended to be read by designers and developers of project teams who are building
Cúram applications.

1.3 Prerequisites
A working knowledge of the application development environment is needed to read this document.
References to pertinent development documentation are provided throughout this guide.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Chapter 2. Developing Compliantly with Cúram

2.1 Overview
This chapter describes important considerations that need to be taken into account in order to develop
compliantly with Cúram. These considerations are essential for Support to be able to assist customers in
applying their own customizations to the application. By following these considerations, customers will
also find it easier to upgrade to future versions.

2.2 Starting a New Project
When starting a new project, it is important to understand the development directory structure. It is also
important to put it under source code control.

2.2.1 Understand the Development Directory Structure
Knowledge of the development directory structure is required to understand where development artifacts
are located, how they are organized, and where to store changes to these artifacts. Note that to access the
development directory structure, you must first install a development version of the application.

The following list describes the directories into which the client and server development artifacts are
installed:
v Client development artifacts are installed into the webclient directory. For details on how to develop

client applications compliantly, see the Cúram Web Client Reference Manual

v Server development artifacts are installed into the EJBServer directory.

Within both the webclient directory and the EJBServer directory, there is a components subdirectory,
which has a further subdirectory called custom. The custom subdirectory is where all project specific
development artifacts should be placed. The other components subdirectories contain all of the application
development artifacts delivered with the product.

Important: The custom folder contains a starter structure for first usage and is referred to throughout
developer documentation as the area in which all artifacts should be developed. It should be noted that
this is not enforced and it is a project choice to develop within this component or create a new named
component appropriate for your project.

Within the EJBServer\components\custom\model directory, there is a starter model file and some model
fragments.

2.2.2 Source Code Control
To keep track of all changes to source artifacts, the development directory structure should be put under
source code control. Once under source code control, all development artifacts should be tagged. Ensure
that the tag refers to the version of the application. At any point, it will then be possible to produce a
report, using diff functionality, of all files that have been added or changed to implement project
functionality. This report is useful when taking on a new release of the application.

Note that from version 6.0.3, changes have been made to how Java™ source code is delivered. See section
4 below for more information.

© Copyright IBM Corp. 2012, 2013 3

2.3 Changing Server Source Artifacts
There are many types of server artifact, some of which are application classes. Some of these are
represented in an application model. Other Java interfaces are "handcrafted". There are application
implementations of both these categories of class, and it is important to be able to distinguish between
the two. Whereas it is possible to change aspects of a modeled interface by changing the model and
regenerating code, it is not possible to change a handcrafted interface.

Modeled interfaces:
v Appear in the application UML model

Handcrafted interfaces:
v Do not appear on the application UML model
v Appear in the component directories of your development environment
v Cannot be customized
v Contain the @ImplementedBy Google Guice annotation to indicate of the application implementation

class

Some components may contain interfaces which do not fall into either of the above categories, but these
will always be described in component-specific documentation. Both modeled and handcrafted
application interfaces may have implementations which can be customized.

For details on how to implement source artifacts, see the Cúram Server Developer's Guide for
implementations of modeled interfaces, and the Persistence Cookbook for implementations of handcrafted
interfaces; it is necessary to look at the implemented interface to determine the category. The
recommendations on how to change Server Source Artifacts have changed with version 6.0.3. Note that
the recommendations contained in this document (the Cúram Development Compliancy Guide) are
definitive.

2.3.1 Write Source Code for New Methods and Classes
New customer-specific classes, classes which wrap existing classes, or in a limited set of circumstances
new subclasses of existing classes should be written in new source files. All new source files should be
placed within the source subdirectory of the EJBServer\components\custom directory.

For modeled classes, the generated class hierarchy will dictate the package structure of the new source
files. See the Cúram Server Developer's Guide for information on modeling new classes and replacing
existing implementations.

For handcrafted implementations, it is up to you how the new class is packaged. See the Persistence
Cookbook for information on configuring new subclasses using Google Guice.

2.3.2 Changing Cúram Express Rules (CER) Rule Sets
The CER Editor stores its rule sets on the database rather than the file system. Any rule sets shipped in
the core component must NOT be customized. Solutions may have their own compliancy statements
about their rule sets.

2.3.3 Extending Codetables
Note that documentation has now been provided to indicate which codetables are safe to extend, and
which require customers to ask Support before customizing. A list of codetables which cannot be
extended without contacting Support is provided in the project documentation directory structure for
every installation (in a folder called RestrictedCodeTables). If you want to customize a codetable which is
listed in this list, you should raise a Support case.

4 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

2.4 Source Code and APIs
All application Java functionality is now being distributed as pre-built jar files. This had always been the
case for Enterprise Modules introduced since version 5.0 (for which source code was never shipped) but
has now become universally true. Application functionality will now only be regenerated and rebuilt in a
customer installation if required by the use of customer extension mechanisms. This means that the
customer build process will no longer need to rebuild the entire Java source code base; only
project-specific source code and any dependent regenerated Java source code will now need to be rebuilt.

For a limited number of key functional areas from version 6.0.3 onwards, Java source code is no longer
distributed in any form. Source code for the remainder of the application continues to be shipped (as
'sample'), but for documentation purposes only - this code is not directly involved in the build process
from version 6.0.3. This sample source code is distributed in jar files on a per-component basis as follows:
EJBServer\components\<component name>\sample\src.zip. The built versions of each components can be
found in the following location: EJBServer\components\<component name>\lib\<component name>.jar.

Also from version 6.0.3, class operations have been marked as Internal or External via annotations.

External operations form the official API to the application going forward, which customers are
encouraged to use and invoke from their own code.

Important: Classes with no annotations are Internal by default

2.4.1 Internal APIs
Whereas it is possible to invoke and subclass Internal APIs from custom code, this is discouraged from
version 6.0.3. Such APIs are annotated with @Accesslevel(INTERNAL).

Important: 'Discouraged' in this context means that their use continues to be supported, but that such
APIs may be changed or removed in future releases, once a minimum notice period of 1 year has been
given to customers in respect of any such change or removal.

Note: No such notice is being given for any of the APIs marked as Internal in version 6.0.3. (i.e. there are
no current plans to change any of the APIs marked as Internal in 6.0.3), and so there should be adequate
time for customers to plan any such migrations.

Existing customer references to APIs which are marked as Internal from version 6.0.3 will continue to
function as before, with the exception that discouraged warnings will be generated within Eclipse projects
which have such dependencies.

Projects should endeavor to move away from such dependencies on Internal APIs over time, and should
not introduce new dependencies on them (within reason - depending on where a customer project is in
its design/development process, it may be inevitable in the short term). Most existing customers will see
discouraged references reported after taking on version 6.0.3 or later versions, and it is not expected that
customers fix these immediately as part of the take on activity. As mentioned above, this will not affect
their support entitlements.

Note that as with previous versions of the application, some Internal APIs have been configured to
produce 'access restriction' errors in Eclipse if referenced (these APIs are annotated with
@Accesslevel(RESTRICTED)), and such references will not be supported in customer projects. These APIs
have always been Internal, and were never supported for customer use; it will be obvious which are
which - access restricted APIs produce Eclipse errors, discouraged APIs produce Eclipse warnings.

2.4.2 External APIs
External APIs can be referenced directly by customer projects. Such APIs are annotated with
@Accesslevel(EXTERNAL). Javadoc is provided for all External APIs on a per component basis, and this

Chapter 2. Developing Compliantly with Cúram 5

can be found at EJBServer\components\<component name>\doc\api.zip. Note that some components
may not have any Javadoc as they have no External APIs. Only classes that are documented in JavaDoc
should be referenced from customer code; referencing other classes will produce discouraged warnings or
access restricted errors and are not supported.

Note also that, as with all APIs, it is expected that those marked as External will evolve over time (while
remaining backward compatible). If you have a requirement which you feel cannot be fulfilled through a
combination of the use of External APIs and allowed extension mechanisms, you should raise these
through Support. If appropriate, a new API, customization hook, strategy pattern or configuration-based
approach will be made available, and such new APIs can be delivered in Feature Packs. Alternatively, an
existing Internal API may in some circumstances be redesignated as External if appropriate.

2.4.3 Extension Mechanisms
The removal of source code from the areas of key functionality referred to above has resulted in a change
to the recommended approach to using extension mechanisms on customer projects. Previously, if
customers wished to use the various application extension mechanisms (e.g. extension classes, subclass
with and without replace, aggregation), they could search across the codebase to see where and how
target classes were being invoked within application code. They could then make an assessment of the
functional effects of the extension being considered.

From 6.0.3, customers will no longer have the source code for some areas of key functionality, and in
addition a large number of APIs have been marked as Internal. The following section summarizes the
change in recommended extensions practices for customer projects.

Note that this section only refers to restrictions on extending application artifacts. All extension
mechanisms can continue to be used on customer-defined classes, and all such artifacts can of course be
External in nature, and invoked from any other part of a customer implementation.

Important: This section just provides a high-level summary. Full details of which mechanisms are
allowed on which class types from version 6.0.3 are provided in Appendix B, “Discouraged Extension
Mechanisms,” on page 15. Where mechanisms have been discouraged, this appendix will where
appropriate recommend alternative mechanisms to be employed by customers.

2.4.3.1 Entity Classes
With some exceptions, direct customer use and modification of application Entity classes is now
discouraged. In many cases, application Entity class operations have direct Facade-layer equivalents
which have been marked as External, and these can be used by customers. Addition of stereotyped and
non-stereotyped operations to application Entities is however still allowed, as is the setting of a number
of Entity options.

Prior to version 6.0.3, attributes could be added to application Entity classes using extension. However,
with source code being removed for areas of key functionality, customers will no longer have visibility as
to whether attributes added via extension classes will be mapped to external APIs. For this reason,
adding attributes to application Entity classes is now discouraged.

Customers wishing to add data to application screens should add new customer-specific Entity classes,
and should wrap External application maintenance operations in their own process classes to maintain
both tables atomically. Application screens can then be changed to point to the new process classes.

Note: Entities representing Evidence Types are an exception to this rule. Customers can continue to add
attributes to such application Evidence Entities using extension, as this is required by the Evidence
Generator.

6 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

In version 6.0.3, application Evidence Entities have incorrectly been marked as Internal; this will be
corrected in a subsequent release. For now, customers using extension on Evidence Entities to add
attributes may see discouraged warnings in Eclipse relating to these classes; these specific warnings can
be ignored.

This note only applies to Entities which represent Evidence Types and not for any other application
Entity class.

2.4.3.2 Domain Definitions
In general, customer use and overriding of application Domain Definitions is still allowed. However,
changing the fundamental type of a Domain Definition is now discouraged, as is changing of a number
of codetable-related options.

2.4.3.3 Struct Classes
Application struct classes are all essentially External in nature, in that they can be referenced in
customer-specific functionality.

Customers are discouraged from directly creating aggregations from application structs to any other
struct (as they no longer have full visibility on where these application structs are being used). Customers
can however continue to use aggregation to include application structs in their own project-specific
structs.

2.4.3.4 Other Modeled Classes
For other modeled classes in the application (such as Process, Facade, WSInbound and WebService), the
use of all extensions mechanisms is now discouraged.

Prior to version 6.0.3, Subclass with Replace was a commonly used mechanism for adding and changing
operations on application Process and Facade classes. As with extension of application Entity classes,
however, this is now potentially unsafe, in that customers will no longer necessarily have full visibility as
to where such classes are used.

Similar to with Entity classes, customers should instead model and code their own Process, Facade or
WSInbound classes, either wrapping existing External APIs, or implementing new functionality. For
Facade operations, affected UIM pages can be repointed at the new Facade operations if desired.

2.4.3.5 Non-Modeled Classes
Some components contain non-modeled classes. For these classes, the usage of each External interface or
class is described in the Javadoc for the class.

Some non-modeled classes come with Eclipse access restrictions in place to provide customers with
guidance in relation to which APIs they can and cannot call or customize. Certain classes and packages
are marked as restricted; these classes must not be used as they are internal classes that can change over
time. Access restrictions should not be removed from the Eclipse.classpath file as this may result in the
consumption of restricted classes which can cause problems during upgrades.

Some non-modeled components contain package protected classes; these classes should not be used in
custom code. Customers must not place any custom code in the same package structure in order to call
or reference package protected classes.

Many non-modeled APIs are not directly customizable. Only interfaces/classes tagged with the
@Implementable annotation can be extended or implemented. Such classes will have JavaDoc detailing
how to customize or implement them. Non-modeled classes that are not tagged with the @Implementable
annotation must not be extended or implemented as new operations may be added overtime which may
cause upgrade impact.

Chapter 2. Developing Compliantly with Cúram 7

For classes tagged with the @Implementable annotation, the typical customization mechanisms for these
types of class are events and strategies.

Events allow customers to add custom logic at various points in the application. For details on how to
add event listeners, please refer to the Persistence Cookbook. Event classes are typically named
‘xxxEvent', so they can be easily identified.

Strategy patterns allow customers to change the default behavior of certain functions within the
application. Each strategy class has a default implementation provided; however customers can choose to
override the default implementation of any of the strategy operations through the use of Guice bindings.
The further details on using Guice bindings, please refer to the Persistence Cookbook. Strategy classes are
typically named ‘xxxStrategy', so they can be easily identified.

Note: For further compliance details on a per-component basis, please refer to Appendix A, “Component
Compliance Details,” on page 13.

2.4.4 Summary
In summary:

Where you want to reference an application class in your custom code:
v If the class is External, you are allowed to reference it.
v If the class is Internal, you are supported in referencing it in your existing code but discouraged from

doing so. You should not reference it in new code.
v If the class is Access Restricted, you are not supported in referencing it.

Where you want to customize an application class:
v If the class is Modeled, refer to Appendix B for details of allowed customizations
v If the class is Non-Modeled, refer to its JavaDoc and/or any configuration/development guide for its

parent component for details of customization points.

2.5 Avoiding Common Compliancy Pitfalls
This section describes compliancy issues that can arise and provides rules-of-thumb for avoiding these
issues. Following the rules-of-thumb presented in these sections from the early stages of a project is
relatively easy. However, if they are not followed, they can result in serious disruption later on and fixing
them can be both costly and difficult.

2.5.1 Use Project-specific Prefixes in Artifact Names
You should prefix all new source artifact names (model classes, source files, messages, message files, etc.)
with a relevant acronym or abbreviated word. Use the same acronym or abbreviated word throughout.
As the project progresses, this will make project additions to core artifacts more obvious. This distinction
becomes very useful as the development effort grows. Generally most projects will be described by some
kind of acronym. This acronym is a good candidate to use as the prefix.

Using a project-specific prefix prevents naming collisions from occurring between new artifacts that you
add and new artifacts that Cúram adds over time; naming collisions can be costly and difficult to fix
when they occur.

For example, consider taking on a Service Pack and discovering that one of your custom database field
additions has the same name as a new application field that does not have the same business meanings
or data-type. Alternatively, consider taking on a Service Pack and discovering that a new application
Codetable Item has been added that conflicts with a custom Item that you also added with the same
name, but a different meaning. These types of collisions can be avoided by ensuring that you always
name new, custom artifacts with a consistent prefix.

8 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Some artifact types have more than one identifier and these must be taken into account when naming
them. Entity classes and Codetable Items are examples of this. A custom Entity class has a Table Name
that shares the same flat namespace (the database schema) as application Tables and must have a unique
Table Name within that namespace. It also has a Java class name, which shares a hierarchical namespace
(package structure) with application Java classes. Likewise, a custom Codetable Item has both a value
and a Java identifier – and both share a flat namespace with application items in the same Codetable.

It is important to note that the use of project specific prefixes does not apply where you are overriding an
application artifact, as the override mechanism is usually based on naming your custom artifact with
exactly the same name as the application artifact that it overrides.

Additional considerations:
v Identifiers come in many flavors – e.g. a filename, an XML ID, a Java class name or a combination

thereof.
v A short prefix is advisable as there may be places where name lengths are restricted (e.g., certain types

of database identifiers).

Note: In addition to source artefacts, it is also important to consider identifier values which may conflict
with values used by IBM.

The API TransactionInfo.setFacadeScopeObject and TransactionInfo.getFacadeScopeObject enables
developers to access objects which are associated with the current transaction. When using this API, to
ensure that any of your data for the transaction does not conflict with data belonging to IBM you should
use a String as your object identifier and prefix this string with an appropriate word as described above.

2.5.2 Use Numeric Identifiers in Custom Initial, Demo Data
Pre-defined initial and demo data is loaded into an application database via DMX files. This data is
installed into the database when a system is first set-up, or when a system is upgraded. A set of initial
and demo data is provided in the application. Customers may also need to add their own initial and/or
demo data.

In order to avoid clashes with the initial and demo data that is shipped in the application and with data
created by the runtime system, it is important that the identifiers (e.g., primary keys) for customer initial
and demo data are drawn from reserved ranges. Therefore, a set of ranges has been reserved for
customer use.

2.5.2.1 Reserved Ranges
Projects should use identifiers (primary keys) in their custom initial and demo data that are drawn from
the following reserved ranges:
v Non-human readable primary keys: 45,000 to 49,999 (inclusive)
v Human readable primary keys: 11,521 to 12,799 (inclusive)
v Rule sets: 4,500 to 4,999 (inclusive)

Customers that have already used identifiers from outside these ranges will be assisted in addressing this
in advance of performing their next upgrade.

2.5.2.2 Large Data Sets
From time to time it may be necessary to generate very large sets of data. For example, this may be
required for load testing. In these cases, the number of records required would far exceed the allocated
key ranges documented here. In this situation, a different approach should be taken.

Instead of using keys from the allocated ranges, the key server should be used to generate the key values
required. If this data will be imported into a re-built database, the final value of the key set should also

Chapter 2. Developing Compliantly with Cúram 9

be extracted and loaded into the key set table, replacing the initial key set value supplied in the
application. If you have any questions around this process, please contact Support for further
information.

2.5.2.3 Codetables Exception
Please note that the above statement does not apply to code tables.

2.5.3 Never Make In-Place Modifications to Application Files
Service Packs and Emergency Patches need to be able to safely move, restructure or overwrite application
files. If you modify these files, Service Packs or Emergency Patches can overwrite them without notice.
There is no guarantee that these changes will be compatible with the modifications you made, so
re-applying the in-place changes afterwards may not be possible.

There are a very small number of exceptions to this rule and these are listed below:
v EJBServer

– /project/config/datamanager_config.xml

– /project/config/deployment_packaging.xml

– /project/properties/Bootstrap.properties

– .classpath

– .project

v Webclient
– /JavaSource/curam/omega3/ApplicationConfiguration.properties

– /JavaSource/curam/omega3/il8n/CDEJResources.properties

– .classpath

– .project

2.5.4 Never Create Dependencies on Sample or Demo Artifacts
Sample and Demo artifacts are off-limits for custom dependencies, i.e., references-to APIs, UIM files,
codetables, message files, etc. in such components from custom code. These artifacts are subject to change
without notice.

Different product areas in Cúram have taken different approaches to marking off artifacts as
Internal/Sample/Demo, so this guide cannot give a concise statement of how to identify them. However,
there are a few reliable rules of thumb:
v Artifacts whose name, code package, model package or file path contain the words 'Internal', 'Sample',

or 'Demo' (or obvious derivatives of those words)

If in doubt, contact Support.

Important: The CPMSample folder is internal; all code and artifacts within this folder can change without
any notice. If customers wish to use functionality within CPMSample, they will need to duplicate it in
their code base.

2.5.5 Reflecting Changes to Dynamic Artifact Types Back to
Development System
If you modify dynamic artifact types on production or test systems, you should always ensure that these
modifications are reflected back to the development system.

Various 'Dynamic' development artifacts exist in the application that can be modified at runtime on a
production or test system (e.g., codetables, workflows, etc.). Runtime changes to these artifacts should

10 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

always be synchronized back to the development codebase so that concurrent development changes can
be integrated with these runtime changes prior to deployment.

Concurrent changes to these artifacts may happen during routine project milestone development, or when
taking on Service Packs or doing Major/Minor version upgrades. In every case, there must be one central
place where concurrent changes are merged together and validated and this is the development codebase.
The System of Record for these artifacts is the development codebase.

2.5.6 Don't Create New Dependencies on Internal APIs
From version 6.0.3, customers should avoid invoking or customizing application classes and operations
marked as 'Internal', as such APIs may change in subsequent versions of the application.

Chapter 2. Developing Compliantly with Cúram 11

12 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Appendix A. Component Compliance Details

A.1 Introduction
This section contains individual per-component compliance information.

Important: Unless otherwise indicated, for all components (whether listed here or not) it can be assumed
that the general following general compliance statements apply:

Where you want to reference an application class in your custom code:
v If the class is External, you are allowed to reference it.
v If the class is Internal, you are supported in referencing it in your existing code but discouraged from

doing so. You should not reference it in new code.
v If the class is Access Restricted, you are not supported in referencing it.

Where you want to customize an application class in your custom code:
v If the class is Modeled, refer to Appendix B for what you are allowed to do
v If the class is Non-Modeled, refer to its JavaDoc (EJBServer\components\<component

name>\doc\api.zip) for what you are allowed to do.

Table 1. Component Compliance Details.

This table lists the components with Non-Modeled APIs.
Component Details

Cúram Client Development Environment For further guidelines on how to customize/use this component please refer to the Cúram Web
Client Reference Manual. Please note that files from the CuramCDEJ folder will be copied to
temporary build folders during the application build process. The presence of such files outside of
the CuramCDEJ folder does not make them available for customization.

Cúram Server Development Environment This component's Javadoc details all customization points and External APIs. Only classes that are
documented in JavaDoc should be referenced from customer code; referencing other classes will
produce discouraged warnings or access restricted errors and are not supported(Cúram's
cryptographic functionality is not supported for customer use beyond the documented usage in
the Cúram Server Developer's Guide and Cúram Security Handbook.).

The bin directory of this component contains Apache Ant build scripts that must not be modified
directly. Updates to these scripts can be made by creating new custom ant scripts and using the
Ant inheritance functionality.

The drivers folder of this component contains database drivers used to access the application
database. If necessary, these drivers may be replaced with the relevant driver for the database
being used, provided the database is a supported database version as specified in the Cúram
Supported Prerequisites.
Note: If a problem arises with a driver that has not been shipped in the product (i.e. that has not
been tested and verified for use with the application), the customer may be requested to replace
the driver with a version that has been tested, while the specific issue is raised with the third
party vendor. Please note that files from the CuramSDEJ folder will be copied to temporary build
folders during the application build process. The presence of such files outside of the CuramSDEJ
folder does not make them available for customization.

Cúram Administration Suite Note that from version 6.0.3, the compliance statement for classes in the Cúram Administration
Suite is no different from those in any other component. External APIs in the Administration Suite
can be wrapped and invoked from custom code.

Persistence Infrastructure The Persistence Infrastructure cannot be customized. Customers must not place any custom code
in Persistence Infrastructure's code packages (curam.util.persistence and all sub-packages). For
further information on how to use these APIs please read the Persistence Cookbook.

CER Infrastructure The compliancy statement for CER Infrastructure can be found in the Cúram Express Rules
Reference Manual. CER entities (i.e., any entity whose name is prefixed by the word Creole) should
be considered Internal and subject to change, and customers should not update them or query
them except via the CER API or DMX files.

© Copyright IBM Corp. 2012, 2013 13

Table 1. Component Compliance Details (continued).

This table lists the components with Non-Modeled APIs.
Component Details

Dependency Manager The Dependency Manager encompasses all server artefacts in the curam.dependency code package
and all its sub-packages.

The following components contribute to the Dependency Manager code package:

v the CER Infrastructure; and

v the core application.

The Dependency Manager cannot be customized in any way. All Dependency Manager APIs are
for internal use only. The compliancy statement for the Dependency Manager can be found in the
Cúram Express Rules Reference Manual.

Eligibility and Entitlement Engine API For guidelines on how to configure and customize this component, please read the Inside Cúram
Eligibility and Entitlement Using Cúram Express Rules Guide.

Evidence Generator The Evidence Generator is application infrastructure that is shipped as part of the Tools directory
structure (EGTools). For more information on using the Evidence Generator, see the Cúram
Evidence Generator Specification.

DocMaker No part of the DocMaker tool may be customized.

Pod Infrastructure Pod Infrastructure is shipped in the widget-inf.jar and widget-utility.jar files. The Pod
Infrastructure cannot be customized. Pod-Loaders cannot be customized. For further information
on developing Pods see the Cúram Pod Developer's Guide.

Funded Program Management For guidelines on how to customize this component, please read the Funded Program Management
Developer Guide and the component's javadoc..

Cúram Incidents For guidelines on how to customize any Incident Entities or replacing any Incident
implementation please read the Persistence Cookbook and the component's javadoc.

Cúram Citizen Context Viewer For further guidelines on how to customize this component please refer to the Cúram Citizen
Context Viewer Configuration Guide and the component's javadoc.

Cúram Advisor The following server components are delivered with Cúram Advisor: Advisor.

Cúram Common Intake The following server components are delivered with Cúram Common Intake: Intake, PCR,
CREOLEProgramRRecommendation, ReferralsLite and CPMReferralsLite

Inbox For guidelines on how to configure and customize this component, please read Part VI of the
Cúram Workflow Reference Guide.

Cúram Waitlists For guidelines on how to customize this component, please read the Cúram Waitlist Customization
Guide and the component's javadoc.

IBM Cúram Business Intelligence and Analytics For guidelines on how to customize this component, please read the Cúram Business Intelligence
Reporting Developer Guide

IBM Cúram Social Enterprise Collaboration The following server components are delivered with Social Enterprise Collaboration:
SocialEnterpriseCollaboration, CaseParticipantIndex and ClientAccess.

IBM Cúram Universal Access For further guidelines on how to customize this component please refer to the Cúram Universal
Access Developers Guide and the component's javadoc.

IBM Cúram Outcome Management The following server components are delivered with Cúram Outcome Management:
AssessmentPlanning, AssessmentPlanningCPM, DecisionAssistAssessments and
SimpleOutcomeManagement

IBM Cúram Provider Management For guidelines on how to customize this component, please read the Cúram Provider Management
Developer Guide and the component's javadoc.

IBM Cúram Youth Services(CYS) For guidelines on how to customize any CYS Entities or replacing any CYS implementation please
read the Persistence Cookbook and the component's javadoc.

IBM Cúram Child Care (CCC) For guidelines on how to customize any CCC Entities or replacing any CCC implementation
please read the Persistence Cookbook and the component's javadoc.

14 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Appendix B. Discouraged Extension Mechanisms

B.1 Introduction
As described earlier, many of the mechanisms previously recommended in versions prior to 6.0.3 as a
means of extending or replacing application classes are now discouraged. This appendix details which
mechanisms are allowed and discouraged when applied to which class types. It also suggests what to do
if you find that a mechanism/class type combination that you want to employ is now discouraged.

B.2 Extension Classes

B.2.1 Entity
Table 2. Extension Classes as Applied to Entity Classes

Action Model Option
Discouraged
? Alternative

Add a stereotyped
entity Operation

(e.g. <<ns>>,
<<nsreadmulti>>)

None Discouraged Rather than using an <<extension>> class, add the stereotyped operation
through the use of subclass without replace.

Change an entity
Operation (e.g.
parameters)

None Discouraged Create a new stereotyped operation with the desired structure using subclass
without replace.

If you feel you have a valid need to change the structure of an application
Entity operation, please raise a Support case.

Change an Entity
operation option

Auto ID Field

Auto ID Key

No Generated SQL

Optimistic Locking

Order By

SQL

Where

Discouraged Create a new stereotyped operation using subclass without replace.

If you feel you have a valid need to change these options on application Entity
operations, please raise a Support case.

Database
Table-level
Auditing

Discouraged This option is settable via runtime properties. See section 12.3.6 of the Cúram
Server Modeling Guide for more information on how to do this.

On Fail Operation

Post Data Access
Operation

Pre Data Access
Operation

Treat Readmulti
Max as
Informational

Exception

Readmulti Max
Records Returned

Discouraged Customers should only change these options on application Entity operations
by using Subclass with Replace.

Change an Entity
class option

Enable Validation Discouraged Customers should only change this option on application Entity operations by
using Subclass with Replace.

© Copyright IBM Corp. 2012, 2013 15

Table 2. Extension Classes as Applied to Entity Classes (continued)

Action Model Option
Discouraged
? Alternative

Abstract

Allow Optimistic
Locking

No Generated SQL

Replace Superclass

Discouraged If you feel you have a valid need to change these options on application Entity
operations, please raise a Support case.

Audit Fields

Last Updated Field

Allowed Currently only supported via Extension classes, and this will continue to be the
case from 6.0.3

Add an Entity
attribute

None Discouraged Customers wishing to add data to application screens should add new
customer-specific Entity classes, and should wrap Cúram CRUD operations in
their own process classes to maintain both tables atomically. Cúram screens can
then be changed to point to the new process classes

Change an Entity
attribute option

Allow Nulls Discouraged If you feel you have a valid need to change this option on application Entity
attributes, please raise a Support case.

B.2.2 Struct
Table 3. Extension Classes as Applied to Struct Classes

Action
Model
Option

Discouraged
? Alternative

Add an attribute to a
struct

None Discouraged Create a new project-specific struct, and aggregate the application struct from
the project-specific struct to the application struct (not the other way around).

Use the new 'composite' struct in required customer-specific functionality.

Change a struct attribute None Discouraged Create a new project-specific struct, and aggregate the application struct from
the project-specific struct to the application struct (not the other way around).

Use the new 'composite' struct in required customer-specific functionality.

If you feel you have a valid need to change an attribute of an application
struct, please raise a Support case.

Change a struct option Audit Fields Discouraged If you need to propagate Audit Fields from an Entity through to a screen, you
will need to create new stereotyped operations which maintain the Audit
Fields, create a new Facade which wraps the existing Entity CRUD operations
and calls the new stereotyped operations, and update any UIM pages as
required.

16 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

B.2.3 Process, Facade, WebService, WSInbound
Table 4. Extension Classes as Applied to Other Modeled Classes

Action Model Option
Discouraged
? Alternative

Change a class
option

Abstract

Generate FIDs

Replace Superclass

WS Binding Style

WS Is XML
Document

Document Type

Generate Facade
Bean

Provider Name

Request Handlers

Response Handlers

Validate Request

XML Document

XML Schema

Discouraged If you feel you have a valid need to change these options on application
Process, Facade, WebService or WSInbound classes, please raise a Support case

Add an operation None Discouraged This was never encouraged via extension classes, in that it would have
required customers to perform in-place modification of application Java code.

If you want to add an operation to a Process, Facade, WebService or
WSInbound class, wrap the class and operation in your own project-specific
class and operation.

Change an
operation (e.g.
operation visibility)

None Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate.

If no appropriate extension point exists, but you feel you have a valid need to
change the functioning or structure of an application operation, please raise a
Support case.

Change an
operation option

Audit BI Calls Discouraged This option is settable via runtime properties. See section 12.3.6 of the Server
Modeling Guide for more information on how to do this.

Business Date Field

Bytes Message
Encoding Character
Set

Generate Security

Is XA Transactional

Message Type

Queue Connector
Factory JNDI Name

Reply Queue JNDI
Name

Response Message
Timeout

Shadow Type

Transactional

Transmission
Queue JNDI Name

Discouraged If you feel you have a valid need to change any of these options on application
Process, Facade, WSInbound or WebService operations, please raise a Support
case.

Appendix B. Discouraged Extension Mechanisms 17

Table 4. Extension Classes as Applied to Other Modeled Classes (continued)

Action Model Option
Discouraged
? Alternative

Secure Fields Discouraged Customers wishing to alter which fields of an application operation are to be
treated as Secure should wrap the operation in their own Facade class and
operation, and set the Secure Fields option on this new operation to the
desired setting.

Affected UIM screen definitions should be repointed at the new operation if
required.

Change an
operation
parameter option

Mandatory Fields Discouraged Customers wishing to alter which fields of an application operation are to be
treated as Mandatory should wrap the operation in their own Facade class and
operation, and set the Mandatory Fields option on this new operation to the
desired setting.

Affected UIM screen definitions should be repointed at the new operation if
required.

B.3 Subclass With Replace

B.3.1 Entity
Table 5. Subclass With Replace as Applied to Entity Classes

Action Model Option
Discouraged
? Alternative

Add a stereotyped
Entity operation
(e.g. <<ns>>,
<<nsreadmulti>>,
etc.)

None Discouraged Rather than using Subclass with Replace, add the stereotyped operation
through the use of Subclass without Replace. This will ensure that your
subclass (and thus your new stereotyped operations) will be treated as
'External', and that you won't get discouraged warnings in Eclipse when you
reference them.

Note that you will continue to get discouraged warnings if you directly
reference stereotyped operations in the base Entity, as these are Internal - this
is by design.

Add or Change a
non-stereotyped
Entity operation

None Discouraged Rather than using Subclass with Replace, add a non-stereotyped operation
through the use of Subclass without Replace. This will ensure that your
subclass (and thus your new non-stereotyped operations) will be treated as
'External', and that you won't get discouraged warnings in Eclipse when you
reference them.

Note that you will continue to get discouraged warnings if you directly
reference operations in the base Entity, as these are Internal - this is by design.

Customers are discouraged from providing new implementations for
non-stereotyped application Entity operations.

Change the
structure of an
Entity operation

None Discouraged Create a new stereotyped operation using subclass without replace.

If you feel you have a valid need to change the structure of an application
Entity operation, please raise a Support case.

Change an Entity
operation option

Auto ID Field

Auto ID Key

No Generated SQL

Optimistic Locking

Order By

SQL

Where

Discouraged Create a new stereotyped operation using subclass without replace.

If you feel you have a valid need to change these options on application Entity
operations, please raise a Support case.

Database Table
Level Auditing

Discouraged This option is settable via runtime properties. See section 12.3.6 of the Server
Modeling Guide for more information on how to do this.

18 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Table 5. Subclass With Replace as Applied to Entity Classes (continued)

Action Model Option
Discouraged
? Alternative

On Fail Operation

Post Data Access
Operation

Pre Data Access
Operation

Allowed
(Partially)

Customer are still allowed to implement application Entity exit points.

If customers want to perform processing in exit points for which there is a
default implementation, the default implementation must be invoked at the
beginning of the customer exit point implementation (i.e. there must be a call
to 'super()' at the beginning).

Customers are not allowed to switch off application exit point
implementations.

Treat Readmulti
Max as
Informational

Exception

Readmulti Max
Records Returned

Allowed

Change an Entity
class option

Enable Validation Allowed
(Partially)

Customer are still allowed to implement application Entity exit points.

If customers want to perform processing in exit points for which there is a
default implementation, the default implementation must be invoked at the
beginning of the customer exit point implementation (i.e. there must be a call
to 'super()' at the beginning).

Abstract

Allow Optimistic
Locking

No Generated SQL

Discouraged If you feel you have a valid need to change these options on application Entity
operations, please raise a Support case.

Audit Fields

Last Updated Field

Discouraged Use Extension classes to override these options on an application Entity class.

Replace Superclass Allowed
(Partially)

Implicitly allowed to support other 'Allowed' actions described in this section

Appendix B. Discouraged Extension Mechanisms 19

B.3.2 Process, Facade, WebService, WSInbound
Table 6. Subclass With Replace as Applied to Other Modeled Classes

Action
Model
Option

Discouraged
? Alternative

Change a class option Abstract

Generate
FIDs

Replace
Superclass

WS Binding
Style

WS Is XML
Document

Document
Type

Generate
Facade Bean

Provider
Name

Request
Handlers

Response
Handlers

Validate
Request

XML
Document

XML Schema

Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate, and setting the appropriate
options on the new class.

If you feel you have a valid need to directly change these options on
application Process, Facade, WebService or WSInbound classes, please raise a
Support case.

Add an operation None Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate.

Change an operation None Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate.

If you feel you have a valid need to directly change the structure of operations
on application Process, Facade, WebService or WSInbound classes, please raise
a Support case.

Change an operation
option

Audit BI
Calls

Discouraged This option is settable via runtime properties. See section 12.3.6 of the Server
Modeling Guide for more information on how to do this.

20 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Table 6. Subclass With Replace as Applied to Other Modeled Classes (continued)

Action
Model
Option

Discouraged
? Alternative

Business
Date Field

Bytes
Message
Encoding
Character Set

Generate
Security

Is XA
Transactional

Message
Type

Queue
Connector
Factory JNDI
Name

Reply Queue
JNDI Name

Response
Message
Timeout

Shadow
Type

Transactional

Transmission
Queue JNDI
Name

Discouraged If you feel you have a valid need to change any of these options on application
Process, Facade, WSInbound or WebService operations, please raise a Support
case.

Secure Fields Discouraged Customers wishing to alter which fields of an application operation are to be
treated as Secure should wrap the operation in their own operation, and set
the Secure Fields option on the new operation to the desired setting.

Affected UIM screen definitions should be repointed at the new operation if
required.

Change an operation
parameter option

Mandatory
Fields

Discouraged Customers wishing to alter which fields of an application operation are to be
treated as Mandatory should wrap the operation in their own operation, and
set the Mandatory Fields option on the new operation to the desired setting.

Affected UIM screen definitions should be repointed at the new operation if
required.

B.4 Subclass Without Replace

B.4.1 Entity
Table 7. Subclass Without Replace as Applied to Entity Classes

Action Model Option
Discouraged
? Alternative

Add a stereotyped
Entity operation
(e.g. <<ns>>,
<<nsreadmulti>>,
etc.)

None Allowed Rather than using Subclass with Replace, add the stereotyped operation
through the use of Subclass without Replace. This will ensure that your
subclass (and thus your new stereotyped operations) will be treated as
'External', and that you won't get discouraged warnings in Eclipse when you
reference them.

Note that you will continue to get discouraged warnings if you directly
reference operations in the base Entity, as these are Internal - this is by design.

Appendix B. Discouraged Extension Mechanisms 21

Table 7. Subclass Without Replace as Applied to Entity Classes (continued)

Action Model Option
Discouraged
? Alternative

Add a
non-stereotyped
Entity operation

None Allowed Rather than using Subclass with Replace, add the non-stereotyped operation
through the use of Subclass without Replace. This will ensure that your
subclass (and thus your new non-stereotyped operations) will be treated as
'External', and that you won't get discouraged warnings in Eclipse when you
reference them.

Note that you will continue to get discouraged warnings if you directly
reference operations in the base Entity, as these are Internal - this is by design.

Change the
structure of an
Entity operation

None Discouraged Create a new stereotyped operation using Subclass without Replace.

Change an Entity
operation option

Auto ID Field

Auto ID Key

No Generated SQL

Optimistic Locking

Order By

SQL

Where

Discouraged Create a new stereotyped operation using Subclass without Replace.

Database Table
Level Auditing

Discouraged This option is settable via runtime properties, if you want to change the
behaviour of application operations.

Otherwise, create a new stereotyped operation to implement the required
functionality using Subclass without Replace.

On Fail Operation

Post Data Access
Operation

Pre Data Access
Operation

Treat Readmulti
Max as
Informational
Exception

Readmulti Max
Records Returned

Discouraged Use Subclass with Replace to override these options on an application Entity
class.

Otherwise, create a new stereotyped operation to implement the required
functionality using Subclass without Replace.

Change an Entity
class option

Enable Validation Discouraged Use Subclass With Replace to override this option on an application Entity
class.

Otherwise, create a new stereotyped operation to implement the required
functionality using Subclass without Replace.

Abstract

Allow Optimistic
Locking

No Generated SQL

Discouraged Create a new stereotyped operation using Subclass without Replace.

Audit Fields

Last Updated Field

Discouraged Use Extension Classes to override these options on an application Entity class.

22 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

B.4.2 Process, Facade, WebService, WSInbound
Table 8. Subclass Without Replace as Applied to Other Modeled Classes

Action
Model
Option

Discouraged
? Alternative

Change a class option Abstract

Generate
FIDs

Replace
Superclass

WS Binding
Style

WS Is XML
Document

Document
Type

Generate
Facade Bean

Provider
Name

Request
Handlers

Response
Handlers

Validate
Request

XML
Document

XML Schema

Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate, and setting the appropriate
options on the new class.

Add an operation None Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate, and setting the appropriate
options on the new class operation.

Change an operation None Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate.

Appendix B. Discouraged Extension Mechanisms 23

Table 8. Subclass Without Replace as Applied to Other Modeled Classes (continued)

Action
Model
Option

Discouraged
? Alternative

Change an operation
option

Audit BI
Calls

Business
Date Field

Bytes
Message
Encoding
Character Set

Generate
Security

Is XA
Transactional

Message
Type

Queue
Connector
Factory JNDI
Name

Reply Queue
JNDI Name

Response
Message
Timeout

Shadow
Type

Transactional

Transmission
Queue JNDI
Name

Secure Fields

Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate, and setting the appropriate
options on the new class operation.

Change an operation
parameter option

Mandatory
Fields

Discouraged Create a new operation in a project-specific class, wrapping External APIs of
the application class functionality if appropriate, and setting the appropriate
options on the new class.

24 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

B.5 Domain Overriding

B.5.1 Domain Definitions
Table 9. Overriding Domain Definitions

Action
Model
Option

Discouraged
? Alternative

Change a specific
application Domain
Definition

Discouraged
(partially)

Customization of the following application Domain Definitions is not allowed
by customers:

TRUNCATED_NOTE_TEXT

NOTE_TEXT

INCIDENT_DESCRIPTION

SERVICE_DELIVERY_NOTE_TEXT_SMALL

INJURY_DESCRIPTION

ACTION_TAKEN

CITIZEN_ACCOUNT_RICH_TEXT

CW_RICH_STRING

VIEW_LIFE_EVENTS_POST_SUBMIT_XML_DATA

RICH_TEXT_EDITOR_WIDGET

SEC_RICH_TEXT_VIEW_WIDGET

RICH_TEXT

PROGRESS_RICH_TEXT_SMALL

Change a Domain
Definition option

Codetable
Name

Codetable
Root

Discouraged Create a new Domain Definition with the appropriate Codetable Name and
Root, and wrap in their own processing.

Customers are not allowed to change these options for application Domain
Definitions.

Appendix B. Discouraged Extension Mechanisms 25

Table 9. Overriding Domain Definitions (continued)

Action
Model
Option

Discouraged
? Alternative

Compress
Embedded
Spaces

Convert to
Uppercase

Custom
Validation
Function
Name

Default

Maximum
Value

Minimum
Size

Minimum
Value

Pattern
Match

Remove
Leading
Spaces

Remove
Trailing
Spaces

Storage Type

Allowed

Maximum
Size

Allowed
(Partially)

Allowed for increasing the size only. If you want to decrease the size of an
application Domain Definition, please raise a Support case.

Not to be used to change the maximum size of the USERNAME Domain
Definition.

Change the Type of a
Domain Definition

None Discouraged Create a new Domain Definition with the appropriate Type, and wrap in your
own processing.

Customers are not allowed to change the fundamental types of application
Domain Definitions.

Change the String Length
of a Domain Definition

None Allowed
(Partially)

Allowed for increasing the size only. If you want to decrease the size of an
application Domain Definition, please raise a Support case.

Not to be used to change the string length of the USERNAME Domain
Definition.

Create a new Domain
Definition based on an
application Domain
Definition

None Allowed

B.6 Relationships

B.6.1 Assignable
Table 10. Assignable Relationships
Action Discouraged ?

Make a customer-supplied struct assignable to an application
struct or Entity

Allowed

Make an application struct assignable to another application
struct or Entity

Discouraged

26 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

B.6.2 Aggregation
Table 11. Aggregations
Action Discouraged ?

Aggregate an application struct in a customer-supplied struct (i.e.
create a customer struct that 'contains' an application struct)

Allowed

Aggregate a customer-supplied or application struct in an
application struct (i.e. add any struct to an application struct by
aggregation)

Discouraged

B.6.3 Foreign Key
Table 12. Foreign Keys
Action Discouraged ?

Create a new Foreign Key where a customer-supplied Entity is
the child

Allowed

Create a new Foreign Key where an application Entity is the child Discouraged

B.6.4 Index
Table 13. Indexes
Action Discouraged ?

Create a new Index (on either an application or
customer-supplied Entity) using a customer-supplied struct

Allowed

Create a new Index (on either an application or
customer-supplied Entity) using an application struct

Discouraged

B.6.5 Unique Index
Table 14. Unique Indexes
Action Discouraged ?

Create a new Unique Index on an application Entity Discouraged

Create a new Unique Index on a customer-supplied Entity using
an application struct

Discouraged

Create a new Unique Index on a customer-supplied Entity using a
customer-supplied struct

Allowed

B.7 Other Mechanisms

B.7.1 Exclusions
Table 15. Exclusions
Action Discouraged ?

Use Exclusions to attempt to excluded classes from a server build Discouraged - application classes are not rebuilt every time from
version 6.0.3

Appendix B. Discouraged Extension Mechanisms 27

28 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 29

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

30 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 31

http://www.ibm.com/legal/us/en/copytrade.shtml

32 IBM Cúram Social Program Management: Cúram Development Compliancy Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Prerequisites

	Chapter 2. Developing Compliantly with Cúram
	2.1 Overview
	2.2 Starting a New Project
	2.2.1 Understand the Development Directory Structure
	2.2.2 Source Code Control

	2.3 Changing Server Source Artifacts
	2.3.1 Write Source Code for New Methods and Classes
	2.3.2 Changing Cúram Express Rules (CER) Rule Sets
	2.3.3 Extending Codetables

	2.4 Source Code and APIs
	2.4.1 Internal APIs
	2.4.2 External APIs
	2.4.3 Extension Mechanisms
	2.4.3.1 Entity Classes
	2.4.3.2 Domain Definitions
	2.4.3.3 Struct Classes
	2.4.3.4 Other Modeled Classes
	2.4.3.5 Non-Modeled Classes

	2.4.4 Summary

	2.5 Avoiding Common Compliancy Pitfalls
	2.5.1 Use Project-specific Prefixes in Artifact Names
	2.5.2 Use Numeric Identifiers in Custom Initial, Demo Data
	2.5.2.1 Reserved Ranges
	2.5.2.2 Large Data Sets
	2.5.2.3 Codetables Exception

	2.5.3 Never Make In-Place Modifications to Application Files
	2.5.4 Never Create Dependencies on Sample or Demo Artifacts
	2.5.5 Reflecting Changes to Dynamic Artifact Types Back to Development System
	2.5.6 Don't Create New Dependencies on Internal APIs

	Appendix A. Component Compliance Details
	A.1 Introduction

	Appendix B. Discouraged Extension Mechanisms
	B.1 Introduction
	B.2 Extension Classes
	B.2.1 Entity
	B.2.2 Struct
	B.2.3 Process, Facade, WebService, WSInbound

	B.3 Subclass With Replace
	B.3.1 Entity
	B.3.2 Process, Facade, WebService, WSInbound

	B.4 Subclass Without Replace
	B.4.1 Entity
	B.4.2 Process, Facade, WebService, WSInbound

	B.5 Domain Overriding
	B.5.1 Domain Definitions

	B.6 Relationships
	B.6.1 Assignable
	B.6.2 Aggregation
	B.6.3 Foreign Key
	B.6.4 Index
	B.6.5 Unique Index

	B.7 Other Mechanisms
	B.7.1 Exclusions

	Notices
	Trademarks

