
IBM Cúram Social Program Management

Cúram Generic Search Server
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Generic Search Server
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 53

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Cúram Generic Search Server Guide 1
1.2 Prerequisites 1
1.3 Audience 1

Chapter 2. Concepts and Definitions . . 3
2.1 Introduction 3
2.2 The Generic Search Server 3
2.3 Indices 3
2.4 Search Service. 4
2.5 Field 4
2.6 Document 4
2.7 Lucene 4
2.8 Staging Database 5
2.9 Query 5
2.10 Term 5
2.11 Analyzer 5
2.12 Mapper 5
2.13 Extractor 6

Chapter 3. Generic Search Server
Overview 7
3.1 The Generic Search Server and Lucene 7
3.2 Importing Data from Cúram 7
3.3 Search Server Synchronization 8
3.4 Search Controller. 9
3.5 The Search Process 9
3.6 References 9

Chapter 4. Generic Search Server
enabled searches 11
4.1 Introduction 11
4.2 Generic Search Server related properties in the
Cúram application 11
4.3 Keeping Cúram data and search data
synchronized 11

4.3.1 Event-based synchronization 11

Chapter 5. Staging Database Tables . . 13
5.1 Introduction 13
5.2 SearchService Table 13

5.2.1 searchServiceId 13
5.2.2 extKeyName 13
5.2.3 analyzer 14
5.2.4 frcdReidxTimeStmp 14
5.2.5 mapperName 14
5.2.6 dbLastWritten 14
5.2.7 prstBlobSize 14

5.3 SearchServiceField Table 14
5.3.1 srchServiceFldId 14

5.3.2 searchServiceId 14
5.3.3 name 14
5.3.4 type 15
5.3.5 indexed 15
5.3.6 stored 15
5.3.7 entityName 15
5.3.8 untokenized 16
5.3.9 analyzerName. 16

Chapter 6. Getting Started with the
Generic Search Server API 17
6.1 Introduction 17
6.2 Mappers 17
6.3 Search Controller 18
6.4 Search Service Connector 18
6.5 Queries 18
6.6 CuramTerm 19

6.6.1 Query Structure 19
6.6.2 Standard Terms 19
6.6.3 Date and Date Range Terms 20
6.6.4 Text 20

6.7 Generating Queries 20
6.7.1 Constructing a Query Builder 20
6.7.2 Adding Search Criteria 20
6.7.3 Generating Queries from a Struct 21
6.7.4 Specifying which search service fields to
return 21
6.7.5 Obtaining the Query Object 21

6.8 Dealing with Search Results. 21
6.9 Data Types and String Conversion 22

Chapter 7. Implementing a Search with
the Generic Search Server 23
7.1 Overview 23
7.2 Person Search Example - Overview 23
7.3 Develop SearchService DMX files 24

7.3.1 Setup SearchService Record 24
7.3.2 Setup SearchServiceField Record 24

7.4 Implement Mapper Operations. 24
7.4.1 Mapper.mapToStagingDb interface 24
7.4.2 Mapper.getObjectList interface 24
7.4.3 Mapper.getExtKey interface 25
7.4.4 Mapper.remove interface 26
7.4.5 Mapper.getFieldValue Interface 26
7.4.6 Mapper newInstance() 26

7.5 Search Router and Implementation 27
7.6 Add Synchronization to each Search Entity. . . 27

Chapter 8. Pull Mapper 29
8.1 Introduction 29
8.2 Pull Mapper Overview 29
8.3 Developing with the Pull Mapper 29

8.3.1 Enable Last Updated Field on your
searchable entities 29
8.3.2 Modelling the table scan 29

© Copyright IBM Corp. 2012, 2013 iii

8.3.3 Defining your search service 30
8.3.4 Writing your mapper class 30

8.4 Delete operations 31

Chapter 9. Searches and Queries in
Depth 33
9.1 Introduction 33
9.2 The Search Service - general guidelines 33
9.3 Mapping your database structure to an Index -
Denormalization. 33
9.4 Tokenized and Untokenized Fields 34
9.5 Wildcards 34
9.6 Analyzers in Depth 34

Chapter 10. Running the Generic
Search Server in Eclipse 37
10.1 Introduction 37
10.2 Bootstrap.properties 37
10.3 Launching the Cúram Generic Search Server
from Eclipse 37

Chapter 11. Deploying the Generic
Search Server. 39
11.1 Introduction 39
11.2 Deployment Options 39
11.3 Deployment Process 39
11.4 Clustering 39
11.5 Build Targets 39

11.5.1 weblogicEARGSS 39
11.5.2 websphereEARGSS 40
11.5.3 runExtractor 40
11.5.4 runPersist 40
11.5.5 startupSearchServer 40

11.6 Database Performance 40

11.7 Time Considerations 41

Chapter 12. Performance 43
12.1 Introduction 43
12.2 Index Types. 43
12.3 Index Persistence 43

12.3.1 Persistence Operation Invocation 43
12.4 Testing and operational considerations 44
12.5 Performance Tuning 44

12.5.1 Max Merge Documents 44
12.5.2 Merge Factor 44
12.5.3 Enable Persistence 44
12.5.4 References. 45

12.6 Searcher Pooling 45
12.6.1 Overview 45
12.6.2 Pool configuration properties 45

12.7 RAM Limitations 45
12.7.1 Index Size Calculation. 46

12.8 Recommended configuration 46
12.9 Recommended configuration for Production
Environment 46

Appendix A. Cúram Generic Search
Server Configuration Properties 47
A.1 Configuration Properties 47

Appendix B. Sample DMX Listings:
PersonSearch. 49
B.1 Search Service Record. 49
B.2 Search Service Field Record 50

Notices 53
Trademarks 55

iv IBM Cúram Social Program Management: Cúram Generic Search Server

Figures

1. Inverted Index Description 3
2. Database Extractor and Generic Search Server

Startup Process. 8

3. Data Synchronization 8

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Generic Search Server

Tables

1. Cúram Generic Search Server Related
Properties 11

2. Mappings from basic Cúram Domain
Definitions to GSS Field data types 15

3. Cúram Generic Search Server Basic
Configuration Settings 47

4. Cúram Generic Search Server Searcher Pool
Settings 47

5. Cúram Generic Search Server Persistence
Settings 48

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 1. Introduction

1.1 Cúram Generic Search Server Guide
The Cúram Generic Search Server is a tool provided by IBM Corporation that can be used to develop
performant and scalable searches for your application solution.

This document describes the Cúram Generic Search Server and provides an overview of its architecture.
It is also a reference for the configuration of the Generic Search Server and its database tables. Finally, it
provides an end-to-end example of how to implement a search using the Cúram Generic Search Server.

1.2 Prerequisites
Readers of the Cúram Generic Search Server Guide should be familiar with the Cúram architecture, in
addition to being familiar with Cúram modeling and development constructs and processes.

1.3 Audience
This document is intended to be read by architects, designers and developers interested in using the
Cúram Generic Search server to implement search pages.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 2. Concepts and Definitions

2.1 Introduction
This chapter introduces several important searching and indexing concepts, in addition to definitions
related to the Cúram Generic Search Server which are used throughout this document.

2.2 The Generic Search Server
The Cúram Generic Search Server is a standalone application which supports performant searching of
application data via a number of APIs. Behind the scenes, the Generic Search Server is implemented
using the Apache Lucene API. Those implementing GSS searches should use only the APIs exposed by
GSS.

The Generic Search Server can be deployed as a plain Java™ Application (to ease development-time
testing) as well as a J2EE application.

2.3 Indices
At the heart of the Generic Search Server is the concept of searching an Index, which is a performant,
non-database representation of a set of related searchable data. A Generic Search Server Index is an
“inverted index” that maps words to database records that they appear in.

Figure 1. Inverted Index Description

© Copyright IBM Corp. 2012, 2013 3

When searching an Index for a word, all matching records are retrieved without having to search large
datasets. As a result, such Indices scale well, and for large systems it will be possible to run multiple
Indices in parallel, allowing for excellent search performance if the right deployment configuration and
Index tuning parameters are chosen.

Developers creating application searches do not manipulate or maintain Indices directly - all of this is
handled for them behind the scenes by the Generic Search Server.

2.4 Search Service
A Search Service describes:-
1. Information relating to fields being searched
2. Analyzers used on each field, field datatypes
3. Entity information to populate a run-time index
4. Status of Search Service (whether up to date or requires synchronization)

When seen in this way a Search Service is simply meta-data, however this document also uses the term
to describe the run-time populated index.

There should be one Search Service defined for each discrete set of data to be searched upon (e.g. Person
Search, Payment Search,etc.). Each search performed must specify which Search Service it is to operate
on.

2.5 Field
As mentioned above, Search Services are made up of sets of Fields. These can be thought of as somewhat
analogous to column definitions in database tables. A Field has a name and a type, and if being returned
from a search it will also have a value, which is the result.

Fields may be marked as being 'Stored'. Fields marked in this way will cause the Index to physically
contain relevant values extracted (see 2.13, “Extractor,” on page 6) from the database. This means that
their values can be retrieved directly from the Index after a search and returned to the caller without the
need to access the related record on the application database table. Note however that this does increase
the Index size and may impact the performance of the search.

Fields may also be marked as 'Indexed' or not. Fields marked as such are searchable, and Fields not
marked as such are not searchable. This feature is useful for fields such as unique IDs that may be
desirable to store in the Index but not searched upon.

Note that Fields do not have to be marked as 'Stored' to be searchable.

2.6 Document
A Document is a record in an Index. A Document is in turn made up of a set of Fields. Search results are
returned from the Generic Search Server as sets of Documents which can then be converted to Cúram
struct objects. For example, a Person search Document might consist of Firstname, Surname, Address,
Gender, etc. Fields, and performing a Person search/Query (see 2.9, “Query,” on page 5) based on a
number of input criteria will return zero or more such Documents.

2.7 Lucene
Lucene is an open-source project created by the Apache Software Foundation. Behind the scenes, the
Cúram Generic Search Server uses Lucene for its indexing and searching functionality.

4 IBM Cúram Social Program Management: Cúram Generic Search Server

Note: Note that information on indexing and Lucene is provided purely for background purposes -
developers creating searches using the Generic Search Server do not need to manipulate Indices or
Lucene objects directly. These are all wrapped by the Generic Search Server API.

2.8 Staging Database
The Generic Search Server staging database consists of a set of database tables used for the following
purposes:
v To store Search Service definitions - information about which Search Services are available together

with their structure
v To store values extracted from the operational database which will be used to populate Indices

corresponding to the Search Service Definitions.

The fundamental design rationales for using database tables as an intermediary are as follows:
v They offload the searches from the main database which means that searches do not impact on live

system performance
v They persist appropriately for the search service - Data is persisted in a form that is suitable for the

purposes of building the search indices. The Application data is transformed, scrubbed and
consolidated before being stored in the staging database. Therefore, batch jobs will not have to be
continually rerun to re-extract the data each time a Generic Search Server instance is started.

2.9 Query
A Query is an object (a struct, to be precise) that is passed to the Generic Search Server when a search is
being performed.

2.10 Term
A Term is a part of a Query object. Currently, there are three different types of Term - Standard terms for
searching on regular text fields, Date terms for searching on Date fields, and DateRange terms for
specifying a range of dates on which to search.

2.11 Analyzer
An Analyzer is a Lucene concept, representing a class that implements the Lucene
org.apache.lucene.analysis.Analyzer abstract class.

Analyzers prepare text for indexing and searching. For example, it doesn't make sense that every word of
a text field is indexed - stop words such as “and”, “of” and “a” may be irrelevant during a search. If
these are to be ignored during a field search then the field is tokenized, ie. passed through an analyzer
before writing the field to the index and likewise for a term value being searched.

Analyzers are language-specific - what defines a word is not the same in all languages. Some can be
configured to ignore common stop-words (an, the, if, etc), to ignore numbers, and so on. Analyzers used
by the Generic Search Server are configurable on a per-Search Service basis.

2.12 Mapper
A Mapper is a class which has to be written by developers of application searches for each Search
Service. Its function is to transform data from the application into a format which can be written onto the
staging database and imported into a Index. The transformation involves identifying relevant Entity
properties of interest to the Search Service, constructing a list of these values and mapping them to a
single consolidated text value. This value, stored in the staging database, is used later in the construction
of a single search index Document. Every Search Service that is written must provide its own Mapper
implementation.

Chapter 2. Concepts and Definitions 5

2.13 Extractor
The Extractor uses the Search Service metadata to obtain the relevant application data necessary to
populate the search indices. The extractor interrogates the relevant Application Entities identified via the
metadata and the required Entity properties are mapped(with the mapper) to the staging database for
indexing upon Search Service startup.

6 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 3. Generic Search Server Overview

3.1 The Generic Search Server and Lucene
The concepts behind indexing and the Lucene API have already been introduced. So why not just use
Lucene directly in Cúram application?

Whereas Lucene is an excellent API for indexing and searching, it does not address all of the
requirements of a Cúram searching product:
v It does not address deployment issues - how to run multiple search servers, how the application

should communicate with the search servers, etc.
v It does not address the issue of how to import data into Indices
v It does not address the issue of keeping Index data synchronized with source data in the running

application.
v It does not address the issue of interpreting data returned from an Index search as Cúram datatypes

and structs.
v It does not address the more overarching application requirement of protecting the Application

Developer from in-depth knowledge of specific third-party products; given that Lucene is only one
potential searching solution, it would seem to make more sense to provide a more generic searching
API.

The Cúram Generic Search Server was developed to deal with these requirements.

3.2 Importing Data from Cúram
One implication of using an indexing technology is that, before being able to search an Index, it must
first be created. Because a lot of the hard work of searching is essentially done up-front in Index
construction, runtime searches become fast; however, it is worth noting that the indexing process itself
may take some time, and this time increases proportionally with the amount of data to be indexed.

Initialization of the Generic Search Server is done in two phases.

In the first phase, existing application data is exported from the application into a set of database tables
used by the Generic Search Server - the staging tables. This export has been implemented as a batch
process, called the Database Search Extractor, and is provided as part of the Generic Search Server
distribution. The export only needs to be performed once, when the Generic Search Server is first being
used. Special helper classes called Mappers are needed for each Search Service; these assist the extractor
in preparing the data to be imported into the Staging Tables.

In the second phase, an Index is constructed for every defined Search Service. When the Generic Search
Server is started up, a process is run to read the appropriate data from the staging database tables and
construct the Indices and other data structures to be used to perform searches. Once the Indices are
constructed, the server will be in a position to respond to search requests. Information on optimizing this
performance is available in Chapter 12, “Performance,” on page 43

© Copyright IBM Corp. 2012, 2013 7

3.3 Search Server Synchronization
Because the Generic Search Server searches not on the live data itself but on an Index that is built from
that data, updates to application data need to be replicated on the Index. In Cúram implementations, it is
essential that updates to searchable data be reflected in the relevant Indices in a timely and predictable
fashion. With the Generic Search Server, the time lag is short (and configurable).

Similar to the initial import of data described above, there are two steps to the synchronization process.

The first step in the process occurs when the application data (which is used in an Index) changes,
typically as a result of an insert, update or logical delete. When this occurs, the application must write
information about this data change to the Generic Search Server staging tables. All new and updated
items are marked with a timestamp.

Figure 2. Database Extractor and Generic Search Server Startup Process

Figure 3. Data Synchronization

8 IBM Cúram Social Program Management: Cúram Generic Search Server

In the second step (which happens on a periodic basis), the Generic Search Server synchronizes its Indices
against the current contents of the staging database. To do this, it reads all newly changed items since the
last time it synchronized, and imports these into the Indices; specifically, this is achieved by comparing
timestamps associated with each changed item to the latest timestamp used during the last
synchronization step.

Note: When writing unit tests that include calls to Generic Search Server searches, it is important to bear
in mind the delay in synchronizing data. In addition, as a result of the fact that the Generic Search Server
instance will be running in a separate process to the unit tests, it will not be part of the same transaction.
Consequently, Generic Search Server synchronizations will not pick up any data that has changed in the
test transaction, unless it is explicitly committed.

3.4 Search Controller
The Search Controller is an important component of the synchronization mechanism. It maintains a list of
all the entities associated with each Search Service.

When an entity changes, the Search Controller can be checked to see if that entity is used by one or more
Search Services. If it is used, the data in the staging database should be updated in the same transaction
as the entity update. The Search Controller also provides an API for updating the staging database.

Note: A number of Cúram Platform entities (which appear in some Cúram Platform searches) have been
modified to allow for the implementation of such synchronization updates in the future release. These
modifications have taken the form of the creation of pre- or post-operation exit points which contain
stubbed-out implementations; these pre- and post- exit points are reserved for future implementation and
should not be changed directly by customers.

3.5 The Search Process
The search process can be broken down into three phases.

In the first phase, the Cúram application constructs a valid Query to present to the Generic Search Server.
It populates this Query using search criteria entered by the user.

In the second phase, the Cúram application contacts a running Generic Search Server instance and
performs the search as defined by the Query object.

In the final phase, the Cúram application interprets the results it receives back from the Generic Search
Server as Cúram datatypes, performs its usual security checks regarding the sensitivity of the data, and
displays them to the user.

3.6 References
Lucene website: http://lucene.apache.org/.

Chapter 3. Generic Search Server Overview 9

http://lucene.apache.org/

10 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 4. Generic Search Server enabled searches

4.1 Introduction
IBM Corporation has introduced the Generic Search Server as an optional searching mechanism for
Platform and Solution Module searches. Several searches have been implemented using both the Cúram
Generic Search Server and database searching, and some are available only as GSS searches. For the
searches that are available either as database or GSS searches customers may enable or disable
performant search on a per-search basis via setting application properties.

4.2 Generic Search Server related properties in the Cúram application
These properties are the application system properties and can be administered in the usual way via the
property administration in the application. All of the relevant properties are available under the Category
called “Application - Lucene enhanced search parameters”. A full list of these properties may be found in
A.1, “Configuration Properties,” on page 47

Table 1. Cúram Generic Search Server Related Properties
Property Name Description

curam.lucene.luceneEnhancedSearchEnabled Default: “NO”. By default, all Generic Search Server functionality is disabled. In order to
enable it, you must set this property to “YES” to turn on enhanced search. Unless this is
set to “YES”, no enhanced searches will be available.

curam.lucene. luceneOnlineSynchronizationEnabled Default: “NO”. To enable the event publishing mechanism that makes changes in
searchable data available to the Search Server you must set this property to “YES”.
Unless this is done, inserts and updates to searchable data will not be propagated to the
Search Server.

curam.lucene.externalUpdateEventsEnabled Default: “NO”. To ensure that if any search service related data is updated externally,
then the external system receives related update synchronization events to
synchronization the searchable data, in case if property
"curam.lucene.luceneOnlineSynchronizationEnabled" is not enabled. Enabling this
property has same impact as enabling
“curam.lucene.luceneOnlineSynchronizationEnabled” on the application. To enable
property “curam.lucene.externalUpdateEventsEnabled” set this property to “YES”.

Finally, each search that supports Enhanced Search has a property that determines whether it uses the
Generic Search Server or the database. This allows each organisation to choose on a per-search basis
which enhanced searches to use.

4.3 Keeping Cúram data and search data synchronized
It is necessary to keep the live application data and the search index synchronized if search results are to
be accurate. The infrastructure that the GSS provides in order to accomplish this has been described
elsewhere (see 6.3, “Search Controller,” on page 18).

However, there is also an onus on application developers to add calls to the SearchController when
relevant data changes in the application. This section describes for information purposes the event-based
approach used, and which we recommend to customers implementing their own GSS-based searches.

As well as the event mechanism we also provide the Pull Mapper synchronization, which is described in
its own chapter in this guide, see Chapter 8, “Pull Mapper,” on page 29.

4.3.1 Event-based synchronization
Cúram provides events to allow loosely coupled parts of the application to provide information to each
other about changes of state. They are documented in the Cúram Server Developer's Guide..

© Copyright IBM Corp. 2012, 2013 11

Each entity that contributes to a search service should have events raised when it is created, deleted, or
modified. The event handler then calls the SearchController class to update the search server with the
change.

Any entity that contributes to a search service must have postmodify, postinsert and postremove
operations added that raise the events.

12 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 5. Staging Database Tables

5.1 Introduction
The staging database tables are database tables on the operational database that are used by the Generic
Search Server. There are four such tables: SearchService, SearchServiceField, SearchServiceRow, and
SearchSrvcRowExt.

This chapter details the purpose and structure of the SearchService and SearchServiceField tables.
Developers creating search services do not need to access the SearchServiceRow or SearchSrvcRowExt
tables directly, nor write DMX files for them.

The SearchService table defines Search Services known to the Generic Search Server (see 2.4, “Search
Service,” on page 4 for introduction to Search Services). As an administration API for managing Search
Services has not been provided, Search Service records must currently be created and maintained by
either accessing the database table directly or by editing DMX files and rebuilding the application
database.

The SearchServiceField table defines a single Field of a Search Service - its name, its data type, and
several other attributes that are explained fully below. Each SearchServiceField database row is associated
with a single SearchService row. As with Search Services, Search Service Field records must currently be
created and maintained by either accessing the database table directly or by editing DMX files and
rebuilding the application database.

SearchServiceRow is a table used to store searchable data from the application for use in building
Indexes. The Generic Search Server provides an API (see Chapter 6, “Getting Started with the Generic
Search Server API,” on page 17 and Chapter 7, “Implementing a Search with the Generic Search Server,”
on page 23) that is used to manipulate SearchServiceRows - developers should interact with this database
table only via this API rather than accessing it directly.

There are two other GSS database tables: GSSMapperType and GSSEntity. These are used only with the
Pull Mapper feature - otherwise they can be ignored. These tables are described in Chapter 8, “Pull
Mapper,” on page 29.

5.2 SearchService Table
Each Search Service must contain a record on the SearchService table. Together with its SearchServiceField
child rows, the SearchService table defines the schema for each Search Service. A description of each
column of the SearchService table is provided below:

5.2.1 searchServiceId
The Search Service Identifier; a string used to uniquely identify a Search Service.

5.2.2 extKeyName
The name of a Search Service Field that will uniquely identify each record in an Index created from this
Search Service definition. It is essential that values in the Index corresponding to this Search Service Field
be unique, as when searchable data is updated in the application database, the value of this field will be
used to identify the appropriate Document to be updated in the Index.

© Copyright IBM Corp. 2012, 2013 13

5.2.3 analyzer
The Search Service analyzer to be used when converting from the application database text terms to
Index terms. The contents of this column should denote one of the predefined analyzer names provided
by the Generic Search Server (see the list below) or a fully qualified Java classname of a class that
implements the abstract class org.apache.lucene.analysis.Analyzer. This may be either a standard
Lucene analyzer or a third-party or custom implementation. Note that the class must be available on the
Generic Search Server classpath if it is not a standard Lucene analyzer.

For a list of the analyzers supplied with GSS and a more in-depth discussion of how to choose an
analyzer, see 9.6, “Analyzers in Depth,” on page 34.

5.2.4 frcdReidxTimeStmp
Used by the Extractor to force the Generic Search Server to rebuild its Indices after an extract has been
run. When creating Search Service records, this should be initially set to null.

5.2.5 mapperName
The name of the mapper implementation (see 7.4, “Implement Mapper Operations,” on page 24). A
Mapper implementation is a class that converts a set of application entity data to a format suitable for
indexing. The value of this column should be the fully qualified classname of the Mapper class, and as
with the Analyzer implementation, this should be on the Generic Search Server runtime classpath (If the
Mapper is developed as part of the application it will be on the classpath by default).

5.2.6 dbLastWritten
This is used in synchronization. It should not be initialized or updated by application code or
administrators.

5.2.7 prstBlobSize
This specifies the size of the blob associated with the table used to persist this search service index. If not
specified, the blob size defaults to 50M. The property type is a String and the value should conform to
the size specifier syntax of the concerned database.

5.3 SearchServiceField Table
Each Field of a Search Service must contain a record on the SearchServiceField table. Each Search Service
Field represents a SearchService element that can be either searched upon, returned from a search, or
both. Search Service Field are used in a number of places throughout the Generic Search Server - in
Terms, in Queries, in Documents. A description of each column of the SearchServiceField table is
provided below:

5.3.1 srchServiceFldId
The Unique Identifier of the Search Service Field.

5.3.2 searchServiceId
searchServiceId of the parent Search Service record.

5.3.3 name
The name associated with the Search Service Field. This is the name that is used to reference the Field
when performing searches or retrieving results. It does not need to correspond exactly to Field names in
Cúram entities and structs, although it simplifies development if it does so.

14 IBM Cúram Social Program Management: Cúram Generic Search Server

5.3.4 type
The Cúram datatype of this field. The set of acceptable values is described in the table below.

The process of exporting and synchronizing data to the Search Service involves some conversion of
operational data to strings and vice-versa, so it is important that an accurate data type be defined for
each Field. See the following table for reference on this. If incorrect values are presented to the Generic
Search Server, it will throw an exception.

Table 2. Mappings from basic Cúram Domain Definitions to GSS Field data types
Domain Definition GSS Field data type

SRV_BOOLEAN boolean

SRV_DATE Date

SRV_DATETIME DateTime

SRV_INT8 byte

SRV_INT16 short

SRV_INT32 int

SRV_INT64 long

SRV_FLOAT float

SRV_DOUBLE double

SRV_MONEY Money

SRV_CHAR char

SRV_STRING String

SRV_UNBOUNDED_STRING String

Note: The type field is case sensitive, so ensure you use the type name exactly as laid out above.

5.3.5 indexed
Indicates whether this Field is searchable. Sometimes it may be desirable to store a value for a record in
the Search Service but not to search on it (an example would be the unique ID of a record, or perhaps it's
sensitivity level). Not indexing values that don't need to be indexed will minimize Index size and help
performance, so it is good practice to index only the fields your searches will use.

5.3.6 stored
Indicates whether this field may be returned in a search result or not, i.e. whether the value itself is
stored in the Index. Note that stored fields will still only be returned if the Query object passed to the
Generic Search Server indicates that they should be returned. Every field should be either indexed or
stored or both - if a field is neither then it is of no relevance to the Search Service. Again, not storing
values that your searches will not use will minimize index size and help performance, so only store the
fields your searches will use.

5.3.7 entityName
The name of the application entity associated with this Field, or to be more specific, the name of the
application Entity containing an attribute corresponding to this Field which will be used to populate the
Index based on the parent Search Service definition. This information is needed for synchronization of
application data with the Generic Search Server - all entities that are listed as being related to Search
Service Fields will be registered with the SearchController (see 3.4, “Search Controller,” on page 9) and
monitored for inserts, updates, and deletions. It is vitally important that the entityName attribute be
populated with the appropriate values; omitted or invalid entityName attributes may result in invalid
Index updates over time.

Chapter 5. Staging Database Tables 15

5.3.8 untokenized
This property indicates whether a field is to be tokenized and passed through the analyzer or not. It is a
boolean value. If set to true, no tokenizing will be done and analysis will not be performed on this field
before indexing or while searching.

5.3.9 analyzerName
This property specifies the analyzer to be used when tokenizing this field. The contents of this field may
be set to LUCENESTANDARD, STANDARD, SIMPLE, STOP, WHITESPACE, KEYBOARD. (see analyzer
in 5.2, “SearchService Table,” on page 13) If this field is not set then the default analyzer used will be that
taken from the analyzer field of the associated SearchService.

16 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 6. Getting Started with the Generic Search Server API

6.1 Introduction
This chapter is not intended to be an exhaustive description of the entire Generic Search Server API - a
full set of Javadoc is available as part of the installation. The purpose of this chapter is to provide a short
introduction to the most important classes and operations in the API in order to allow Generic Search
Server-based searches to be rapidly developed.

6.2 Mappers
Mappers are classes which define how Search Service data is mapped from the application database
tables to the staging database tables. Each Search Service has its own Mapper - the Mapper to use is
specified in the SearchService database table. For more details see 5.2.5, “mapperName,” on page 14.

This Mapper functionality is used in two processes:
1. When the Database Extractor is run, each Search Service Field is iterated over for a particular Search

Service. For each Field, the corresponding Entity Attribute data is retrieved from the application
database and populated into the SearchServiceRow staging database table

2. When a create, update or remove operation is called for an entity that is used in a Search Service, the
relevant SearchServiceRow rows are updated with the related entity modifications

In both of these processes, the relevant Mapper for each Search Service is invoked to map data from the
application database tables to the staging database tables.

On initialization of the Generic Search Server, the staging database information is read and used to
construct the Indices from the Search Service metadata. The Search Server will periodically check the
staging database for updates and keep the service data up to date.

The following Mapper API methods require implementation by search developers on a per-Search Service
Basis:
SearchServiceRowDtlsList mapToStagingDb(

final SearchServiceKey id) throws AppException,
InformationalException;

List getObjectList(final SearchServiceKey serviceId,
final Object obj) throws AppException, InformationalException;

String getExtKey(final SearchServiceKey serviceId, List objList);

void remove(final SearchServiceKey serviceId, final Object objKey)
throws AppException, InformationalException;

Object getFieldValue(final SearchServiceKey serviceId,
final List objList, final SearchServiceFieldDtls field);

For more details see 7.4, “Implement Mapper Operations,” on page 24

© Copyright IBM Corp. 2012, 2013 17

6.3 Search Controller
The Search Controller is a singleton object available for use in the application. It is responsible for
keeping track of which entities are referenced in which Search Services. In addition, it provides an API
for synchronizing changes made to application data with the relevant Indices on the Generic Search
Server. Note that from a Client-Server perspective, the Search Controller lives on the 'Client' (in this case,
the Cúram Application Server), not the 'Server' (in this case, the Generic Search Server).

The SearchController API is composed of three methods which can be invoked if any entity involved in
populating an Index is modified. The search developer must be aware of which application entity
operations will result in such modifications and invoke the appropriate methods on the SearchController.
The methods exposed in this API are:
void SearchController.insert(final Object objectDtls,

String entityName);
void SearchController.modify(final Object objectDtls,

String entityName)
void SearchController.remove(final Object objKey, final String entityName);

For more details see 7.6, “Add Synchronization to each Search Entity,” on page 27

6.4 Search Service Connector
The SearchServiceConnector is a utility class that allows searches to be performed. The 'search' operation
on this class is the only supported way for search developers to invoke a search on a Generic Search
Server Index.

Behind the scenes, this class handles the details of connecting from the running application to an instance
of the Generic Search Server, wherever it may be deployed.

Searches may be performed with the SearchServiceConnector using the method:
static SearchServerResults search(CuramQuery query)

Note: If the search index does not contain any data it will throw an IndexEmptyException. Developers
implementing searches should handle this exception gracefully.

User credentials are required to connect to the Generic Search Server. The connector picks up the details
of the current user and uses those to communicate with the Generic Search Server.

Note: Do not attempt to use the DoSearch method (or any Generic Search Server method) directly - it
will not work as it is running in the context of the Cúram application, and not the context of a running
Generic Search Server application

6.5 Queries
In order to do a search, a CuramQuery object must be constructed. The CuramQuery class consists of:
v The searchServiceId of the SearchService whose Index you wish to search. See 2.4, “Search Service,” on

page 4 for more information on the concept of Search Services and 5.2.1, “searchServiceId,” on page 13
for details of how the searchServiceId is defined

v A list of CuramTerm objects or a Text attribute representing a Lucene query string- these represent the
search criteria. See below for more information on Cúram Terms and the Text attribute

v A list of CuramField objects - values for these Fields will be returned as part of the search results, but
only if the fields have been marked as 'Stored' in the SearchServiceField definition (see 5.3.6, “stored,”
on page 15)

v An integer attribute maxHits indicating the maximum number of hits to be returned for this query.

18 IBM Cúram Social Program Management: Cúram Generic Search Server

v A boolean flag maxHitsUnbounded indicating that the maximum number of hits is not limited. If this
flag is set the maxHits attribute value is ignored.

6.6 CuramTerm
CuramTerms are the part of the CuramQuery structure that represents search criteria.

There are three types of Terms: StandardTerm, a DateTerm, or a DateRange term. The CuramTerm object
contains one of each of these types of these types, and has termType attribute specifying which of the
term subtypes should be used. Only of one of the aggregated term subtypes is valid for each CuramTerm
object.

For all term types, the 'field' attribute specifies the name of the Field in the Search Service to be searched
(see 2.5, “Field,” on page 4 and 5.3.3, “name,” on page 14). The 'value' attribute is the search criterion to
be used - the meaning of this varies for the different types of terms and is described below.

6.6.1 Query Structure
Each term has a field called occurs. How this is set determines the structure of the query - whether all the
search terms must exist, only one, or some other combination. The possible values for occurs are MUST,
SHOULD, MUST_NOT, and MUST_FIELD.

If MUST is specified for the occurs attribute for set of terms then a result will be returned only if all of the
terms are found. If SHOULD is specified for a set of terms then a result will be returned if one or more of
the terms are found. However, mixing these in a single query will give an undefined result and should be
avoided. If you need to construct complex queries with AND and OR sub-queries then you must use the
text query attribute described in 6.6.4, “Text,” on page 20.

If MUST_NOT is specified for the occurs attribute then only documents that do not match the term will be
returned. Terms specifying this value may be mixed with terms specifying other values for the occurs
attribute.

Using the MUST_FIELD option allows you to construct a subquery testing a particular index field for one of
a set of values, i.e. an OR subquery within your main query. You should set this as the occurs value for all
the terms dealing with that field and add a term for each acceptable value. Terms using MUST_FIELD can
be part of an overall query using either the MUST or SHOULD term options.

6.6.2 Standard Terms
A Standard term is used for all searches that do not involve Dates, so this is the term type that you will
use most frequently.

The most basic way to use a standard term is to simply specify the field name and a single token as the
value. The search server will return results where the field value matches the search term exactly.

Another way to use a standard term is to specify a value that contains multiple tokens, such as in
address. Again, the search server will return results where the field value matches the search term exactly.

If the search term specified is a single token containing a wildcard character then the search server will
return all matching results. Supported wildcard characters are '*' which matches any string of characters,
and '?' which matches a single character. Example:- term = "Dub*"

A StandardTerm may be treated as a Prefix Search. This means that we are looking for search results that
contain the search criteria at the start. You specify a Prefix Search by setting the isPrefixSearch attribute of
the StandardTerm. It has the same effect as specifying a '*' multi-character wildcard at the end of your
search value. A prefix search term may not contain any other wildcards.

Chapter 6. Getting Started with the Generic Search Server API 19

Example 1: For a standard tokenized prefix term "abc" the underlying search is for term = "abc*", for
tokenized and prefixed multi-term searches, for instance, a prefixed search term "abc def", the underlying
search is for term = "abc* def*"

Example 2: For a standard tokenized non-prefix starting with abc the term value = "abc*" must be
specified. For tokenized, non-prefixed, multi-term searches starting with "abc" and "def" the value "abc*
def*" should be specified.

6.6.3 Date and Date Range Terms
A Date term is similar to a Standard Term except that it is used to search fields that are of type Date or
DateTime.

A Date Range term can be used to search for values that are between a minimum date (beginDate) and a
maximum date (endDate). The 'isExclusive' Boolean attribute determines if the begin and end dates are
included in the search criteria. If 'isExclusive' is set to true, the search is performed exclusive of the begin
and end dates. If 'isExclusive' is set to false, the search is performed inclusive of the begin and end dates.

Note: When a query contains more than one term, the returned results are those that match all search
terms - there is currently no concept of OR or NOT in the Generic Search Server API

Note: Bear in mind when using Dates for searching that it is your responsibility to ensure that the Date
in your search term refers to the same time zone as was used when exporting the data to the Search
Service

6.6.4 Text
The text attribute of the CuramQuery class is an alternative to a set of terms and allows more flexibility
in specifying your search criteria. It should be used only if required as it is also easier to introduce bugs
in your searches with this approach. The format for specifying search criteria using this attribute is
described in the Lucene documentation. This is available at http://lucene.apache.org/java/2_2_0/
queryparsersyntax.html.

You cannot combine Terms and the use of the text query string. If the text query string is present then
any CuramTerms present in the query will be ignored.

6.7 Generating Queries
The Generic Search Server API contains a utility class designed to allow you to construct CuramQuery
objects easily. This class is: curam.core.impl.util.QueryBuilder.

6.7.1 Constructing a Query Builder
The QueryBuilder is not a static class, you must construct a new QueryBuilder instance for each query
you produce.

Use the setUnbounded(boolean unbounded) and setMaxHits(long maxHits) methods to specify the number
of hits your generated query should return.

6.7.2 Adding Search Criteria
The QueryBuilder provides a selection of methods of the form addXXTerm(...parameters...) to add
different types of search terms to your generated query easily. These terms are AND-ed together to form
a complex query. These methods will not be described fully here but full details are available in the GSS
javadoc.

20 IBM Cúram Social Program Management: Cúram Generic Search Server

http://lucene.apache.org/java/2_2_0/queryparsersyntax.html
http://lucene.apache.org/java/2_2_0/queryparsersyntax.html

6.7.3 Generating Queries from a Struct
If you have a Cúram struct you wish to use to generate a query you can do so using this method:
setTerms(final Object key).

This expects a struct where each attribute XX has a corresponding boolean attribute called searchByXX
which specified whether that attribute should be used to search. Each attribute XX will be assumed to
correspond to a SearchServiceField in your SearchService.

If the names of the attributes of your struct do not correspond to the names of the Fields you have
defined for your Search Service (see 2.5, “Field,” on page 4 and 5.3.3, “name,” on page 14), then you can
define a mapping between them using a dictionary HashMap. The mapping is from the attribute names
in the struct to the SearchServiceField names. Simply add the pairs of strings to the HashMap, with the
name of the struct attribute as the key and the name of the Field as the value. The dictionary can be
specified in the constructor when you create your QueryBuilder object or later using the
setDictionary(HashMap<String, String>) method.

6.7.4 Specifying which search service fields to return
In your query you can specify which subset of the search service's fields you would like returned as
results. Often you will want all of them returned, so you can use the following convenience methods:
v includeAllFieldsInService()

v excludeField(String fieldName)

v excludeFields(String[] fieldNames)

6.7.5 Obtaining the Query Object
Use the getQuery() method to get the generated CuramQuery object.

6.8 Dealing with Search Results
Similar to the requirement to convert Cúram key structs to CuramQuery objects, CuramDocument s returned
from searches also need to be converted to Cúram structs to be used in the application.

The SearchServiceConnector search method returns results in the form of a SearchServerResults object.
This consists of a list of CuramDocument s, and each CuramDocument consists of a list of CuramField s. A
utility class called curam.core.impl.util.CuramDocToResultStruct is provided to convert between
CuramDocuments and Cúram structs.
static java.lang.Object convert(CuramDocument document,

java.lang.Object structObj,
java.util.HashMap dictionary)

This method takes a CuramDocument and a struct instance (via the parameter structObj). For each Field in
the CuramDocument, the method attempts to find an attribute in the struct of the same name and datatype.
A struct containing all mapped values is returned, this should be cast to a struct of the correct type.

If the names of the attributes of your struct do not correspond to the names of the Fields you have
defined for your Search Service (see 2.5, “Field,” on page 4 and 5.3.3, “name,” on page 14), then you can
define a mapping between them using the dictionary parameter. The mapping is from the Field names in
the Search Service to the attribute names in the struct - simply add the pairs of strings to the HashMap,
with the name of the Field as the key and the name of the struct attribute as the value. The convert
function will then match Field names to attribute names using this HashMap

Note: Note that the attributes in your results struct whose names correspond to Fields in your document
must have simple Cúram types, and not be aggregated structs.

Chapter 6. Getting Started with the Generic Search Server API 21

6.9 Data Types and String Conversion
The Generic Search Server contains an API for converting searchable Cúram datatypes to Strings and vice
versa. These may need to be used occasionally in custom Mappers, or if parsing results directly rather
than using the supplied utility class curam.core.impl.util.CuramDocToResultStruct.

The converter class is curam.core.impl.search.datatypes.DataTypeConverter. This class contains
methods to convert Cúram datatypes to Strings and to convert Strings back to Cúram datatypes (by
means of passing in a struct and specifying which attribute in the struct is to be set).

22 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 7. Implementing a Search with the Generic Search
Server

7.1 Overview
This chapter provides a worked example of the implementation of a Generic Search Server-based search
within the Cúram application. The example worked through here is a Person Search.

The implementation steps are as follows:
v Write the SearchService and SearchServiceField dmx files
v Implement Mapper interface
v Implement search routing and invocation functionality
v Add synchronization of application operations to search entities (or use the Pull Mapper approach, see

Chapter 8, “Pull Mapper,” on page 29
v Create a user interface and facade for the search - this is normal application development.

7.2 Person Search Example - Overview
It is important to note that users of the Cúram Generic Search Server should notice no functional
difference between their searches and server searches implemented using SQL; in addition, the screens
and general user experience can remain the same. As such, the following example assumes that readers
will develop such application functionality (along with the appropriate Facade classes, etc.) as normal.

In our Person Search example, users will navigate to the relevant UIM page to perform a Person Search.
On this page, they will fill in one or more search criteria. When they hit the 'Search' button, the search
will be performed. The results will consist of a list of records matching the search criteria.

In application searches, it is common for the search criteria and details returned in the results list to be
collated from multiple related entities. For the Person Search the following entities and their attributes are
either used as search criteria or returned as result fields:
v Person - primaryAlternateID, personBirthName, motherBirthSurname, dateOfBirth, gender
v ConcernRole - sensitivity, concernRoleID
v AlternateName - firstForeName, surname
v AddressElement - city, address.

Each of these entities is related by a foreign key association; concernRoleID is thus the external key of the
SearchService attribute for the PersonSearch Search Service (see 5.2, “SearchService Table,” on page 13)

The following attributes will thus be used in the search - either as part of the search criteria, or as a
displayable part of the results list:
v referenceNumber
v forename
v surname
v address
v city
v dateOfBirth
v sex
v birthSurname

© Copyright IBM Corp. 2012, 2013 23

v motherSurname

As such, these will be the Fields stored in the SearchServiceField table for the PersonSearch Search
Service.

7.3 Develop SearchService DMX files

7.3.1 Setup SearchService Record
Please see B.1, “Search Service Record,” on page 49 and 5.2, “SearchService Table,” on page 13

7.3.2 Setup SearchServiceField Record
Please see B.2, “Search Service Field Record,” on page 50 and 5.3, “SearchServiceField Table,” on page 14

7.4 Implement Mapper Operations
See 2.12, “Mapper,” on page 5 and 6.2, “Mappers,” on page 17 for an introduction to Mappers.

The following sections describe the implementation of the Mapper interface methods for each Search
Service. An example for PersonSearch Search Service is provided for each method of the interface.
Comprehensive Javadoc is also available for the Mapper interface and this should be read by all
developers implementing a Search Service.

7.4.1 Mapper.mapToStagingDb interface
/**
* Maps information in the Application database to the search
* service staging database for the specified search service id.
*
* @param id the identifier of the search service.
* @return the list of all mapped rows for the specified search
* service.
* @throws AppException application exception
* @throws InformationalException information exception.
*/

SearchServiceRowDtlsList mapToStagingDb(
final SearchServiceKey id) throws AppException,

InformationalException;

This method is invoked during the Database Extraction batch process; for each Search Service,
mapToStagingDb is called to retrieve information from the source entities and return them to the batch
process.

A Cúram ReadmultiOperation needs to be written to process all records to be stored on the staging
database for each Search Service. A Generic Search Server operation called ExtractReadMultiOperation
needs to be invoked on each of these records. Internally, this operation works out what other entities are
required to populate an entire SearchServiceRow based on this data, and also constructs a
SearchServiceRow object.

The result of this whole process is simply a list of SearchServiceRows, constituting all initial data to be
populated into the staging database. The Database Extraction batch process then takes care of inserting
these rows onto the staging database.

7.4.2 Mapper.getObjectList interface
/**
* Populates the list with all entity objects for the
* Search Service given any one of the entity objects used.
* @param searchServiceId. the search service identifier

24 IBM Cúram Social Program Management: Cúram Generic Search Server

* @param obj. The entity object from which all other are
* retrieved
* @return the list of all entity objects for the this search
* service given a specified object parameter.
*/
List getObjectList(final SearchServiceKey serviceId,

final Object obj) throws AppException,
InformationalException;

As mentioned earlier, it is possible for data in a Search Service to be gathered from a number of different
entities. It is also possible for these entities to be related by complex foreign key relationships (for
example, an Address record could be related to a Person record via an addressID which is linked via a
concernRoleAddressID which is in turn linked via a concernRoleID).

Things are made more complex when one of these entities gets updated via the application. When this
happens, the Generic Search Server must be able to work out which entity has just been affected, what
Searches it is involved in, and how it is related to every other entity included in each Search Service.

Ultimately, one or more Documents on one or more Search Service Indices will need to be updated, and
information in these Documents may be gathered from a range of entities, not just the one that just got
modified. However, given that Search Services have one and only one Mapper, each Mapper
implementation only needs to worry about assembling information for its own Search Service.

The getObjectList interface method addresses this problem. Given a single updated entity record,
getObjectList assembles all other entity Dtls records which will be required to update the corresponding
Document in the current Search Service Index. The getObjectList method needs to be coded in such a
way that any of the entities involved in a Search Service can be used as the starting point of this process.
getObjectList is responsible for:
v Working out what entity has been passed to it
v Working out all related entities for the Search Service in question
v Reading and assembling all related entity records based on the data in the parameter entity

The mapper.getobjectList () method is called in the following processes:
v Database Synchronization insert
v Database Synchronization modify
v Initial Database Extraction

Note that for initial Database Extraction, the getObjectList interface method gets invoked for every item
fetched from the ReadmultiOperation; typically this will be the top-level entity in this case (for example,
for a Person Search Extract, all Person records would be read in a readmulti; getObjectList will then be
called for each to retrieve all of the other information required to build a SearchServiceRow).

If this method is called for an input that isn't relevant to this search service, then the implementation
should simply return an empty list.

7.4.3 Mapper.getExtKey interface
/**
* Gets the Row external value for the specified object list.
* @param searchServiceId. the search service identifier
* @param objList the list of Search Service related entity
* objects.
* @return the externalKey.
*/
String getExtKey(final SearchServiceKey serviceId, List objList) ;

Chapter 7. Implementing a Search with the Generic Search Server 25

The getExtKey interface method returns a unique identifier for the specified Search Service. This key is
used as the key for each row in the SearchServiceRow table in the staging database. Note that the objList
parameter is the output of the getObjectList interface method described above. For Example, calling
getExtKey for the PersonSearch Search Service should return the concernRoleID of the record in question.

If this method is called for data that the search service doesn't care about then it should return null.

7.4.4 Mapper.remove interface
/**
* Deletes the row identified by the specified key from the
* staging
* database.
* @param serviceId identifier of the service.
* @param objKey the Key.
* @throws AppException
* @throws InformationalException

*/
void remove(SearchServiceKey serviceId, Object objKey)

throws AppException, InformationalException;

Deletes the specified row object from the staging database.

7.4.5 Mapper.getFieldValue Interface
/**
* If a specialized field value can’t be covered by the
* <code>SearchServiceMapper.getValue()
* <code> functionality this method
* should be overridden in the mapper for the specific search
* service.
* @param objList list of entity objects for this specific
* mappers service id.
* @param field the field whose value is required.
*/

Object getFieldValue(final SearchServiceKey serviceId,
final List objList, final SearchServiceFieldDtls fieldDtls);

The Generic Search Server infrastructure will try to retrieve an entity attribute value from an object list by
using Field metadata retrieved from the Search Service Field table. Typically, objectLists will contain
entity dtls structs, and in such cases it is trivial for the Generic Search Server to use reflection to identify
the correct attribute and get its value - this is exactly what is done behind the scenes.

However, if the objectList contains something other than an entity dtls struct (as in the case of Person
Search, where an AddressElementDtlsList is present, itself containing a single AddressElement struct)
then the Mapper.getFieldValue interface method should be implemented by search developers.

The Mapper.getFieldValue interface method should be implemented if a Mapper cannot automatically
map a specific attribute value. The relevant entity and field name is passed in via the fieldDtls struct
parameter, and the attribute value can be retrieved from the objList using reflection. It is up to the search
developer to implement this method interface for the type or types to be catered for.

Empty strings should not be returned from this method - null should always be returned.

7.4.6 Mapper newInstance()
If the mapper is modelled then the factory class should be specified for the SearchService mapperName
property. If the mapper is NOT modelled then the mapper implementation must implement a
public static Mapper newInstance();

26 IBM Cúram Social Program Management: Cúram Generic Search Server

interface returning an new instance of this search service's mapper. In this case the SearchService
mapperName property will be the class name of this implementation class.

7.5 Search Router and Implementation
As mentioned previously, searching currently uses SQL. In future versions, it is likely that Platform and
Solution searches will begin to use the Generic Search Server as the searching method of choice.
However, it is likely that SQL searching will also continue to be supported as-is currently, both from an
upgrade protection perspective, and from a fallback/failover option perspective in case of network or
other deployment problems.

To facilitate this, a Search Router factory class should be implemented which should returns a reference
to either the database search implementation or the Generic Search Server based implementation based
on a property setting.

7.6 Add Synchronization to each Search Entity
As noted earlier, the Generic Search Server staging database must be updated in a timely manner when
modifications are made to Search Service related entities. A single entity may well be being used in more
than one Search Service, and each of these Search Services must reflect changes to that entity.

The SearchController class is responsible for insuring that all staging database information is up to date.
The SearchController insert, modify and remove methods must be called from the application when the
corresponding Search Service entity operation is executed. The insert and modify SearchController
operations modify the SearchServiceRow table information with the specified entity details struct data.
The remove interface requires a key identifying the entity object being removed and the name of the
entity.
/**
* Generic insertion of entity updates to the database.
*
* @param details the object details.
* @param entityName the name of the entity
* @throws AppException application exception retrieving the
* registrar
* or during Mapper insert.
* @throws InformationalException information exception.
*/

public final void insert(final Object details,
final String entityName)

throws AppException, InformationalException
/**
* Generic Modify of entity updates to the database.
*
* @param details the object details.
* @param entityName the name of the entity
* @throws AppException application exception retrieving the
* registrar
* or during Mapper modify.
* @throws InformationalException information exception.
*/
public final void modify(final Object details,

final String entityName)
throws AppException, InformationalException

/**
* Generic remove of entity from the database.
*
* @param key the object key.
* @param entityName the name of the entity
* @throws AppException application exception.
* @throws InformationalException information exception.

Chapter 7. Implementing a Search with the Generic Search Server 27

*/
public final void remove(final Object key,

final String entityName) throws AppException,
InformationalException

28 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 8. Pull Mapper

8.1 Introduction
In the previous chapter we described the events mechanism and how you can use it to keep your data
synchronized with your search service. The Generic Search Server now provides another way to keep
your search service up to date, called the Pull Mapper. This chapter describes how the Pull Mapper
works and how you can use this with new searches you are developing.

8.2 Pull Mapper Overview
The event mechanism is by far the most efficient method of keeping your search services up to date.
However, if your searches are complex, developing and fully testing your search service may be
cumbersome. This is the problem the Pull Mapper sets out to solve.

The pull mapper uses timestamps on application records to find records that have been created or
updated since the pull mapper or the extractor last ran. When it finds such records it hands them off to
the Search Controller to update the search services, and from here the process is exactly the same as the
standard event mechanism. This process requires that all database tables involved in a search service are
scanned, which does obviously require database resources. In essence the Pull Mapper sacrifices some
runtime performance to provide a quicker and easier way to develop searches.

8.3 Developing with the Pull Mapper
This section will walk you through the process of developing a search service using the Pull Mapper.

8.3.1 Enable Last Updated Field on your searchable entities
Timestamps are required on all your database entities that are involved in search services and that use a
Pull Mapper. These timestamp columns are automatically added and kept up to date by infrastructure
when you enable the Last Updated Field feature for the entity in the model. The process for enabling this
feature is documented in the Server Modelling Guide.

8.3.2 Modelling the table scan
Another modelling requirement imposed by the Pull Mapper to model an operation called
searchByLastwritten (you must use this exact spelling/case.

This operation should be a nsmulti. The value for no generated SQL should be no. The operation should
take a struct called key. You should model your own struct as a parameter, but it must have an attribute
called datetime, which must be a DateTime. Later you will specify the classname of this struct in the
GSSEntity table, as described below.

You need to provide SQL for the operation. Here is a simple example for a simple entity called Customer:
Select Customer.customer_id, Customer.name,

recordStatus from Customer
WHERE Customer.lastwritten >= :datetime
INTO :customer_id :name :recordStatus

You must ensure you are selecting all the columns used by the search service.

In addition to the table scan method, you must have a standard read method on all your searchable
entities.

© Copyright IBM Corp. 2012, 2013 29

8.3.3 Defining your search service
Your search service should be defined in the usual way (see Chapter 7, “Implementing a Search with the
Generic Search Server,” on page 23

In addition to the SearchService and SearchServiceField tables you must add definitions to the
GSSMapperType and GSSEntity tables.

8.3.3.1 GSSMapperType
This table simply maps the Search Service name to a string defining the mapper type. The default is the
standard event mapper, which does not need to be specified. To use the pull mapper with a particular
search service, a row should be added to this table mapping the Search Service name to the mapper type
“PULL”.

searchServiceId

The Search Service Identifier; a string used to uniquely identify a Search Service. This is a foreign key of
the SearchService table.

mapperType

Set this to 'PULL' (must be uppercase) to enable the Pull Mapper for the search service.

8.3.3.2 GSSEntity
When the pull mapper is in use GSS requires more information about the entities being used in the
search services. For each unique entity listed in the child searchServiceField records belonging to each
SearchService using the Pull Mapper, a GSSEntity record must be added (however if multiple fields
belong to the same entity, you don't need to repeat the information).

searchServiceId

The Search Service Identifier; a string used to uniquely identify a Search Service. This is a foreign key of
the SearchService table.

tblScanKeyStruct

This is the full classname of the struct that is the parameter to your modelled searchByLastwritten
method described here: 8.3.2, “Modelling the table scan,” on page 29.

entityKeyStruct

This is the full classname of the parameter struct to your entity's read method.

EntityFactClass

This is the full classname of the generated factory class for your entity.

8.3.4 Writing your mapper class
A SearchServiceMapper implementation with the PullMapper is very much like a standard
SearchServiceMapper implementation as described in the Implementing a Search with GSS chapter of this
guide. However, there are some additional considerations.

When using the Pull Mapper with a complex search service that is composed of several related entities,
ensure that your SearchServiceMapper implementation will behave appropriately when it has to deal
with incomplete sets of entities, i.e. if entities A, B and C together comprise a search service your mapper

30 IBM Cúram Social Program Management: Cúram Generic Search Server

may get called when only A and C exist. Depending on your search service the correct behaviour may be
to add the incomplete set of data to the search service, or to do nothing until the set is complete.

8.4 Delete operations
The Pull Mapper cannot deal with standard delete operations. If you have a searchable entity that can be
deleted then you must use another mechanism to deal with this operation (e.g the event based
mechanism described in this guide).

However, the Pull Mapper can deal with standard logical delete operations, i.e. where a recordStatus
column is set using the RecordStatus codetable values.

Chapter 8. Pull Mapper 31

32 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 9. Searches and Queries in Depth

9.1 Introduction
Like any other piece of software, your GSS enabled searches must conform to certain design constraints if
they are to perform acceptably and work as users expect. This chapter described in depth the process of
designing a GSS search and proper use of GSS queries.

9.2 The Search Service - general guidelines
Your first design task is to decide what data you want to be able to search. Which fields do you want to
be able to search on? What data do you want your search to return? There are several tradeoffs here so
it's worth thinking about these things carefully.

Firstly, your index should contain as few fields as possible. Less fields mean a smaller index at runtime,
and less use of system resources. Don't put it in your search service unless you need it.

Each field in your index can be indexed (i.e. searchable), stored (i.e. you can retrieve its value), or both.
The reasons you would want to index a field are obvious - you want to be able to search based on it.
However, some fields you might not want to search on - such as non-human-readable IDs. You might
wish to add these to your search service as stored but non-indexed fields, so that you can perform
database lookups based on the results of your searches. If you don't need to index a field, then don't -
your extract processes will run faster and your index will consume less system resources.

Likewise, you may choose to store field values or not. In general, the index does not store the original
value of a field, but keeps a searchable representation only. In general, to be useful, a search must store at
least one field (the corresponding primary key of the database record).

After that, whether or not to store fields is a tradeoff. You could store all the fields you need in order to
display your search results, or you could store only the database IDs and use these to retrieve the data
from the database to display. The first option will result in a much larger index, but a faster display of
search results because the database is not required.

9.3 Mapping your database structure to an Index - Denormalization
You may wish to include data from several different entities in your search. Unlike database searching,
searching with indexes is not conducted using joins. Remember, the main benefit of using an index is to
allow the work of searching to essentially happen up-front, when the index is created rather than when
the search is invoked. Accordingly, all database tables should be denormalized for indexing. The
alternative, which is to create separate indexes, search them separately, then attempt to merge results is
much more complex and inefficient.

Example say you have the following entities: Entity Person with attributes name, date of birth, and a
foreign key pointing to an Address entity Entity Address with attributes street address, city, and country.
You wish to create a search that allows you to search for persons by name, DOB, street address, city and
country. You would create a searchable index that contains all the data from both tables.

When you have multiple entities contributing to a single search index, bear in mind that updates to any
of the tables concerned can lead to the search index requiring an update.

© Copyright IBM Corp. 2012, 2013 33

9.4 Tokenized and Untokenized Fields
We have already briefly touched on the issue of tokenization of search fields. What tokenization entails is
essentially breaking up the indexed data into units called tokens. This is done by use of an analyzer.
Different analyzers behave differently, some may break tokens at whitespace, some at punctuation, etc.
The resulting tokens are also usually transformed to lowercase. For tokenized fields query strings are
tokenized in the same way, so searches are case insensitive, among other benefits.

For some fields it doesn't make sense to tokenize. Good examples of this are computer generated values,
such as codetable codes. In general, however, most of your fields should be tokenized. In particular, the
behaviour of multi-word untokenized fields and searches is counterintuitive. If you find your searches are
not returning the data you expect consider whether this may be the case.

Example: Take an address field, with a document containing "Joyce Way Parkwest Dublin". If this were a
tokenized field using the standard analyzer, then the index will contain four terms: joyce, way, parkwest
and dublin. Any query string that contains terms matching these terms (exactly or via a wildcard) will
find this document. For instance: "Dublin", "Joyce Way", "park*", etc.

However, if this field is untokenized and the same document is added, the index will contain a single
term: "Joyce Way Parkwest Dublin". Much fewer query strings will match this, essentially only the string
itself or the first part of the string as a prefix search. The search will also be case sensitive.

9.5 Wildcards
GSS supports single character and multi-character wildcards. The question mark symbol, “?” matches any
single character. The asterisk symbol, “*” matches any sequence of characters. Neither of these may be
used as the first character in a search term because this results in poor performance. When implementing
a search developers should consider whether users should be allowed enter these characters in searches,
and if so provide useful online help. Otherwise they can be escaped with an escape character: “\”. It may
also be useful to check that these characters do not occur at the start of search terms and return a more
specific error message to the user than the GSS infrastructure is capable of doing (a generic exception to
indicate that the query is invalid will be returned, but the developer implementing the search will be able
to add more information regarding which field is invalid).

9.6 Analyzers in Depth
As previously introduced, Analyzers prepare your searchable text for indexing and searching.

Your choice of analyzers is very important. Analyzers are concrete classes that extend the class
org.apache.lucene.analysis.Analyzer. The GSS comes complete with several analyzers, and you can create
and use your own. Sometimes when you are tempted to define a field as untokenized you may want to
consider your choice of analyzer more carefully instead.

Each Search Service has a default analyzer, and any Search Service Field can override that analyzer to
define a specific analyzer for use with that field (see 5.3.9, “analyzerName,” on page 16) GSS will use the
same analyzer both for indexing and for searching.

The Generic Search Server provides the following predefined analyzers.

LUCENESTANDARD
Splits text at punctuation characters, removing punctuation. However, a dot that's not followed
by whitespace is considered part of a token. Splits words at hyphens, unless there's a number in
the token, in which case the whole token is interpreted as a product number and is not split.
Recognizes email addresses and internet hostnames as one token. Normalizes token text to lower
case and removes common English stop words.

34 IBM Cúram Social Program Management: Cúram Generic Search Server

STANDARD
Similar to LUCENESTANDARD analyzer but common stopwords are removed from the
tokenized terms and if the content to be tokenized is a single number it will not be altered
(making it suitable for processing generated infrastructure IDs which may be negative numbers).

SIMPLE
Splits text at non-letter characters and normalizes token text to lower case.

STOP Splits text at non-letter characters, normalizes token text to lower case and removes common
English stop words.

WHITESPACE
Splits text at whitespace. Adjacent sequences of non-Whitespace characters form tokens.

KEYWORD
"Tokenizes" the entire stream as a single token. This is useful for data like zip codes, ids, and
some product names.

Note that if you are using an analyzer other than a predefined GSS analyzer or analyzers shipped with
Lucene the class must be available on the Generic Search Server classpath.

Chapter 9. Searches and Queries in Depth 35

36 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 10. Running the Generic Search Server in Eclipse

10.1 Introduction
This chapter describes how to configure the development environment to run the Generic Search Server
in the Eclipse IDE for development and test purposes.

The Generic Search Server can be run in RMI mode for development purposes, in a similar way to the
Cúram application itself. This chapter details how to set this up.

10.2 Bootstrap.properties
Before starting development, the relevant settings should be added to your Bootstrap.properties file,
where necessary. See A.1, “Configuration Properties,” on page 47 for a description of the configuration
properties.

10.3 Launching the Cúram Generic Search Server from Eclipse
Like the Cúram application, in development mode the Generic Search Server requires a tnameserv
process to be running on your machine.

In your development installation, you will find the following implementation Java class files in your
/CuramSDEJ/lib/gss.jar file in Eclipse:
v curam.core.impl.DataBaseSearchExtractor.class

v curam.core.impl.admin.StartSearchServer.class

You should be able to run both the above class files as a normal Java application in the context of the
EJBServer project in the usual way, i.e.
v Right-click on the file and select Run as Java application

Run the DataBaseSearchExtractor to build your staging database before StartSearchServer. And run the
StartSearchServer process whenever you need to run a Search Server instance to test your search
functionality. You should rerun your DataBaseSearchExtractor before you start your SearchServer if you
have rebuilt your application database.

Note: If any of your Search Services use third party or custom Analyzers (i.e. Analyzers that do not come
as part of the Lucene distribution), ensure that they are added to the classpath of the EJBServer project.

© Copyright IBM Corp. 2012, 2013 37

38 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 11. Deploying the Generic Search Server

11.1 Introduction
This chapter describes the process of deploying the Cúram Generic Search Server onto your application
server. This chapter is aimed at administrators who will be deploying the Search Server alongside Cúram
application and who are familiar with the relevant Cúram Deployment Guide.

11.2 Deployment Options
You can deploy GSS either in its own ear file or as part of the Cúram ear file. The EJBServer/project/
config/deployment_packaging.xml contains an option to include GSS, called requireSearchServer. If you
set this and build your Cúram ear then you do not need to deploy GSS as a separate ear file (in fact,
your application server will not allow this). In general we do not recommend this as it is not a highly
performant deployment configuration but it may be useful for testing purposes or small deployments.

11.3 Deployment Process
The deployment process consists of the following steps:
v Set up your Bootstrap.properties with your configuration properties and any properties related to your

Search Server. See A.1, “Configuration Properties,” on page 47 for a description of the configuration
properties.

v Build your Cúram application ear file as usual (this will also build your GSS ear file).
v Set up your database as usual.
v Run the Cúram Generic Search Server search database extractor.
v Deploy all your application ear files, including SearchServer.ear
v Log into the application as an administrator, and set up the system properties to enable the

GSS-supported searches that you wish to use and to enable the synchronization mechanism. See
Chapter 4, “Generic Search Server enabled searches,” on page 11

v Run the generic search server startup process.

The Generic Search Server should then be available to respond to queries.

11.4 Clustering
Deploying multiple instance of GSS is supported on a cluster environment. Extended discussion of
advanced cluster deployment topologies is beyond the scope of this guide. Also see 12.9, “Recommended
configuration for Production Environment,” on page 46.

Note: It is advised to deploy GSS in its own cluster.

11.5 Build Targets
The following build targets are specific to the Cúram Generic Search Server.

11.5.1 weblogicEARGSS
This target builds the SearchServer.ear file and copies it to the EJBServer/build/ear/WLS/ directory,
alongside your Cúram ear file. It is run automatically as part of the weblogicEAR target. The

© Copyright IBM Corp. 2012, 2013 39

SearchServer ear file must be built after the Cúram ear file. After the SearchServer ear file has been build
the application is ready for deployment onto Oracle WebLogic Application Server using the same build
targets or manual processes as the Cúram ear file.

11.5.2 websphereEARGSS
This target builds the SearchServer.ear file and copies it to the EJBServer/build/ear/WLS/ directory,
alongside your Cúram ear file. It is run automatically as part of the websphereEAR target. The
SearchServer ear file must be built after the Cúram ear file. After the SearchServer ear file has been build
the application is ready for deployment onto IBM®WebSphere® Application Server using the same build
targets or manual processes as the Cúram ear file.

11.5.3 runExtractor
This target must be run after your application database has been configured. By default it extracts all data
related to the CEF search services and any other search services you have defined out of your application
database and transforms it into a format suitable for indexing. The length of time that this process will
take will increase with the amount of data to be extracted. This target may be rerun multiple times if
required.

This target may executed against a single search service by specifying the “SERVICE” property. E.g:
“build runExtractor -DSERVICE=PersonSearch”

11.5.4 runPersist
If you are using a persisted database index (see 12.3, “Index Persistence,” on page 43, this target builds
the index from the staging database tables. It should only be run after your application database has been
configured and the runExtract target has been run. The runExtract target will build your persisted index
if persistence is configured, therefore this target only needs to be run separately if you have changed
your configuration since running the runExtractor target.

11.5.5 startupSearchServer
This target is optional. If it is to be run it must be run after your Generic Search Server has been
deployed onto your application server. It triggers the Search Server to set up its indexes so that they are
available for searching. The length of time that this process will take will increase with the amount of
data to be indexed. If you don't run the startup target explicitly, the search server will initialize its
indexes on the first search request. This feature is primarily there for ease of testing with small datasets.
For large datasets the automatic startup feature should not be used. You can disable the automatic startup
by setting the property “curam.searchserver.autostartup.disabled” to true in your Bootstrap.properties.
when you set up your ear file - this is recommended.

11.6 Database Performance
The Cúram application and the Search Server application share a common database, but impose quite
different demands on it. The SearchServiceRow table will see the bulk of writes and accesses, and it will
grow very large, as it essentially contains a version of all the searchable data. The Cúram application will
write to this table as searchable entities are inserted or updated. Periodically, if your Search Server is
restarted or when it synchronizes, there will be a lot of reads from this table. It may make sense to place
the SearchServiceRow table in a different tablespace to the rest of the application tables, depending on
your organizations resources and needs.

40 IBM Cúram Social Program Management: Cúram Generic Search Server

11.7 Time Considerations
If different machines are used to run instances of the Curam application and the Generic Search Server
then all systems must have their clocks in sync and remain in the same time zone. We recommend that a
software solution such as NTP (depending on your deployment platform) is employed to ensure this
remains the case. If this is not done then there can be no guarantee that all updates to application data
will be accurately reflected by the Generic Search Server.

Chapter 11. Deploying the Generic Search Server 41

42 IBM Cúram Social Program Management: Cúram Generic Search Server

Chapter 12. Performance

12.1 Introduction
This chapter describes Cúram Search Server performance and how various deployment scenarios and
configuration settings may influence it.

12.2 Index Types
As described in 2.3, “Indices,” on page 3 an index is the data structure that powers GSS searches. It can
be a fairly sizable data structure (see 12.7.1, “Index Size Calculation,” on page 46 and this begs the
question: where to store it? GSS provides two options: memory or file. For information on how to
configure these properties see A.1, “Configuration Properties,” on page 47

RAM (in-memory) directories must be reconstructed each time an application server is started (unless
persistence is used, see 12.3, “Index Persistence.” They are fast to access but their memory requirements
may exceed the resources available. RAM directories may be very useful for testing however, as they do
not hold state.

File indexes use the local file system to store the index.Even though the J2EE specification does not cover
file system access in practice this works with all supported versions documented in a separate document,
Curam Supported Prerequisites document. Naturally the better the performance of the underlying filesystem
used the better the performance of GSS will be.

12.3 Index Persistence
Each Search Service has an associated index that is queried during each search. This index is generated
from the staging database tables when the Search Server initializes. A substantial amount of time may be
required to read all the search service data from the staging database tables and subsequently to generate
the relevant indices for this data.

The Generic Search Server provides the means to persist the current index on the database so as to
improve the startup time. When index persistence is enabled, and before the staging tables are
interrogated, the persisted index is loaded if available. If it is not available, all data is read from the
staging tables and startup will be slower.

The persisted index has a timestamp associated with it and this is stored in the appropriate Search
Service table for that index. This timestamp indicates the time that RAM index was last persisted to disk.
Knowing this time enables the Generic Search Server to retrieve any new or modified Search Service data
from the staging tables. The persisted index and the new/modified data from the staging tables provide
for a complete in-memory index ready for searching. Time is saved by reducing the access to the staging
tables and the associated processing during index construction.

Persisted index data is stored in BLOB format, therefore performance of reading and writing a large
index from and to the database is optimal.

12.3.1 Persistence Operation Invocation
The Batch operation DataBaseIndexPersist.persistIndex() is executed to perform the backup for all indices.
The process for persisting each index is to:-
1. Read current persisted index
2. Read new or modified data from staging table data
3. Generate an in-memory index with 1) + 2) above.

© Copyright IBM Corp. 2012, 2013 43

4. Save newly generated in-memory index to the database.
5. Repeat 1) to 4) for each search service.

12.4 Testing and operational considerations
Persisted indexes, FILE indexes are designed to retain built indexes between server resets.

The data also persists between database rebuild operations, and this may cause issues for testers if index
data becomes inconsistent with the current database.

Similarly, in an operational setting, if database updates occur without search index updates being enabled
in the application (via the “curam.lucene.luceneOnlineSynchronizationEnabled” property) the data in the
index will become out of date and problems may occur.

In the event of either of the above scenarios, persisted data can be removed manually from the database
by dropping all database tables that begin with “GSS_” (there will be one table for each Search Service).
The persisted indexes will be rebuilt as normal when an extract or persist operation is run.

In the case of a FILE index the file may be deleted, and in the event of a standard RAM search service
encountering such issues, rerunning the extract process will fix the problems.

12.5 Performance Tuning
This section describes parameters that influence the performance of reading and writing the search index.
They determine how the index is constructed and how new entries are to be written to it.

12.5.1 Max Merge Documents
curam.searchserver.luceneadaptor.searcher.index.maxmergedocs

This property improves search times for higher values and for lower values gives better results when an
index encounters frequent updating. Small values (e.g., less than 10,000) are best if the index is frequently
updated, however, search times performance will be impacted. The default is 10000000. If the search
performance is most important this value should be large, for example the default value, or else if the
search data updating performance is more important then the value should to a small value, for example
10,000.

12.5.2 Merge Factor
curam.searchserver.luceneadaptor.searcher.pool.mergefactor

This property has an impact on RAM used while updating an index. The index requires updating as a
result of search affecting application data updates. For small values(less than 10), searches will be faster,
however, search index updates will be slower. With larger values(greater than 10), more RAM is used
during index updating, and while searches are slower, index updating is faster. The default value is 10; If
the search performance is most important this value should be less than 10 or else if the search data
updating performance is more important then the value should be greater than 10.

12.5.3 Enable Persistence
curam.searchserver.server.index.persistence.enable

add curam.searchserver.server.index.persistence.enable=true to Bootstrap.properties to enable index
persistence.

Note:- If this property is enabled, during the Database extraction execution, the new persisted indices will
also be generated.

44 IBM Cúram Social Program Management: Cúram Generic Search Server

12.5.4 References
For more information of parameters discussed in this section refer to http://lucene.apache.org/java/
2_2_0/api/index.html

12.6 Searcher Pooling
This section describes the how to configure Search Pools and the influence this has on search
performance.

12.6.1 Overview
Lucene has an internal caching mechanism which makes searches using long-lived IndexSearcher objects
faster than searches with newly created IndexSearcher instances. One shared IndexSearcher instance
would be enough to get fast searches in single-user environment, but a standard use case in a server
environment is that multiple clients search the index simultaneously. To avoid sequencing the search
requests in this setting, which would degrade individual search performance, the GSS uses an
IndexSearcher pool that keeps a defined number of IndexSearcher instances for reuse by simultaneous
search requests.

An IndexSearcher will only see the index as of the "point in time" that it was opened. Any updates to the
index after the IndexSearcher was opened are not visible until the IndexSearcher is re-opened. Each
IndexSearcher instance can use a very significant amount of memory depending on index size and
whether the index has been updated in the meantime or not. The IndexSearcher pool takes care of closing
and reopening IndexSearcher instances when an index update occurs.

12.6.2 Pool configuration properties
IndexSearcher pool has two basic options - initial size and maximum size. The following parameter
curam.searchserver.luceneadaptor.searcher.pool.initialsize

specifies how many IndexSearcher instances will be open at startup and kept open at all times for use by
search clients. This is a required option and takes positive integer values including 0. If not specified the
default value is "0". Typically this property should be set to the anticipated maximum number of
simultaneous client searches.
curam.searchserver.luceneadaptor.searcher.pool.maxsize

specifies what is the maximum number of IndexSearcher instances allowed to be open at any given time.
If more than this number of searches happens at any time an exception will be thrown and logged for
diagnostic purposes. This option takes positive integer numbers, and if not specified the default value is
"100". There is also the associated
curam.searchserver.luceneadaptor.searcher.pool.maxsizeunbounded

option which means the maximum pool size is unlimited. The option accepts values of "true" or "false". If
not specified default is "true". If this option is set to "true" the
curam.searchserver.luceneadaptor.searcher.pool.maxsize option value will be ignored. One of those two
associated options is required.

12.7 RAM Limitations
The Global Search Server indices are stored in-memory if configured to do so. If using a 32-bit JVM A
memory limitation of ~3GB is encountered. However, this figure is not only the memory available to GSS
but also to all other system processes. It is important to note that very large Search Service indices could
exceed the maximum RAM available to the GSS and other deployed processes.

Chapter 12. Performance 45

http://lucene.apache.org/java/2_2_0/api/index.html
http://lucene.apache.org/java/2_2_0/api/index.html

12.7.1 Index Size Calculation
The index size is approximately 30% of the text indexed. The Search Service's indexed and stored
properties (these can be obtained from the SearchServiceField attributes where indexed=true and
stored=true) are used to estimate the index size.
v 1 million Person records. where 1 record = 1 index document.
v 1 document may contain the following indexed and stored properties determined from the

SearchServiceField table for a PersonSearch service:- refnumber(10) forename(20), surname(20),
AddressLine1(30), AddressLine2(30), city(20), country(15), gender(10). where (*) = max value size in
character for that field.

v 1 document = (155 characters for stored value) + (66 characters for each field/term name.) = 221.
v Memory 1M Person documents and Java using 16-bit unicode per character. Total indexed and

returned text 442MB * 30% = 132MB.

12.8 Recommended configuration
The recommended configuration for Cúram Generic Search server is the use of a FILE index type with
index persistence turned off as standard. This should provide good performance without sizing worries.
The search server should be deployed as a separate application and not co-located with Cúram
application (see Chapter 11, “Deploying the Generic Search Server,” on page 39.

12.9 Recommended configuration for Production Environment
FILE index type is the only supported configuration in production environment.

46 IBM Cúram Social Program Management: Cúram Generic Search Server

Appendix A. Cúram Generic Search Server Configuration
Properties

A.1 Configuration Properties
Before starting development, or deploying your Cúram Generic Search Server the following settings
should be added to your Bootstrap.properties file, where necessary.

Table 3. Cúram Generic Search Server Basic Configuration Settings
Property name Description

curam.searchserver.sync.interval The interval in milliseconds between Generic Search Server synchronization invocations.
This is effectively the maximum time between data being updated and it being available
for search. If this property is not set, the default is to synchronize every 3 seconds.

curam.searchserver.sync.username The username used for logging into the application to perform synchronization. The
user must be authorized to run the DoGSSSync.sync function identifier. Required when
running under WebSphere application server only. Omitting to specify this property and
the associated password will not prevent the sync operation from running but it will
result in security warnings being written to the logfiles on each synchronization.

curam.searchserver.sync.password Password associated with the curam.searchserver.sync.username described in the entry
above. This password should be encrypted with the standard Cúram encrypt build
target.

curam.searchserver.environment.vendor This property should be set to “ITD”, “IBM”, or “BEA” depending on whether you are
using the Search Server in development mode or deploying to WebSphere or WebLogic.
If this property is not set the Search Server will default to using
curam.environment.as.vendor property.

curam.searchserver.server.host The domain name or IP address of the server on which your Search Server is running.
This must be set in order for you to be able to run the server startup process from the
command line. If this property is not set the default is localhost.

curam.searchserver.server.port The port on which your application server's RMI service is available. This must be set in
order for you to be able to run the server startup process from the command line.

curam.searchserver.autostartup.disabled For testing and development purposes, the Search Server will initialize its indexes on
the first search request, unless it has already been started up. In a deployment scenario,
you may want to disable this behaviour and ensure that the startup process is run from
the command line, to give you more control over the process. Setting this property to
true disables the automatic startup behaviour. Note that the search server will throw an
exception in response to any search attempts that occur before the startup is complete.

curam.searchserver.
luceneadaptor.searcher.index.maxmergedocs

This property is used to tweak the performance of index reading and writing. Larger
values “1,000,000” are best for batched index writing and speedier searches. Smaller
values “10,000” are best for interactive indexing where numerous individual index
updates occur.

curam.searchserver.luceneadaptor.document.flush.count Indicates the count of documents to update before flushing to the index, when dealing
with a large batch of documents. If not specified, this defaults to 1000 documents.
Tuning this property can reduce the time required to build your index initially on index
persistence or server startup.

curam.searchserver.term.min.length Minimum allowable length of a search term. Defaults to two characters. Using very
short search terms will result in poor search performance, and usually in poor quality of
search results.

curam.searchserver.directory.type This specifies the type of storage to use for search services - may be RAM, FILE. RAM is
the default index type and suitable for smaller indexes that require very fast
performance. FILE setting provides storage for large indices on the File System.

curam.searchserver.file.index.location This property indicates where to store the file index on the File System if
curam.searchserver.directory.type=FILE with more data. If deploying to multiple
machines the file location should exist on each targeted machine.

Table 4. Cúram Generic Search Server Searcher Pool Settings
Property name Description

curam.searchserver.luceneadaptor.searcher.pool.initialsize This property initializes the number of searchers within the searcher pool on startup.
The default is 0.

curam.searchserver.luceneadaptor.searcher.pool.maxsize This property indicates the maximum number of IndexSearchers within the searcher
pool. The default is 100.

© Copyright IBM Corp. 2012, 2013 47

Table 4. Cúram Generic Search Server Searcher Pool Settings (continued)
Property name Description

curam.searchserver.luceneadaptor
.searcher.pool.maxsizeunbounded

This property set to “true” overrides
curam.searchserver.luceneadaptor.searcher.pool.maxsize and indicates there is no
maximum number of IndexSearchers allowed within the searcher pool. The default is
“true”.

curam.searchserver.luceneadaptor.searcher.pool.mergefactor This property is used to tweak the performance of index reading and writing. The
default value is “10”. Minimum value is “2”. Higher values result in more RAM usage,
slower searching, but quicker index writing.

Table 5. Cúram Generic Search Server Persistence Settings
Property name Description

curam.searchserver.server.index.persistence.enable This property should be set to “true” to enable index persistence. If this property is not
set the default is “false”.

curam.searchserver.custom.db.init This property should be set to “true” when customizing index persistence database
tables. It indicates that the default index persistence tables are not to be used and the
CustomDBSearchServices.properties file should be used to set up these tables.

48 IBM Cúram Social Program Management: Cúram Generic Search Server

Appendix B. Sample DMX Listings: PersonSearch

B.1 Search Service Record
<?xml version="1.0" encoding="UTF-8"?>

<table name="SEARCHSERVICE">

<column name="
searchServiceId
" type="text" />

<column name="
name
" type="text" />

<column name="
extKeyName
" type="text" />

<column name="
analyzer
" type="text" />

<column name="
locked
" type="bool" />

<column name="
forcedReindexTimeStamp
" type="timestamp" />

<column name="
mapperName
" type="text" />

<column name="
prstBlobSize
" type="text" />

<row>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute>
<attribute name="name">

<value>
PersonSearch
</value> </attribute>

<attribute name="extKeyName">
<value>
ConcernRoleID
</value> </attribute>

<attribute name="analyzer">
<value>
STANDARD
</value>

</attribute>
<attribute name="locked">

<value>
0
</value>

</attribute>
<attribute name="forcedReindexTimeStamp">

<value>
SYSTIME
</value>

</attribute>
<attribute name="mapperName">

<value>
curam.core.impl.PersonSearchMapper

© Copyright IBM Corp. 2012, 2013 49

</value>
</attribute>
<attribute name="prstBlobSize">

<value>
50M
</value>

</attribute>
</row>

</table>

B.2 Search Service Field Record
<?xml version="1.0" encoding="UTF-8"?>

<table name="SEARCHSERVICEFIELD">

<column name="
searchServiceFieldId
" type="text" />

<column name="
searchServiceId
" type="text" />

<column name="
name
" type="text" />

<column name="
indexed
" type="bool" />

<column name="
type
" type="text" />

<column name="
stored
" type="bool" />

<column name="
entityName
" type="text" />

<column name="
analyzerName
" type="text" />

<column name="
untokenized
" type="bool" />

<row>
<attribute name="searchServiceFieldId">

<value>
field0
</value>

</attribute>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>
primaryAlternateID
</value>

</attribute><attribute name="indexed">
<value>
1
</value>

</attribute><attribute name="type">
<value>
String
</value>

</attribute><attribute name="stored">
<value>

50 IBM Cúram Social Program Management: Cúram Generic Search Server

1
</value>

</attribute>
<attribute name="entityName">

<value>
Person
</value>

</attribute>
<attribute name="analyzerName">

<value></value>
</attribute>
<attribute name="untokenized">

<value>
1
</value>

</attribute>
</row>

<row>
<attribute name="searchServiceFieldId">

<value>
field1
</value>

</attribute>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>
firstForename
</value>

</attribute><attribute name="indexed">
<value>
1
</value>

</attribute><attribute name="type">
<value>
String
</value>

</attribute>
<attribute name="stored">

<value>
1
</value>

</attribute>
<attribute name="entityName">

<value>
AlternateName
</value>

</attribute>
<attribute name="analyzerName">

<value>
STANDARD
</value>

</attribute>
<attribute name="untokenized">

<value>
0
</value>

</attribute>
</row>

......

</table>

Appendix B. Sample DMX Listings: PersonSearch 51

52 IBM Cúram Social Program Management: Cúram Generic Search Server

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 53

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

54 IBM Cúram Social Program Management: Cúram Generic Search Server

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Oracle, WebLogic Server, Java and all Java-based trademarks and logos are registered trademarks of
Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 55

http://www.ibm.com/legal/us/en/copytrade.shtml

56 IBM Cúram Social Program Management: Cúram Generic Search Server

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Cúram Generic Search Server Guide
	1.2 Prerequisites
	1.3 Audience

	Chapter 2. Concepts and Definitions
	2.1 Introduction
	2.2 The Generic Search Server
	2.3 Indices
	2.4 Search Service
	2.5 Field
	2.6 Document
	2.7 Lucene
	2.8 Staging Database
	2.9 Query
	2.10 Term
	2.11 Analyzer
	2.12 Mapper
	2.13 Extractor

	Chapter 3. Generic Search Server Overview
	3.1 The Generic Search Server and Lucene
	3.2 Importing Data from Cúram
	3.3 Search Server Synchronization
	3.4 Search Controller
	3.5 The Search Process
	3.6 References

	Chapter 4. Generic Search Server enabled searches
	4.1 Introduction
	4.2 Generic Search Server related properties in the Cúram application
	4.3 Keeping Cúram data and search data synchronized
	4.3.1 Event-based synchronization

	Chapter 5. Staging Database Tables
	5.1 Introduction
	5.2 SearchService Table
	5.2.1 searchServiceId
	5.2.2 extKeyName
	5.2.3 analyzer
	5.2.4 frcdReidxTimeStmp
	5.2.5 mapperName
	5.2.6 dbLastWritten
	5.2.7 prstBlobSize

	5.3 SearchServiceField Table
	5.3.1 srchServiceFldId
	5.3.2 searchServiceId
	5.3.3 name
	5.3.4 type
	5.3.5 indexed
	5.3.6 stored
	5.3.7 entityName
	5.3.8 untokenized
	5.3.9 analyzerName

	Chapter 6. Getting Started with the Generic Search Server API
	6.1 Introduction
	6.2 Mappers
	6.3 Search Controller
	6.4 Search Service Connector
	6.5 Queries
	6.6 CuramTerm
	6.6.1 Query Structure
	6.6.2 Standard Terms
	6.6.3 Date and Date Range Terms
	6.6.4 Text

	6.7 Generating Queries
	6.7.1 Constructing a Query Builder
	6.7.2 Adding Search Criteria
	6.7.3 Generating Queries from a Struct
	6.7.4 Specifying which search service fields to return
	6.7.5 Obtaining the Query Object

	6.8 Dealing with Search Results
	6.9 Data Types and String Conversion

	Chapter 7. Implementing a Search with the Generic Search Server
	7.1 Overview
	7.2 Person Search Example - Overview
	7.3 Develop SearchService DMX files
	7.3.1 Setup SearchService Record
	7.3.2 Setup SearchServiceField Record

	7.4 Implement Mapper Operations
	7.4.1 Mapper.mapToStagingDb interface
	7.4.2 Mapper.getObjectList interface
	7.4.3 Mapper.getExtKey interface
	7.4.4 Mapper.remove interface
	7.4.5 Mapper.getFieldValue Interface
	7.4.6 Mapper newInstance()

	7.5 Search Router and Implementation
	7.6 Add Synchronization to each Search Entity

	Chapter 8. Pull Mapper
	8.1 Introduction
	8.2 Pull Mapper Overview
	8.3 Developing with the Pull Mapper
	8.3.1 Enable Last Updated Field on your searchable entities
	8.3.2 Modelling the table scan
	8.3.3 Defining your search service
	8.3.3.1 GSSMapperType
	8.3.3.2 GSSEntity

	8.3.4 Writing your mapper class

	8.4 Delete operations

	Chapter 9. Searches and Queries in Depth
	9.1 Introduction
	9.2 The Search Service - general guidelines
	9.3 Mapping your database structure to an Index - Denormalization
	9.4 Tokenized and Untokenized Fields
	9.5 Wildcards
	9.6 Analyzers in Depth

	Chapter 10. Running the Generic Search Server in Eclipse
	10.1 Introduction
	10.2 Bootstrap.properties
	10.3 Launching the Cúram Generic Search Server from Eclipse

	Chapter 11. Deploying the Generic Search Server
	11.1 Introduction
	11.2 Deployment Options
	11.3 Deployment Process
	11.4 Clustering
	11.5 Build Targets
	11.5.1 weblogicEARGSS
	11.5.2 websphereEARGSS
	11.5.3 runExtractor
	11.5.4 runPersist
	11.5.5 startupSearchServer

	11.6 Database Performance
	11.7 Time Considerations

	Chapter 12. Performance
	12.1 Introduction
	12.2 Index Types
	12.3 Index Persistence
	12.3.1 Persistence Operation Invocation

	12.4 Testing and operational considerations
	12.5 Performance Tuning
	12.5.1 Max Merge Documents
	12.5.2 Merge Factor
	12.5.3 Enable Persistence
	12.5.4 References

	12.6 Searcher Pooling
	12.6.1 Overview
	12.6.2 Pool configuration properties

	12.7 RAM Limitations
	12.7.1 Index Size Calculation

	12.8 Recommended configuration
	12.9 Recommended configuration for Production Environment

	Appendix A. Cúram Generic Search Server Configuration Properties
	A.1 Configuration Properties

	Appendix B. Sample DMX Listings: PersonSearch
	B.1 Search Service Record
	B.2 Search Service Field Record

	Notices
	Trademarks

