
IBM Cúram Social Program Management

Cúram Evidence Developers Guide
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Evidence Developers Guide
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 35

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Purpose 1
1.2 Prerequisites 1
1.3 Audience 1

Chapter 2. Server / Client Evidence
Components 3
2.1 Server Side Artifacts 3

2.1.1 Standard Evidence Interface 3
2.1.2 Evidence Interface 5
2.1.3 Participant Evidence Interface 5
2.1.4 Accessing Non-modeled Functions 7

2.2 Client Side Artifacts 7

Chapter 3. Developing an Evidence
Solution. 9
3.1 Administration 9

3.1.1 Evidence Metadata 9
3.1.2 Product Evidence Link 9

3.2 Common Evidence Maintenance Operations . . 9
3.2.1 Create Evidence 9
3.2.2 Modify Evidence 12
3.2.3 Read Evidence 15
3.2.4 List Evidence 18

3.3 Evidence Dashboard and EvidenceFlow. . . . 19
3.4 Validations 19
3.5 More On Validations 20
3.6 Evidence Attribution 21

3.6.1 Re-attribution 22
3.7 Evidence Relationship. 22
3.8 Registering Evidence Implementations 23

3.8.1 Evidence Registrar Module 23
3.8.2 Legacy Evidence Registrar. 24

3.9 Custom Hooks 24
3.9.1 Evidence Controller Hook 24

3.9.2 Evidence Controller Hook Registrar &
Manager 24

Chapter 4. Participant Evidence
Integration 27
4.1 Overview 27
4.2 Integration of Participant Data as Evidence . . 27
4.3 Administration 28

4.3.1 AdminICEvidenceLink 28
4.3.2 ProductEvidenceLink 28

4.4 Integrating new Participant entities as Evidence 28
4.4.1 Implementing the
ParticipantEvidenceInterface 28
4.4.2 Register entity in a Registrar Module . . . 28
4.4.3 Applying Participant Evidence to all Cases 29
4.4.4 Modifications required to existing business
processes 29

4.5 Sequence Diagrams for Participant evidence . . 30
4.5.1 Create Participant Evidence Sequence
Diagram 30
4.5.2 Specific Processing For Participant Data
when Creating Evidence 31
4.5.3 Modify Participant Evidence Sequence
Diagram 32

Appendix. Appendix 33
A.1 Appendix A 33

A.1.1 Conditional Verification 33
A.1.2 Rule Artifacts supplied by Verification
framework 33
A.1.3 Rule Sets 33
A.1.4 Rule Classes 33
A.1.5 Verification Determinator 33
A.1.6 Verification Determinator Result 34
A.1.7 Verification Determinator Params 34
A.1.8 New Propagator 34

Notices 35
Trademarks 37

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Figures

1. Sequence Diagram for Creating Evidence 9
2. Sequence Diagram for Modifying Evidence 13
3. Sequence Diagram for Viewing Evidence 16
4. Sequence Diagram for Listing Evidence 18
5. Before 29

6. After 29
7. Participant Evidence Sequence 30
8. Evidence Sequence Diagram 31
9. Modify participant 32

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Tables

1. Evidence Relationship Link Entity 22

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Chapter 1. Introduction

1.1 Purpose
The purpose of this document is to provide assistance to developers intending to implement evidence
solutions using Cúram's Evidence solution. It outlines common pieces of evidence maintenance
functionality and describes how a developer can design / implement such functionality.

1.2 Prerequisites
The readers should be familiar with the evidence capturing aspect of case management as well as its use
in determining eligibility and entitlement on a case. They should also have read "The Evidence Pattern"
in the Cúram Evidence Solutions guide.

1.3 Audience
This document is targeted at a technical audience, both developers and architects, intending to implement
evidence solutions using Cúram's Evidence framework.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Chapter 2. Server / Client Evidence Components

2.1 Server Side Artifacts
All of the Evidence server side infrastructure artifacts are shipped in the
"curam.core.sl.infrastructure.impl" package. The key elements found here include the Evidence Controller
/ Evidence Controller Hook (see section 3.8) classes and the Evidence Interfaces. The Interfaces form part
of the Interface Hierarchy. The Participant Evidence Interface and Evidence Interface both extend the
parent Interface, Standard Evidence Interface. These Evidence Interfaces will be the artifacts of most
interest to designers / developers as each evidence entity will need to implement this interface.

2.1.1 Standard Evidence Interface
The Standard Evidence Interface defines the following methods which are common to both inheriting
interfaces. The interface and its associated methods are shown below with the appropriate javadoc
comments:

© Copyright IBM Corp. 2012, 2013 3

/*
* Copyright 2005-2006,2011 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Curam Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Curam Software.
*/

package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.entity.struct
.AttributedDateDetails;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import

curam.core.sl.infrastructure.struct.EIFieldsForListDisplayDtls;
import curam.core.sl.infrastructure.struct.ValidateMode;
import curam.core.struct.CaseKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.type.Date;

/**
* This interface is a key component of the Curam
* Evidence Solution. Implementations hoping to manage evidence
* via the Evidence Solution must ensure that the
* evidence entities contained within the solution implement the
* Evidence Interface. By doing this, the evidence is utilizing
* the Evidence Controller pattern whereby a lot of the common
* business functions for maintaining evidence are contained
* within the out-of-the-box evidence infrastructure.
*
* This interface is the super interface that will be
* extended by other evidence interfaces that wish to provide
* custom functionality for that type of evidence. The methods
* defined on this evidence are common to any interface that
* extends it.
*/

public interface StandardEvidenceInterface {

// __
/**
* Method for calculating case attribution dates. The
* calculation of evidence attribution is an integral part of a
* evidence solution as it determines the period of
* time for which a piece of evidence is effective. The
* implementation of this function will contain the logic that
* derives the appropriate effective period for the evidence of
* a particular type.
*
* @param caseKey
* Contains a case identifier
* @param evKey
* Contains the evidenceID / evidenceType pairing of
* the evidence to be attributed
*
* @return Case attribution details
*/
AttributedDateDetails calcAttributionDatesForCase(

CaseKey caseKey, EIEvidenceKey evKey)
throws AppException, InformationalException;

// __
/**
* Retrieves a summary of evidence details which are used to
* populate the ’Details’ column on the following evidence
* pages:
*
* - All evidence workspace pages
* - Apply changes page
* - Apply user changes page

4 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

2.1.2 Evidence Interface
The Evidence Interface and its associated methods are shown below with the appropriate javadoc
comments:

2.1.3 Participant Evidence Interface
The Participant Evidence Interface and its associated methods are shown below with the appropriate
javadoc comments:

/*
* Copyright 2005-2007 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary
* information of Curam Software, Ltd. ("Confidential
* Information"). You shall not disclose such Confidential
* Information and shall use it only in accordance with the
* terms of the license agreement you entered into with
* Curam Software.
*/

package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.struct
.AttributedDateDetails;

import curam.core.struct.CaseHeaderKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

/**
* This interface extends the StandardEvidenceInterface,
* therefore any class that implements EvidenceInterface
* must provide its own implementations of the methods
* defined in the standard interface. Any methods specific
* to "classic" (i.e. not participant) evidence are to be
* defined in this interface.
*/
public interface EvidenceInterface

extends StandardEvidenceInterface {

// __
/**
* Transfers evidence from one case to another.
*
* @param details
* Contains the evidenceID / evidenceType pairings of
* the evidence to be transferred and the transferred
* @param fromCaseKey
* The case from which the evidence is being
* transferred
* @param toCaseKey
* The case to which the evidence is being
* transferred
*/
void transferEvidence(EvidenceTransferDetails details,

CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
throws AppException, InformationalException;

}

Chapter 2. Server / Client Evidence Components 5

/*
* Copyright 2007 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Curam Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Curam Software.
*/

package curam.core.sl.infrastructure.impl;

import java.util.ArrayList;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import curam.core.sl.struct.ConcernRoleIDKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

/**
* This interface extends the StandardEvidenceInterface therefore
* any class that implements ParticipantEvidenceInterface must
* provide its own implementations of the methods defined in the
* standard interface. Any methods specific to participant
* evidence be defined in this interface.
*/

public interface ParticipantEvidenceInterface
extends StandardEvidenceInterface {

// __
/**
* Method to check if the attributes that changed during a
* modify require reassessment to be run when they are applied.
*
* @param attributesChanged
* - A list of Strings. Each represents the name of an
* attribute that changed
*
* @return true if Reassessment required
*/
boolean checkForReassessment(ArrayList attributesChanged)

throws AppException, InformationalException;

// __
/**
* Method for creating the snapshot record related to a
* participant evidence record.
*
* @param key
* Contains an evidenceID / evidenceType pairing
*
* @return The uniqueID and the evidence type of the Snapshot
* record.
*/
EIEvidenceKey createSnapshot(EIEvidenceKey key)

throws AppException, InformationalException;

// __
/**
* Method to compare attributes on two records of the same
* entity type. It then returns an ArrayList of strings with
* the names of each attribute that was different between them.
*
* @param key
* - Contains an evidenceID / evidenceType pairing
* @param dtls
* - a struct of the same type as the key containing
* the attributes to be compared against
*
* @return A list of Strings. Each represents an attribute name
* that differed.
*/

6 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Adopting an interface approach enforces a pattern upon entity design/development as each entity must
implement the same interface. This approach allows the Cúram Enterprise FrameworkFramework to
provide as much common functionality as possible so that custom implementations can concentrate more
on business aspects of evidence maintenance, e.g.validations. Each evidence entity must implement the
Evidence Interface to have access to the Evidence Controller class.This class implements the common
business logic across all evidence entities and the custom business logic specific to each evidence entity.

2.1.4 Accessing Non-modeled Functions
When the Evidence Interfaces are implemented by evidence entities, the methods defined by these
interfaces will be implemented by those entities. These methods will of course be non-modeled so will
only exist on the evidence entity impl classes. In order to access the non-modeled functions, it's necessary
to cast from the impl class. Examples of this can be seen in the entity program listings later in section 3.2
of this document. This casting mechanism will not work though unless the factory class is extending the
impl class as opposed to the base class. The only way that this can be achieved, if no non-stereotyped
functions are being added to the class, is to add a non-stereotyped dummy function. If this is not done, it
will result in a runtime error when the casting is executed.

2.2 Client Side Artifacts
The client side infrastructure artifacts are located inside the..\webclient\components\core\Evidence
Infrastructure directory. This folder primarily contains uim and vim client pages. The vim files will
typically be included inside solution specific uim pages to manage generic evidence details whereas the
uim pages contain complete out-of-the-box evidence maintenance functionality.

The key benefit of the.im files is that they can be changed in line with any enhancements made to the
evidence maintenance solution without any impact on specific implementations, i.e. the upgrade is
seamless.

Examples of infrastructural.vim files are as follows:
v Evidence_createHeader.vim
v Evidence_modifyHeader.vim
v Evidence_viewHeader.vim
v Evidence_viewHeaderForModal.vim

These artifacts manage the infrastructural attributes of evidence maintenance and should be included in
create, modify and view evidence pages. This will be highlighted later when a sample implementation of
the Evidence solution is discussed. Some further examples of vim files include:
v Evidence_typeWorkspace.vim
v Evidence_workspaceInEditHighLevelView.vim
v Evidence_workspaceActiveHighLevelView.vim

These artifacts are used to populate evidence workspaces. An evidence workspace is a central location for
managing evidence. The above vim files will be included by workspace.uim pages.

Some examples of infrastructural uim pages which provide entire evidence maintenance functions are:
v Evidence_applyChanges1.uim
v Evidence_addNewEvidence.uim
v Evidence_dashboard.uim

Evidence_applyChanges1 lists all work-in-progress evidence, i.e. all new and updated evidence or
evidence that is pending removal. The display and action bean on this page live on the Evidence facade
which is part of the centralized evidence maintenance functionality.

Chapter 2. Server / Client Evidence Components 7

Evidence_addNewEvidence lists all possible evidence types, filtered by category, and launches an
appropriate create page for each.

Evidence_dashboard lists all evidence types on the given case broken into categories. It highlights which
types have In Edit evidence recorded and which have verifications or issues outstanding.

Note: It is important to note that in some cases.vim files found in the client infrastructure package are
actually included in infrastructure pages. For instance, Evidence_dashboardView.vim is included inside
the Evidence_dashboard page and Evidence_flowView.vim is included inside the Evidence_flow page.

8 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Chapter 3. Developing an Evidence Solution

3.1 Administration

3.1.1 Evidence Metadata
The Evidence Metadata entity contains metadata information relating to each evidence type. This entity
must be populated before evidence maintenance can proceed. A number of evidence page names,
including the view and modify page names, are included in the metadata. These page names are
retrieved at runtime via evidence infrastructure resolve scripts and via implementations of the Evidence
Type interface on the server. The records on the Evidence Metadata entity are effective dated to facilitate
pages changing over time, due to legislation for example.

3.1.2 Product Evidence Link
The Product Evidence Link entity links evidence to a product. In some circumstances, evidence may be
stored at the Integrated Case level but only some of this evidence may apply to a given product on the
Integrated Case. To know which evidence should be attributed to a given product, a lookup of this entity
is performed as part of the attribution processing and only evidence linked to the product is attributed.

3.2 Common Evidence Maintenance Operations
In this section, some common evidence maintenance operations are outlined. This is done using sequence
diagrams, client screenshots and server code snippets from the a sample product implementation. This
product is used for demonstration purposes only.

3.2.1 Create Evidence
The development, both client and server, of a create evidence operation is outlined here.

3.2.1.1 Create Evidence Sequence Diagram

Figure 1. Sequence Diagram for Creating Evidence

© Copyright IBM Corp. 2012, 2013 9

3.2.1.2 Client - Screen to Be Developed
The client page to be developed must include the evidence infrastructure page
Evidence_createHeader.vim. This included.vim page facilitates the management of infrastructure
attributes. For example, the Evidence Descriptor's receivedDate attribute is currently managed through
this infrastructure page. If, at some point in the future, additional attributes which need to be managed
through the create function were added to the Evidence Descriptor entity, then these attributes could be
mapped through this infrastructure page. Hence, this requires just a once-off infrastructure change rather
than many changes to custom artifacts.

3.2.1.3 Server - Methods to Be Implemented
v SEGEvidenceMaintainenance.createAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Creates an Asset evidence record.
*
* @param dtls Details of the new evidence record to be created.
*
* @return The details of the created record.
*/
public ReturnEvidenceDetails createAssetEvidence(
AssetEvidenceDetails dtls)
throws AppException, InformationalException {

// set the informational manager for the transaction
TransactionInfo.setInformationalManager();

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReturnEvidenceDetails createdEvidenceDetails =

new ReturnEvidenceDetails();

// create the Asset record and populate the return details
createdEvidenceDetails =

evidenceObj.createAssetEvidence(dtls);

createdEvidenceDetails.warnings =
EvidenceControllerFactory.newInstance().getWarnings();

return createdEvidenceDetails;
}

v Asset.createAssetEvidence service layer operations
These overloaded service layer operations call the Evidence Controller infrastructure function for
inserting evidence.
// __
/**
* Creates a Asset record.
*
* @param dtls Contains Asset evidence record creation details.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails createAssetEvidence(

AssetEvidenceDetails dtls)
throws AppException,InformationalException {

return createAssetEvidence(dtls, null, null, false);
}

10 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

// __
/**
* Creates a Asset record.
*
* @param dtls Contains Asset evidence record creation details.
*
* @param sourceEvidenceDescriptorDtls If this function is called
* during evidence sharing, this parameter will be non-null and
* it represents the header of the evidence record being shared
* (i.e. the source evidence record)
*
* @param targetCase If this function is called during evidence
* sharing, this parameter will be non-null and it represents the
* case the evidence is being shared with.
*
* @param sharingInd A flag to determine if the function is
* called in evidence sharing mode. If false, the function is
* being called as part of a regular create.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails createAssetEvidence(

AssetEvidenceDetails dtls,
EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
CaseHeaderDtls targetCase, boolean sharingInd)
throws AppException,InformationalException {

// validate the mandatory fields
validateMandatoryDetails(dtls);

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface)

EvidenceControllerFactory.newInstance();
EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =

new EvidenceDescriptorInsertDtls();

ReturnEvidenceDetails createdEvidence =
new ReturnEvidenceDetails();

if (sharingInd) {

EvidenceDescriptorDtls sharedDescriptorDtls =
evidenceControllerObj.shareEvidence(

sourceEvidenceDescriptorDtls,
targetCase);

// Return the evidence ID and warnings
createdEvidence.evidenceKey.evidenceID =

sharedDescriptorDtls.relatedID;
createdEvidence.evidenceKey.evType =

sharedDescriptorDtls.evidenceType;

} else {

// As there is no participant associated with this evidence
// we must retrieve the case participant to set the evidence
// descriptor participant.
CaseHeaderKey caseHeaderKey = new CaseHeaderKey();
caseHeaderKey.caseID = dtls.caseIDKey.caseID;
evidenceDescriptorInsertDtls.participantID =

CaseHeaderFactory.newInstance().readCaseParticipantDetails(
caseHeaderKey).concernRoleID;

// Evidence descriptor details
evidenceDescriptorInsertDtls.caseID = dtls.caseIDKey.caseID;
evidenceDescriptorInsertDtls.evidenceType =

CASEEVIDENCE.ASSET;

Chapter 3. Developing an Evidence Solution 11

evidenceDescriptorInsertDtls.receivedDate =
dtls.descriptor.receivedDate;

// Upon creation, the change reason should be Initial
evidenceDescriptorInsertDtls.changeReason =

EVIDENCECHANGEREASON.INITIAL;

// Evidence Interface details
EIEvidenceInsertDtls eiEvidenceInsertDtls =

new EIEvidenceInsertDtls();
eiEvidenceInsertDtls.descriptor.assign(

evidenceDescriptorInsertDtls);
eiEvidenceInsertDtls.evidenceObject = dtls.dtls;

// Insert the evidence
EIEvidenceKey eiEvidenceKey =

evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

// Return the evidence ID and warnings
createdEvidence.evidenceKey.evidenceID =

eiEvidenceKey.evidenceID;
createdEvidence.evidenceKey.evType =

eiEvidenceKey.evidenceType;
createdEvidence.warnings =

evidenceControllerObj.getWarnings();
}

return createdEvidence;
}

3.2.2 Modify Evidence
The development, both client and server, of a modify evidence operation is outlined here.

12 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

3.2.2.1 Modify Evidence Sequence Diagram

3.2.2.2 Client - Screen to Be Developed
The client page to be developed must include the evidence infrastructure page
Evidence_modifyHeader1.vim. This included.vim page facilitates the viewing / modification of some
infrastructure attributes. For example, received date can be viewed or modified via this.vim. Also, change
reason and effective date of change can be set on the edited record. If, at some point in the future,
additional attributes which need to be managed through the modify function were added to the Evidence
Descriptor entity, then these attributes could be mapped through this infrastructure page. Hence, this
requires just a once-off infrastructure change rather than many changes to custom artifacts.

The inclusion of Evidence_modifyHeader1.vim facilitates the following three types of evidence
modification:
v Editing Evidence In Place

Figure 2. Sequence Diagram for Modifying Evidence

Chapter 3. Developing an Evidence Solution 13

This refers to the modification of incorrect data on a piece of evidence which has not yet been
activated. In this scenario, if the effective date is modified an error will be thrown informing the user
that the date can only be modified when updating an active record.

v Evidence Correction
An evidence correction occurs when a piece of data on an active evidence record is modified resulting
in the current active record being superseded. In this scenario, the effective date field must not be
modified as this will result in a new record in the succession being created - see evidence succession.

v Evidence Succession
If the user modifies the effective date when updating a piece of active evidence, they are specifying a
new record in the succession set, i.e. the new record will have the same successionID as the active
record. Therefore, the active record will essentially be copied and made effective from the effective date
specified by the user and the update applied to this record.
Note: Activation of newly created records in a succession will cause reattribution of records in that
succession set.

3.2.2.3 Server - Methods to Be Implemented
v SEGEvidenceMaintenance.modifyAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Modifies an Asset evidence record.
*
* @param details The modified evidence details.
*
* @return The details of the modified evidence record.
*/
public ReturnEvidenceDetails modifyAssetEvidence(

AssetEvidenceDetails dtls)
throws AppException, InformationalException {

// set the informational manager for the transaction
TransactionInfo.setInformationalManager();

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReturnEvidenceDetails modifiedEvidenceDetails =

new ReturnEvidenceDetails();

// modify the Asset record and populate the return details
modifiedEvidenceDetails =

evidenceObj.modifyAssetEvidence(dtls);

modifiedEvidenceDetails.warnings =
EvidenceControllerFactory.newInstance().getWarnings();

return modifiedEvidenceDetails;
}

v Asset.modifyAssetEvidence service layer operation
This service layer operation calls the Evidence Controller infrastructure function for modifying
evidence.
// __
/**
* Modifies an Asset record.
*
* @param dtls Contains Asset evidence record modification
* details.
*
* @return The modified evidence ID and warnings.

14 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

*/
public ReturnEvidenceDetails modifyAssetEvidence

(AssetEvidenceDetails details)
throws AppException, InformationalException {

// validate the mandatory fields
validateMandatoryDetails(details);

// EvidenceController business object
EvidenceControllerInterface evidenceControllerObj =

(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

//
// Call the EvidenceController to modify the evidence
//

eiEvidenceKey.evidenceID = details.dtls.evidenceID;
eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

// Create the evidence interface modification struct and assign
// the details
EIEvidenceModifyDtls eiEvidenceModifyDtls =

new EIEvidenceModifyDtls();
eiEvidenceModifyDtls.descriptor.receivedDate =

details.descriptor.receivedDate;
eiEvidenceModifyDtls.descriptor.versionNo =

details.descriptor.versionNo;
eiEvidenceModifyDtls.descriptor.effectiveFrom =

details.descriptor.effectiveFrom;
eiEvidenceModifyDtls.descriptor.changeReceivedDate =

details.descriptor.changeReceivedDate;
eiEvidenceModifyDtls.descriptor.changeReason =

details.descriptor.changeReason;
eiEvidenceModifyDtls.evidenceObject = details.dtls;

evidenceControllerObj.modifyEvidence(
eiEvidenceKey, eiEvidenceModifyDtls);

//
// Return details from the modify operation
//

ReturnEvidenceDetails returnEvidenceDetails =
new ReturnEvidenceDetails();

returnEvidenceDetails.evidenceKey.evidenceID =
eiEvidenceKey.evidenceID;

returnEvidenceDetails.evidenceKey.evType =
eiEvidenceKey.evidenceType;

returnEvidenceDetails.warnings =
evidenceControllerObj.getWarnings();

return returnEvidenceDetails;
}

3.2.3 Read Evidence
The development, both client and server, of a read evidence operation is outlined here.

Chapter 3. Developing an Evidence Solution 15

3.2.3.1 View Evidence Sequence Diagram

3.2.3.2 Client - Screen to Be Developed
The client page includes the evidence infrastructure page Evidence_viewHeaderForModal.vim. This
included.vim facilitates the viewing of some infrastructure attributes.

3.2.3.3 Server - Methods to Be Implemented
v SEGEvidenceMaintenance.readAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Reads an Asset evidence record.
*
* @param key Identifies the evidence record to read.
*
* @return The details of the evidence record.
*/
public ReadAssetEvidenceDetails readAssetEvidence(

EvidenceCaseKey key)
throws AppException, InformationalException {

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReadAssetEvidenceDetails readEvidenceDetails =

new ReadAssetEvidenceDetails();

// read the Asset record and populate the return details
readEvidenceDetails = evidenceObj.readAssetEvidence(key);

Figure 3. Sequence Diagram for Viewing Evidence

16 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

return readEvidenceDetails;

}

This service layer operation calls the Evidence Controller infrastructure function for reading evidence.
// __
/**
* Reads an Asset record.
*
* @param key contains ID of record to read.
*
* @return Asset evidence details read.
*/
public ReadAssetEvidenceDetails readAssetEvidence(

EvidenceCaseKey key)
throws AppException, InformationalException {

// EvidenceController business object
EvidenceControllerInterface evidenceControllerObj =

(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = key.evidenceKey.evidenceID;
eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

// Retrieve the evidence details
EIEvidenceReadDtls eiEvidenceReadDtls =

evidenceControllerObj.readEvidence(eiEvidenceKey);

// Retrieve the evidence descriptor details
EvidenceDescriptor evidenceDescriptorObj =

EvidenceDescriptorFactory.newInstance();

EvidenceDescriptorKey evidenceDescriptorKey =
new EvidenceDescriptorKey();

evidenceDescriptorKey.evidenceDescriptorID =
eiEvidenceReadDtls.descriptor.evidenceDescriptorID;

EvidenceDescriptorDtls evidenceDescriptorDtls =
evidenceDescriptorObj.read(evidenceDescriptorKey);

//
// Return the evidence
//

ReadAssetEvidenceDetails readEvidenceDetails =
new ReadAssetEvidenceDetails();

readEvidenceDetails.descriptor
.assign(evidenceDescriptorDtls);

readEvidenceDetails.descriptor.approvalRequestStatus =
eiEvidenceReadDtls.descriptor.approvalRequestStatus;

readEvidenceDetails.descriptor.updatedBy =
eiEvidenceReadDtls.descriptor.updatedBy;

readEvidenceDetails.descriptor.updatedDateTime =
eiEvidenceReadDtls.descriptor.updatedDateTime;

// assign the evidence to the return object
readEvidenceDetails.dtls.assign(

(AssetDtls)(eiEvidenceReadDtls.evidenceObject));

return readEvidenceDetails;
}

Chapter 3. Developing an Evidence Solution 17

3.2.4 List Evidence
The development, both client and server, of a list evidence operation is outlined here. The list operation is
used to populate an evidence workspace page.

3.2.4.1 List Evidence Sequence Diagram

3.2.4.2 Server - Methods to Be Developed
Much of the data displayed on the workspace page is retrieved via the Evidence Descriptor entity. The
description and period are retrieved via Evidence Interface methods which must be implemented for each
evidence type.
v Asset.getDetailsForListDisplay entity operation

The description, or summary details, is retrieved via the getDetailsForListDisplay Evidence Interface
method which is implemented by the evidence entities. The implementation of the
getDetailsForListDisplay method for the Asset is shown below. This interface function is also used to
retrieve summary data when applying, approving, rejecting evidence as well as in evidence sharing,
verifications and issues screens.
// __
/**
* Gets evidence details for the list display
*
* @param key Evidence key containing the evidenceID and
* evidenceType
*
* @return Evidence details to be displayed on the list page
*/
public EIFieldsForListDisplayDtls getDetailsForListDisplay(

EIEvidenceKey key)
throws AppException, InformationalException {

// Return object
EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =

Figure 4. Sequence Diagram for Listing Evidence

18 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

new EIFieldsForListDisplayDtls();

// Asset entity key
final AssetKey assetKey = new AssetKey();
assetKey.evidenceID = key.evidenceID;

// Read the Asset entity to get display details
final AssetDtls assetDtls =

AssetFactory.newInstance().read(assetKey);

// Set the start / end dates
eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

LocalisableString summary = new LocalisableString(
BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

summary.arg(
CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,

assetDtls.assetType));

// Format the amount for display
TabDetailFormatter formatterObj =

TabDetailFormatterFactory.newInstance();
AmountDetail amount = new AmountDetail();
amount.amount = assetDtls.value;
summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

eiFieldsForListDisplayDtls.summary =
summary.toClientFormattedText();

return eiFieldsForListDisplayDtls;
}

3.3 Evidence Dashboard and EvidenceFlow
The Evidence Dashboard and EvidenceFlow are user interface constructs introduced to assist user
navigation to all evidence on a case. No custom code is required in order to configure these for a custom
case as these are infrastructural.

From these pages, a user can select a particular evidence type which should open the respective evidence
workspace for that type of evidence. In the case of the Dashboard, this will open in a new tab, whereas
the EvidenceFlow will redirect the bottom portion of the page.

The existence of 'In Edit' evidence records, outstanding verifications and outstanding issues are all
highlighted graphically.

The list of evidence types on the case may be split into categories on these pages, by defining the
category on the AdminICEvidenceLink table for Integrated Cases, or on the ProductEvidenceLink table
for Product Deliveries.

3.4 Validations
The infrastructure facilitates the validation of work-in-progress changes. The validate page can be used
either at a case level or on an individual evidence type.

The purpose of the case level validate page is to provide a means to test validations in advance of
applying the changes. For some products, the full evidence set may be quite sizeable resulting in the
apply changes listing containing a considerable number of evidence changes of varying evidence types.
In that scenario, the individual evidence type validate page may make it easier to associate a validation

Chapter 3. Developing an Evidence Solution 19

message with the correct evidence record. The validate page allows a user to pre-test the evidence
changes. The user can see which validations will fail and fix them before applying the changes.

3.5 More On Validations
Two of the Evidence Interface functions which form part of the infrastructure support for evidence
validation are selectForValidations and validate.

The selectForValidations function will typically be used to select all evidences which are related to or are
dependant on the piece of evidence being validated. An example of this would be the modification of an
amount on a parent evidence record. As part of the validation of the parent evidence, a check might need
to be performed to ensure the sum of the child evidence records does not exceed the modified parent
amount.

When a user applies changes to evidence records, the Evidence Controller calls out to the
selectForValidations interface function on the entities for each evidence record. The logic within this
method retrieves all related 'Active' and 'In Edit' evidences within the hierarchy for validation. For
instance, if we are validating a child evidence record within a parent-child-grandchild relationship
structure, both parent evidence and grandchild evidence are retrieved for the validation processing.

Once processing returns to the Evidence Controller, a filter is applied to the list of evidence. This filters
the input list and leaves only 'Active' records, or 'In Edit' records as appropriate depending on whether
the function must validate against work-in-progress or active only evidence. This filtered list is then
passed to the validate function where custom validation is applied.

The program listing below shows a selectForValidations implementation used in the Asset demo.
// __

/**
* Selects all the records for validations
*
* @param evKey Contains an evidenceID / evidenceType pairing
*
* @return List of evidenceID / evidenceType pairings
*/
public EIEvidenceKeyList selectForValidation(

EIEvidenceKey evKey)
throws AppException, InformationalException {

// Return object
EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

// Casting to impl due to calling non-modeled interface
curam.seg.evidence.entity.intf.AssetOwnership

assetOwnershipObj =
(curam.seg.evidence.entity.impl.AssetOwnership)

AssetOwnershipFactory.newInstance();

eiEvidenceKey.evidenceID = evKey.evidenceID;
eiEvidenceKey.evidenceType =

CASEEVIDENCE.ASSET;

EIEvidenceKeyList eiEvidenceKeyList =
assetOwnershipObj.readAllByParentID(eiEvidenceKey);

eiEvidenceKeyList.dtls.add(0, evKey);

return eiEvidenceKeyList;
}

20 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

The code here, on the Asset parent entity, makes a call to the readAllByParentID interface method
implementation on the child entity, Asset Ownership. The implementation of the readAllByParentID
function on the Asset Ownership is shown in the program listing below.
// __
/**
* Read all Asset Ownership records
*
* @param key Contains the evidenceID and evidenceType
*
* @return A list of evidenceID and evidenceType pairs
*/
public EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)

throws AppException, InformationalException {

// Return object
EIEvidenceKeyList eiEvidenceKeyList = new EIEvidenceKeyList();

// Create the link entity object
EvidenceRelationship evidenceRelationshipObj =

EvidenceRelationshipFactory.newInstance();

// parent entity key
ParentKey parentKey = new ParentKey();
parentKey.parentID = key.evidenceID;
parentKey.parentType = key.evidenceType;

// Reads all relationship details for the specified parent
ChildKeyList childKeyList =

evidenceRelationshipObj.searchByParent(parentKey);

// Iterate through the link details list
for (int i = 0; i < childKeyList.dtls.size(); i++) {

if (childKeyList.dtls.item(i).childType.equals(
CASEEVIDENCE.ASSETOWNERSHIP)) {

EIEvidenceKey listEvidenceKey = new EIEvidenceKey();

listEvidenceKey.evidenceID =
childKeyList.dtls.item(i).childID;

listEvidenceKey.evidenceType =
childKeyList.dtls.item(i).childType;

eiEvidenceKeyList.dtls.addRef(listEvidenceKey);
}

}

return eiEvidenceKeyList;

}

The function above retrieves all child evidence keys for the specified parent. The childID and childType
pairings are returned to the calling mechanism.

3.6 Evidence Attribution
Evidence attribution refers to the assignment of a period of time to a given piece of evidence during
which that piece of evidence will be used for entitlement calculations. The attribution period may range
from a basic one to one mapping from the business start and end dates through to a more sophisticated
algorithm considering any number of factors. This custom logic calculates the attribution period and the
evidence controller takes care of synchronizing these with the specified effective dates – see example(s)
below. It should also be noted that the attribution from and to dates can be null in which case the piece
of evidence is assumed effective from the case start date to the expected end date.

Chapter 3. Developing an Evidence Solution 21

One of the Evidence Interface functions is calcAttributionDatesForCase and the implementation of this
function on an entity class is where the attribution from and to dates are determined for evidence on that
entity.

3.6.1 Re-attribution
When evidence is modified as part of a succession and subsequently activated, re-attribution of the
evidence records in the succession set occurs. A basic example of how this works is shown below:

Business Start Date: 3rd May 2006 (=attribution from date)

Business End Date: 30th July 2006 (=attribution to date)

A succession record is created effective from 5th June 2006. On activation of this record, the evidence is
re-attributed and the following attribution records created:

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

Re-attribution also occurs if evidence in a succession set is removed. For example, if the following three
attribution records exist for records in the same succession set

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

31st July 2006 to 29th Sept 2006

and the evidence record associated with the middle one is removed, applying changes will cause the
following re-attribution

3rd May 2006 to 30th July 2006

31st July 2006 to 29th Sept 2006

The attribution record from 5th June 2006 to 30th July 2006 remains on the database but won't be picked
up by eligibility processing as the associated evidence is removed, i.e. has a status of 'Canceled'.

3.7 Evidence Relationship
By default, the Evidence infrastructure facilitates the linking of parent-child evidence via the
EvidenceRelationship link entity. The structure of the EvidenceRelationship link entity is as follows:

Table 1. Evidence Relationship Link Entity

Evidence Relationship

evidenceRelationshipID

parentID

parentType

childID

childType

This supports the relationship between any parent-child evidence and does away with the necessity for
customers to model their own link entities for managing such relationships. When evidence is being

22 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

inserted, the generic EvidenceController.insertEvidence function makes a call to the business process
EvidenceRelationship.createLink. If a parent type has been specified, i.e. passed in from the client as part
of the insert, then a record will be written to the EvidenceRelationship entity linking the child evidence to
its parent. Also, a call is made to the business process EvidenceRelationship.cloneLinks directly after the
call to the interface operation insertEvidenceOnModify. From cloneLinks, two further calls are made to
cloneLinksForParent and cloneLinksForChild.

If customers are using their own link entities to manage relationships, they will need to override the
Evidence Relationship business processes for creating and cloning links. The evidence type is available in
the input keys of both these functions which means that responsibility can be delegated to the
appropriate custom relationship processing based on the evidence type in the key.

3.8 Registering Evidence Implementations
The evidence maintenance pattern requires the set of evidence entities to be registered before they can be
used. This is so that the controller can access these evidence entities at runtime.

The Core Cúram Framework does not know in advance which evidence entities will be used for the
given evidence maintenance facility associated with a particular product implementation. The evidence
types and their implementation must be paired at runtime.

3.8.1 Evidence Registrar Module
Google Guice dependency injection should be used in order to register the different evidence types and
their implementations. This can be done by writing a new module class, or adding to a pre existing one.
Once this is added to the ModuleCalssName table, then at runtime it will be loaded and the evidence
types registered.

Example
/*
* Copyright 2011 Cúram Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Cúram Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Cúram Software.
*/

package curam.seg.evidence.service.impl;

import curam.codetable.CASEEVIDENCE;
import com.google.inject.AbstractModule;
import curam.core.impl.FactoryMethodHelper;
import java.lang.reflect.Method;
import com.google.inject.multibindings.MapBinder;
import curam.core.impl.RegistrarImpl;
import curam.core.impl.Registrar.RegistrarType;

/**
* A module class which provides registration for all of the
* evidence hook implementations.
*/
public class SEGRegistrarModule extends AbstractModule {

@Override
public void configure() {

// Register all hook implementations which implement the

Chapter 3. Developing an Evidence Solution 23

// interface EvidenceInterface.
MapBinder<String, Method> evidenceInterfaceMapBinder =

MapBinder.newMapBinder(binder(), String.class,
Method.class, new RegistrarImpl(RegistrarType.EVIDENCE));

evidenceInterfaceMapBinder
.addBinding(CASEEVIDENCE.ASSET)

.toInstance(FactoryMethodHelper.getNewInstanceMethod(
curam.seg.evidence.entity.fact.AssetFactory.class));

}
}

3.8.2 Legacy Evidence Registrar
The legacy mechanism for registration of evidence entities is still supported. i.e. using the Application
Properties to specify the factories to populate a hashmap of the hook classes. The factory code will not
change in order to maintain backward compatibility but all out of the box, legacy implementations have
been deprecated.

3.9 Custom Hooks
As the Evidence Controller functionality is generic to all evidence solutions, the only way to facilitate an
organization's unique requirements is by the provision of hooks where custom logic can be located in
order to extend the core solution. Call outs to these hooks, or extension points, are made within the
Evidence Controller maintenance functions.

3.9.1 Evidence Controller Hook
Evidence Controller Hook is the evidence infrastructure class which contains the extension points for the
evidence maintenance pattern. An example of a hook in this class is postRemoveEvidence. A call is made
to this function inside the Evidence Controller removeEvidence operation. Customers must override the
hook with their custom version if they want to perform post remove evidence processing.

3.9.2 Evidence Controller Hook Registrar & Manager
Following on from the Evidence Registrar and the underlying Dependency Injection pattern, a similar
approach has been taken for the registration of the Evidence Controller Hook class. An Evidence
Controller Hook Registrar interface is shipped as part of the evidence infrastructure. As before, at
runtime, the Evidence Controller invokes the Registrar's register method which performs the dependency
injection of the associated custom Evidence Controller Hook. This is the class which will have extended
the out-of-the-box Evidence Controller Hook and overridden the methods being customized. This
"injector" class is located through runtime configuration where the injector class itself is referred to as the
"Evidence Controller Hook Registrar".

The dependency injection involves two steps. First, a custom Evidence Controller Hook Registrar, which
implements the Evidence Controller Hook Registrar interface, must be located and the Registrar then
invoked to register the customized hook class. For example, the product type and custom Evidence
Controller Hook class pairing will be entered into a hashmap and then the class looked up via the
product type when it's required. In order to locate the Evidence Controller Hook Registrar, its class name
must be configured using the environment variable "curam.case.evidencecontrollerhook.registrars". Note:
additional entries need to be added to this environment variable in a comma delimited format.

The implementation of the Registrar's register method must reference the customized Evidence Controller
Hook class. Doing this in code, rather than as configuration, provides a compile time check that the
referenced class exists. The existence of the Registrar, though, is only ascertained from the provided
configuration, and may result in a runtime failure if the application is mis-configured.

24 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

The Evidence Controller Hook Manager class manages the static initialization of the Evidence Controller
Hook mapping as well as the retrieval of the subclass of the Evidence Controller Hook. If no subclass is
found, the out-of-the-box version of the Evidence Controller Hook class is returned.

Chapter 3. Developing an Evidence Solution 25

26 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Chapter 4. Participant Evidence Integration

4.1 Overview
Evidence is the term used for data in the calculation of eligibility and entitlement. Participant data is also
regarded as evidence, a concern's date of birth for example, but in the past it wasn't always treated as
classic evidence. It is obviously correct for a concern's date of birth to be maintained within the
Participant Manager rather than being stored on a separate evidence entity, i.e. one that is interfaced to
the Evidence API, but it must also be propagated across all cases belonging to the concern and any
changes in such evidence must trigger reassessment.
v A modification applied to Participant data will automatically apply to all cases using this data
v Modifying such data will trigger reassessment of all cases using this data

The following Core Participant entities have been integrated with Evidence:
v Address
v AlternateID
v AlternateName
v BankAccount
v Citizenship
v ConcernRole
v ConcernRoleRelationship
v Education
v Employer
v Employment
v EmploymentWorkHour
v Foreign Residency
v Person
v ProspectEmployer
v ProspectPerson

4.2 Integration of Participant Data as Evidence
Participant Evidence Integration is available out of the box but, like evidence, it requires a certain amount
of configuration. If the configuration is not carried out, then all newly integrated Participant evidence
will not integrate with the Evidence API. It will, however, continue to function as it always has. Once
configured, the Participant evidence will be linked to one or more cases via an Evidence Descriptor. As in
the case of classic evidence, the Evidence Descriptor can be associated with either an Integrated Case or a
Product Delivery.

The required configuration links the Participant evidence types to the Integrated Case(s) or Product(s)
that will use them. Such data is stored on the AdminICEvidenceLink and ProductEvidenceLink
respectively. Participant data that will be stored at the Integrated Case level needs to be configured on the
AdminICEvidenceLink entity whereas Participant evidence that will be used by a Product needs to be
configured on the ProductEvidenceLink entity.

© Copyright IBM Corp. 2012, 2013 27

4.3 Administration

4.3.1 AdminICEvidenceLink
Every integrated case type that wants to integrate the available 15 entities as evidence will need to insert
an entry into the AdminICEvidenceLink table. This table must link evidenceMetadataID (from
EvidenceMetadata table) and adminIntegratedCaseID (from AdminIntegratedCase table) for each
participant entity required as evidence and for each integrated case type.

4.3.2 ProductEvidenceLink
Every product delivery case type that wants to integrate the available 15 entities as evidence will need to
insert an entry into the ProductEvidenceLink table. This table must link evidenceMetadataID (from
EvidenceMetadata table) and productID (from Product table) for each participant entity required as
evidence and for each product type.

4.4 Integrating new Participant entities as Evidence
Integrating new, or existing, Participant entities with Evidence requires a number of steps. As mentioned
above, meta-data needs to be configured for Integrated Case types and Product types. As well as this,
other infrastructural support needs to be implemented by a developer in order for the integration to
work.

4.4.1 Implementing the ParticipantEvidenceInterface
A Participant entity being integrated into the Evidence solution must implement the
ParticipantEvidenceInterface. This means that the entity will need to implement the following functions:
v calcAttributionDatesForCase
v getDetailsForListDisplay
v getEndDate
v getStartDate
v insertEvidence
v insertEvidenceOnModify
v modifyEvidence
v readAllByParentID
v readEvidence
v selectForValidation
v validate
v checkForReassessment
v createSnapshot
v getChangedAttributeList
v readAllByConcernRoleID
v removeEvidence

4.4.2 Register entity in a Registrar Module
Participant entities being integrated to Evidence need to be registered via a Registrar Module as outlined
in 3.8.1, “Evidence Registrar Module,” on page 23. The out of the box participant evidence types has been
configured in CoreRegistrarModule. This binds the evidence type to it's entity. These map bindings are
loaded at runtime and are used by the Evidence Controller when looking up the appropriate evidence
entity for a given type, i.e. the entity that has implemented the ParticipantEvidenceInterface.

28 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

4.4.3 Applying Participant Evidence to all Cases
A new hook class ApplyChangesForEvidence has been added.

The new ApplyChangesForEvidence class represents a hook which can be overridden by custom code.
The ApplyChangesForEvidence.isApplyChangesAutomatedForEvidence method is called from Evidence
Controller to decide whether reassessment needs to be triggered when evidence is applied. The default
implementation defaults to false and therefore the user will have to manually apply the changes on the
associated cases. If the solutions wish to customize, the implementers should use
ProductHookRegistrar.registerApplyChangesHooks method to add details of the hooks to use for
applying changes. The static map attribute, applyChangesHookMap present in ProductHookManager
class is used to store pairs of product type and the name of the class that implements the hook for that
product type. The method ProductHookManager.getApplyChangesHook gets the implementation subclass
of the ApplyChangesForEvidence class for the specified product type. The method
EvidenceController.applyParticipantEvodence has been updated to obtain product delivery and product
details for the case and then call ProducHookManager.getApplyChangesHook to obtain correct instance
of the ApplyChangesForEvidence class for the given product.

4.4.4 Modifications required to existing business processes
In all places where there are existing calls to insert, modify, and less frequently, remove methods, the
code needs to be updated to invoke the EvidenceController as well as the insert, modify and remove
methods as appropriate. An example of how an insert works with Evidence is shown below:

// insert new citizenship entry
citizenshipObj.insert(citizenshipDtls);

Figure 5. Before

//
// Call the EvidenceController object and insert evidence
// Evidence descriptor details
EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =

new EvidenceDescriptorInsertDtls();
evidenceDescriptorInsertDtls.participantID =

details.concernRoleID;
evidenceDescriptorInsertDtls.evidenceType =

CASEEVIDENCE.CITIZENSHIP;
evidenceDescriptorInsertDtls.receivedDate =
Date.getCurrentDate();

// Evidence Interface details
EIEvidenceInsertDtls eiEvidenceInsertDtls =

new EIEvidenceInsertDtls();
eiEvidenceInsertDtls.descriptor.assign(

evidenceDescriptorInsertDtls);
eiEvidenceInsertDtls.descriptor.participantID =

citizenshipDtls.concernRoleID;
eiEvidenceInsertDtls.evidenceObject =

citizenshipDtls;

// EvidenceController business object
curam.core.sl.infrastructure.impl.EvidenceControllerInterface

evidenceControllerObj =
(curam.core.sl.infrastructure.impl.EvidenceControllerInterface)
curam.core.sl.infrastructure.fact.EvidenceControllerFactory
.newInstance();

// Insert the evidence
EIEvidenceKey eiEvidenceKey =

evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

Figure 6. After

Chapter 4. Participant Evidence Integration 29

4.5 Sequence Diagrams for Participant evidence
The development, both client and server, of creating and modifying evidence operations are outlined
here:

4.5.1 Create Participant Evidence Sequence Diagram

Figure 7. Participant Evidence Sequence

30 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

4.5.2 Specific Processing For Participant Data when Creating Evidence

Figure 8. Evidence Sequence Diagram

Chapter 4. Participant Evidence Integration 31

4.5.3 Modify Participant Evidence Sequence Diagram

Figure 9. Modify participant

32 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Appendix. Appendix

A.1 Appendix A

A.1.1 Conditional Verification
Conditional Verifications is a feature, wherein, the flexibility is provided to determine if verification is
applicable for evidence through programmatic support as opposed to manually means. The
programmatic support is encompassed through rule-class implementations and verification for a piece of
evidence is determined based on a set of conditions. The Verification Engine will check the conditions
specified, at the time of adding or modifying evidence but will create an outstanding verification only
when a condition that has been defined is met and not every time a verifiable data item is added or
modified. The conditions can range from conditions against the value of the verifiable data item to more
complex conditions where the values of a set of dependent evidences determine whether or not
verification is required.

A.1.2 Rule Artifacts supplied by Verification framework
To facilitate integration between Verification framework and the rule implementations supplied by other
components, the framework supplies core Rule Artifacts. These artifacts contain abstract rule classes that
other components rule implementations must adhere to. This section identifies and details such low level
Rule Artifacts which will be supplied as part of Verification framework.

A.1.3 Rule Sets
The rule set 'VerificationRuleSet' is available as part of Verification framework. This rule set holds all the
framework's artifacts such as the rule classes and the data container classes.

A.1.4 Rule Classes
The following rule classes are available as part of 'VerificationRuleSet'. The purpose of these rule classes
are explained in the corresponding sections.

VerificationDeterminator

VerificationDeterminatorResult

VerificationDeterminatorParams

A.1.5 Verification Determinator
The business logic that determines whether conditional verification is required for particular evidence
type goes in this rule class. Components creating rule implementations must adhere to the specification
by directly/indirectly extending this class. The following attributes are available in this rule class.

© Copyright IBM Corp. 2012, 2013 33

S.No Rule attribute name Type Purpose

1 determine A.1.6, “Verification Determinator Result” The implementation will
contain the business logic
that determines the output
of conditional verification.
A value of 'TRUE' indicates
to the evidence framework
that verifications are not
applicable for the evidence,
whereas 'FALSE' denotes
that verifications need to be
explicitly added.

2 verificationDeterminatorParams A.1.7, “Verification Determinator Params” This attribute is populated
by the Conditional
verifications framework
and contains the values for
all the input parameters for
a particular instance.

A.1.6 Verification Determinator Result
This rule class is a data container whose purpose is to store the results of business logic in the A.1.5,
“Verification Determinator,” on page 33. Currently this class has two attributes,

result - a boolean that states whether verification is required or not for a given evidence

reason - a codetable value from VerificationSkippedReason, which contains the values of reason for which
the conditional verification is not applicable

It is the responsibility of the rule implementations to create/populate these attribute so that the
verification framework, after examining the state of the attribute, can take appropriate business decisions.

A.1.7 Verification Determinator Params
While determining whether conditional verification is required or not, the framework will supply various
input parameters to the rule implementation classes for various calculation purposes such as the evidence
that is getting currently edited, the associated case identifier for the evidence etc. Please refer the
following table for complete details of the input parameters.

S.No Property Name Data Type Description

1 verifiableDataItemName String Represents the name of the 'Verifiable Data Item'
such as 'Person Income', 'Date Of Birth' etc. The
value comes from the code table
'VerifiableItemName'

2 evidenceDescriptorID Number The unique identifier of the evidence record in
question

3 caseID Number The unique identifier of the case with which the
evidence is associated

A.1.8 New Propagator
Verifications are applicable to active evidences as well as to evidences which are in 'in-edit' state. A new
propagator – ActiveInEditEvidenceRowRuleObjectPropagator is provided for this very purpose, which
will propagate both these evidence type. It is recommended to use this new propagator to propagate the
evidences to the rule data objects that are used in the conditional verification implementation classes.

34 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 35

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

36 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 37

http://www.ibm.com/legal/us/en/copytrade.shtml

38 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Prerequisites
	1.3 Audience

	Chapter 2. Server / Client Evidence Components
	2.1 Server Side Artifacts
	2.1.1 Standard Evidence Interface
	2.1.2 Evidence Interface
	2.1.3 Participant Evidence Interface
	2.1.4 Accessing Non-modeled Functions

	2.2 Client Side Artifacts

	Chapter 3. Developing an Evidence Solution
	3.1 Administration
	3.1.1 Evidence Metadata
	3.1.2 Product Evidence Link

	3.2 Common Evidence Maintenance Operations
	3.2.1 Create Evidence
	3.2.1.1 Create Evidence Sequence Diagram
	3.2.1.2 Client - Screen to Be Developed
	3.2.1.3 Server - Methods to Be Implemented

	3.2.2 Modify Evidence
	3.2.2.1 Modify Evidence Sequence Diagram
	3.2.2.2 Client - Screen to Be Developed
	3.2.2.3 Server - Methods to Be Implemented

	3.2.3 Read Evidence
	3.2.3.1 View Evidence Sequence Diagram
	3.2.3.2 Client - Screen to Be Developed
	3.2.3.3 Server - Methods to Be Implemented

	3.2.4 List Evidence
	3.2.4.1 List Evidence Sequence Diagram
	3.2.4.2 Server - Methods to Be Developed

	3.3 Evidence Dashboard and EvidenceFlow
	3.4 Validations
	3.5 More On Validations
	3.6 Evidence Attribution
	3.6.1 Re-attribution

	3.7 Evidence Relationship
	3.8 Registering Evidence Implementations
	3.8.1 Evidence Registrar Module
	3.8.2 Legacy Evidence Registrar

	3.9 Custom Hooks
	3.9.1 Evidence Controller Hook
	3.9.2 Evidence Controller Hook Registrar & Manager

	Chapter 4. Participant Evidence Integration
	4.1 Overview
	4.2 Integration of Participant Data as Evidence
	4.3 Administration
	4.3.1 AdminICEvidenceLink
	4.3.2 ProductEvidenceLink

	4.4 Integrating new Participant entities as Evidence
	4.4.1 Implementing the ParticipantEvidenceInterface
	4.4.2 Register entity in a Registrar Module
	4.4.3 Applying Participant Evidence to all Cases
	4.4.4 Modifications required to existing business processes

	4.5 Sequence Diagrams for Participant evidence
	4.5.1 Create Participant Evidence Sequence Diagram
	4.5.2 Specific Processing For Participant Data when Creating Evidence
	4.5.3 Modify Participant Evidence Sequence Diagram

	Appendix. Appendix
	A.1 Appendix A
	A.1.1 Conditional Verification
	A.1.2 Rule Artifacts supplied by Verification framework
	A.1.3 Rule Sets
	A.1.4 Rule Classes
	A.1.5 Verification Determinator
	A.1.6 Verification Determinator Result
	A.1.7 Verification Determinator Params
	A.1.8 New Propagator

	Notices
	Trademarks

