
IBM Cúram Social Program Management

Working with the Cúram Model in
Rational Software Architect
Version 6.0.5

���

IBM Cúram Social Program Management

Working with the Cúram Model in
Rational Software Architect
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 27

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Purpose 1
1.2 Audience 1
1.3 Prerequisites 1
1.4 Chapters in this Guide 1

Chapter 2. The Rational Software
Architect Workbench 3
2.1 Introduction 3
2.2 Integrating the Cúram Model into Rational
Software Architect 3
2.3 The Modeling Perspective 3

2.3.1 Project Explorer View 4
2.3.2 The Properties View 4
2.3.3 The Diagram Editor 4
2.3.4 The Model Editor 4

2.4 Working with the Model 5
2.4.1 Creating a Model 5
2.4.2 Opening a Model 6
2.4.3 Closing a Model 6
2.4.4 Navigating the Model 6

2.5 Working with Model Elements 6
2.5.1 Viewing an Element 6
2.5.2 Adding an Element to the Model 7
2.5.3 Modifying an Element 7
2.5.4 Creating a Relationship between Elements. . 7
2.5.5 Removing an Element from a Model . . . 8
2.5.6 Copying and Pasting 8
2.5.7 Attribute Order. 8

2.6 Searching in Rational Software Architect 8
2.6.1 Searching the Model 8
2.6.2 Searching for References to an Element . . . 9
2.6.3 Searching for Elements using the Type
Browser 9

2.7 Specialized Tabs and Wizards 9
2.7.1 Foreign Key Tab 9
2.7.2 Secure Field Tab 9
2.7.3 Manage Operation Parameters Wizard . . 10
2.7.4 Operation Wizard 10
2.7.5 Entity Operation Wizard 10
2.7.6 Domain Definition Wizard 10

2.8 Working with Class Diagrams 10
2.9 Working with Fragments 11

2.9.1 Creating a Fragment. 11
2.9.2 Absorbing a Fragment 11

2.10 Validating a Model 11

Chapter 3. Using Rational Software
Architect with the Cúram Model 13
3.1 Introduction 13

3.2 Working with Domain Definitions 13
3.2.1 Creating a Domain Definition 13
3.2.2 Renaming a Domain Definition 13
3.2.3 Modifying a Domain Definition 14

3.3 Working with Entities 14
3.3.1 Creating an Entity 14
3.3.2 Adding an Attribute to an Entity 14
3.3.3 Adding an Operation to an Entity 14
3.3.4 Adding a Return Type to an Entity
Operation 15
3.3.5 Adding an 'ns' Operation to an Entity . . . 15

3.4 Working with Structs 15
3.4.1 Creating a Struct 15
3.4.2 Adding Attribute to a Struct 15

3.5 Working with Aggregations 16
3.5.1 Creating an Aggregate Relationship . . . 16

3.6 Working with Process Classes 16
3.6.1 Creating a Business Process Class 16
3.6.2 Adding Operations to a Process Class . . . 16
3.6.3 Adding an Argument to a Process
Operation 17
3.6.4 Adding a Return Type to a Process
Operation 17

3.7 Working with Facade Classes 17
3.7.1 Creating a Facade Class 17
3.7.2 Adding Operations to a Facade Class . . . 17
3.7.3 Adding Arguments and a Return Type to
Facade Operations 17

Appendix A. How Rational Software
Architect differs from Rational Rose . . 19
A.1 Introduction 19
A.2 Shadow Classes 19

A.2.1 Specifying a Shadow Type for a Parameter
or Operation Return Type 19
A.2.2 Adding an Relationship between a Shadow
Class and a Class in the Model 19

A.3 Server Components 20
A.4 Modeling Facade Classes 20
A.5 Generating Function Identifiers for Model
Classes 20
A.6 Modeling Web Service Classes. 20
A.7 Assignable Relationship Field Mappings . . . 20
A.8 Class Abstract Options 20
A.9 RDO Description Stereotype 21

Appendix B. Right Click Context Menu
Options in the Project Explorer View . . 23
B.1 Introduction 23
B.2 Child Options for Class Types 23
B.3 Other Options 23

© Copyright IBM Corp. 2012, 2013 iii

Appendix C. Broken Reference
Resolution 25
C.1 Broken Reference Resolution 25

C.1.1 Background 25
C.1.2 Rational Software Architect changes in
References 25

C.1.3 Extension to Broken Reference Resolution 25
C.1.4 Resource Reference Resolution Process . . 26

Notices 27
Trademarks 29

iv IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Figures

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Tables

1. Modeling Views 3
2. Description of tabs in the Properties view used

in Cúram Modeling 4

3. Description of Tabs in the Model Editor . . . 5
4. Right Click Context Menu Options for Classes 23
5. Additional Right-Click Context Menu Options 23

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Chapter 1. Introduction

1.1 Purpose
The purpose of this guide is to detail how IBM® Rational® Software Architect is used to work with the
IBM Cúram Social Program Management UML model. Rational Software Architect primarily as a tool for
UML modeling, analysis, and design. A key reason that Rational Software Architect is used for these
functions is because of its support for domain specific languages and Eclipse extensibility, which enables
the use of a powerful and intuitive user interface.

Although Rational Software Architect is used for UML analysis and design, a discussion of these topics
falls outside the scope of this document which focuses on specific tasks that can be performed with the
Cúram model in Rational Software Architect.

1.2 Audience
This guide is intended for any reader who will be using Rational Software Architect to perform common
modeling tasks on the Cúram UML model.

1.3 Prerequisites
Readers should have a good working knowledge of UML, Java™ , and Eclipse.

Note: Rational Software Architect Rational Software Architect is third-party software. Please refer to the
Cúram Supported Prerequisites document for more information on the supported versions of third party
tools.

The Cúram Modeling Reference Guide should be consulted as reference for further information on the IBM
Cúram Social Program Management modeling elements.

1.4 Chapters in this Guide
The following list describes the chapters within this guide:

The Rational Software Architect Workbench
This chapter describes the Rational Software Architect workbench and the various views that
make up the workbench. It also covers Rational Software Architect basics including creating,
opening and closing a model, basic tasks for model elements, and creating and absorbing model
fragments.

Using Rational Software Architect with the Cúram model
This chapter describes in detail specific Cúram model elements and how they are manipulated in
Rational Software Architect.

How Rational Software Architect Differs from IBM Rational Rose
This appendix compares and contrasts the differences between modeling in Rational Rose and
Rational Software Architect.

Right Click Context Menu Options for Model Elements
This appendix describes what can be added from the right click context menu for each model
class in the Rational Software Architect project explorer window.

© Copyright IBM Corp. 2012, 2013 1

2 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Chapter 2. The Rational Software Architect Workbench

2.1 Introduction
This chapter details the main parts of the Rational Software Architect workbench that you will use when
working with the IBM Cúram Social Program Management model. In Rational Software Architect, a
perspective is a particular layout of views, an editor and tool bars. Here the Rational Software Architect
modeling perspective is described. This perspective allows you to view, create, and maintain elements of
the Cúram model.

The most common tasks that are performed in Rational Software Architect are also detailed in this
chapter. These include:
v Creating, opening, and closing a model
v Basic maintenance tasks common to all model elements
v Working with model fragments
v Searching in the model

Note: Rational Software Architect can be used as a modeling tool or as a plug-in for Eclipse. For the
purposes of this guide, the focus will be on using the Rational Software Architect standalone tool.

2.2 Integrating the Cúram Model into Rational Software Architect
The Cúram model uses a small subset of the range of functionality provided by Rational Software
Architect. In order to simplify the use of Rational Software Architect for the Cúram model, a number of
techniques are used to tailor the tool to the Cúram model.

A Cúram profile is provided for working with the Cúram model. The Cúram profile defines what UML
stereotyped elements and values can be defined within the Cúram model.

When you create a model in Rational Software Architect, the Cúram model template is used. This
combines the Cúram profile with a filtering capability to remove unnecessary or unsupported
functionality from menus and options in the Rational Software Architect workbench. The Cúram model
template is automatically used when you open an existing Cúram model. You should always select it
when creating a new model.

Note: Some options which are not supported in the Cúram model cannot be hidden from the user. If the
user performs an unsupported action, a validation message is displayed and the action is reversed. For
more information on this please refer to 2.5.3, “Modifying an Element,” on page 7.

2.3 The Modeling Perspective
The Rational Software Architect Modeling Perspective is used for UML modeling and consists of four
main views: the Project Explorer view, the Properties view, the Diagram Editor view, and the Model
Editor view.

Table 1. Modeling Views

View Description

Project Explorer Allows you to see all the related parts of the Cúram model in a navigable
tree structure

Properties Allows you to view and maintain information about a selected model
element.

© Copyright IBM Corp. 2012, 2013 3

Table 1. Modeling Views (continued)

View Description

Diagram Editor Allows you to create, view, and edit model diagrams using the custom
Cúram palette.

Model Editor Allows you to view and edit a model's configuration in a tabbed view.

2.3.1 Project Explorer View
The Project Explorer view allows you to view all the related model elements, diagrams, and children of a
selected model element. The right-click context menu in this view provides a range of options that can be
performed for the selected element.

2.3.2 The Properties View
The Properties view allows you to view and edit the properties for the selected model element. It allows
you to configure general and stereotype properties for an element, set element relationships, manage
element documentation, etc.

The tabs in the Properties view used for Cúram model development are the General tab, and the
Documentation tab, and the Cúram tab. These are described in the table below.

Table 2. Description of tabs in the Properties view used in Cúram Modeling

Tab Description

General The General tab allows you to maintain the base UML configuration of an
element in a model, e.g., name, visibility, etc.

Documentation The Documentation tab allows you to create, view, and edit documentation
relevant to a specific element.

Cúram The Cúram tab holds the properties that are relevant to a stereotyped
element in the Cúram domain. These properties are specific to the Cúram
model and are used to enhance the configuration of an element.

2.3.3 The Diagram Editor
The Diagram Editor is used to create, view, and edit diagrams. It is split into two areas, a Diagram view
and a Palette. The Palette contains a Cúram "drawer" which contains a number of the most commonly
used Cúram model elements for dragging and dropping into the Diagram Editor. The Diagram view is
where you can view and modify a model element in relation to other elements. A right-click context
menu is also available for the addition of model classes in the Diagram Editor.

2.3.4 The Model Editor
The Model Editor allows you to view and edit information related to a model or sub-unit fragment. To
open a model in the model editor right-click on the model in the project explorer, select Open With, and
then Model Editor.

The Cúram Profile can be viewed in the Details tab of the Model Editor. The profiles and model libraries
that are used for working with the Cúram model are pre-configured for the Cúram model. In general,
you should not need to alter the profiles and/or model libraries supplied with the Cúram model.

There are 5 tabs in the Model Editor view: Overview, Details, Diagrams, References, Fragments. These are
described below.

4 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Table 3. Description of Tabs in the Model Editor

Tab Description

Overview The Overview tab contains general information related to the selected
model. You can also edit documentary information related to the model
here.

Details The Details tab allows you to maintain the profiles and model libraries that
are applied to the model you are currently viewing.

Diagrams The Diagrams tab allows you to view a list of available diagrams for the
selected model.

References The References tab provides a list of other models and profiles from the
workspace referenced by the selected model. It also provides a list of other
models from the workspace that reference the selected model.

Fragments The physical resources associated with the model elements are called
fragments and are essentially separate files. The ability to divide a model
into fragments is particularly useful in large development projects. This is
done by extracting packages into physical sub-units, or fragments. The
physical location of the model elements are transparent, and the fragments
remain a logical part of the original model.

The Fragments tab contains a list of fragments that are included in the
model. You can choose to search for and absorb fragments into the
containing model from this list. For more information on absorbing
fragments, please see 2.9.2, “Absorbing a Fragment,” on page 11.

2.4 Working with the Model
This sections below describe how to create, open, close, and navigate a model in Rational Software
Architect.

2.4.1 Creating a Model
Rational Software Architect provides the Create Model Wizard to assist you in creating new models from
stored templates. A Cúram template is provided in the Cúram plugin for Rational Software Architect.
When using the template to create a new model, the model capabilities are set to what is appropriate for
that template. Using the Cúram model template to create your model ensures that the menus and options
are available while modeling are those supported by the Cúram model.

There are two ways of invoking the Create Model Wizard in Rational Software Architect:
v Right-click on the model directory and select Create Model.
v Select File from the topmost menu bar, New, and then UML Model.

To create a Cúram model in the Create Model Wizard:
1. Name the model and specify a location.
2. Select the Standard Template option.
3. Select Cúram in the Categories pane (check the Show All Templates option to see the Cúram

category).
4. Select Cúram model in the templates pane.
5. Select the model capabilities. By default, Cúram capabilities are selected. It is recommended that you

use the default capabilities.
6. Select the referenced models, if there are any.

Chapter 2. The Rational Software Architect Workbench 5

The '< Back' and 'Next >' buttons allow you step forward and backward through the Create Model
wizard steps. You can exit the Create Model wizard at any time by clicking on the Finish button. The
model will be saved at the point you exit the wizard.

2.4.2 Opening a Model
You can open a model in the Modeling perspective within Rational Software Architect or Eclipse. The
default settings for this perspective display the Project Explorer view on the left-hand side. When a
model exists in your project, the Project Explorer contains two additional folders (Diagrams & Models).
Expanding these, and the model underneath, opens the Model at that point.

Rational Software Architect uses a form of lazy loading whereby the full model will not be opened
initially and each portion is opened as it is navigated to. Alternatively you if want to force a load of the
full model you can right-click on the top level model file and select Open All Sub-Fragments.

2.4.3 Closing a Model
To close a model, right-click on the model and select Close or Close All from the right-click context menu.

2.4.4 Navigating the Model
To move through the packages and elements of a model, select the expand '+' option for the package or
element where children exist in the Project Explorer. If a package is not currently loaded, it will be loaded
and the icon will change. The package will be expanded to display the child elements. Modeling elements
can be added to the model in the Diagram Editor using the Model Palette and the Cúram Drawer.

2.5 Working with Model Elements
The UML Model elements utilized by Cúram include Packages, Classes, Attributes, Operations,
Parameters and Relationships.
v Packages are containers for classes.
v Classes define the Business Processes, Value and Rules Objects or Database Schema e.g. Facade,

WebService, RDO, Entity, etc.
v Attributes define fields on the value or rules objects or database entities.
v Operations represent the business or SQL functions on relevant to a parent class.
v Parameters are the input or return arguments to a parent operation.
v Relationships define bonds between the various classes that make up the application e.g. aggregation

of structs, foreign keys between entities.

The sections below describe how to view elements, add elements to a model, modify elements, remove
elements from a model, and create relationships between classes.

2.5.1 Viewing an Element
To view an element, ensure that the Properties view is opened in the foreground and select the element
in the Project Explorer. The element will then be opened in the Properties view and a number of tabs
relevant to that element will be available to maintain that element.

The right-click context menu in the Project Explorer allows you to access functionality for that element as
well as view information related to the element.

Selecting to expand a modeling element in Project Explorer will load that element's sub-fragments. The
modeling element's icon will change in the Project Explorer to mark that its sub-fragments have loaded.

6 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

2.5.2 Adding an Element to the Model
There are a two main ways to add an element to a model in Rational Software Architect, using the Project
Explorer right-click context menu or the Diagram View and Palette. These are described below.

2.5.2.1 Using the Project Explorer
1. Right-click on the existing parent element in Project Explorer.
2. Select the relevant element type from the list of child element types of your selected element.

2.5.2.2 Using the Diagram View
1. Open the diagram you wish to add the new element to in the Diagram view.
2. Double click on the required element in the Cúram Palette, or right-click in the Diagram view and

select the element you wish to add from the right-click context menu.

2.5.3 Modifying an Element
A model element's name can be modified from the right-click context menu in the Project Explorer or the
Diagram view. More extensive modification, including an element's documentation, can be performed
through the properties view and the tabs available there.

Element properties that are specific to Cúram are managed on the Cúram tab in the Properties view.
Depending on what is being modified some modifications require two separate changes to be made, one
on the Cúram tab and one on another tab in the Properties view. For example, changing the return type
of an operation from an entity shadow class to a handcrafted struct requires you to change both the
return type on the General tab and the Shadow Type on the Cúram tab. For more information on Shadow
Types see A.2, “Shadow Classes,” on page 19. Similarly changing the primitive type for a domain
definition from SVR_INT16 to SVR_STRING requires you to change both the primitive type on the
Attributes tab and add a Maximum_Size entry on the Cúram tab.

Important: When you attempt to perform an action that is not supported by the Cúram model, a
validation will be displayed and the action will be reversed. Due to a bug in Rational Software Architect,
the view may not be updated until refreshed for example; navigating to another element and back to the
element being updated. The use of the operations, attributes and parameters tabs to add elements is not
currently supported for use with the Cúram model as these tabs do not provide the correct Cúram
stereotypes.

2.5.4 Creating a Relationship between Elements
To create a relationship between elements:
1. Select the element you wish to create a relationship with in the Project Explorer.
2. In the Properties view, navigate to the Relationships tab.
3. Search for the other element for the relationship and select the source or target.
4. Select the type of relationship you wish to create between the two elements.
5. The General Tab of the Relationship can then be used to specify a name, multiplicity, etc.

Relationships can also be created in the Diagram view using connector handles. To do this:
1. Hover over an element in a diagram.
2. Drag one of the available arrowheads onto another element in the diagram to create a relationship.

The two different arrowheads signify whether the element being dragged from is the source or target
of the relationship.

3. The General Tab of the Relationship can then be used to specify a name, multiplicity, etc.

Chapter 2. The Rational Software Architect Workbench 7

2.5.5 Removing an Element from a Model
Model Elements can be deleted in the Project Explorer or Diagram Editor. To delete an element in the
Project Explorer, right-click the element and select Delete from Model. Elements can also be deleted in the
same way in the Diagram Editor.

In the Diagram view, you can choose to delete an element just from the diagram, or from the complete
model. Deleting an element from the model means that the element will be unavailable to other parts of
the model and will be removed from the Project Explorer tree.

Important: References to other elements in Rational Software Architect are maintained by an internal
identifier system. Each element is given a unique identifier on creation and references are made to this
unique identifier. This differs from Rational Rose where references could be determined both by id and
qualified name. It is therefore important to note that if a class is removed, recreating the class with the
same name is not sufficient to correct any broken references and the broken reference resolution process
will be required to reconnect broken references.

2.5.6 Copying and Pasting
To save time and effort, you can use the Rational Software Architect Project Explorer to copy and paste
Classes, Operations and Attributes. Operations and attributes can only be copied in the same class or
between classes of the same type. An example of how to copy and paste between classes is:
v Select the attribute(s) in the tree control of the Rational Software Architect Project Explorer.
v Right-click on the selected attribute(s) to be copied and choose 'Copy' from the context menu.
v Then right-click on the class (of the same type) to receive the new attribute and choose 'Paste'.

You can use a similar technique for moving attributes via 'Cut' and 'Paste'.

Note: If you try to copy/paste across different class types you will receive an error dialog indicating:
"The requested action violates the integrity of the model."

2.5.7 Attribute Order
Be aware that by default Rational Software Architect displays the order of attributes alphabetically.
Attribute ordering is significant for Entity and Struct classes when they are used to define indexes as the
DDL that's generated for index creation relies on this ordering. You can view the attribute ordering via
the Attribute tab of the class. You can also change the default behavior of Rational Software Architect
from its default ordering of 'Stereotyped Type then Alphabetically' to 'Storage Order' by selecting the
Windows menu and Preferences submenu. From the resulting dialog navigate to Views, Modeling, and
Project Explorer where you can use the Project Explorer settings, Sort By drop-down to change the
ordering; click OK to save your changes.

If you need to change the order of the attributes the Attributes tab provides 'Move up' and 'Move down'
buttons as appropriate.

2.6 Searching in Rational Software Architect
The sections below describe how to search in a model, search for element references in a model, and
search for elements using the type browser.

2.6.1 Searching the Model
The Search option is a powerful text search tool that can be used to search the model using a broad range
of criteria. The Model Search functionality can be used to see how an element is related to the rest of the
model. To search for an element in the model:
1. Select the Search option from the main menu bar and click on the Model Search tab.

8 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

2. Specify your search criteria. There are a range of search criteria that can be specified that allow you to
narrow your search.

3. Search results are displayed in a tab beside the Properties view. Double clicking on a search result
listing will cause the project explorer to jump to that element.

2.6.2 Searching for References to an Element
You can search for references to an element. To do this:
1. Select the element you wish to search for references to.
2. From the right-click context menu, select theModeling References option. You can choose to search for

references in the enclosing model, the enclosing package, the workspace, or you can define a custom
working set.

3. The results of your search will then be displayed in theSearch Results tab as seen below. Double
clicking on a search result listing will cause the project explorer to jump to that element.

2.6.3 Searching for Elements using the Type Browser
The Type Browser is used during the creation of an element that requires the specification of a type or
element reference. It is used to search for the type of model element you wish to create, for example, the
parent of a Domain, the Return Type of an Operation, etc. When you open the Type Browser, you can
enter the name of the element to search for, or you can also browse for the element directly in the model.
TheModify Search Scope option will control the scope of the search. Searching is based on an index that
Rational Software Architect will maintain across sessions and does not require the complete model to be
opened. Please note that the first search will be longer due to the creation of this index.

2.7 Specialized Tabs and Wizards
Some specialized tabs and wizards are provided to support assisting frequent tasks or management of
specific complex content.

2.7.1 Foreign Key Tab
The Foreign Key tab offers a tab to allow for the definition and maintenance of a foreign key's name and
mappings. This tab is visible on the Properties View of a Foreign Key relationship.

The Name field is used to manage the foreign key name and manipulates the label entry on the General
Tab.

The Table contains two columns; child and parent and these columns indicate the direction of the foreign
key and name the entities on either end of the relationship. The table serves as a widget to edit the
foreign key mappings which are stored on the appropriate role fields on the General tab.

Rows on the table relate to the mappings in the foreign key where a entry in the child column will be
mapped to an entry in the parent column. The entry in the row can be selected by utilizing a drop-down
on the row which lists the applicable attributes for that entity. Rows can be removed by setting the
drop-down to blank and can be re-ordered using the 'Move up' and 'Move down' buttons on the right of
the table.

2.7.2 Secure Field Tab
The Secure Field tab offers a tab to allow for the definition and maintenance of a Facade class operation's
Secure Fields. This tab is visible on the Properties View of a Facade owned operation.

The tab contains two columns; field name and Security Identifier (SID) Name. The field name entries are
computed from walking the available fields for the return type of the operation. SID Names can be
entered, edited or deleted from the right column as required. This table serves as a widget to edit the
Secure_Fields property on the Curam tab.

Chapter 2. The Rational Software Architect Workbench 9

2.7.3 Manage Operation Parameters Wizard
The Manage Operation Parameters Wizard is to create and maintain the parameters and return type of an
operation. The Parameters and Return Type frames will be visible where the operation allows addition of
such.

The Parameters Frame offers tabular listing of the parameters where parameters can be added, deleted or
re-ordering using the buttons to the right of the table. The table offers direct in-place editing for the
name, type and Shadow Type of the parameter. For more information on Shadow Types see A.2,
“Shadow Classes,” on page 19.

The Return Type Frame offers the ability to select the type and manipulate the Shadow Type of the return
value.

2.7.4 Operation Wizard
The Operation wizard is to create operations. The parameters and return type frames will be visible
where the operation allows addition of such.

The wizard utilizes the same layout and functionality as the Manage Operation Parameters Wizard, with
additionally providing a field to enter the name of the operation.

2.7.5 Entity Operation Wizard
The Entity Operation Wizard is to create standard and non-standard database operations where the
input/output structures can be determined from the entity. The wizard contains a list of input and/or
output attributes which is used to specify the attributes that form a struct class which is generated by the
wizard.

The generation firstly checks whether a struct exists in the same package with the same attributes and
prompts whether to use this struct or generate a new struct to promote re-use of existing structs.

The naming pattern for this generated struct class is:

e.g. PersonKeyStruct1

2.7.6 Domain Definition Wizard
The Domain Definition Wizard is used when creating a Domain Definition and offers a simple process for
creating a Domain Definition class.

The wizard allows the ability to set the name of the Domain Definition and browse for the type.

Optionally, the Max Size field will be editable when a Domain is chosen that is based on a SVR_STRING
or SVR_BLOB to allow for the regular size value to be set.

2.8 Working with Class Diagrams
To create a class diagram:
1. Right-click on the package in which you want to create a class diagram in the Project Explorer.
2. Select Add Diagram and then Class Diagram from the right-click context menu. The new diagram is

then created and opened in the Diagram Editor.
3. Elements can then be dragged from the Project Explorer onto the Diagram Editor.

<Entity Name><Key (Input)/Dtls (Output)>Struct<Unique Number>

10 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Modeling elements can be added to the model in the Diagram Editor using the Model Palette and Cúram
drawer. For more information on using the Diagram Editor, see 2.3.3, “The Diagram Editor,” on page 4.

2.9 Working with Fragments
The Cúram model is a collection of elements that are logically related but physically separated.

When you open a model that contains fragments, the fragments do not load automatically, they load
when you open them or when you access functionality that requires artifacts from the fragments. When
you load a fragment, the parent resource is also loaded.

The sections below describe how to create a fragment and absorb a fragment into the parent model.

2.9.1 Creating a Fragment
To create a fragment:
1. Right-click on the package that you wish to create a controlled fragment from.
2. Select Refactor, and then Create Fragment.
3. You will be prompted to name the fragment and select the location where you wish to save the

fragment.
4. Once the fragment is saved, another dialog appears in which you must ensure that you have the

'Update references to elements in new fragment' option set. If not set you risk breaking references to
child elements contained in this fragment.

Once the fragment has been created, the icon for the package changes to signify that it is a controlled
fragment.

2.9.2 Absorbing a Fragment
Occasionally you may want to remove a fragment by absorbing it back into its containing fragment or
model. To do this:
1. Right-click on the fragmented package and selecting Refactor.
2. Choose the Absorb Fragment option.
3. When absorbing a fragment, you must ensure that a tick is placed in the 'Update references to

elements in the fragment' box. This ensures that existing references in the fragment are not broken in
the process of absorbing the fragment.

It is also possible to absorb all the fragments in a model at the same time. To do this:
1. Right-click on a model and select Refactor.
2. Select the Absorb All Sub-Fragments option. All the fragments in the model will then be absorbed.

You should also ensure that you update element references when absorbing all the fragments in a
model.

2.10 Validating a Model
Rational Software Architect offers the ability to validate a model. A model can be validated by
right-clicking on the model and selecting validate.

The validation reports a summary in the console panel and describes any warnings or errors found in the
Problems View. The problem description should indicate the issue and link to the location found in the
model.

Chapter 2. The Rational Software Architect Workbench 11

12 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Chapter 3. Using Rational Software Architect with the Cúram
Model

3.1 Introduction
This chapter also provides detailed instructions on how to model IBM Cúram Social Program
Management elements in Rational Software Architect.

The sections below describe typical development tasks with some of the example model element types
that make up the application. Each section takes a model element type and describes how it is used in
the model. These element types include:
v Domain Definitions
v Entities
v Structs
v Aggregations
v Processes
v Facades

3.2 Working with Domain Definitions
The datatypes of attributes in IBM Cúram Social Program Management are modeled as Domains.
Domains are defined in terms of a fundamental datatype such as a string or an integer or in terms of
another already existing application domain. Domains have application-specific type names such as
SOCIAL_SECURITY_NUMBER, PAYMENT_AMOUNT, etc. Domains can have associated validations
defined for them such as uppercase, range checks, code tables, pattern matches, or custom validations.

3.2.1 Creating a Domain Definition
New domain definitions can be added to the model using the right-click context menu in the Project
Explorer. With Rational Software Architect you are not restricted in terms of the package structure.
Domains can be added to any existing named package or combined with other elements in the same
package. For consistency care should be taken to preserve standard structure. This allows them to be
easily managed and re-used across the application.

You can create a domain definition using the following steps:
1. In the Project Explorer, navigate to the package where you want to create the new domain definition.
2. Right-click on the package and navigate to the Add Class Menu and select Domain Definition.
3. In the Create Domain Definition Wizard, enter the name of the domain and select a domain definition

type. If the type you select is SVR_STRING you must also specify the maximum size.

Note: When searching for the base Domain Types e.g. SVR_STRING, you will have to modify the
Search Scope and select theSearch non-imported UML libraries. The base types exist in a plugin
delivered with the SDEJ and can only be searched for and cannot be browsed to.

4. Choose the domain type. This can be done in two ways: through the type browser or by searching the
model. Once you have selected the domain type, click Finish.

3.2.2 Renaming a Domain Definition
You can rename a domain definition in one of two ways:
1. Right-click on the domain definition in the Project Explorer and rename it.

© Copyright IBM Corp. 2012, 2013 13

2. Select the domain definition in the Project Explorer and then edit it in the General tab of the
Properties view.

Important: When you rename a domain definition, you must also rename its single attribute to the same
name. This can be done in the Attributes tab in the Properties view for the domain definition.

Unlike Rational Rose, the process of renaming a Domain Definition will maintain any references to that
Domain.

3.2.3 Modifying a Domain Definition
A domain definition contains a single attribute whose type represents the domain it inherits from. To
modify a domain definition do the following:
1. Navigate to the Attributes tab in the Properties view and double-click the Type cell for the single

attribute.
2. Search for and select the domain type in the Type Browser.

3.3 Working with Entities
Entities are objects which represent the persistent storage of the application. They have attributes which
are defined as domains. They can have primary keys and index and foreign key relationships.

Create, read, update, and delete style operations are defined on entities as stereotyped methods. The
signatures of these operations are implied by the stereotype. Other operations can be defined on entities
by defining their signatures in the model. Operations requiring complex database queries can be specified
in SQL.

3.3.1 Creating an Entity
To create an entity, select the package where you want to create it and from the right-click context menu,
choose Class, then Entity.

As an example, consider the Person entity in the Cúram model. Once it is added to the Person package,
the required attributes are created for it. Entity operations are also added which handle the data passing
to and from the database tables.

3.3.2 Adding an Attribute to an Entity
Attributes are required in order to store information related to an entity. For example, in the Person
entity, the CountryOfBirth attribute is used to store the country of birth for a person. The domain
definition for this attribute is COUNTRY_CODE.

An entity will generally have at least one attribute that contains a unique identifier. This is identified by
the key attribute. The Person entity contains a key attribute concernRoleID.

To add an attribute to an entity:
1. Select Add Attribute from the right-click context menu for the entity.
2. Select Key or Details as required. This opens the Create Attribute Wizard. Here you can name the

attribute and select its type.

3.3.3 Adding an Operation to an Entity
Operations are added to entity classes via the right-click context menu. To add an operation to an entity:
1. Select Add Operation from the right-click context menu and choose the stereotype for the operation

you want to create.
2. Accept the default name of the operation which will match the stereotype you selected.

14 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Most of the operation stereotypes do not require you to model the arguments or return types. If the
stereotype you choose does require a return type to be modeled it must be a struct. To do this:
1. Select the return type in the wizard using the 'Select Type' button.
2. If the return type you select is an entity, you must also select the Shadow Type from the drop down

to identify the actual struct that will be used. If the return type you select is a struct, do not select a
Shadow Type.

3.3.4 Adding a Return Type to an Entity Operation
Some of the entity operation stereotypes do not require you to model the return type as it is implied by
the stereotype. You can set the return type on an entity operation when you create the operation. If you
want to add a return type later or change the return type, do the following:
1. Select the operation in the Project Explorer.
2. Select the General tab in the Properties page and select 'Set return type'.

If the return type you select is an entity, you must also select the Shadow Type. To select the Shadow
Type:
1. Open the Cúram tab, select the required Shadow Type value for the Shadow_Type property.
2. If you change the return type on an operation and the new return type does not require a

Shadow_Type, make sure that the ShadowType on the Cúram page is set to unspecified.

3.3.5 Adding an 'ns' Operation to an Entity
Complex database operations are modeled as 'ns' type operations. To add this type of an operation to an
entity:
1. Right-click on the entity and select Operation.
2. Choose the stereotype of the operation from the list of available stereotypes.
3. You will then be presented with the Create 'ns' Operation Wizard where you can name the operation,

it's parameters and select the return type. If the parameter, return type you select is an entity, you
must also select a Shadow Type.

To add the SQL for the operation, navigate to the Cúram tab of the Properties view, and edit the SQL
property string value.

3.4 Working with Structs
Method arguments and return types on operations and entity classes are modeled as structs. A struct is a
value object. Attributes of structs are specified as Domain Definitions. The following sections describe
how to create a struct and add attributes to it.

3.4.1 Creating a Struct
To create a struct, do the following:
1. Right-click on the package you wish to create a struct in, and select Struct from the right-click menu

option for the package.
2. Provide a name for the struct in the properties view of the General tab.

3.4.2 Adding Attribute to a Struct
Attributes describe the data that is contained in the struct. To add an attribute to a struct, do the
following:
1. Select the struct you wish to add an attribute to in the project explorer.
2. Select Add Attribute, and select Default from the right-click context menu.

Chapter 3. Using Rational Software Architect with the Cúram Model 15

3. In the the Create Default Attribute Wizard, name the attribute and choose its type from the list of
available types.

3.5 Working with Aggregations
Relationships are bonds between classes. A number of different relationship types can be modeled such as
aggregation (one class contains another), assignable (attribute values of one class may be copied to the
other), foreign key (for referential constraints), index and unique index (to define database indexes on
entity classes).

3.5.1 Creating an Aggregate Relationship
An aggregation relationship is used to model a relationship between objects where one object contains
another. In IBM Cúram Social Program Management this relationship will always be between two structs.

In the Project Explorer:
1. Select the struct which will be the containing struct in the relationship.
2. In the Properties view, select the Relationships tab for the struct. Choose to add a relationship

originating from this element.
3. Select the object to be contained, as the target of the relationship and select Aggregation as the

relationship type.

If the contained object is an entity you must pick the Shadow Type to identify the actual struct to be
contained. This can be done in the Cúram tab of the Properties view.

On the relationships page, right-click the aggregation you have just created and select Navigate from the
context menu. This opens the Properties view of the newly created aggregation. Verify that your
aggregation is correct by viewing the diagram on the General tab.

In the diagram, the 'diamond' should appear beside the containing struct. In the Cúram tab, type a role
name for the contained struct and set the multiplicity of the relationship. The multiplicity of the container
struct must be 1. The multiplicity of the contained struct can be 1..* (for a 1 to many relationship) or 1
(for a 1 to 1 relationship).

3.6 Working with Process Classes
Business functions are represented in the Cúram model as methods of process classes. The arguments and
return type for methods are modeled as structs or domain types. The model defines the interface for
process class methods, but not their implementation. Process classes can call on entity classes to perform
database operations as required.

3.6.1 Creating a Business Process Class
To add a business process class to a package, select Add Class, and then Process from the right-click
context menu and name the class.

3.6.2 Adding Operations to a Process Class
Operations are added to process classes via the right-click context menu. To add an operation to a process
class:
1. Select Operation from the right-click context menu and choose Default.
2. This opens the Create 'default' Operation Wizard where you can name the operation, add it's

parameters and select its return type.

16 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

3.6.3 Adding an Argument to a Process Operation
Arguments for process operations are defined as structs or domain types. To add an argument to a
process operation:
1. Right-click on the process and select Manage Parameters.
2. In the Manage Operation Parameters Wizard, name the parameter and select the parameter type. If

the type you select is an entity, you must also select the Shadow Type.

3.6.4 Adding a Return Type to a Process Operation
The return type from a process class operation is a struct or domain type. You can set the return type on
an process class operation when you create the operation.

If you want to add a return type later or change the return type:
1. Select the operation in the Project Explorer.
2. In the General tab in the Properties page for the operation, select 'Set return type'.

If the return type you select is an entity, you must also select the Shadow Type. To select the Shadow
Type:
1. Open the Cúram tab and the select the required Shadow Type value for the Shadow_Type property.
2. If you change the return type on an operation and the new return type does not require a Shadow

Type, make sure that the Shadow_Type on the Cúram page is set to unspecified.

3.7 Working with Facade Classes
Some business process functions are invoked from the client application while others provide utility
functions not directly available to the client. A facade class is a process class whose interface is visible to
the client.

3.7.1 Creating a Facade Class
To add a facade class to a package, select Add Class, Facade from the right-click context menu and name
the class.

3.7.2 Adding Operations to a Facade Class
Operations are added to Facade classes via the right-click context menu. To add an operation to a Facade
class:
1. Select Operation from the right-click context menu and choose Default.
2. In the Create 'default' Operation Wizard, name the operation, parameters and select its return type.

3.7.3 Adding Arguments and a Return Type to Facade Operations
Arguments and return types are added to facade operations in the same manner as they are added to
process classes. Please refer to 3.6.3, “Adding an Argument to a Process Operation” and 3.6.4, “Adding a
Return Type to a Process Operation” respectively.

Chapter 3. Using Rational Software Architect with the Cúram Model 17

18 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Appendix A. How Rational Software Architect differs from
Rational Rose

A.1 Introduction
This chapter describes the differences between modeling in Rational Rose and Rational Software Architect
for IBM Cúram Social Program Management. Each section details a specific aspect of the modeling
process in Rational Rose and then describes how it differs in Rational Software Architect.

A.2 Shadow Classes
In Rational Rose, shadow classes are placeholders created for classes which are not visible inside the
model but are produced when the server code is generated. An example of such a class is the standard
entity key struct, e.g. the PersonKey struct for the Person entity. In this case the shadow class PersonKey
created inside the model is used to represent the future generated class.

In Rational Software Architect, server shadow classes are not used. A reference must always be be
directed to an existing class in the model. Instead of using shadow classes, a Shadow Type property has
been introduced for the following model types:
v Operations - to signify the return type
v Parameters
v Relationships

A.2.1 Specifying a Shadow Type for a Parameter or Operation Return
Type
In Rational Rose, the Merlin Toolbar listed all possible future generated classes as available types when
setting the parameter type or operation return type.

When setting a future generated class in Rational Software Architect as a type of a Parameter, you first
specify the parameter type as the class from which the future generated class is created. The
Shadow_Type stereotype property, found on the Curam tab, can then be set to represent the generated
class type.

When setting a future generated class (for example, the standard entity details struct) as an operation
return type in Rational Software Architect you must do the following:
v Add an operation
v Specify return type as the class from which a future generated class is created
v Set the Shadow_Type stereotype property for the operation as the future generated class type.

A.2.2 Adding an Relationship between a Shadow Class and a Class in
the Model
In Rational Rose, in order to add an relationship between a future generated class and an existing class or
between two future generated classes; shadow stereotyped classes which represent future generated
classes needed to be created. The relationships could then be drawn between them.

In Rational Software Architect, when adding an relationship between a future generated class and a class
in the model, you must add a relationship between the base classes and set theLeft_Class_Shadow_Type
orRight_Class_Shadow_Type stereotype property depending on the direction of the relationship as per the
Relationships General Tab.

© Copyright IBM Corp. 2012, 2013 19

A.3 Server Components
In Rational Rose, Server component classes are used to signify client visibility of process classes outside
of the model. This relationship was stored in the Curam.mdl and .cat file containing the process class.

In Rational Software Architect, while moving to a multi-model solution it was necessary to remove
elements that bound the model into a single model. Instead of assigning <<process>> classes to server
components the classes must have a particular stereotype applied.

A.4 Modeling Facade Classes
In Rational Rose, all process classes assigned to a Server Component with a stereotype of <<ejb>>
become client-visible classes for the application. Adding a class to a server component with this
stereotype also makes it visible to the webclient.

To add a client-visible class for the application in Rational Software Architect, a Facade class should be
chosen.

A.5 Generating Function Identifiers for Model Classes
In Rational Rose, all classes assigned to a component with a blank stereotype result in the generation of
Function Identifiers for that class. No EJB or webservice components are generated.

To add this type of class in Rational Software Architect, a Process class is created with the value of the
stereotype property Generate_Fids set to True.

A.6 Modeling Web Service Classes
For Apache Axis2 web services:
v Axis2 web services do not exist in previous versions, so there is no analogue in Rational Rose.

For Apache Axis 1.4 web services:
v In Rational Rose, all classes assigned to a component class with a stereotype of webservice are also

visible to the client.
In Rational Software Architect, to add a web service class for the application, a Web Service class
should be chosen.

A.7 Assignable Relationship Field Mappings
Assignable relationship field mappings are used, for example, in an explicit field assignment where fields
with different names are matched. In Rational Rose, assignable field mappings are created by adding
keys/qualifiers to one of the Association roles.

In Rational Software Architect, assignable field mappings are maintained on the General tab of the
assignable relationship's properties. The mapping is maintained by defining the fields involved in the
Role option of each class. Additional fields can by specifying using a comma separated entry.

A.8 Class Abstract Options
The Abstract option specifies that the class is abstract. In Rational Rose, the Abstract option is available
along with the options for entity or process classes.

In Rational Software Architect, this option is not listed along with the other IBM Cúram Social Program
Management -specific stereotype properties in the Properties tab. Instead, the standard Rational Software

20 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Architect abstract option is used for this. In order to specify that the class is abstract you need to place a
check in the 'Abstract' checkbox which can be found in the General tab.

A.9 RDO Description Stereotype
Child attributes of RDO and ListRDO classes are handled a bit differently: In Rational Rose, RDO and
ListRDO classes used to have two stereotypes of attributes: <<dataitem>> and <<description>>. The
description stereotype was used to identify which attribute should be used as the description for that
RDO/ListRDO.

In Rational Software Architect, the description stereotype is no longer used for these attributes; instead
the dataitem stereotype has a booleandescription property to indicate that it is the description for the
RDO/ListRDO. As with thedescription stereotype in Rational Rose, only one child attribute of the
RDO/ListRDO should have itsdescription indicator set to true.

Appendix A. How Rational Software Architect differs from Rational Rose 21

22 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Appendix B. Right Click Context Menu Options in the Project
Explorer View

B.1 Introduction
This appendix describes what can be added from the right-click context menu for each model class in the
Rational Software Architect project explorer window.

B.2 Child Options for Class Types
The table below describes the specific attributes and operations that are available to be added to each
class from the right-click context menu in the project explorer.

Table 4. Right Click Context Menu Options for Classes

Class Available Attributes Available Operations

audit_mappings audit_mappings n/a

facade n/a default, wmdpactivity, qconnector, batch

webservice n/a default, wmdpactivity, qconnector, batch

wsinbound n/a default, wmdpactivity, qconnector, batch

process n/a default, wmdpactivity, qconnector, batch

struct default n/a

entity key, details batchinsert, batchmodify, insert, modify,
nkmodify, nkread, nkreadmulti, nkremove,
ns, nsinsert, nsmodify, nsmulti, nsread,
nsreadmulti, nsremove, read, readmulti,
remove, default

rdo dataitem n/a

listrdo dataitem n/a

loader n/a n/a

domain_definition n/a n/a

extension default, dataitem, key, details batchinsert, batchmodify, insert, modify,
nkmodify, nkread, nkreadmulti, nkremove,
ns, nsinsert, nsmodify, nsmulti, nsread,
nsreadmulti, nsremove, read, readmulti,
remove, default, wmdpactivity, qconnector,
batch

B.3 Other Options
Table 5. Additional Right-Click Context Menu Options

Option Applicable Parent Applicable Children

Package Package, Model Any class type

Manage
Parameters

Any applicable operation n/a

© Copyright IBM Corp. 2012, 2013 23

24 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Appendix C. Broken Reference Resolution

C.1 Broken Reference Resolution

C.1.1 Background
A resource reference is where an element refers to another element either in the same file or another
model/file. An example of this is the type of an attribute/parameter or relationship e.g.
association/index.

In Rational Rose references were resolved through a two stage look-up process;
1. Firstly the qualified name of the reference was used to find the element;
2. Where the element could not determined by qualified name, the id of the element was used.

If the element still could not be found the element reference was considered as broken and needed to be
manually resolved by the model owner.

C.1.2 Rational Software Architect changes in References
In Rational Software Architect only the id of the element is used to resolve a reference which has led to
the possibility that there will be more instances of broken references requiring manual intervention.

This possibility is due to support of previous product versions. When an element is created in a model it
gets a unique id (adding an element across multiple product lines, which is sometimes the case required
to introduce a new feature into the product) can subsequently introduce multiple unique IDs for the same
added element. If a customer refers to this added element in their model and then later jumps product
stream, the reference will then be broken from the customer's model to new Cúram model.

A broken reference can be reported during two phases:
1. Opening your model in Rational Software Architect, here the IBM Rational automated resource

reference resolution process will be invoked but may be unable to find a resolution and will report
any failures in the Problems View;

2. Extracting the model using the command line build tooling, here errors will be reported in relation to
the type of a attribute, parameter or relationship not being found.

C.1.3 Extension to Broken Reference Resolution
To account for this possibility of references being broken during a product upgrade and avoid the
requirement for manual intervention, an extension to the Rational -provided resource resolution process is
provided. This extension requires a map of the previous model's IDs is extracted and then is used to
resolve references in the current model. This map is processed to look up the broken ID and determine
the qualified name of what it was previously referring to and from this resolve the breakage through
discovery of the id in the new model for the qualified name found.

As the map needs to be extracted from the previous model an export option has been introduced into
Rational Software Architect which should be run against the previous model and it should be called as
follows:
1. Navigate toFile > Export > Curam > Qualified Name Map

2. Select the project to export e.g. EJBServer.
3. Browse to a location to save the file.
4. ClickingFinish will invoke the export process.

© Copyright IBM Corp. 2012, 2013 25

The output of this task is a model map that needs to be referenced when opening a new upgraded
model.

To reference the map a Preference page is used within Rational Software Architect as follows:
1. Navigate toWindow > Preferences > Curam > Qualified Name Map

2. Browse to the map created earlier.

C.1.4 Resource Reference Resolution Process
If an error is found indicating a broken reference. The model containing the broken reference should be
opened and a dialog will pop-up indicating a broken reference.

The repair process should then resolve and correct the reference.

If the process fails and the reference remains broken it will become an error in the Problems view. Here
there is a right-click option offering an additionalSearch or browse for a valid reference which can be
used as a last resort.

26 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 27

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

28 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 29

http://www.ibm.com/legal/us/en/copytrade.shtml

30 IBM Cúram Social Program Management: Working with the Cúram Model in Rational Software Architect

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2. The Rational Software Architect Workbench
	2.1 Introduction
	2.2 Integrating the Cúram Model into Rational Software Architect
	2.3 The Modeling Perspective
	2.3.1 Project Explorer View
	2.3.2 The Properties View
	2.3.3 The Diagram Editor
	2.3.4 The Model Editor

	2.4 Working with the Model
	2.4.1 Creating a Model
	2.4.2 Opening a Model
	2.4.3 Closing a Model
	2.4.4 Navigating the Model

	2.5 Working with Model Elements
	2.5.1 Viewing an Element
	2.5.2 Adding an Element to the Model
	2.5.2.1 Using the Project Explorer
	2.5.2.2 Using the Diagram View

	2.5.3 Modifying an Element
	2.5.4 Creating a Relationship between Elements
	2.5.5 Removing an Element from a Model
	2.5.6 Copying and Pasting
	2.5.7 Attribute Order

	2.6 Searching in Rational Software Architect
	2.6.1 Searching the Model
	2.6.2 Searching for References to an Element
	2.6.3 Searching for Elements using the Type Browser

	2.7 Specialized Tabs and Wizards
	2.7.1 Foreign Key Tab
	2.7.2 Secure Field Tab
	2.7.3 Manage Operation Parameters Wizard
	2.7.4 Operation Wizard
	2.7.5 Entity Operation Wizard
	2.7.6 Domain Definition Wizard

	2.8 Working with Class Diagrams
	2.9 Working with Fragments
	2.9.1 Creating a Fragment
	2.9.2 Absorbing a Fragment

	2.10 Validating a Model

	Chapter 3. Using Rational Software Architect with the Cúram Model
	3.1 Introduction
	3.2 Working with Domain Definitions
	3.2.1 Creating a Domain Definition
	3.2.2 Renaming a Domain Definition
	3.2.3 Modifying a Domain Definition

	3.3 Working with Entities
	3.3.1 Creating an Entity
	3.3.2 Adding an Attribute to an Entity
	3.3.3 Adding an Operation to an Entity
	3.3.4 Adding a Return Type to an Entity Operation
	3.3.5 Adding an 'ns' Operation to an Entity

	3.4 Working with Structs
	3.4.1 Creating a Struct
	3.4.2 Adding Attribute to a Struct

	3.5 Working with Aggregations
	3.5.1 Creating an Aggregate Relationship

	3.6 Working with Process Classes
	3.6.1 Creating a Business Process Class
	3.6.2 Adding Operations to a Process Class
	3.6.3 Adding an Argument to a Process Operation
	3.6.4 Adding a Return Type to a Process Operation

	3.7 Working with Facade Classes
	3.7.1 Creating a Facade Class
	3.7.2 Adding Operations to a Facade Class
	3.7.3 Adding Arguments and a Return Type to Facade Operations

	Appendix A. How Rational Software Architect differs from Rational Rose
	A.1 Introduction
	A.2 Shadow Classes
	A.2.1 Specifying a Shadow Type for a Parameter or Operation Return Type
	A.2.2 Adding an Relationship between a Shadow Class and a Class in the Model

	A.3 Server Components
	A.4 Modeling Facade Classes
	A.5 Generating Function Identifiers for Model Classes
	A.6 Modeling Web Service Classes
	A.7 Assignable Relationship Field Mappings
	A.8 Class Abstract Options
	A.9 RDO Description Stereotype

	Appendix B. Right Click Context Menu Options in the Project Explorer View
	B.1 Introduction
	B.2 Child Options for Class Types
	B.3 Other Options

	Appendix C. Broken Reference Resolution
	C.1 Broken Reference Resolution
	C.1.1 Background
	C.1.2 Rational Software Architect changes in References
	C.1.3 Extension to Broken Reference Resolution
	C.1.4 Resource Reference Resolution Process

	Notices
	Trademarks

