
IBM Cúram Social Program Management

Cúram Web Client Reference Manual
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Web Client Reference Manual
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 247

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Chapter 1. Introduction 1
1.1 Introduction 1
1.2 Prerequisites 1
1.3 Companion Guides 1
1.4 Structure 1
1.5 Summary 2

Chapter 2. Concepts 3
2.1 Objective 3
2.2 Prerequisites 3
2.3 Introduction 3
2.4 Application User Interface Overview 3
2.5 User Interface Meta-data 5

2.5.1 Page Content Meta-data 5
2.6 Applications 8
2.7 Page Context. 10
2.8 Page “Look-and-Feel” 11
2.9 Application Controller Java Server Page. . . . 11
2.10 Direct Browsing 11
2.11 Summary 12

Chapter 3. Development 13
3.1 Objective 13
3.2 Prerequisites 13
3.3 Introduction 13
3.4 Outline of the Development Process 13
3.5 Installation 13
3.6 Project Folder Structure 14
3.7 Application Components 16

3.7.1 Component Folders 16
3.7.2 Component Order 17

3.8 Component Artifacts 17
3.9 Application Locales 18
3.10 Building an Application. 19

3.10.1 Build Targets 19
3.10.2 Related Build Targets 20
3.10.3 Full and Incremental Builds 20
3.10.4 Dependency Checking 21
3.10.5 Build Logs 21
3.10.6 Error Reporting 21
3.10.7 Server Interface Reference 22
3.10.8 Page Previews 22
3.10.9 UIM Generator Tool 23
3.10.10 External Client Applications 23

3.11 Deployment. 24
3.11.1 Overview 24
3.11.2 Configuring the Application. 24
3.11.3 Customizing the Web Application
Descriptor 27

3.12 Customization 28

3.12.1 Overview 28
3.12.2 Adding New Artifacts 28
3.12.3 Overriding or Merging Artifacts 29
3.12.4 Externalized Strings 29
3.12.5 Images 30
3.12.6 Image Mapping 30
3.12.7 CuramLinks.properties 31
3.12.8 XML Runtime Configuration Files 31
3.12.9 Login Pages 32
3.12.10 JavaScript Files. 32
3.12.11 Cascading Stylesheets 33
3.12.12 Application Configuration Files 34
3.12.13 General Configuration 35
3.12.14 Custom Resources 40

Chapter 4. Localization 43
4.1 Objective 43
4.2 Prerequisites 43
4.3 Introduction 43
4.4 Numbers 43
4.5 File Encoding 43

4.5.1 XML Files 43
4.5.2 Java properties files 43
4.5.3 Non-XML Files 44

4.6 Locales. 44
4.6.1 Non JavaScript property files 45
4.6.2 JavaScript property files 45

4.7 UIM Externalized Strings 45
4.8 JavaScript Externalized Strings 46

4.8.1 Accessing properties in JavaScript 46
4.9 Image.properties 47
4.10 Infrastructure Widget Properties Files 47

4.10.1 Frequency Pattern Selector Localization . . 48
4.11 CDEJResources.properties 49
4.12 ApplicationConfiguration.properties 49
4.13 Application-wide Menu 49
4.14 Tabbed Configuration Artifacts 50
4.15 Runtime Messages 50

Chapter 5. UIM Reference. 51
5.1 Objective 51
5.2 Prerequisites 51
5.3 Introduction 51
5.4 Creating UIM Documents 51
5.5 UIM Document Types. 51
5.6 UIM Pages 51
5.7 UIM Views 52
5.8 Externalized Strings 52
5.9 UIM Reference for Pages and Views 52

5.9.1 Introduction 52
5.9.2 Connection Types 52
5.9.3 ACTION CONTROL 54
5.9.4 ACTION SET 57
5.9.5 CLUSTER 59
5.9.6 CONDITION 61

© Copyright IBM Corp. 2012, 2013 iii

5.9.7 CONNECT 61
5.9.8 CONTAINER 62
5.9.9 DETAILS_ROW 63
5.9.10 DESCRIPTION 64
5.9.11 FIELD 64
5.9.12 FOOTER_ROW 67
5.9.13 IMAGE 68
5.9.14 INCLUDE. 69
5.9.15 INITIAL 69
5.9.16 INFORMATIONAL 70
5.9.17 INLINE PAGE 70
5.9.18 IS_FALSE 71
5.9.19 IS TRUE 72
5.9.20 JSP SCRIPTLET 72
5.9.21 LABEL 74
5.9.22 LINK 75
5.9.23 LIST 79
5.9.24 MENU 81
5.9.25 PAGE 86
5.9.26 PAGE_PARAMETER 88
5.9.27 PAGE TITLE 89
5.9.28 SCRIPT 89
5.9.29 SERVER INTERFACE 90
5.9.30 SOURCE 91
5.9.31 TAB_NAME 92
5.9.32 TARGET 92
5.9.33 TITLE 93
5.9.34 VIEW 93

5.10 UIM Reference for Widgets 94
5.10.1 Introduction 94
5.10.2 WIDGET 94
5.10.3 WIDGET_PARAMETER 95
5.10.4 The EVIDENCE_COMPARE Widget . . . 96
5.10.5 The FILE_EDIT Widget 96
5.10.6 The FILE_UPLOAD Widget 98
5.10.7 The FILE_DOWNLOAD Widget 100
5.10.8 The MULTISELECT Widget 101
5.10.9 The SINGLESELECT Widget 104
5.10.10 The RULES_SIMULATION_EDITOR
Widget 104
5.10.11 The IEG_PLAYER Widget 105

5.11 Dynamic UIM Cross Reference 106
5.12 Dynamic UIM System Initialization 106

Chapter 6. Application Configuration 107
6.1 Objective. 107
6.2 Prerequisites 107
6.3 Introduction 107
6.4 Configuration Files 108
6.5 Applications 108

6.5.1 Introduction 108
6.5.2 Definition 109
6.5.3 Optional Header 113
6.5.4 Example 114
6.5.5 Associate an Application with User . . . 115

6.6 Sections 116
6.6.1 Introduction 116
6.6.2 Definition 117
6.6.3 Example 118

6.7 Section Shortcut Panel 118
6.7.1 Introduction 118

6.7.2 Definition 119
6.7.3 Example 120

6.8 Tabs 121
6.8.1 Introduction 122
6.8.2 Definition 123
6.8.3 Context Panel UIM. 127
6.8.4 Example 128

6.9 Tab Actions Menu 128
6.9.1 Introduction 128
6.9.2 Definition 129
6.9.3 Dynamic Support 132
6.9.4 File Download Menu Item 133
6.9.5 Example 133

6.10 Tab Navigation 134
6.10.1 Introduction. 134
6.10.2 Definition 135
6.10.3 Dynamic Support 138
6.10.4 Example 138

6.11 Opening Tabs and Sections 139
6.11.1 Introduction. 139
6.11.2 Links 140
6.11.3 Page to Tab Associations 140
6.11.4 Tab to Section Associations 141
6.11.5 Page Parameters 141

Chapter 7. Session Management . . . 143
7.1 Objective. 143
7.2 Prerequisites 143
7.3 Introduction 143
7.4 Session Basics 144
7.5 Tab Restoration 144
7.6 Configuration 145
7.7 Limitations 145
7.8 Browser Specific Session Management 146

Chapter 8. Domain Specific Controls 147
8.1 Objective. 147
8.2 Prerequisites 147
8.3 Introduction 147
8.4 Dates 147
8.5 Date-Times 147

8.5.1 Representing time-only values 148
8.5.2 Customizing the Time Format 148

8.6 Frequency Pattern Selector 148
8.7 Selection Lists 149

8.7.1 Populated from a Code-Table 149
8.7.2 Populated from Server Interface Properties 150
8.7.3 Drop-down, Scrollable and Checkboxed
List types. 150
8.7.4 Adding an Empty Entry to a List for
Non-Mandatory Fields 151
8.7.5 Enabling Multiple Selection 151
8.7.6 Transfer List Widget 151

8.8 User Preferences Editor 152
8.9 Rules Trees 152

8.9.1 Introduction 152
8.9.2 Default Rules View. 152
8.9.3 Summary Rules View 152
8.9.4 Failed Rules View 153
8.9.5 Dynamic Rules View 153

iv IBM Cúram Social Program Management: Cúram Web Client Reference Manual

8.9.6 Dynamic Full Tree Rules View 156
8.9.7 Rules Editor 156

8.10 Meeting View. 159
8.10.1 Overview 159
8.10.2 Single Selection Mode 159
8.10.3 Multiple Selection Mode 160
8.10.4 XML Formats 160

8.11 Charts 161
8.11.1 Overview 161
8.11.2 Chart appearance 161
8.11.3 Chart configuration 162
8.11.4 Chart Data Formats 165

8.12 Heatmap Widget. 166
8.12.1 Overview 166
8.12.2 Configuration 167

8.13 Workflow 168
8.13.1 Overview 168
8.13.2 Workflow Details 168
8.13.3 Workflow XML Formats. 169

8.14 Evidence View 172
8.14.1 Evidence Display Mode 172
8.14.2 Evidence Comparison Mode 172
8.14.3 Configuration 172
8.14.4 Data Format 173

8.15 Calendar 175
8.16 Payment Statement View 179
8.17 Batch Function View 180
8.18 Addresses 180
8.19 Schedule View 182
8.20 Radio Button Group 183
8.21 Pop-up Pages 184

8.21.1 Configure the Pop-up Page 184
8.21.2 Create the Pop-up Page 186
8.21.3 Using the Pop-up Page 188
8.21.4 Using Multiple Pop-up Search Pages for a
Single Field 189
8.21.5 Configure the Multiple Pop-up Page . . 189
8.21.6 Using the Multiple Pop-up Page 190

8.22 Agenda Player 191
8.22.1 Agenda Player screen structure 191
8.22.2 Navigation modes 191
8.22.3 Navigator-less View 192
8.22.4 Agenda Player Configuration 192
8.22.5 Agenda Player Customization. 193
8.22.6 Player data 193

8.23 LOCALIZED_MESSAGE Domain 197
8.24 Decision Assist: Decision Matrix Widget . . . 197

8.24.1 Overview 197

Chapter 9. Custom Data Conversion
and Sorting 199
9.1 Objective. 199
9.2 Prerequisites 199
9.3 Introduction 199
9.4 Data Conversion and Sorting Operations . . . 199
9.5 Data Conversion Life Cycle 201
9.6 The Domain Hierarchy and Domain Plug-ins 201
9.7 Overview of Domain Plug-ins 203

9.7.1 Common Features of Plug-ins 203
9.7.2 Converter Plug-ins 203
9.7.3 Comparator Plug-ins 205

9.7.4 Default Value Plug-ins 205
9.8 Domain Plug-in Configuration 206
9.9 Out-of-the-Box Domain Plug-ins 207

9.9.1 Extending Existing Plug-ins 207
9.9.2 Converter Plug-ins 209
9.9.3 Comparator Plug-ins 212
9.9.4 Default Value Plug-ins 215

9.10 Error Reporting 216
9.10.1 Infrastructure Errors 216
9.10.2 Exception Classes 216
9.10.3 Custom Exception Classes 217

9.11 Java Object Representations 219
9.12 Customization Guidelines 219

9.12.1 Where to Start 219
9.12.2 Custom Formatting 219
9.12.3 Custom Parsing 221
9.12.4 Custom Validation 222
9.12.5 Custom Sorting 223
9.12.6 Custom Error Reporting 227
9.12.7 Custom Default Values 228

9.13 Advanced Topics 229
9.13.1 Type Checking and Null Checking . . . 229
9.13.2 Plug-in Instance Management 229
9.13.3 Naming Conventions 230
9.13.4 Generic Parse Operations 231
9.13.5 Code-Tables 231

Chapter 10. Online Help 233
10.1 Introduction 233
10.2 Key Features of Curam Online Help 233

10.2.1 Support for Multiple Content Types. . . 233
10.2.2 Single Source Development 233
10.2.3 Integrated Localization 233
10.2.4 Automatic Generation 233
10.2.5 Accessing the Help Page 233
10.2.6 Accessibility Features 233

10.3 Curam Online Help Development 234
10.3.1 Elements of Online Help: 234
10.3.2 Adding or Updating Help content . . . 235

Appendix A. Unsupported Dynamic
UIM features 237
A.1 Introduction 237
A.2 PAGE 237
A.3 PAGE TITLE 237
A.4 CLUSTER 237
A.5 LIST 238
A.6 FIELD 238
A.7 CONTAINER 239
A.8 ACTION_SET 239
A.9 WIDGET 239
A.10 ACTION_CONTROL 239
A.11 LINK 240
A.12 INLINE_PAGE 241
A.13 MENU 241
A.14 SERVER_INTERFACE 241
A.15 INFORMATIONAL 241

Contents v

Appendix B. Maintaining Dynamic UIM
Pages. 243
B.1 Working in a Development Environment . . . 243
B.2 Working in a Running System 245

B.2.1 Search for Dynamic UIM Pages by
Category 245
B.2.2 Uploading a Dynamic UIM page to the
Resource Store 245
B.2.3 Editing a Dynamic UIM page in the
resource store 245

B.2.4 Deleting a Dynamic UIM File from the
Resource Store 246
B.2.5 Validating a dynamic UIM file in the
resource store 246
B.2.6 Publish dynamic UIM files 246

Notices 247
Trademarks 249

vi IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Figures

1. Application User Interface Overview 4
2. Page UIM Example 7
3. Application User Interface Overview 8
4. Sample Application (.app) File 10
5. Web Client Folder Structure 14
6. Default Preview Values for Domain Definitions 22
7. external-client invocation 23
8. Configuring an Application Locale 28
9. A Sample Properties File 30

10. A Sample Image.properties File 30
11. A Sample ImageMapConfig.xml file 31
12. Error_Page Section Example 35
13. Error_Page Section Example with one default

page 35
14. Multiple Select Section Example. 35
15. Disable Collapsible Clusters Example 36
16. Append Colon Section Example. 36
17. Admin Section Example 36
18. Static Content Base URL Example 36
19. Field Error Indicators Example 37
20. Security Check on Page Load Example 37
21. Enable Select All Check-box Example 37
22. Transfer Lists Mode Example 37
23. Hide Conditional Links 37
24. Disable Auto Complete 38
25. Scrollbar Configuration 38
26. Sample Pagination Configuration 38
27. Extract from curam-config.xml File (1) . . . 39
28. Extract from curam-config.xml File (2) . . . 40
29. Sample address-config.xml File 40
30. Accessing a property 46
31. Connection Types Example 53
32. Example Configuration for File Download 54
33. Example of a FOOTER_ROW in a List. 68
34. Example JSP SCRIPTLET Accessing a

TextHelper 72
35. Example JSP SCRIPTLET Redirecting to a Page 73
36. Example JSP_SCRIPTLET Redirecting and

Accessing a TextHelper 74
37. Example of a Dynamic LABEL. 75
38. Example of Dynamic MENU Data 82
39. Example of a DYNAMIC Menu Configuration File 83
40. Example of an INTEGRATED_CASE Menu

Configuration File 83
41. Example of the IN_PAGE_NAVIGATION

menu in UIM 84
42. An example of wizard-type menu UIM 85
43. Example of the required properties in the

resource store property file 85
44. Sample Template Details 98
45. MULTISELECT Example 102
46. Application User Interface Overview 107
47. Simple.app 114
48. CT_APPLICATIONCODE.ctx 115
49. Application User Interface Overview 116
50. SimpleWorkspaceSection.sec 118

51. SimpleShortcutPanel.ssp 121
52. Application User Interface Overview 122
53. SimpleTab.tab 128
54. FILE_DOWNLOAD Configuration from

curam-config.xml 133
55. SimpleMenu.mnu 134
56. SimpleNavigation.nav. 139
57. Customizing the Date Format 147
58. Customizing the Date Time Format 148
59. Frequency Pattern Selector Pop-up 149
60. Selection List on an Insert Page 150
61. Selection List on a Modify Page 150
62. Enabling multiple selection in

curam-config.xml 151
63. Sample RulesDecisionConfig.xml File 154
64. Example of Decision ID Sourced from a Bean 155
65. Example of Rules Tree Items with Summary

Flag. 156
66. Sample RulesEditorConfig.xml File 158
67. Example of Decision ID Sourced from a Bean 159
68. Single Selection Mode Example 160
69. Sample Horizontal Bar Chart XML 166
70. Heatmap Example 167
71. Workflow 169
72. Calendar Week View 176
73. Calendar XML Stream 176
74. CalendarConfig.xml Example 178
75. A Sample PaymentStatement.properties File 180
76. Address Configuration in curam config xml 181
77. UIM Example of Schedule View 183
78. Pop-up Configuration Example 184
79. Opening a Pop-up from an Insert Page 188
80. Opening a Pop-up from a Modify Page 189
81. Supplying Parameters to a Pop-up Page 189
82. Multiple Pop-up Domains 190
83. UIM to Use Multiple Pop-up Windows 190
84. Condition example: 197
85. Sample Domain Configuration 206
86. Custom Exception Class 217
87. Custom Message Catalog 218
88. Throwing a Custom Exception 218
89. Throwing Multiple Exceptions 218
90. Custom Formatting for Currency Values 220
91. Configuration for Custom Formatting 220
92. Custom Formatting without Grouping 221
93. Custom Parsing for Currency Values 222
94. Custom Validation for Odd Numbers 223
95. Custom Validation Failure Message 223
96. Configuration for Custom Validation 223
97. Sorting Strings Numerically. 225
98. Sorting Formatted Values 225
99. Sorting Zero Dates 226

100. Configuration for Custom Sorting. 226
101. Custom Error Reporting 228
102. Custom Pattern Match Failure Message 228
103. Custom Default Date-Time Value 229

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Tables

1. User Interface Elements 4
2. Environment Variables 19
3. Pagination configuration options 38
4. Placeholders used in Frequency Pattern

Selector 48
5. Properties used for the Frequency Pattern

Selector 49
6. Attributes of the ACTION_CONTROL Element 55
7. Child Elements of the ACTION_CONTROL

Element 57
8. Attributes of the ACTION_SET Element 58
9. Child Elements of the ACTION_SET Element 58

10. Attributes of the CLUSTER Element 59
11. Child Elements of the CLUSTER Element 60
12. Child Elements of the CONDITION Element. 61
13. Child Elements of the CONNECT Element 62
14. Attributes of the CONTAINER Element 62
15. Child Elements of the CONTAINER Element 62
16. Attributes of the DETAILS_ROW Element 63
17. Child Elements of the INFORMATIONAL

Element 63
18. Attributes of the DESCRIPTION Element 64
19. Child Elements of the DESCRIPTION Element 64
20. Attributes of the FIELD Element 64
21. Child Elements of the FIELD Element 67
22. Child Elements of the FOOTER_ROW Element 68
23. Attributes of the IMAGE Element 68
24. Attributes of the INCLUDE Element 69
25. Attributes of the INITIAL Element 69
26. Child Elements of the INFORMATIONAL

Element 70
27. Attributes of the INLINE_PAGE Element 70
28. Child Elements of the INLINE_PAGE Element 71
29. Attributes of the IS_FALSE Element 71
30. Attributes of the IS_TRUE Element. 72
31. Child Elements of the LABEL Element . . . 75
32. Attributes of the LINK Element 76
33. Child Elements of the LINK Element 78
34. Attributes of the LIST Element 79
35. Child Elements of the LIST Element 81
36. Attributes of the MENU Element 82
37. Child Elements of the MENU Element . . . 82
38. Properties in the wizard defining resource 85
39. Attributes of the PAGE Element. 86
40. Child Elements of the PAGE Element 88
41. Attributes of the PAGE_PARAMETER Element 88
42. Attributes of the PAGE_TITLE Element 89
43. Child Elements of the PAGE_TITLE Element 89
44. Attributes of the SCRIPT Element 90
45. Attributes of the SERVER_INTERFACE

Element 90
46. Attributes of the SOURCE Element 92
47. Child Elements of the TAB_NAME Element 92
48. Attributes of the TARGET Element. 92
49. Attributes of the TITLE Element 93
50. Child Elements of the TITLE Element 93

51. Child Elements of the VIEW Element 93
52. Attributes of the WIDGET Element 94
53. Child Elements of the WIDGET Element 95
54. Attributes of the WIDGET_PARAMETER

Element 95
55. Child Elements of the WIDGET_PARAMETER

Element 96
56. Parameters to the EVIDENCE_COMPARE

Widget 96
57. Parameters to the FILE_EDIT Widget 97
58. Parameters to the FILE_UPLOAD Widget 99
59. Parameters to the FILE_DOWNLOAD Widget 101
60. Parameters to the MULTISELECT Widget 103
61. Parameters to the SINGLESELECT Widget 104
62. Parameters to the

RULES_SIMULATION_EDITOR Widget. . . 105
63. Configuration Files. 108
64. Attributes of the application Element 109
65. Supported Child Elements of the application

Element 110
66. Supported Child Elements of the

application-menu Element 111
67. Attributes of the application-search Element 111
68. Supported Child Elements of the

application-search Element 112
69. Supported Child Elements of the search-pages

Element 112
70. Attributes of the search-page Element 112
71. Attributes of the further-options Element 113
72. Attributes of the section-ref Element 113
73. Attributes of the section Element 117
74. Supported Child Elements of the section

Element 117
75. Attributes of the tab Element 118
76. Attributes of the shortcut-panel-ref Element 118
77. Attributes of the section-shortcut-panel

Element 119
78. Supported Child Elements of the

section-shortcut-panel Element 119
79. Attributes of the node Element. 120
80. Attributes of the tab-config Element 123
81. Supported Child Elements of the tab-config

Element 123
82. Attributes of the page-param Element 124
83. Attributes of the menu Element 124
84. Attributes of the context Element 125
85. Attributes of the navigation Element 125
86. Attributes of the smart-panel Element 126
87. Supported Child Elements of the tab-refresh

Element 127
88. Attributes of the onload/onsubmit Elements 127
89. Attributes of the menu-bar Element 129
90. Supported Child Elements of the menu-bar

Element 129
91. Attributes of the menu-item Element 130
92. Attributes of the submenu Element 131

© Copyright IBM Corp. 2012, 2013 ix

93. Supported Child Elements of the submenu
Element 131

94. Attributes of the menu-separator Element 132
95. Supported Child Elements of the

loader-registry Element 132
96. Attributes of the loader Element 132
97. Attributes of the navigation Element 135
98. Supported Child Elements of the navigation

Element 135
99. Supported Child Elements of the nodes

Element 135
100. Attributes of the navigation-group Element 136
101. Supported Child Elements of the

navigation-group Element 136
102. Attributes of the navigation-page Element 137
103. Supported Child Elements of the

loader-registry Element 137
104. Attributes of the loader Element 137
105. Tab Opening Rules. 142
106. Attributes of the CONFIG element 163
107. Attributes for CONFIG element 168
108. Attributes of a Node 170
109. Attributes of an Edge 170
110. Attributes of Workflow CONFIG element 171
111. EVENT attributes in schema 177
112. SINGLE_DAY_EVENT attributes in schema 177
113. Calendar View Type Values 178
114. Parameters Passed to Event Description Pages 178

115. Address Format configurations 181
116. Attributes of the POPUP_PAGE element. 184
117. Child elements of the POPUP_PAGE element. 185
118. Attributes of the PLAYER element 192
119. Attributes of the page element 195
120. Behavior of the Abstract Plug-in Classes 208
121. Out-of-the-Box Converter Plug-ins 209
122. Behavior of the Format Operations 209
123. Behavior of the Parse Operations 211
124. Behavior of the Pre-Validate Operations 212
125. Out-of-the-Box Comparator Plug-ins 213
126. Collation strength summary 214
127. Out-of-the-Box Default Value Plug-ins 215
128. Classes Used for Java Object Representations 219
129. Unsupported PAGE Features 237
130. Unsupported PAGE_TITLE Features 237
131. Unsupported CLUSTER Features 237
132. Unsupported LIST Features 238
133. Unsupported FIELD Features 238
134. Unsupported CONTAINER Features 239
135. Unsupported ACTION_SET Features 239
136. Unsupported WIDGET Features 239
137. Unsupported ACTION_CONTROL Features 239
138. Unsupported LINK Features 240
139. Unsupported INLINE_PAGE Features 241
140. Unsupported MENU Features 241
141. Unsupported SERVER_INTERFACE Features 241

x IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 1. Introduction

1.1 Introduction
This guide is the definitive reference guide for all aspects of the development of Cúram web client
applications using the Cúram Client Development Environment for Java™ (Cúram CDEJ).

The Cúram web client application produces a HTML user interface which is generated by a middle-tier
web application. This conforms to the Java EE architecture, in which the Cúram web client application is
a HTML user interface driven by JavaServer Pages (JSP) and Servlet technology based on the Apache
Struts framework. This HTML user interface makes use of standard browser and Web 2.0 technologies,
including JavaScript and Cascading Style Sheets (CSS).

The Cúram CDEJ provides a means of easily developing a HTML client application by reducing the
complexity of development associated with web based applications, and insulating the developer from
the underlying technologies.

1.2 Prerequisites
A basic understanding of Java EE development environments, XML and Web technologies such as
Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS) and JavaScript
is helpful, but not required, before reading this document.

1.3 Companion Guides
Working with the Cúram User Interface acts as a companion guide to this reference manual. It illustrates the
application of features outlined in this guide using an example led approach.

1.4 Structure
This document is divided into the following chapters:

Chapter 2, “Concepts,” on page 3 introduces Cúram's meta-data driven development paradigm for client
applications.

Chapter 3, “Development,” on page 13 describes how, after installing the Cúram Application (IBM Cúram
Social Program Management), the web client application project is structured, where each type of file
should be created, and how to override and extend the default application.

Chapter 4, “Localization,” on page 43 outlines the process of localizing an application into several
languages.

Chapter 5, “UIM Reference,” on page 51 is a complete reference for the User Interface Meta-data (UIM) of
the Cúram Application.

Chapter 6, “Application Configuration,” on page 107 is a complete reference for the User Interface
configuration files of the Cúram Application.

Chapter 7, “Session Management,” on page 143 details how browser sessions are handled by the Cúram
application.

Chapter 8, “Domain Specific Controls,” on page 147 details controls that are used to handle specific
domain types such as dates, schedules, and calendars.

© Copyright IBM Corp. 2012, 2013 1

Chapter 9, “Custom Data Conversion and Sorting,” on page 199 describes a feature that supports the
association of custom validation and sorting routines with domain definitions.

1.5 Summary
v This guide is the definitive reference for all Cúram web client development. It should be read with the

companion guide, Working with the Cúram User Interface.
v The Cúram Client Development Environment (CDEJ) allows the development of lightweight,

standards-based (Java EE), portable client applications that can be accessed from a web browser.
v The Cúram CDEJ simplifies the development associated with web based applications by insulating the

developers from the underlying technologies.

2 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 2. Concepts

2.1 Objective
In this chapter you will be introduced to the concepts and terminology used to describe the Cúram Client
Development Environment (CDEJ).

2.2 Prerequisites
A basic understanding of Java EE development environments, XML and Web technologies such as
Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS) and JavaScript
is helpful, but not required, before reading this chapter.

2.3 Introduction
The goal within the Cúram application is to reduce the complexity of developing web applications by
providing mechanisms to generate client screens which define content, layout and navigation. When
working with the Cúram CDEJ, a user interface developer can concentrate on the data required on a
screen rather than the graphical layout. The CDEJ will generate a standardized user interface from a
simple meta data description.

The Cúram user interface comprises of a number of user interface elements that can be combined
together. The main element of the interface is a User Interface Meta-data (UIM) page. A UIM page defines
the data to be displayed in a page. UIM pages are combined together to provide a view of Cúram known
as an application.

In this chapter 2.5, “User Interface Meta-data,” on page 5 provides an overview of the User Interface
Meta-data used to define a UIM page and 2.6, “Applications,” on page 8 provides an overview of the
elements that can be combined in an application.

By the end of this chapter you will understand the main concepts that power the Cúram CDEJ to
generate a HTML user interface. The concepts defined in this chapter are expanded on throughout the
guide.

2.4 Application User Interface Overview
The figure below illustrates an overview of the User Interface meta data in a sample Cúram application
page. This sample application page will be re-used elsewhere in the guide, in order to describe how each
of the User Interface elements can be configured in an application.

© Copyright IBM Corp. 2012, 2013 3

This table describes the mapping between the numbers and User Interface elements referenced in the
figure above.

Table 1. User Interface Elements

Number User Interface Element Name

1 Application Banner

1.1 Application Name

1.2 Welcome Message

1.3 Application Menu

1.4 Application Search

2 Application Sections

3 Application tab

4 Tab Title Bar

5 Tab Actions Menu

6 Tab Context Panel

7 Section Shortcut Panel

7.1 Section Shortcut Category

7.1.1 Section Shortcut Menu Item

8 Content Area Navigation Bar

9 Page Title

10 Page Action Control

11 Refresh Button

12 Print Button

13 Help Button

14 In page Navigation Tabs

15 Page Content Area

Figure 1. Application User Interface Overview

4 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 1. User Interface Elements (continued)

Number User Interface Element Name

16 Page Group Navigation Bar

17 Fields

18 Clusters

19 Action Controls

20 Smart Panel

21 List

2.5 User Interface Meta-data
User Interface Meta-data (UIM) is an XML language that describes the contents and layout of one of the
main elements in the Cúram user interface, a UIM page.

By limiting the variety of interface layout options available to developers, and by defaulting user
interface characteristics based on the known formats of server interfaces, the UIM is kept simple and the
user interface layout has an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a .uim extension, with each file
corresponding to a single page.

Individual pages are made up from different elements such as page titles, labels, buttons and links as
well as the most important element, the data content. UIM focuses on defining elements rather than how
they are graphically laid out. The CDEJ provides the tools to generate client screens from UIM
definitions.

2.5.1 Page Content Meta-data
The main content area of an application allows server data to be displayed and entered. The basic unit of
data is a field. Each field is either an output or input parameter of a server interface.
v Fields

Fields are visually organized into clusters and lists on a UIM page. There may be zero or more of each
on a page. Clusters and lists can have a title which describes the type of data displayed. There may
also be a title for the whole UIM page. Refer to User Interface element 9 in 2.4, “Application User
Interface Overview,” on page 3 for an example of a page title.

v Clusters

A cluster is a rectangular areas that displays fields in a tabular format. A cluster can have one or more
columns of fields, and fields can be displayed with or without an associated label. Fields can be
read-only, or they may be editable. If editable, they appear as a control such as a text area, drop-down
menu, or check-box.
Refer to User Interface Element 18 in 2.4, “Application User Interface Overview,” on page 3 which
shows an example of two configured clusters in the page content area - each with a configured title.

v Lists

A list is used to display rows of repeating (or indexed) fields. As in clusters, fields can have associated
labels which are displayed as column headings in the list.
Refer to User Interface Element 21 in 2.4, “Application User Interface Overview,” on page 3 which
shows an example of a list in the page content area. The list's title is configured.

v Action Controls

Action Controls, displayed as buttons, are used to submit form data, to link to related pages, or to
open a modal dialog. Action controls can be organized into Action Sets which are associated with
clusters, lists, or the UIM page. Individual Action Controls can also be associated with a single field in

Chapter 2. Concepts 5

a cluster or a column in a list. When an action control is used to link to another page it can also send
parameters to the target page which are normally used as keys to retrieve server data that populates
the target page.
Refer to User Interface Element 19 in 2.4, “Application User Interface Overview,” on page 3 which
shows an example of two action controls. These action controls are configured to only appear at the
bottom of a cluster but by default Action Controls appear at the top and bottom of the widget they are
associated with.

v Server Interfaces

A server interface is a method that has been implemented using the Cúram Server Development
Environment (SDEJ). See Cúram Server Developers Guide and the Cúram Server Modelling Guide for more
information on developing server interface methods.
The server interface is a non-visual element of a UIM page and each UIM page can be associated with
one or more server interface methods. Each method is associated with either the initialization phase or
the process phase. When the UIM page is first opened, the initialization phase methods are executed.
Typically an initialization phase method uses Page Parameters as input parameters, and the resulting
server data is mapped to output fields on the screen.
The Process Phase is initiated when an Action Control of type Submit is selected by the user. Data from
input fields on the screen are mapped to input parameters of process phase server methods and the
methods are invoked. After execution of process phase methods, the flow of control is determined by
the Submit Action, which can specify a link to a new target page, or by the default action which
returns to the same page.

Various XML elements correspond to the user interface elements described above PAGE, FIELD, CLUSTER,
LIST, ACTION_CONTROL, ACTION_SET and so on. Other elements such as PAGE_PARAMETER and
SERVER_INTERFACE do not have visual representations, but are important to the functionality of the page.
The CONNECT element is an important construct that allows fields to be associated with parameters to
Server Interfaces. As well as mapping fields, connections can also map page parameters and static text.
The latter is not stored directly in the UIM, but is externalized in a property file which facilitates easier
language localization of user interfaces.

2.5.1, “Page Content Meta-data,” on page 5 contains an extract of UIM used to create the content area.
This extract displays how the major elements that make up a screen of content area, such as clusters and
lists, are represented in UIM. Chapter 5, “UIM Reference,” on page 51 is a full UIM reference. Refer to
User Interface Element 15 in 2.4, “Application User Interface Overview,” on page 3 to see an example of
a configured page content area.

6 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<PAGE PAGE_ID="Person_search">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText1"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="ACTION"
CLASS="Person_fo"
OPERATION="search"
PHASE="ACTION" />

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.SearchCriteria">

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
</CONNECT>

</FIELD>

<FIELD CONTROL="SKIP"/>

</CLUSTER>

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.AdditionalSearchCriteria">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="forename"/>
</CONNECT>

</FIELD>

... more <FIELD> elements...

<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL LABEL="ActionControl.Label.Search"
IMAGE="SearchButton"
TYPE="SUBMIT">

<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="ActionControl.Label.Reset"
IMAGE="ResetButton">

<LINK PAGE_ID="Person_search"/>
</ACTION_CONTROL>

</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">

<FIELD LABEL="Field.Title.Name" WIDTH="44">
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="personName"/>

</CONNECT>
</FIELD>
... more <FIELD> elements...

</LIST>

</PAGE>

Figure 2. Page UIM Example

Chapter 2. Concepts 7

2.6 Applications
When a user logs into the Cúram application they are presented with a view that is specific to their role.
This view is known as an application. An application in the Cúram user interface is a collection of user
interface elements, predominantly based on UIM pages, combined to create specific content for a
particular user or role.

v Application Banner

An application is defined to present a specific view of the data for a user or user role. The application
banner provides the user with the context of the application they are currently accessing. Refer to User
Interface Element 1 of 2.6, “Applications” for more details of a configured application banner in an
application. The banner also include a number of application links, i.e. Help, Logout and Preferences
and an application search facility.

v Application Sections

An application contains a number of sections, which allow quick and easy access to some of the more
common tasks and activities performed by a user. Refer to User Interface Element 2 of 2.6,
“Applications” for more details of configured sections in an application.

v Section Shortcut Panel

Each section can optionally have a section shortcut panel, which is collapsed by default. When
expanded the shortcut panel provides quick links to open content, in the form of UIM pages, and
perform actions within the section. The content in the section shortcut panel is organized into
categories of menu items. Refer to User Interface Element 7 of 2.6, “Applications” for more details of a
configured section shortcut panel in an application.

v Tabs

Content in a section is displayed in a tab, and each section can open multiple tabs, where each tab
represents a business object or logical grouping of information. A tab can also be described as a logical
grouping of UIM pages. Refer to User Interface Element 3 of 2.6, “Applications” for more details of a
configured tab in an application.

v Tab Context Panel

Figure 3. Application User Interface Overview

8 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A tab contains a context panel, which contains context information associated with the data displayed
in the tab. This context information is always available when working with the data on the tab. See
Refer to User Interface Element 6 of 2.6, “Applications,” on page 8 for more details of a configured
context panel in an application.

v Tab Navigation

A tab comprises of one or more pages of information, represented by UIM pages. These pages can be
navigated using a navigation bar, which contains navigation tabs linking to single pages or sets of
pages. Where a navigation tab links to a set of pages, a page group navigation bar is displayed. Refer
to User Interface Element 8 of 2.6, “Applications,” on page 8 for more details of a configured
navigation bar in an application.

v Content Area

The content area displays the currently selected UIM page. Refer to User Interface Element 15 of 2.6,
“Applications,” on page 8 for more details of a configured page content area in an application.

In addition to defining the layout of the screen, an application controls the flow between pages available
in the application. Within an application, links to other pages are available from a section shortcut panel,
the tab navigation bar and page group navigation bar, in addition to links on the page displayed in the
content area.

Activating any of these links will result in accessing a new page in the content area, or opening a new
page in a modal dialog. For new pages in the content area, the application definition is used to determine
what tab the page belongs to and what section the relevant tab belongs to. The page is then opened in
the context of the relevant section and tab.

Applications are defined in an XML format using a number of different files. For example, an application
is defined using an XML file with the extension .app. Each section referenced in the application is defined
using an XML file with the extension .sec and any tabs referenced by the section are defined using an
XML file with the extension .tab.

2.6, “Applications,” on page 8 details an example of an application configuration file (.app). The example
creates an application containing two sections, in addition to an application banner with a quick search
facility.

Chapter 2. Concepts 9

This separation of configuration into multiple files allows for reuse of different elements across multiple
applications. For example, a common Inbox section can be defined and referenced by multiple
applications. For more information on application configuration consult Chapter 6, “Application
Configuration,” on page 107.

2.7 Page Context
UIM pages are displayed in different contexts within an application. The context the UIM page is
displayed in may result in different behavior for some of the elements. The main contexts are outlined
below.
v Content Area

The content area is where the main content for an application is displayed. When a UIM page is
displayed in the content area it will automatically contain a refresh, help and print button1within its
title bar. Refer to User Interface Element 15 of 2.6, “Applications,” on page 8 to see an example of a
configured content area.

v Context Panel

A context panel displays a specific kind of UIM page that displays common information for the tab
that is always viewable. Refer to User Interface Element 6 of 2.6, “Applications,” on page 8 to see a
configured example of context panel.

v List Dropdown Panel

1. The Cúram application does not support the web browser File->Print functionality. A print button is provided for printing the
contents of the Content Area only.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application

id="SimpleApp"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>

<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Figure 4. Sample Application (.app) File

10 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A list dropdown panel displays a UIM page when a list row is expanded in a list. Expanded rows are
a supported feature of lists. Refer to User Interface Element 21 of 2.6, “Applications,” on page 8 to see
unexpanded list items (toggle buttons) in a list. Refer to 5.9.23, “LIST,” on page 79 for more
information.

v Modal Dialog

A modal dialog displays a UIM page in a dialog window, displayed above the main content. While the
dialog is open, the parent content cannot be accessed. See 5.9.22.3, “Modal Dialogs,” on page 78 for
more information.

v Smart Panel

A smart panel, is an optional panel that can be added to the right of the content area in a tab and
displays a UIM page. For more information see 6.8.2.5, “smart-panel,” on page 125. Refer to see User
Interface Element 20 of 2.6, “Applications,” on page 8 to see an example of a configured smart panel in
an application.

2.8 Page “Look-and-Feel”
Just as important to the simplicity of the Cúram client development approach is what you do not specify
in application and page meta-data. There is very little positioning information for user interface elements:
v the application banner, sections and tabs are in fixed positions;
v clusters and lists flow from top to bottom on a page;
v fields are automatically positioned within them.

Some control is allowed through attributes of the various elements, but sensible defaults are provided for
all these attributes to minimize the situations where they have to be used. Refer to User Interface Element
19 of 2.6, “Applications,” on page 8 to see how action controls are aligned to the center of a cluster. This
was achieved with the ALIGNMENT attribute of the ACTION_SET element in 2.5.1, “Page Content Meta-data,”
on page 5.

2.9 Application Controller Java Server Page
A single Java Server Page, AppController.do, is responsible for rendering the Cúram client on the
browser. This application controller JSP is why the URL in the browser is always AppController.do and
does not change as the user navigates between separate pages within the Cúram application. As a result
of this, the back button of the browser is not supported.

It is still possible to request the URL of a specific page in the browser. In this scenario, on receipt of the
request, the browser will be automatically redirected to AppController.do which loads the requested
page. See 2.10, “Direct Browsing” for details.

2.10 Direct Browsing
A page can be directly accessed by typing its full URL into the browser's navigation bar, e.g.
http://host:port/Curam/en_US/SomePage.do. In this scenario the session and its associated tabs will first
be restored, then a request will be sent for the specified page. The page will then be loaded in it's
associated section and tab. However, if this page is not associated with a tab, it will be loaded in the
currently selected tab. In the case of a new session, this will be the “Home” tab.

Tabs changed in this manner can be returned to their default state by closing and reopening the tab
where possible. For the “Home” tab; logging out and back into the application will restore the “Home”
tab to the user's default home page. See 7.5, “Tab Restoration,” on page 144 for more information on tab
restoration and session management.

Chapter 2. Concepts 11

2.11 Summary
v Cúram web application development is simplified by describing pages and applications in terms of

their content and flow rather than the graphical “look-and-feel” and layout of that content.
v User Interface Meta-data (UIM) consists of definitions in XML format that describe the contents, and to

a certain extent the layout, of one of the main elements in the Cúram user interface, a UIM page.
v An application is a collection of user interface elements, predominantly based on UIM pages, combined

to create specific content for a particular user or role.
v Graphical layout options available to a developer are restricted to enforce a consistent user interface

across the whole application.

12 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 3. Development

3.1 Objective
This chapter will describe the structure of the Cúram web client application project, including related files
in the Cúram server project, and how to develop, build and deploy the application.

3.2 Prerequisites
You should be familiar with the basic concepts of Cúram CDEJ development (see Chapter 2, “Concepts,”
on page 3) and should have some knowledge of the basic format of XML documents. Finally, you should
know how to set and edit system environment variables.

3.3 Introduction
The Cúram CDEJ translates files specified in UIM (User Interface Meta-data) format into the JavaServer
Pages (JSP) that will be deployed on your web application server. These UIM files are supported by
various properties files, configuration files, and others. Collectively, these files are called the application's
artifacts.

Your Cúram web client application project can be divided into various functional components for ease of
development. With this system, application changes and updates can be introduced by dropping in a new
component that will automatically override the artifacts of another component, where appropriate. The
location and purpose of these artifacts and components will be described in detail in this chapter.

3.4 Outline of the Development Process
Much of the client development process is driven by executing specific build scripts. The following is an
outline of the typical steps in the process:
1. Install the Cúram Application and the Cúram CDEJ. Directions to the installation guide are provided

in 3.5, “Installation.”
2. The installer creates both an server application and client application project on your file system

containing all the source files. These files will include the application configuration files, the
XML-based User Interface Metadata (UIM) for all your pages, any images and other resources that the
application requires.

3. Create and edit your source files (UIM and application configuration files) or customize existing files.
4. Deploy your application to an application server. During development, this might be a server

embedded in your integrated development environment.
5. Once deployed, you can test your application using a web browser, for example using the following

URL:
http://localhost:9080/'server_name'/AppController.do

3.5 Installation
To install the Cúram CDEJ, follow the instructions contained in the Cúram Installation Guide. The installer
will install the Cúram CDEJ and the Cúram Application project ready for further development and
customization. The Cúram Application is divided into two major parts: the server application that defines
the business entities and business logic of the application, and the web client application that defines how
this information is presented to the user.

© Copyright IBM Corp. 2012, 2013 13

In this manual, the folders into which parts of the application and the infrastructure are installed will be
referred to using placeholders, as the actual locations will vary depending on where they are installed
and whether or not you are developing the Cúram Application, additional applications or samples.

Folder Placeholders

<app-dir>
The top-level application folder containing both the server application and the client application.

<client-dir>
The folder containing the web client application. Typically this is a folder called webclient within
the <app-dir> folder.

<server-dir>
The folder containing the server application. Typically this is a folder called EJBServer within the
<app-dir> folder.

<cdej-dir>
The folder containing the Cúram CDEJ, the tools and infrastructure required to build and run
web client applications. Typically this is a folder called CuramCDEJ.

<sdej-dir>
The folder containing the Cúram SDEJ, the tools and infrastructure required to build and run
server applications. Typically this is a folder called CuramSDEJ. More information on this folder
can be found in the Cúram Server Developers Guide

For example, if you have installed the Cúram Application into the folder C:/Curam, then the <app-dir>
placeholder refers to this folder, the <client-dir> placeholder refers to the C:/Curam/webclient folder, the
<server-dir> refers to the C:/Curam/EJBServer folder, and the <cdej-dir> refers to the
C:/Curam/CuramCDEJ folder.

3.6 Project Folder Structure
A Cúram web client application project is organized into a folder structure that is recognized by the
Cúram CDEJ when the application is built. 3.6, “Project Folder Structure,” shows an outline of this folder
structure for the project and the list that follows describes each folder within this structure in more detail.
The base folder of this structure is the <client-dir> folder.

Web Client Folders

build Temporary generated artifacts. The only contents of interest are the generated reference
documentation for the façade server interfaces.

<client-dir>
+ build

+ bean-doc
+ buildlogs
+ components

+ core
+ <custom>

+ Images
+ javasource
+ WebContent

+ JavaSource
+ project
+ WebContent

+ <locale>
+ Previews
+ WEB-INF

Figure 5. Web Client Folder Structure

14 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

build/bean-doc
Generated reference documentation for the façade server interfaces in HTML format. These are
regenerated each time the application model changes. See 3.10.7, “Server Interface Reference,” on
page 22 for more details.

buildlogs
Log files generated from each build. See 3.10.5, “Build Logs,” on page 21 for more details.

components
The top-level folder for the application components. Each sub-folder of this folder contains a
separate application component. See 3.7, “Application Components,” on page 16 for more
information on application components.

components/core
The pre-defined core Cúram application component artifacts that provide the core functionality.
These artifacts should not be modified directly. To change them, you should create new artifacts
in another component which will then override the core artifacts.

components/<custom>
One or more extra application components containing artifacts that add additional application
functionality or customize existing functionality.

components/<custom>/Images
Arbitrary custom resources that you want to deploy with your application. Files and folders
within this folder will be copied to the top-level WebContent folder during the build process.

components/<custom>/javasource
Javasource code and properties files used to add extra functionality to an application or to define
externalized strings used across many application pages. There are a number of different
customizations that can be applied to files within this directory. These include updates to control
one or more of the data conversion or sorting operations. Please refer to Chapter 9, “Custom Data
Conversion and Sorting,” on page 199 for more details on these customizations. This javasource
directory is optional, however if this directory is added, the webclient/.classpath file must be
updated to reference this new source directory. This ensures that the changes in this directory are
recompiled when a client build is run within the specified development environment. The
following is an entry in the webclient/.classpath file, (where <custom> represents the name of a
custom directory):
<classpathentry kind="src" path="components/<custom>/javasource"/>

components/<custom>/WebContent
Arbitrary custom resources that you want to deploy with your application. Files and folders
within this folder will be copied to the top-level WebContent folder during the build process.

JavaSource
Contains the Initial_ApplicationConfiguration.properties file, that is described in 3.11.2,
“Configuring the Application,” on page 24.

project
Configuration files used when customizing the application deployment descriptors. See 3.11.3,
“Customizing the Web Application Descriptor,” on page 27 for more details.

WebContent
The generated web application files. This contains the generated JSP files and other application
artifacts that can be used to start and test an application in the development environment. When
an application is to be deployed outside of the development environment, many of the files in
this folder are packaged in the application EAR file. See 3.11, “Deployment,” on page 24 for more
details.

WebContent/<locale>
The generated JSP files for each locale supported by the application are placed in folders named
after the locales. For example, for American English pages there will be a folder named en_US.

Chapter 3. Development 15

These JSP files are generated as necessary when the application is built, so they will be replaced
automatically if deleted or out of date with respect to the corresponding UIM file. The JSP files
are placed in sub-folders of the locale folder using the first two letters of the page ID as the
sub-folder name. This reduces the likelihood that an option provided by some application server
software to pre-compile the JSP files will fail when trying to pre-compile too many JSP files at the
same time.

WebContent/Previews
Generated HTML files providing a rough preview of what each corresponding JSP will look like
when the application is running. These previews can be viewed directly in a web browser
without running the application. See 3.10.8, “Page Previews,” on page 22 for more information.

WebContent/WEB-INF
The standard folder which must exist in every Java EE web application. No files in this folder
will be served by the web container, the files are only used internally by the web client
application. It contains a classes folder that contains all the compiled Java class files and
properties files required by the application. In a Cúram web application project, this includes the
classes and properties files from the component specific javasource folders and the properties file
from the <client-dir>/JavaSource directory. It also contains a lib folder that contains all
required library classes packaged in JAR files. The CDEJ supplies all the JAR files required for
this folder and they are copied during the build process. You should not modify any files in this
folder.

In addition to the web client folders, there are a number of folders in the <server-dir> project that are
relevant to web client application development. The <server-dir> project maintains a similar structure to
the web client, specifically in relation to the component folder.

Server Folders

components/<component-name>/clientapps
Application configuration artifacts. These are the XML configuration files for defining
applications, sections, tabs, etc. For more information see Chapter 6, “Application Configuration,”
on page 107.

components/<component-name>/tab
Application configuration artifacts pre-defined in the Cúram application. XML configuration files
shipped with the core and other out-of-the-box components will exist in this folder. These should
not be modified. To change these you should create new artifacts in the clientapps folder in
another component, which will then override these artifacts.

3.7 Application Components

3.7.1 Component Folders
Cúram web client applications are organized into collections of artifacts called components. Each
component has its own folder below the <client-dir>/components folder. The core component is always
present. This contains all of the artifacts needed for the core functionality of the Cúram reference
application. The name of the component folder is used as the name of the component.

A component does not necessarily define a discrete part of an application; rather it defines an additional
customization layer of an application. By adding new components, it is possible to selectively replace pages
in the core application, add new pages, change the appearance of the application and alter various
settings. It should never be necessary to edit files within the core application, thereby ensuring that when
the core application is upgraded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you to organize your artifacts as
you see fit. Artifacts in a component must have unique file names and the folder structure does not affect
this. For example, you cannot place two UIM files with the same name within the same component, even

16 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

though they would be in different folders. Likewise, a UIM file in one component is considered
equivalent to a UIM file in another component, even if the folders within the components containing
these UIM files have different names. Technically, a component represents a single namespace for artifacts
and the folder structures within the components are mostly ignored.

The only exception to the requirement to use unique file names for artifacts is within the optional
WebContent folder within a component. Within this folder, you can place arbitrary files in an arbitrary
folder structure that you want to deploy with your application. The files will be copied to the main
<client-dir>/WebContent folder during the build process and the folder structure will be preserved, so
files in different folders may share the same name.

3.7.2 Component Order
There can be any number of application components, but they are processed in a strict component order.
This order determines the priority that will be given to artifacts that share the same name but appear in
different components. This is fundamental to the manner in which Cúram web client applications are
customized.

The component order is defined by the CLIENT_COMPONENT_ORDER environment variable. This is a
comma-separated list of component names. Use only commas; do not use spaces. You must place the
component with the highest-priority first in the list and continue in descending order of priority. The
core component always has the lowest priority and is implicitly assumed to be at the end of the list; you
do not need to add it explicitly.

For example, setting the component order to “MyComponentOne,MyComponentTwo” will give the
highest priority to artifacts in the MyComponentOne folder within <client-dir>/components, a lower
priority to artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the core folder.
Any component folder not listed in the component order will not be included in the build and a warning
will be displayed to indicate that these components have been ignored. If you do not set the component
order at all, the default component order will include all components in alphabetical order.

Note: The SERVER_COMPONENT_ORDER order, used for the <server-dir> project, will always include
all component folders existing in the components folder. If they are omitted from the
SERVER_COMPONENT_ORDER environment variable, they will automatically be added to the end of
the component order in alphabetical order. For more information consult the Cúram Server Developers
Guide.

3.7.2.1 Localized Components
Localized components contains translated artifacts for the base components and are of the format
“<component name>_<locale>”. It is not necessary for these to be added to the
CLIENT_COMPONENT_ORDER environment variable as the tooling that processes this environment
variable will prepend any available components that match entries in the LOCALE_LIST environment
variable. Localized components are matched both on complete locale entry and on the two-character,
lower-case language code. Localized components are prepended before the base component in the
complete component order.

3.8 Component Artifacts
Components contain a number of artifacts that are used to build an application. All the artifacts in a
single component have the same priority in the component order. The artifacts in one component may be
used to customize the artifacts in a lower-priority component, or they may be entirely new artifacts that
extend the application. The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each UIM page describes a web
page that users will see when accessing the web client application with their web browsers. The
files for these artifacts use the .uim extension.

Chapter 3. Development 17

UIM Views
UIM views define portions of a page that may be re-used by many UIM pages. The files for these
artifacts use the .vim extension.

Properties Files
Properties files store the natural language text for a page separately from the pages, views and
page groups. When applications are localized into different languages, there will be a separate
properties file for each language (or locale, see 3.9, “Application Locales”). This allows a single
UIM page, view or page group to be defined for all of the supported languages.

Note: UIM properties files do not support any form of visual layout or formatting capabilities
such as using carriage returns or inserting HTML elements.

Application Configuration Files
Application configuration files define the layout of the user interface and how UIM pages are
grouped into sections and tabs. The files for these artifacts are defined using the extensions .app,
.sec, .tab, .nav, .mnu, and .ssp. Note, these files are located in the <server-dir> project. See
Chapter 6, “Application Configuration,” on page 107 for details.

Image Files
Images file referenced from your UIM pages or views can be added to your component's Images
sub-folder. See 3.12.5, “Images,” on page 30 for details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the application or of elements
of the application. There are a variety of different configuration files that can be used for different
purposes.

Custom Resources
Custom resources are arbitrary files that you want to deploy with your application. For example,
you may want to customize the appearance of a page to reference you own image file for a logo;
this image file is a custom resource.

3.9 Application Locales
A locale describes a user's language, country and determines what the user will see in the pages they
access via their web browser. While the data will largely remain the same (other than in the details of the
formatting of numbers and dates) the labels for the data will appear in the appropriate language. Locales
are specified using a simple identifier that contains a two-character, lower-case language code optionally
followed by an underscore character and a two-character, upper-case country code. For example, “en”
indicates the English language, and “en_US” indicates the regional variation of the English language
appropriate for the United States of America. This regional variation may help to identify differences in
the dialect or usage of the language, American English in this example, but it may also affect the way
dates and numbers are formatted.

The language and country codes have been standardized and support for any specific locale is
determined by the Java Runtime Environment (JRE) that you are using for you application and whether
you have localized your application appropriately for that locale. Consult the documentation provided by
the vendor of your JRE for details on the support locales and see Chapter 4, “Localization,” on page 43
for full information on the procedure for localizing a Cúram web client application.

Before building a Cúram application that may have been localized for a number of locales, you need to
specify what locales you want to include. To do this, you set the LOCALE_LIST environment variable to
a comma-separated list of the locale codes. Use only commas, do not use spaces. For example, “en_US,es”
specifies the American English locale and the Spanish locale (with no regional variation). The first locale
in the list is treated as the default locale. Certain operations, such as the generation of page previews (see
3.10.8, “Page Previews,” on page 22), are only performed for the default locale.

18 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Improving Build Performance: The Cúram CDEJ performs most of the translation work for the
application's locales during the build process; from a single UIM file it will produce one JSP file for each
locale in the locale list. If your application supports many locales, you may find it convenient when
developing the application to omit some of the locale codes from the locale list, as this will improve the
build performance. You can replace the locales when you want to view or test all of the localized pages.

3.10 Building an Application

3.10.1 Build Targets
The client application is built using Apache Ant build scripts. These build scripts define ordered
sequences of processing steps called targets. To invoke a target, you open a command prompt window
and change to the <client-dir> folder and then pass the name of the target to the command you use to
start Apache Ant. Typically this command is called build or appbuild. The name depends on the script
provided for your application, but it will be referred to as build in this manual. For example, to build the
web client application, the command is buildclient . You can run more than one target at a time by
passing the target names separated by space characters. For example, buildcleanclient will first clean all
the generated output that may be present before building the full web client application again.

The following build targets are available for Cúram client projects:

client Builds the client application. See 3.10.3, “Full and Incremental Builds,” on page 20 for further
details.

clean Deletes all of output generated by the other build targets. See 3.10.3, “Full and Incremental
Builds,” on page 20 for further details.

beandoc
Generates reference documentation for the façade server interfaces. See 3.10.7, “Server Interface
Reference,” on page 22 for further details.

client-with-previews
Builds the client application and also generates previews of the pages in HTML format in the
<client-dir>/WebContent/Previews folder. See 3.10.8, “Page Previews,” on page 22 for further
details.

uimgen Generates skeleton UIM pages from the façade server interface definitions. See 3.10.9, “UIM
Generator Tool,” on page 23 for further details.

A number of environment variables affect the build process for a web client application. Some have been
introduced already and others are explained elsewhere, but all are shown below. When you install the
Cúram Application, the build command will set most of these for you, as they mostly refer to files and
folders that will be in fixed locations relative to where you installed the application. However, for a new
application, or if you are modifying the build command, you may need to confirm that these are set
correctly.

Table 2. Environment Variables

Name Required Description

CURAMCDEJ Yes The location of the installed Cúram CDEJ
infrastructure. This is the same as the value of
the <cdej-dir> placeholder used in this manual.
See 3.5, “Installation,” on page 13 for details.

CLIENT_DIR Yes The location of your web client application. This
is the same as the value of the <client-dir>
placeholder used in this manual. See 3.5,
“Installation,” on page 13 for details.

Chapter 3. Development 19

Table 2. Environment Variables (continued)

Name Required Description

CLIENT_PROJECT_NAME Yes Defines the name of the application being built.
This name is used as a base name for many
generated artifacts, for example, for Java
package names. The name is defined in the
UML model. For the installed Cúram
Application, the value should be “Curam”.

LOCALE_LIST Yes Defines the locales that will be supported by the
application. See 3.9, “Application Locales,” on
page 18 for details.

CLIENT_COMPONENT_ORDER No Defines the prioritized order of the application's
components. See 3.7.2, “Component Order,” on
page 17 for details. This is not required, but it is
highly recommended that you set it explicitly.
By default, all components will be processed in
alphabetical order.

ENCODING No Defines the character encoding that will be used
to interpret files that do not explicitly define an
encoding. By default, the system's default
character encoding will be used. See 4.5, “File
Encoding,” on page 43 for details.

MULTIPLE_VALIDATION_ERRORS No Controls the number of errors that are reported
during the build process before the build
terminates. See 3.10.6, “Error Reporting,” on
page 21 for details.

3.10.2 Related Build Targets
The server application is built using Apache Ant build scripts, in the same way as the client application is
built. The application configuration files are located in the <server-dir> project and as a result, the
targets for processing these are part of the server project. The following targets are used to process the
client application configuration files:

inserttabconfiguration
Combines and imports the client application configuration files onto the database. See 6.4,
“Configuration Files,” on page 108 for more details.

database
The last step of the database target is to call the inserttabconfiguration target. For more
information the database target see the Cúram Server Developers Guide.

3.10.3 Full and Incremental Builds
Theclient build target will generate a complete web client application. If no previous build output is
present, running this target will build the entire application. This is called a full build. Subsequently, on
running this target, the build scripts will compare your source files to the previously generated output
files to detect what you have changed and will update the minimum number of output files possible.
This is called an incremental build. An incremental build is performed automatically as long as the output
of a previous build is present and is much faster than a full build. To perform a full build again, you
must first run theclean target to remove all of the outputs from the previous build.

warning: Building after Upgrading

If you upgrade your Cúram application or Cúram CDEJ, you must perform a full build by first running
theclean target. Failure to do this could result in unpredictable behavior during the build process or
when then application is running.

20 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Platform Specific Setting: When executing theclient build target from a text-only interface (e.g., using a
terminal emulator to access a UNIX machine), -Djava.awt.headless=true must be added to theANT_OPTS
environment setting.

3.10.4 Dependency Checking
For most changes that you make, you need only run the incremental build, as the changes will be
detected automatically and only the dependent output files will be updated. However, some changes are
not detected and you may need to run a full build for your changes to take effect. In particular, if you
change a setting in the curam-config.xml configuration file that affects the build process (typically by
affecting the appearance of the pages in a way that is applied at build-time), then you will need to
perform a full build manually, as the changes will not be detected automatically.

Dependency checking will identify changes to server interfaces used by UIM pages. Server interfaces are
defined in the application's UML model and more information can be found in 3.10.7, “Server Interface
Reference,” on page 22. Only changes to interface properties, not their underlying domain types, are
recognized in an incremental build. For example, changing a code-table name will not be detected by
dependency checking and a clean build will be required.

3.10.5 Build Logs
Every time you run theclient target to build the application, all of the messages produced by the build
scripts are written to a file in the <client-dir>/buildlogs folder. The files created are named for the date
and time on which the build was started. If errors occur during a build, you may find it easier to review
them by reading the log file instead of scrolling through messages at the command prompt.

3.10.6 Error Reporting
One of the main steps performed by the client target is the generation of the JSP files from the UIM files.
This process will check the validity of your UIM files as they are processed. The validity of the UIM files
is determined in a number of steps:
1. They must contain well-formed XML and must not attempt to include VIM files that do not exist.
2. They must conform to the XML schema for UIM and to some additional context-sensitive rules that

cannot be defined in the XML schema.
3. They must refer only to externalized strings that exist in their associated properties files.
4. They must meet a number of other requirements related to the connections made to the properties of

server interfaces. For example, the property names must be unambiguous, or an address field must be
the only field in a cluster.

Normally, the processing will stop when the first error occurs and the indicated problem must be fixed
before the build can be executed again. However, for the errors detected in the second step, the schema
and schema-related validation errors, there is an option to continue processing as far as possible after an
error occurs to allow you to locate and fix more than one error at a time. Errors reported during the other
steps will always stop the build immediately.

To allow multiple validation errors to be reported during a build, set the
MULTIPLE_VALIDATION_ERRORS environment variable to true. If not set, the default value is false
and the build will terminate after the first validation error occurs.

The number of errors reported is limited by the number of UIM files being validated at one time. The
validation is typically performed on files in groups of one hundred, so this option will cause all of the
validations errors in the current group to be reported before the build is terminated. No further groups
will be processed after a group containing files with validation errors has been encountered.

Chapter 3. Development 21

3.10.7 Server Interface Reference
When developing UIM pages, you will need to know details about the façade server interfaces and their
properties so that you can select the information that you want to display on each page. This information
is all defined in the application's UML model, but, for your convenience, you can generate simple
reference documentation in HTML format to make the information more easily accessible.

Thebeandoc target generates this reference documentation for all of the available façade server interfaces
(“classes”), creating many HTML files in the <client-dir>/build/bean-doc folder. To view the
documentation, open the index.html file created in that folder in a web browser. This document provides
links to alphabetical lists of all classes, all operations on those classes, all domain definitions used by
properties of those operations, and all code-tables referenced by any of those domain definitions. Each of
these lists provides further links for cross-references or providing more details. Viewing a class will
display a list of its operations and selecting an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only part of the ending of the name
as long as it is unambiguous. In the reference documentation for each operation, both the full property
name and the shortest, unique ending of the property name are given. This will help you to choose a
name that is short and readable, but that will not cause any build errors later.

Beside many of the class, operation, and property names, you will see a Copy button. Clicking this
button will copy the name to the clipboard, allowing you to paste it into your UIM file. For property
names, the shortest unique name is copied. Copying to the clipboard using the Copy button only works
in Microsoft Internet Explorer. In other browsers, you will have to select the text and use the normal
copying commands.

3.10.8 Page Previews
Page previews are produced by running theclient-with-previews build target. This will generate static
HTML pages for the default locale that can be opened in a browser to give you an impression of what
the page will look like when the application is running. The HTML pages are located in the
<client-dir>/WebContent/Previews folder. You do not need to start a server to view the pages. The pages
display a default value for each field but do not support any user-interaction (buttons, links, pop-ups, etc.
do not function). The preview page represents only the main content area of the page (the part specified
in UIM) and not the sidebar or page header or footer.

The default values for the fields are defined by associating a default value with the domain definition of
the field. These default values are used only for the preview pages and are defined in the
domain-defaults.xml file in <client-dir>/components/core. Overriding this file in other components is
not currently supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The root element is
DOMAIN_DEFAULTS. This element contains one DOMAIN element for each domain definition for which a
default value is to be defined. The DOMAIN element requires a NAME attribute specifying the domain name,
and a DEFAULT attribute specifying the default value for that domain.

When generating preview pages, if there is no default value defined for a domain, a warning message
will be displayed. These warnings will not prevent the preview page from being generated and a
fall-back value will be used in the generated page (for example, “[field-value]”). Note that fields that
have a complex domain value are not parsed or processed in the normal manner. Most of these are

<DOMAIN_DEFAULTS>
<DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>
<DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>

</DOMAIN_DEFAULTS>

Figure 6. Default Preview Values for Domain Definitions

22 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

simply replaced by an image of the typical output and no default value is required. Complex fields like
this are described in Chapter 8, “Domain Specific Controls,” on page 147.

3.10.9 UIM Generator Tool
The UIM Generator tool provides a user interface for automatically generating a UIM page for a
particular server interface.

To start the UIM Generator tool:
1. Open a command prompt and change to the <client-dir> folder.
2. Run builduimgen .
3. The first time you run the UIM Generator you will be asked to locate a ServerAccessBeans.xml file.

This file is generated by theclient target and can be found in the <client-dir>/build folder.

Once the UIM Generator has started, you should see a screen containing the following:
v A File menu containing options to view your current configuration settings and to exit the application.
v A tree on the left hand side which lists all the server interfaces in the application.
v Two options, Display Phase and Action Phase, which determine when the selected server interface is

called in the generated page.
v A Make Page button which generates the UIM for the current settings.

To generate a page perform the following:
1. Select the interface you wish to test from the tree (e.g. Register-Person.read).
2. Select the phase in which the interface should be called, for example, Action. Action phase pages call

the interface when the page is submitted. Data can be entered for each input field and a button is
generated to submit the page.

3. Click the Make Page button and you will be asked to specify a location for the generated UIM. You
can change the default name if you wish. The location should be in the appropriate component folder
of your application.

A UIM file and a properties file are generated. The labels for each field are given defaults based on the
name of the server interface property associated with the field.

3.10.10 External Client Applications
Due to the webclient directory containing a mix of components that are targeted for different EAR
packaging, it can be difficult to use the single development environment and component order to develop
and test these.

To allow for this a build targetexternal-client will allow for creation of an environment and building of
the components specified for an EAR entry in the deployment_packaging.xml.

The target requires a parameter-Dapp which should refer to the name of an EAR entry within the
deployment_packaging.xml.

The build target will copy the components specified for this EAR entry to a webclient\build\apps\<app
name> directory and here will both build the project and create the relevant Eclipse project configuration
files to allow for the project directory to be imported into Eclipse and development-type testing to be
performed on these external client applications.

build external-client -Dapp=SamplePublicAccess

Figure 7. external-client invocation

Chapter 3. Development 23

3.11 Deployment

3.11.1 Overview
A detailed description of the deployment procedure is provided in the Cúram Deployment Guide
appropriate for your application server and operating system. However, there are a number of
configuration settings available in your web client application project prior to deployment. These settings
are described below.

3.11.2 Configuring the Application
The ApplicationConfiguration.properties file defines the most important application configuration
settings. The file should be located in the curam/omega3 sub-folder of the <client-dir>/JavaSource folder.
When you create a new application, this folder will contain a sample file named
Initial_ApplicationConfiguration.properties. You should copy this file and rename it to
ApplicationConfiguration.properties and change the settings to match your requirements. For the
installed Cúram Application, this will be already be done for you, but you may still want to make some
changes.

The properties that may be set in this file are as follows:

dateformat
Example: dateformat=M d yyyy

The application-wide date format used when displaying dates or when parsing dates entered by
a user. This specific format (per user) is not supported within the Cúram application.

The value of dateformat can be set to any one of a number of predefined formats. Formats in
day-month-year order: “d M yyyy” (the default), “d MMM yyyy”, “d MMMM yyyy”, “dd MM
yyyy”, “dd MMM yyyy”, “dd MMMM yyyy”. Formats in month-day-year order: “M d yyyy”,
“MMM d yyyy”, “MMMM d yyyy”, “MM dd yyyy”, “MMM dd yyyy”, “MMMM dd yyyy”.
Formats in year-month-day order: “yyyy M d”, “yyyy MMM d”, “yyyy MMMM d”, “yyyy MM
dd”, “yyyy MMM dd”, “yyyy MMMM dd”.

In these predefined formats, “d” represents the day number, “dd” represents the two-digit day
number padded with a leading zero if necessary, “M” represents the month number, “MM”
represents the two-digit month number padded with a leading zero if necessary, “MMM”
represents the abbreviated month name, “MMMM” represents the full month name, and “yyyy”
represents the four-digit year. An upper-case letter “M” is used for the month, as the lower-case
letter “m” is used in Java applications to represent the minute value when formatting times. The
formats are specified using a space character as a separator. The actual separator character that
you wish to use is specified separately.

dateseparator
Example: dateseparator=/

The value of dateseparator can be set to one of “.”, “,”, “/”, or “-”. The date separator character
that will be applied to the specified date format. The value can be set to any one of a number of
predefined separator characters: “/” (the default), “.”, “,”, or “-”.

timeformat
Example: timeformat=HH mm

The value of timeformat can be set to one of “h m s a”, “h m a”, “H m”, “hh mm a”, “HH mm”,
“hhmm a” or “HHmm”. Where not specified, “HH mm” is used as the default.

timeseparator
Example: timeseparator=:

The value of timeseparator can be set to one of “:” or “.”. Where not specified, “:” is used as the
default.

24 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

serverConnectionType
Example: serverConnectionType=single

Do not change this value.

addressFormatType
Example: addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode
Example: addressDefaultCountryCode=US

Default, application-wide country code for addresses. This must match an entry on the server
application's Country code table.

uploadMaximumSize
Example: uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size will be rejected. This should be set
to match the allocated storage in the database for fields containing uploaded files. This cannot be
tailored to suit different database fields. The value -1 indicates no maximum limit.

uploadThresholdSize
Example: uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file will be created on the
server to reduce the memory overhead of storing the data as it is being processed. By default,
uploaded files are written to temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath
Example: uploadRepositoryPath=c:/temp

Temporary files created during file upload will be written to this location if they exceed the
upload threshold size. By default files will be written to the Java system temporary folder (as
defined by the Java system property property java.io.tmpdir).

use.synchronizer.token
Example: use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental re-submission of forms due to use of
the browser's Back button. Can be set to true (default) or false.

synchronizer.token.timeout
Example: synchronizer.token.timeout=1800

A synchronizer token will expire if its associated form is never submitted. Values are specified in
seconds. The default value for this property is 1,800 seconds.

errorpage.stacktrace.output
Example: errorpage.stacktrace.output=false

The value for this property is true or false, with true as the default.

Stacktrace output is used in the development environment for debugging purposes. When the
value for this property is true, the Java exception errors are output into the HTML error pages.

The property must be set to to false in a production environment, e.g.
errorpage.stacktrace.output=false, otherwise it will introduce security vulnerabilities into the
application. The HTML error pages, which contain the Java exception stack trace, are not subject
to the Cúram's application malicious code and filtering checks and will potentially leave the
application open to injection attacks, e.g. Cross-site scripting and link injection.

dbtojms.credentials.getter
Example: dbtojms.credentials.getter=curam.sample.CredentialsGetter

Chapter 3. Development 25

Specifies the name of the class used to obtain credentials to be used for triggering a DBtoJMS
transfer. If not specified, a default set of credentials will be used for this operation. For more
information about DBtoJMS and using this property please see section entitled 'Security
Considerations' of the Cúram Batch Processing Guide.

modal.dialogs.minimum.height
Example: modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels and will be used when the
calculated height of the modal dialog is less than the minimum required height or the specified
height is less than the minimum required height. The default value of 100 pixels applies if this is
not set.

tabSessionUpdateCountThreshold
Example: tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received before the data is
persisted from the web tier to the database. Once the threshold is reached, the recent updates are
written and counting starts again from zero until the threshold is reached. A value of one causes
writes on every update. A value of zero (or a negative or invalid value) disables writing based on
update counts.

The default is every 10 updates.

For more information consult Chapter 7, “Session Management,” on page 143.

tabSessionUpdatePeriodThreshold
Example: tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must have elapsed since the last time session data was
persisted from the web tier to the database before a new update will trigger another write. A
value of zero (or a negative or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information consult Chapter 7, “Session Management,” on page 143.

resourceCacheMaximumSize
Example: resourceCacheMaximumSize=16000000

Specifies the size of the application resource store cache. By default, the cache is limited to 16MB
(approx.) in size. When that limit is reached, the least recently used resources will be ejected from
the cache to make room for newly requested resources that are not already in the cache. The size
of the cache is specified in bytes.

Note: If a single resource exceeds the size limit for the cache, it will not be cached.

dynamicUIMInitModelOnStart
Example: dynamicUIMInitModelOnStart=false

Indicates if the Dynamic UIM system should initialize the required information on the application
model during startup or when it is first required for a Dynamic UIM page. The default value is
true and it should be set to false to cause the model to be initialized when it is first required by
a Dynamic UIM page.

See 5.12, “Dynamic UIM System Initialization,” on page 106 for more detailed information.

sanitize.link.parameter
Example: sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is false.

When the value of this property is true, any parameters in the request URL containing links to
content with the Cúram application are validated using a regular expression. The validation
ensures that a third party hasn't replaced the link value with a malicious link to an external site.

26 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

3.11.2.1 Tracing
As described in Chapter 4, “Localization,” on page 43, the file CDEJResources.properties defines
properties for localizing certain features of the application. It also contains the setting to enable tracing of
server function calls on the web-tier. Add the following property to enable this tracing:
TraceOn=true

When enabled, the inputs to and outputs from all server function calls will be written to “Standard
Out”2.

3.11.3 Customizing the Web Application Descriptor
The web application descriptordefined in a file named web.xml is a standard Java EE web application file.
A Cúram web application contains various settings that a developer may wish to change, for example,
server connection settings and the session time-out. The default settings can be seen in the following files
based on the environment you are running the application from:

Development Environment
<cdej-dir>/lib/curam/web/WEB-INF/web.xml

IBM® WebSphere® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

Customizing the web.xml file is done differently depending on whether you are changing the version of
the file to be included in the Cúram EAR file or the version to be used at development time (e.g. in
Apache Tomcat).

Customizing the web.xml for development time can be done by creating a custom version of the web.xml
file in the WebContent/WEB-INF directory of a particular component, e.g. custom. Where multiple versions
of web.xml exist in different components, the version in the highest precedence component, based on
CLIENT_COMPONENT_ORDER, will be used.

The web.xml used within a Cúram EAR file can be customized using the deployment_packaging.xml file
located in the Curam Server project/config directory. It is possible to specify a custom web.xml using the
custom-web-xml property. For more information on customizing web.xml at runtime please consult the
Cúram Deployment Guide for the relevant Application Server.

When customizing web.xml, the existing security, filter and servlet settings should not be modified.

The server and port settings in ApplicationConfiguration.properties are now obsolete and no longer
need to be specified. They are now automatically configured as context-param elements in web.xml when
the Cúram EAR file is created. The server and port values are set according to the values specified in the
AppServer.properties files (see the Cúram Server Deployment Guides for more information), with the
exception of the web.xml used at development time. The development web.xml, located in
<cdej-dir>/lib/curam/web/WEB-INF/web.xml, has the server and port set to localhost and 900 respectively.

To change or add a locale, locate the init-param elements of the ActionServlet and duplicate them,
changing the value of the param-name element as appropriate so it is in the form config/<locale-code>.
See the example below.

2. Due to classloader issues with Log4j, the web-tier does not currently provide a configurable logging system in the same way as
the server-tier.

Chapter 3. Development 27

By default the web.xml for both WebSphere and WebLogic application servers is configured to enforce
secure http (https), i.e. a secure SSL connection between the web client and the server. This can be
modified by changing thetransport-guarantee from CONFIDENTIAL to NONE. Note, this does not disable
access to the Cúram web client over https, but enables additional access via http. Please refer to the
Curam Security Handbook for further details.

3.11.3.1 Customizing the 404 or Page Not Found error response.
The 404 or Not Found error message is a HTTP standard response code indicating that the client was
able to communicate with the server, but the server could not find what was requested. The default
web.xml files for WebSphere, and WebLogic specify a default error page for the Cúram application when
an HTTP 404 error is thrown by the application server. The following is the error message displayed on
that default page:
v The page you have requested is not available. One possible cause for this is that you are not licensed

for the necessary Cúram module - if that is the case, you can use the User Interface administration
screens to remove these links.

This message may be customized by adding a HTTP404Error.properties file into the
<client-dir>/components/<component_name>/ folder of the application and overriding the error.message
property specified in that file.

3.12 Customization

3.12.1 Overview
A Cúram web client application can be customized without modifying the original components or their
artifacts. This makes it easier to upgrade a base application while preserving your custom changes to that
application. In this section you will see how the customization process works and how you can modify
or extend a base application.

Customizations are applied according to the component order. The changes that you make to customize
an application should be made in a separate component from the application's original components. The
Cúram Application will be installed with a number of components (the core component and a number of
other add-on components). To make customizations, create a new component folder containing a new
sub-folder called components. Add that component's name to the component order (see 3.7.2, “Component
Order,” on page 17). You will always want to add your component name to the beginning of the
component order to give it the highest priority when artifacts are being selected at build-time. You can
add more that one custom component, but you must decide what their relative position in the component
order should be.

To begin with, your custom component will be an empty folder. You make your customizations by
adding artifacts (e.g., UIM pages, configuration, files, etc.) to this component folder. You can create
arbitrary sub-folders to help you organize these artifacts. You can customize an application by adding
new artifacts, overriding existing artifacts, or merging new content with existing artifacts.

3.12.2 Adding New Artifacts
You can add new artifacts to extend a base application. To add a new artifact, you simply create the new
file in your component folder. The file name of the artifact should not be the same as the file name of an
artifact in another component. If it is, the artifact will override another artifact or be merged with one. All

<init-param>
<param-name>config/en</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

Figure 8. Configuring an Application Locale

28 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

types of artifacts can be added to an application in this manner, note artifacts added to the WebContent
sub-folder will always override other delivered artifacts, as described in Section 3.12.14, “Custom
Resources,” on page 40.

3.12.3 Overriding or Merging Artifacts
Some types of artifacts can be overridden (effectively replaced) by adding an artifact with the same file
name as an artifact in another component to your custom component. When building the application, the
artifact in the highest priority component will be selected and the others ignored. Not all types of
artifacts are overridden so completely. Other types of artifacts are merged with the same named artifacts
in the lower priority components. The content of all of the artifacts is combined and, where the content is
related, the content from the highest priority component is selected. The customized artifacts only need to
share the same file name, they do not have to share the same relative folder location, though you may
find it advantageous to organize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest priority component will be
selected and the others ignored; but for properties files that share the same name, all of the properties are
merged together and, where the files contain properties with the same key name, the value of the
property from the file in the highest priority component will be used. When building an application, the
artifacts in the components are not modified. The selection and merging of artifacts is performed in
temporary locations, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in the sections below.

3.12.4 Externalized Strings
All string values in UIM documents and JavaScript must be externalized. This aids maintenance and
allows the application to be localized. JavaScript, UIM pages and UIM views can reference externalized
strings.

The syntax of a properties file is simple. Each line contains a name=value pair, where the name is an
arbitrary name for the string (it should not contain the “=” character), and the value is the localized
string value. Blank lines and lines beginning with a “#” character are ignored. 3.12.4, “Externalized
Strings” contains an example. The syntax is defined by the java.util.Properties class provided with
your Java Runtime Environment; you can consult the API documentation for that class for more details.

It is worth noting that the property value will be reproduced in the final application page exactly as you
have typed it in the properties file. The value can contain any character from any language and it does
not matter if that character is reserved in XML, HTML or anywhere elseit will be safely processed and
displayed as you intended in the application.

If you find that you need to enter a character in a property value that you cannot generate from the
keyboard, the only one way to do it is to use the Unicode value of that character in a Unicode escape
sequence a backslash and a “u” followed by the four-digit hexadecimal character code. For example, if you
want to enter a non-breaking space, the corresponding Unicode escaped sequence is “\u00a0”. An
example of this is included in the sample properties file below.

Chapter 3. Development 29

As you can see, using “.” characters is a useful way to add some structure to the properties in the file,
though it is not a requirement.

When customizing an application, you can customize properties independently of pages and views by
adding the appropriately named properties file to your custom component and defining the externalized
string properties. You do not need to add the corresponding page or view file to your component and
you do not need to redefine any of the properties that you do not want to change.

3.12.5 Images
All references to icons or other graphics within a UIM document are externalized in a manner similar to
normal strings. The Image.properties file (you can include one in each component, if you wish) uses the
same format as the string properties files to associate image references with image file names. The image
files should be stored in the component's Images sub-folder and can be organized into a folder structure
below this folder if desired. Most web browsers will support images in the portable network graphics
(PNG) format, the graphics interchange format (GIF), and the joint photographic experts group (JPEG)
format.

The Image.properties file simply associates a key with a path to the corresponding image file specified
relative to the component folder. A sample of this file is shown below. To use these images, the key is
used as the value of the IMAGE attribute on the ACTION_CONTROL element in the UIM page.

The entries in the Image.properties file in the core component can be overridden individually or in total
by creating an Image.properties file in your custom component and overriding the properties as
required. You can override the image files themselves by creating files in your custom component with
the same names as the files in the core component.

If you need to localize your images for different languages, you can add several Image.properties files
using a different locale code as the file name suffix. See 4.6, “Locales,” on page 44 for details on locale
code suffixes. Each properties file should define the same keys, but the image files can be different for
each locale. If only some of the images need to be localized, the common images can be defined in the
default Image.properties file (the one without the locale code suffix) and only properties for the localized
images in the other properties files.

3.12.6 Image Mapping
Images can also be used within the Cúram application to represent different values of displayed fields
instead of presenting the value as text. For example, a typical boolean value of true or false could be
represented by two images of, say, a green check mark and a red X.

Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

Field labels
Field.FirstName.Label=First Name
Field.Surname.Label=Surname

Other
Separator=\u00a0

Figure 9. A Sample Properties File

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

Figure 10. A Sample Image.properties File

30 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The mapping between values and images is stored in the ImageMapConfig.xml file. There is no need to
specify this in any way in UIM. If you use a property with a domain listed in the ImageMapConfig.xml
file, it will automatically be displayed as an image.

In the example, a field with domain type MY_BOOLEAN has been assigned an image mapping. Note
that you should specify an image mapping for each available locale even if the images used are identical.
This is because the alternative text (“alt text”) attached to the image will be different for different locales.
This text is important for accessibility reasons (users who have visual difficulties might use an audio
browser, for example, which will read out the “alt text”).

ImageMapConfig.xml files in different components are merged with all unique image mappings preserved.
If the same value in the same locale is mapped in two ImageMapConfig.xml files in two different
components, the mapping from the higher priority component prevails.

3.12.7 CuramLinks.properties
The UIM LINK element allows links to other client pages to be specified indirectly. The PAGE_ID_REF
attribute is a key into the CuramLinks.properties file that returns the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a page reference is that all the
links can be updated by changing a single entry in this file.

Each component can have its own CuramLinks.properties file. During generation, these individual files
will be merged. As usual, if a particular key is present in more than one CuramLinks.properties file, the
component priority order is used to decide which value is retained.

3.12.8 XML Runtime Configuration Files
There are a few miscellaneous XML files that are used by the running client application. To change any of
these files, copy the original file into the custom component sub-directory and modify the copied file. The
default files can be found in <cdej-dir>/lib.. The client generators will use the xml file from the highest
priority as specified by the CLIENT_COMPONENT_ORDER environment variable. The following is a list of these
files:
v CalendarConfig.xml

v DynamicMenuConfig.xml

v ICDynamicMenuConfig.xml

v MeetingViewConfig.xml

<map>
<domain name="MY_BOOLEAN">

<locale name="en">
<mapping value="true"

image="Images/ValuesToImages/true.gif"
alt="True"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="False"/>

</locale>
<locale name="fr">

<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="Vrai"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="Pas Vrai"/>

</locale>
</domain>

</map>

Figure 11. A Sample ImageMapConfig.xml file

Chapter 3. Development 31

v RatesTableConfig.xml

v RulesDecisionConfig.xml

v RulesEditorConfig.xml

Further details on the customization of these configuration files are given in Chapter 8, “Domain Specific
Controls,” on page 147.

3.12.9 Login Pages
A default login page is supplied, called logon.jsp and located in the lib/curam/web/jsp directory of the
Cúram Client Development Environment. This can be overridden by placing a copy, with the required
changes, in a webclient/components/<custom component>/WebContent folder. However, there are some
guidelines that should be followed.

Firstly, the following JavaScript should be included in the head section of the page:
<jsp:include page="no-dialog.jsp"/>

<script type="text/javascript"
src="${pageScope.path1}/CDEJ/jscript/curam/util/Logon.js">
//script content</script>

<script type="text/javascript">
curam.util.Logon.ensureFullPageLogon();
function window_onload() {
document.loginform.j_username.focus();
return true;

}
</script>

This prevents the login page from being loaded in a dialog window.

Secondly, if it is desired to use the j_security_check login mechanism, the form submitted from the page
should have an action attribute of j_security_check, a user name input with the name attribute
j_username and a password input with the name attribute j_password.

The Cúram Server Developers Guide contains details of some common customizations to the logon.jsp file
to support an external user client application and automatic login.

The styling of logon.jsp can be customized in the usual way. Simply add relevant CSS to any .css file in
the custom component.

3.12.10 JavaScript Files
The UIM SCRIPT element allows events on the page to trigger JavaScript functions. You can simply
provide a path to the JavaScript file that is relative to your component folder. For example, if you have a
JavaScript file in a sub-folder of your component folder: MyComponent/scripts/myScript.js, you can just
refer to this in the SCRIPT tag as follows:

<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>

The paths you have specified will be fully preserved during application generation.

JavaScript allows HTML and CSS to be queried and manipulated. The underlying HTML and CSS source
code used to style the Cúram application is not documented. No guarantees are made about its stability
across Cúram releases. Therefore, custom JavaScript may have to be updated in line with changes to
HTML structure.

A number of JavaScript APIs for use in the custom JavaScript code are provided within the Cúram
application. They are documented in the following location in your CDEJ installation:
CuramCDEJ\doc\Javascript\index.html. Use of any other Cúram JavaScript APIs, discovered through web
developer tools for example, is not supported. The same is true of the JavaScript APIs and functions of

32 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

third party frameworks used within the Cúram application. While there is nothing prevent a developer
using these, using them means the code will be impacted by changes to the Cúram application in future
releases.

Using the techniques described above to add new JavaScript files to the custom component, new third
party APIs could be added to Cúram pages. This is at the customers discretion, as no guarantees can be
made on third-party APIs that have not been used and verified within the Cúram application.

3.12.11 Cascading Stylesheets
Stylesheets (* .css) define the appearance (colors, fonts, etc.) of the client pages when viewed in a web
browser. Default stylesheets are provided for the Cúram client application. It should never be necessary
to edit these files, you can view them in the WebContent/WEB-INF/css folder. Instead, you can override
particular styles or add new styles by creating new CSS files in one of your application components. Any
CSS file located in the component/<some-component> folder (or sub-folder) will be automatically
concatenated into the custom.css file. The custom.css file is included on all pages in the Cúram client
application.

The underlying HTML and associated CSS used to style the Cúram user interface can easily be viewed in
a variety of ways, such as using developer tools like the Internet Explorer Developer Toolbar. An example
of customization would be to view the CSS used to apply a color to a field's label. The same CSS style
can then be added to your custom CSS file and a different color specified. For example, assuming the
HTML and CSS has been analyzed and the CSS rule .field.label applies the label color, the following
CSS could be used to override the default:
.field .label {

color: red;
}

This will take precedence over the Cúram style because custom CSS is included on the page after
Cúram's default CSS. Another customization technique would be to create a new rule that is an extension
of a Cúram rule. Continuing the above example, a developer analyzes the HTML and sees that within the
Cúram application a span element is generated as a child of the .label element. It is possible to create a
new rule that is specific to this span, even if Cúram has not done so. The complete customization will
now look like this:
.field .label {

color:red;
}
.field .label span{
color:blue;
}

The underlying HTML and CSS source code used to style the Cúram user interface is not documented
(hence the use of developer tools to view it). No guarantee is made about its stability across Cúram
releases. Therefore, customizations as described above or any customization based on analysis of the
Cúram application's underlying HTML and CSS may be lost as new releases are taken on. The
customizations may have to be re-applied by analyzing the HTML and CSS again.

Note: Some UIM elements support the STYLE tag which allows specific styling to be added to any
instance of that element. This styling will always override that included in .CSS files. For more
information, see Chapter 5, “UIM Reference,” on page 51.

3.12.11.1 Application Specific CSS
CSS can be specific to the application being viewed. The id of the application (.app file) currently being
viewed is added as a class on the BODY element of each HTML page, allowing application specific styling
to be added to that page.

Chapter 3. Development 33

For example, a System Administrator views the SYSADMAPP application. The following is an example of
CSS specific to that application:
.SYSADMAPP .field .label {

color:red;
}

3.12.11.2 Media Specific CSS
CSS can be specific to the type of media being used to view the web page. So, for example, it is possible
to have some styles that only apply when a page is printed and others that only apply on-screen. It is
possible to include CSS specific to a media using the following pattern:
<STYLE type="text/css">

@media print {
BODY {font-size: 10pt; background: white;}

}
@media screen {

BODY {font-size: medium;}
}
</STYLE>

3.12.11.3 Browser Specific CSS
CSS can be specific to the browser used to view the web page. Internet Explorer specific CSS files can be
created in any folder in a component. A naming convention is used to distinguish between versions of
Internet Explorer. Specifically the following suffixes are to be used:
v ie.css This file will be included in all versions of Internet Explorer.
v _ie6.css This file will be included in Internet Explorer 6.
v _ie7.css This file will be included in Internet Explorer 7.
v _ie8.css This file will be included in Internet Explorer 8.

Please note that developers should continue to strive for using the same CSS on all browsers. Internet
Explorer specific styling should only be used as a last resort.

3.12.12 Application Configuration Files
The application configuration files for defining application, section and tabs can be added to the
<server-dir>\components\<component-name>\clientapps directory, where <component-name> is a custom
component. Sub-folders are supported within the clientapps folder. Any artifacts added to this directory
will override files of the same name in the <server-dir>\components\<component-name>\tab directory.
The tab directory contains files that are shipped with existing components within the Cúram application
and these files should not be modified.

Note: The OOTB Cúram application uses fragments of configuration artifacts that are merged into single
files at build time, this is not supported for custom application configuration artifacts. (i.e.) you should
not have a tab folder in EJBServer\components\custom.

When customizing application configuration files that ship with the Cúram application, the XML
configuration file and.properties file should always be customized as a unit. For example, a change to the
SimpleApp.properties file, associated with the SimpleApp.app file, should result in adding both
SimpleApp.app and SimpleApp.properties to the clientapps folder. These files should be based on the
merged version of the files. The inserttabconfiguration target can be used to get a development copy of
the merged file. See the Cúram Server Developer Guide for more information.

There are a few general rules and best practices when working with the application configuration files:
v The id attribute on the root element of each configuration file must match the name of the file. E.g.

SimpleApp.app must have an id of SimpleApp.
v The id attributes should not contain the period (.) or underscore (_) characters.

34 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v Localizable text should be added to a .properties file which matches the name of the configuration
file. E.g. SimpleApp.app will have a corresponding SimpleApp.properties.

v Properties files can be re-used across configuration files. E.g. Person.nav and Person.tab can share the
same Person.properties file.

v Ensure when developing the XML files to add the proper namespace information. This will allow for
validation. For example:

3.12.13 General Configuration

3.12.13.1 Overview
The curam-config.xml file contains a number of general-purpose configuration options that affect the
appearance or behavior of the web client application. Each of the following sections describe in detail the
main elements of this configuration file.

3.12.13.2 POPUP_PAGES
See 8.21, “Pop-up Pages,” on page 184.

3.12.13.3 MULTIPLE_POPUP_DOMAINS
See 8.21, “Pop-up Pages,” on page 184.

3.12.13.4 ERROR_PAGE
If an error occurs at run-time, the user will be redirected to a page defined here. Depending on the error
cause, two types of error page could be provided for reporting system or application failure (or a default
page for reporting both kind of errors could be configured instead).

Please note: when overriding the ERROR_PAGE setting it is not possible for a custom configuration to define
an ERROR_PAGE element without a TYPE attribute if a low priority component defines an ERROR_PAGE
element with a TYPE attribute. In that case, the custom component needs to use a TYPE attribute and must
override both supported types of error page to get the desired effect

3.12.13.5 MULTIPLE_SELECT
Domains which should display as multiple select list boxes in forms are specified here. The MULTIPLE
attribute, if true, allows multiple selection in the list.

3.12.13.6 FILE_DOWNLOAD_CONFIG
See 5.9.3.1, “File Downloads,” on page 54.

<ac:application
...
</ac:application>

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemError"/>
<ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Figure 12. Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>

Figure 13. Error_Page Section Example with one default page

<MULTIPLE_SELECT>
<DOMAIN NAME="PRIMARY_ID" MULTIPLE="true"/>
<DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>

</MULTIPLE_SELECT>

Figure 14. Multiple Select Section Example

Chapter 3. Development 35

3.12.13.7 ENABLE_COLLAPSIBLE_CLUSTERS
Set to false to disable collapsible clusters. By default this value is set to true.

3.12.13.8 APPEND_COLON
Set to true to automatically append colons to FIELD and CONTAINER labels within CLUSTER elements.

3.12.13.9 ADDRESS_CONFIG
See Chapter 8, “Domain Specific Controls,” on page 147.

3.12.13.10 ADMIN
The ADMIN element can contain any number of CODETABLE_UPDATE, TAB_CONFIG_UPDATE and
RESOURCE_UPDATE elements. The PAGE_ID attribute of these elements specifies the page that will clear the
relevant caches whenever its submit action is called.

Please note: The caches are only cleared for the current instance of the web application. Other instances
will have to be restarted to receive the code table updates. This feature applies at development time only.

3.12.13.11 STATIC_CONTENT_SERVER
This option specifies a base URL for all static content such as images, CSS files and JavaScript files.

The forward slash at the end of the URL is optional. A full build is required to pick up this setting. This
option allows the relocation of all static content to a separate server. If this option is used, the following
folders and files need to be duplicated on the static content server:
v WebContent/*.*

v WebContent/CDEJ/**/*.*

v WebContent/genImages/**/*.*

v WebContent/Images/**/*.*

3.12.13.12 FIELD_ERROR_INDICATOR
This option indicates if field level error indicators are to be displayed when an error occurs. The error
message is the alt text of the image and is available as a tool-tip when the mouse is hovered over the
image. The feature only applies to text input and date-time fields. Also, this feature only applies to
web-tier generated messages (data-type validation, mandatory fields etc.), it does not apply to messages
generated from server side code since there is no way to associate a server exception with a client side
field.

<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>

Figure 15. Disable Collapsible Clusters Example

<APPEND_COLON>true</APPEND_COLON>

Figure 16. Append Colon Section Example

<ADMIN>
<CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />

</ADMIN>
<TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>
<RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Figure 17. Admin Section Example

<STATIC_CONTENT_SERVER>
<URL>http://www.myserver.com/staticresources/</URL>

</STATIC_CONTENT_SERVER>

Figure 18. Static Content Base URL Example

36 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Please note if the FIELD_ERROR_INDICATOR element is not specified, it defaults to FALSE.

3.12.13.13 SECURITY_CHECK_ON_PAGE_LOAD
All server functions used on a Cúram screen are checked for authorization when the page is initially
loaded. If a user fails authorization for any of the server functions, an authorization error message will be
displayed and the user will be prevented from viewing the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml allows this functionality to be
disabled and defers the authorization check to the server. For example, on an edit page that has both
DISPLAY and ACTION server interfaces, the user must have authorization rights for the DISPLAY server
interfaces at a minimum. If they do not have authorization rights for the ACTION server interfaces, the
page will display, but they will get an authorization error message when they submit the page. To disable
authorization on page load add the following to the curam-config.xml:

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not specified, it defaults to TRUE.

3.12.13.14 ENABLE_SELECT_ALL_CHECKBOX
The multi-select check-box WIDGET described 5.10.8, “The MULTISELECT Widget,” on page 101 displays a
column of check-boxes used to select items in a LIST. The following configuration setting causes a
check-box to be displayed in the column header that can be used to select or de-select all of the
check-boxes at once.

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not specified, it defaults to FALSE.

3.12.13.15 TRANSFER_LISTS_MODE
When set to true all multiple selection controls in an application are displayed as Transfer List widgets.

Please note if the TRANSFER_LISTS_MODE element is not specified, it defaults to FALSE.

3.12.13.16 HIDE_CONDITIONAL_LINKS
When set to true all conditional links that evaluate to false are not displayed. When set to false all
conditional links that evaluate to false are displayed as disabled links.

Please note if the HIDE_CONDITIONAL_LINKS element is not specified, it defaults to TRUE.

3.12.13.17 DISABLE_AUTO_COMPLETE
When set to true auto complete on all input fields is disabled. When set to false auto complete on all
input fields is enabled.

<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>

Figure 19. Field Error Indicators Example

<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>

Figure 20. Security Check on Page Load Example

<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>

Figure 21. Enable Select All Check-box Example

<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>

Figure 22. Transfer Lists Mode Example

<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>

Figure 23. Hide Conditional Links

Chapter 3. Development 37

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it defaults to FALSE.

3.12.13.18 SCROLLBAR_CONFIG
The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on a LIST or CLUSTER element after a
maximum height is reached. It can contain two or less ENABLE_SCROLLBARS elements. The
ENABLE_SCROLLBARS element has the following attributes:
v TYPE : Specifies the element in which vertical scrollbars are to be enabled. Can only be set to LIST or

CLUSTER.
v MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST can reach before a vertical scrollbar is

displayed.

Please note if the SCROLLBAR_CONFIG element is not specified no LIST or CLUSTER element will display a
vertical scrollbar.

3.12.13.19 PAGINATION
This element configures the LIST pagination options for the whole application. Individual lists can
override the global settings.

Table 3. Pagination configuration options

Option Name Required Default Description

ENABLED No true Enables the ability to page through lists displayed in
Cúram pages. Any LIST longer than the configured
minimum size will display only the first "page" of
data and the pagination controls will be displayed
below the list.

DEFAULT_PAGE_SIZE No 15 Specifies the page size the list will get by default.
The page size can be then changed at runtime by
the user.

PAGINATION_THRESHOLD No Based on the
DEFAULT_PAGE_SIZE
value.

Specifies the minimum list size at which pagination
will be enabled. For shorter lists there will be no
pagination, even if otherwise pagination is switched
on.

3.12.13.20 Customizing Configuration Settings
The core component contains a copy of the curam-config.xml file, but you are free to augment and
override the settings by including your own curam-config.xml file in your custom component. All of the
individual curam-config.xml files will be merged into one at generation. The effect of this merging
depends on each particular setting.

<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>

Figure 24. Disable Auto Complete

<SCROLLBAR_CONFIG>
<ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
<ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />

</SCROLLBAR_CONFIG>

Figure 25. Scrollbar Configuration

<PAGINATION ENABLED="true">
<DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>
<PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>

</PAGINATION>

Figure 26. Sample Pagination Configuration

38 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Some entries are global settings for the application and so must only appear once in the final output.
These entries are as follows:
v HELP

v ERROR_PAGE

v APPEND_COLON

v ADMIN

v POPUP_PAGES/CLEAR_TEXT_IMAGE

v MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE

v STATIC_CONTENT_SERVER

If you define one of these in a custom component, it will completely override that of the core component.

The other entries will be merged. This applies to the following elements:
v MULTIPLE_POPUP_DOMAINS

v POPUP_PAGES

v MULTIPLE_SELECT

v FILE_DOWNLOAD_CONFIG

v PAGINATION

v ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. So, for example, if the core component
had the following address format definition:

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Core.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Core.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Core.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Core.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Core.Label.Zip" />

</ADDRESS_FORMAT>

Figure 27. Extract from curam-config.xml File (1)

Chapter 3. Development 39

then it is the second one (i.e., the custom definition) that will appear in the final merged
curam-config.xml file. This is because both address formats have the same name (“US”).

3.12.13.21 Dividing the Configuration File
The curam-config.xml file can be divided into manageable chunks. If you like, you can take one part of
the configuration and save it in a file with a different name. Taking the previous address format
configuration as an example, you can create a file with the following contents:

You would then save this with a file name that ends with -config.xml anywhere within your component,
say, address-config.xml. Note that the file must have the same APP_CONFIG root element as the full
curam-config.xml file. As long as you follow these conventions, all of your configuration files will be
merged into a single address-config.xml file at build time.

Configuration File Names: Two naming patterns are used for most configuration files. Some use the
pattern XConfig.xml and others X-config.xml, where “X” is some prefix. For example,
ImageMapConfig.xml and address-config.xml. The former pattern indicates a standalone configuration file
that is not related to other configuration files. The latter pattern indicates that the file is really just part of
the curam-config.xml file.

3.12.14 Custom Resources
Arbitrary files can be included in the web application by doing the following:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>

Figure 28. Extract from curam-config.xml File (2)

<APP_CONFIG>
<ADDRESS_CONFIG>

<LOCALE_MAPPING LOCALE="en_US"
ADDRESS_FORMAT_NAME="US">

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

</APP_CONFIG>

Figure 29. Sample address-config.xml File

40 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

1. At the root of a component, created a folder called WebContent, for example <client-dir>/
components/MyComponent/WebContent.

2. Place files in this folder using any folder structure you wish.
3. When you run the client build target these files will be copied directly to the <client-dir>/

WebContent which represents the root of the web application. The folder structure will be maintained
during the copy.

warning:

Before making use of this functionality care should be taken to understand the effects. It is advised to
firstly view the generated WebContent folder (located webclient/WebContent) and to be aware of what files
exist in it. Placing a similar file in the WebContent folder of a component will overwrite the currently
existing file in the generated WebContent folder.

Files included in the application in this way take precedence over the merging and overriding process as
described in previous sections for other resources. For example, if you include a CSS file in this way, the
contents of the file will not be included in the CSS overriding process described in 3.12.11, “Cascading
Stylesheets,” on page 33.

The copying of custom resources occurs after other source artifacts are built and merged, so it is possible
to replace existing resources. Care should be taken in this case. For example, it would be possible to have
a component with a file in WebContent/WEB-INF/struts-config.xml that would completely replace the
Struts configuration file generated by the client build and therefore break the application.

It is also important to note that the files placed in a WebContent folder within a component are completely
ignored during the build process and are not processed. They are merely copied across. For example, if
you have JavaScript properties file in the WebContent folder of your component it will not be processed.

Finally, when multiple components have a WebContent folder they are copied based on component
priority, but the copy is time-stamp based. The copy command always uses verbose output for these files
so the developer can see exactly what files are being copied.

Chapter 3. Development 41

42 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 4. Localization

4.1 Objective
This chapter will introduce you to the various files that need to be updated when translating a Cúram
application to a new language.

4.2 Prerequisites
You should be familiar with the basic concepts of Cúram CDEJ development (see Chapter 2, “Concepts,”
on page 3).

4.3 Introduction
Cúram is designed to support an application running simultaneously in as many languages as required.
To simplify the translation process, the language-specific parts of the application are separated out from
the application code.

4.4 Numbers
Numbers are language-specific and so a Cúram application treats numbers in a locale-specific manner
depending on the preferred language of the user. For example, a decimal number can be represented as
7,99 or 7.99 depending on whether the user's locale is French or English.

4.5 File Encoding
OOTB Cúram supports the development of applications localized into many languages. The Cúram CDEJ
generators support files encoded in the various character encodings appropriate for those languages.
Definition of the encoding for a file is dependent on the type of file and the following sections describe
how to set the encoding for the different types of supported files.

4.5.1 XML Files
The encoding for XML-format files is declared explicitly within the XML file itself, where the first line,
the XML declaration, may look like this:

This tells the XML parser that the file uses the ISO-8859-1 encoding, a typical encoding for Western
European languages. If the XML declaration is omitted, the parser will assume UTF-8 encoding, which
covers most modern languages and many others, besides being based on the Unicode standard. It is very
important that the XML declaration matches the actual file encoding. The declaration does not determine
the encoding, it only identifies it; changing the declaration does not automatically change the file
encoding. If you use a specialized XML editor application, then it will probably recognize the declaration
and change the file encoding for you. Most plain-text editors will not do this, so you must ensure that
you select the correct encoding in your editor before saving the file.

It is highly recommended that UTF-8 encoding is used for XML files.

4.5.2 Java properties files
For Java properties files (used in the application, for example, to define the text strings that appear on
client screens), there is no equivalent of the explicit XML declaration. The client generator must assume
an encoding for the client properties files. The assumption the generator makes is that Java properties

<?xml version="1.0" encoding="ISO-8859-1"?>

© Copyright IBM Corp. 2012, 2013 43

files are encoded in the default system encoding of the machine that the build is running on. This is a
reasonable assumption given that the files themselves were likely created on the same machine or a
machine of similar type in the same country. On a Microsoft Windows machine in Western Europe, for
example, the system encoding is probably Cp1252, the Windows variant of ISO-8859-1. This encoding will
handle the accented characters of Western European languages but does not cover, say, Cyrillic or
Chinese characters.

If, for some reason, you are building on a machine that does not share its system encoding with the files
that are being processed, you must indicate this by setting the ENCODING environment variable. For
example, to build a Chinese language web client application on an English language Microsoft Windows
machine, you might choose to save your properties files in the UTF-8 encoding, so you would set the
ENCODING environment variable to UTF-8. During the build, you can see that the generator overrides
its normal default setting:

The Java Runtime Environment will always assume that properties files use the ISO-8859-1 encoding.
This is not very helpful if you want to create properties files using the UTF-8 encoding for localization to,
say, Chinese. To overcome this limitation, the Cúram CDEJ will automatically translate properties files
from your preferred encoding (either the system default encoding, or the encoding specified via the
ENCODING environment variable) into the encoding required by Java. This is performed automatically
during the build process and your original properties files will not be affected.

Troubleshooting: Where a properties file has been saved in UTF-8 encoding, and this does not match the
system encoding, build failures can occur. The build failure will report a PageGenerationException, where
the build could not find a property even though the property exists in the relevant file. This happens
where the properties file has been saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at
the beginning of the file. The property reported in the error will be the first property in the file. To
resolve the issue the file should be saved in the correct encoding, ensuring the BOM character has been
removed.

Note: The properties files shipped by default with Cúram use ISO-8859-1 encoding, and where necessary
use Unicode characters.

4.5.3 Non-XML Files
The non-XML files in the Cúram Reference Application are encoded in the ASCII encoding. ASCII has the
useful property of being a subset of most other common file encodings. This means you do not generally
need to convert the English language files that ship with the OOTB Cúram application in a new encoding
in order to build them in a different language environment.

4.6 Locales
A Java locale identifier has three parts:

Language
A lower-case, two-letter, ISO-639 code.

See http://www.unicode.org/onlinedat/languages.html.

Country
An upper-case, two-letter, ISO-3166 code.

See http://www.unicode.org/onlinedat/countries.html.

Variant
A vendor-specific or browser-specific code.

System encoding is Cp1252.
Using encoding UTF-8 to read properties files.

44 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

http://www.unicode.org/onlinedat/languages.html
http://www.unicode.org/onlinedat/countries.html

The language code is required, but the other parts are optional. The individual parts are separated by an
underscore character. Some examples of valid locales are: “en” (English language), “en_US” (English
language for the United States), zh_HK (Chinese language for Hong Kong). This system is used within
the Cúram application to identify locales. Most locale-specific information in the application are contained
in properties files.

4.6.1 Non JavaScript property files
When localizing an application (see 4.6.2, “JavaScript property files” for details on localizing JavaScript),
you will need to create new properties files for each locale. The files for the default locale are named
simply as SomeFile.properties. The files for other locales are identified by appending the locale
identifier to the end of the file name after a separating “_” (underscore) character (i.e., between the name
of the page and the .properties extension). For example, SomeFile_es.properties would be the name of
the Spanish language version of SomeFile.properties.

It is useful to note that if a particular property is not found by the application in
SomeFile_es.properties, the properties file for the default locale, i.e. SomeFile.properties, will be
searched. This is particularly handy in the case of Image.properties, described below, where only some
of your images contain text and thus need to be localized. Properties for the other images can be defined
once in the default locale properties file and they will be picked up in all locales.

Once done adding localized .properties files, update the LOCALE_LIST environment variable as
appropriate (this variable defines the list of locales the client will be built for), for example, set it to
“en,es” for a default English language application and a Spanish language application. See 3.9,
“Application Locales,” on page 18 for more details on this setting.

The merging of localized properties files from different components happens in exactly the same way as
it does for default locale properties files. See 3.12.4, “Externalized Strings,” on page 29 for more details on
the merging of properties files.

4.6.2 JavaScript property files
When localizing JavaScript files in the application, you will need to create new JavaScript property files
for each locale. The files for the default locale are named simply as *.js.properties. The files for other
locales are identified by appending the locale identifier - after a separating “_” (underscore) character -
between the .js extension and the .properties extension. For example, SomeJSFile.js_es.properties
would be the name of the Spanish language version of SomeJSFile.js.properties file. This file will be
automatically processed by a client build. Similar to the non JavaScript property files, if a particular
property is not found by the application in SomeJSFile.js_es.properties file, then the property from the
default properties file (SomeJSFile.js.properties) will be used.

4.7 UIM Externalized Strings
As described in 3.12.4, “Externalized Strings,” on page 29, all string values in UIM files are externalized
to .properties files.

If MyPage.uim is the UIM file, then MyPage.properties is the corresponding properties file. To add
localized properties files, please see 4.6, “Locales,” on page 44.

The strings are stored in a properties file in the same folder as the page or view file. This file must have
the same name as the page or view file but with the extension .properties. For example, if the page is
stored in a file called MyPage.uim, the strings will be stored in the file MyPage.properties in the same
folder. Similarly, views will see the .vim extension changed to .properties.

While UIM documents in the highest priority component override those in all other components,
properties files in different components are merged together. Individual properties override those with
the same property name defined in lower priority components. Also, when a UIM page includes a UIM

Chapter 4. Localization 45

view (a .vim file), all of the properties defined for both the page and the view are merged and the
properties for the page override those defined for the view where they share the same property name.
These two merging steps happen separately with the component order applied first for each properties
file and the page-view order applied on the resulting properties. A property defined for a page will
override a property of the same name defined for a view, even if the property for the view was defined
in a higher priority component.

4.8 JavaScript Externalized Strings
As described in 3.12.4, “Externalized Strings,” on page 29, all string values in JavaScript files should be
externalized to JavaScript property files (.js.properties files).

By convention the name of the resource file for your JavaScript must be derived from name of the.js file
itself. For example if your JavaScript file is called SomeJSFile.js then related localizable resources should
be placed in SomeJSFile.js.properties file. A *.js.properties file can be placed anywhere in the component
directory, but by convention it should be in the same directory as the related *.js file.

The exception to this is that a *.js file within a WebContent directory cannot have its associated
*.js.properties file within the same directory. The associated *.js.properties file must be placed within a
directory outside of the WebContent directory. To add localized JavaScript properties files, please see 4.6,
“Locales,” on page 44.

JavaScript Properties files with the same name across all components will be merged together during
processing. Any property with the same name will be overwritten by the highest component in the
component order.

The use of placeholders within a property value is supported. The placeholders must be in the format %ns
or '%ns' where n represents an integer from 1...n, and n must be within a defined range. The range is
defined by the number of of placeholders used within a property value. For example, if there are three
placeholders within a property value then the placeholders must be numbered from 1 to 3 (e.g. %1s, %2s,
%3s) and anything outside of this range is not supported.

4.8.1 Accessing properties in JavaScript
There are three requirements for accessing a JavaScript property.

1. Load the resources using dojo.requireLocalization().

Refer to comment 1 in 4.8.1, “Accessing properties in JavaScript” for an example of this.
2. Create an instance of the curam.util.ResourceBundle object.

This is required in order to be able to access the localized resources. Refer to comment 2 in 4.8.1,
“Accessing properties in JavaScript” for an example of this.

3. Access a property

// 1.
dojo.requireLocalization("curam.application", "SomeJSFile");

// 2.
dojo.require("curam.util.ResourceBundle");
var bundle = new curam.util.ResourceBundle("SomeJSFile");

// 3.
var localizedMessage = bundle.getProperty("myPropertyKey");
var localizedMessageWithSubstitutions

= bundle.getProperty("my.sub.key", ["a", "b"]);

curam.application is the default package into which all localizable resources are placed by the Curam infrastructure.
SomeJSFile is derived from the name of the related JavaScript properties file.
Figure 30. Accessing a property

46 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The getProperty() method can be used to access a property on the instantiated ResourceBundle. Refer
to comment 3 in 4.8.1, “Accessing properties in JavaScript,” on page 46 for an example of how to get
a property and a substituted (2 substitutions) property respectively.

4.9 Image.properties
The Image.properties file (see 3.12.5, “Images,” on page 30) can be localized as per other properties files,
please see 4.6, “Locales,” on page 44 for more information on localizing properties files. Once the
localized properties file is created, place this beside the Image.properties file.

It is useful to note that if the application does not find a particular property in a localized properties file,
it will check the default locale properties file. This is generally true for all properties files but it is
particularly useful in the case of Image.properties. You might find that some of your images can be used
no matter what language is displayed, whereas other images contain text and thus must be altered. It is
only these latter images that need to be mentioned in the localized properties file.

4.10 Infrastructure Widget Properties Files
The following is a list of .properties files associated with Infrastructure widgets, e.g. the
AgendaPlayer.properties file is associated with the AgendaConfig.xml file, which defines the Agenda
Player widget.
v AgendaPlayer.properties

v BarChart.properties

v Calendar.properties

v ComparedEvidence.properties

v DateTimeSelector.properties

v DecisionMatrixAddMessage.properties

v DisplayEvidence.properties

v EvidenceComparison.properties

v EvidenceReview.properties

v EvidenceTabContainer.properties

v FrequencyPatternSelector.properties

v GanttChart.properties

v IEGPlayer.properties

v Logon.properties

v MeetingView.properties

v PaymentStatement.properties

v RatesTable.properties

v Rules.properties

v TypicalPictureEditor.properties

v Workflow.properties

v WordFileEdit.properties

Note: The names of the properties files associated with infrastructure widgets are reserved names and
must not be used for the name of any other client properties file. No warning is printed to the console in
this scenario, therefore care must be taken when naming other properties files.

To customize a widget properties file, create a new version under the webclient/components/custom
component folder, where the default content for the file can be found in the corresponding sample widget
properties file located in the <cdej-dir>/doc/defaultproperties/ folder. For each entry in Cúram's

Chapter 4. Localization 47

version of the file you wish to change, add a corresponding entry to your custom file. These properties
files can be localized as per 4.6, “Locales,” on page 44.

4.10.1 Frequency Pattern Selector Localization
The Frequency Pattern Selector infrastructure widget is used to construct frequency patterns such as:

This sentence is made up of fixed text from its associated FrequencyPatternSelector.properties file as
well as values selected by a user from an input field and two drop-downs in the widget, refer to this
example frequency pattern in 8.6, “Frequency Pattern Selector,” on page 148.

Because of the grammar differences between different languages, the construction of this example
frequency pattern sentence can be dramatically changed in other languages, like the values selected by a
user can be re-ordered in it. Therefore, the placeholders are introduced to represent these user selected
values so that we can localize every frequency pattern as "whole" into every single property in the
properties file.

Here is the property entry from the FrequencyPatternSelector.properties for this example frequency
pattern:

The strings %ordinal%, %dayOfWeekExtended% and %monthInterval% in this property entry are the
placeholders that map to the values that will be selected from two drop-downs and one input field in the
widget. The detailed explanation of these three placeholders will be covered later in a table.

In order to use these placeholders properly, you need to stick to the following two rules:
v The placeholders control the layout of the widget

Any change of the location of a placeholder in a localized text for a certain frequency pattern would
cause the change of the layout of this frequency pattern to be displayed on the Frequency Pattern
Selector widget.

v The placeholders that can be used for every frequency pattern are fixed

You could not change, add or reduce placeholders used for a certain frequency pattern. It will cause
this widget failing to work.

A description of all these placeholders used in the properties file of this widget is listed as follows:

Table 4. Placeholders used in Frequency Pattern Selector

Placeholder Name Description

%dayInterval% A day interval. It maps to an input field where you can enter a
number for a day interval for a frequency pattern.

%weekInterval% A week interval. It maps to an input field where you can enter a
number for a week interval for a frequency pattern.

%dayOfWeek% A set of days in a week. It maps to a collection of check boxes where
you can multi select the days in a week for a frequency pattern.

%dayOfWeekExtended% It is an extension of the values represented by %dayOfWeek%, which
also includes the weekday, weekend day and day value. It maps to a
drop-down where you can select one of those day values for a
frequency pattern.

%monthInterval% A month interval. It maps to an input field where you can enter a
number for a month interval for a frequency pattern.

the first day of every 1 month(s)

Text.monthly.freq.type.two= The %ordinal% %dayOfWeekExtended%
of every %monthInterval% month(s)

48 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 4. Placeholders used in Frequency Pattern Selector (continued)

Placeholder Name Description

%ordinal% an ordinal, e.g. first, second. It maps to a drop-down where you can
select an ordinal for a frequency pattern.

%dayIntervalOne%, %dayIntervalTwo% Two day intervals in a frequency pattern. They should be used
together and map to two input field where you can enter a number
for a day interval respectively for a frequency pattern.

%ordinalOne%, %ordinalTwo% Two ordinals in a frequency pattern. They should be used together
and map to two drop-downs where you can select an ordinal
respectively for a frequency pattern.

%monthOfYear% A month in a calendar year. It maps to a drop-down where you can
select a month for a frequency pattern.

As stated in the second rule above, the placeholders used for every frequency pattern are fixed. So you
need to take care that you have used them properly when localizing the properties in this widget
properties file. As long as you keep this in mind, the customization of this widget properties file is also
no difference from other infrastructure widgets. The following table lists all the properties and the
placeholders they contain for every frequency pattern sentence displayed on the Frequency Pattern
Selector.

Table 5. Properties used for the Frequency Pattern Selector

Property Name Placeholders it contains

Text.daily.freq.type.one %dayInterval%

Text.daily.freq.type.two None.

Text.weekly.freq.type %weekInterval%, %dayOfWeek%

Text.monthly.freq.type.one %dayInterval%, %monthInterval%

Text.monthly.freq.type.two %ordinal%, %dayOfWeekExtended%, %monthInterval%

Text.bimonthly.freq.type.one %dayIntervalOne%, %dayIntervalTwo%

Text.bimonthly.freq.type.two %ordinalOne%, %ordinalTwo%, %dayOfWeek%

Text.yearly.freq.type.one %monthOfYear%, %dayInterval%

Text.yearly.freq.type.two %ordinal%, %dayOfWeekExtended%, %monthOfYear%

4.11 CDEJResources.properties
This properties file can be localized as per 4.6, “Locales,” on page 44. Images defined in this file can also
be customized per locale.

4.12 ApplicationConfiguration.properties
This properties file does not, in itself, need to be localized but there are a couple of settings within this
file which are related to the localization of date and address formatting. See 3.11.2, “Configuring the
Application,” on page 24 for details.

4.13 Application-wide Menu
The contents of the application-wide menu (that normally appears in the top-right of the screen) are
defined in curam-config.xml. It is possible to put the text that will appear on screen directly into this file,
in the LABEL attribute of the LINK element. That approach, however, is not suitable if the application
should be viewable in multiple languages, so the application will first check if the LABEL attribute is
actually a key into the CDEJResources.properties file. If it finds the key, it will use the corresponding

Chapter 4. Localization 49

value in the menu. To localize the menu, therefore, simply include the same key in the localized version
of CDEJResources.properties. This properties file can be localized as per 4.6, “Locales,” on page 44.

4.14 Tabbed Configuration Artifacts
Each tabbed configuration artifact will have a corresponding properties file for any text that may be
localizable. To localize this text for a specific language, you must add the locale-specific properties file
beside its associated tabbed configuration artifact in your <custom> component. These properties file can
be localized as per 4.6, “Locales,” on page 44.

4.15 Runtime Messages
The Cúram CDEJ runtime messages can be localized or customized by creating a
RuntimeMessages.properties file within the component folder, i.e. the <client-dir>/components/
<component_name> folder. The default content for this file can be found in the <cdej-dir>/doc/
defaultproperties/ folder. Any messages present in this file will override the corresponding messages
from the RuntimeMessages.properties shipped with the Cúram CDEJ. The standard file naming
convention for Java properties files can be used to add locale-specific messages. For example, to create a
Spanish version, a file RuntimeMessages_es.properties would be created.

It is not necessary to copy all of the messages into the custom message catalog when customizing only
some of them. Only the messages that are customized need to be defined in the custom message catalog;
the other messages will be loaded from the default message catalog.

When resolving error messages, the custom message catalog is checked first and all the locale fall-backs
are applied. If a message is not found, then the default message catalog (from the Cúram CDEJ) is
checked. Therefore, a message in a custom message catalog will take precedence over one in a default
catalog even if the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be changed. The message
argument placeholders have the form %ns where n is the argument number. The message arguments can
be moved around and their order changed, but no new arguments may be added and none may be
removed.

50 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 5. UIM Reference

5.1 Objective
This chapter provides you with all the information about UIM required to develop Cúram web
application pages.

5.2 Prerequisites
You should be familiar with the basic concepts of Cúram CDEJ development (see Chapter 2, “Concepts,”
on page 3) and web application development. You should also have some knowledge of the basic format
of XML documents.

5.3 Introduction
UIM is the Cúram User Interface Meta-data format used to specify the contents of the Cúram web
application client pages. UIM is an XML dialect and all UIM files are well-formed XML. The Cúram CDEJ
will translate UIM files into JSP files that can be deployed to your web application server.

5.4 Creating UIM Documents
You can use any text editor to write UIM documents, but it is usually easier if a specialized XML editor is
used. The CDEJ includes an XML Schema file defining the syntax of a UIM document and when this is
combined with a schema-aware XML editor, you will have access to many time-saving facilities such as
auto-completion, syntax checking, etc.

5.5 UIM Document Types
When creating UIM documents, there are four root elements that are valid: PAGE, VIEW, PAGE_GROUP and
APPLICATIONS. These root elements are used to create the two types of UIM document:

PAGE This defines a UIM page that will be translated into a JSP page. The file name must be the same
as the value of the PAGE_ID attribute of the root element. The file extension to use is .uim. UIM
pages can be organized arbitrarily into sub-folders within a component folder for convenience in
managing a large number of files. Ultimately, all UIM pages are generated into JSP pages in a
single folder, so the PAGE_ID attribute of the PAGE element and consequently the file names of all
the .uim files must be unique within a component.

VIEW This defines a portion of a page that can be included into a PAGE element in another UIM
document. This allows common sequences of elements to be reused. The file name is not
restricted. The file extension to use is .vim. Like UIM pages, views can be organized into an
arbitrary folder structure within a component folder, but the file names must be unique within
that component.

5.6 UIM Pages
Chapter 2, “Concepts,” on page 3 covered the basic concepts behind UIM pages and what clusters, lists,
action sets, action controls, containers, and fields are, so this information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML Schema definition of UIM.
However, this order is only imposed when editing using a schema-aware XML editor. The JSP generator
does not check the ordering at present. The order in which elements are presented in the child element
tables in this reference is the order in which the elements should be used in the UIM documents unless
otherwise indicated. There is no specific ordering for attribute values.

© Copyright IBM Corp. 2012, 2013 51

5.7 UIM Views
A PAGE element can contain an INCLUDE element anywhere at the top level that allows commonly used
fragments of UIM to be inserted at that point during translation. The included elements are defined in a
UIM document called a view. The view document uses VIEW as the root element. Elements included from
a view must be valid in the context in which they have been included. For example, a PAGE element that
already contains a PAGE_TITLE element, cannot include a view that also defines a PAGE_TITLE element.
Similarly, the schema rules governing the order of elements in a page must be observed when elements
are included from a view.

Views are similar to pages in what they can contain, the only differences are as follows:
v A view cannot contain an INCLUDE element to include another view.
v A view does not have any PAGE_ID attribute, this is defined in the page that includes the view.

All other elements that are valid in a PAGE element at the top level, are also valid in a VIEW.

When including views, the name of the view file must be specified. Regardless of where in the
component the file including the view is, only the name of the view file is required, not its path.

5.8 Externalized Strings
All string values and image references in UIM documents must be externalized, i.e., the actual values are
stored in files separated from the UIM. This aids maintenance and allows the application to be localized.

See 3.12.4, “Externalized Strings,” on page 29 for details on externalizing strings.

5.9 UIM Reference for Pages and Views

5.9.1 Introduction
This section describes the PAGE and VIEW elements and all of the child elements that they can contain with
the exception of WIDGET elements. These are treated in the next section.

Most elements have a list of attributes that can be used in any order. Some attributes are optional and
have default values when omitted. Others can have one of a range of values. Boolean attributes can only
have the values true and false (case-sensitive).

Many elements can have child elements and these are listed in the order in which they must be added
and include details on their cardinality. Cardinalities use “0” to indicate that the element is optional, “1”
to indicate that it can appear only once, and “n” to indicate that it can be appear any number of times.
The “..” indicates the range of the cardinality. For example, “0..1” indicates that the element can appear
zero or one times in this location, i.e., it is optional, while “1..n” indicates that an element must appear at
least once, but can appear any number of times thereafter.

5.9.2 Connection Types
UIM pages use connections for associating components on a page with actual data. The connection type
is reflected in the connection tag name and is roughly equivalent to data direction. The three types of
connection available are SOURCE, TARGET and INITIAL (see 5.9.30, “SOURCE,” on page 91, 5.9.32,
“TARGET,” on page 92, and 5.9.15, “INITIAL,” on page 69, respectively).

Connection endpoints are further distinguished by the setting of the NAME attribute. The value of this
attribute may be the name of the server interface used, TEXT, CONSTANT or PAGE. These values designate
objects which supply or consume data. TEXT or CONSTANT can only be used when TARGET has a server
interface defined in the ACTION phase.

52 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Most frequent is a connection to a server interface. Here, the NAME attribute corresponds to an existing (i.e.
declared on the page) SERVER_INTERFACE NAME attribute value (DISPLAY_SI and ACTION_SI in the example
above).

A value of TEXT means data is sourced from a properties file. The PROPERTY attribute in this case contains
the name of an externalized string in a page-specific property file. In the example, the file APage.uim has
a page title which references the Page.Title.Static property in the associated APage.properties file.

A value of CONSTANT provides similar functionality to TEXT but the externalized string is
component-specific rather than page-specific and is sourced from a file called Constants.properties. In
the example, there is a page level connection to a From.Constants.Props property.

A connection might also source its data from a page parameter (i.e., a variable declared on a page,
P_PARAM in the example). In this case PAGE is used as the value of the NAME attribute.

<PAGE PAGE_ID="APage">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title.Static"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY_SI"
CLASS="sourceClass"
OPERATION="read"
PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION_SI"
CLASS="targetClass"
OPERATION="modify"
PHASE="ACTION/>

<PAGE_PARAMETER NAME="P_PARAM"/>

<CONNECT>
<SOURCE NAME="CONSTANT"

PROPERTY="From.Constants.Props"/>
<TARGET NAME="ACTION_SI"

PROPERTY="aProperty"/>
</CONNECT>

<ACTION_SET BOTTOM="true" TOP="false">
<ACTION_CONTROL TYPE="SUBMIT" LABEL="Button.Submit">

<LINK PAGE_ID="APage">
<CONNECT>

<SOURCE NAME="DISPLAY_SI" PROPERTY="PARAM"/>
<TARGET NAME="PAGE" PROPERTY="P_PARAM"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

<CLUSTER NUM_COLS="1" SHOW_LABELS="false">
<FIELD LABEL="Label.Text">

<CONNECT>
<SOURCE NAME="DISPLAY_SI" PROPERTY="sourceField"/>

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION_SI" PROPERTY="targetField"/>
</CONNECT>

</FIELD>
</CLUSTER>

</PAGE>

Figure 31. Connection Types Example

Chapter 5. UIM Reference 53

There are limitations and restrictions on the use of the various connection types in various contexts. The
UIM element descriptions below detail these limitations where they arise.

5.9.3 ACTION CONTROL
The ACTION_CONTROL element defines a link (text based), button or file download link that the user can
activate on a page.

5.9.3.1 File Downloads
An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink on the
page. Clicking on the hyperlink invokes a special FileDownload servlet included in the Cúram CDEJ that
returns the contents of a file from the database. The FileDownload servlet is configured with the server
interface to call to get the file contents and the parameters to pass to identify that file. The configuration
is performed in the curam-config.xml file. A single server interface can be configured for each page of the
application that includes file download action controls. An example configuration is shown in 5.9.3.1,
“File Downloads,” below:

A WIDGET with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink to download a file.
You should use the ACTION_CONTROL element when the hyperlink text is the fixed LABEL value. The
FILE_DOWNLOAD WIDGET allows the hyperlink text to be a dynamic value retrieved from a server interface
property.

Each configuration for downloading files is contained in a FILE_DOWNLOAD element within the
FILE_DOWNLOAD_CONFIG element in the configuration file. There should be one FILE_DOWNLOAD element for
each page that contains file download action controls.

The FILE_DOWNLOAD element takes two attributes: PAGE_ID for the identifier of the page containing the
action controls to which this configuration will be applied, and CLASS containing the name of the server
interface that will be called by the FileDownload servlet when the generated hyperlink is invoked.

The FILE_DOWNLOAD element can contain zero or more INPUT elements specifying the key values to set
before the server interface is called. These INPUT elements associate page parameters with properties of
the server interface. The PAGE_PARAM attribute specifies the name of the page parameter whose value will
be used as a key value, and the PROPERTY attribute specifies the key property of the server interface that
must be set to identify the file. The page parameters are set by the LINK element within the
ACTION_CONTROL, as you will see below.

The other three elements, FILE_NAME and FILE_DATA, and CONTENT_TYPE all have PROPERTY attributes that
indicate the properties of the server interface that will contain the name of the file, the contents of the
file, and the content type of the file respectively, after the server interface is called. This data is returned
to the client in response to the activation of the hyperlink and the user's browser will present them with
the download dialog box prompting them to save or open the file.

Where property names are specified, the names must be written in full and cannot be abbreviated like
they can in UIM documents.

<APP_CONFIG>
<FILE_DOWNLOAD_CONFIG>

<FILE_DOWNLOAD PAGE_ID="FileDownload"
CLASS="curam.interfaces.FilePkg.File_read_TH">

<INPUT PAGE_PARAM="fileID" PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="dtls$fileName"/>
<FILE_DATA PROPERTY="dtls$fileData"/>

</FILE_DOWNLOAD>
</FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Figure 32. Example Configuration for File Download

54 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.3.2 Attributes
The ACTION_CONTROL element has the following attributes. The LABEL attribute must be present.

Table 6. Attributes of the ACTION_CONTROL Element

Attribute Name Required Default Description

LABEL See above. A reference to an externalized string containing the
label text for this action control. If the TYPE is
ACTION, this will be the text of the hyperlink. If the
TYPE is SUBMIT, this will be caption of the submit
button.

LABEL_ABBREVIATION No A reference to an externalized string containing the
label abbreviation text for this action control. This
label abbreviation is placed only on table headers in
a LIST.

TYPE No ACTION The type of action control to create. There are six
types: ACTION (the default) defines a link to another
page, SUBMIT forwards the page's form data to the
action phase for processing, DISMISS closes a pop-up
page, SUBMIT_AND_DISMISS combines a submit with
closing a pop-up page (see 8.21, “Pop-up Pages,” on
page 184 for details on working with pop-up pages),
FILE_DOWNLOAD defines a link that triggers the
download of a file from the server, and CLIPBOARD
places a predefined value to the system clipboard.
Please note, the CLIPBOARD type control is only
functional in Internet Explorer as it relies on the
JavaScript specific to that browser.

STYLE No The class name of the CSS style to use when
formatting the action control. Supported by action
controls in action sets only.

CONFIRM No Use the CONFIRM attribute of ACTION_CONTROL to force
a confirmation dialog when the action control is
activated.

The value of the CONFIRM attribute is a reference to
the confirmation message in the page properties file.

DEFAULT No false If there is more than one submit action on a page, it
is useful to specify which one is executed when the
user hits the Enter key. This is especially
recommended when the submitting action controls
are contained within the different action sets as in
this case the default action could be different than
the first submit action declared on the page. The
default action can be specified by setting this
attribute to true. Note that only one submit action
on a page can have a DEFAULT value of true.

Chapter 5. UIM Reference 55

Table 6. Attributes of the ACTION_CONTROL Element (continued)

Attribute Name Required Default Description

ACTION_ID No A custom identifier for action controls of TYPE =
SUBMIT. It is used in conjunction with
ACTION_ID_PROPERTY attribute of SERVER_INTERFACE
element to inform the server side code which action
control was used to make the server call.

This attribute is only valid on action controls of
TYPE = SUBMIT.

The value of this attribute among the action controls
within the page must be unique.

The value of this attribute must be in the format
suitable for the domain associated with the property
specified in the ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE.

This attribute must be either specified on all action
controls within the page or not specified on any of
them.

If this attribute is specified then the
ACTION_ID_PROPERTY attribute of SERVER_INTERFACE
must also be specified.

IMAGE No The value of this attribute refers to an externalized
string which maps to a specific icon or graphic in
the application. An action control with this attribute
can only be used within a CONTAINER element.

ALIGNMENT No RIGHT When contained in a page level ACTION_SET of a
Modal Dialog, the ALIGNMENT attribute is supported.
This will define the individual horizontal alignment
of the action control. It can be set to LEFT or RIGHT.
The default is to right aligned.

56 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.3.3 Child Elements
The ACTION_CONTROL element can contain the following child elements:

Table 7. Child Elements of the ACTION_CONTROL Element

Element Name Cardinality / Description

LINK 0..1. An action control with a TYPE of ACTION that has no LINK element
will create a link to the previous page in the history that had
SAVE_LINK set to true on the link that led to this page (this is typically
used for Cancel buttons). However this type of ACTION_CONTROL
should not be present on a page that is directly referenced by any
tabbed configuration artifact. Also, if this type of ACTION_CONTROL is
preceded by another ACTION_CONTROL of the same type in the page
history, there is the potential of a circular reference between these
pages.

An action control with a TYPE of SUBMIT that has no LINK element will
submit the field values to the action phase and then return to the
previous page in the history that had SAVE_LINK set to true on the
link that led to this page.

An action control with a TYPE of FILE_DOWNLOAD only requires a link if
it must provide the page parameter values specified in the INPUT
elements of its configuration. Each CONNECT element in the link can
contain a SOURCE element to specify the value and a TARGET element
specifying the page parameter to which to map the value. The
PROPERTY attribute value of the page parameter must match the
PAGE_PARAM attribute value of the INPUT element in the configuration.

CONNECT 0..1. A CONNECT element specifying a single SOURCE end-point. As a
direct child it is used only for an action control with a TYPE of
CLIPBOARD. Such an action control places predefined textual data into
the system clipboard when clicked.

Text to be copied to clipboard can be sourced from the server, the
request or a properties file.

The CONNECT element used can only contain a SOURCE element with a
NAME property of PAGE, TEXT or the name of a server interface defined
within the page.

SCRIPT 0..n. A script element associated with an action control. For a detailed
description of this element see 5.9.28, “SCRIPT,” on page 89.

SCRIPT elements are not supported on ACTION_CONTROL elements with
a type of CLIPBOARD.

CONDITION 0..1. Affects whether or not the ACTION_CONTROL is displayed.

When linking to another page, the link must specify all page parameters declared on the target page.

5.9.4 ACTION SET
The ACTION_SET element groups a number of ACTION_CONTROL elements together. Depending on the context
in which the action set is defined, the action controls will be displayed in differing ways.

At the page level, action controls are displayed at the left side of the page title bar, see the Page Level
Action Control in User Interface Element 10 of 2.4, “Application User Interface Overview,” on page 3. If
the action set contains two or less action controls, then each link is displayed side by side with a new
item icon to the left of it. The SEPARATOR child element has no affect.

Chapter 5. UIM Reference 57

If three or more action controls exist at the page level, then a drop down menu will display each action
control as a menu item. In this case, the SEPARATOR element inserts a gray separator into the drop down
menu at the position indicated in the UIM file.

At the list level, all action controls will be displayed in a menu drop down. The SEPARATOR element
inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be displayed above and/or
below the element with which the action set is associated and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if HIDE_CONDITIONAL_LINKS
attribute is set to true, otherwise the conditional link displays but is disabled.

5.9.4.1 Attributes
The ACTION_SET element has the following attributes:

Table 8. Attributes of the ACTION_SET Element

Attribute Name Required Default Description

TOP No true Defines whether the action controls will be
displayed above the associated element. Can
be set to true (the default) or false.

BOTTOM No true Defines whether the action controls will be
displayed below the associated element. Can
be set to true (the default) or false.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the set of
action controls with respect to the associated
element. Can be set to LEFT, RIGHT, CENTER, or
DEFAULT The value DEFAULT corresponds to the
CSS class ac_default in curam_common.css. The
default is to be left aligned. In addition, for a
page level ACTION_SET in a Modal Dialog, LEFT,
RIGHT and DEFAULT values are supported.

TYPE No DEFAULT Defines the location of the action set. This can
be set to LIST_ROW_MENU or DEFAULT.

LIST_ROW_MENU is applicable where the
ACTION_SET is contained within a LIST. It
indicates that the action set should be
displayed as a list actions menu within each
list row entry.

Note: An ACTION_SET of type LIST_ROW_MENU should not be used to open a 8.21.3, “Using the Pop-up
Page,” on page 188.

5.9.4.2 Child Elements
The ACTION_SET element can contain the following child element:

Table 9. Child Elements of the ACTION_SET Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. See the description of ACTION_SET 's parent element to see what
ACTION_CONTROL elements are valid in each context.

CONDITION 0..1. Affects whether or not the ACTION_SET is displayed.

SEPARATOR 0..n. allows the for ability to add a visual separator between action
controls that display in the page action drop down menu.

58 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.5 CLUSTER
The CLUSTER element defines a group of input and/or output fields containing data from any data source
(server interface property values, externalized string values, or page parameter values) and supplying
data to other data targets (server interface properties, or page parameters). Clusters generally show the
fields with labels to the left and these label/field pairs in a number of columns. Clusters can also include
other clusters and lists in place of fields to allow more complex layouts.

5.9.5.1 Attributes
The CLUSTER element has the following attributes:

Table 10. Attributes of the CLUSTER Element

Attribute Name Required Default Description

TITLE No A reference to an externalized string containing the
title string for this cluster.

NUM_COLS No 1 The number of columns to display in the cluster (a
cluster column includes both the label and field).

TAB_ORDER No COLUMN Indicates the order to layout elements in a
multi-column cluster. The elements can be ordered
by ROW or COLUMN (default). Please note, if a CLUSTER
has NUM_COLS set to 2 or above and is going to
contain a mix of LIST and FIELD elements, the
TAB_ORDER must be set to ROW.

SHOW_LABELS No true Can be set to true (the default) to show labels
beside the field values or false to show no labels
at all.

LAYOUT_ORDER No LABEL Labels can be displayed to the left or to the right of
their associated fields. Set the attribute value to
LABEL to show labels to the left (this is the default
behavior). Set the attribute value to FIELD to show
labels to the right.

WIDTH No 100 The percentage of the width of the containing area
that the cluster should occupy.

STYLE No The class name of the CSS style to associate with
this cluster for formatting.

DESCRIPTION No A reference to an externalized string that provides
more details about the cluster than the title alone.
This will be displayed below the title on the page.

Chapter 5. UIM Reference 59

Table 10. Attributes of the CLUSTER Element (continued)

Attribute Name Required Default Description

LABEL_WIDTH No The percentage of the width of a cluster column
that the label should occupy. By default, the web
browser will determine the widths as appropriate.

This attribute has an effect even if SHOW_LABELS is
set to false. It is possible, say, to use action
controls in place of text labels. You might want to
control the width of these action control columns
and you can do that by setting the LABEL_WIDTH
attribute. The specified width will be applied to
every other column. Whether this starts with the
first or second column depends on the
LAYOUT_ORDER attribute.

The LABEL_WIDTH attribute will not apply to
codetable hierarchy fields when SHOW_LABELS is set
to false or the FIELD attribute CONFIG has a value
of CT_DISPLAY_LABELS. See the CONFIG attribute in
5.9.11, “FIELD,” on page 64 for more information
on code table hierarchies.

BEHAVIOR No EXPANDED Collapsible clusters can be initially displayed
expanded or collapsed on a page. Set the attribute
value to EXPANDED to display a collapsible cluster
fully expanded. Set the attribute to COLLAPSED to
display a collapsible cluster collapsed. To remove
the collapsible functionality from a cluster set the
attribute to NONE. Note that this attribute is only
applicable when the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set or is set to
true in curam_config.xml. For details see 3.12.13,
“General Configuration,” on page 35. This feature
is currently not supported on clusters containing
Charts, Evidence Review Widgets, Evidence
Comparison Widgets, or Evidence Tab Containers.

SUMMARY No A reference to an externalized string containing the
summary of this cluster. The SUMMARY attribute
describes the purpose and/or structure of a cluster.

SCROLL_HEIGHT No Specifies in pixels the desired maximum height of
a scrollable cluster.

5.9.5.2 Child Elements
The CLUSTER element must contain one of the following elements; ACTION_SET, FIELD, WIDGET, CONTAINER,
CLUSTER or LIST.

Table 11. Child Elements of the CLUSTER Element

Element Name Cardinality / Description

CONDITION 0..1. Affects whether or not the cluster is displayed.

TITLE 0..1. The TITLE element will be displayed above the CLUSTER.

DESCRIPTION 0..1 The 5.9.10, “DESCRIPTION,” on page 64 element has the same behavior as the
DESCRIPTION attribute but allows the description to be built up from a number of
sources. If both are specified, this element takes precedence over the corresponding
attribute.

60 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 11. Child Elements of the CLUSTER Element (continued)

Element Name Cardinality / Description

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any type. The action
controls will be displayed above or below the entire cluster.

FIELD 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can be freely
intermingled.

WIDGET 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can be freely
intermingled.

CONTAINER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can be freely
intermingled.

CLUSTER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can be freely
intermingled.

LIST 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can be freely
intermingled.

5.9.6 CONDITION
The CONDITION element represents the condition under which an ACTION_SET, ACTION_CONTROL, LIST, or a
CLUSTER is displayed. If a condition evaluates to true, then the parent element will be displayed; if the
condition evaluates to false, then the parent element is not displayed with the following exception: an
ACTION_SET or ACTION_CONTROL element will display disabled links if the condition evaluates to false and
the HIDE_CONDITIONAL_LINKS attribute on the PAGE element or in the curam_config.xml file has been set to
false. Conditional ACTION_SETS and ACTION_CONTROLS are mutually exclusive from one another and
therefore the CONDITION element should be set for either one (depending on the requirements) but not
both.

Finally, if the condition equates to false for those conditional action sets or action controls which appear
as drop down menu items, then a single disabled menu item titled, 'No Contents' is displayed (upon
selecting the drop down menu icon).

5.9.6.1 Attributes
The CONDITION element has no attributes.

5.9.6.2 Child Elements
The CONDITION element must contain either an IS_TRUE element or an IS_FALSE element. It must not be
empty and it must not contain more than one element.

Table 12. Child Elements of the CONDITION Element.

Element Name Cardinality / Description

IS_TRUE 0..1 If the property referenced by the IS_TRUE element returns true
then the condition is true.

IS_FALSE 0..1 If the property referenced by the IS_FALSE element returns false
then the condition is true.

For Agenda Player specific use, see 8.22, “Agenda Player,” on page 191

5.9.7 CONNECT
The CONNECT element defines a data connection between two connection end points such as server
interface bean properties, page parameters, screen controls, localized string values, etc.

5.9.7.1 Attributes
The CONNECT element has no attributes.

Chapter 5. UIM Reference 61

5.9.7.2 Child Elements
The CONNECT element must contain at least one of the child elements from the table below, but the details
of how these elements are used depends on the context in which the CONNECT element is defined. See the
specific parent or child element's description for more details.

Table 13. Child Elements of the CONNECT Element

Element Name Cardinality / Description

INITIAL 0..1. This element is only valid in CONNECT elements contained within
FIELD elements.

SOURCE 0..1. Within a FIELD element, the SOURCE is the source of the value
displayed in the field control (unless INITIAL is used).

TARGET 0..1. Within a FIELD element, the TARGET is the property to which the
value in the field control will be assigned.

5.9.8 CONTAINER
The CONTAINER element groups FIELD, ACTION_CONTROL and IMAGE elements so that they can be used in a
single cell of a CLUSTER or LIST element.

5.9.8.1 Attributes
The CONTAINER element has the following attributes:

Table 14. Attributes of the CONTAINER Element

Attribute Name Required Default Description

LABEL No A reference to an externalized string that should
be used as the associated label for this container.

LABEL_ABBREVIATION No A reference to an externalized string containing
the associated label abbreviation text for this
container. This label abbreviation is placed only
on table headers in a LIST.

WIDTH No 100 The percentage of the width of the field value cell
in the cluster or list that the container should
occupy.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the elements
within the container. Can be set to LEFT, RIGHT,
CENTER, or DEFAULT. The value DEFAULT
corresponds to the CSS class default in
curam_common.css. Currently the default is to be
left aligned.

SEPARATOR No A reference to an externalized string to use as the
separator between the elements within the
container.

STYLE No A CSS class to be applied to this container.

5.9.8.2 Child Elements
The CONTAINER element can contain the following child elements. It must contain at least one element.

Table 15. Child Elements of the CONTAINER Element

Element Name Cardinality / Description

FIELD 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET elements can be
freely intermingled.

62 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 15. Child Elements of the CONTAINER Element (continued)

Element Name Cardinality / Description

IMAGE 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET elements can be
freely intermingled.

ACTION_CONTROL 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET elements can be
freely intermingled.

WIDGET 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET elements can be
freely intermingled.

5.9.9 DETAILS_ROW
The DETAILS_ROW element is used within a LIST element to enable each row to be expanded to show more
details about the row. Child elements of DETAILS_ROW define the content that is displayed when the row is
expanded. Currently only the INLINE_PAGE element is supported as a child.

When a page containing a list with expanded rows is submitted to self or refreshed after a dialog submit,
the rows will be re-expanded after the page loads again. This functionality is based on page parameters
to the corresponding INLINE_PAGE and the following limitations apply:
v The INLINE_PAGE must take page parameters and they must uniquely identify each row within the list.
v The functionality is supported for pages submitted to self or refreshed after a dialog submit. In all

other cases all rows after refresh are reset to default - collapsed.
v If the list contains duplicate items, only the first of them will retain the expanded state after refresh.
v If an edit operation in a dialog changes values that are used in the INLINE_PAGE parameters, this row

will be collapsed after refresh.
v If an expanded row is expandable conditionally and it is no longer expandable after the page is

refreshed, its state will be always set to collapsed.

Note that DETAILS_ROW element is not allowed in a list using the SCROLL_HEIGHT attribute.

5.9.9.1 Attributes
The DETAILS_ROW element has the following attribute.

Table 16. Attributes of the DETAILS_ROW Element

Attribute Name Required Default Description

MINIMUM_EXPANDED_HEIGHT No 30px Specifies minimum height in pixels of an expanded
row for this list. To be used for in-line pages that
are expected to contain nested lists with long actions
menus which would not fit to the default expanded
row height.

5.9.9.2 Child Elements
The DETAILS_ROW element contains the following child elements.

Table 17. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

INLINE_PAGE 1..1 This defines the page to be shown when the list row is expanded.
Currently this is the only supported element, hence it's 1..1
cardinality.

CONDITION 0..1. Affects whether or not the details row is displayed.

Chapter 5. UIM Reference 63

5.9.10 DESCRIPTION
The DESCRIPTION element defines the description associated with a PAGE_TITLE, CLUSTER or LIST element.
A DESCRIPTION is constructed by concatenating a number of connection sources together.

5.9.10.1 Attributes
The DESCRIPTION element has the following attributes:

Table 18. Attributes of the DESCRIPTION Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the separator between
the elements within the container.

5.9.10.2 Child Elements
The DESCRIPTION element can contain child elements as follows:

Table 19. Child Elements of the DESCRIPTION Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can be
included (one SOURCE per CONNECT). Sources can be server interface
properties or, with the NAME attribute set to TEXT, references to strings
in a properties file.

5.9.11 FIELD
The FIELD element specifies a data value to be displayed in a CLUSTER, a value to be retrieved from the
user via an input control in a CLUSTER, or a list of data values to be displayed in a LIST column. FIELD
elements can also be aggregated within CONTAINER elements so that they fill a single cell of a CLUSTER or
LIST element.

Please note that, when the FIELD element is used to display a code table hierarchy either on an edit or
ready-only page, the following should apply:
v For an edit page, only one FIELD element is needed to display a code table hierarchy with a domain

definition inherited from CODETABLE_CODE that has the code table name set to the lowest level code table
in a hierarchy. The CDEJ infrastructure automatically determines its code table hierarchy and then
displays however many dropdowns it has, i.e. if it is a three level hierarchy, then the three levels are
displayed.

v For a read-only page, however only the lowest level code table value is displayed on the screen by the
same way using a single FIELD element as the edit page. And the CDEJ infrastructure does not support
on displaying its full hierarchy.

5.9.11.1 Attributes
The FIELD element has the following attributes:

Table 20. Attributes of the FIELD Element

Attribute Name Required Default Description

LABEL No A reference to an externalized string that
should be used as the associated label for this
field. The LABEL attribute is mandatory when a
CONNECT element exists, that contains a TARGET.

LABEL_ABBREVIATION No A reference to an externalized string containing
the associated label abbreviation text for this
field. This label abbreviation is placed only on
table headers in a LIST.

64 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 20. Attributes of the FIELD Element (continued)

Attribute Name Required Default Description

DESCRIPTION No A reference to an externalized string that is
displayed below the label text.

ALT_TEXT No A reference to an externalized string that is
used as the alternate text for the field. This is
only applicable when the field has a target
connection, i.e. it is an input field. If this
attribute is added to a mandatory input field,
the text "Mandatory" will be appended to the
externalized string. If this attribute is not
specified the LABEL is used. Browsers supported
by the Cúram application display alternate text
when the mouse is hovered over the input
control.

WIDTH No Specifies the width of the field value within its
cluster or list cell.

WIDTH_UNITS No PERCENT The units in which the width is interpreted.
This can be PERCENT to indicate the percentage
of the space available to the field, or CHARS to
indicate the number of visible characters the
field should accommodate.

HEIGHT No 1 For input fields that resolve to a text input
control, this specifies the number of visible lines
of text that the control will display. For input
fields that resolve to a selection list, this
specifies the number of entries that are initially
displayed. i.e. a scrollable selection list is
displayed instead of a drop-down selection list.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the field
value. Can be set to LEFT, RIGHT, CENTER, or
DEFAULT. The value DEFAULT corresponds to the
CSS class default in curam_common.css. Currently
the default is to be left aligned. In a CLUSTER,
only input fields are aligned. In a LIST, all
fields are aligned.

USE_DEFAULT No true If set to true (the default) and the field has no
SOURCE connection, then if a sensible default
value for the field can be determined
automatically, it will be displayed.

For example, numeric fields will display a zero,
string fields will be empty, date fields will
default to the current date, etc.

USE_BLANK No false If the field source is a code-table based
property, or a server interface list property, it
will be displayed in a list. If this attribute is set
to true, an extra blank value will be added to
the top of the list.

Chapter 5. UIM Reference 65

Table 20. Attributes of the FIELD Element (continued)

Attribute Name Required Default Description

CONTROL No DEFAULT The CONTROL attribute can take one of a number
of values:

DEFAULT : the field behaves in the standard
fashion.

SUMMARY, DYNAMIC, DYNAMIC_FULL_TREE and
FAILURE : these settings only apply to rules
fields. See 8.9, “Rules Trees,” on page 152 for
further details.

SKIP : indicates that the field is only present to
occupy space in a CLUSTER to balance the
layout. No label or value will be displayed. The
label background will still be presented,
however.

TRANSFER_LIST : Enables a list on a page to be
displayed as a transfer list widget. This mode is
only applicable and supported for list controls
with multiple selection capability.

CT_HIERARCHY_HORIZONTAL displays a list as a
horizontal code table hierarchy.

CT_HIERARCHY_VERTICAL displays a list as a
vertical code table hierarchy. Consult the Cúram
Server Developers Guide for more information on
code table hierarchies.

CONFIG No Identifies configuration details for this FIELD
instance. This attribute can only be used in
conjunction with a FIELD whose CONTROL
attribute is for a widget that supports
configuration. For example, if the CONTROL
attribute is DYNAMIC for a FIELD of the
RESULT_TEXT domain then the CONFIG
attribute should match an ID on a config
element in the RulesDecisionConfig.xml file.
See 8.9.5, “Dynamic Rules View,” on page 153
for further details on configuration.

CT_DISPLAY_LABELS : Displays labels for each
code table in a code table hierarchy. See the
CONTROL attribute in 5.9.11, “FIELD,” on page 64
for further information regarding code table
hierarchies.

INITIAL_FOCUS No false A FIELD element whose INITIAL_FOCUS attribute
is set to true will get focus when the page is
displayed. In other words, the cursor will be
placed in that field ready for data entry. If no
FIELD requests the initial focus, the cursor will
be placed in the first input field on the page. It
is not allowed to have more than one FIELD
with the INITIAL_FOCUS attribute set to true
specified on a page.

66 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 20. Attributes of the FIELD Element (continued)

Attribute Name Required Default Description

PROMPT No false The setting of this attribute will allow for
prompt to appear in the text field if the text
field is blank. On focus, the prompt will
disappear to allow for data entry.

5.9.11.2 Child Elements
The FIELD element can contain the following child elements:

Table 21. Child Elements of the FIELD Element

Element Name Cardinality / Description

CONNECT 0..3. A field can contain up to three CONNECT elements. The SOURCE connection defines the
initial value for the field (this will be the static value shown if there is no target
end-point, or the initial value of an input control if there is a target end-point). The
TARGET end-point defines the property that will be set from the field value during the
action phase. If a TARGET end-point is specified the SOURCE end-point can only be from a
server interface property. This is because domain information is required to correctly
format the value for display in the input control.

If an INITIAL end-point is used and the property is not a list value, it specifies the
visible value of the field (which will be read-only). The SOURCE value will be hidden,
and the pair of values can only be changed via a pop-up search page. The TARGET
end-point will be supplied with the hidden value.

If an INITIAL end-point is used and the property is a list value, it specifies the visible
values in a drop-down list. The INITIAL element's HIDDEN_PROPERTY specifies the
corresponding list of hidden values that will be supplied to the TARGET end-point. In this
instance, the SOURCE end-point specifies one of the hidden values in the list that should
be used as the initial list selection (the corresponding visible value is displayed).

LINK 0..1. Only valid for output fields (those with no TARGET connection end-point). The value
of the output field will be used as the text for the hyperlink specified by this LINK
element.

If the field is based on a domain which requires a pop-up window then the LINK
element can be used to supply parameters to the pop-up page. In this case the LINK
element must not have a PAGE_ID attribute specified. See 8.21.3, “Using the Pop-up
Page,” on page 188 for further details.

LABEL 0..1. Allows the label for a FIELD to constructed from a number of sources. If both a
LABEL attribute and LABEL child element are specified, the element takes precedence. See
5.9.21, “LABEL,” on page 74 for more details.

SCRIPT 0..n. A script file associated with this FIELD that contains JavaScript code to be activated
in response to the specified event on the field control. See 5.9.28, “SCRIPT,” on page 89
for more details and limitations on this element usage.

5.9.12 FOOTER_ROW
The FOOTER_ROW element is used to define a single footer row at the end of a list. A list can have multiple
footer rows.

A FOOTER_ROW element may only contain FIELD elements. The number of FIELD elements must match the
number of columns in the parent list.

There are two CSS classes associated with footer row fields. A FIELD with a TEXT SOURCE connection is
output with the footerheader CSS class. All other SOURCE connections are output with the footervalue
CSS class. Both of these classes are defined in curam_common.css and can thus be customized.

Chapter 5. UIM Reference 67

Spanning column widths are supported through the use of skip fields. For instance, if one normal field
and two skip fields are used in a FOOTER_ROW element, this normal field will span three columns. Example
code is shown below.

5.9.12.1 Attributes
The FOOTER_ROW element has no attributes.

5.9.12.2 Child Elements
The FOOTER_ROW element contains the following child elements.

Table 22. Child Elements of the FOOTER_ROW Element

Element Name Cardinality / Description

FIELD 1..n Each FOOTER_ROW must contain the same number FIELD elements
as there are columns in the parent LIST.

5.9.13 IMAGE
The IMAGE element inserts an image into a CONTAINER.

5.9.13.1 Attributes
The IMAGE element has attributes as follows:

Table 23. Attributes of the IMAGE Element

Attribute Name Required Default Description

IMAGE Yes A reference to an entry in the Image.properties file.

<LIST TITLE="List.Title.One" DESCRIPTION="List.Description.One">
<FIELD LABEL="Field.Title.BankId" WIDTH="40">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Name" WIDTH="35">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.VersionNo" WIDTH="25">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>

</CONNECT>
</FIELD>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD WIDTH="40" LABEL="Field.Title.Footer" >

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlement"/>

</CONNECT>
</FIELD>
<FIELD>

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>

</CONNECT>
</FIELD>

</FOOTER_ROW>
</LIST>

Figure 33. Example of a FOOTER_ROW in a List.

68 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 23. Attributes of the IMAGE Element (continued)

Attribute Name Required Default Description

LABEL Yes The entry in the UIM's associated properties file
which is used as the alternate (or “alt”) text of the
image.

STYLE No A CSS style to associate with the image.

5.9.13.2 Child Elements
The IMAGE element has no child elements.

5.9.14 INCLUDE
The INCLUDE element indicates that the elements within an external UIM view document should be
included at this position in the page.

5.9.14.1 Attributes
The INCLUDE element has attributes as follows:

Table 24. Attributes of the INCLUDE Element

Attribute Name Required Default Description

FILE_NAME Yes The file name of the UIM view document to be
included. No path to the file should be specified. The
file name alone is sufficient to identify the document.

5.9.14.2 Child Elements
The INCLUDE element has no child elements.

5.9.15 INITIAL
This element is only valid within a CONNECT element contained in a FIELD element. Use of this connection
type is described in further detail in the following sections:
v For pop-up pages see 8.21, “Pop-up Pages,” on page 184
v For selection lists populated from server interface properties see 8.7, “Selection Lists,” on page 149

5.9.15.1 Attributes
The INITIAL element has the following attributes:

Table 25. Attributes of the INITIAL Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance
to use as the source of the property value.

PROPERTY Yes The source of the data to be displayed in
the visible field. This can be a list or a
non-list field type.

HIDDEN_PROPERTY No The source of the list data that has a
one-to-one mapping (based on the list
indexes) to the list property specified in the
PROPERTY attribute.

5.9.15.2 Child Elements
The INITIAL element contains no child elements.

Chapter 5. UIM Reference 69

5.9.16 INFORMATIONAL
The INFORMATIONAL element is used to display informational messages returned from the server. These are
different to error messages in that the server call completes successfully. The messages are created in
server side code using the SDEJ Informational Manager API (see the Cúram Server Developers Guide for
more details). This API allows a developer to assign messages to an output list field(s). This field must
then be referenced using child CONNECT elements. The message will be displayed at the top of the page in
the same area as error messages and this may not be on the page on which the INFORMATIONAL
element was defined. It could be on the following page or on the parent page in the case of modal
dialogs. Finally, messages will never be displayed within the context panel of the application, but will
instead will always be displayed within the main content area of the page.

5.9.16.1 Attributes
The INFORMATIONAL element has no attributes.

5.9.16.2 Child Elements
The INFORMATIONAL element contains the following child elements.

Table 26. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

CONNECT 1..n Each CONNECT element specifies a single SOURCE end-point. This is
a field of a bean which contains informational messages.

5.9.17 INLINE PAGE
The INLINE_PAGE element is used to display the contents of one UIM page in-line in another. Currently
this is only supported within the DETAILS_ROW element of a LIST to support displaying extra content when
a list row is expanded.

5.9.17.1 Attribute
The INLINE_PAGE element has the following attributes:

Table 27. Attributes of the INLINE_PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes The ID of the UIM page to display. Circular
dependencies must not be introduced. If a
page is used inline, it is not allowed for it
to be mapped to a tab at the same time.

URI_SOURCE_NAME No The name of the SERVER_INTERFACE instance
to use as the source of the URI. This
attribute is paired with
URI_SOURCE_PROPERTY. Note that a URI can
only be sourced from a server interface.
This attribute cannot be used to specify
page parameters or properties files as a
source for the URI. The server interface
reference must be called during the
“display-phase” and the parent
ACTION_CONTROL must be of type ACTION
when this property is used.

URI_SOURCE_PROPERTY No The name of the property to use as the
source of the URI.

70 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.17.2 Child Elements
The INLINE_PAGE element contains the following child elements.

Table 28. Child Elements of the INLINE_PAGE Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on this element define the parameters to be
exported to the page targeted by the INLINE_PAGE elements PAGE_ID
attribute. The CONNECT should contain both a SOURCE and a TARGET
element and the TARGET element should have the NAME attribute set to
PAGE and the PROPERTY attribute set to the name of the page
parameter.

5.9.17.3 Restrictions on usage
The UIM page opened in an expanded row is intended for only viewing additional information about the
row. It should not be used for editing information about that row. Instead a modal dialog should be
launched from the page when an edit is required.

As these pages are for viewing information only, the following rules/restrictions should be noted for
these "in-line" pages.
v The "in-line" pages displayed in an expanded row must not be used for editing information.
v The "in-line" pages displayed in an expanded row should not display very complex widgets that

require a "full screen". This includes the following domain specific controls and UIM elements:
– Decision Assist: The Decision Matrix Widget
– Decision Assist: Typical Picture Editor Widget
– Decision Assist: Evidence Review Widget
– Agenda Player
– Batch Function View
– The Rules Simulation Editor
– The Rates Table
– The Meeting View Widget
– The FILE_EDIT Widget
– The Calendar
– Rules Trees

Note: There are no validations in place for these restrictions and it is the responsibility of the developer
to ensure they don't use unsupported widgets in an expandable list.

5.9.18 IS_FALSE
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true when
the referenced property value is false.

5.9.18.1 Attributes
The IS_FALSE element has the following attributes:

Table 29. Attributes of the IS_FALSE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance
to use as the source of the property value.

PROPERTY Yes The name of the property being accessed. It
must be a Boolean value.

Chapter 5. UIM Reference 71

See 5.9.19.1, “Attributes” for more details on the use of this element to access the values of action-phase
server interface properties.

5.9.18.2 Child Elements
The IS_FALSE element contains no child elements.

5.9.19 IS TRUE
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true when
the referenced property value is true.

5.9.19.1 Attributes
The IS_TRUE element has the following attributes:

Table 30. Attributes of the IS_TRUE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance
to use as the source of the property value.

PROPERTY Yes The name of the property being accessed. It
must be a Boolean value.

In the majority of cases the NAME and PROPERTY combination will reference a display-phase server interface
property. However when a page submits to itself using an ACTION_CONTROL with a child LINK element that
has the PAGE_ID set to THIS (e.g., a search page), properties of the action-phase server interface can be
referenced. When the page is first displayed the action-phase server interface will not be in scope and the
property is treated as if its value is false. When the page is submitted, the action-phase server interface
will be in scope and the referenced property will be evaluated as normal.

5.9.19.2 Child Elements
The IS_TRUE element contains no child elements.

5.9.20 JSP SCRIPTLET
The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into the page at that point
relative to any other LIST or CLUSTER elements. Any TextHelper beans declared by a SERVER_INTERFACE
element to be in the DISPLAY phase are available to the scriptlet by getting the attribute of the page
context with the same name as the NAME attribute of the SERVER_INTERFACE element. An example is shown
in 5.9.20, “JSP SCRIPTLET” below.

<SERVER_INTERFACE NAME="MyBeanName" CLASS="MyClass"
OPERATION="getMyData" />

<JSP_SCRIPTLET>
<![CDATA[

curam.omega3.texthelper.TextHelper th =
pageContext.findAttribute("MyBeanName");

String myValue = th.getFieldValue("myPropertyName");
out.print("VALUE: " + myValue);

]]>
</JSP_SCRIPTLET>

Figure 34. Example JSP SCRIPTLET Accessing a TextHelper

72 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

As the code within the JSP_SCRIPTLET element may contain reserved XML characters3, you can either
replace these characters with the appropriate XML character entity or enclose the contents of the element
in the CDATA (“character data”) block as shown above which will prevent the XML parser from trying to
interpret the contents of the block.

A common use of the JSP_SCRIPTLET element is to write code that will redirect the current page to
another page. 5.9.20, “JSP SCRIPTLET,” on page 72, below, shows an example of this.

This demonstrates the API used to access the system parameters that control an application's ability to
return to previous pages. The information about the previous page is stored in the system parameters
accessible via the RequestHandler. getSystemParameters() method. By adding the system parameters, any
Cancel button on the following page will return to the expected page when clicked. The
RequestHandlerFactory. getRequestHandler() method is passed the JSP request object and will return the
appropriate request handler. The system parameters should be appended to the redirect URL and just
require a separating “&” character as they are already formatted in name = value pairs.

When using a JSP_SCRIPTLET to redirect to another page, the JSP_SCRIPTLET should be the only child
element of the PAGE element. When this is the case, no HTML content will be generated for the page: it
will not be displayed, so no HTML is required. If other elements are present, then HTML content will be
generated. This can include the page header, navigation menus, footer, title, etc. If this HTML content
exceeds the size of the buffer on the web container serving the page, then the content will be transmitted
to the web browser. Once any content is transmitted in this way, the redirect operation will have no
effect. Therefore, ensuring that the page contains a single JSP_SCRIPTLET element and no other elements
will ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redirects to another page, then you
cannot use the SERVER_INTERFACE element to declare the TextHelper as shown in 5.9.20, “JSP SCRIPTLET,”
on page 72, as this extra element would cause HTML content to be generated. Instead, you must declare
the TextHelper instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRIPTLET, there is limited error handling capability. Thus, code
should not make calls to secured server interface methods. Instead, the target page of any JSP_SCRIPTLET
should be secured appropriately.

3. The reserved characters in XML are “ ' ”, “ " ”, “ & ”, “ < ”, and “ > ”. The respective XML character entities are “ ' ”, “
" ”, “ & ”, “ < ”,and “ > ”.

<PAGE PAGE_ID="Activity_resolveAttendeeHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String url = context + "UserCalendarPage.do?"

+ "startDate=&calendarViewType=CVT3";
url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Figure 35. Example JSP SCRIPTLET Redirecting to a Page

Chapter 5. UIM Reference 73

When adding parameters to the parameter list, care must be taken if the parameter value may contain
non-ASCII characters. Values containing non-ASCII characters must be escaped before they are added to
the parameter list to ensure that the characters are preserved correctly. The RequestUtils.
escapeURL(String) method can be used to perform the escaping. An example of the Java code to perform
this escaping is shown in the example above. Code following that pattern should be included within your
JSP scriptlet.

5.9.20.1 Attributes
The JSP_SCRIPTLET element has no attributes.

5.9.20.2 Child Elements
The JSP_SCRIPTLET element contains no child elements. The body of the element must only contain the
JSP scriptlet code to be inserted into the page.

5.9.21 LABEL
The LABEL element can be used as a child element of FIELD to construct a label by concatenating multiple
values. An example of the field and label data is shown in 5.9.21, “LABEL,” below.

<PAGE PAGE_ID="Activity_resolveApplicationHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String activityID = request.getParameter("ID");
String eventType = request.getParameter("TYPE");
String url = context;

curam.interfaces.ActivityPkg.Activity_readDescription_TH
th = new curam.interfaces.ActivityPkg

.Activity_readDescription_TH();
th.setFieldValue(

th.key$activityDescriptionKey$activityID_idx,
activityID);

th.callServer();

String description = th.getFieldValue(
th.result$activityDescriptionDetails$description_idx);

if (eventType.equals("AT1")) {
url = "Activity_viewUserRecurringActivityPage.do?";

} else {
url = "Activity_viewUserStandardActivityPage.do?";

}
url += "activityID=" + activityID;
url += "&description="

+ curam.omega3.request.RequestUtils.escapeURL(
description);

url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Figure 36. Example JSP_SCRIPTLET Redirecting and Accessing a TextHelper

74 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.21.1 Attributes
The LABEL element has no attributes:

5.9.21.2 Child Elements
The LABEL element can contain the following child elements.

Table 31. Child Elements of the LABEL Element

Element Name Cardinality / Description

CONNECT 1..n. A CONNECT element specifying a single SOURCE end-point. Action-phase
server interfaces cannot be used in the SOURCE end-point.

5.9.22 LINK
The LINK element specifies the page to go to after an action phase. Alternatively, a LINK element can
specify any external web page or certain resource. Links can contain CONNECT elements to map values to
parameters to be added to the link.

5.9.22.1 Attributes
The LINK element has the following attributes. Note that the PAGE_ID, PAGE_ID_REF, URL, URI, and URI_REF
attributes are mutually exclusive as well as the pair of attributes URI_SOURCE_NAME and
URI_SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages or resources (i.e mailto:
links) will have their link back functionality stripped away. This link back functionality keeps a link to
the previous page. An example of where this is needed is with cancel buttons where if they are used, the
page will link back to the previous page. In order to keep this, the link will have to be to an internal
Curam page. In order to mark a link as being a link to an internal Curam page, the keyword 'curam:'
needs to be added before the link text.

<CLUSTER TITLE="Cluster.Title">
<FIELD>

<LABEL>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Text" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personName" />
</CONNECT>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Separator" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dateOfBirth" />
</CONNECT>

</LABEL>

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fieldName"/>

</CONNECT>
</FIELD>

</CLUSTER>

Figure 37. Example of a Dynamic LABEL

Chapter 5. UIM Reference 75

Table 32. Attributes of the LINK Element

Attribute Name Required Default Description

PAGE_ID No The unique identifier of the page to be opened.
This is the value of the PAGE_ID attribute of the
PAGE element in the required UIM page document.

If this attribute is set to the PAGE_ID of the current
page, the page will be re-opened with all the input
fields reset to their default state.

If the link is on an action control with a TYPE set
to SUBMIT and this attribute is set to the value
THIS, the link will return to the current page after
the action phase and the input fields will not be
reset to their default state. This is useful for search
pages where the search criteria need to be
preserved.

PAGE_ID_REF No A PAGE_ID can alternatively be specified by
reference to an entry in the CuramLinks.properties
file. This allows many links to refer to the same
target page yet all can be updated by changing the
entry in the CuramLinks.properties file.

URL No It is recommended to use the new URI attribute
which is described below. The URL attribute is
maintained for backward compatibility.

URI No Rather than link to another page in the
application, the URI attribute allows the creation of
a link to any URI whatsoever. This can be used to
link to pages or other resources completely outside
of the application. Parameters must be supplied by
CONNECT elements within the LINK to ensure correct
encoding.

URI_REF No A URI (or URL) can alternatively be specified by
reference to an entry in the CuramLinks.properties
file. This allows many links to refer to the same
target yet all can be updated by changing the
entry in the CuramLinks.properties file. The file
can be placed in any component in the
application.

URI_SOURCE_NAME No The name of the SERVER_INTERFACE instance to use
as the source of the URI. This attribute is paired
with URI_SOURCE_PROPERTY. Note that a URI can
only be sourced from a server interface. This
attribute cannot be used to specify page
parameters or properties files as a source for the
URI. The server interface reference must be called
during the “display-phase” and the parent
ACTION_CONTROL must be of type ACTION when this
property is used.

URI_SOURCE_PROPERTY No The name of the property to use as the source of
the URI.

OPEN_NEW No false When set to true, this flag indicates that the
linked page should be opened in a new window.
When set to false (the default) the linked page
will be opened in the current window. This setting
is only supported for links to external sites.

76 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 32. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

SAVE_LINK No true This attribute indicates that the page containing
the link should be returned to if an action control
on the target page is configured to return to the
previous page. An action control without a LINK
child element will return the user to the previous
page. If there is a sequence of pages and any one
of them needs to go back to a “starting” page,
then each page in the sequence should set this
attribute to false so that subsequent pages do not
return to their immediate previous page in the
chain.

SET_HIERARCHY_RETURN_PAGE No false This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

USE_HIERARCHY_RETURN_PAGE No false This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

HOME_PAGE No If this attribute is set to true, the link will take a
user directly to their home page. During
development the home page can be configured by
setting the “application code” field of the Cúram
“users” table. This value of this field corresponds
to an entry on the APPLICATION_CODE code-table. At
runtime, the Cúram Administration application
allows the home page to be set when creating or
editing a user.

Note, that in the development environment Java
EE security is not enabled. Therefore, since a user
name is not available the home page link cannot
be displayed.

OPEN_MODAL No "false" If this attribute is set to true, the link will open
the referenced page in a new window. The new
window is modal, meaning that while it is open
the parent window cannot be accessed. When a
user navigates from the original page in the modal
dialog, either by submitting a form or clicking a
link, the modal dialog is closed, and the parent
page that spawned it is sent to the new location.

DISMISS_MODAL No "true" If this attribute is set to false, the link will open
the referenced page in the same pop-up window,
modal or normal depending on what the browser
supports.

WINDOW_OPTIONS No "width=800,
height=450"

The size of each modal dialog is configurable
using this parameter. The value of the attribute is
a comma separated list of name value pairs. The
currently supported options are width and height,
both of which take an integer value, which is
translated directly to a pixel value. Any other
parameters will cause an exception to be thrown.
This attribute should only be set when OPEN_MODAL
is set to true on the same LINK tag.

Chapter 5. UIM Reference 77

5.9.22.2 Child Elements
The LINK element can contain the following child elements:

Table 33. Child Elements of the LINK Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on a link define the parameters to be exported to
the page targeted by the link. The CONNECT should contain both a
SOURCE and a TARGET element and the TARGET element should have the
NAME attribute set to PAGE and the PROPERTY attribute set to the name
of the page parameter. Any type of SOURCE element can be used
except the TEXT. Also, in the scenario where the LINK is inside an
ACTION_CONTROL with TYPE = SUBMIT, the SOURCE must have an ACTION
phase bean, a page parameter or a CONSTANT. The reason being the
URL is generated in the action class and the DISPLAY bean is not
accessible at the stage.

CONDITION 0..1. Affects whether or not the link is displayed.

5.9.22.3 Modal Dialogs
A Modal Dialog is similar to a Pop-up Page, in that it opens a dialog box to display a page on top of the
main application content. However, modal dialog is different in a number of ways.
v When a modal dialog is open, its parent page cannot be accessed. The parent page is grayed-out and

ignores any user action.
v Changing the page in the Modal Dialog, either by submitting a form or by clicking a hyperlink, causes

it to close, and the parent page to be changed to the changed page, with the following exceptions
– If the page linked to has the same id as the current modal page (e.g. a 'save & new' button/link),

then the page will be refreshed within the same modal window
– If the link clicked has the attribute DISMISS_MODAL set to false, the page linked to will opened

within the same modal window
– If the link clicked has the attribute OPEN_MODAL set to true, it will open in a new modal window

v The usage of Modal Dialogs is different to that of Pop-up pages. It is considerably less complex,
consisting of using either one or two optional attributes on the LINK tag.

Using Modal Dialogs

A LINK tag is made to open in a Modal Dialog, rather than the default action of opening a new page in
the same window, by setting the OPEN_MODAL attribute to true.
<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true" />

Note in the example the use of the OPEN_MODAL attribute on the LINK tag.

Setting OPEN_MODAL on a LINK that is inside an ACTION_CONTROL of type SUBMIT has no effect. Setting
OPEN_MODAL =true on a link implies also having DISMISS_MODAL =false on that link, and setting
DISMISS_MODAL =true on it is ignored. Setting DISMISS_MODAL =false implies OPEN_MODAL =false, so there is
no need to set it.

Configuring Modal Dialogs

Modal Dialogs can be individually configured by setting the WINDOW_OPTIONS attribute on a LINK tag
which has the OPEN_MODAL attribute set to true. Multiple options can be set via this attribute, which is
formatted as a comma separated list of name value pairs. The currently supported parameters are
v width - sets the width of the Modal Dialog, measured in pixels. This parameter takes an integer value.
v height - sets the height of the Modal Dialog, measured in pixels. This parameter takes an integer

value.

78 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true"
WINDOW_OPTIONS="width=600,height=500" />

Note in the example above the use of the WINDOW_OPTIONS attribute. The values specified for width and
height are simple integers and do not have any alphabetic characters appended. A default width of 600
pixels is used if no width parameter is specified. If no height parameter is specified the height will be
automatically calculated to accommodate the page contents. If an unsupported parameter is placed in the
WINDOW_OPTIONS, a build time exception will be thrown.

If the WINDOW_OPTIONS attribute is also specified on the PAGE element of the page a LINK points to, it will
take precedence over the value specified on the LINK itself.

The minimum required height for modal dialogs can be configured using the property
modal.dialogs.minimum.height that is located in the ApplicationConfiguration.properties file.

Controlling Modal Dialogs from custom JavaScript

Modal Dialogs can be controlled by custom JavaScript using the provided curam.util.UimDialog API. For
details see the full API documentation in HTML format, accessible by opening <cdej-dir>\doc\
JavaScript\index.html in a Web browser.

Loading custom non-UIM pages in a Modal Dialog

Custom non-UIM pages must hook into a specific set of API functions in order to work correctly in a
Modal Dialog. These functions are provided by the curam.util.Dialog API. The details are available in
the full API documentation: <cdej-dir>\doc\JavaScript\index.html.

5.9.23 LIST
The LIST element defines the layout of a control used to display lists of data. Each field or action control
becomes a column and data values are then tabulated.

5.9.23.1 Attributes
The LIST element has the following attributes:

Table 34. Attributes of the LIST Element

Attribute Name Required Default Description

TITLE No A reference to an externalized string containing the
title string for this list. See also note below.

STYLE No The class name of the CSS style to associate with
this list for formatting.

DESCRIPTION No A reference to an externalized string that provides
more details about the list than the title alone. This
will be displayed below the title on the page.

SORTABLE No true Lists can be sorted by clicking on the appropriate
headers. This is set by default to be enabled without
the use of the attribute. This attribute allows this
feature to be controlled with false disabling the
feature and true enabling it.

SUMMARY No A reference to an externalized string containing the
summary of this list. The SUMMARY attribute describes
the purpose and/or structure of a list.

Chapter 5. UIM Reference 79

Table 34. Attributes of the LIST Element (continued)

Attribute Name Required Default Description

SCROLL_HEIGHT No Specifies in pixels the desired fixed height of a
scrollable list. A vertical scrollbar is provided once
the list exceeds the scroll height. The scrollbar is
only applied to the list body and the list's column
headers remain fixed Scroll height is independent of
the list contents and therefore an empty list will still
be set to the height specified.

BEHAVIOR No Optional attribute which controls the display and
behavior of the toggle button used to expand or
collapse the list.

Three value options are available for this attribute:

v NONE which prevents the toggle button from being
displayed in the list header.

v EXPANDED : the toggle button is displayed and the
list is initially expanded.

v COLLAPSED : the toggle button is displayed and the
list is initially collapsed.

When the BEHAVIOR is not set for a list, its default
value of EXPANDED is implied.

Note that this attribute is only applicable when the
property ENABLE_COLLAPSIBLE_CLUSTERS is not set or
is set to true in curam_config.xml. For details see
3.12.13, “General Configuration,” on page 35.

PAGINATED No true Enables the ability to page through lists displayed in
Cúram pages. Any LIST longer than the configured
minimum size will display only the first "page" of
data and the pagination controls will be displayed
below the list.

DEFAULT_PAGE_SIZE No Based on the
global configured
value, usually 15.

Specifies the page size the list will get by default.
The page size can be then changed at runtime by
the user.

PAGINATION_THRESHOLD No Based on the
global configured
value, usually
same as
DEFAULT_PAGE_SIZE.

Specifies the minimum list size at which pagination
will be enabled. For shorter lists there will be no
pagination, even if otherwise pagination is switched
on.

Note: Lists on search pages now display the number of items found as a result of the search. The
number of items will be displayed beside the list title.

The text used to display the number of items can be customized by setting the following property in the
CDEJResources.properties file, for example:

The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by adding the following to the
curam-config.xml file:

record.number.message=Items found:

80 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.23.2 Child Elements
The LIST element can contain the following child elements. It must contain at least one ACTION_CONTROL,
FIELD, or CONTAINER element. SOURCE connections can be made to list or non-list properties. Within a table
all list properties must belong to the same list structure defined in the server interface model. This
ensures that they are all the same length. The number of rows in the list will be equal to the number of
elements in the list properties. The value of a non-list property is simply repeated on each row.

Table 35. Child Elements of the LIST Element

Element Name Cardinality / Description

TITLE 0..1. The TITLE element will be displayed above the LIST.

DESCRIPTION 0..1 The 5.9.10, “DESCRIPTION,” on page 64 element has the same behavior
as the DESCRIPTION attribute but allows the description to be built up from a
number of sources. If both are specified, this element takes precedence over
the corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any type. The
action controls will be displayed above and/or below the entire list.

FIELD 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can be freely
intermingled. Only output fields can be used (i.e., fields with no target
connection.)

CONTAINER 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can be freely
intermingled. Within the container, only output fields can be used (i.e., fields
with no target connection.)

CONDITION 0..1. Affects whether or not the list is displayed.

FOOTER_ROW 0..n. This should be defined after all other child elements.

5.9.24 MENU
The MENU element is used to define six types of menus in a Cúram client application. The menu types are:
v STATIC : The menu is made up of ACTION_CONTROL elements that will appear on the page menu. The

ACTION_CONTROL elements must have the TYPE of ACTION.
v NAVIGATION : The menu is made up of ACTION_CONTROL elements that will be appended to the

“Navigation” menu. The ACTION_CONTROL elements must have the TYPE of ACTION.
v DYNAMIC : The menu is driven by XML data constructed on the server application.
v INTEGRATED_CASE : The menu is driven by XML data constructed on the server application. This menu

is specific to the Cúram-style Integrated Case user interface and is rendered as a set of of tabs.
v IN_PAGE_NAVIGATION : The menu is made up of ACTION_CONTROL elements that will appear on the

in-page-navigation menu at the top of the main content area.
v WIZARD_PROGRESS_BAR : This is another specific type of menu rendered as a button bar on the top of the

content area in a modal dialog for displaying a sequence of related pages in the wizard manner. The
menu is driven by a resource stored in the server application.

<LIST_ROW_COUNT>true</LIST_ROW_COUNT>

Chapter 5. UIM Reference 81

5.9.24.1 Attributes
The MENU element has the following attribute:

Table 36. Attributes of the MENU Element

Attribute Name Required Default Description

MODE No STATIC The type of menu to create. The mode can be
STATIC (the default), NAVIGATION, DYNAMIC,
INTEGRATED_CASE, IN_PAGE_NAVIGATION or
WIZARD_PROGRESS_BAR.

Static, navigation and in-page-navigation menus
contain one or more ACTION_CONTROL elements that
represent links to other pages. The static menu
normally appears just above the main content area
of the page. Navigation menu items will be
appended to the navigation menu, normally on the
left of the page. In-page-navigation menu items
appear at the top of the main content area and the
wizard progress bar appears at the top of the
modal dialog content area.

Dynamic menus of both types (DYNAMIC and
INTEGRATED_CASE) are created from data retrieved
from the server and contain a single CONNECT
element specifying a SOURCE end-point to a server
interface property.

5.9.24.2 Child Elements
The MENU element can contain the following child elements. Note that the ACTION_CONTROL and CONNECT
elements are mutually exclusive.

Table 37. Child Elements of the MENU Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. Only action controls with a TYPE of ACTION can be used.

CONNECT 1. A CONNECT element specifying a single SOURCE end-point.

5.9.24.3 DYNAMIC and INTEGRATED_CASE type menus
The data for both DYNAMIC and INTEGRATED_CASE menu's are driven by the same XML format. An example
of the menu data sent by the application server is shown below.

All the menu links are contained within the DYNAMIC_MENU root element. Each entry on the menu is
specified by a LINK element. The LINK element has the following attributes:

<DYNAMIC_MENU>
<LINK PAGE_ID="CaseHome"

DESC="2:field1:curam.omega3.myMessages:info_menu1:()"
TYPE="case" >

<PARAMETER NAME="caseID" VALUE="1234" />
</LINK>
<LINK PAGE_ID="ProductHome"

DESC="2:field1:curam.omega3.myMessages:info_menu2:()"
TYPE="product" >

<PARAMETER NAME="productID" VALUE="5678" />
<PARAMETER NAME="caseID" VALUE="1234" />

</LINK>
</DYNAMIC_MENU>

Figure 38. Example of Dynamic MENU Data

82 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v PAGE_ID : Specifies the target page for the link.
v DESC : Specifies the server message catalog entry to be looked up and used as the text for the link. The

Cúram SDEJ provides an API to create the string representation of a message catalog entry shown in
the example above. Consult the Cúram Server Developers Guide for details on using message catalogs.

v TYPE : specifies a value that is looked up in appropriate menu configuration file (described below) to
identify the icon that should be associated with the link.

Each LINK element can contain a number of PARAMETER elements that specify additional parameters that
will be added to the link from the menu. The PARAMETER element has the following attributes:
v NAME : The parameter name.
v VALUE : The parameter value.

The configuration files for the DYNAMIC and INTEGRATED_CASE menu's are DynamicMenuConfig.xml and
ICDynamicMenuConfig.xml respectively. The following are examples each configuration file.

The differences to note are the root elements, DYNAMIC_MENU_CONFIG and INTEGRATED_CASE_MENU_CONFIG,
and the SEPARATOR element which is not used in an INTEGRATED_CASE because of its very specific look and
feel.

The SEPARATOR element describes an image or a piece of text used to separate the menu items and has the
following attributes:
v IMAGE : Specifies an image to use as the separator.
v TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. If an image

is specified this will be used as the alternate text for the image, if not, then the text will be displayed.

The LINK element has the following attributes.
v TYPE : This must match the TYPE attribute of the LINK element returned from the server application.
v IMAGE : Specifies an image to use in the link. This attribute is mandatory.
v TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. It will be

used as the alternate text for the image.

5.9.24.4 The IN_PAGE_NAVIGATION type menu
The in-page navigation menu, see User Interface Element 9 of 2.4, “Application User Interface Overview,”
on page 3, allows for the addition of a set of links which will be displayed as tabs embedded within a
UIM page. Each UIM page in the set must define the same MENU element. The currently selected UIM

<?xml version="1.0" encoding="UTF-8"?>
<DYNAMIC_MENU_CONFIG>

<SEPARATOR IMAGE="Images/separator.gif"
TEXT="Dyn.Menu.Separator"/>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Figure 39. Example of a DYNAMIC Menu Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<INTEGRATED_CASE_MENU_CONFIG>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Figure 40. Example of an INTEGRATED_CASE Menu Configuration File

Chapter 5. UIM Reference 83

page, aka tab, is identified by the STYLE="in-page-current-link" attribute. This will differ on each of the
UIM pages in the set and should be set on the ACTION_CONTROL that matches the UIM page the MENU is
contained in.

5.9.24.5 WIZARD_PROGRESS_BAR menu
The wizard progress menu bar is inserted on a page by including a MENU element which has a MODE
attribute set to WIZARD_PROGRESS_BAR. It binds a number of pages, allowing for the sequential navigation
through them. For instance, in a modal dialog which contains a wizard progress menu bar, pages can be
navigated through by clicking the previous or next button. At the same time, the wizard progress menu
bar presented on the top of it will indicate its progress.

5.9.24.6 The UIM wizard pages
There are some specifics regarding the UIM pages used with the WIZARD_PROGRESS_BAR menu:
v The wizard pages should open in the modal dialog. The wizard progress bar functionality should not

be used in standard non-modal UIM pages.
v Each page in the wizard flow is implemented as standard UIM with a wizard progress bar widget

placed at the top of each page.
v The pages should have action controls for advancing through the wizard (back and forward buttons as

required by the scenario). The LINK elements of these action controls should have DISMISS_MODAL
attribute set to false (except for the controls supposed to close the wizard). Additionally, the SAVE_LINK
attribute should also be set to false.

<PAGE PAGE_ID="InPageNav">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Title.Text"/>

</CONNECT>
</PAGE_TITLE>
<MENU MODE="IN_PAGE_NAVIGATION">

<ACTION_CONTROL LABEL="Label.page1">
<LINK PAGE_ID="Page1" SAVE_LINK="false"/>

</ACTION_CONTROL>
<ACTION_CONTROL

LABEL="Page2.Label"
STYLE="in-page-current-link" >

<LINK PAGE_ID="Page2" SAVE_LINK="false" />
</ACTION_CONTROL>

</MENU>
........
</PAGE>

Figure 41. Example of the IN_PAGE_NAVIGATION menu in UIM

84 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

In the example above the connection in the MENU provides the identifier of the server-side resource
describing this wizard (see below).

5.9.24.7 Wizard menu configuration
The text required by the wizard progress bar items come from a property resource whose identifier must
be provided to the wizard progress bar menu.

Table 38. Properties in the wizard defining resource

Property Name Description

Number.Wizard.Pages The value of this property defines the number of items to be rendered
for the wizard progress bar. The value must be a numeric whole
number greater than zero.

<PageID>.Wizard.Item.Text Defines the text to be displayed within the wizard progress bar item
for each page of the wizard. There must be one of these properties
defined for each page in the wizard. The property is uniquely
identified for each wizard page by the <PageID> prefix which
represents the actual identifier of that UIM page in the wizard flow.

<PAGE PAGE_ID="Sample_PageOne">
<MENU MODE="WIZARD_PROGRESS_BAR">

<CONNECT>
<SOURCE

NAME="DISPLAY" PROPERTY="resourceID" />
</CONNECT>

</MENU>
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT"

PROPERTY="PageTitle" />
</CONNECT>

</PAGE_TITLE>
<SERVER_INTERFACE

CLASS="WizardSample"
NAME="DISPLAY" OPERATION="getResourceID"

PHASE="DISPLAY" />
<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL
LABEL="ActionControl.Label.Cancel"/>

<ACTION_CONTROL
LABEL="ActionControl.Label.Next">

<LINK PAGE_ID="Sample_PageTwo"
SAVE_LINK="false"

DISMISS_MODAL="false"/>
</ACTION_CONTROL>

</ACTION_SET>
........
</PAGE>

Figure 42. An example of wizard-type menu UIM

Number.Wizard.Pages=2
Sample_pageOne.Wizard.Item.Text=Child
Sample_pageOne.Wizard.Page.Title=Step 1: Child Details
Sample_pageOne.Wizard.Page.Desc=Capture some details
Wizard.PageID.1=Sample_pageOne

Sample_pageTwo.Wizard.Item.Text=Parent
Sample_pageTwo.Wizard.Page.Title=Step 2: Parent Details
Sample_pageTwo.Wizard.Page.Desc=Capture some details 1
Wizard.PageID.2=Sample_pageTwo

Figure 43. Example of the required properties in the resource store property file

Chapter 5. UIM Reference 85

Table 38. Properties in the wizard defining resource (continued)

Property Name Description

<PageID>.Wizard.Page.Title Defines the title to be displayed within the wizard progress bar for
the current page of the wizard. There must be one of these properties
defined for each page in the wizard. The property is uniquely
identified for each wizard page by the <PageID> prefix which
represents the actual identifier of that UIM page in the wizard flow.

<PageID>.Wizard.Page.Desc Defines the description to be displayed within the wizard progress
bar for the current page of the wizard. There must be one of these
properties defined for each page in the wizard. The property is
uniquely identified for each wizard page by the <PageID> prefix
which represents the actual identifier of that UIM page in the wizard
flow.

Wizard.PageID.<PageNum> Defines the position of the page within the wizard flow. The widget
uses this information to style the bar items correctly. There must be
one of these properties defined for each page in the wizard. This
property is uniquely identified for each wizard page by the
<PageNum> suffix which represents the position of each page within
the list of wizard menu pages.

The order of the properties declaration in the resource is important as the associated menu widget will
draw the wizard items for the progress bar in that order. The page title and description are added by the
widget for the current page of the wizard.

5.9.25 PAGE
The PAGE element is the root element of a UIM document that describes the data to be included in a
generated JSP page.

5.9.25.1 Attributes
The PAGE element has the following attributes:

Table 39. Attributes of the PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes An identifier for the page used when referencing
the page from LINK elements. This identifier must
be unique within a project. The file name of the
document must be the same as the value of this
attribute and have the extension .uim.

POPUP_PAGE No false Indicates that this page is a pop-up that will be
opened from a parent page. Pop-up pages do not
include the side-bar, header and footer of standard
pages. The value can be set to true or false. The
attribute must only be used for pages configured
according to 8.21, “Pop-up Pages,” on page 184
(i.e., search pop-up pages).

86 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 39. Attributes of the PAGE Element (continued)

Attribute Name Required Default Description

SCRIPT_FILE No The name of the script file containing the
JavaScript functions that are specified in the
ACTION attribute of any SCRIPT elements on the
page. If no SCRIPT_FILE attribute is set on a
particular SCRIPT element within a FIELD or
ACTION_CONTROL the PAGE script file is used by
default. The script file should be added in a
component. If another script file has the same
name in another component, the version in the
highest priority component will be used. Each
SCRIPT can specify its own script file if required,
or share this common script file.

APPEND_COLON No Set to true to automatically append colons to
FIELD and CONTAINER labels within CLUSTER
elements. This overrides the value of the
APPEND_COLON element in the curam-config.xml file
for that individual page (see 3.12.13.8,
“APPEND_COLON,” on page 36).

WINDOW_OPTIONS No "width=600,
height=auto-
calculated"

The size of the page when displayed in a modal
dialog is configurable using this parameter. The
value of the attribute is a comma separated list of
name value pairs. The currently supported options
are width and height, both of which take an
integer value, which is translated directly to a
pixel value. Only a width needs to be specified
however as the height will be dynamically
calculated. Any other parameters will cause an
exception to be thrown.

TYPE No DEFAULT Used to define specific types of UIM pages. Two
types are supported, DETAILS and SPLIT_WINDOW.

SPLIT_WINDOW enables the use of frames within the
page. If the attribute is not present or is set to
DEFAULT then frames are not used. See 8.22,
“Agenda Player,” on page 191 for an example of
use.

DETAILS defines a UIM page that will be used as a
context panel page. For more information see 6.8.3,
“Context Panel UIM,” on page 127.

HIDE_CONDITIONAL_LINKS No TRUE Set to true to hide conditional links that evaluate
to false. Set to false to show a disabled
conditional link that evaluate to false. This
overrides the value of the HIDE_CONDITIONAL_LINKS
element in the curam-config.xml file for that
individual page (see 3.12.13.8,
“APPEND_COLON,” on page 36).

Chapter 5. UIM Reference 87

5.9.25.2 Child Elements
The PAGE element can contain child elements as follows:

Table 40. Child Elements of the PAGE Element

Element Name Cardinality / Description

INCLUDE 0..1. This element can be used before any other child element of a
PAGE element.

PAGE_TITLE 0..1

DESCRIPTION 0..1

SHORTCUT_TITLE 0..1

SERVER_INTERFACE 0..n. Multiple SERVER_INTERFACE elements are supported, however it
is recommended that only one SERVER_INTERFACE with the PHASE
attribute set to ACTION is defined per PAGE element. See 5.9.29,
“SERVER INTERFACE,” on page 90 for more information.

INFORMATIONAL 0..1

MENU 0..2. The page can contain one optional static and one optional
dynamic menu as well as append extra items to the navigation
menu.

ACTION_SET 0..1. In this context, the action set defines the set of action controls
that will appear around the page's main content area.

PAGE_PARAMETER 0..n

CONNECT 0..n. In this context, the connections can copy values directly from
the properties of source server interfaces to properties of the target
server interfaces. Each CONNECT element should contain both a SOURCE
and a TARGET element.

JSP_SCRIPTLET 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be intermingled freely
and the order in UIM will be preserved in the generated page.

CLUSTER 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be intermingled freely
and the order in UIM will be preserved in the generated page.

LIST 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be intermingled freely
and the order in UIM will be preserved in the generated page.

SCRIPT 0..n. A script associated with the PAGE that will be activated in
response to the specified event. See 5.9.28, “SCRIPT,” on page 89 for
more details.

Where a page is configured to contain a large number of scrollable list and cluster elements
(approximately 15), it may cause JSP compile issues in Weblogic. This is due to a Weblogic system
limitation in how big a page can be rendered at run time. To overcome this restriction, arrange the
display of the required scrollable lists and clusters over a number of pages.

5.9.26 PAGE_PARAMETER
The PAGE_PARAMETER element declares a parameter to the current page. Once a parameter is declared, it
can be used as the source of a connection by setting the connection source bean NAME attribute to PAGE.

5.9.26.1 Attributes
The PAGE_PARAMETER element has the following attributes:

Table 41. Attributes of the PAGE_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the parameter to use in SOURCE
connection end-points.

88 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

5.9.26.2 Child Elements
The PAGE_PARAMETER element contains no child elements.

5.9.27 PAGE TITLE
The PAGE_TITLE element defines the title that appears at the top of a page's main content area. A title is
constructed by concatenating a number of connection sources together. These can include localized strings
and data from server interfaces.

Note: The PAGE_TITLE element defines the text for the tab title bar where the UIM page is used as a
context panel page. See 6.8.3, “Context Panel UIM,” on page 127 for more information.

5.9.27.1 Attributes
The PAGE_TITLE element has the following attributes:

Table 42. Attributes of the PAGE_TITLE Element

Attribute Name Required Default Description

DESCRIPTION No A reference to a localized string that provides a
more detailed description of the page than the title
alone. This will be displayed with the title in the
page's main content area.

STYLE No The name of the CSS class to use when displaying
the title on the page.

ICON No A reference to an entry in the Image.properties file
specifying the image file to use beside the title in
the main content area.

5.9.27.2 Child Elements
The PAGE_TITLE element can contain child elements as follows:

Table 43. Child Elements of the PAGE_TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can be
included (one SOURCE per CONNECT). Sources can be server interface
properties or, with the NAME attribute set to TEXT, references to strings
from a properties file.

DESCRIPTION 0..1 The 5.9.10, “DESCRIPTION,” on page 64 element has the same
behavior as the DESCRIPTION attribute but allows the description to be
built up from a number of sources. If both are specified, this element
takes precedence over the corresponding attribute.

5.9.28 SCRIPT
The SCRIPT element defines an exit point to allow the invocation of a script (JavaScript) in response to an
event. Scripts are supported for pages, read-write fields and action controls. These elements are not
applicable and not supported for fields within a LIST or read-only fields.

Chapter 5. UIM Reference 89

5.9.28.1 Attributes
The SCRIPT element has the following attributes:

Table 44. Attributes of the SCRIPT Element

Attribute Name Required Default Description

EVENT Yes The JavaScript name of the event as defined in the
W3C HTML recommendations.

JavaScript events are valid within the PAGE, FIELD or
ACTION_CONTROL elements, with the exception of
FIELD elements within a LIST or read-only FIELD
elements.

Note that the ONCLICK event will be ignored for
ACTION_CONTROL with a TYPE of CLIPBOARD (for
further information see 5.9.3, “ACTION
CONTROL,” on page 54.).

In addition, please note that by default when a link
is clicked in the Cúram application the link is
processed by Cúram specific code. If you are adding
some scripting to a link and do not want this
default processing to occur, the event should be
stopped using the JavaScript APIs available.

ACTION Yes The JavaScript to be invoked if the event occurs.
This must be a function call including parameters, if
any. For example; someFunction() or
someFunction(someParam) where someParam may be
a global variable defined in script file.

SCRIPT_FILE No The name of the script file containing the JavaScript
functions that are specified in the ACTION attribute of
the SCRIPT element. If no SCRIPT_FILE attribute is set
on a particular SCRIPT element within a FIELD or
ACTION_CONTROL the PAGE script file is used by
default. The script file should be added in a
component. If another script file has the same name
in another component, the version in the highest
priority component will be used. If not specified, the
SCRIPT will expect to find the functions in the
page-level script file specified with the PAGE
element's SCRIPT_FILE attribute.

5.9.28.2 Child Elements
The SCRIPT element contains no child elements.

5.9.29 SERVER INTERFACE
The SERVER_INTERFACE element defines a server interface to which other elements of the page can connect.

5.9.29.1 Attributes
The SERVER_INTERFACE element has the following attributes:

Table 45. Attributes of the SERVER_INTERFACE Element

Attribute Name Required Default Description

NAME Yes A unique name for this instance of the server
interface on this page.

CLASS Yes The name of the server interface class.

90 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 45. Attributes of the SERVER_INTERFACE Element (continued)

Attribute Name Required Default Description

OPERATION Yes The name of the server interface operation on the
class.

PHASE No DISPLAY The phase of the page in which the server interface
is called. This can be DISPLAY (the default) or
ACTION. Server interfaces set to the DISPLAY phase
are called as the page is displayed (i.e., the
execution of the JSP page).

Server interfaces set to the ACTION phase are only
called in response to the activation of an
ACTION_CONTROL with a TYPE of SUBMIT. It is
recommended that only one SERVER_INTERFACE is set
to the ACTION phase per PAGE.

ACTION_ID_PROPERTY No Specifies a name of the server access bean property
that will be populated with ACTION_ID of the action
control used to make the server call. The value of
this attribute must be a valid property name of the
corresponding server access bean. The use of
shorthand notation is allowed (for example specify
theProperty instead of the fully qualified
dtls$theProperty).

This attribute is only valid on server interfaces with
PHASE = ACTION and must be specified on all server
interfaces within the page or not specified on any of
them.

If multiple server interfaces specify
ACTION_ID_PROPERTY with different domains the
value of ACTION_ID on all action controls within the
page must be suitable for all of the domains. Failing
to comply with this rule will lead to error at
runtime when the corresponding action control is
activated.

If this attribute is specified then the ACTION_ID
attribute of ACTION_CONTROL element must also be
specified.

Note: It is technically possible to specify multiple SERVER_INTERFACE elements set to the ACTION phase.
However, this is not recommended. Each SERVER_INTERFACE is essentially a separate transaction and when
an invocation fails, no further invocations of other server interfaces are made and completed transactions
are not rolled back.

For example, three SERVER_INTERFACE elements are defined, each set to the ACTION phase. When the page
is executed, the first server interface invocation succeeds and the second fails. In this scenario, the third
server interface is never invoked and the action of the first will not be rolled back.

5.9.29.2 Child Elements
The SERVER_INTERFACE element contains no child elements.

5.9.30 SOURCE
The SOURCE element defines the source end-point of a data connection. The source can be the value of a
server interface property, the value of a parameter to the page (which must be declared via the
PAGE_PARAMETER element), or the value of an externalized string.

Chapter 5. UIM Reference 91

5.9.30.1 Attributes
The SOURCE element has the following attributes:

Table 46. Attributes of the SOURCE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance to use as
the source of the property value, or PAGE, if the source
is the value of a page parameter, or TEXT (or CONSTANT)
if the source is the value of an externalized text string.
TEXT or CONSTANT can only be used when TARGET has a
server interface defined in the ACTION phase.

PROPERTY Yes The name of the server interface property, the name of
the input page parameter, or the string reference to the
externalized string whose value is required.

5.9.30.2 Child Elements
The SOURCE element contains no child elements.

5.9.31 TAB_NAME
The TAB_NAME element defines the text used for the tab in the tab bar, where the UIM page is used as a
context panel UIM page. The text is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is set to DETAILS. See 6.8.3,
“Context Panel UIM,” on page 127 for more information.

5.9.31.1 Child Elements
The TAB_NAME element can contain child elements as follows:

Table 47. Child Elements of the TAB_NAME Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can be
included (one SOURCE per CONNECT). Sources can be server interface
properties or, with the NAME attribute set to TEXT, references to strings
from a properties file.

DESCRIPTION 0..1 The 5.9.10, “DESCRIPTION,” on page 64 element has the same
behavior as the DESCRIPTION attribute but allows the description to be
built up from a number of sources. If both are specified, this element
takes precedence over the corresponding attribute.

5.9.32 TARGET
The TARGET element defines the target end-point of a data connection. The target can be the value of a
server interface property or the value of a parameter to be exported from the page.

5.9.32.1 Attributes
The TARGET element has the following attributes:

Table 48. Attributes of the TARGET Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance to use
as the target of the property value, or PAGE, if the
target is the value of a page parameter.

92 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 48. Attributes of the TARGET Element (continued)

Attribute Name Required Default Description

PROPERTY Yes The name of the server interface property, or the
name of the output page parameter whose value is
to be set.

5.9.32.2 Child Elements
The TARGET element contains no child elements.

5.9.33 TITLE
The TITLE element defines the title that appears at the top of a CLUSTER or LIST element. A TITLE is
constructed by concatenating a number of connection sources together. These can include localized strings
and data from server interfaces.

5.9.33.1 Attributes
The TITLE element has the following attributes:

Table 49. Attributes of the TITLE Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the separator between
the elements within the container.

5.9.33.2 Child Elements
The TITLE element can contain child elements as follows:

Table 50. Child Elements of the TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can be
included (one SOURCE per CONNECT). Sources can be server interface
properties or, with the NAME attribute set to TEXT, references to strings
in a properties file.

5.9.34 VIEW
The VIEW element is the root element of a UIM document that defines elements to be included in a UIM
page document. A view cannot include other views using the INCLUDE element.

5.9.34.1 Attributes
The VIEW element has no attributes.

5.9.34.2 Child Elements
The VIEW element can contain child elements as follows:

Table 51. Child Elements of the VIEW Element

Element Name Cardinality / Description

PAGE_TITLE See the PAGE element.

SHORTCUT_TITLE See the PAGE element.

SERVER_INTERFACE See the PAGE element.

MENU See the PAGE element.

ACTION_SET See the PAGE element.

PAGE_PARAMETER See the PAGE element.

Chapter 5. UIM Reference 93

Table 51. Child Elements of the VIEW Element (continued)

Element Name Cardinality / Description

CONNECT See the PAGE element.

JSP_SCRIPTLET See the PAGE element.

CLUSTER See the PAGE element.

LIST See the PAGE element.

SCRIPT See the PAGE element.

5.10 UIM Reference for Widgets

5.10.1 Introduction
Widgets are used when the handling of data in the client application is too complicated to do with the
automatic domain definition recognition of the FIELD element. Widgets allow several different sources of
data to be connected to a control that can then supply data to several different targets.

There are a number of predefined types of WIDGET element. Each type of WIDGET can contain one or more
WIDGET_PARAMETER elements. The configuration of these WIDGET_PARAMETER elements depends on the type
of the widget. These are described in the sections below.

Most widget types can only be defined within CLUSTER elements (exceptions to this are described below).
There may also be restrictions on how many widgets of a particular type can be included in a single UIM
document.

5.10.2 WIDGET
The WIDGET element is used to define the type of widget to include and it holds the WIDGET_PARAMETER
elements that configure the widget.

5.10.2.1 Attributes
The WIDGET element has the following attributes:

Table 52. Attributes of the WIDGET Element

Attribute Name Required Default Description

TYPE Yes The type of WIDGET. This can be one of the
following:

v EVIDENCE_COMPARE

v FILE_EDIT

v FILE_UPLOAD

v MULTISELECT

v SINGLESELECT

v RULES_SIMULATION_EDITOR

v FILE_DOWNLOAD

v IEG_PLAYER

LABEL No A reference to an externalized string that should be
used as the associated label string for this widget.

WIDTH No The width of the control specified in the
appropriate units.

94 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 52. Attributes of the WIDGET Element (continued)

Attribute Name Required Default Description

WIDTH_UNITS No PERCENT The units in which the width is interpreted. This
can be PERCENT to indicate the percentage of the
space available to the widget, or CHARS to indicate
the number of visible characters wide the widget
will be.

HEIGHT No 1 A HEIGHT value that may be used by the widget.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the widget. Can
be set to LEFT, RIGHT, CENTER, or DEFAULT. The value
DEFAULT corresponds to the CSS class default in
curam_common.css. Currently the default is to be left
aligned.

HAS_CONFIRM_PAGE No false Attribute to be used only on widget of type of
MULTISELECT. Used to specify that the widget
selection data is to be submitted to the confirmation
page. Can be true or false. See 5.10.8.1,
“Confirmation Pages,” on page 103.

5.10.2.2 Child Elements
The WIDGET element can contain the following child element:

Table 53. Child Elements of the WIDGET Element

Element Name Cardinality / Description

WIDGET_PARAMETER 1..n. The parameters depend on the type of widget.

5.10.3 WIDGET_PARAMETER
The WIDGET_PARAMETER element is used to define the properties of an individual widget. In particular, the
WIDGET_PARAMETER elements allow connections to be made between named properties of the widget and
various source and target data end-points.

5.10.3.1 Attributes
The WIDGET_PARAMETER element has the following attribute:

Table 54. Attributes of the WIDGET_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the property on the WIDGET that this
element configures.

Chapter 5. UIM Reference 95

5.10.3.2 Child Elements
The WIDGET_PARAMETER element can contain the following child element:

Table 55. Child Elements of the WIDGET_PARAMETER Element

Element Name Cardinality / Description

CONNECT A WIDGET_PARAMETER can be connected in one of two ways depending
on the specification for the particular WIDGET. The first way is similar
to that of FIELD elements:

1..n. The parameter can contain multiple CONNECT elements. Usually
(the FILE_DOWNLOAD WIDGET is an exception to this) a WIDGET_PARAMETER
contains up to three CONNECT elements, SOURCE, TARGET, and INITIAL
connection end-points. The valid types of source or target depend on
the individual parameter.

The second way to connect a parameter is similar to the CONNECT
elements in a LINK element.

1..n. CONNECT elements that each connect a SOURCE end-point to a
TARGET end-point.

5.10.4 The EVIDENCE_COMPARE Widget
The EVIDENCE_COMPARE widget displays the differences between two sets of evidence. These differences are
high-lighted using the following colors: evidence items that have changed are shown in red; new items
are shown in green; deleted items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be set to EVIDENCE_COMPARE and its
WIDGET_PARAMETER elements should be set as follows:

Table 56. Parameters to the EVIDENCE_COMPARE Widget

Parameter Name Required Description and Connections

OLD_EVIDENCE Yes This parameter must include a single CONNECT
element that must specify a SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the original evidence.

NEW_EVIDENCE Yes This parameter must include a single CONNECT
element that must specify a SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the new evidence.

5.10.5 The FILE_EDIT Widget
The FILE_EDIT widget allows a user to edit a Microsoft Word document on their local computer and then
save it to the server. A document can be created automatically from a template where the template details
can be set before the document is presented to the user for editing.

A UIM page containing the FILE_EDIT widget will only operate in the main content panel of the
application. If such page is opened in a modal window then the modal will close immediately and the
page will be loaded in the main content panel.

96 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The widget uses a Java applet to manage the interaction between the user's browser and Word. Only the
source and target documents and the template details are required. If key details, or other data, are
required by the server interfaces that handle the document, these should be provided by page parameters
and page-level connections.

Each time the document is saved in Word, the submit button for the page is activated automatically. This
triggers the ACTION phase but returns to the same page rather than opening the page linked to by the
submit button. Only when the Word document is closed will the next page be opened. This behavior
requires that the server interface for the ACTION phase allows multiple invocations for the same editing
session and that it saves the document to the database on each invocation.

The first time the Word document is loaded successfully with the template details, it is automatically
saved to the server before further editing.

When editing the document, the user has the option to save it. This triggers the normal saving behavior
and the page will not be changed when the ACTION phase completes. After the document has been closed,
the ACTION phase will be triggered again to open the next page, but this time the server interface will not
be invoked and the document (which has already been saved) will not be saved again. Because the server
interface is not invoked, it is not permitted to use any property of the ACTION phase server interface in a
SOURCE connection of the submit button's LINK element. Typically, the submit button will return to the
previous page and will not need a LINK element, so this limitation should have little impact.

Using the FILE_EDIT widget is simple. The WIDGET element should have the TYPE attribute set to
FILE_EDIT. Two WIDGET_PARAMETER elements are required:

Table 57. Parameters to the FILE_EDIT Widget

Parameter Name Required Description and Connections

DOCUMENT Yes Defines the source document (usually a
template) and the target to which to write the
saved document. The parameter must contain
a CONNECT element with a SOURCE set from a
DISPLAY phase sever interface and a TARGET set
from an ACTION phase sever interface. Both
fields should be Word documents.

The data-type for both the source and target
document must be SVR_BLOB.

DETAILS Yes The template details that should be set in the
document before presenting it to the user for
editing. The parameter must contain a
CONNECT element with a SOURCE set from a
DISPLAY phase sever interface. The details are
in XML format, described below.

The data-type for the template details must be
SVR_BLOB.

The template details must be provided in a simple XML format. An example of the format is shown
below:

Chapter 5. UIM Reference 97

It is recommended that your XML uses UTF-8 encoding to handle multi-byte characters. To preserve the
correct encoding it is important that any code that manipulates the XML honors the encoding of the
document. If the encoding is not honored, this can lead to characters being displayed incorrectly when
opened in Microsoft Word.

Each FIELD element identifies the name of a field in the document template and the value to which it
should be set.

While editing the document in Word, navigation within the originating browser window is disabled. An
alert message will be displayed if any attempt is made to navigate from the page. If the originating
browser window is closed, the Word document will stay open, but the editing session will be terminated.
Any unsaved changes will not be persisted in database.

5.10.5.1 User Machine Configuration
On first use of a new version of the integration applet the user will be presented with a popup dialog
window to confirm if the code from publisher "IBM Corporation" should be allowed to run. The
checkbox "Always trust the content from this publisher" should be selected and dialog confirmed, which
will ensure the widget executes successfully and the prompt is not displayed again on subsequent uses.
New versions of the widget will be downloaded to the user's machine automatically when the Cúram
application is upgraded to a new version.

When a user attempts to edit a Word document, execution of the integration applet may be blocked
depending on security settings of the Java browser plugin on that particular machine. This causes the
editing session to fail. If you experience this kind of issues issues, please check the following:
v Microsoft Word 2002 or higher should be installed on the user's machine.
v Word installation should be working as expected on the user's machine when started manually.
v The Web browser Popup blocker feature on the user's machine should be disabled.
v For supported browsers other than Internet Explorer if you are getting a message about the missing

Java plugin even though it is installed on the machine, verify the following option is enabled:Control
Panel -> Java -> Advanced -> Default Java for browsers-> Mozilla family

v Generally if you are getting message about the missing Java plugin even though it is installed on the
machine, check if a slide-down message is displayed in the small popup window that opens when you
attempt to edit a Word document. If so, then confirm that you want to always run code from this
publisher and reload the application in the browser.

Note to users of Windows 7 or higher: Word integration is currently only supported for
non-Administrator users. You may experience issues if the user is logged into Windows as Administrator
or if Internet Explorer is started in administration mode.

5.10.6 The FILE_UPLOAD Widget
The FILE_UPLOAD widget is a type of widget used to allow a user to specify a file on their local computer
to be uploaded to the server. It will appear as a text field with a Browse...4button beside it. The user can
click on the button to open a file dialog box with which they can select their file.

4. The actual appearance of the button depends on the browser being used and may be different from this. The button is created by
the browser and there is no control over its appearance.

<?xml version="1.0" encoding="UTF-8"?>
<FIELDS>

<FIELD NAME="personName" VALUE="John Smith"/>
<FIELD NAME="AddressLine1" VALUE="1 Main Street"/>
<FIELD NAME="AddressLine2" VALUE="Newtown"/>
<FIELD NAME="AddressLine3" VALUE="Erehwon"/>

</FIELDS>

Figure 44. Sample Template Details

98 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The normal widget attributes WIDTH and WIDTH_UNITS are not applicable for the FILE_UPLOAD widget. Some
browsers do not allow width of the filename entry box to be set for security reasons (it could be set to
zero width and thus be hidden while remaining active).

File Size Validation: There are settings to limit the maximum size of a file that is allowed to be
uploaded. The validations for these settings are carried out on the server side after the file is fully
uploaded to a temporary directory. Therefore, it should be kept in mind that large files could be
uploaded consuming a large amount of disk space. We recommend checking the file upload folder at
intervals to ensure disk space usage meets requirements.

There are three application-level configuration settings for the FILE_UPLOAD widget. These control how the
web-server handles the incoming files. Default settings are already present, but the default values can be
overridden by adding configuration settings to the ApplicationConfiguration.properties file. The
settings follow the same name = value format of all the other entries there. The settings are as follows:

uploadMaximumSize
This is the maximum size of a file that can be uploaded to the server. The number is specified in
bytes. If the number is negative, there is no limit to the file size. By default, the value is -1 (no
limit).

uploadThresholdSize
This is maximum number of bytes of the file's content that the web-server will hold in memory
while the file is being uploaded. Once the number of bytes uploaded exceeds this limit, the
web-server will begin to store the file on disk to save memory. By default, the value is 1024.

uploadRepositoryPath
This is the path to the folder on the disk in which the files will be stored as they are uploaded if
they exceed the threshold size. By default, the value is the JVM defined temp folder, so this folder
must be present on your system. If it is not on your system, you can create it or explicitly set the
uploadRepositoryPath to a folder of your choice.

The WIDGET element should have the TYPE attribute set to FILE_UPLOAD. The widget supports the following
WIDGET_PARAMETER elements:

Table 58. Parameters to the FILE_UPLOAD Widget

Parameter Name Required Description and Connections

CONTENT Yes This parameter indicates the target connection for the
actual content of the uploaded file.

A single CONNECT element with a TARGET that connects to a
property of an ACTION phase server interface is required.

FILE_NAME No This parameter represents the name of the file to be
uploaded. The parameter can be set to provide a default
name for the file to be uploaded, and can also supply the
name of the file chosen by the user.

If present, the parameter can include CONNECT elements for
either or both end-points: a SOURCE end-point for the initial
name of the file, and a TARGET end-point for the file that
was actually chosen. The SOURCE end-point can specify a
property of a DISPLAY phase server interface. The TARGET
end-point can specify a property of an ACTION phase server
interface.

Note: Many browsers do not allow a default value for the name
of a file to be uploaded. In this case, setting a SOURCE connection
will have no effect.

Chapter 5. UIM Reference 99

Table 58. Parameters to the FILE_UPLOAD Widget (continued)

Parameter Name Required Description and Connections

CONTENT_TYPE No This parameter indicates the target connection for the
content type of the uploaded file. The content type
describes the format of the uploaded data. For example, a
simple text file would have a content type of “text/plain”
and a Microsoft Word document would have a content
type of “application/msword”.

A single CONNECT element with a TARGET that connects to a
property of an ACTION phase server interface is required.

ACCEPTABLE_CONTENT_TYPES No A HTML page only allows certain types of content to be
uploaded by default (the actual default types are
dependent on the browser). This parameter can specify the
types of content that the page will accept. The value of the
parameter should be a comma-separated list of content
types. If there is more than one FILE_UPLOAD widget on a
page, the acceptable content types of all widgets are
pooled together and define what is acceptable for that
page (this is a limitation of the HTML specification.)

A single CONNECT element with a SOURCE that connects to a
TEXT property is allowed.

5.10.7 The FILE_DOWNLOAD Widget
A WIDGET with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink on the page. Clicking
on the hyperlink invokes a special FileDownload servlet included in the Cúram CDEJ that returns the
contents of a file from the database. The FileDownload servlet is configured with the server interface to
call to get the file contents and the parameters to pass to identify that file. The configuration is performed
in the curam-config.xml file. A single server interface can be configured for each page of the application
that includes a file download widget. An example configuration is shown in 5.9.3.1, “File Downloads,” on
page 54.

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink to
download a file. You should use the ACTION_CONTROL element when the hyperlink text is a fixed value
retrieved from the page's corresponding properties file. The FILE_DOWNLOAD WIDGET allows the hyperlink
text to be a dynamic value retrieved from a server interface property.

The FILE_DOWNLOAD widget can also be utilized within the Actions menu of the Context Panel. The menu
item TYPE must be set to FILE_DOWNLOAD. The menu item PAGE-ID must match the PAGE_ID attribute of the
FILE_DOWNLOAD widget configuration. The file identifier must be available as a page parameter in the
respective.tab file for the menu. This page parameter must match the PAGE_PARAM attribute of the
FILE_DOWNLOAD widget configuration.

The WIDGET element should have the TYPE attribute set to FILE_DOWNLOAD. The widget supports the
following WIDGET_PARAMETER elements:

100 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 59. Parameters to the FILE_DOWNLOAD Widget

Parameter Name Required Description and Connections

LINK_TEXT Yes This parameter indicates the source connection for
sourcing content of the link text which will appear on the
screen.

A single CONNECT element with a SOURCE that connects to a
property of a DISPLAY phase server interface is required. If
you want to use a fixed text value, you should use an
ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD instead
of a WIDGET.

PARAMS No This optional parameter supplies the FileDownload servlet
with the necessary parameters.

The parameter can include CONNECT elements with a SOURCE
end-point for the page parameter supplying a value for
the FileDownload servlet, and a TARGET end-point for
specifying the servlet parameter to supply the value to.
The SOURCE end-point should refer to a parameter on the
page declared by a corresponding PAGE_PARAMETER element.
The TARGET end-point can specify a parameter whose name
corresponds to a configured FileDownload servlet
parameter name. Thus both end-points should have a NAME
attribute set to PAGE.

5.10.8 The MULTISELECT Widget
The MULTISELECT widget allows you to specify that the first column in a LIST should contain a check-box
on each row and to allow several rows to be selected. A “Select All” feature can be enabled which
displays a check-box in the column header. See 3.12.13.14, “ENABLE_SELECT_ALL_CHECKBOX,” on
page 37 for further details.

Each check box can represents multiple entities in the row. For each check box that is selected, the fields
on that row will be compiled into a “ | ” delimited string and each row will be tab delimited and passed
as a page parameter when a specific type of page link is activated.

The UIM document in 5.10.8, “The MULTISELECT Widget” is an example of a page with multiple rows
with check boxes. When the form is submitted, a single string, containing multiple fields for each selected
row, is passed to the in$tabbedString field on the target page. Following the UIM is a detailed description
of each relevant part of the UIM that implement this functionality.

Chapter 5. UIM Reference 101

The main points to note in the above UIM example are:

<PAGE PAGE_ID="MultiSelectWidgetTest"
xsi:noNamespaceSchemaLocation="CuramUIMSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SERVER_INTERFACE NAME="DISPLAY" CLASS="MyBean"
OPERATION="Display" PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION" CLASS="MyBean"
OPERATION="Submit" PHASE="ACTION"/>

<LIST TITLE="List.Title">
<ACTION_SET BOTTOM="false">

<ACTION_CONTROL TYPE="SUBMIT">
<LINK PAGE_ID="MultiSelectWidgetResult">

<CONNECT>
<SOURCE NAME="ACTION"

PROPERTY="in$tabbedString"/>
<TARGET NAME="PAGE"

PROPERTY="referenceNumTabString"/>
</CONNECT>

</LINK>
</ACTION_CONTROL>

</ACTION_SET>
<CONTAINER LABEL="List.Multiselect.Header" WIDTH="5"

ALIGNMENT="CENTER">
<WIDGET TYPE="MULTISELECT"

HAS_CONFIRM_PAGE="true">
<WIDGET_PARAMETER NAME="MULTI_SELECT_SOURCE">

<CONNECT>
<SOURCE PROPERTY="personID" NAME="DISPLAY"/>

</CONNECT>
<CONNECT>

<SOURCE PROPERTY="caseID" NAME="DISPLAY"/>
</CONNECT>

</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_TARGET">

<CONNECT>
<TARGET PROPERTY="in$tabbedString" NAME="ACTION"/>

</CONNECT>
</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_INITIAL">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="out$tabString"/>

</CONNECT>
</WIDGET_PARAMETER>

</WIDGET>
</CONTAINER>

<FIELD LABEL="Field.Title.ReferenceNumber" WIDTH="35">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Title.Forename" WIDTH="30">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Surname" WIDTH="30">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="surname"/>

</CONNECT>
</FIELD>

</LIST>
</PAGE>

Figure 45. MULTISELECT Example

102 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v The WIDGET of TYPE equal to MULTISELECT is a child node of a CONTAINER element. The container's label
will be used as the column header unless the select all check box is enabled in curam-config.xml. See
3.12.13.14, “ENABLE_SELECT_ALL_CHECKBOX,” on page 37 for further details.

v Up to three WIDGET_PARAMETER elements are allowed within the WIDGET element. MULTI_SELECT_SOURCE
and MULTI_SELECT_TARGET are mandatory and MULTI_SELECT_INITIAL is optional.

v The MULTI_SELECT_SOURCE can have multiple CONNECT elements, each with one SOURCE element. Each
SOURCE is added to the “ | ” delimited string. If only one SOURCE element is specified the string will not
contain any “ | ” delimiters. Then each select row will be delimited by a tab character.

v The MULTI_SELECT_TARGET element must contain only one CONNECT element with only one TARGET
element. This TARGET element specifies the field on the action phase bean that the “ | ” and
tab-delimited string will be assigned to when the page is submitted.

v The MULTI_SELECT_INITIAL contains only one CONNECT element with a single SOURCE element. This
contains a “ | ” and tab-delimited string which specifies the rows that are selected when the page is
loaded.

v In the LIST element the ACTION_SET has one ACTION_CONTROL element.
v Optional HAS_CONFIRM_PAGE attribute is used to indicate that the page with MULTISELECT widget

submits to a confirmation page, where user selection is re-displayed for confirmation. See 5.10.8.1,
“Confirmation Pages”

Below is an example of the delimited string passed as a parameter to the specified page.

Table 60. Parameters to the MULTISELECT Widget

Parameter Name Required Description and Connections

MULTI_SELECT_SOURCE Yes This parameter can include multiple CONNECT
elements that must specify a SOURCE
end-point.

The SOURCE end-point must be a list property
containing the key data for the row.

MULTI_SELECT_TARGET Yes This parameter must include one CONNECT
element that must specify a TARGET end-point.

The TARGET end-point must be a string
property containing the key data for selected
rows.

MULTI_SELECT_INITIAL No This parameter must include one CONNECT
element that must specify a SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the rows
that are initially check when page is loaded.

5.10.8.1 Confirmation Pages
MULTISELECT widget has a specific mechanism allowing for confirming user selection on a separate
page. This confirmation page is supposed to re-display values selected by an user on the MULTISELECT
widget offering a choice to review these values and confirm them or re-visit the previous page to refine
the selection.

Confirming user selection can become a problem where there is a lot of selected values from a big
MULTISELECT widget to be passed to the confirmation page. There are request length limitations in
place, so in order to pass bigger amounts of data possible in this case different request mechanism
(request forwarding) has to be used.

101|case121 102|case122 103|case123

Chapter 5. UIM Reference 103

MULTISELECT widget with the selection to be confirmed is specified by HAS_CONFIRM_PAGE optional
attribute on the WIDGET element. The attribute is to be set to true. It is only valid for a widget of TYPE of
MULTISELECT.

Some things to keep in mind with confirmation pages:
v As request forwarding is used to carry the data in this case, the URL for the confirmation page will not

be displayed with the forwarding page URL shown instead.
v Even though the mentioned attribute is set on a MULTISELECT widget, the setting applies to the

whole page (as there is only one form per page). So, in case where multiple submit buttons exist on a
page with MULTISELECT widget to be confirmed, a confirmation step should be assumed for all of
these buttons (i.e., there is no way to have a submit with confirmation and another without
confirmation on that page).

v The confirmation is to be the immediate step carried out on submitting the form with user selection; no
resolve page should be used in the middle.

v It is recommended to have a read-only page for user selection confirmation, allowing user to cancel
and return to the previous page if the selection is to be refined.

5.10.9 The SINGLESELECT Widget
The SINGLESELECT widget allows you to specify that the first column in a LIST should contain a radio
button on each row. This widget functions in same way as the MULTISELECT widget, except you are
limited to selecting a single item via radio buttons instead of check boxes. See 5.10.8, “The
MULTISELECT Widget,” on page 101 for further details.

Table 61. Parameters to the SINGLESELECT Widget

Parameter Name Required Description and Connections

SELECT_SOURCE Yes This parameter must include multiple CONNECT
elements that must specify a SOURCE
end-point.

The SOURCE end-point must be a list property
containing the key data for the rows to be
displayed.

SELECT_TARGET Yes This parameter must include one CONNECT
element that must specify a TARGET end-point.

The TARGET end-point must be a string
property containing the key data for selected
row.

SELECT_INITIAL No This parameter must include one CONNECT
element that must specify a SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the row
that is initially checked when page is loaded.

5.10.10 The RULES_SIMULATION_EDITOR Widget
The RULES_SIMULATION_EDITOR widget is used to edit or create data used when simulating the execution
of a rule-set. The widget generates clusters of fields that correspond to the fields of Rules Data Objects
(RDO). A normal cluster is used to display the fields of a basic RDO and a multi-column cluster is used
for a list RDO. A standard list is not used, as a list RDO with many fields would result in a list that had
too many columns to be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO fields and, for list RDO s
displayed in a multi-column cluster, press a button to create additional columns for field values.

104 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The WIDGET element should have the TYPE attribute set to RULES_SIMULATION_EDITOR. The parameters to the
widget are as follows:

Table 62. Parameters to the RULES_SIMULATION_EDITOR Widget

Parameter Name Required Description and Connections

VALUES Yes The simulation data values. A previous set of
values can be displayed and edited or a new
set of values can be created.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY phase
bean field containing the values and a TARGET
set to an ACTION phase bean field that will
receive the edited values. If the SOURCE has no
values set, the editor will create them.

META_DATA Yes The simulation meta-data. The meta-data
contains details about the structure of the
RDO s necessary to generated the input fields.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY phase
bean field containing the meta-data.

ADD_BUTTON_CAPTION Yes The caption to use on the button displayed at
the bottom of each multi-column cluster and
used to add a new column of extra data to a
list RDO. If an image is also specified, this
caption is used as the “alt” text of the image.

The parameter should contain a CONNECT
element with a SOURCE that gets a localized
string from a TEXT source.

ADD_BUTTON_IMAGE No The path to the image file to use if an image
button is to be used in place of a standard
button. The path is relative to the WebContent
folder.

The parameter should contain a CONNECT
element with a SOURCE that gets a localized
string from a TEXT source.

The widget should be placed in a CLUSTER element. The clusters for the RDO s will be rendered within
that cluster. The SHOW_LABELS attribute should be set to false. The LABEL_WIDTH attribute of the CLUSTER
element will be inherited by the clusters that are generated by the widget, so it can be used to control the
layout. An ACTION_CONTROL element in the cluster or on the page should be added to save and process the
simulation data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will display empty fields. For list RDO
s, a single empty column of fields will be displayed; values can be entered and more columns added as
needed. If values are supplied, they will be displayed. In a multi-column cluster, pressing the defined
“add” button will add a single empty column to the right of any existing columns. All other empty
columns will be removed at this time, so deleting the values in one or more columns has the effect of
removing those columns from the multi-column cluster.

5.10.11 The IEG_PLAYER Widget
Consult the Cúram Intelligent Evidence Gathering (IEG) guide for details.

Chapter 5. UIM Reference 105

5.11 Dynamic UIM Cross Reference
Dynamic UIM as its name implies, is UIM that is cached in the resource store - rather than static UIM
(described in earlier sections) which resides on the file system - so that the server and client do not have
to be rebuilt in order for a page to be displayed in an application. All string values in dynamic UIM
documents must be externalized in properties files, which must also be cached in the resource store.

When creating a dynamic UIM document, only the PAGE element is a valid root element. All the UIM
features (elements and attributes) referenced in 5.9, “UIM Reference for Pages and Views,” on page 52 are
supported for dynamic UIM, except for those which are listed in Appendix A, “Unsupported Dynamic
UIM features,” on page 237.

Refer to Appendix B, “Maintaining Dynamic UIM Pages,” on page 243 on details about how to maintain
dynamic UIM pages in the Resource Store.

5.12 Dynamic UIM System Initialization
There are two ways in which the Dynamic UIM system can be initialized; when the application is started,
or the first time that there is a request for a Dynamic UIM page in the running application. By default the
Dynamic UIM system is initialized when the application is started. In order to override the default
initialization of the Dynamic UIM system - so that it is initialized when a Dynamic UIM page is first
requested - a configuration setting can be added to the ApplicationConfiguration.properties file. This
setting follows the same name = value format of all the other entries there. It should be set as follows:

dynamicUIMInitModelOnStart
This value should be set to false in order to override the default setting.

If a developer intends to access dynamic UIM pages in the application, then the default initialization of
the dynamic UIM system must be used. Otherwise, if the developer is not using dynamic UIM pages and
finds their Tomcat start-up time is too slow, the default initialization of the dynamic UIM should be
overridden, as described above.

106 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 6. Application Configuration

6.1 Objective
This chapter provides you with all the information about application configuration files required to
develop Cúram web client applications.

6.2 Prerequisites
You should be familiar with the basic concepts of Cúram CDEJ development, as outlined in Chapter 2,
“Concepts,” on page 3, in addition to the Cúram User Experience Guidelines. You should also have some
knowledge of the basic format of XML documents.

In addition, the Working with the Cúram User Interface guide is a companion guide to this document and
illustrates the usage of the features outlined in this chapter using concrete examples.

6.3 Introduction
An application in the Cúram user interface is a collection of user interface elements, predominantly based
on UIM.5pages, combined to create specific content for a particular user or role. An application comprises
of an application banner and one or more application sections. Each section, contains an optional section
shortcut panel and one or more tabs. A tab represents a business object or logical grouping of
information.

6.3, “Introduction” illustrates a functional overview of the User Interface Elements within a sample
application page.

5. Consult Chapter 5, “UIM Reference,” on page 51 for more information on User Interface Meta-data.

Figure 46. Application User Interface Overview

© Copyright IBM Corp. 2012, 2013 107

The following sections of this chapter outline how to develop an application, using the relevant XML
configuration files.

6.4 Configuration Files
Applications, sections, tabs and their relevant elements are defined using XML based configuration files.
These files are located in the <server-dir>\components\<component-name>\clientapps directory. 3.12.12,
“Application Configuration Files,” on page 34 should be consulted for more information on the
clientapps directory, and best practices for working with application configuration files.

Each configuration file has a specific extension and an associated schema file detailing the supported
attributes. A summary of the file extensions and related schema files is available in 6.4, “Configuration
Files.”

Table 63. Configuration Files

File
Extension Schema File Description

.app application-view.xsd Configuration file to define an application, including the
application banner, referenced sections and application
search.

.sec section.xsd Configuration file to define the referenced tabs and
section shortcut panel in a section.

.ssp section-shortcut-panel.xsd Configuration file to define the contents of a section
shortcut panel.

.tab tab.xsd Configuration file to define a tab, including the context
panel and referenced navigation and actions menu.

.nav navigation.xsd Configuration file to define the content of a tab
navigation bar.

.mnu menubar.xsd Configuration file to define the content of a tab actions
menu.

The schema files are all located in the <sdej-dir>\lib directory and can be used during development for
validation in any XML editor.

The configuration files for applications, sections and tabs are processed as part of the database target and
stored on the database for use at runtime. A standalone target, inserttabconfiguration, is also available
for processing the configuration files only. This command is useful during development because it is
more efficient than the full database target. For more information on these targets please consult the
Cúram Server Developers Guide.

The inserttabconfiguration validates all the configuration files, ensuring that they conform to the XML
schema, in addition to ensuring that all mandatory elements and attributes are specified. All files are
processed before the build fails, listing all validation errors.

6.5 Applications

6.5.1 Introduction
An application is a particular view of the Cúram client defined for a specific user or role. The application
definition file details the application banner and a reference to the sections that are part of the
application.

An application banner provides the user with the context of the application they are currently accessing.
The banner contains the following elements:

108 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v The name of the application. Refer to User Interface Element 1.1 in 6.3, “Introduction,” on page 107 to
see an example of an application name configured in the User Interface.

v The role of the user that this application is intended for.
v A welcome message for the user. Refer to User Interface Element 1.2 in 6.3, “Introduction,” on page

107 to see an example of a welcome message configured in the User Interface.
v An application menu, which includes links to the User Preferences dialog, application help, the about

box, and to logout of the application. Refer to User Interface Element 1.3 in 6.3, “Introduction,” on
page 107 to see an example of an application menu configured in the User Interface.

v A quick search facility for the application. Refer to User Interface Element 1.4 in 6.3, “Introduction,” on
page 107 to see an example of an application search configured in the User Interface.

The application search is an optional addition to the application banner which provides a quick search
facility. The application search supports:
v A text entry field where the user can enter their search criteria.
v An optional search type combo box, which lists the types of object which can be searched on.
v A search button to trigger the actual search.
v An optional link to more search options.

Refer to User Interface Element 1.4 in 6.3, “Introduction,” on page 107 to see an example of a fully
configured application search in the User Interface. This example has both the optional search type
combo box, and optional link with more search options enabled

6.5.2 Definition
An application is defined by creating an XML file with the extension .app in the clientapps directory.
The root XML element in the .app file is the application element and the attributes allowed on this
element are defined in 6.5.2, “Definition.” The application banner is configured using these attributes.

Table 64. Attributes of the application Element

Attribute Description

id Mandatory.

The unique identifier for the application, which must match the name of the
file. This id matches to an APPLICATION_CODE entry and is used to
determine the application to display for a particular user.

See 6.5.5, “Associate an Application with User,” on page 115 for more
information.

title Optional.

The text for the title that will be displayed as part of the application banner. The
attribute must reference an entry in the associated properties file.

sub-title Optional.

The text for the subtitle that will be displayed as part of the application banner.
The attribute must reference an entry in the associated properties file.

user-message Optional.

The text for the welcome message that will be displayed as part of the
application banner. The attribute must reference an entry in the associated
properties file.

The text can contain a placeholder, %user-full-name, which will be replaced
with the users full name. The full name is determined based on the FirstName
and Surname fields on the Users database table.

Chapter 6. Application Configuration 109

Table 64. Attributes of the application Element (continued)

Attribute Description

hide-tab-container Optional.

When set to true, this indicates that there is only one section in the application
and the section tab should not be displayed. The default is false.

header-type Optional.

This indicates that an additional header is to be used and what type of content
will be provided. The values supported are static and dynamic.

See 6.5.3, “Optional Header,” on page 113 for more information.

header-source Optional.

A reference to the source that will be used as an additional header. The value of
this depends on the value of header-type. For static content, the attribute
should reference a filename of a file in the resource store. For dynamic content,
the attribute should reference a custom widget.

See 6.5.3, “Optional Header,” on page 113 for more information.

The application element supports the child elements detailed in 6.5.2, “Definition,” on page 109.

Table 65. Supported Child Elements of the application Element

Element Description

section-ref 1..n.

The application must contain a minimum of one section-ref element. Each
section-ref element references a section to be included in the application. See
6.5.2.3, “section-ref,” on page 113 for more information.

application-menu Optional.

Allows for the optional addition of links to the application banner. The links
supported include the user preferences editor, application logout and help. See
6.5.2.1, “application-menu” for more information.

application-search Optional.

Allows for the optional addition of a quick search facility on the application
banner. See 6.5.2.2, “application-search,” on page 111 for more information.

6.5.2.1 application-menu
The application menu forms part of the application banner, and allows for the optional addition of up to
three links, specifically a link to the application help, a link to logout of the application and a link to
open the user preferences dialog. Refer to User Interface Element 1.3 in 6.3, “Introduction,” on page 107
to see an example of an application menu configured in the Application Banner.

Each link is defined as a child element of application-menu element and the supported elements are
detailed in 6.5.2.1, “application-menu.”

110 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 66. Supported Child Elements of the application-menu Element

Element Description

preferences Optional.

Defines a link to the user preferences dialog. This dialog allows a user to
configure customizations for the application view.

The title of the preferences link is defined using the supported title attribute.
The value of the title attribute should be a reference to an entry in the
associated properties file.

help Optional.

Defines a link to the general help for the Cúram application.

The title of the help link is defined using the supported title attribute. The
value of the title attribute should be a reference to an entry in the associated
properties file.

logout Optional.

Defines a link to allow a user to end their session and logout of the application.

The title of the logout link is defined using the supported title attribute. The
value of the title attribute should be a reference to an entry in the associated
properties file.

6.5.2.2 application-search
Refer to User Interface Element 1.4 in 6.3, “Introduction,” on page 107 to see an example of a fully
configured application search in the User Interface.

The application search, is defined using the application-search element. In its simplest form, the
application-search element requires two attributes, which are used when there is only one type of
search and no combo box is to be displayed:

Table 67. Attributes of the application-search Element

Attribute Description

default-search-page Optional.

A reference to the UIM page that will be displayed when the search button is
clicked.

When this attribute is used, it is assumed there is only one type of search and
no search type combo box is displayed.

initial-text Optional.

The text to be displayed in the text entry field as a prompt. This text should
describe what type of information can be provided for the search, e.g. Enter a
participant reference number.

The attribute must reference an entry in the associated properties file.

The application-search element supports two child elements, detailed in Table 68 on page 112, which are
used for more complex style searches.

Chapter 6. Application Configuration 111

Table 68. Supported Child Elements of the application-search Element

Element Description

search-pages Optional.

Defines multiple types of search. See “search-pages” for more information.

further-options-link Optional.

Defines a link to a more advanced search page. See “further-options-link” on
page 113 for more information.

search-pages

The search-pages element is used when multiple search types are required, e.g. Person, Case, or types of
search, e.g. Person Surname, Person Reference Number. Each search type is listed in a combo box and a
different prompt is displayed in the text entry field depending on the selected entry in the combo box.

The search-pages element supports the child elements detailed in Table 69.

Table 69. Supported Child Elements of the search-pages Element

Element Description

search-page 1..n.

Defines a single search type. The attributes of the search-page element are
defined in Table 70.

Note: Where the search-pages element is used to define multiple types of search, the initial-text and
default-search-page must not be specified.

Table 70. Attributes of the search-page Element

Attribute Description

type Mandatory.

The unique identifier for the type of search. It will be passed as a parameter
(searchType) to the UIM page invoked when the application search is
performed.

description Mandatory.

The text to be displayed for the search option in the combo box. The attribute
must reference an entry in the associated properties file.

page-id Mandatory.

A reference to a UIM page that will be displayed when the search button is
clicked.

initial-text Mandatory.

The text to be displayed as a prompt in the text entry field when that business
object is selected in the combo box. The attribute must reference an entry in the
associated properties file.

default Optional.

A boolean indicating if this entry is the default entry to be selected in the
combo box. One, and only one, entry should have the default specified as true.

112 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note: Blank values are not allowed in the search type combo box, so if the user requires a generic search
(i.e. across all business objects), they must provide configuration data for this. For example, a business
object of "All" linked to a page that will carry out the search across all the business objects that have been
defined.

Search pages are linked using a reference to the UIM page to be opened when the search button is
clicked. The UIM pages defined for a search can expect a number of parameters to be passed to them and
used as part of the search:
v searchText

The search text that has been entered in the text entry field.
v searchType

The selected search type. This is only applicable where multiple search types have been defined.

For more information on creation of UIM pages see Chapter 5, “UIM Reference,” on page 51

further-options-link

In addition to multiple search types, the application search also supports a link to a more advanced
search page. This is specified using the further-options-link element, which requires the following
attributes:

Table 71. Attributes of the further-options Element

Attribute Description

description Mandatory.

The text of the link. The attribute must reference an entry in the associated
properties file.

page-id Mandatory.

A reference to a UIM page that will be displayed when the link is clicked. This
UIM page should require no page parameters.

6.5.2.3 section-ref
An application must reference a minimum of one, and up to a maximum of five sections, using the
section-ref element. See 6.6, “Sections,” on page 116 for more information.

Table 72. Attributes of the section-ref Element

Attribute Description

id Mandatory.

The id of a section configuration file (.sec).

6.5.3 Optional Header
A custom header can be specified in addition to, or instead of, the application banner. The optional
header is defined using the header-type and header-source attributes on the application element and
can be defined as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional attributes of the
applications element, as listed in 6.5.2, “Definition,” on page 109, should be omitted.

Chapter 6. Application Configuration 113

The header-type attribute is restricted to the values static or dynamic. Setting a static value indicates that
a HTML fragment is to be placed within the header. In this instance, the header-source attribute should
reference a file that is stored in the resource store. This file must be stored with a content type of
text/xml.

If the header-type attribute is set to dynamic, the header-source attribute should reference the custom
widget to be used to display the content. This reference will be the same as that specified with the
relevant styles-config.xml. For more information on creating and referencing custom widgets please
consult the Cúram Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start with a <div> element.

6.5.4 Example
6.5.4, “Example” details an example application, which would be stored in a file called SimpleApp.app.

Note: In the above example a namespace, ac has been declared and all elements are prefixed with the
namespace. This is recommended practice. Consult 3.12.12, “Application Configuration Files,” on page 34
for more information.

The SimpleApp.app should have a corresponding SimpleApp.properties file, which details the localizable
content. For example:

<?xml version="1.0" encoding="UTF-8"?>
<ac:application

id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>

<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Figure 47. Simple.app

114 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

In the above example, the Cúram logo image is referencing the default logo image shipped with the
Cúram Client Development Environment (CDEJ). A custom logo can be added to the Images folder in the
component and referenced directly as Images/my-custom-logo.png.

Note: In the properties file for the SimpleApp.app example, the ú in Cúram is added using the Unicode
escape sequence. An alternative approach is to add the ú directly and ensure the file is saved in the
UTF-8 format. Both approaches are supported for the application configuration files.

6.5.5 Associate an Application with User
A user must be mapped to the application and home page to display when they first login. The home
page is the initial page, displayed in its associated tab. This is done using the following mapping:
v APPLICATIONCODE field on the Users database table

maps to
v an entry in the APPLICATION_CODE codetable

maps to
v the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the Users database table is used to
determine both the application and home page to display.

The value field of the code table entry must match the name of the application (.app) file to use and the
description field of the code table entry indicates the name of the UIM page to be displayed as the home
page. The following example shows a subset of a code table definition:

Note: For more information on code tables see the Cúram Server Developers Guide.

In this example, a code table entry SimpleApp has been defined, with a description of SimpleHome. The
code SimpleApp, matches the id of the SimpleApp.app example. The description, SimpleHome, indicates the

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=Cúram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout
Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">

<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">

<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>

</locale>
</code>

</codetable>

Figure 48. CT_APPLICATIONCODE.ctx

Chapter 6. Application Configuration 115

UIM page to be displayed as the home page. This page must be associated with the relevant application.
For more details on how to associate pages with an application, see 6.11, “Opening Tabs and Sections,”
on page 139.

6.6 Sections

6.6.1 Introduction

An application can contain one or more application sections, where a section is a collection of tabs and an
optional section shortcut panel. A section shortcut panel supports quick links to open tabs and dialogs
within a section.

It is recommended that a maximum of five sections be used, each representing a different set of activities
that can be performed by a user. The five recommended types of sections are:

Refer to User Interface Element 2 in 6.6.1, “Introduction” to see sections configured in the User Interface.
The section that is currently open is a lighter shade of color than the other sections.
v Home

The Home section is intended to contain only one tab, with a single page that acts as a home page for
the user. The home page should provide a summary of significant information and quick links to
common activities.

v Workspace

The Workspace section is where the majority of tasks relating to the user role will be performed.
v Inbox

The Inbox section represents the area of the application where the user can access the work currently
allocated to them.

v Calendar

The Calendar section contains a calendar of the users activities and schedules.
v Reports

The Reports section contains a number of reports relevant for the particular user.

Figure 49. Application User Interface Overview

116 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

6.6.2 Definition
A section is defined by creating an XML file with the extension .sec in the clientapps directory. The root
XML element in the .sec file is the section element and the attributes allowed on this element are
defined in 6.6.2, “Definition.”

Table 73. Attributes of the section Element

Attribute Description

id Mandatory.

The unique identifier for the section, which must match the name of the file.
This is used when referenced from an application (.app) configuration file.

title Mandatory.

The text for the title that will be displayed on the section tab. The attribute must
reference an entry in the associated properties file.

hide-tab-container Optional.

When set to true, this indicates that there is only one tab in the section and the
tab bar should not be displayed. The default is false.

default-page-id Optional.

A reference to a UIM page that should be opened by default when the section is
opened. The UIM page referenced must be directly associated with a tab. For
more information on associating pages with tabs, consult 6.8, “Tabs,” on page
121.

This attribute ensures that an anchored default tab is always open when the
section is opened. An anchored tab does not contain an option to close it.

Note: The default-page-id attribute must not be used on the "Home" or first section of an application.
The user's home page, and its associated tab are opened automatically when a user logs into an
application. See 6.5.5, “Associate an Application with User,” on page 115 for more information.

The section element supports the child elements detailed in 6.6.2, “Definition.”

Table 74. Supported Child Elements of the section Element

Element Description

tab 1..n.

A reference to a tab to be included in this section. See 6.6.2.1, “tab” for more
information.

shortcut-panel-ref Optional.

A reference to the section shortcut panel to be included in this section. See
6.6.2.2, “shortcut-panel-ref,” on page 118 for more information.

6.6.2.1 tab
A section is a collection of tabs and to associate a tab with a section the tab element should be used. A
section must define at least one tab element and tabs must only ever be referenced by one section in any
application. This means that tabs can be reused in different sections, as long as the section is included in
a separate application.

The attributes of the tab element are detailed in 6.6.2.1, “tab”

Chapter 6. Application Configuration 117

Table 75. Attributes of the tab Element

Attribute Description

id Mandatory.

The id of a tab configuration file (.tab). See 6.6.2.1, “tab,” on page 117 for more
information.

6.6.2.2 shortcut-panel-ref
The shortcut-panel-ref element is used to define the section shortcut panel to add to the section. Only
one shortcut-panel-ref should be specified per section. See 6.7, “Section Shortcut Panel” for more
information.

The attributes of the shortcut-panel-ref element are detailed in 6.6.2.2, “shortcut-panel-ref”

Table 76. Attributes of the shortcut-panel-ref Element

Attribute Description

id Mandatory.

The id of a section shortcut panel (.sec). See 6.7, “Section Shortcut Panel” for
more information.

6.6.3 Example
6.6.3, “Example” details an example section, which would be stored in a file called
SimpleWorkspaceSection.sec.

The SimpleWorkspaceSection.sec should have a corresponding SimpleWorkspaceSection.properties file,
which details the localizable content. For example:

6.7 Section Shortcut Panel

6.7.1 Introduction
Each section can optionally contain a section shortcut panel which provides quick links to open content
and perform actions within the section. The menu items in the shortcut panel can be divided into
categories. Refer to User Interface Element 7 of 6.6.1, “Introduction,” on page 116 to see an example of a
configured section shortcut panel.

<?xml version="1.0" encoding="UTF-8"?>
<sc:section

id="SimpleWorkspaceSection"
title="SimpleWorkspaceSection.title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="Person" />
<sc:tab id="Employer" />
<sc:tab id="Case" />
...

</sc:section>

Figure 50. SimpleWorkspaceSection.sec

SimpleWorkspaceSection.title=Workspace

118 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

When a section is first opened, the section shortcut panel is collapsed by default. The double arrow
beside the title of the shortcut panel can be used to expanded, and subsequently collapse, the panel.

Menu items in a shortcut panel which open modal dialogs are identified by an ellipses (...), which
indicates that further actions are required. Refer to User Interface Element 7.1.1 of 6.6.1, “Introduction,”
on page 116 to see an example of a configured menu item in an expanded category of a shortcut panel.

6.7.2 Definition
A section shortcut panel is defined by creating an XML file with the extension .ssp in the clientapps
directory. The root XML element in the .ssp file is the section-shortcut-panel element and the attributes
allowed on this element are defined in 6.7.2, “Definition.”

Table 77. Attributes of the section-shortcut-panel Element

Attribute Description

id Mandatory.

The unique identifier for the section shortcut panel, which must match the
name of the file. This is used when referenced from a section (.sec)
configuration file.

title Mandatory.

The text for the title that will be displayed for the sections shortcut panel, both
when it is expanded and when it is collapsed. The attribute must reference an
entry in the associated properties file.

The section-shortcut-panel element supports the child elements detailed in 6.7.2, “Definition.”

Table 78. Supported Child Elements of the section-shortcut-panel Element

Element Description

nodes Mandatory.

Groups together multiple child node elements. See 6.7.2.1, “node” for more
information.

6.7.2.1 node
The node element is used to represent menu items and categories used within the shortcut panel. There
are three supported types of node element and the type attribute is used to define this:
v group

A group node in a shortcut panel represents a category and is used to categorize a number of menu
items as described in 6.7, “Section Shortcut Panel,” on page 118. “Registration” are defined using node
Each category is defined using node elements of type group. This type of node supports child node
elements of type leaf and separator.

v leaf

A leaf in a shortcut panel is a menu item within a category, which can open a page in an existing or
new tab, or open a modal dialog6. Where a menu item opens a modal dialog, an ellipsis is appended to
the text displayed to indicate more information is required.

v separator

A separator can be used to add extra space between menu items within a node of type group (i.e. a
category).

6. A modal dialog is a UIM page opened in a new window, where the parent window cannot be accessed while it is open. Consult
5.9.22.3, “Modal Dialogs,” on page 78 for more information.

Chapter 6. Application Configuration 119

The attributes supported by the node element are detailed in 6.7.2.1, “node,” on page 119.

Table 79. Attributes of the node Element

Attribute Description

id Mandatory.

The identifier for the node. This must be unique within the .ssp file.

type Mandatory.

The type of node, where three types are supported:

v group

v leaf

v separator

title Mandatory.

The text for the title of the node. The attribute must reference an entry in the
associated properties file.

Note: This is not required where the type is specified as separator.

page-id Optional.

A reference to the UIM page to be displayed when the menu item is selected.
This is only applicable for node elements with a type of leaf.

open-as Optional.

Where set, this attribute indicates the UIM page to be displayed when the menu
item is selected should be opened as a modal dialog. The only value supported
is modal.

This is only applicable for node elements with a type of leaf.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically appended to the
menu item which opens in a modal dialog should be disabled. The default is
true. The attribute is applicable only where the type attribute is leaf and the
open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not been set
will not add the ellipsis to the menu item.

6.7.3 Example
6.7.3, “Example” details an example section shortcut panel, which would be stored in a file called
SimpleShortcutPanel.ssp.

120 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The SimpleShortcutPanel.ssp should have a corresponding SimpleShortcutPanel.properties file, which
details the localizable content. For example:

6.8 Tabs

<?xml version="1.0" encoding="UTF-8"?>
<sc:section-shortcut-panel

id="SimpleShortcutPanel"
title="SimpleShortcutPanel.Title">

<sc:nodes>
<sc:node id="Searches" type="group"

title="Searches.Title">
<sc:node id="PersonSearch" type="leaf"

page-id="Person_search"
title="PersonSearch.Title" />

...
</sc:node>
<sc:node id="QuickLinks" type="group"

title="QuickLinks.Title">
...

</sc:node>
<sc:node id="Registration" type="group"

title="Registration.Title">
<sc:node id="RegisterEmployer" type="leaf"

page-id="Employer_register"
title="RegisterEmployer.Title"
open-as="modal"/>

...
<sc:node type="separator" id="separator"/>
...

</sc:node>

</sc:nodes>
</section-shortcut-panel>

Figure 51. SimpleShortcutPanel.ssp

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

Chapter 6. Application Configuration 121

6.8.1 Introduction
A tab typically represents a business object, e.g. a Case or a Participant, though it can also be used to
represent a logical grouping of information. Refer to User Interface Element 3 of 6.8, “Tabs,” on page 121
for an example of a configured tab in an application.
v Tab Title Bar

The title bar contains text to identify the current tab. Refer to User Interface Element 4 of 6.8, “Tabs,”
on page 121 for an example of a tab title bar configured in an application.

v Tab Actions Menu

The actions menu provides actions associated with the business object represent by the tab. The actions
can be a mix of menu items and other menus, each of which links to a page that will be displayed in
the tab content area or a modal dialog. Refer to User Interface Element 5 of 6.8, “Tabs,” on page 121 for
an example of a tab actions menu configured in an application.

v Tab Context Panel

The context panel is typically used to present summary information about the business object. This
summary information is always available, no matter what page is displayed in the content area. Refer
to User Interface Element 6 of 6.8, “Tabs,” on page 121 for an example of a tab context panel
configured in an application.
The context panel can be collapsed and expanded to provide more space for the tab content area.

v Tab Content Area

A tab comprises of one or more pages of information. These pages are displayed in the content area
and can be navigated using the navigation bar.
– Navigation Bar

The navigation bar contains a number of navigation tabs, each of which link to a page or set of
pages that are part of the tab. The navigation bar can be used to separate the business object
information into logical groupings of pages. Refer to User Interface Element 8 of 6.8, “Tabs,” on
page 121 for an example of a navigation bar configured in an application.

– Page Group Navigation Bar

Figure 52. Application User Interface Overview

122 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with the
first one selected by default. Refer to User Interface Element 16 of 6.8, “Tabs,” on page 121 for an
example of a page group navigation bar configured in an application.

– Page Content

Selecting a navigation tab or page group entry will display the corresponding UIM page content
within the content area. Refer to User Interface Element 15 of 6.8, “Tabs,” on page 121 for an
example of a page content area configured in an application.

In addition to the above elements a Tab also supports an optional smart panel. A smart panel is an
optional panel, displaying a UIM page, that is added to the right of the content area in a tab. It can be
collapsed and expanded, and is collapsed by default. In addition, the size of the smart panel can be
increased and decreased when it is expanded. Refer to User Interface Element 20 of 6.8, “Tabs,” on page
121 for an example of a smart panel configured in an application.

Finally, a tab supports the ability to dynamically enable/disable and hide/show entries in the tab actions
menu, tab navigation bar and page group navigation bar. This dynamic content is updated based on
configured refresh events.

A refresh event updates the specified part of the tab based on the submit of a modal dialog page or when
a specific UIM page is loaded in the content area. For more information on configuring refresh events
consult 6.8.2.6, “tab-refresh,” on page 126.

6.8.2 Definition
A tab is defined by creating an XML file with the extension .tab in the clientapps directory. The root
XML element in the .tab file is the tab-config element and the attributes required by this are defined in
6.8.2, “Definition.”

Table 80. Attributes of the tab-config Element

Attribute Description

id Mandatory.

The identifier for the tab, which must match the name of the file.

The id attribute is used to reference the tab configuration from section
configuration files (.sec). See 6.6.2.1, “tab,” on page 117 for more information.

The tab-config element supports the child elements detailed in 6.8.2, “Definition.”

Table 81. Supported Child Elements of the tab-config Element

Element Description

page-param 0..n.

Defines a parameter required when opening a tab. See 6.8.2.1, “page-param,” on
page 124 for more information.

menu Optional.

A reference to the actions menu configuration. See 6.8.2.2, “menu,” on page 124
for more information.

context Mandatory.

A reference to the UIM page to be used as the tab context panel, or alternatively
details of the tab name and title. See 6.8.2.3, “context,” on page 124 for more
information.

Chapter 6. Application Configuration 123

Table 81. Supported Child Elements of the tab-config Element (continued)

Element Description

navigation Mandatory.

A reference to the tab navigation configuration, or alternatively the name of the
UIM page that will be opened in this tab. See 6.8.2.4, “navigation,” on page 125
for more information.

smart-panel Optional.

A reference to the UIM page to be used for the smart panel. See 6.8.2.5,
“smart-panel,” on page 125 for more information.

tab-refresh Optional.

Defines what part of a tab should refresh under what circumstances. See 6.8.2.6,
“tab-refresh,” on page 126 for more information.

6.8.2.1 page-param
The page-param element allows for multiple page parameters to be defined for a tab. Each page
parameter defined maps to the name of a name-value pair that will be passed to all UIM pages that are
opened from both the tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For example, a tab is defined for a
Person object. Two instances of this tab can be opened, one for James Smith and one for Linda Smith. The
instances are uniquely identified by the page parameter, id, which has been defined for the tab. This id
parameter maps to the unique id for the person and will be different for both James Smith and Linda
Smith.

For more information on the behavior associated with opening tabs see 6.11, “Opening Tabs and
Sections,” on page 139.

Table 82. Attributes of the page-param Element

Attribute Description

name Mandatory.

A unique identifier for the page parameter.

6.8.2.2 menu
The menu element contains a reference to the tab action menu configuration which is maintained in a
separate configuration file, (.mnu). See 6.9, “Tab Actions Menu,” on page 128 for more information.

Table 83. Attributes of the menu Element

Attribute Description

id Mandatory.

A reference to the id of a tab action menu configuration file (.mnu).

6.8.2.3 context
The context element defines a context panel by referencing a UIM page which forms the content of the
context panel. The element is mandatory and if no context panel is to be defined, then a tab name and
tab title must be specified.

The tab title bar and tab name can be populated with data using either the context panel UIM page or
using the tab-name and tab-title attributes in the .tab file. Where the context panel UIM page is used
only to add content to the tab name and tab title, the height attribute should be set to zero.

124 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

For more information on defining context panel UIM pages see 6.8.3, “Context Panel UIM,” on page 127

Table 84. Attributes of the context Element

Attribute Description

page-id Optional.

A reference to the UIM page that will be used for the content of the context
panel. If this is not specified, the tab-name and tab-title attributes must be
specified.

tab-name Optional.

The text that will be displayed in the tab bar. The attribute must reference an
entry in the associated properties file.

tab-title Optional.

The text that will be displayed in the tab title bar. The attribute must reference
an entry in the associated properties file.

height Optional.

The pixel height of the context panel. This is only relevant if a page-id attribute
has been specified to define a context panel.

The default value if not specified is 150 pixels.

6.8.2.4 navigation
The navigation element defines what pages will be opened within the tab. A single page can be defined
using the page-id attribute, or multiple pages can be defined using a reference to the tab navigation
configuration file (.nav). For more information on tab navigation configuration see 6.10, “Tab
Navigation,” on page 134.

Note: The navigation element is mandatory and one of either page-id or id must be specified.

Table 85. Attributes of the navigation Element

Attribute Description

page-id Optional.

A reference to the UIM page that will be opened in the tab. When a link to this
UIM page is selected, it will automatically trigger the page to be opened in a
new tab.

id Optional.

A reference to a tab navigation configuration file (.nav). See 6.10, “Tab
Navigation,” on page 134 for more information.

6.8.2.5 smart-panel
The content of the smart panel is defined by a UIM page, referenced by the page-id attribute. Like the
context panel, the UIM elements that can be used are limited. See 6.8.3, “Context Panel UIM,” on page
127 for details of the limitations of the smart panel UIM. Refer to User Interface Element 20 of 6.8,
“Tabs,” on page 121 for an example of a smart panel configured in an application.

Chapter 6. Application Configuration 125

Table 86. Attributes of the smart-panel Element

Attribute Description

page-id Mandatory.

A reference to the UIM page that will be displayed in the smart panel of the
tab.

title Mandatory.

The text for the title that will be displayed for the smart panel, both when it is
expanded and when it is collapsed. The attribute must reference an entry in the
associated properties file

width Optional.

The initial width of the smart panel when it is expanded. The default value if
this attribute is not set is 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be expanded or collapsed by
default. The default value if this attribute is not set is true.

6.8.2.6 tab-refresh
By default, only the content area of a tab is refreshed when a modal dialog is submitted. When a modal
dialog is closed/cancelled, i.e. no action is performed, the content area is not refreshed.

The tab-refresh element allows different aspects of a tab to be refreshed. The tab actions menu, tab
navigation and context panel can all be refreshed based on two events. The first is when a specific UIM
page is loaded in the content area and the second when a UIM page is submitted from a modal or the
content area.
v Tab Actions Menu

Refreshing the tab actions menu results in updating the entries in the menu that can be dynamically
disabled or hidden. For more information on dynamic support in the tab actions menu see 6.9.3,
“Dynamic Support,” on page 132.

v Tab Navigation

Refreshing the tab navigation results in updating the entries in the tab navigation bar and page group
navigation bar that can be dynamically disabled or hidden. For more information on dynamic support
in tab navigation see 6.10.3, “Dynamic Support,” on page 138.

v Context Panel

Refreshing the context panel simply reloads the UIM page displayed in the context panel.
v Content Area

Refreshing the content area reloads the UIM page displayed in the content area. This refresh option is
available for use only where a modal dialog has been opened from the list dropdown panel of a nested
expandable list.
By default only the parent of list dropdown panel is updated when the modal dialog is submitted.
Where the list dropdown panel exists in a nested expandable list, this will result in the parent list
reloading and not the entire content area.
Under some circumstances, the entire content area may require updating and this option can be used
to achieve this for this specific scenario.

The two different type of refresh events can be configured using the child elements detailed in Table 87
on page 127.

126 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 87. Supported Child Elements of the tab-refresh Element

Element Description

onload 1..n.

Defines a refresh event, where when the specified page is loaded in the content
area, the defined parts of the tab are updated.

onsubmit 1..n.

Defines a refresh event, where when the specified page is submitted from a
modal or in the content area, the defined parts of the tab are updated.

onsubmit/onload

The onsubmit and onload elements both require the same set of attributes, as described in Table 88.

Table 88. Attributes of the onload/onsubmit Elements

Attribute Description

page-id Mandatory.

A reference to the UIM page to associate with the refresh event.

context Optional.

Boolean indicating if the context panel should be update when the specified
page is loaded or submitted.

menu-bar Optional.

Boolean indicating if the tab actions menu should be updated when the
specified page is loaded or submitted. See 6.9.3, “Dynamic Support,” on page
132 for more information.

navigation Optional.

Boolean indicating if the tab navigation should be updated when the specified
page is loaded or submitted. See 6.10.3, “Dynamic Support,” on page 138 for
more information.

main-content Optional.

Boolean indicating if the main content area should be updated when the
specified page is loaded or submitted.

This type of refresh event must only be used for modal dialogs that are opened
from a list dropdown panel in a nested expandable list.

6.8.3 Context Panel UIM
A context panel is a specific type of UIM page identified by the PAGE element containing an attribute of
TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements. Specifically:
v SERVER_INTERFACE can only be used with a DISPLAY phase
v ACTION_CONTROL can only be used with an ACTION type
v The following elements are not supported:

– MENU

– SHORTCUT_TITLE

– JSP_SCRIPTLET

Chapter 6. Application Configuration 127

– DESCRIPTION

– INFORMATIONAL

– SCRIPT

– INCLUDE

– VIEW

Note: These same limitations apply to the smart panel UIM pages, but are not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages, which allows for dynamic
information to be added to the tab name. In addition the PAGE_TITLE element is used to add information
to the tab title bar. For more information on these elements see 5.9.31, “TAB_NAME,” on page 92 and
5.9.27, “PAGE TITLE,” on page 89.

6.8.4 Example
6.8.4, “Example” details an example tab configuration file, which would be stored in a file called
SimpleTab.tab.

The SimpleTab.tab should have a corresponding SimpleTab.properties file, which details the localizable
content. For example:

6.9 Tab Actions Menu

6.9.1 Introduction
The tab actions menu is a dropdown menu in the tab title bar. The menu items listed in the menu allow
actions specific to the tab to be performed.

<?xml version="1.0" encoding="UTF-8"?>
<tc:tab-config

id="SimpleTab">

<tc:page-param name="concernroleid"/>

<tc:menu id="SimpleMenu"/>

<tc:context page-id="SimpleDetailsPanel"
tab-name="simple.tab.name" />

<tc:navigation id="SimpleNavigation"/>

<tc:smart-panel page-id="SimpleSmartPanel"
title="smart.panel.title"
collapsed="true"
width="300" />

<tc:tab-refresh>
<tc:onload page-id="SimpleHome" navigation="true"/>
<tc:onsubmit page-id="ModifySomething"

context="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

Figure 53. SimpleTab.tab

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

128 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The items support opening UIM pages in the content area of a tab, or alternatively opening a modal
dialog to perform some action - these are identified by an ellipses (...). Additionally, it is possible to
download a file directly from a menu item.

The tab actions menu also supports the ability to dynamically hide/show and enable/disable items in the
menu. Refer to User Interface Element 5 of 6.8, “Tabs,” on page 121 for an example of a tab actions menu
configured in an application. The menu items that are dynamically hidden are disabled in the menu.

6.9.2 Definition
A tab actions menu is defined by creating an XML file with the extension .mnu in the clientapps
directory. The root XML element in the .mnu file is the menu-bar element and the attributes allowed on
this element are defined in 6.9.2, “Definition.”

Table 89. Attributes of the menu-bar Element

Attribute Description

id Mandatory.

The unique identifier for the menu, which must match the name of the file. The
identifier is used when a menu is included in a tab configuration, using the
menu element. See 6.8.2.2, “menu,” on page 124 for more information.

A menu definition can be reused and referenced by multiple tab configurations. The menu itself
comprises of menu items and submenus, which are used to group menu items. The child elements
outlined in 6.9.2, “Definition” are used to define the structure of the menu.

Table 90. Supported Child Elements of the menu-bar Element

Element Description

menu-item 0..n.

Defines a single entry in the menu, which links to a UIM page that can be
opened in a modal dialog or in the content area of a tab. See 6.9.2.1,
“menu-item” for more information.

submenu 0..n.

Defines a grouping of menu items, which form a sub menu. See 6.9.2.2,
“submenu,” on page 131 for more information.

menu-separator 0..n.

Defines a separator line between entries in the menu. See 6.9.2.3,
“menu-separator,” on page 131 for more information.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change the state
of the menu-item s. See 6.9.2.4, “loader-registry,” on page 132 for more
information.

6.9.2.1 menu-item
An action entry in the tab actions menu is defined by the menu-item element. The attributes of this
element are defined in 6.9.2.1, “menu-item.”

A menu-item can
v open a UIM page in the content area of a tab;
v open a UIM page in a modal dialog.
v download a file.

Chapter 6. Application Configuration 129

Menu items which open modal dialogs are identified by an ellipsis (...), which indicates that further
actions are required.

Table 91. Attributes of the menu-item Element

Attribute Description

id Mandatory.

The unique identifier for the menu-item, which must be unique within the
configuration file.

page-id Mandatory.

A reference to the UIM page to open when the menu-item is selected.

title Mandatory.

The text that will be displayed for the menu-item. The attribute must reference
an entry in the associated properties file.

open-as Optional.

Where set, this attribute indicates that the UIM page to be displayed should be
opened as a modal dialog. The only value supported is modal.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically appended to
menu-item s which open in a modal dialog should be displayed. The default is
true. The attribute is applicable only where the open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not been set
will not add the ellipsis to the menu-item.

window-options Optional.

Defines the height and width of a modal dialog opened from the menu-item.
This is only applicable where the open-as attribute is set to modal.

The format for the attribute is:

width=<pixel value>,height=<pixel value>

For example:

window-options="width=500,height=300"

The height portion of the window-options is optional and if not specified, the
height of the dialog will be automatically calculated.

dynamic Optional.

Boolean indicating that the menu-item can be dynamically disabled or hidden.
See 6.9.3, “Dynamic Support,” on page 132 for more information.

visible Optional.

Boolean indicating if the menu-item is hidden or visible. The default is true.

type Optional.

Defines a menu-item that downloads a file when selected. The only value
supported is FILE_DOWNLOAD.

For more information see 6.9.4, “File Download Menu Item,” on page 133 for
more information.

130 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 91. Attributes of the menu-item Element (continued)

Attribute Description

description Optional.

Defines text which forms a description for the menu-item. This is used for
administration purposes only. The attribute must reference an entry in the
associated properties file.

6.9.2.2 submenu
A submenu is a group of menu items and is defined using the submenu element. The attributes of the
submenu element are defined in 6.9.2.2, “submenu.”

Table 92. Attributes of the submenu Element

Attribute Description

id Mandatory.

The unique identifier for the submenu, which must be unique within the
configuration file.

title Mandatory.

The text that will be displayed for the submenu. The attribute must reference an
entry in the associated properties file.

description Optional.

Defines text which forms a description for the submenu. This is used for
administration purposes only. The attribute must reference an entry in the
associated properties file.

The submenu element allows for further submenus to be defined, in addition to including menu items and
menu separators. The supported child attributes (6.9.2.2, “submenu”) can be used to achieve this.

Table 93. Supported Child Elements of the submenu Element

Element Description

menu-item 0..n.

Defines a single entry in the submenu, which links to a UIM page that can be
opened in a modal dialog or in the content area of a tab. See 6.9.2.1,
“menu-item,” on page 129 for more information.

submenu 0..n.

Defines a further sub grouping of menu items.

menu-separator 0..n.

Defines a separator between entries in the submenu. See 6.9.2.3,
“menu-separator” for more information.

6.9.2.3 menu-separator
An actions menu, including submenus of this, can include a line separator to divide the entries in the
menu. This is defined using a menu-separator element. The attributes of the menu-separator are outlined
in 6.9.2.3, “menu-separator.”

Chapter 6. Application Configuration 131

Table 94. Attributes of the menu-separator Element

Attribute Description

id Mandatory.

The unique identifier for the menu-separator.

6.9.2.4 loader-registry
The loader-registry element defines a list of loader implementations that will be used to dynamically
enabled/disable and hide/show the menu items in the tab actions menu. For more information see 6.9.3,
“Dynamic Support.”

Table 95. Supported Child Elements of the loader-registry Element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to dynamically
set the visibility and enabled state of the menu items. See 6.9.2.5, “loader” for
more information.

6.9.2.5 loader
The loader element defines a single loader implementation that will dynamically set the state of the
menu items in a tab actions menu. For more information see 6.9.3, “Dynamic Support.”

Table 96. Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicMenuStateLoader interface.

6.9.3 Dynamic Support
The tab actions menu supports the ability to dynamically enable/disable and hide/show entries. This
feature is supported using a combination of the dynamic attribute of the menu-item element, the
loader-registry element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration will be called when the tab is
first loaded and based on the refresh options configured for a tab. The refresh options are configured in
the tab configuration file (.tab). See 6.8.2.6, “tab-refresh,” on page 126 for more information.

A menu item can be specified as dynamic in the menu configuration file (.mnu) by adding dynamic="true"
to the relevant menu-item element.

Where the dynamic attribute is set, a loader-registry is then required and should define the fully
qualified classname which implements the curam.util.tab.impl.DynamicMenuStateLoader interface.

The DynamicMenuStateLoader interface requires one method, loadMenuState, to be implemented. The
loadMenuState method is passed the following parameters:
v a list of menu item identifiers
v a set of name-value page parameters pairs

132 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The loader implementation must decide which menu items to disable or hide. The method returns an
object that represents the state of a given menu bar. A state must be set for all identifiers in the list. For
more information on this interface, consult the Java Documentation.

Note: The list of menu item identifiers passed to the loadMenuState method are only those that have
been identified as dynamic by the dynamic attribute on the menu-item element.

6.9.4 File Download Menu Item
A menu-item can reference a FILE_DOWNLOAD configuration using the type="FILE_DOWNLOAD" attribute.
For example:

The page-id attribute must match the page-id attribute specified for a FILE_DOWNLOAD element configured
in the curam-config.xml file. For more information on the FILE_DOWNLOAD element in curam-config.xml
see 5.9.3.1, “File Downloads,” on page 54.

When configuring the FILE_DOWNLOAD element in curam-config.xml, only the parameters defined for the
tab can be used as values for the PAGE_PARAM attribute of the INPUT element.

6.9.4, “File Download Menu Item” shows a fragment of the FILE_DOWNLOAD configuration from the
curam-config.xml file. In this example, the fileID page parameter must be specified as a page-param
element in the tab configuration file (.tab).

Note also that the PAGE_ID attribute value of FileDownload matches the page-id attribute in the example
above.

6.9.5 Example
6.9.5, “Example” details an example actions menu configuration file, which would be stored in a file
called SimpleMenu.mnu.

<mc: menu-item id="filedownloadItem" title="some.text.title"
type="FILE_DOWNLOAD" page-id="FileDownload"/>

<FILE_DOWNLOAD CLASS="some.pkg.readFile"
PAGE_ID="FileDownload">

<INPUT PAGE_PARAM="fileID"
PROPERTY="key$fileID"/>

<FILE_NAME PROPERTY="result$name"/>
<FILE_DATA PROPERTY="result$contents"/>
<CONTENT_TYPE PROPERTY="result$contentType"/>

</FILE_DOWNLOAD>

Figure 54. FILE_DOWNLOAD Configuration from curam-config.xml

Chapter 6. Application Configuration 133

The SimpleMenu.mnu should have a corresponding SimpleMenu.properties file, which details the
localizable content. For example:

6.10 Tab Navigation

6.10.1 Introduction
Tab navigation describes how the various UIM pages grouped as part of a tab can be navigated to within
a tab. There are two elements to tab navigation; the Content Area Navigation Bar, and the Page Group
Navigation Bar.
v Navigation Bar

The navigation bar contains a number of tabs, each of which can map to a single UIM page or
alternatively a set of UIM pages. The tabs in the navigation bar are referred to as navigation tabs. Refer
to User Interface Element 8 of 6.8, “Tabs,” on page 121 for an example of a navigation bar configured
in an application.

v Page Group Navigation Bar

Where a navigation tab maps to a set of UIM pages, these UIM pages are displayed as a page group
navigation bar. Each link in the page group navigation bar is referred to as a navigation page. Refer to
User Interface Element 16 of 6.8, “Tabs,” on page 121 for an example of a page group navigation bar
configured in an application.

Selecting a navigation tab or navigation page will result in displaying the relevant UIM page in the
content area of the tab. For navigation tabs that have a page group navigation bar, the first navigation
page in the page group navigation bar is selected when the navigation tab is selected.

<?xml version="1.0" encoding="UTF-8"?>
<mc:menu-bar

id="SimpleMenu"

<mc:loader-registry>
<mc:loader class="some.pkg.SimpleMenuStateLoader"/>

</mc:loader-registry>

<mc:submenu id="Person">

<mc:menu-item id="dynamicLink"
title="dynamicLink.title"
page-id="SomeDynamicContent"
dynamic="true"/>

<mc:menu-separator id="separator1"/>

<mc:menu-item id="simpleLink"
title="simpleLink.title"
page-id="SimplePage"/>

</mc:submenu>

<mc:menu-item id="OpenModal"
title="openmodal.title"
page-id="DoSomethingInModal"
open-as="modal"
window-options="width=600"/>

</mc:menu-bar>

Figure 55. SimpleMenu.mnu

dynamicLink.title=Some Dynamic Link
simpleLink.title=A Simple Link
openmodal.title=Open a Modal

134 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

If a user selects a subsequent navigation page and then changes to a different navigation tab, the selected
navigation page is remembered when the user returns to the original navigation tab and the page is
reloaded.

The tab navigation configuration is key to when new tabs are opened. It is used to determine what UIM
page is associated with what tab. For more information on this consult 6.11, “Opening Tabs and
Sections,” on page 139.

6.10.2 Definition
Tab navigation is defined by creating an XML file with the extension .nav in the clientapps directory.
The root XML element in the .nav file is the navigation element and the attributes allowed on this
element are defined in 6.10.2, “Definition.”

Table 97. Attributes of the navigation Element

Attribute Description

id Mandatory.

The unique identifier for the navigation configuration, which must match the
name of the file. The identifier is used when a navigation configuration is
included in a tab configuration, using the navigation element. See 6.8.2.4,
“navigation,” on page 125 for more information.

The child elements outlined in 6.10.2, “Definition” are used to define the structure of the navigation.

Table 98. Supported Child Elements of the navigation Element

Element Description

nodes Mandatory.

Groups navigation pages and navigation tabs together. See 6.10.2.1, “nodes” for
more information.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change the state
of the navigation tabs and navigation pages. See 6.10.2.4, “loader-registry,” on
page 137 for more information.

6.10.2.1 nodes
The nodes element groups together the elements that represent navigation tabs and navigation pages.
These elements are outlined in 6.10.2.1, “nodes.”

Table 99. Supported Child Elements of the nodes Element

Element Description

navigation-page 1..n.

Defines a navigation tab that has no page group navigation bar. See 6.10.2.3,
“navigation-page,” on page 136 for more information.

navigation-group 1..n.

Defines a navigation tab which contains a page group navigation bar. This
element groups together navigation-page elements that form the page group
navigation bar. See 6.10.2.2, “navigation-group,” on page 136 for more
information.

Chapter 6. Application Configuration 135

6.10.2.2 navigation-group
The navigation-group element defines a navigation tab that contains a page group navigation bar. The
attributes of this element are outlined in 6.10.2.2, “navigation-group.”

Table 100. Attributes of the navigation-group Element

Attribute Description

id Mandatory.

The unique identifier for the navigation-group, which must be unique within
the configuration file.

title Mandatory.

The text that will be displayed for the navigation tab in the navigation bar. The
attribute must reference an entry in the associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab can be dynamically disabled or
hidden. See 6.10.3, “Dynamic Support,” on page 138 for more information.

visible Optional.

Boolean indicating if the navigation tab is hidden or visible. The default is true.

description Optional.

Defines text which forms a description for the navigation tab. This is used for
administration purposes only. The attribute must reference an entry in the
associated properties file.

The navigation-group element groups together navigation-page elements to form the page group
navigation bar. The first navigation-page element defined indicates the UIM page to display the first
time a navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab, will remember the previously
selected navigation page.

Table 101. Supported Child Elements of the navigation-group Element

Element Description

navigation-page 1..n.

Defines the set of navigation pages that are grouped together to form the page
group navigation bar. See 6.10.2.3, “navigation-page” for more information.

6.10.2.3 navigation-page
A navigation-page element can represent both a navigation tab and navigation page:
v Where the navigation-page element is defined a child element of the nodes element, it represent a

navigation tab which is part of the navigation bar.
v Where the navigation-page element is defined a child element of the navigation-group element, it

represent a navigation page which is part of the page group navigation bar.

The attributes of the navigation-page element are outlined in 6.10.2.3, “navigation-page.”

136 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 102. Attributes of the navigation-page Element

Attribute Description

id Mandatory.

The unique identifier for the navigation-page, which must be unique within the
configuration file.

page-id Mandatory.

A reference to the UIM page to open when the navigation tab or navigation
page is selected.

title Mandatory.

The text that will be displayed for the navigation tab or navigation page. The
attribute must reference an entry in the associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab or navigation page can be
dynamically disabled or hidden. See 6.10.3, “Dynamic Support,” on page 138 for
more information.

visible Optional.

Boolean indicating if the navigation tab or navigation page is hidden or visible.
The default is true.

description Optional.

Defines text which forms a description for the navigation tab or navigation
page. This is used for administration purposes only. The attribute must
reference an entry in the associated properties file.

6.10.2.4 loader-registry
The loader-registry element defines a list of loader implementations that will be used to dynamically
enabled/disable and hide/show both the navigation pages and navigation tabs. For more information see
6.10.3, “Dynamic Support,” on page 138.

Table 103. Supported Child Elements of the loader-registry Element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to dynamically
set the visibility and enabled state of the navigation pages and navigation tabs.
See 6.10.2.5, “loader” for more information.

6.10.2.5 loader
The loader element defines a single loader implementation that will dynamically set the state of the
navigation pages and navigation tabs. For more information see 6.10.3, “Dynamic Support,” on page 138.

Table 104. Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicNavStateLoader interface.

Chapter 6. Application Configuration 137

6.10.3 Dynamic Support
The tab navigation bar and page group navigation bar support the ability to dynamically enable/disable
and hide/show navigation tabs and navigation pages. This feature is supported using a combination of
the dynamic attribute of the navigation-page and navigation-group elements, the loader-registry
element and a Java loader implementation.

The Java loader implementation registered in the menu configuration will be called when the tab is first
loaded and based on the refresh options configured for a tab. The refresh options are configured in the
tab configuration file (.tab). See 6.8.2.6, “tab-refresh,” on page 126 for more information.

A navigation tab and navigation page can be specified as dynamic in the navigation configuration file
(.nav) by adding dynamic="true" to the relevant navigation-page or navigation-group elements.

Where a dynamic attribute is set, a loader-registry is then required and should define the fully qualified
classname which implements the curam.util.tab.impl.DynamicNavStateLoader interface.

The DynamicNavStateLoader interface requires one method, loadNavState, to be implemented. The
loadMenuState method is passed the following parameters:
v a list of navigation-group and navigation-page identifiers
v a set of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The method returns an object
that represents the state of the navigation tabs and navigation pages. A state must be set for all identifiers
in the list. For more information on this interface, consult the Java Documentation.

Note: The list of navigation identifiers passed to the loadNavState method are only those that have been
identified as dynamic by the dynamic attribute on the navigation-page or navigation-group elements.

In addition, a navigation-page and navigation-group element cannot use the same identifier. The
identifiers must be unique for all elements within the file.

6.10.4 Example
6.10.4, “Example” details an example tab navigation configuration file, which would be stored in a file
called SimpleNavigation.nav.

138 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The SimpleNavigation.nav should have a corresponding SimpleNavigation.properties file, which details
the localizable content. For example:

6.11 Opening Tabs and Sections

6.11.1 Introduction
There are a number of ways to trigger opening a new section or tab.
v A section can be opened directly by selecting the relevant section tab control
v A tab can be opened directly by selecting the relevant tab control.
v Any link in the application has the potential to open a new tab.
v A section can be opened when a new tab is opened that is associated with a section other than the

current section.

Opening a section or tab by selecting the relevant tab control is straightforward. To open a tab that is
already open, but not in focus, the tab control is selected and focus is given to the tab.

Opening a section by selecting the relevant section tab control will give focus to that section. Any tabs
already open in that section will then be accessible.

<?xml version="1.0" encoding="UTF-8"?>
<nc:navigation

id="SimpleNavigation"

<nc:loader-registry>
<nc:loader class="some.pkg.SimpleNavStateLoader"/>

</nc:loader-registry>

<nc:nodes>
<nc:navigation-page id="Home"

page-id="Home"
title="Home.Title"/>

<nc:navigation-group id="Background"
title="Background.Title">

<nc:navigation-page id="Addresses"
page-id="ParticipantAddressList"
title="Addresses.Title"/>

<nc:navigation-page id="PhoneNumbers"
page-id="ParticipantPhoneNumbers"
title="Phone.Title"/>

</nc:navigation-group>

<nc:navigation-page id="Identity"
title="Identity.Title"
page-id="ParticipantIdentity"
dynamic="true"/>

</nc:nodes>

</nc:navigation>

Figure 56. SimpleNavigation.nav

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

Chapter 6. Application Configuration 139

When a section is opened (directly) for the first time, it may contain no tabs or may result in the
automatic opening of a default tab. This depends on the section configuration (see 6.6, “Sections,” on
page 116).

Opening a section or tab as a result of selecting a link is more complicated. When a link is selected,
before the relevant UIM page is opened, the Cúram client will automatically determine if it should be
opened in a new tab and if that tab should be opened in a new section. This is determined based a
number of factors that will be detailed in the following sections.

6.11.2 Links
One of the actions that can trigger opening a new tab or new section is selecting a link to a UIM page.
There are many different ways in the Cúram application to open a UIM page and many different contexts
in which a UIM can be displayed.

A UIM page can be displayed in the following areas of an application:
v A content area
v A tab context panel
v A tab smart panel
v A modal dialog
v A list dropdown panel

A UIM page in any of these contexts can define links to another UIM page. There are different types of
links:
v Page level actions menu (content area only)
v Modal button bar (modal dialog only)
v Buttons
v Hyperlinked text
v List actions menu

In addition to links on a UIM page, a UIM page can be opened via the following actions:
v Selecting an entry in the tab actions menu
v Selecting a link in the section shortcut panel
v Selecting a navigation bar tab
v Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be defined in a UIM page,
consult Chapter 5, “UIM Reference,” on page 51. For the purposes of this section, selecting a link will
apply to any action that can open a new UIM page.

6.11.3 Page to Tab Associations
A page is associated with tab based on the navigation configuration for the tab. The navigation for a tab
is configured using the navigation element in the tab configuration file (.tab) and also, if defined, the
navigation configuration file (.nav). See 6.10, “Tab Navigation,” on page 134 and 6.8.2.4, “navigation,” on
page 125 for more information.

Where no tab navigation is defined for a tab, the navigation element defines a single UIM page (via the
page-id attribute) that will result in opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-id attribute in the navigation
configuration file (.nav) is considered to be associated with the tab. This means that a link to any of these
referenced UIM pages will result in opening the relevant tab.

140 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The page to tab association must be unique. This means that a page can be referenced only once by the navigation
configuration for a tab. As a result, a navigation configuration cannot be re-used across multiple tabs.

There are a number of exceptions to this rule, but they are limited:
v The same UIM page can be referenced by more than one navigation configuration file (.nav), where the

page is only ever linked-to from within the context of the tab.
This means that any links to the UIM page are always within the same tab. For example, a Notes UIM
page is referenced by both the Person and Employer tabs. The only link to the Notes UIM page is from
the page group navigation bar. The Notes UIM page is never referenced from a shortcut panel or
linked by a UIM page that is not displayed within the context of the Employer or Person tabs.

v The same UIM page can be referenced by more than one navigation configuration for a tab, where the
tabs are included in different application configurations (.app).

v A navigation configuration file (.nav) can be reused by two tabs, where the tabs are included in two
different application configurations (.app).

Resolve Pages: It is recommended against using resolve pages7in a navigation configuration. The reason
for this is based on how the Cúram client application handles resolve pages and opening new tabs.

When a link to a resolve page is selected, the Cúram client recognises it is a resolve page and executes
the content of the JSP_SCRIPTLET. The resulting UIM page that the JSP_SCRIPTLET redirects to is then used
to determine what tab the page should be opened in.

6.11.4 Tab to Section Associations
A tab is associated with a section by listing it using the tab element in the section configuration file
(.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in the associated section and
focus is given to that section and tab.

6.11.5 Page Parameters
The client determines if a new tab is opened based on the page to tab to section association. In addition,
existing opens tabs and values of the parameters passed to a tab are taken into consideration.

Two instances of the same tab can be opened, where each instance is identified by the page parameters
that have been provided. For example, James Smith and Linda Smith are uniquely identified by their
concern role ID. The concern role ID is defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the details for James Smith. A
subsequent link to Linda Smith is selected and a new instance of the same tab configuration is opened,
displaying Linda Smiths details.

When a link is selected, the Cúram client application automatically determines what tab, and section, it is
associated with. It then compares this information, along with the page parameters to determine what
action to take.

The rules for opening tabs are detailed in 6.11.5, “Page Parameters.”

Note: The parameters passed when a link is selected must match the names of the page parameters
defined in the tab configuration file.

7. A resolve page is a specific type of UIM page that contains only a JSP_SCRIPTLET element. See 5.9.20, “JSP SCRIPTLET,” on page
72 for more information.

Chapter 6. Application Configuration 141

Where not all required page parameters are provided, the behavior of those tabs within the application is
not guaranteed. Any extra parameters provided will be ignored and not passed to the tab.

Table 105. Tab Opening Rules

Page to Tab Association Page Parameter Values Action

Page maps to current tab Match Page opens in current tab

Page maps to current tab Differ Page opens in new instance of tab

Page maps to existing open tab Differ Page opens in a new instance of existing tab

Page maps to existing open tab Match Page opens in existing tab

Page maps to new, unopened tab N/A Page opens in new tab

Limitations: There are a number of limitations and notes to be aware of when designing UIM pages to
open in new tabs.
v Links in a modal dialog obey dialog rules first and only obey the rules for opening a tab when the

dialog is closing.
v A link defined to open a modal dialog ignores the tab rules.
v Links in a tab navigation bar and page group navigation bar will always open within the context of the

current tab.
v A submit link within the content area cannot open a new tab, even if the UIM page is configured to be

associated with a different tab.
v If a UIM page is configured to be associated with a tab then the same page cannot be used as

INLINE_PAGE in expandable lists.

142 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 7. Session Management

7.1 Objective
This chapter provides detailed information on how browser sessions are handled in the Cúram
application.

7.2 Prerequisites
You should be familiar with the basic concepts of Cúram CDEJ development (see Chapter 2, “Concepts,”
on page 3) and web application development.

7.3 Introduction
There is a maximum limit on the number of tabs that can be opened per section of an application. The
system administrator can configure this limit by updating the curam.environment.max.open.tabs property
in the system administration application. The default value for the maximum limit of open tabs per
section of an application is set to fifteen.

If a user requests to open a tab and the number of open tabs reaches the maximum limit within the
current section then an informational modal dialog will be displayed immediately after the tab is initially
opened (before content in the tab is displayed). As instructed in this modal dialog, existing open tabs
within the current section should be closed before any new tabs can be opened in an application. If the
information displayed in the informational dialog is ignored and the user attempts to open more tabs
within the current section of an application, the requested tabs will not be opened and an error modal
dialog will be displayed instructing that new tabs can only be opened after existing open tabs within the
current section of the current application are closed. An error modal dialog can simply be dismissed by
clicking on the button on the bottom of the dialog.

The message and title of both the dialog can be customized by customizing by adding the
GenericModalError.js.properties file within the custom component. For more information on localizing
JavaScript property files, consult 4.5.2, “Java properties files,” on page 43.

The text on the button can be customized by changing the value of the Text.Ok property in
CDEJResources.properties. For more information on localizing CDEJResources.properties, please see
4.11, “CDEJResources.properties,” on page 49.

The current set of open tabs for a particular user is restored each time the user logs out of the application
and logs back in. In addition, if the browser is refreshed (e.g. using the F5 button), the currently open
tabs are also restored. The only exception to this is if the the system administrator has decreased the
maximum limit of tabs that can be opened within a section of an application since the termination of the
last session then only the new maximum number of tabs within each section will be restored. An error
dialog will be displayed for each tab that now exceeds the maximum limit of open tabs and could not be
restored.

The browser session plays an important role in the expected behavior when restoring tabs, and this
chapter will detail how browser sessions interact with the restoration of tabs. In addition, a number of
configuration options for the tab restoration feature are detailed.

© Copyright IBM Corp. 2012, 2013 143

7.4 Session Basics
A browser session can be defined as a continuous period of user activity in the web browser, where
successive events are separated by no more than 30 minutes. The following listing shows the common
examples of when a Cúram browser session is started or finished.
v A session starts when a user first logs into the application.
v As long as the user is actively using the browser, the session remains active.

If the browser is left inactive for a period of time, the session will timeout. In this case, the user will be
required to log back in and a new session is started.
The default timeout is 30 minutes, but this can be configured using the application server's
configuration settings. See the Cúram Deployment Guides for more information on application server
configuration.

v The user can explicitly logout, using the logout link in the application banner. The session is
terminated in this case and logging back in will start a new one.

v The browser is shutdown and a new browser instance is started. In this case, a new session is started
and the user will be required to log in.

7.5 Tab Restoration
The list of currently open tabs is stored temporarily in the web tier, associated with the browser session,
and more permanently on the database so that it can be restored after a user logs out of the application.

The data is persisted from the web tier to the database intermittently. As a result, there are cases where
the last few changes to the open tabs may not be restored when the user logs in. This is most likely to
happen where the session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the result of a browser refresh
(F5) or the start of a new session (i.e. the user has logged in).
v Browser Refresh

If the browser is refreshed, tabs are restored to their current state from the web tier session data. No
tab changes will be lost.
– The tab that was last selected in the selected section will remain the selected tab.
– The selected tab in other sections will revert to the first tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page contents are not

restored.
v New Session

When a new session starts, usually requiring the user to login, the tabs are restored to their current
state using the session data stored on the database.
– The “Home” tab is restored as the selected tab.
– The selected tab in other sections will revert to the first tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page contents are not

restored.
– If no previous tab session data is available, only the “Home” tab is opened.

Note: See 2.10, “Direct Browsing,” on page 11 for a special case of tab restoration, where pages are
directly accessed through the browser navigation bar.

144 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

7.6 Configuration
Each time a new tab is opened, a tab is closed or the content area of a tab is updated, the information is
stored in the web tier. The tab session data is persisted from the web tier to the database intermittently.
How often the data is persisted can be configured using the following options, which can be set in the
ApplicationConfiguration.properties file.
v tabSessionUpdateCountThreshold

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. Once the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of one causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts. The
default is every 10 updates.

v tabSessionUpdatePeriodThreshold

Specifies the number of seconds that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger another write. A value of zero (or a
negative or invalid value) disables writing based on update periods. The default value is 120 seconds,
or 2 minutes.

The properties work together based on which value is reached first. In other words, if the update count
threshold (tabSessionUpdateCountThreshold) is not reached, but the update period threshold
(tabSessionUpdatePeriodThreshold) has been reached, a write will occur, and vice versa.

If the update count threshold is set to one, the update period threshold is ignored. The reason for this is
that writes will happen on every update, so there is no need to write based on a time period.

Note: Tab session data is persisted to the database when the user logs out, regardless of the value of the
current update count and update period. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an application. The same user
logging in to the application from different browser sessions will cause some interference and
unpredictability in what data is persisted across sessions.

The interference and unpredictability of the persisted data, when multiple users are using the same login
ID, is most likely encountered in a testing environment. It is recommended that the
tabSessionUpdatePeriodThreshold and tabSessionUpdateCountThreshold properties are set to zero for
testing environments to prevent this. Setting both properties to zero ensures that the tab session data is
only persisted for the length of a browser session and not across sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" application is deployed and the
external users all share the same generic user account.

7.7 Limitations
The tab session data records a limited number of tabs. The limit imposed relates to the total size of the
tab session data and is approximately 70-80 tabs. Once this limit has been exceeded, tab session data is
maintained only in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected. However, if a user logs out
with more tabs open than can be recorded for a session, only the state of the tabs at the time the limit
was first exceeded will be restored.

Closing tabs will reduce the size of the tab session data and writing to the database will then resume as
normal.

Chapter 7. Session Management 145

7.8 Browser Specific Session Management
The version of the browser used can have an effect on when new sessions are started and when they are
shared. Two browser instances that share the same session will result in the same set of open tabs
displayed in both instances. This can cause similar interference and unpredictability of the persisted data
as with two users using the same login ID from different machines.

Example Session Issue: A user logs into the Cúram application in one browser instance. They then open
a new browser tab, which is sharing the same session. From here, they directly access the Cúram login
page and login as a different user.

In this situation, they are still logged in as the original user and will see the tabs that were open in the
original browser tab.

Within the same browser session, a user must always logout to end the session and be able to login as a
new user.

The most common browsers supported are Internet Explorer 7 and Internet Explorer 8 and they share
sessions across browser instances in different ways:
v Internet Explorer 7

If a new browser instance, or browser tab, is opened in Internet Explorer 7 using the File > New Tab
or File > New Window options, from an existing browser instance, the session is shared across the
instances. This means that if the user was already logged into the Cúram application in the original
browser instance, they will also be logged into Cúram in the new tab or window.
If a new browser instance is started using the Internet Explorer link in the Start menu, the sessions are
not shared and the user must login again to Cúram.

v Internet Explorer 8

Sessions are always shared in Internet Explorer 8, no matter where the browser instance or tab was
started from. This is the default behavior.
To start a new instance of the browser that does not share the existing session, the File > New Session
option should be used.

For further information on browser specific behavior, please consult the relevant online documentation.

146 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 8. Domain Specific Controls

8.1 Objective
This chapter describes the domain specific controls that are provided by the Cúram CDEJ. These domain
specific controls are employed to provide a more sophisticated interface for user information than the
standard set of HTML controls.

8.2 Prerequisites
The reader should understand how to model their Cúram application, choosing appropriate domains for
more complicated data. Knowledge of client development within the Cúram application is also necessary.

8.3 Introduction
Examples of domains requiring sophisticated controls include: dates, date-times, the meeting view and
the rules decision tree. Any UIM page containing a server access bean with fields of this nature will have
a web page generated containing a custom control appropriate to the type. For example, when a server
bean contains the CALENDAR_XML_STRING domain, a calendar will be generated which expects server
information in a particular XML format. Each of the following sections details the custom controls
translated for particular domains.

8.4 Dates
Dates are mapped to the SVR_DATE domain. Any server access bean containing fields of this type will
display a date selector to the user for data input. These selectors are HTML text fields with an adjacent
pop-up icon which causes a pop-up menu to be displayed allowing the user to select a date or date time
with ease. Note that this functionality is based on JavaScript and it is important that the user have
JavaScript enabled in their browser for this selector to work. The appearance of the date selector pop-up
can be altered by overriding its dedicated cascading stylesheet. See 3.12.11, “Cascading Stylesheets,” on
page 33 for more details. The out-of-the-box date date pop-up dialog has three input controls; a
drop-down field for the month, a text input field for the year, and the days of the month are displayed so
that a day can be selected. When the day of the month is selected, this will populate the date field.

The date format string associated with date format validations are customizable in the file
CDEJResources.properties and defined by the property curam.validation.calendar.dateFormat:

If this value is not set, the date format string will default to the date format setting specified in the
ApplicationConfiguration.properties file.

8.5 Date-Times
Date-times are mapped to the SVR_DATETIME domain. Any server access bean containing fields of this
type will display a date selector (see previous section) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function correctly. It is important that
the user have JavaScript enabled in their browser for these selectors to work.

curam.validation.calendar.dateFormat=M/dd/yyyy

Figure 57. Customizing the Date Format

© Copyright IBM Corp. 2012, 2013 147

There is an additional control for entering time as hours and minutes. It is displayed as two side-by-side
drop down lists for selecting the hour and minute values.

When the CURAM_TIME domain (a descendant of the SVR_DATETIME domain) is used, the date input
field will not be displayed.

The date time format string associated with date time format validations are customizable in the file
CDEJResources.properties and defined by the property curam.validation.calendar.dateTimeFormat:

If this value is not set, the date time format string will default to HH mm ss.

8.5.1 Representing time-only values
As has been described above Curam has a base type for "date-only" and "date-time" values, however
there is no specific base type for "time-only" values.

A CURAM_TIME domain is provided in out-of-the-box Curam and this is used by the client
infrastructure to display a corresponding time only widget, in addition to performing certain processing
when parsing and formatting values based on this domain. However, the underlying data representation
is the same as for SVR_DATETIME and when working with time-only domains the corresponding
server-side code must completely ignore the date part of the value.

Because time-only domains are based on the SVR_DATETIME domain, it should be noted that the default
values will also be the same. The "zero date time" of 0001-01-01 00:00:00 is the value sent to the server if
the field is left blank. If the field is set to 00:00, then 00:00 time value of today's date is sent.

The time input field rendered for CURAM_TIME domain is an editable combo box as the example below
shows. The combo box contains selectable time values for every 30 minutes. The exact time value can
also be entered directly in the field.

The values to be selected are in the application-wide format set in ApplicationConfiguration.properties,
including AM/PM for the 12 hour display. A manually typed value should follow the same format.

8.5.2 Customizing the Time Format
The application-wide time format setting can be changed by setting or modifying the timeformat and
timeseparator values in the ApplicationConfiguration.properties file as described in 3.11.2,
“Configuring the Application,” on page 24.

8.6 Frequency Pattern Selector
Frequency patterns are mapped to the FREQUENCY_PATTERN domain. Any server access bean
containing fields of this type will display a frequency pattern selector to the user for data input. These
selectors are non editable HTML text fields with an adjacent pop-up icon which causes a pop-up menu to
be displayed allowing the user to select a frequency pattern with ease. Note that this functionality is
based on JavaScript and it is important that the user have JavaScript enabled in their browser for this
selector to work. The appearance of the frequency pattern selector pop-up can be altered by overriding its
dedicated cascading stylesheet. See 3.12.11, “Cascading Stylesheets,” on page 33 for more details. The
figure below shows the frequency pattern selector.

curam.validation.calendar.dateTimeFormat=HH:mm

Figure 58. Customizing the Date Time Format

148 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

It is worth noting that the frequency pattern text selected varies in length, depending on the pattern
selected. This makes the display of the selected pattern prone to re-sizing and wrapping, depending on
the layout of the UIM page and the display space available.

8.7 Selection Lists
Within the Cúram application, the use of the standard HTML selection list i.e. the select element is
supported. Selection lists will truncate long data strings in order to preserve the correct page layout. To
combat this, the data's full value is available as a tooltip for each item in the list. The list can be
populated with data in a number of ways as described in the following sections.

8.7.1 Populated from a Code-Table
If a FIELD has a target connection mapped to a property based on a code-table domain, a drop-down
selection list will be displayed containing all code-table entries that are marked as “enabled”. The entries
will be sorted alphabetically according to their code descriptions. This can be overridden by setting the
“sort order” of each entry. Consult the Cúram Server Developers Guide for full details on creating
code-tables in a Cúram application.

When the selection list is displayed the initially selected item is evaluated as follows:
1. The code value specified by the source connection of the field.
2. The default code of the code-table if the FIELD element's USE_DEFAULT attribute is not set to false.
3. The first item in the selection list, if no default code is defined or the default code is marked as

“disabled”.
4. Blank, if the FIELD element's USE_DEFAULT attribute is set to false.

A drop-down selection list can also be displayed as a scrollable selection list where a number of entries
are initially displayed instead of just one. To do this simply set the HEIGHT attribute of the FIELD element
to a value greater than 1.

Figure 59. Frequency Pattern Selector Pop-up

Chapter 8. Domain Specific Controls 149

8.7.2 Populated from Server Interface Properties
Data retrieved through server interface properties can also be used to populate a selection list. The
INITIAL connection end-point is used in this case. The following are examples of a selection list on an
insert and a modify page.

In this example the field has an INITIAL connection end-point to populate the selection list and a TARGET
connection end-point to specify what field the selected value should be mapped to. The PROPERTY
attribute of the INITIAL connection end-point is the list of values you want the user to see in the selection
list. When the list is displayed, the first item in the list will initially be selected. The HIDDEN_PROPERTY
attribute specifies a list of corresponding values, when selected, will be mapped to the property specified
in the TARGET connection end-point. The target property is a single field, not a list. In this example a list of
people's names will be displayed but it is the selected person's unique ID that will be mapped to the
target property. In certain circumstances the set of values visible to the user may also be what you want
mapped to the target property. In this case do not use the HIDDEN_PROPERTY attribute.

The following example shows the same selection list, but used on a modify page. The only difference is a
SOURCE connection end-point is used to specify what is selected in the list when the page is first
displayed.

8.7.3 Drop-down, Scrollable and Checkboxed List types

8.7.3.1 Drop-down and Scrollable List
The selection list can be displayed as a drop-down list or as a scrollable selection list with a number of
entries visible. A drop-down selection list is displayed by default. To change this to a scrollable selection
list set the HEIGHT attribute of the FIELD element to a value greater than 1.The appearance of a selection
list differs from a drop-down list in two noticeable ways. For a drop-down list only the default value is
displayed and all the other selectable values are displayed only when the drop down arrow is selected.
Additionally the drop-down list is not scrollable. However, a scrollable selection list does not have the
drop-down arrow, a subset of the values are initially displayed - the size of the subset is dependent on
the value of the HEIGHT that is set. This list has a scrollbar which can be used to scroll the list, and view
and select the remainder of the selectable values.

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 60. Selection List on an Insert Page

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 61. Selection List on a Modify Page

150 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

8.7.3.2 Checkboxed List
Checkboxed selection list offers an alternative method of selecting individual entries, in this case using
the check box control. This variation will be used if CONTROL attribute is set to CHECKBOXED_LIST. It is just
an alternative way of representation, so everything else applicable to Scrollable List applies for
Checkboxed List without change.

8.7.4 Adding an Empty Entry to a List for Non-Mandatory Fields
Browsers will select the first item in a selection list by default if no item is marked as selected. In certain
cases you may not want to “suggest” a value to the user. A blank entry would be more suitable. Set the
USE_BLANK attribute of the FIELD element to true to add a blank entry as the first item on the selection
list.

8.7.5 Enabling Multiple Selection
Browsers allow multiple items to be selected in a selection list. To enable this first use a scrollable list as
described above (you cannot select multiple items from a drop-down list). Then add the following to the
curam-config.xml file.

For each domain which you want to enable multiple selection add a DOMAIN child element to the
MULTIPLE_SELECT element. If a FIELD has a target connection which is based on a domain listed in the
MULTIPLE_SELECT element, multiple selection will be enabled. When the form containing the selection list
is submitted, the selected values will be packaged into a tab-delimited string. Therefore the target
property must be based on a string domain. The same way, the source property in this case is also
expected in the form of a tab-separated string of values to be selected initially (the values should match
some of those specified via HIDDEN_PROPERTY).

8.7.6 Transfer List Widget

8.7.6.1 Overview
The Transfer List widget is a control used to facilitate multiple selections for a user (i.e. it is used as an
alternative to an regular list which has multiple selection enabled). It consists of two HTML select
controls placed side by side. The left control contains the items from which selections can be made (see
See 8.7.3, “Drop-down, Scrollable and Checkboxed List types,” on page 150 for more details on selection
lists.), the one to the right displays already selected items. Four buttons between the lists allow for
selecting/de-selecting individual or all items (transferring them from one list to another and back as
required).

8.7.6.2 Configuration
The Transfer List widget is displayed instead of a regular HTML multiple selection control when
configured in one of the two ways described below. In order for all multiple selection controls in an
application to be displayed as Transfer List widgets, curam-config.xml should contain the
TRANSFER_LISTS_MODE element with its value is set to true. Alternatively, individual multiple select
controls might be configured to be displayed that way by setting the CONTROL attribute on the appropriate
UIM FIELD to be TRANSFER_LIST. This setting is applicable just for fields rendered as multiple selection
controls on the resulting UIM page and will be ignored in any other case.

The Transfer List widget requires the same data and the same configuration for enabling multiple
selection as a regular selection list.

<MULTIPLE_SELECT>
<DOMAIN NAME="MY_DOMAIN" MULTIPLE="true"/>

</MULTIPLE_SELECT>a

Figure 62. Enabling multiple selection in curam-config.xml

Chapter 8. Domain Specific Controls 151

8.8 User Preferences Editor
The User preferences editor allows a user to edit a user preference value for use anywhere within the
application. For details on the definition of user preferences please consult the Cúram Server Developers
Guide.

The editor may be accessed from the taskbar by clicking the preferences button. On clicking this button a
popup window should be displayed with a list of all visible user preferences. Those preferences that are
editable will appear as either a text field, radio buttons or a drop-down menu, depending on the type.

If the user wishes, they may edit the value of a preference and save the value using the Submit Changes
link. When the user returns to the editor the updated values will appear. Any changes to user preferences
using the editor will be applied immediately.

To return the values to those that were originally defined, the user should click the Reset to Default
link. Selecting either of these buttons will close the popup window.

8.9 Rules Trees

8.9.1 Introduction
The RESULT_TEXT domain contains information about the success or failure of a particular claim against
a set of rules. When the server supplies this information it is translated into a tree view displaying all
rules.

The RULES_DEFINITION domain also produces a rules tree, in this case displayed with the rules editor.
For more details on the rules editor see 8.9.7, “Rules Editor,” on page 156.

It is possible to use the FIELD element's CONTROL attribute to change the format of the rules display. The
following sections will describe the various options for this attribute. Furthermore, the FIELD element's
CONFIG attribute can be used to configure these rules trees.

8.9.1.1 Behavior of Summary and Highlight-On-Failure Rules Flags
The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a different color to those that have
succeeded.

8.9.2 Default Rules View
The default rules view of the rules tree, specified by setting the CONTROL attribute of the FIELD element to
DEFAULT, shows data in an expanded tree view using standard HTML. This view should be visible in
most standard web browsers. However, as the rules result is often quite verbose, the resulting output can
be confusing to the viewer of your web page.

8.9.3 Summary Rules View
To display a summary rules view, set the CONTROL attribute of the FIELD element to SUMMARY. The view of
this tree is very similar to the default rules tree view except that the details about why a rule failed or
succeeded are not displayed in the tree.

Any rules, regardless of type, marked as summary items are displayed. The following section, 8.9.4,
“Failed Rules View,” on page 153, describes a similar view that only displays rules items whose type is
explicitly set to rule. This view can be configured in the same manner as the dynamic rules view
mentioned below. See 8.9.5, “Dynamic Rules View,” on page 153.

152 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

8.9.4 Failed Rules View
To display a failed rules view, set the CONTROL attribute of the FIELD element to FAILURE. This view is
similar in layout to the previously mentioned summary view. See 8.9.3, “Summary Rules View,” on page
152

Any rules whose type is rule (and not objective or rule group for example) and are marked as
summary items are displayed. This view can be configured in the same manner as the dynamic rules
view mentioned below. See 8.9.5, “Dynamic Rules View”

8.9.5 Dynamic Rules View
When the CONTROL attribute is set to DYNAMIC, this causes an expanding/contracting version of the decision
to be displayed instead of a static tree. In this view the entire tree is not displayed. The view is
“compressed” into multiple trees for each rules-item that has failed coupled with the “summary” flag on
the item. See 8.9.5.1, “Behavior of Summary and Highlight-On-Failure Indicator,” on page 155 for more
details on the summary flag. This is accomplished using scalable vector graphics (SVG) content displayed
in the Adobe SVG Viewer instead of HTML. Refer to the Cúram v6 Supported Prerequisites document to see
the supported version of this Web Browser Plugin.

Although the dynamic view requires an extra browser plug-in, it provides the user with a much more
comprehensive and interactive view of the rules data. The rules tree is more comprehensively organized
with a supplementary conjunction text displayed next to the rules.

There is no need to set a HEIGHT or WIDTH as the rules window resizes itself automatically. The developer
is limited to two dynamic rules windows per page.

Localization of the text to display within the viewer is accomplished through JavaScript property files as
described in 4.8, “JavaScript Externalized Strings,” on page 46. The name of these JavaScript property
files should be SVGText. For example, SVGText.js_es.properties would be the name of the Spanish
language version of SVGText.js.properties file.

All style information related to the dynamic rules widgets is held in a separate file called curam_svg.css.
For further details see 3.12.11, “Cascading Stylesheets,” on page 33.

The developer can configure the rules tree using an XML configuration file. For all rules widgets based
on the RESULT_TEXT domain this configuration is read from RulesDecisionConfig.xml. A version of this
file should be in your components directory. This XML configuration file is merged during the build
process in a similar method to other XML configuration files.

The CONFIG attribute of the FIELD displaying rules is used to specify an ID matching a CONFIG element in
the RulesDecisionConfig.xml file. The following is a sample of a RulesDecisionConfig.xml file:

Chapter 8. Domain Specific Controls 153

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is mandatory
and should match an ID attribute value on a CONFIG element in this document. The default configuration
contains the icon information as well as the default nodes to link to if no configuration is required for a
widget. These are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to a
rules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

<RULES-CONFIG DEFAULT="default-config">
<CONFIG ID="default-config" HYPERLINK-TEXT="false">

<TYPE NAME="PRODUCT"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ASSESSMENT"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SUBRULESET"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_LIST_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_LIST_GROUP"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

</CONFIG>
<CONFIG ID="Rules.Config.Core"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Figure 63. Sample RulesDecisionConfig.xml File

154 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note that the CONFIG with the ID of value of Rules.Config.Core has the optional attribute
OPEN-NODE-PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open
when the page is loaded. This configuration file is also used for configuration of the dynamic full tree
rules view described in the next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page parameter
whose value will be the source for a new parameter (named by the DECISION-ID-TARGET) appended to
each link on the widget. The above example will look for a page parameter called source-Decision-ID and
pass on its value as a parameter to any links on the widget. This new value will be identified by a
parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD attributes
to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is thrown if all three
are present. The DECISION-ID-SOURCE attribute should be the name of a bean on the page and the
DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the decision ID value.
The following is an example of this configuration:

8.9.5.1 Behavior of Summary and Highlight-On-Failure Indicator
The highlight-on-failure indicator on a rules item does not have any effect in this view.

If an item fails and is marked as a summary item, this item should only be displayed as a separate tree if
no item along its parent path (i.e. any group that contains it) has failed and is marked as a summary
item. Consider the following tree of rule groups and rules and note the result and summary attributes on
each item. Note that this is purely for illustrative purposes and does not represent the data-format
created by the Rules Engine.

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Figure 64. Example of Decision ID Sourced from a Bean

Chapter 8. Domain Specific Controls 155

A rule that fails and is marked as "not a summary item" may still display as long as it is contained within
another node that fails and has summary set to "true". A rule that fails and is marked as "not a summary
item" will never display as the root of a tree in the dynamic rules view. So, the data above will result in
separate “trees” as follows.
- D

- E
-- F
-- G

From the first rule-group “B”, only the item “D” is displayed because it has failed and is marked as a
summary item. It appears as a single-node tree.

The rule-group “E” is marked as a summary item and it has failed, therefore it and all it's child nodes are
displayed no matter what the success\failure status or summary flag on the child nodes is.

The entire rule-group “H” is filtered out. “H” itself, and “I” have succeeded and will not be displayed.
Although “J” has failed it is not marked as a summary item and therefore is not displayed.

8.9.6 Dynamic Full Tree Rules View
When the CONTROL attribute is set to DYNAMIC_FULL_TREE a view, similar in functionality to the dynamic
rules view described in the previous section, is displayed. The main difference is that the entire rule set is
displayed, similar to the default rules view, although the tree is interactive thus requiring the SVG
viewer. There is no filtering of the display of rule groups in this view, potentially making it difficult to
understand for someone who is not familiar with the rules engine. Configuration of this view is through
the RulesDecisionConfig.xml file described in the previous section.

8.9.7 Rules Editor
The RULES_DEFINITION domain produces the rules editor. This control has a default HTML-only view
or, if the FIELD 's CONTROL attribute is set to DYNAMIC, an SVG view. See 8.9.2, “Default Rules View,” on
page 152 and 8.9.5, “Dynamic Rules View,” on page 153 for more information.

This widget uses the CONFIG attribute to specify an ID attribute value matching the ID attribute value of a
CONFIG element in the RulesEditorConfig.xml file. This XML configuration file is merged during the build

<decision>
<rules-item id="B" type="rule-group"

result="success" summary="true">
<rules-item id="C" type="rule"

result="success" summary="false" />
<rules-item id="D" type="rule"

result="fail" summary="true" />
</rules-item>
<rules-item id="E" type="rule-group"

result="fail" summary="true">
<rules-item id="F" type="rule"

result="fail" summary="false" />
<rules-item id="G" type="rule"

result="success" summary="false" />
</rules-item>
<rules-item id="H" type="rule-group"

result="success" summary="true">
<rules-item id="I" type="rule"

result="success" summary="true" />
<rules-item id="J" type="rule"

result="fail" summary="false" />
</rules-item>

</decision>

Figure 65. Example of Rules Tree Items with Summary Flag

156 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

process in a similar method to other XML configuration files. The following is a sample of
RulesEditorConfig.xml:

Chapter 8. Domain Specific Controls 157

<RULES-CONFIG DEFAULT="DefaultConfig">
<CONFIG ID="DefaultConfig" HYPERLINK-TEXT="true">

<TYPE NAME="Product"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Assessment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSet"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveListGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Objective"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSetLink"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleListGroup"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Rule"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

<TYPE NAME="DataItemAssignment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

</CONFIG>
<CONFIG ID="Editor.Config"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="Product" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Assessment" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Objective" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Rule"/>
<TYPE NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Figure 66. Sample RulesEditorConfig.xml File

158 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is mandatory
and should match an ID on a CONFIG element in this document. The default configuration contains the
icon information as well as the default nodes to link to if no configuration is present for a widget. These
are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to a
rules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Note that the CONFIG with the ID of value of Editor.Config has the optional attribute OPEN-NODE-PARAM.
This attribute is the name of a page parameter whose value is the ID of a node to open to when the page
is opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page parameter
whose value will be the source for a new parameter (named by the DECISION-ID-TARGET) appended to
each link on the widget. The above example will look for a page parameter called source-Decision-ID
and pass on its value as a parameter to any links on the widget. This new value will be identified by a
parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD attributes
to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is thrown if all three
are present. The DECISION-ID-SOURCE attribute should be the name of a bean on the page and the
DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the decision ID value.
The following is an example of this configuration:

8.10 Meeting View

8.10.1 Overview
The meeting view is a control that displays scheduling information in a chart format. It is associated with
the USER_DAILY_SCHEDULE domain. The data to display in the meeting view is in XML format.
Configuration settings for the meeting view must be in a file called MeetingViewConfig.xml in a
component. The format for the XML data and configuration settings are described below. Finally, the
control has two modes of operation: single and multiple selection.

8.10.2 Single Selection Mode
The first column gives a list of users. The second column indicates the duration of the event to be
scheduled. The third column displays the times during the day that the user is available or busy. The

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Figure 67. Example of Decision ID Sourced from a Bean

Chapter 8. Domain Specific Controls 159

available times are hyperlinks that can be clicked to indicate the schedule the start time for the meeting.
Note that any parameters passed to a page containing the meeting view will be included in any links
within the view.Only start times that can accommodate the relevant meeting duration will be hyperlinks.
For example, in 8.10.2, “Single Selection Mode,” on page 159 below, John Smith is busy from 10:30 until
12:30, so it would not be possible to select 10:00 as the start time for a meeting with a duration of one
hour and the 10:00 time slot will not be a hyperlink.

Note that any parameters passed to a page containing the meeting view will be included in any links
within the view.

8.10.3 Multiple Selection Mode
This view returns a tab-delimited list of the user IDs of selected rows. The meeting view widget in this
mode is the same as that described above for the single selection mode except that it has an extra column
which is inserted as the first column in the list and has a selectable checkbox for each list item. The users
in this mode of widget are chosen by selecting their associated check boxes. Time slots are not
hyperlinked and are for display only.

8.10.4 XML Formats
The meeting view control expects information in a specific XML format. Below is an example of this:

Note that in the format above: the MODE attribute is either Single or Multiple; the DURATION attribute is in
minutes; START and END attributes are date-times in the format “yyyy-MM-dd HH:mm:ss”. The READ_ONLY
attribute, if set to false, indicates that no time slot will be selectable as a hyperlink. The DATE attribute
contains the date of the current scheduling and must be supplied. It should be in the format
“yyyy-MM-dd”. Finally, the TYPE attribute associates the schedule information with configuration settings
which are also specified in an XML format as below:

Figure 68. Single Selection Mode Example

<SCHEDULE MODE="Single|Multiple" TYPE="User"
READ_ONLY="False" DATE="2003-30-10">

<USER NAME="John Smith" ID="12345" DURATION="90">
<BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>

</USER>
<USER NAME="James Smith" ID="12346" DURATION="90">

<BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>

</USER>
</SCHEDULE>

160 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Where INTERVAL is the duration in minutes of each segment of the time line. This can be 15, 30, or 60.
Only these values are acceptable. The START and END attributes detail the beginning and end times of the
time line. They are in the form “HH:mm”. Each CONFIG element can have the following sub-elements:

USER_HOME
The PAGE attribute details which page to link to when clicking on the user's name. The ID_PARAM
attribute is the name of the parameter to supply with the user's ID as a value. NEW_WINDOW
attribute, true by default, specifies if the link opens in a new window or not.

NEW_EVENT
The PAGE attribute details which page to link to when clicking on a time slot. The ID_PARAM
attribute is the name of the parameter to supply with the user's ID as a value. The START_PARAM
attribute is the name of the parameter to supply with the start time of the new event. Similarly,
the END_PARAM describes the name of the end time parameter. Both of these attributes will be in
the current application's date-time format.

MULTI_SELECT
The PAGE attribute details which page to link to when the submit button on the multi-select view
is pressed. TAB_STRING_PARAM is the name of the link parameter to supply containing the
tab-delimited string of selected users. DATE_PARAM is the name of another link parameter
containing the date of the event in question. The date value is taken from the value of the DATE
attribute on the SCHEDULE element.

8.11 Charts

8.11.1 Overview
Charts are displayed when one of the domains of CHART_XML, LINE_CHART_XML, PIE_CHART_XML
or BARCHART_XML domains (or any derivation of them) is used as the source of a field.

Note: Charts are rendered in the browser using Adobe Flex technology. which requires Adobe Flash
Player. Refer to the Cúram Third-Party Tools Installation Guide for Windows document to see the supported
version of Adobe Flash Player.

8.11.2 Chart appearance
A bar chart displays a number of rows horizontally with a horizontal and vertical axis. Each row
represents a unit of information comprised of a caption and a stack of differently colored bars of variable
length. Their length represents the quantity of the unit in question and can be ascertained using the
numbered marks on the horizontal axis, or a data tip which is available when you hover over the unit, as
described below. The chart scale is chosen to fit the biggest stack of bars (this might be overriden by a
configuration setting). Each bar is a hyperlink to a page containing further information. The vertical axis
of this chart displays captions, describing each bar stack category. Captions might be dates, date ranges
or textual values. They are optionally rendered as hyperlinks leading to pages with additional
information, in which case captions are additionally visually indicated when hovered over. Both bar links
and caption links are configurable, as described in 8.11.3, “Chart configuration,” on page 162.

<SCHEDULE_CONFIG>
<CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">

<USER_HOME PAGE="PersonHome"
ID_PARAM="UserID" NEW_WINDOW="True" />

<NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
START_PARAM="start" END_PARAM="end" />

<MULTI_SELECT PAGE="SelectedUsers"
TAB_STRING_PARAM="selectedUsers"
DATE_PARAM="eventDate" />

</CONFIG>
</SCHEDULE_CONFIG>

Chapter 8. Domain Specific Controls 161

Textual captions might get longer than one line. In such a case long captions are wrapped within the
category segment. If a caption text exceeds two lines, though, it is truncated at that point and an
additional tool tip with the full label text is displayed when such a label is hovered over.

Both bar links and caption links are configurable, as described in 8.11.3, “Chart configuration.”

A column chart is similar to the bar chart and configurable the same way, except that units of information
are displayed in column stacks rather than bars, and axes are interchanged accordingly. It is also possible
to configure a column chart so that it has a legend that describes what each of the possible shaded areas
in a column represents. The user can hover over a shaded area in a column, which displays what it
represents when mapped to an entry in the legend.

Another way of presenting chart information is to use a line chart. In this chart, information is rendered
as points in each category group, with points of the same type joined by straight lines (e.g. to represent
data changes over time). Line charts differ from bar and column charts in that neither the points nor lines
are currently hyperlinks. The same applies to line chart captions.

The last available chart type is a pie chart. Charts of this type are typically used to illustrate relative
magnitudes, frequencies or percentages. The arc length of each sector is proportional to the quantity it
represents. Together, the sectors create a full disk. Pie charts use callout-like labels, which provide details
of the item represented by a sector and its percentage in the pie. Sectors are rendered as hyperlinks,
leading to pages with additional information; however, chart labels are not currently available as
hyperlinks.

By default, charts are displayed without a legend so that all the available space can be dedicated to the
chart itself. However, charts can be configured to include a legend which shows extra information on
what is represented by the elements of the chart.

Data tips are displayed on a chart when you hover the mouse over a particular chart data element. Data
tips are shown regardless of whether a legend is included or not.
v The data tip for bar and column charts shows absolute and relative quantitative information attributed

to the element and the element stack, the category (group) to which that element belongs and the type
of the element (corresponding to an entry in the legend, if present).

v As line charts are not stacked, relative quantity information is not shown in their data tips; line chart
data tips are also displayed only when the mouse is over a data point and not over a line.

v For a pie chart, a data tip displays absolute quantitative information for the particular sector and the
percentage of the sector within the disk.

Note: Line charts always display a legend and this is currently not configurable.

8.11.3 Chart configuration
Various aspects of charts can be configured. This is accomplished by setting the CONFIG attribute on the
UIM field in question. The appropriate XML configuration file must contain a configuration section with
a unique identifier matching the text in the CONFIG attribute.

All the necessary chart configuration files are to be in your component directory.

Different types of charts are currently configured in separate configuration files:
v Bar charts and column charts both use ChartConfig.xml and are also backward compatible with the

previous configuration file version, BarChartConfig.xml (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations with the same ID exist in both
files, the one found in ChartConfig.xml takes precedence).

v LineChartConfig.xml configuration file is used to look for line chart configuration data.
v Pie chart configuration data is to be placed into file PieChartConfig.xml

162 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The following is a sample of a chart configuration file:

The CHART-CONFIG root element contains only CONFIG elements. The CONFIG element contains all
configuration for a particular field, identified by the ID attribute. The following table describes all
attributes of the CONFIG element. BarChart.properties referred to in this table is a properties file in the
client application's <CLIENT_DIR>\components\core folder, used to look up values required.

Table 106. Attributes of the CONFIG element

Attribute Description

ID Unique identifier for this CONFIG element.

TYPE Can be either line or pie, depending on required type of chart. If not present,
ORIENTATION attribute will be used to define if bar or column chart is to be
displayed.

<CHART-CONFIG>
<CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"

X_AXIS_LABEL="Vert.BarChart.X-Axis"
Y_AXIS_LABEL="Vert.BarChart.Y-Axis">

<LEGEND CODETABLE="Attendance">
<ITEM CODE="CR1"/>
<ITEM CODE="CR2"/>
<ITEM CODE="CR3"/>

</LEGEND>
<LINK LOCATION="ComponentRedirect">

<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
<CAPTION_LINK LOCATION="AnotherPage">

<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
</CONFIG>

<CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
CAPTION="Status.Caption"
CAPTION_TEXT_CODETABLE="Cars"
MIN_HEIGHT="200" MAX_HEIGHT="500">

<LEGEND VISIBLE="true" CODETABLE="OldCars">
<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="TransferPage">

<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>
<CONFIG ID="BarChart.Config" TYPE="line"

CAPTION="Line.Chart.Caption">
<LEGEND>

<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="ComponentRedirect">

<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>

</CHART-CONFIG>

Chapter 8. Domain Specific Controls 163

Table 106. Attributes of the CONFIG element (continued)

Attribute Description

ORIENTATION Can be either HORIZONTAL or VERTICAL, depending on required type of chart,
HORIZONTAL meaning bar chart and VERTICAL - column chart.

CAPTION_TEXT_CODETABLE Code table currently used for label captions throughout a chart. If not specified,
literal values from chart data will be used.

MAX_VALUE Maximum value for a numeric axis of column or bar chart. Automatically
calculated to fit the maximum element, if not specified.

MAX_INCREMENT Maximum increment value for a numeric axis of a chart. Numbered ticks are
drawn on a chart at the specified intervals. If not specified, numbered ticks are
placed at uniform intervals along the numeric axis, taking into account it's
maximum value.

X_AXIS_LABEL Key to a text property in BarChart.properties. This text is used as the label for
the x-axis in the column or line chart, or y-axis in the bar chart. Not used on pie
chart.

Y_AXIS_LABEL Key to a text property in BarChart.properties. This text is used as the label for
the y-axis in the column or line chart, or x-axis in the bar chart. Not used on pie
chart.

MIN_HEIGHT This setting is used to define minimum chart object height and is to be specified
in pixels. Where a chart contains a small number of items and would be short
based on that content size, minimum height introduced by this setting is used.
The setting is optional, so 250px default minimum height is used if MIN_HEIGHT
is not specified.

MAX_HEIGHT This setting is used to define the maximum chart object height on screen and
should be specified in pixels. Where a chart contains numerous items and its
contents exceeds the MAX_HEIGHT specified, this setting is used for the chart
object height and a vertical scrollbar appears to allow for access to the rest of
the items in the chart. The setting is optional and a default of 250px is used if
the attribute is not specified. A value of -1 for MAX_HEIGHT means that the chart
takes whichever height its content needs to be displayed in full. It is worth
noting that the minimum height setting, either default or explicit, is still taken
into account in this case. As a result, charts with little content will not be
shorter than minimum or default height implies. Finally, a chart with
MAX_HEIGHT set to -1 will not display its vertical scrollbar and the browser
scrollbar will appear once the chart is too big to fit into the screen area
available.

CAPTION Key to a text property in BarChart.properties. This text is used as the label for
the whole chart.

Note: The example lists sample ChartConfig.xml contents. The older format in BarChartConfig.xml is
almost the same except that the root element is called BARCHART-CONFIG.

The older versions of BarChartConfig.xml do not contain configuration for label links. This element might
be added, if required to this file directly; it is preferable, though, to create appropriate full configuration
with the same ID in the ChartConfig.xml which will override the older version.

MIN_HEIGHT and MAX_HEIGHT settings currently do not apply to line or pie charts and will be ignored for
these types.

The CONFIG element has three child elements: LEGEND, LINK and optional CAPTION_LINK.
v The LEGEND element defines the items available for use in the TYPE attribute of a BLOCK element in chart

data returned from the server. The element has an optional CODETABLE attribute, specifying the code

164 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

table used for legend item translation, and an optional VISIBLE attribute which indicates if the legend
should be seen on screen or not. This attribute has a default value of false, so it must be explicitly set
to true in order for the legend to be displayed.
The ITEM child element of specifies each legend entry. Its CODE attribute is the text or code table code
used to identify a legend item. The code table containing the CODE value will be ascertained first from
the CAPTION_TEXT_CODETABLE value of the CONFIG element, then the CODETABLE attribute on the LEGEND
element value, or, in case neither of these attributes are present or do not apply to a particular CODE,
the literal value will be used as a caption. The same caption is used for a context data tip displayed
when mouse pointer is over a corresponding chart element.

v The LINK child element is used to configure hyperlinks on bar chart bars and column chart columns or
pie chart segments. Its LOCATION attribute is the ID of the UIM page to link to. A LINK element can have
any number of PARAMETER child elements. The NAME attribute of a PARAMETER is the name to give the
parameter when transferred as part of hyperlink. The VALUE attribute is the name of the attribute on the
BLOCK element or the CAPTION element in the chart input data returned from the server (see below) to
use as a parameter value unless USE_PAGE_PARAM is true, in which case VALUE is the name of a page
parameter.

v Finally, the CAPTION_LINK element is used whenever chart captions are intended to be rendered as links
and contains separate settings for such links. The CAPTION_LINK element contents are similar to those of
the LINK element. When this element is skipped, captions are displayed as static text. Also, captions as
links are currently supported on bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by creating a properties file called
BarChart.properties in the client application's <CLIENT_DIR>\components\core folder and placing there
values under keys, corresponding to the ones specified among CONFIG element parameters as described
above.

In addition, the text displayed for the word total displayed in the bar tool-tips is customizable using the
key total.tooltip.text in the BarChart.properties file.

Note: Bar colors are not customizable in charts and are automatically calculated by Adobe FLEX.

Collapsible Cluster Support: Collapsible clusters are not supported for any cluster containing this
widget.

8.11.4 Chart Data Formats
The data to be displayed in a chart comes from the server in XML format.

Below is example of the XML used to create a chart:

Chapter 8. Domain Specific Controls 165

The root element, CHART, can contain any number of UNIT elements. These elements are used to group
related information into groups (clusters) and contain one CAPTION element and one or more BLOCK child
elements.

The CAPTION element displays an appropriate caption depending on what attributes are set:
v If either the START_DATE or both START_DATE and END_DATE attributes are set, then the caption will be

either a single start date or a range of dates.
v If the TEXT attribute is set, then the caption text is first looked for in the code table specified in the

CAPTION_TEXT_CODETABLE attribute of the CONFIG element (see above), then looked for as a property in
BarChart.properties using the TEXT value as a key, or, if neither attempt is a match, the literal TEXT
value is rendered as a caption.

Each BLOCK element represents a block to be drawn on a chart as a bar, column, line chart point or pie
chart sector. This element must have an associated TYPE attribute to match it with a particular item. The
LENGTH attribute is necessary to define the measurement of the block. In the bar or column chart this is
the length/height of a bar/column; in a line chart it's the position of an edge point; in a pie chart it's the
relative sector arc length. The ID attribute is a unique identifier for a block and can be used as a
parameter for any hyperlinks. The optional DUE_DATE attribute can also be used as an ID parameter for
hyperlinks on a particular block. It represents the due date for a given block.

Note:

v There are no restrictions on the number or names of the attributes of BLOCK element. This facilitates
passing an arbitrary set of attributes in the links from a chart (provided the configuration is updated
appropriately). However, one should keep in mind, that the names of the attributes provided in this
section are reserved and bound to the particular elements, i.e. even though START_DATE attribute could
be added to a BLOCK element, in this case it will be interpreted as a literal value and not a date as it
would be in the context of CAPTION element.

v Due to the nature of pie chart, no more than one BLOCK element will be processed and displayed in this
type of chart.

8.12 Heatmap Widget

8.12.1 Overview
The Heatmap widget is a control which displays a grid of items of different importance. Items in the
widget are presented by color shades varying from red to blue, indicating their importance level from
highest to lowest.

<CHART>
<UNIT>

<CAPTION TEXT="TR1" START_DATE="2004-12-31"
END_DATE="2005-03-06"/>

<BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
<BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR3" END_DATE="2005-03-08" />
<BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
<BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
<BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>

</UNIT>
</CHART>

Figure 69. Sample Horizontal Bar Chart XML

166 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The widget is inserted into the page when the XML_HEATMAP domain is associated with UIM source
property of a FIELD.

The Heatmap widget expects XML data from the server in the following format:
<HEATMAP>

<REGION REGION_ID="R1" LABEL="highest importance"/>
<REGION REGION_ID="R2" LABEL="middle importance">

<ITEM ITEM_ID="id9" LABEL="0009" />
<ITEM ITEM_ID="id10" LABEL="0010"/>
<ITEM ITEM_ID="id21" LABEL="0021"/>

</REGION>
<REGION REGION_ID="R3" LABEL="lowest importance">

<ITEM ITEM_ID="id22" LABEL="0022"/>
</REGION>
...

</HEATMAP>

Here, the REGION elements specify the importance level ("heat") of their contained ITEM s. There should be
at least two regions in a heatmap widget. The color will always start from red, so if no items of that
importance are there, empty REGION elements should be inserted for the widget to render properly.

The following image shows an example of the Heatmap widget.

8.12.2 Configuration
Different types of heatmap can be configured by creating entries in the HeatmapConfig.xml file in your
components directory, using the following format:
<HEATMAP_CONFIG>

<CONFIG ID="Map1" NUM_COLS="10" NUM_ROWS="4"
LEGEND_POSITION="LEFT"
LEGEND_TITLE="Deadline"
LEGEND_TITLE_PROPERTY="Localised.Legend.Title">

<ITEM_LINK PAGE_ID="Sample_page">
<PARAM NAME="configParameter" VALUE="ITEM_ID"/>

</ITEM_LINK>
</CONFIG>
<CONFIG ID="Map2" NUM_COLS="6">

...
</CONFIG>

</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Figure 70. Heatmap Example

Chapter 8. Domain Specific Controls 167

Table 107. Attributes for CONFIG element

Attribute Description

NUM_COLS This attribute allows you to set the number of items displayed in each row of
the Heatmap

NUM_ROWS This attribute allows you to specify the number of visible rows in the Heatmap.
If this attribute is set to less rows than are required to display the data, a
vertical scrollbar will be provided. If this attribute is not present, the widget will
expand to display as many rows as are required.

LEGEND_POSITION By default, the Heatmap legend is drawn to the right of the widget. This
attribute can be used to draw the legend to the left instead, by setting it's value
to LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attribute can be used to specify a
more logical title to use.

LEGEND_TITLE_PROPERTY Optional attribute used to customize/localize the displayed title. The value here
is the key in the CDEJResources.properties file or its localized version (see
Chapter 4, “Localization,” on page 43 for more details on localization).

The ITEM_LINK element can be used to specify the page to which to link when a user clicks on an item in
the Heatmap, by setting it's PAGE_ID attribute. The PARAM child element can be used to specify what page
parameters to pass (the NAME attribute) and what data items to use as their value (the VALUE attribute).
Values which don't match any attributes in the ITEM elements in the Heatmap XML are assumed to be
literal values.

To specify which configuration to use for a given instance of the Heatmap widget, the CONFIG attribute of
the field containing the widget should be set to the ID of the desired configuration.

8.13 Workflow

8.13.1 Overview
A workflow depicts a series of steps that routinely take place in order for a unit of work to be completed.
The WORKFLOW_GRAPH_XML domain, or any derivation of it, causes a workflow to be displayed. The
data to be displayed in a workflow comes from the server in XML format. Configuration settings for the
Workflow must be in a file called WorkflowConfig.xml, of which there can be only one per component.
The format for the XML data and configuration settings are described below. Any static text for this view
can be customized and localized by creating a properties file called Workflow.properties in the client
application's <CLIENT_DIR>\components\core folder.

8.13.2 Workflow Details
8.13.2, “Workflow Details” shows a sample workflow view. A box, along with a representative icon,
represents a discrete unit of work and is called an activity. Any line connecting nodes is called a transition
and is intended to illustrate the flow of work. For this reason, the start and end activities are represented
by icons only. Workflow proceeds from the left and ends at the right-most activity. An activity is a
hyperlink to a tab containing further details on that activity. An activity can have a second, smaller icon
indicating that there is a notification on this activity. Clicking on the notification icon (a small envelope in
the image below) will open a separate tab with details of the notification.

An activity has an entry point and an exit point for a transition, on the right and the left respectively.
When two or more transitions leave an exit point this is called a split. The transitions in a split can be
given a number to indicate their relative progression. When two or more transitions meet at an activity's
entry point this is called a join. If either a join or a split is an “and” type, also called a “conjunction”,
then it is represented as a small square. This implies that a series of transitions have to take place
together in order for the workflow to proceed. If a join or a split is an “xor” type, an either-or situation,

168 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

then a small circle is used. There are examples of both in the figure below. Finally, a transition can have
an associated transition condition. This means that certain criteria have to be met in order for a transition
to proceed. This is represented by an asterisk on the transition and the full condition information is
displayed in a pop-up if the user hovers the mouse over the symbol.

8.13.3 Workflow XML Formats
The workflow widgets require XML data that conforms to the workflow schema defined in the
workflow.xsd file located in the lib\curam\xml\schema folder of your CDEJ installation folder. Below is an
example of workflow XML data:

Figure 71. Workflow

<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">
<NODE ID="6953557824660045824" X="2.0" Y="1.0"

TEXT="Loop Activity [End]" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="true"
IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
TASK-ID="1"/>

<NODE ID="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndProcessActivity" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
JOIN-TYPE="AND" TASK-ID="2"/>

<NODE ID="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>

<EDGE FROM="6953557824660045824" TO="-3566850904877432832"
HIDDEN="false" TRANSITION-ID="1621295865853378560"
IS-EXECUTED="false" REVERSE-ARROW="false"/>

<EDGE FROM="3566850904877432832" TO="2702159776422297600"
HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
REVERSE-ARROW="true"/>

</WORKFLOW>

Chapter 8. Domain Specific Controls 169

The root element, WORKFLOW, can have any number of NODE (activity) and EDGE (transition) elements. The ID
attribute on WORKFLOW identifies this particular workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attributes of a node are defined in the
following table:

Table 108. Attributes of a Node

Attribute Description

ID Unique identifier for this element, supplied as a parameter in the row header
hyperlink.

X An x-coordinate for an element on the workflow graph.

Y A y-coordinate for an element on the workflow graph.

TEXT The text of an activity.

ACTIVITY-TYPE-CODE Code for an activity type. Used as a parameter in a hyperlink.

HIDDEN Boolean property to indicate if an edge or node is to be hidden. If true the node
will not be displayed.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for a
particular process instance. If set to true then the activity has been executed.

SPLIT-TYPE The split type associated with an activity.

JOIN-TYPE The join type associated with an activity.

ACTIVITY-INSTANCE-ID The unique identifier of an activity instance for a particular process instance.

START-DATE-TIME The start date time of an activity instance or transition instance for an executed
or currently executing process.

END-DATE-TIME The end date time of an activity instance or transition instance for an executed
or currently executing process.

STATUS The current status of an activity instance.

TASK-STATUS Code for the status of a task.

TASK-RESERVED-BY The name of the user reserving the task.

TASK-TOTAL-TIME-WORKED The total time worked on a task in seconds.

NUMBER-ITERATIONS The number of times the activity contained in a node has been executed.

TASK-ID The unique identifier for the task.

The EDGE element represents a single transition in the workflow. All attributes of an edge are defined in
the following table:

Table 109. Attributes of an Edge

Attribute Description

FROM The ID of the node this edge is from.

TO The ID of the node this edge is to.

TRANSITION-ID The unique identifier of a transition.

IS-FOLLOWED Boolean property to indicate if a particular transition has already been followed
for a process instance.

TRANSITION-INSTANCE-ID The unique identifier of a transition instance for a particular process instance.

REVERSE-ARROW Boolean property to indicate if an arrow on an edge should be reversed. In this
case, the arrow will be going into the FROM node instead of the TO node.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for a
particular process instance. If set to true then the activity has been executed.

170 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 109. Attributes of an Edge (continued)

Attribute Description

TRANSITION-CONDITION The condition associated with a transition in an edge.

REAL_FROM ID of a node that this edge is actually from as opposed to an intermediate
hidden node identified by the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed to an intermediate hidden
node identified by the TO attribute.

ENABLED Boolean property to indicate if an edge is to be enabled as a hyperlink. This
attribute is false by default.

ORDER Indicates the order of an edge relative to other edges.

As mentioned above, workflow charts are configurable. This is accomplished by setting the CONFIG
attribute on the UIM field in question. The WorkflowConfig.xml XML configuration file must contain a
configuration section with a unique identifier matching the text in the CONFIG attribute. The XML schema
format for this file is defined in the workflow-config.xsd file located in the lib\curam\xml\schema folder
of your CDEJ installation folder. The following is a sample of this file:

The WORKFLOW_CONFIG root element contains CONFIG elements and ICON elements. The CONFIG element
contains all configuration for a particular field, identified by the ID attribute. The following table
describes all attributes of the CONFIG element:

Table 110. Attributes of Workflow CONFIG element

Attribute Description

ID Unique identifier for this configuration.

DETAILS_PAGE ID of a UIM page to use as a destination for a hyperlink on a node.

HEIGHT Height in pixels of a workflow chart. If height is not specified, a
height will be chosen that attempts to maximize the use of available
space.

ACTIVITY_CODETABLE Codetable name for resolving ACTIVITY-TYPE-CODE attribute values.

TASKSTATUS_CODETABLE Codetable name for resolving TASK-STATUS attribute values.

PROCESSSTATUS_CODETABLE Codetable name for resolving the status of a process instance (e.g. In
Progress, Completed, Suspended or Aborted).

SHOW_INSTANCE_DATA Determines if the chart should display a text area containing all
instance data information. Valid settings are true and false.

<WORKFLOW_CONFIG>
<ICON CODE="AT1" PATH="Images/manual.gif"/>
<ICON CODE="AT2" PATH="Images/automatic.gif"/>
<ICON CODE="AT4" PATH="Images/subflow.gif"/>
<ICON CODE="AT5" PATH="Images/route.gif"/>
<ICON CODE="AT6" PATH="Images/eventwait.gif"/>
<ICON CODE="AT7" PATH="Images/endprocess.gif"/>
<ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
<ICON CODE="AT9" PATH="Images/loopend.gif"/>
<ICON CODE="AT10" PATH="Images/decision.gif"/>
<ICON CODE="AT11" PATH="Images/startprocess.gif"/>
<ICON NOTIFICATION="true"

PATH="CDEJ/cdej-images/notification.gif"/>
<CONFIG ID="WorkFlow.Config"

NOTIFICATION_PAGE="viewActivityNotification"
DETAILS_PAGE="componentRedirect"
START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>

</WORKFLOW_CONFIG>

Chapter 8. Domain Specific Controls 171

Table 110. Attributes of Workflow CONFIG element (continued)

Attribute Description

START_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the start process
type. This activity will be drawn without a box.

END_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the end process
type. This activity will be drawn without a box.

NOTIFICATION_PAGE ID of a UIM page to use as a destination for a hyperlink on a
notification icon.

READONLY_VIEW Determines if the links on a workflow graph should be disabled.

HIGHLIGHT_ACTIVITY_PARAM Represents the parameter used to determine the current activity in a
workflow. The value of the parameter is matched with a
corresponding attribute in the XML data returned from the server to
indicate which node has to be highlighted.

The ICON child element of the WORKFLOW_CONFIG root element defines all icons for the workflow chart.
Either the CODE attribute or the NOTIFICATION attribute defines what kind of icon this is. If CODE is set then
the ACTIVITY-TYPE-CODE on a NODE is used to match an icon to a particular activity type. If the
NOTIFICATION attribute is set to true then this icon is used as a graphic depicting a notification present on
an activity. The PATH attribute on ICON is used to point to an image file, relative to your project's
WebContent directory.

8.14 Evidence View
This view has two modes for displaying and comparing evidence data.

8.14.1 Evidence Display Mode
The EVIDENCE_XML domain results in a table displaying evidence items. There are three columns in the
table. The first displays the evidence item name, the second shows the group to which evidence item
belongs and the value of the item is displayed in the third column. The value of the item will be
formatted based on it's domain.

8.14.2 Evidence Comparison Mode
The EVIDENCE_XML_COMPARE domain results in three tables displaying evidence comparison results.
The comparison results consist of three tables to display items which were modified, added or deleted.
All three tables follow the same format: the first column displays the evidence item name; the second
column displays the group which the evidence item belongs to and corresponding values are displayed
in the third (the modified evidence table will have a fourth fourth column to show previous values
against current values) column.

8.14.3 Configuration
The evidence view is configurable by changing settings in appropriate properties files. For Evidence
Display mode this is the DisplayEvidence.properties file and for Evidence Comparison mode
configuration, ComparedEvidence.properties file is used. These properties files should be created in the
<CLIENT_DIR>\components\core folder.

Configuration files contain table headers and captions for all the columns as well as visibility settings for
each column. There is also a links section for specifying links to pages for each evidence item and item
group column if needed. If a link is not required, leave the value empty rather than deleting the property
itself. Also there are properties containing textual substitution for an empty value case and textual insert
used in evidence item name.

172 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note: The properties specifying visibility settings are not localizable strings and should contain either
“true” or “false” depending on desired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence mode:

The following is an example of the configuration settings for the evidence comparison mode:

8.14.4 Data Format
The Evidence view expects the following XML format. Below is an example for Evidence Comparison
mode:

#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

Comparison section labels
Evidence.Table.Label=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

Comparison section labels
Evidence.Label.MODIFIED=Modified evidence
Evidence.Label.NEW=Newly added evidence items
Evidence.Label.REMOVED=Removed evidence items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Oldval.Column.Visible=true
Value.Column.Visible=true

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

Chapter 8. Domain Specific Controls 173

The following is an example of the Evidence Display mode:

<EVIDENCE_COMPARE>
<EVIDENCE TYPE="MODIFIED">

<GROUP ID="mod1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="modItem1ID"
DESCRIPTION="en|Number of Children"
OLDVAL="11" VALUE="13"
DOMAIN="SVR_INT32"/>

</GROUP>
<GROUP ID="mod2ID"

DESCRIPTION="en|EvidenceGroup2">
<EVIDENCE_ITEM ID="modItem3ID"

DESCRIPTION="en|Are you married"
OLDVAL="false" VALUE="true"
DOMAIN="SVR_BOOLEAN"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="NEW">

<GROUP ID="new1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="newItem1ID"
DESCRIPTION="en|Number of cars"
VALUE="6"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="REMOVED">
<GROUP ID="del1ID"

DESCRIPTION="en|Deletion">
<EVIDENCE_ITEM ID="delItem1ID"

DESCRIPTION="en|Number of houses"
OLDVAL="1"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>

</EVIDENCE_COMPARE>

174 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The display-name attribute represents a description for every item or group, the description does the
same for the value element. Group ids, evidence item names and value descriptions are supplied by the
evidence text returned from the rules engine. The type attribute is used to select particular representation
for different data types from the server. The name attribute of item and the id attribute of group are used
as link parameters if a link is specified for the first or second column.

8.15 Calendar
The calendar is used by any UIM page which displays a field from a server access bean containing a
CALENDAR_XML_STRING domain. This view allows for scheduling of events from different
time-frames; monthly, weekly and daily. The following image shows a section of the calendar week view
as it would be displayed in a web page.

<evidence>
<group id="group1" display-name="EvidenceGroup1">

<item name="item11"
display-name="Number of Children"
initial-value="13" no-value="false"
type="SVR_INT32"/>

<item name="item12"
display-name="item with no value"
initial-value="" no-value="true"
type="SVR_STRING"/>

</group>
<group id="group2" display-name="EvidenceGroup2">

<item name="item21"
display-name="Are you married"
initial-value="true" no-value="false"
type="SVR_BOOLEAN"/>

<item name="item22"
display-name="Some important dates"
initial-value="" no-value="false"
type="SVR_DATE">

<value position="10" description="Important date 1"
value="20050401T000000">

<value position="18" description="Important date 2"
value="20050601T000000">

<value position="5" description="Important date 3"
value="20051231T000000">

</item>
</group>

</evidence>

Chapter 8. Domain Specific Controls 175

Programmatically, the calendar expects to be populated with information about events in an XML format.

The following is an example of what the XML received from the server might look like:

Notice that there can be two kinds of event elements contained within the CURAM_CALENDAR_DATA XML
data: EVENT and SINGLE_DAY_EVENT. In the schema of the XML data expected the root element,
CURAM_CALENDAR_DATA, can hold any number (zero to many) of EVENT and SINGLE_DAY_EVENT elements;
CURAM_CALENDAR_DATA can optionally have a TYPE attribute which associates this sequence of events with a
particular calendar configuration (see example below).

The following tables describe the schema definitions for each of the attributes allowed on the EVENT and
the SINGLE_DAY_EVENT elements respectively.

Figure 72. Calendar Week View

<CURAM_CALENDAR_DATA TYPE="UserCalendar">
<EVENT>

<ID>1</ID>
<DATE>2002-10-10</DATE>
<STARTTIME>10:10:10</STARTTIME>
<ENDTIME>10:10:10</ENDTIME>
<DURATION>0</DURATION>
<DESCRIPTION>Hello World!</DESCRIPTION>
<STATUS>ATS1</STATUS>
<PRIORITY>AP1</PRIORITY>
<LEVEL>AL1</LEVEL>
<RECURRING>false</RECURRING>
<READ_ONLY>false</READ_ONLY>
<ALL_DAY>false</ALL_DAY>
<ATTENDEE>true</ATTENDEE>
<ACCEPTANCE>true</ACCEPTANCE>

</EVENT>
<SINGLE_DAY_EVENT>

<ID>2</ID>
<DATE>2003-04-01</DATE>
<TYPE>ET1</TYPE>
<DESCRIPTION>April Fool’s Day</DESCRIPTION>

</SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Figure 73. Calendar XML Stream

176 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 111. EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event.

DATE The date of the event in xs:date format: (CCYY-MM-DD) I.e.
21- Aug-2002 is represented as 2002-08-21.

No

STARTTIME The start time in xs:time format: (hh:mm:ss). I.E. 1:34 pm and
56 seconds is represented as 13:34:56.

ENDTIME The start time in xs:time format: (hh:mm:ss). No

DURATION The duration of the event in minutes. This should be an
integer.

No

DESCRIPTION A Description of the event. No

STATUS The status of the event. This node is limited to values stored
in the ActivityTimeStatus code table in the reference
application.

No

PRIORITY The priority of the event. This node is limited to values stored
in the ActivityPriority code table in the reference application.

No

LEVEL Code that shows the level of the activity. This node is limited
to the values stored in the ActivityLevel code table in the
reference application.

No

RECURRING Recurring indicator: true if this event is a recurring event.
Otherwise false.

No

READ_ONLY Read-only indicator: true if this event is a read-only event.
Otherwise false.

No

ALL_DAY All-day indicator: True if this is an all-day event. Otherwise
false.

No

ATTENDEE Attendee indicator: true if the user is attending a meeting.
Otherwise false.

No

ACCEPTANCE Acceptance indicator: True if the user has accepted an
invitation to a meeting. Otherwise false.

POSITION For a spanning event, indicates first or last component of the
event.

No

Table 112. SINGLE_DAY_EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event. No

DATE The date of the event in xs:date format. No

TYPE The type of a single day event. No

DESCRIPTION A Description of the event. No

Once a field based on the CALENDAR_XML_STRING domain returns XML information formatted
according to the aforementioned schema, it will be displayed in the appropriate time position by the
calendar. Any web page containing a calendar can be set to open on different dates and views by
specifying the startDate and calendarViewType parameters in the page's URL. The startDate parameter
should be formatted according to the date format expected by the application and the calendarViewType
parameter should be one of the following codes.

Chapter 8. Domain Specific Controls 177

Table 113. Calendar View Type Values

Code Value

CVT1 Day view

CVT2 Week view

CVT3 Month view

You can configure the display of calendar information using the CalendarConfig.xml file. There should be
at least one copy of this in the components folder. This file should contain configuration information for
each type of calendar, the TYPE attribute of the CURAM_CALENDAR_DATA element mentioned above associates
a calendar data stream with a particular type. The following is an example of the structure of the
CalendarConfig.xml

The overall schema for this configuration file specifies the CONFIGURATION element as the root element.
The CONFIGURATION has an optional MONTH_CELL_HEIGHT attribute which sets the maximum number of rows
to display in a single cell in the month view. The default value is three. The SHOW_REPEAT_EVENT_TEXT
optional attribute, if set to true, will display the event description in each month cell if an event spans
multiple days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR elements and a single EVENT_TYPES
element. The TYPE attribute of CALENDAR associates this configuration information with an XML stream
returned from the server. The DESCRIPTION_LOCATION element of CALENDAR is for constructing a link to a
page containing more information on any event in the calendar. The following table lists the parameters
passed with this hyperlink.

Table 114. Parameters Passed to Event Description Pages

Parameter Name Description

ID the event ID

RE Recurrence indicator

AT Attendee indicator

RO Read-only indicator

LV_ Activity level

AC Acceptance indicator

The CALENDAR element should also contain an element called DAY_VIEW_TIME_FORMAT. The valid values for
this element are 12 and 24. They specify whether the time in the day view is displayed using a 12 or 24
hour format.

<CONFIGURATION MONTH_CELL_HEIGHT="4"
SHOW_REPEAT_EVENT_TEXT="true">

<CALENDAR TYPE="UserCalendar">
<DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
<DAY_VIEW_TIME_FORMAT>24</DAY_VIEW_TIME_FORMAT>

</CALENDAR>
<EVENT_TYPES>

<TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
<TYPE NAME="ET2" ICON="Images/case.gif"/>
<TYPE NAME="ET3" ICON="Images/concern.gif"/>

</EVENT_TYPES>
</CONFIGURATION>

Figure 74. CalendarConfig.xml Example

178 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The EVENT_TYPES element is used for mapping images to display as icons next to single day events. The
NAME attribute of the TYPE element must match a TYPE element on a SINGLE_DAY_EVENT supplied by the
server for the image specified by the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfiguration.xsd) and the schema for the
CALENDAR_XML_STRING domain (CuramCalendar.xsd) are located in your project's
WebContent/WEB-INF/CDEJ/schema folder.

8.16 Payment Statement View
The payment statement view is used for displaying under or over payment within the Cúram application
framework.

The payment statement view supports the display of benefits as well as liabilities. The domain
BENEFIT_REASSESSMENT_RESULT_TEXT should be used for a benefit payment statement view. The
domain LIABILITY_REASSESSMENT_RESULT_TEXT should be used for a liability payment statement
view. It is expected that all string data returned for this field follows a specific tab-delimited format.
Examples of using these domains can be found in the Cúram reference application.

There is also a properties file associated with this view: PaymentStatement.properties in the
<CLIENT_DIR>\components\core folder. The link to a page providing further details on a statement can be
defined using a set of four parameters:
PaymentStatement.RowLink.Benefit.PageID
PaymentStatement.RowLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages. PageID is the name of the
page to link to. ParameterName is the name of the parameter to be passed to this page to identify the id of
the payment in question. Label supplies the text of the link, if Image is not used. Otherwise it supplies
the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget.

Chapter 8. Domain Specific Controls 179

8.17 Batch Function View
The batch function view is generated from the PARAM_TAB_LIST domain. It allows you to enter
parameters to submit a batch program for execution. The labels of each field are provided to the view by
a single tab-delimited string.

8.18 Addresses
The ADDRESS_DATA domain type maps to a tag for entering and displaying addresses. Although the
user sees several fields, addresses are stored as a single string field. Each of the fields displayed as part of
the out-of-the-box address are text input fields except for the state field which is drop-down field.

To parse the address and display it, the elements that make up the address have to be defined in the
curam-config.xml file. Different address configurations for different locales in the Cúram application can
be defined. 8.18, “Addresses” demonstrates how to set this configuration using the ADDRESS_CONFIG
element.

PaymentStatement.RowLink.Benefit.PageID=FromBenefit
PaymentStatement.RowLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=param1
PaymentStatement.RowLink.Liability.ParameterName=param2

PaymentStatement.RowLink.Benefit.Label=Link Text 1
PaymentStatement.RowLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period
PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Figure 75. A Sample PaymentStatement.properties File

180 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The ADDRESS_CONFIG element is built using multiple LOCALE_MAPPING and ADDRESS_FORMAT elements. In
Cúram application deployments with multiple locales, a developer may wish to use a different address
format for each locale. To do this we use the LOCALE_MAPPING element. This element contains a LOCALE
attribute which defines the locale and an ADDRESS_FORMAT_NAME attribute which defines the
ADDRESS_FORMAT element to be mapped. By default, the OOTB Cúram application has a number of
ADDRESS_FORMAT elements defined which are mapped to specific locales. As these locales are already
mapped it is not required to define LOCALE_MAPPING elements for them, however customers are free to
modify these or create new configuration(s) as per their implementation needs. Figure 76 above illustrates
how the LOCALE_MAPPING element is used for the US and UK address formats. The following address
formats and their corresponding locale mappings are available OOTB.

Table 115. Address Format configurations

Address Format Name Locale Mapping

US en_US

UK en_GB

DE de

CA en_CA

<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_US"

ADDRESS_FORMAT_NAME="US"/>
<LOCALE_MAPPING LOCALE="en_GB"

ADDRESS_FORMAT_NAME="UK"/>
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">

<ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
NAME="ADD1"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
NAME="ADD2"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
NAME="ADD3"/>

<ADDRESS_ELEMENT LABEL="Address.Label.City"
NAME="CITY"/>

<ADDRESS_ELEMENT CODETABLE="AddressState"
LABEL="Address.Label.State"
NAME="STATE"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Zip"
NAME="ZIP"/>

</ADDRESS_FORMAT>

<ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">
<ADDRESS_ELEMENT LABEL="Address.Label.Address.1"

MANDATORY="true" NAME="ADD1"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.2"

NAME="ADD2"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.3"

NAME="ADD3"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.4"

NAME="ADD4"/>
<ADDRESS_ELEMENT LABEL="Address.Label.County"

NAME="ADD5"/>
<ADDRESS_ELEMENT LABEL="Address.Label.City"

NAME="CITY"/>
<ADDRESS_ELEMENT LABEL="Address.Label.PostCode"

NAME="POSTCODE"/>
<ADDRESS_ELEMENT CODETABLE="Country"

LABEL="Address.Label.Country"
NAME="COUNTRY"/>

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

Figure 76. Address Configuration in curam config xml

Chapter 8. Domain Specific Controls 181

Table 115. Address Format configurations (continued)

Address Format Name Locale Mapping

KR ko

JP ja

TW zh_TW

CN zh_CN

The ADDRESS_FORMAT has an optional COUNTRY_CODE attribute which is used in the address header when an
address is first created. If it is not set, the COUNTRY_CODE defaults to GBR when the address format specified
is UK and to US for everything else. The COUNTRY_CODE is not used by the infrastructure. It is one of the
fields in the address string used by the application, but infrastructure provides an initial value for it.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements which defines the fields in the address
tag. The ADDRESS_ELEMENT element has a LABEL attribute which refers to properties contained in the
CDEJResources.properties file. The address is then built using ADDRESS_ELEMENT tags which must be
given a name and label. Note that a code table can also be specified for each ADDRESS_ELEMENT. When a
code table is specified, a drop-down list will display the code table entries and the default code will be
pre-selected.

The optional MANDATORY attribute specifies if an address element is required to be filled in. The Mandatory
indicator is an asterisk beside the field label as shown in the example above. Please note, that in order for
MANDATORY settings in curam-config.xml to work, the field supplying the address data should be marked
mandatory in application model.

8.19 Schedule View
The schedule view is used for any domain of the type SCHEDULE_DATA. This view displays a grid of
time-line information for the hours between 8 am and 8 pm. Each row in this grid represents a person
whose full name is displayed in the row header. Each cell in the person's row represents a half hour
period containing an indicator for whether they are available or not. If a user clicks on a free cell, they
should be linked to a page allowing them to enter further schedule events.

The information and setup of this particular view involves a particular setup in a page's UIM file. 8.19,
“Schedule View” is an example of the UIM for a schedule field.

182 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The Cúram page generator expects any schedule FIELD element to be followed by a LINK element which
details the PAGE_ID of the page to go to when a free cell is clicked on. The following three CONNECT
elements should be fields which provide the following attributes to the link: the date of the day in
question (the time is appended to this date); the full name of the user; and the user's unique identifier.
The order of these CONNECT elements is important or the schedule view will not contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and 32 bit schedule fields separated
by a tab. An example of one such element of this list would be:

John Smith<tab>16777212

Please note that 16777212 is the integer value which translates to the bit field
00000000111111111111111111111100. A one represents a half hour when Mr. Smith is busy and a zero stands
for free time. The bit field is read from the least significant bit first, i.e. from right to left, with 8 am
represented by the right-most bit. As we are dealing with a twelve hour period and each bit stands for a
half hour, only the first 24 bits are important. The last byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks (per user), with each block
representing half an hour. Half hour blocks of free time are displayed differently than the other blocks
(busy) in terms of color and size.

8.20 Radio Button Group
An alternative way to present a set of code table values is as a radio button group, each radio button
representing a code table item. To display in the form of radio buttons, a field representing a code table
value should be mapped to the SHORT_CODETABLE_CODE domain or to a domain directly inheriting
from SHORT_CODETABLE_CODE.

<FIELD>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="schedule"/>
</CONNECT>
<CONNECT>

<LINK PAGE_ID="IncomeScreening_confirmAppointment">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
<TARGET NAME="PAGE" PROPERTY="date"/>
</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="userFullName"/>
<TARGET NAME="PAGE" PROPERTY="fullUserName"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="userName"/>
<TARGET NAME="PAGE" PROPERTY="userName"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="caseID"/>
<TARGET NAME="PAGE" PROPERTY="caseID"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
<TARGET NAME="PAGE" PROPERTY="pageDescription"/>

</CONNECT>
</LINK>

</FIELD>

Figure 77. UIM Example of Schedule View

Chapter 8. Domain Specific Controls 183

8.21 Pop-up Pages
This section describes how to set up a pop-up page. The Cúram application has a number of built-in
pop-up pages such as the Date Selector pop-up described earlier which are “helpers” used to enter data.
Developers are also allowed to specify their own pop-up pages. For example, when scheduling a meeting
for a person you don't want the user to have to know or fill in that persons unique ID. Instead the user
should be provided with a search facility or a pre-populated list of valid options they can select from.
This is achieved in Cúram with pop-up pages.

The out-of-the-box pop-up widget has a input field (grey in color) with a search - in the form of a
magnifying glass - and a clear icon beside it. When the user clicks on the search icon this will activate a
pop-up page. The user can select an item from the pop-page which will populate the text input field on
the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

8.21.1 Configure the Pop-up Page
The first step is to configure the pop-up page. This is performed by the POPUP_PAGES element in
curam-config.xml.

On the root element the DISPLAY_IMAGES attribute can be used to configure whether images or text is used
for the actions which open a pop-up or clear the currently selected value.

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “clear this text” button. Note that this is an
application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there must be instance of this element.
Up to two pop-ups can be associated with a single domain; one to search for an existing item, another to
create a new item. The following attributes and child elements control various aspects of how the pop-up
is presented to the user.

Table 116. Attributes of the POPUP_PAGE element.

Name Description

PAGE_ID Specifies the UIM page id of the pop-up page to open to search for an existing
item.

CREATE_PAGE_ID Specifies the UIM page id of the the pop-up page to open to create a new item.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
<CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
<POPUP_PAGE PAGE_ID="PersonSearch"

CREATE_PAGE_ID="RegisterPerson"
CONTROL_TYPE="textunderline|textinput"
CONTROL_EDITABLE="true|false"
CONTROL_INSERT_MODE="overwrite|insert|append">

<DOMAIN>PERSON_ID</DOMAIN>
<WIDTH>800</WIDTH>
<HEIGHT>600</HEIGHT>
<SCROLLBARS>true</SCROLLBARS>
<IMAGE>Images/search.gif</IMAGE>
<LABEL>Search</LABEL>
<CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
<CREATE_LABEL>New</CREATE_LABEL>

</POPUP_PAGE>
</POPUP_PAGES>

Figure 78. Pop-up Configuration Example

184 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 116. Attributes of the POPUP_PAGE element. (continued)

Name Description

CONTROL_TYPE Specifies the type of control where the value returned from the pop-up will be
written to. The default value is textunderline which displays static text with an
underline. To display a text input field set the value to textinput. When a a text
input control is configured, on the UIM FIELD which uses a pop-up, the HEIGHT
attribute can be used to change from a single line text input to a multi-line text
area.

CONTROL_EDITABLE This attribute is only valid when CONTROL_TYPE is set to textinput. It controls
whether the text input field is editable or not. Set to true to create a editable
field and false to create a non-editable field. Note that Internet Explorer does
not give any visual indication that the text input field is not editable.

CONTROL_INSERT_MODE This attribute is only valid when CONTROL_TYPE is set to textinput. It allows you
to configure how a value selected from a pop-up is inserted into the associated
input control. The default is overwrite which means the selected value will
overwrite the previous contents. Setting the attribute to insert means the
selected value will be inserted at the current cursor position. Setting the
attribute to append means the selected value will be appended to the previous
contents of the input control.

Table 117. Child elements of the POPUP_PAGE element.

Name Description

DOMAIN Domain used to identify this pop-up page. If a FIELD element with a TARGET
connection is based on this domain, a pop-up will be used instead of a standard
text entry box.

CT_CODE This is a second way to identify a pop-up page. The attribute contains a code
table code value and is used when associating multiple pop-up pages with a
single field and is described in further detail below.

WIDTH Width in pixels of pop-up dialog. This element is optional. If not included, the
default width of 600 pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is optional. If not included, the
height will be automatically calculated based on the page contents.

IMAGE Location of image which when clicked launches the pop-up defined by the
POPUP_PAGE element's PAGE_ID attribute.

IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which the
locale-specific location of the pop-up launcher image otherwise specified by
IMAGE attribute is stored. If the IMAGE is also specified for the same
configuration, it will take precedence over the IMAGE_PROPERTY and this attribute
will be ignored.

HIGH_CONTRAST_IMAGE Location of the high contrast image which when clicked launches the pop-up
defined by the POPUP_PAGE element's PAGE_ID attribute.

HIGH_CONTRAST_IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which the
locale-specific location of the pop-up launcher image otherwise specified by
HIGH_CONTRAST_IMAGE attribute is stored. If the HIGH_CONTRAST_IMAGE is also
specified for the same configuration, it will take precedence over the
HIGH_CONTRAST_IMAGE_PROPERTY and this attribute will be ignored.

LABEL Alternate text for the image defined by the IMAGE element. If the POPUP_PAGE
element's DISPLAY_IMAGES attribute is set to false, this text will be displayed
instead of the image.

LABEL_PROPERTY Optional key in the CDEJResources.properties file under which the
locale-specific value of the label attribute otherwise specified by the LABEL
attribute is stored. If LABEL is also specified for the same configuration, it will
take precedence over the LABEL_PROPERTY and this attribute will be ignored.

Chapter 8. Domain Specific Controls 185

Table 117. Child elements of the POPUP_PAGE element. (continued)

Name Description

CREATE_IMAGE Location of image which when clicked launches the pop-up defined by the
POPUP_PAGE element's CREATE_PAGE_ID attribute.

CREATE_IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which the
locale-specific location of the pop-up launcher image otherwise specified by
CREATE_IMAGE attribute is stored. If the CREATE_IMAGE is also specified for the
same configuration, it will take precedence over the CREATE_IMAGE_PROPERTY and
this attribute will be ignored.

CREATE_LABEL Alternate text for the image defined by the CREATE_IMAGE element. If the
POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false, this text will be
displayed instead of the image.

CREATE_LABEL_PROPERTY Optional key in the CDEJResources.properties file under which the
locale-specific value otherwise specified by the CREATE_LABEL attribute is stored.
If the CREATE_LABEL is also specified for the configuration, it will take
precedence over the CREATE_LABEL_PROPERTY and this attribute will be ignored.

8.21.2 Create the Pop-up Page
A Cúram pop-up page is written in UIM. It can be written to display a set of existing items for the user
to select from or to register a completely new item.

8.21.2.1 A pop-up which returns existing items
The following is an example of a pop-up page which accepts user input, displays a list of search results,
one of which can be selected and its unique identifier returned to the parent page.
<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">

<PAGE_TITLE ICON="PersonSearchPageIcon">
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText1"/>

</CONNECT>
</PAGE_TITLE>
<SERVER_INTERFACE NAME="ACTION"

CLASS="Person"
OPERATION="search"
PHASE="ACTION"

/>
<CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL LABEL="ActionControl.Label.Search"

TYPE="SUBMIT" DEFAULT="true">
<LINK PAGE_ID="THIS"/>

</ACTION_CONTROL>
<ACTION_CONTROL LABEL="ActionControl.Label.Cancel"

IMAGE="CancelButton" TYPE="DISMISS"/>
</ACTION_SET>

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>

<TARGET NAME="ACTION"
PROPERTY="personSearchKey$referenceNumber"/>

</CONNECT>
</FIELD>

</CLUSTER>

<LIST TITLE="List.Title.SearchResults">
<CONTAINER LABEL="Container.Label.Action">

<ACTION_CONTROL LABEL="ActionControl.Label.Select"
TYPE="DISMISS" >

186 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<LINK>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />

<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>

</LINK>
</ACTION_CONTROL>

</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.FirstName">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>

</CONNECT>
</FIELD>

</LIST>
</PAGE>

The points to note about this example are:
v The PAGE_ID attributes of the UIM PAGE element and the POPUP_PAGE element in curam-config.xml must

match.
v The POPUP_PAGE attribute of the UIM PAGE element must be set to true.
v The submit action is linked to THIS. This means the page will be redisplayed after the submit button is

pressed.
v To cancel the pop-up an action control of type DISMISS is used. If the action control does not have a

child LINK element, the pop-up will be closed without returning any values to the parent page which
opened it.

v The search results list in this example is made up of three columns. The first contains a link which will
close the pop-up and return the selected values, the remaining columns display further information
about the person.

v To close the pop-up and return values, an action control of type DISMISS is used. This is placed in a
CONTAINER so it is the first column in the search results list. The user can click this link to select one of
the search results.

v To specify what values should be returned a child LINK element is added to the action control. When
used in an action control to close a pop-up all standard attributes of the LINK element (e.g. PAGE_ID)
have no meaning and will be ignored.

v For Cúram pop-up pages two values must always be returned. These are specified using CONNECT
elements. Both connections must use a target of PAGE and have the PROPERTY set to value and
description. The value connection specifies the value required on the page that opened the pop-up, in
this example the persons unique record ID. The description connection specifies descriptive text to be
shown to the user, in this example the person's name. So, on the page which opened the pop-up, the
person's name will be displayed to the user, but it is their unique ID which will be submitted to the
server.

It is not necessary for pop-up pages to accept input. For example, the LIST can be populated from a
display phase server interface if necessary.

Chapter 8. Domain Specific Controls 187

8.21.2.2 A pop-up which creates a new item
A pop-up may also create a new item and have the newly generated unique identifier for that item
returned to the parent page. To do this create a page which a ACTION_CONTROL of type SUBMIT_AND_DISMISS
must be used. For example;
<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />

<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>

</ACTION_CONTROL>

Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the child LINK and CONNECT element is
the same as described in the previous section for a DISMISS action control. After the form is successfully
submitted the pop-up will be dismissed and the new values returned to the parent page.

8.21.3 Using the Pop-up Page
Pop-up pages are opened using standard UIM FIELD elements. If the field has a target connection which
is based on a domain as configured in curam-config.xml a link to open the pop-up will be generated
rather than a standard text entry field. This is illustrated in the screen shot above with the “Preferred
Office” input field.

The following is the most basic example of a FIELD opening a pop-up. It is from an insert page so only a
target connection is specified. Using the current example, the person's unique ID will be assigned to the
field specified in the target connection and the person's name will only be used for visual purpose to
display to the user.

The following example is from a modify page which means the field will have a source value which must
be displayed to the user. It is slightly more complex that standard fields on a modify page because there
are actually two source values to handled. The person's unique ID and the person's name. In this case the
INITIAL connection is used to specify the person's name. This will only be used to display to the user and
note that is not submitted to the server. Following that the field is just like any other on a modify page.
The source connection specifies the existing value of the field, the target connection specifies where the
value should be submitted to.

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 79. Opening a Pop-up from an Insert Page

188 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

When invoking a pop-up it is also possible to supply page parameters to the pop-up. This is a slight
variation on the two examples above and involves the use of the LINK element. The following is an
example of two parameters passed to a pop-up page, one sourced from an existing page parameter, the
other from a server interface property. When a LINK element is used in this context no attributes such as
PAGE_ID should be specified. Also a TEXT source connection cannot be used to supply a parameter to a
pop-up page.

8.21.4 Using Multiple Pop-up Search Pages for a Single Field
In some cases we need to search for different types of Cúram entities but that search is associated with a
single field. For example you may have a requirement to search for a Cúram client which has a generic
domain of CURAM_CLIENT_ID. This could be a person, an employer, a product provider etc. Individual
search pages may already exist for these types so you should be able to reuse them. Assuming the
pop-up search pages already exist, this involves two extra steps which are described in the following
sections and. The resulting pop-up widget is as described in 8.21, “Pop-up Pages,” on page 184 except
that there is an additional drop-down field rendered to the left of the text input field. In order to activate
the pop-up page for this widget, the user first selects the type of search to be performed from the drop
down list and then clicks on the search icon.

8.21.5 Configure the Multiple Pop-up Page
This can be configured through the MULTIPLE_POPUP_DOMAINS element in curam-config.xml. The following
is an example:

<FIELD LABEL="Field.Label.person">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"/>
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 80. Opening a Pop-up from a Modify Page

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
<LINK>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="param1"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personName"/>
<TARGET NAME="PAGE" PROPERTY="param2"/>

</CONNECT>
</LINK>

</FIELD>

Figure 81. Supplying Parameters to a Pop-up Page

Chapter 8. Domain Specific Controls 189

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “clear this text” button. This is an application
wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to associate multiple pop-up windows create
an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-up windows

IMAGE : Location of image to be used for pop-up icon.

LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is required to select the pop-up
type. This drop-down list is populated as normal from a code-table. The code-table codes are the link
between the drop-down list and pop-up that is opened. This requires the CT_CODE child element of the
POPUP_PAGE element to be set to the code-table code value.

8.21.6 Using the Multiple Pop-up Page
Once the configuration is done the final step is the write the UIM necessary to display the pop-up search.

The main points to note are:
v A CONTAINER and two FIELD elements are required, one for the drop-down list, the other for the value

which will be returned from the pop-up. The container must not include any other FIELD elements.
v The first field should be based on a code-table domain which contains a list of codes which

corresponds to the CT_CODE element described earlier.
v The second field should have a target connection which is based on a domain using the

MULTIPLE_POPUP_DOMAIN element.

<MULTIPLE_POPUP_DOMAINS>
<CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
<MULTIPLE_POPUP_DOMAIN>

<DOMAIN>CURAM_CLIENT_ID</DOMAIN>
<LABEL>Search</LABEL>
<IMAGE>Images/search.gif</IMAGE>

</MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

Figure 82. Multiple Pop-up Domains

<CONTAINER LABEL="Label.person">
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTION"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="clientID" NAME="ACTION"/>

</CONNECT>
</FIELD>

</CONTAINER>

Figure 83. UIM to Use Multiple Pop-up Windows

190 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

8.22 Agenda Player
The Agenda Player (or player for short) is a wizard-like control which provides guided navigation
through a specified set of screens. As the name implies the screens in the Agenda Player are supposed to
be part of a certain agenda or scenario, most typically involving step-by-step collecting of information.

Note: Agenda Player widget is not supported outside the modal dialog context, an attempt to open it in
the tab content panel or elsewhere (e.g., as the inline page of an expandable list) will lead to an explicit
error message stating this.

8.22.1 Agenda Player screen structure
Depending on how the Agenda Player player is configured, the screen is divided into either three or four
parts:
v Along the top is the Agenda Player header. It contains a customizable Agenda Player title on the left

and, where appropriate, a progress bar on the top right, which shows the user's progress through the
agenda. The steps completed in the progress bar will be shaded in color whereas the steps that have
yet to be completed will not.

v On the left of an Agenda Player, a navigation panel (optional) shows the list of pages in the current
agenda. The user's progress through the sequence is continuously displayed there (in addition to
progress bar) by highlighting of the current page. The appearance and behavior of the other pages in
the agenda depends on the mode used (see below). The pages in an agenda can be grouped into
sections and the player provides the ability to collapse and expand visited sections.
At the bottom of the navigation panel is the summary link, which allows users to jump directly to the
player summary page (they would also get there by navigating through all the pages in the agenda).
The summary link is only displayed if there is an appropriate element specified in the agenda XML.
The navigation panel is not displayed in the navigator-less (claimant) view of the Agenda Player.

v Along the bottom, a set of buttons is displayed to allow the user to step forward and back through the
Agenda Player. There are also buttons to jump to the summary page (displayed optionally) and to quit
the Player.

Note: The text used for these buttons can be customized (see below). However, for the remainder of
this section they are further referred as the Back, Next, Finish and Cancel buttons, which are their
default captions.

v The main area of the screen is the content area. This area displays normal client pages which might
also be used outside of the Agenda Player.

8.22.2 Navigation modes
In addition to using the back and next buttons to navigate through an agenda, the player can provide
additional options in the navigation panel, depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation modes: basic, incremental or
full, with incremental mode being the default.
v The basic mode is used for strictly sequential navigation through the agenda pages. In this mode the

navigation panel is just used for additional information, indicating which page the user is currently on.
The only navigation means are the standard player buttons.

v The incremental mode expands on the basic mode by providing links in the navigation panel to any
pages which have already been visited. A user can use these links to skip back and forward between
previously visited pages, but will still need to use the next button to progress any further.

v The full mode is actually a non-sequential mode as all the navigation panel elements are initially
rendered as links. Sequential advancing is possible here as well, as the player buttons are fully
functional, but there are no restrictions placed on the order in which you navigate through the agenda.
This, however, means that things related to the sequential progress might be unavailable, or not work
properly in this mode (for example, the progress bar is not displayed for this mode at all; dynamic

Chapter 8. Domain Specific Controls 191

parameters might not be available if a screen which expects these parameters is visited before the one
where these parameters are initialized, etc.). Because of this the full navigation mode should be used
where specifically required and the agenda should be designed/configured keeping in mind the
possible consequences.
Agenda Player mode configuration is described in 8.22.4, “Agenda Player Configuration”

Note: Within the Player screens there might be hyperlinks leading to other pages, which open in the
client area, yet do not belong to the specified Player screen set. In this case all the navigation means on
the Player, including buttons and links rendered for incremental or full mode are disabled until the flow
returns back to an Agenda Player screen. This means in particular that such a 'side' page should provide
means of returning to the AgendaPlayer page flow (by linking to the appropriate page or closing the
modal opened from the Player).

8.22.3 Navigator-less View
By default, an Agenda Player is displayed with all the screen parts present. However, in some situations,
you may like to simplify the view and behavior of the player using the view without the navigation
panel (also called Claimant view after the expected usage - i.e. online claimants). In this view Agenda
Player is displayed without the navigation panel. Only the standard player buttons can be used for
navigation, so the mode setting is effectively ignored.

The fourth player button, Finish, is automatically available on the button bar at the bottom of the page
for the Claimant view. The button makes it possible to jump directly to the summary page rather than
having to advance to it through all the pages. It is shown only when there is a summary page present in
the agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section below.

8.22.4 Agenda Player Configuration
The Agenda Player can be configured by adding/modifying entries in AgendaConfig.xml. A version of
this file should be in your components directory.

The following is an example of the Agenda Player configuration file contents:
<AGENDA>

<PLAYER ID="DefaultConfig" TITLE="Default.Title"
MODE="incremental" CONFIRM-QUIT="false"/>

...
<PLAYER ID="Claimant.Config" TITLE="Claimant.Title"

NAVIGATOR-HIDDEN="true" MODE="incremental"
CONFIRM-QUIT="true"/>

</AGENDA>

The attributes that can be used for particular configuration (PLAYER element) are as follows.

Table 118. Attributes of the PLAYER element

Attribute Description

ID The ID of this particular configuration (referred to by CONFIG
attribute of FIELD element in UIM which contains Agenda Player).

TITLE Title key for Agenda Player title, displayed on its header. This key is
used to look up customized/localized title from appropriate
properties file as described in 8.22.5, “Agenda Player
Customization,” on page 193.

MODE This attribute allows for specifying Agenda Player navigation mode.
It might have values of basic, incremental or full, incremental
being the default one, used if the attribute is skipped in an
configuration.

192 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 118. Attributes of the PLAYER element (continued)

Attribute Description

NAVIGATOR-HIDDEN When this attribute is specified and set to true, Agenda Player will
be displayed in Claimant View (see above).

CONFIRM-QUIT This attribute can be used to display a confirmation dialog when a
user clicks on the Cancel button. When present and set to true, a
confirmation dialog will be displayed to confirm the user's intention
to quit the Agenda Player or to cancel and return to the player.

8.22.5 Agenda Player Customization
The Agenda Player comes with support for customization/localization of certain elements. The elements
which can be customized are the player title, Progress Bar text, the player button texts, the quit confirm
dialog text and descriptions for each of the frames in the player.

Player related properties are kept in the files <client-dir>/components/<component_name>/
CDEJResources.properties and <client-dir>/components/<component_name>/AgendaPlayer.properties.
where <component_name> represents the name of the component where the customizations are being
applied.

Player title is customized by specifying custom value under the key used for it in AgendaConfig.xml (see
above). The value under the key is to be placed into AgendaPlayer.properties.

The Progress Bar text is customized within an Agenda Player header by modifying the
AgendaPlayer.properties file to include values for the keys: Progress.Bar.Prefix, Progress.Bar.Middle,
Progress.Bar.Suffix. Please note that all three keys must be present with blank values for unused ones in
order to ensure clean rendering of the customized Progress Bar text. If this is not the case then a situation
may occur where a non-blank default value is used instead of one undefined.

The text strings associated with Agenda Player control buttons are customizable in the file
CDEJResources.properties and defined by properties wizard.button.back.title, wizard.button.forward.title,
wizard.button.finish.title, and wizard.button.quit.title.

The frame descriptions are useful for users of screen readers but don't appear visually on the screen. The
entries for frame description customizations in CDEJResources.properties are wizard.frameset.title,
wizard.header.frame.title, wizard.navigation.frame.title, wizard.content.frame.title,
wizard.button.frame.title.

Note: The Agenda Player was formerly known as the Wizard widget, so several attribute and property
names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the property Quit.Dialog.Question
should be added/changed in AgendaPlayer.properties.

8.22.6 Player data
There are some specific UIM pages related with Agenda Player:
v Navigation page: Each Player requires a navigation page that will become the navigation panel of the

Agenda Player. This page has two required characteristics. First, the root PAGE element has a TYPE of
SPLIT_WINDOW. This indicates that the page will form part of a frame-set. Second, the page contains a
field with a single source connection and domain type AGENDA_XML. This field supplies the Agenda
Player with the list of pages, parameters and other information that drives the Agenda Player.

Chapter 8. Domain Specific Controls 193

v Summary page: This page is optional and might just be a regular UIM page. However, summary page,
specifically displaying summary of visited and unvisited pages is also available. If this information is
to be displayed in a summary page, a WIDGET element with TYPE attribute set to WIZARD_SUMMARY should
be present among page elements.

v Exit page: This is a regular UIM page to which the user is forwarded after quitting the player.

The following is an example of the UIM used to specify the navigation page. It contains a single field
which supplies the agenda XML data.
<PAGE PAGE_ID="WizardTest" TYPE="SPLIT_WINDOW">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="page.title"/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY" CLASS="Agenda"
OPERATION="getAgenda"/>

<PAGE_PARAMETER NAME="agendaRef"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="agendaRef"/>
<TARGET NAME="DISPLAY" PROPERTY="key$agendaRef"/>

</CONNECT>

<CLUSTER SHOW_LABELS="false">
<FIELD>

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="agendaXML"/>

</CONNECT>
</FIELD>

</CLUSTER>

</PAGE>

The following is an example of a specific summary page:
<PAGE PAGE_ID="WizardSummary">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>

</PAGE_TITLE>

<CLUSTER SHOW_LABELS="false" TITLE="Cluster.Title">
<WIDGET TYPE="WIZARD_SUMMARY"/>

</CLUSTER>

</PAGE>

The agenda data that drives the Player looks like this:
<?xml version="1.0" encoding="UTF-8"?>

<agenda>
<page-flow>

<section description="First section"
status="SCT1">

<page id="Person_homePage" description="Home"
status="SC1" initial="true"
submitonnext="true"/>

</section>
<section description="Second section"

status="SCT2">

194 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<page id="Person_listAddress" status="SC2"
description="Addresses"/>

<page id="Person_listBankAccount" status="SC1"
description="Bank Accounts"
submitonnext="true"/>

<page id="Person_listCommunication" status="SC3"
description="Communications"/>

<page id="Person_listTask" status="SC2"
description="Tasks"/>

<page id="Person_listCitizenship" status="SC2"
description="Citizenships"/>

<page id="Person_listFinancial" status="SC2"
description="Financial"/>

<page id="Person_listNote" status="SC4"
description="Notes"/>

</section>
<summary id="WizardSummary"

description="Summary Page"
close-on-submit="true"
status="SCT3"/>

</page-flow>
<parameters>

<parameter name="concernRoleID" value="101"/>
<parameter name="dynamicParam" value="0"/>

</parameters>
<exit-page id="Person_homePage">

<parameters>
<parameter name="concernRoleID" value="101"/>

</parameters>
</exit-page>

</agenda>

There is one page element per screen to be displayed in the Agenda Player. The attributes that can be
used in this element are as follows.

Table 119. Attributes of the page element

Attribute Description

id The page id for the page (as set in the PAGE_ID of the PAGE element
in the page's UIM definition).

description The description of the page that will be displayed in the Navigation
Panel.

status A status code that is mapped to an image.

initial Set to true if this is the page that should be displayed when the
Agenda Player is first opened.

disableback Set to true if the Back button should be disabled on this page.

disableforward Set to true if the Forward button should be disabled on this page.

submitonnext Set to true if the Forward button should submit the form on this
page.

close-on-submit This attribute applies to summary element only and allows for
alternative way of quiting the player, as described below.

The important features to note are:
v The sequence of screens in the Agenda Player is exactly as listed in the agenda data.
v One of the pages in the Agenda Player can be marked as the start page by setting the initial attribute

to true. When the Agenda Player is first displayed, this page will be loaded but it will still be possible
to navigate back to previous pages. If the Player is configured to use incremental mode, pages prior to

Chapter 8. Domain Specific Controls 195

the initial pages on the navigation panel will be rendered as hyperlinks; for a full navigation mode all
the page items except current one will be hyperlinks.

v In the XML sent back by the application server, the page elements might be contained within section
elements or there might be no section element at all. The optional summary element, however, is to be
always placed directly within page-flow.

v All pages in the Agenda Player take the same set of parameters or a subset thereof. These parameters
are specified in the agenda data.

v Page parameters can also be dynamic. These parameters initially carry special value of 0 (note
dynamicParam in the Agenda Player sample data above) and are intended to be initialized during user
interaction with Agenda Player (e.g., user ID is only available after a user registers herself).

v The exit-page denotes the page which the user will be taken to when the Cancel button is clicked.
This page will completely replace the Agenda Player and can be any page in the application with any
parameters (matching those specified by exit-page parameter sub-elements in agenda XML from the
server).

v When submitonnext is set for a page, the submit button on that page (there should only be one) will be
hidden when it is displayed within the player. The player's Next button can be used to submit the
form instead and will proceed to the next page if no validation error occurs. If there are validation
errors, the page will return to itself displaying the validation errors on the top, as it would for any
other application page.
To allow for pages where the record itself is optional (i.e. you could move on to the next screen
without creating one), but some of the fields are mandatory, if you do try to create a record, the
infrastructure will not perform mandatory field validations if no value has been entered/chosen for
any field on the page. The appropriate server interface will still be called, so it is up to the application
logic to work out what was intended (e.g. don't create a record, delete an existing record, etc.). This
behavior only applies when using the submitonnext feature.

v The summary page can provide an alternative way to quit the Player. In order to do this, the summary
page should contain a submit button, and the summary element in the agenda XML from the server
should have close-on-submit specified and set to be true. If the user clicks on the submit button on
such a summary page and the submit succeeds, the player closes down and the user is forwarded to
whatever page is specified by the link associated with the submit button.

v Each page can be assigned a status code using the status. These status codes can be anything at all as
long as they are mapped in the ImageMapConfig.xml file under the domain AGENDA_XML. When the list of
pages is displayed in the left column, each will have an icon attached corresponding to its status code.

The following is an example of mapping status codes to images the ImageMapConfig.xml file.
<domain name="AGENDA_XML">

<locale name="en">
<mapping value="SC1" image="Images/Wizard/status1.gif"

alt="English text..."/>
...
<mapping value="SC4" image="Images/Wizard/status4.gif"

alt="English text..."/>
</locale>
<locale name="fr">

<mapping value="SC1" image="Images/Wizard/status1.gif"
alt="French text..."/>

...
</locale>

</domain>

The appearance of the Agenda Player control buttons, the summary screen and the navigation is defined
in CSS. For details, please see 3.12.11, “Cascading Stylesheets,” on page 33.

The UIM CONDITION element allows for the conditional display of action controls, clusters or lists on a
page that is displayed within an Agenda Player (see See 5.9.6, “CONDITION,” on page 61 for more
details on the condition element). To hide/display elements based on whether the page is in an Agenda

196 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Player or not, the NAME and PROPERTY attributes can only have the values CONTEXT and inWizard
respectively.

This indicates that the action set should be displayed only when that Action Set is on a page that is
displaying within a Agenda Player.

8.23 LOCALIZED_MESSAGE Domain
The LOCALIZED_MESSAGE domain allows entries in a server message catalog to be displayed on a
client screen. The domain is string based but expects the string to be formatted in specific way. The
Cúram Server Development Environment (SDEJ) provides support for formatting a message catalog entry
in this way so it can be returned to the client. See the Cúram Server Developers Guide for full details on
working with message catalogs.

Once the message catalog entry has been formatted on the server side it should be assigned to a field
which is based on the LOCALIZED_MESSAGE domain and returned to the client. The message entry
will be displayed according to the current locale and values will be assigned to the message placeholders.

8.24 Decision Assist: Decision Matrix Widget

8.24.1 Overview
The Decision Matrix widget is a control that is used to construct questionnaires. Refer to the Decision
Assist Administration Class and Widget Overview chapter in the Inside Cúram Decision Assist Guide for more
details.

<ACTION_SET ...>
<CONDITION>

<IS_TRUE NAME="CONTEXT" PROPERTY="inWizard"/>
</CONDITION>
...

</ACTION_SET>

Figure 84. Condition example:

Chapter 8. Domain Specific Controls 197

198 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 9. Custom Data Conversion and Sorting

9.1 Objective
This chapter describes how to customize the data formatting, parsing, validation and sorting behavior of
a Cúram web application.

9.2 Prerequisites
You should be familiar with the concept of domain definitions described in the Domain Definitions chapter
of the Cúram Modeling Reference Guide, the development of client application pages, and basic Java
programming.

9.3 Introduction
Custom data conversion and sorting allows most aspects of the management of data in the presentation
layer of Cúram applications to be customized. Customizations can control how data is formatted, parsed,
validated and sorted; error reporting can also be customized and controlled. Operations are performed on
data values according to a well-defined data life-cycle and, at each stage, the operations can be
customized. To understand how, when, and where to customize the operations, you must first understand
the operations available and how they fit into the life-cycle.

warning: Unsupported Customizations

This chapter describes the supported mechanisms for the customization of data conversion and
comparison operations. For completeness, and to aid understanding, some operations are described, but
the corresponding customization mechanisms are not documented, as customization of these operations is
not supported (or not supported using the programmatic mechanisms described here).

The descriptions of the Java interfaces and classes presented here may be incomplete, as unsupported
methods may be omitted from their descriptions for clarity. However, the JavaDoc documentation for
these interfaces and classes may include more information and describe more comprehensive
customization mechanisms, but only the mechanisms described here are supported.

9.4 Data Conversion and Sorting Operations
The are a number of operations that are carried out on data values by the client infrastructure. Some are
controlled by the domain definition options that were set in the UML model and are performed
automatically, others are controlled by domain-specific plug-ins that can be overridden and customized;
these plug-ins will be described later. First, the operations that are performed on the data values need to
be understood:

format
When data is retrieved from the application server, it is represented by a Java object appropriate
to the root domain of the data. For example, a value in the SVR_INT64 domain is represented as
a java.lang.Long object. The format operation is responsible for converting these objects to their
string representation, as it is the string representation that must be embedded in the XHTML
stream returned to the web browser.

A format operation is only required to return a non-null string; there are no other limitations.
However, each domain-specific formatter will usually return a string representation of the Java
object according to the usual conventions. For example, a money value may have a currency

© Copyright IBM Corp. 2012, 2013 199

symbol added during formatting and be limited to two significant digits after the decimal point.
For most data values, the formatter should generate a string representation that can later be
converted back into the original data value.

pre-parse
When a user enters values in a form on an application page and submits the form to the client
application, the web browser submits all of these values in string format. These string values
need to be parsed to create the appropriate Java object representations, but first a pre-parse
operation is performed to prepare the string for parsing.

The UML model supports several domain definition options that are recognized by the pre-parse
operation (see the Cúram Modeling Reference Guide for more information on domain definition
options). The domain definition options may indicate that leading and trailing whitespace
characters should be trimmed from the string, that all sequences of whitespace characters should
be compressed to single space characters, and that the string should be converted to upper-case.
The pre-parse operation applies these options automatically to the string values and the modified
string values are then ready to be parsed. The pre-parse operation is controlled and customized
by setting these domain definition options in the UML model.

parse After the pre-parse operation has completed, the parse operation must convert the resulting string
value into its Java object representation before it can be submitted to the application server. In
general, the parse operation is the reverse of the format operation. If the format operation
formatted a money value to a string and added a currency symbol and grouping separator (e.g.,
thousands separator) characters, the parse operation must be able to remove these additions and
create a Java object representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it does not validate that
value. However, while not explicitly a validation operation, the parse operation usually needs to
perform some validation to ensure that the value can be parsed correctly. For example, a date
may later be determined to be invalid if it is out of range, but the parse operation must first
determine what the date value is and may fail if the string does not represent a date in any
recognized format.

pre-validate
Like the pre-parse operation, the pre-validate operation is performed to apply domain definition
options defined in the UML model. However, unlike the pre-parse operation, different domain
definition options are applied to data values depending on the domain. The data is not modified.
String and BLOB values are tested to ensure that they do not exceed their maximum or minimum
defined sizes (or lengths), while numeric values are tested to ensure that they do not exceed their
maximum or minimum values. Any failures will be reported as errors. See 9.9.2, “Converter
Plug-ins,” on page 209 for a detailed description of the actual validations performed.

validate
The pre-validate operation is convenient and is applied automatically, but there are situations
where it may not be able to validate data sufficiently. The validate operation is a catch-all that
allows any kind of validation to be performed that is not possible using UML domain definition
options alone. For example, ID values may be tested to see if their check-digit is valid. Errors can
be reported if any value does not meet such specific conditions. Data is not modified by this
operation.

compare
When a list of data is returned from the server, the sort order of the values in the list is
determined using the compare operation. This sort order is used to support the sorting of lists on
application pages when users click on the column headers. The compare operation is passed two
data values (in their Java object representations, not in their formatted string representations) and
must return a positive or negative number to indicate which comes first in the sort order. Like
the format operation, the compare operation is not restricted in what calculations it performs, but
it will typically sort values alphabetically or numerically.

200 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Each data conversion operation has access to information about the active user's locale and to information
about the domain being processed. It is also possible for one operation to access and execute any of the
operations should that be necessary. For example, a format operation might format values differently for
each locale and a compare operation might invoke the format operation before making a comparison.

9.5 Data Conversion Life Cycle
The CDEJ infrastructure is responsible for the retrieval of data from the application server, the display of
this data, the processing of user input, and the submission of data back to the application server. This
process has a well-defined life cycle. Operations at each stage in the life cycle are performed in a
domain-specific manner.

Not all data goes through each stage in the life cycle. Some data is displayed but not modified or
resubmitted by the user (read-only); some data is created by the user and submitted without any initial
value being retrieved from the application server (write-only); and some data is retrieved, modified by
the user, and then resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the value is as follows:
1. The value is fetched from the application server by invoking a business operation.
2. If the value is one of a list of values for the same property, the related values are sorted using the

compare operation and the resulting sort order is recorded.
3. The value is formatted to a string representation by the format operation and is stored for later

display.
4. When the page is displayed, the value is retrieved and inserted into the XHTML stream.

The life cycle for writing a value is as follows:
1. A string representation of the value is entered on a form by the user and the value submitted.
2. The domain definition options for whitespace compression and trimming and for upper-case

translation are applied to the string value by the pre-parse operation. The value remains in string
form.

3. If the business operation has declared the value to be mandatory, the value is checked to ensure that
it is not empty or null. An error will be reported if this check fails.

4. The value is parsed from its string representation by the parse operation and the resulting native Java
object replaces the string value.

5. The domain definition options for the size range, value range, and pattern match are applied by the
pre-validate operation is applicable. The value is not modified by this operation. If a validation fails,
an error will be reported.

6. The value is validated by the validate operation to apply any arbitrary validation rules. Again, the
value is not modified by this operation and validation failures are reported.

7. The parsed and validated value is sent to the application server.

For a value that is treated as read-write, the life cycle is simply the combination of the read-only life cycle
followed by the write-only life cycle.

9.6 The Domain Hierarchy and Domain Plug-ins
At each step in data life-cycle, knowledge of a value's domain is required to ensure that the correct
processing is performed. Embedding this domain information in the application is one of the tasks
performed by the application code generators. With this information available, the application can invoke
data conversion and comparison operations tailored for each domain.

Chapter 9. Custom Data Conversion and Sorting 201

Not only is information about each domain available at run-time, information about the relationships
between these domains is also available. A model of the domain hierarchy is maintained in memory using
tree structures and all the necessary information about how values in the domains should be processed
“hangs” from these trees.

The domain hierarchy is composed of nodes implementing the curam.util.common.domain.Domain
interface. The main methods declared in this interface are listed below. For more information see the
Cúram JavaDoc documentation for this interface.
v getName()

This method is used to get the name of this domain.
v getParent()

This method is used to get the parent domain of this domain if it exists.
v getRootDomain()

This method is used to get the ultimate root domain of this domain.
v getChildren()

This method is used to get the list of children of this domain.
v getPlugIn()

This method is used to get the named plug-in object associated with this domain.

For the purposes of writing custom data conversion and comparison operations, this interface is rarely
used directly, but it is instructive of the mechanism by which custom code is integrated into an
application.

Each domain has a unique name: the name defined for it in the UML model. As domains can be derived
from other domains, parent-children relationships exist, and these are also represented. Also, the root
domain (the ultimate ancestor of any domain) is readily accessible. A root domain is one that does not
have a parent domain. Several root domains (for dates, strings, integers, etc.) are supported in the Cúram
application, so the domain hierarchy is represented by a “forest” of separate trees, rather than a single
tree. All information about a domain, other than its name and relationships to other domains, is provided
via domain plug-ins.

As described in the list above, the curam.util.common.domain.Domain interface also describes a method
for the retrieval of plug-ins, getPlugIn, that takes the name of the type of plug-in required. The method
returns the plug-in configured for the domain or the equivalent plug-in configured for the nearest
ancestor domain if none has been configured directly; this is the simple inheritance mechanism. Domain
plug-ins are Java classes that implement the data conversion and comparison operations and other
features that are specific to each domain. There are four supported plug-in types, each with a unique
plug-in name:

“converter”
Converter plug-ins are responsible for implementing the format, pre-parse, parse, pre-validate,
and validate operations for each domain. Converter plug-ins can be customized to influence the
appearance of values on an application page, to support the parsing of new data formats, and to
prevent the submission of invalid data.

“comparator”
Comparator plug-ins are responsible for implementing the compare operation for each domain.
Comparator plug-ins can be customized to influence the sorting of data.

“default”
Default plug-ins are responsible for providing default values for each domain when no value is
available. While this type of plug-in can be customized freely, there will rarely be any need to
modify the implementations provided within the Cúram application.

202 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

“options”
Options plug-ins are responsible for providing access to the domain definition options that were
defined in the UML model. This type of plug-in is built into the client infrastructure and cannot
be customized.

The mechanism used to configure the domain plug-ins exploits the domain hierarchy to simplify the
configuration dramatically: very few domains need to be configured, as domains that are not configured
will inherit the configuration from their ancestor domains. Each root domain needs to be configured (so
that every domain has an ancestor from which it can inherit its configuration), and a small number of
specialized sub-domains are also configured further (the most notable being CODETABLE_CODE, a
derivative of the root domain SVR_STRING). In all, less than 1% of domains are directly configured, so
the configuration information is very manageable. The Cúram application comes complete with plug-in
implementations and configuration information for all the domains used by the reference application;
modifications are only required to handle specialized custom extensions.

9.7 Overview of Domain Plug-ins

9.7.1 Common Features of Plug-ins
Domain plug-ins are just Java classes that conform to a well-defined interfaces. There is a base interface
that describes common features of all domain plug-ins and more specialized interfaces for each type of
plug-in. At run-time, the infrastructure co-ordinates instantiation and invocation of all plug-ins, so the
process of writing plug-ins is straightforward: methods need to be implemented that perform the data
conversion and comparison operations and very little else needs to be considered.

All plug-in classes implement the curam.util.common.domain.DomainPlugIn interface. This defines some
common operations and provides access to basic information that the plug-in may require. The main
methods declared in this interface are listed below. For more information see the Cúram JavaDoc
documentation.
v getName()

This method is used to get the name of this plug-in (one of the four plug-in names described above).
v getLocale()

This method is used to get the locale associated with this plug-in instance.
v getDomain()

This method is used to get the domain applicable to this plug-in instance.
v getInstance()

The final method is used to get an instance of a domain plug-in; it is not invoked in custom code.
Instantiation issues are described in more detail in 9.13.2, “Plug-in Instance Management,” on page 229.
You should use the default implementations of these methods provided by the Cúram plug-in classes.

The methods of the DomainPlugIn interface do not really do anything interesting. Derived interfaces
define the specific operations that each type of plug-in performs.

9.7.2 Converter Plug-ins
The DomainConverter interface is the one most likely to be used for customizations. It defines several
simple methods that perform the main data conversion operations. They are listed as follows. For more
information see the Cúram JavaDoc documentation for this interface.
v format()

This method is used to format the given object to a string representation.
v parse()

This method is used to parse the given string representation into an object.
v validate()

Chapter 9. Custom Data Conversion and Sorting 203

This method is used to validate an object according to the domain-specific constraints. It may throw an
exception if the object is invalid, but does not modify the object or return any value.

v getDomainClass()

This method returns the class object that indicates the required type of the object that is passed to the
other converter methods or returned by them.

v getGenericLocale()

This method is used to get the locale to be used when formatting or parsing generic values. This
should be the “en_US” locale and you should not change this value; it does not matter if this locale is
not otherwise used in your application.

v formatGeneric()

This method is used to format the given object to a generic string representation.
v parseGeneric()

This method is used to parse the given generic string representation into an object of the appropriate
type for the associated domain.

As described above, the formatGeneric and parseGeneric methods are similar to the format and parse
methods, but they are used when converting the values of the domain definition options entered in the
UML model by developers or of values embedded in XML-based data. Domain definition option values,
for example: maximum date values, minimum size values, or regular expressions used for pattern
matching; are extracted from the UML model at build-time and are parsed to their Java object
representations at run-time, so that they can be used when validating data entered by a user. A similar
process is used when extracting values from XML data returned from the application server and when
constructing XML data before it is returned to the application server. The default implementations of the
formatGeneric and parseGeneric methods are sufficient for all purposes (see 9.13.4, “Generic Parse
Operations,” on page 231 for information on protecting the generic parse operation from side-effects).

It is by implementing these converter methods or overriding existing implementations of them that most
customizations are performed. The simple method signatures disguise the fact that, via the inherited
DomainPlugIn interface, each method has access to the active user's locale and the full domain information
if necessary.

Implementations of the pre-parse and pre-validate operations are provided for all of the root domains in
the Cúram application. As these operations are controlled completely by the setting of domain definition
options in the UML model, there is rarely any need to customize them programmatically. However, there
are circumstances where custom error messages are required, so you may need to “wrap” these
operations to intercept and replace error messages (this is described in detail in 9.12.6, “Custom Error
Reporting,” on page 227). These operations are defined on a separate ClientDomainConverter interface.
They are listed as follows. For more information about these methods, see the Cúram JavaDoc
documentation for this interface.
v preParse()

This method prepares a string for parsing by applying the relevant domain options. For example, the
string may have whitespace removed or compressed, or may be converted to upper-case. The locale is
used for the conversion to upper-case, if that is required.

v preValidate()

This method performs the standard validation checks that are controlled by the domain options
specified in the UML model. The checks include the maximum and minimum size, the maximum and
minimum value, and the matching of a pattern. The specific data-type of the object will determine
which of these checks are appropriate. The options and comparator are available from the domain.

Access to the ClientDomainConverter interface is only supported for the purposes of error message
interception. However, as all converter plug-ins created for use by the client infrastructure must
implement this interface, you must sub-class an existing converter plug-in class (or abstract class) when
creating custom converter plug-ins to inherit an appropriate implementation.

204 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.7.3 Comparator Plug-ins
The DomainComparator interface is used to control sort orders and it extends the DomainPlugIn interface
and the standard java.util.Comparator interface. For more information about DomainComparator, see the
Cúram JavaDoc documentation.

The java.util.Comparator interface defines a compare method that takes two java.lang.Object
arguments and returns an integer that is positive if the first argument comes before the second argument
in the sort order, negative if it comes after, and zero if the objects are equal. (See the JavaDoc
documentation for the java.util.Comparator interface for more details.) An equals method is also
defined by that interface, but it is of lesser importance; all Java classes inherit an implementation of the
equals method from java.lang.Object or from another ancestor class and no further implementation is
necessary.

9.7.4 Default Value Plug-ins
The DomainDefault interface is used to define default values for domains where no default value is
available. The main methods in this interface are listed as follows. For more information about these
methods, see the Cúram JavaDoc documentation for this interface.
v getAssumedDefault()

This method is used to get the default value that will be assumed when a user clears a field on a form
and submits no value.

v getDisplayedDefault()

This method is used to get the default value that should be displayed when an input field has no
initial value to display.

From the methods listed above, we can see there are two types of default value: the value assumed when
no value is available to send to the application server, and the value displayed when no initial value has
been defined for a form field on an application page. The two default values are often the same, but there
are some cases where they need to be different.

The assumed default value is needed when a form is submitted and the form data contains no value for
a field that was not defined to be mandatory. The web client never submits null data values to the
application server, so it must assume some value for the field and then submit that. The assumed value is
nearly always intuitive: zero for any kind of number, an empty string for any string value, or a zero date
or date-time for such values. The actual assumed default values used in the Cúram application are listed
in 9.9.4, “Default Value Plug-ins,” on page 215.

The displayed default value is needed when a form field has not been initialized with any other value (as
is usual on forms used to create new entities). The UIM FIELD element has a USE_DEFAULT attribute that
defaults to true, so, unless that attribute is set to false, the displayed default value may be used. The
displayed default value for numbers and strings is usually the same as that used as the assumed default
value, but for dates and times, the current date and time is used instead of the zero date and time. Like
the assumed default values, the displayed default values are likely to be sufficient for most applications,
so you are unlikely to need to customize them.

There is also a third source for default values: there is a domain definition option for a default value
supported in the UML model. However, if no such option is set, it is the plug-in's displayed default value
that is used as a fallback, so the two can be treated in the same way. If only the displayed default value
needs to be customized, it is easier to do this using the UML domain definition option rather than
writing and configuring a new plug-in class, but the assumed default value can only be modified via a
plug-in.

The default code used for values in a code-table domain is controlled via the application's code-table
administration interface. You should not attempt to control it programmatically.

Chapter 9. Custom Data Conversion and Sorting 205

9.8 Domain Plug-in Configuration
Domain plug-ins are configured by means of an XML configuration file. The format is simple: the file
contains a domains root element; for each domain to be configured, a domain element is inserted; within
that element, plug-in elements are used to specify the name of the type of plug-in and the Java class that
implements the operations of that type of plug-in. The domain elements are not nested within other
domain elements to reflect the domain hierarchy. The configuration information is relatively “flat”; each
entry configures a separate domain and the inheritance of plug-ins is determined automatically. Here is a
sample of such a configuration file:

The configuration elements are defined in the XML namespace shown above. In the example, the
namespace declaration assigns the prefix “dc” to this namespace, so that prefix is used before the element
names. While you must declare this namespace in your configuration file, you can declare it to be a
default namespace and omit the prefix, or even use a different prefix, but you must not omit the
namespace declaration.

The example shows the configuration of two domains (these are the actual default configurations for
these domains, as provided in the out-of-the-box Cúram application). Three plug-ins are configured for
the Cúram root domain SVR_INT64. This is a complete set of plug-ins, as the “options” plug-in is built-in
and is never directly configured. All descendant domains of SVR_INT64 will inherit these plug-ins unless
further configured. Such a configuration is provided for the INTERNAL_ID domain. This domain is a
descendant of SVR_INT64, but a different converter plug-in is configured; the comparator and default
plug-ins will be inherited from SVR_INT64. This particular configuration is used within the Cúram
application to override the format operation for INTERNAL_ID values so that grouping separators are
not used in the string representations of the integers. An integer formatted by the SvrInt64Converter
plug-in as “1,234,567” will be formatted by the InternalIDConverter class as “1234567”. This ensures that
values such as case identifiers (the CASE_ID domain is a descendant of the INTERNAL_ID domain) are
not represented as ordinary numerical values, but as more abstract unique key values. However, sorting
and the calculation of default values remains unchanged, as these plug-ins are not overridden and the
inherited plug-ins will be used.

There is a master configuration file called domains-config.xml located in your CDEJ installation's
lib/curam/xml/config folder. This file contains the complete domain configuration information for all of
the Cúram root domains and some descendant domains. You must not make any changes to this file; it is
overwritten each time the development environment is upgraded. However, the information in this file is
useful when you need to make customizations. You can override or extend any configuration setting in
this file using the mechanism described here.

Domain plug-in configuration follows the typical pattern used for when configuring other aspects of
application components. You create configuration files, place them in component folders, and the
component order determines which parts of each file take precedence when the files are merged together.
A single custom configuration results and this may override or extend the master configuration without

<dc:domains>
<dc:domain name="SVR_INT64">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.SvrInt64Converter"/>

<dc:plug-in name="comparator" class=
"curam.util.client.domain.compare.SvrInt64Comparator"/>

<dc:plug-in name="default" class=
"curam.util.client.domain.defaults.SvrInt64Default"/>

</dc:domain>
<dc:domain name="INTERNAL_ID">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.InternalIDConverter"/>

</dc:domain>
</dc:domains>

Figure 85. Sample Domain Configuration

206 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

limitation. The domain elements in the configuration are merged where they have the same domain name
defined in the name attribute. The plug-in elements of the merged domains are then collected and those
with the same name attribute value as an existing plug-in element take precedence over that setting. New
domain configurations can also be introduced. If the newly configured domain has descendant domains,
they will inherit the new configuration. When configuring plug-ins, the name returned by a plug-in's
getName method must match the name attribute value defined on the plug-in element in the configuration
file; this helps to avoid mistakes in the configuration file.

The configuration files that you place in your component folders must be named DomainsConfig.xml (a
slightly different name to the master configuration file to prevent confusion of the two). You can create
one or more of these files (one in each component), but a single file is probably sufficient for most
purposes. The format is just that shown in the example above. Further configuration examples are
included in 9.12, “Customization Guidelines,” on page 219.

9.9 Out-of-the-Box Domain Plug-ins

9.9.1 Extending Existing Plug-ins
Domain plug-ins for all of the root domain definitions (and a few others) are provided in the
out-of-the-box Cúram application. Rather than write your own plug-in implementation from scratch, it is
far easier to extend one of these existing plug-ins. The supplied plug-ins are suitable for the majority of
uses, but all can be overridden in whole or in part as necessary, or used as the basis for new plug-ins that
customize the processing of values in new domains. The details of these supplied plug-ins and the
behavior of their operations are described in the sections below.

Abstract plug-in classes are also provided to be used as the basis of new plug-ins. These abstract classes
are used by the Cúram plug-ins themselves and provide some useful functionality that is rarely necessary
to override. The abstract classes you might use are:
v curam.util.client.domain.convert.AbstractConverter

v curam.util.client.domain.compare.AbstractComparator

v curam.util.client.domain.defaults.AbstractDefault

Their behavior is as follows:

Chapter 9. Custom Data Conversion and Sorting 207

Table 120. Behavior of the Abstract Plug-in Classes

Abstract Plug-in Class Behavior

AbstractConverter Returns the correct name for this type of plug-in: “converter”.

Formats an object that is an instance of java.lang.Number using the
standard Java locale-specific number format. Other object types are
formatted by calling their toString method.

Pre-parses an object by trimming leading and trailing whitespace,
compressing sequences of spaces, and converting to upper-case if
specified by the UML domain definition options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its maximum and minimum
values if these are specified by the UML domain definition options
for the domain.

Validates an object by throwing a java.lang.NullPointerException
if an object is null, but otherwise performs no validation.

Performs generic parsing by invoking the ordinary parse operation
that must be implemented in the sub-class. See 9.13.4, “Generic
Parse Operations,” on page 231 for information on protecting the
generic parse operation from side-effects.

Performs generic formatting by invoking the object's toString
method.

Returns the correct value for the generic locale.

AbstractComparator Returns the correct name for this type of plug-in: “comparator”.

AbstractDefault Returns the correct name for this type of plug-in: “default”.

Defines constants with suitable assumed default values for each of
the root domains.

Returns the displayed default value by looking up the default value
defined in the UML domain definition options, or, if not found there,
returns the assumed default value.

Does not implement getAssumedDefault.

These abstract classes are used by the Cúram plug-in classes and all extend the
curam.util.common.domain.AbstractDomainPlugIn class. This class implements the locale and domain
properties of the DomainPlugIn interface and also provides the plug-in instance management
implementation that should be used by all plug-ins (see 9.13.2, “Plug-in Instance Management,” on page
229 for details).

While it is possible to write plug-ins from scratch, you should follow the guidelines presented in this
chapter and extend either the existing plug-in classes or their abstract base classes. Other approaches
cannot be supported due to the complexity of some features, such as instance management and generic
parsing, that are best avoided and the default implementations used. Reusing these classes will also
ensure that your code will be protected from changes to the plug-in interfaces, as default
implementations of new interface methods will be inherited during upgrades and no custom code
changes should be necessary.

208 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.9.2 Converter Plug-ins
Converter plug-ins implement the format, parse, validate, and related operations. The following converter
plug-ins are provided out-of-the-box. While most are pre-configured against certain domains, others are
left to be configured as described in 9.8, “Domain Plug-in Configuration,” on page 206 (all of the plug-ins
are in the curam.util.client.domain.convert Java package):

Table 121. Out-of-the-Box Converter Plug-ins

Domain Converter Plug-in Class

SVR_BLOB SvrBlobConverter

SVR_BOOLEAN SvrBooleanConverter

SVR_CHAR SvrCharConverter

SVR_DATE SvrDateConverter

SVR_DATETIME DateTimeConverter

CURAM_TIME CuramTimeConverter

SVR_DOUBLE SvrDoubleConverter

SVR_FLOAT SvrFloatConverter

SVR_INT8 SvrInt8Converter

SVR_INT16 SvrInt16Converter

SVR_INT32 SvrInt32Converter

SVR_INT64 SvrInt64Converter

INTERNAL_ID InternalIDConverter

SVR_MONEY SvrMoneyConverter

SVR_STRING SvrStringConverter

SVR_UNBOUNDED_STRING SvrStringConverter

LOCALIZED_MESSAGE LocalizedMessageConverter

CODETABLE_CODE CodeTableCodeConverter

N/A SvrInt8BareConverter

N/A SvrInt16BareConverter

N/A SvrInt32BareConverter

N/A SvrInt64BareConverter

The format operations of these plug-ins determine the string representations of data values that appear
on application pages. The format operations behave as follows:

Table 122. Behavior of the Format Operations

Plug-in Class Formatting Behavior

SvrBlobConverter Formatted as base-64 encoded strings. The base-64
encoding scheme is defined in RFC 2045.

SvrBooleanConverter Formatted as the string values true or false. These
values are not locale-aware. Cúram application pages
rarely display formatted Boolean values directly, instead,
check-boxes are used or values are translated to
locale-specific strings.

SvrCharConverter Formatted as Unicode characters, not as numbers.

Chapter 9. Custom Data Conversion and Sorting 209

http://ietf.org/rfc/rfc2045.txt

Table 122. Behavior of the Format Operations (continued)

Plug-in Class Formatting Behavior

SvrDateConverter Formatted using the application date format. If the
format includes month or day names, these are localized
using the active user's locale. If the date is the system
“zero” date, an empty string is returned.

DateTimeConverter Formatted using the application date and time formats
and the user's preferred time zone. If the format includes
month or day names, these are localized using the active
user's locale. If the date-time is the system “zero”
date-time, an empty string is returned.

CuramTimeConverter Formatted using the application time format. If the
date-time is the system “zero” date-time, an empty string
is returned.

SvrDoubleConverter Formatted as numbers with grouping separator (e.g.,
thousands separator) and decimal point characters
appropriate for the active user's locale.

SvrFloatConverter Formatted in the same manner as the
SvrDoubleConverter.

SvrInt8Converter Formatted as numbers with grouping separator (e.g.,
thousands separator) characters appropriate for the
active user's locale, but without any decimal point.

SvrInt16Converter Formatted in the same manner as the SvrInt8Converter.

SvrInt32Converter Formatted in the same manner as the SvrInt8Converter.

SvrInt64Converter Formatted in the same manner as the SvrInt8Converter.

InternalIDConverter Formatted as numbers in a non-locale-specific manner
without grouping separator characters.

SvrInt8BareConverter Formatted in the same manner as InternalIDConverter.

SvrInt16BareConverter Formatted in the same manner as InternalIDConverter.

SvrInt32BareConverter Formatted in the same manner as InternalIDConverter.

SvrInt64BareConverter Formatted in the same manner as InternalIDConverter.

SvrMoneyConverter Formatted in the same manner as the
SvrDoubleConverter, but with exactly two significant
digits after the decimal point.

SvrStringConverter Formatted literally, i.e., strings are not changed by the
format operation.

LocalizedMessageConverter Formatted by decoding the message information,
localizing the string indicated by the message catalog
details, and replacing any encoded string arguments. The
active user's locale is used throughout.

CodeTableCodeConverter Formatted as the code description corresponding to the
code value using the active user's locale and the
domain's associated code-table.

Pre-parse operations are used to perform string-related operations, indicated by domain definition
options set in the UML model, before the strings are parsed to their Java object representations. The
operations performed are the same for all root domains and are as follows: trimming of leading
whitespace, trimming of trailing whitespace, compression of sequences of whitespace characters to a
single space character, and conversion to upper-case. The pre-parse operations should be customized via
the domain definition options in the UML model. Customization of these options via domain plug-ins is
not necessary and not supported.

210 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Parse operations are used to interpret string values submitted from a form on an application page or via
parameters to a URL and convert then to their Java object representations. The string values received
from the web browser are interpreted as being in the UTF-8 encoding. This encoding is used when
creating the Unicode Java strings that are passed to the parse operations. The parse operations behave as
follows:

Table 123. Behavior of the Parse Operations

Plug-in Class Parsing Behavior

SvrBlobConverter Parsed as a base-64 encoded string.

SvrBooleanConverter Recognizes any of true, yes, or on as Boolean true
values, and any of false, no, or off as Boolean false
values. The parsing is not case-sensitive or locale-aware.
Other values are reported as errors.

SvrCharConverter Parsed as a single Unicode character. The presence of
extra characters is reported as an error.

SvrDateConverter Parsed using the application date format and the active
user's locale.

DateTimeConverter Parsed using the application date and time formats and
the active user's locale. The user's preferred time zone is
assumed.

CuramTimeConverter Parsed using the application time format. The server's
time zone is assumed.

SvrDoubleConverter Parsed as a number with optional grouping separator
characters and decimal point characters appropriate for
the active user's locale.

SvrFloatConverter Parsed in the same manner as SVR_DOUBLE values.

SvrInt8Converter Parsed as a number with optional grouping separator
characters appropriate for the active user's locale. The
presence of a decimal point is treated as an error.

SvrInt16Converter Parsed in the same manner as the SvrInt8Converter.

SvrInt32Converter Parsed in the same manner as the SvrInt8Converter.

SvrInt64Converter Parsed in the same manner as the SvrInt8Converter.

InternalIDConverter Parsed in a non-locale-specific manner. Grouping
separators are not permitted and for negative values the
minus sign must be on the left.

SvrInt8BareConverter Parsed in the same manner as the InternalIDConverter.

SvrInt16BareConverter Parsed in the same manner as the InternalIDConverter.

SvrInt32BareConverter Parsed in the same manner as the InternalIDConverter.

SvrInt64BareConverter Parsed in the same manner as the InternalIDConverter.

SvrMoneyConverter Parsed in the same manner as SVR_DOUBLE values, but
the magnitude of the values are limited to 1e13 to avoid
the possibility of rounding errors.

SvrStringConverter Parsed literally, i.e., strings are not changed by the parse
operation.

LocalizedMessageConverter Parsed literally in the same manner as the
SvrStringConverter. Localized messages are not
supported as input values, so this parser is never
invoked.

Chapter 9. Custom Data Conversion and Sorting 211

Table 123. Behavior of the Parse Operations (continued)

Plug-in Class Parsing Behavior

CodeTableCodeConverter Parsed literally as a code value in the domain's
associated code-table. An error is reported if the code is
not defined in that code-table.

Pre-validate operations are used to perform validation checks, indicated by domain definition options set
in the UML model, after values have been parsed to their Java object representations. The checks
performed are not the same for all domains. The possible validation checks are: maximum size (length),
minimum size (length), maximum value, minimum value, and pattern match. The maximum and
minimum values are checked using the compare operation. The pre-validate checks applied as follows:

Table 124. Behavior of the Pre-Validate Operations

Plug-in Class Max./Min. Size Max./Min Value Pattern Match

SvrBlobConverter Yes No No

SvrBooleanConverter No Yes No

SvrCharConverter No Yes No

SvrDateConverter No Yes No

DateTimeConverter No Yes No

CuramTimeConverter No Yes No

SvrDoubleConverter No Yes No

SvrFloatConverter No Yes No

SvrInt8Converter No Yes No

SvrInt16Converter No Yes No

SvrInt32Converter No Yes No

SvrInt64Converter No Yes No

InternalIDConverter No Yes No

SvrInt8BareConverter No Yes No

SvrInt16BareConverter No Yes No

SvrInt32BareConverter No Yes No

SvrInt64BareConverter No Yes No

SvrMoneyConverter No Yes No

LocalizedMessageConverter Yes No Yes

SvrStringConverter Yes No Yes

CodeTableCodeConverter Yes No No

The pre-validate operations should be customized via the domain definition options in the UML model.
Customization of these options via domain plug-ins is not necessary and not supported.

The default implementations of the validate operations do not perform any extra validations.

9.9.3 Comparator Plug-ins
Comparator plug-ins implement the compare operations that determine the sort order of lists of values.
Comparator plug-ins are provided for the following domains (all of the plug-ins are in the
curam.util.client.domain.compare package):

212 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 125. Out-of-the-Box Comparator Plug-ins

Domain Plug-in Class Behavior

SVR_BLOB SvrBlobComparator Not sorted, as there is no useful sort
order for these non-human-readable
values.

SVR_BOOLEAN SvrBooleanComparator Sorted with Boolean true values
before false values.

SVR_CHAR SvrCharComparator Sorted strictly numerically with no
locale-aware processing.

SVR_DATE SvrDateComparator Sorted chronologically with the
earliest date first.

SVR_DATETIME SvrDateTimeComparator Sorted chronologically with the
earliest date-time first.

CURAM_TIME CuramTimeComparator Sorted chronologically with the
earliest time first. CURAM_TIME is
based on the SVR_DATETIME
domain, so values may included date
information, but for comparisons, the
date part is ignored and only the
time part is used to determine the
sort order.

SVR_DOUBLE SvrDoubleComparator Sorted numerically; smallest value
first.

SVR_FLOAT SvrFloatComparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT8 SvrInt8Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT16 SvrInt16Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT32 SvrInt32Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT64 SvrInt64Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_MONEY SvrMoneyComparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_STRING SvrStringComparator Sorted lexicographically based on the
numeric Unicode value of each
character in the string. The
comparison is not locale-aware.

SVR_STRING SvrStringCaseInsensitiveComparator Sorted identically to
SvrStringComparator except the case
is ignored.

SVR_STRING SvrStringLocaleAwareComparator Sorted according to the sorting rules
defined by Unicode Collation
Algorithm for the locale. See 9.9.3.1,
“Localized (Cultural-aware) string
sorting,” on page 214 for details.

SVR_UNBOUNDED_STRING SvrStringComparator Sorted in the same manner as
SVR_STRING values.

Chapter 9. Custom Data Conversion and Sorting 213

Table 125. Out-of-the-Box Comparator Plug-ins (continued)

Domain Plug-in Class Behavior

CODETABLE_CODE CodeTableCodeComparator Sorted according to the defined
code-table sort order for the code
values. If the defined sort orders are
equal, the code descriptions are
sorted lexicographically based on the
numeric Unicode value of each
character in the string. The
comparison is not locale-aware.

CODETABLE_CODE CodeTableCodeCaseInsensitiveComparatorSorted identically to
CodeTableCodeComparator except case
is ignored.

CODETABLE_CODE CodeTableCodeLocaleAwareComparator Similar to the above, but the
comparison of code descriptions uses
the sorting rules defined by Unicode
Collation Algorithm for the locale.
See 9.9.3.1, “Localized
(Cultural-aware) string sorting” for
details.

The SvrStringComparator and CodeTableCodeComparator classes are configured by default to sort values
in the SVR_STRING and CODETABLE_CODE domains respectively. If locale-aware sorting is required,
the default plug-in configuration can be overridden to use the SvrStringLocaleAwareComparator and
CodeTableCodeLocaleAwareComparator classes instead. If case-insensitive sorting is required, override
using SvrStringCaseInsensitiveComparator and CodeTableCodeCaseInsensitiveComparator. See 9.8,
“Domain Plug-in Configuration,” on page 206 above for details on overriding the default plug-in
configuration. Using these locale-aware comparators, lists will be sorted according to the expected sorting
rules of the active locale. However, applying these sorting rules takes more time, so there will be some
performance degradation. The implementation of locale-aware sorting uses Java's built-in sorting rules, so
the availability of correct sorting rules for each locale depends on the Java JRE being used.

9.9.3.1 Localized (Cultural-aware) string sorting
When sorting the textual strings, Unicode Collation Algorithm implementation is used to ensure the sort
order expected by the users in different cultural environments.

The sorting order depends on both the current user locale and the so called collation strength. This
strength is configurable to ensure the exact requirements for different languages and applications.

In order to change the default strength the application property 'curam.collator.strength' should be set
to one of the valid values summarized in the table Table 126 below.

'curam.collator.strength' is a static property and requires a server restart upon changing.

Table 126. Collation strength summary

'curam.collator.strength' Strength Name Description

1 PRIMARY Alphabetical sorting which accounts for the
base letter differences.

2 SECONDARY Diacritic sort order which takes into account
character accents.

214 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 126. Collation strength summary (continued)

'curam.collator.strength' Strength Name Description

3 TERTIARY Character case based refinement of the sort
order.

This is the default value of the
'curam.collator.strength' and also the
fall-back value where the set value cannot be
interpreted.

4 QUATERNARY Used to ignore punctuation when setting the
sort order, and to account for minor
differences. This level should also be used
when sorting Japanese text according to JIS X
4061 standard.

5 IDENTICAL The tie-breaking level, the character code
point values are compared at this stage.

Note: If any value beyond the acceptable range is entered for the 'curam.collator.strength', a runtime
fall-back to the default strength will occur. The notification of this will be recorded in the application
server logs.

Note: As the collation strength is increased this can have an impact on performance.

9.9.4 Default Value Plug-ins
Default value plug-ins supply the default values used when no values are available. Default value
plug-ins are provided for the following domains (all of the plug-ins are in the
curam.util.client.domain.defaults package):

Table 127. Out-of-the-Box Default Value Plug-ins

Domain Plug-in Class Assumed Value Displayed Value

SVR_BLOB SvrBlobDefault Empty BLOB Empty BLOB

SVR_BOOLEAN SvrBooleanDefault False False

SVR_CHAR SvrCharDefault Character zero Character zero

SVR_DATE SvrDateDefault Zero date Current date

SVR_DATETIME SvrDateTimeDefault Zero date-time Current
date-midnight

SVR_DATETIME SvrDateTimeDefaultCurrTime Zero date-time Current date -
Current time

SVR_DOUBLE SvrDoubleDefault Zero Zero

SVR_FLOAT SvrFloatDefault Zero Zero

SVR_INT8 SvrInt8Default Zero Zero

SVR_INT16 SvrInt16Default Zero Zero

SVR_INT32 SvrInt32Default Zero Zero

SVR_INT64 SvrInt64Default Zero Zero

SVR_MONEY SvrMoneyDefault Zero Zero

SVR_STRING SvrStringDefault Empty string Empty string

SVR_UNBOUNDED_STRING SvrStringDefault Empty string Empty string

CODETABLE_CODE CodeTableCodeDefault Empty code string Empty code string

Chapter 9. Custom Data Conversion and Sorting 215

Within the Cúram application, the zero date and time is represented as midnight on January 1,0001; this
is interpreted as if no date and time has been set at all.

Also, the default value for a code-table code is an empty code string; a different mechanism is used to
define default code-table codes during code-table administration.

SvrDateTimeDefault plug-in is time zone aware and the displayed value it returns is offset by the
difference between the user and server time zones. The configured converter plug-in is expected to also
consider time zone settings and offset the value accordingly. The end result is that the time part of
date-time value is set to midnight regardless the time zone settings.

9.10 Error Reporting

9.10.1 Infrastructure Errors
There are many built-in, infrastructure errors, for which the developer can perhaps do no more than retry
the page or restart the web application. If these problems persist, technical support should be notified.

These errors should be reported by keeping a copy of the error page source. Since we are in a browser
environment, this is achieved by simply selecting File-->Save As... from the menu, or selecting
View-->Source to bring up a text editor and then saving the document. The information in the source of
the page may be useful in identifying and resolving the error.

9.10.2 Exception Classes
Many customizations require the addition of exception handling and error reporting code. All the
necessary infrastructure is provided to make this as simple as possible. A simple formulaic approach can
be followed that will provide all of the necessary functionality. Before looking at how you can write
customizations, you must first learn the necessary error reporting techniques.

All of the plug-in methods that throw exceptions, throw one of two exception types:
v curam.util.common.domain.DomainException

v curam.util.client.domain.convert.ConversionException

ConversionException is derived from DomainException, so instances of these exceptions can both be
treated as DomainException objects when convenient. The ConversionException class is used for
exceptions that are thrown by the methods of converter plug-ins. Unlike a DomainException, a
ConversionException can be associated with a particular property of a server interface so that error
messages reported to a user can indicate the label of the field in error and an error icon can be placed
beside that field. The only exceptions that custom code normally needs to throw are instances of
ConversionException, so this is the only exception class than needs to be understood to implement your
own exception handling and reporting.

Conversion exceptions (and most other exceptions in the client infrastructure) carry information about the
error message that needs to be reported, but not the error message itself. When an exception is thrown,
the identifier of the localized error message string, the values that will be substituted for the placeholders
in that string, and any causal exception object are included in the exception details. Each exception class
can be associated with an error message catalog (a set of localized Java properties files) that is used when
the localized message string is resolved from the message identifier. The localization and substitution
steps are not performed until the message is reported to the user, so the exception can be propagated and
augmented with more information for some time before the message string becomes fixed. This allows, in
the case of conversion exceptions, the field label to be added automatically by the infrastructure after
your custom code has thrown the exception and makes it very easy to integrate your error reporting
requirements into the system.

216 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.10.3 Custom Exception Classes
The purpose of a custom exception class is to integrate the look-up of localized message strings in a
custom message catalog into the mechanism used for error reporting in the client infrastructure. If you
only need one error message catalog, you will only need one custom exception class, but there is no
restriction on the number of exception classes or message catalogs you can create.

Implementing custom exception handling using a custom exception class is formulaic. As the custom
exception class must integrate into the existing message reporting system, only numeric message
identifiers are supported for custom exceptions and there is very little room for deviation from the
prescribed approach. You cannot, for example, use literal message strings in your code, you must use
references to externalized strings.

Here is an example of a custom exception class:

This class extends ConversionException and implements a number of constructors simply by invoking the
equivalent constructors in the super-class. You only need to implement the constructors that you intend
to use, the rest of the constructors in the super-class can be ignored (Java classes do not inherit
constructors, hence the need to re-implement them). The available constructors are described in the
JavaDoc. Next, it defines a static MessageLocalizer field and instantiates it with a
CatalogMessageLocalizer object that takes your custom catalog name as its argument. The
getMessageLocalizer method then returns this static object. That is all there is to it.

When you throw exceptions of this type, you need to pass your message identifier and optional
arguments to the relevant constructor. You can define constants for your numeric message identifiers in
this class if you wish. Your message strings can contain placeholders such as “%1s”, “%2s”, etc., to be
replaced by the argument strings (only string types are supported). For an array of arguments, “%1s” will
be replaced by the first argument in the array (index zero), and so on. The special argument “%0s” can be
used to represent the name of the field in error, but you will not need to provide any matching argument
string for that value; it will be substituted automatically. You can also use the same placeholder several
times in a single message if you want the same value to be inserted in more than one place. Here is a
sample message catalog file containing a single message:

public class CustomConversionException
extends ConversionException {

private static final MessageLocalizer MESSAGE_LOCALIZER
= new CatalogMessageLocalizer("custom.ErrorMessages");

public CustomConversionException(int messageID) {
super(messageID);

}

public CustomConversionException(int messageID,
String[] messageArgs) {

super(messageID, messageArgs);
}

public CustomConversionException(int messageID,
String messageArg) {

super(messageID, messageArg);
}

public MessageLocalizer getMessageLocalizer() {
return MESSAGE_LOCALIZER;

}
}

Figure 86. Custom Exception Class

Chapter 9. Custom Data Conversion and Sorting 217

The file is a standard Java properties file where each line contains a numeric identifier and a message
string separated by an equals character. A collection of properties files with the same base name but with
locale codes appended is treated as a single message catalog. The custom exception class in the example
above refers to the message catalog as “custom.ErrorMessages”, so the properties files should be located
on the Java classpath in the custom package folder and in files named ErrorMessages.properties,
ErrorMessages_en_US.properties, ErrorMessages_fr_CA.properties, etc., as you would do for any other
custom properties files. There should be one properties file for each locale that your application supports.
The selection of the correct locale-specific properties file at run-time is completely automatic once you
have written your custom exception class as shown above.

Ensuring that these files end up on the classpath is simply a matter of placing them in their appropriate
package folders below your web application's <client-dir>/<custom>/javasource folder, where custom is
the name of a custom component. (see 3.6, “Project Folder Structure,” on page 14 for details). The Java
source files for your custom exceptions should also be placed below the <client-dir>/<custom>/
javasource folder in the appropriate folders for the package names you have used.

When throwing a custom exception, the code will look like this (assuming you have decided not to use
constants for your error message identifiers):

Remember, it is not necessary to pass any argument corresponding to the “%0s” placeholder; it will be
calculated and substituted automatically.

Numeric Message Identifiers: When creating message catalog files, try to ensure that the error numbers
do not conflict with the numbers of existing Cúram error messages, as this may cause confusion when
errors are being investigated. Values below -200000 should be safe to use, though conflicting numbers
will not actually cause any application problems, as the message catalogs are separate from those used by
the infrastructure.

If you examine the constructors of the ConversionException class, you will note that many accept a
java.lang.Throwable object as the last argument. You can implement similar constructors and pass
Throwable objects (usually other exception objects) to your custom exceptions when you want your
custom exception to include the exception that caused it. This is often very useful as error messages for
both exceptions will be reported automatically and both stack traces will be included on an application
error page if the error page is required. In fact, there is no imposed limit to the length of the chain of
exceptions that can be built this way; the exception that you add to your own may already contain a
reference to another exception, and so on.

This example show how you can even report two separate error messages at once. Perhaps one is a
generic message that states that a field does not contain a valid value and another suggests the expected
format for that value. You will have to implement the appropriate constructor to support this, but the
reporting mechanism is automatic.

-200000=ERROR: The field ’%0s’ contains an invalid value ’%1s’.

Figure 87. Custom Message Catalog

throw new CustomConversionException(-200000, myInvalidValue);

Figure 88. Throwing a Custom Exception

throw new CustomConversionException(
-200000, myInvalidValue,
new CustomConversionException(-200003));

Figure 89. Throwing Multiple Exceptions

218 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.11 Java Object Representations
The data conversion and comparison operations manipulate strings and other Java objects. Each value in
a root domain is represented by an object of a corresponding Java class. The Java class used by a root
domain is the same for all descendant domains of that root domain and cannot be changed. When
customizing the operations, knowledge of the type of data being processed is important. The table below
shows the Java class used for data objects for each of the root domains.

Table 128. Classes Used for Java Object Representations

Domain Java Class

SVR_BLOB curam.util.type.Blob

SVR_BOOLEAN java.lang.Boolean

SVR_CHAR java.lang.Character

SVR_DATE curam.util.type.Date

SVR_DATETIME curam.util.type.DateTime

SVR_DOUBLE java.lang.Double

SVR_FLOAT java.lang.Float

SVR_INT8 java.lang.Byte

SVR_INT16 java.lang.Short

SVR_INT32 java.lang.Integer

SVR_INT64 java.lang.Long

SVR_MONEY curam.util.type.Money

SVR_STRING java.lang.String

SVR_UNBOUNDED_STRING java.lang.String

CODETABLE_CODE curam.util.common.util.CodeItem

Though derived from SVR_STRING, the Java class used for CODETABLE_CODE is different to that of its
parent. This is the only exception to the rule that the Java class used is the same for all descendant
domains of a root domain.

9.12 Customization Guidelines

9.12.1 Where to Start
Most customizations aim to control one or more of the data conversion or sorting operations. Guidelines
are provided in the following sections to show you how each of these operations can be customized.
Following these guidelines will ensure that your customizations are as simple and effective as possible.

When you have written your custom plug-ins, you need to configure them and ensure that the Java
classes are available at run-time.Configuration was described in 9.8, “Domain Plug-in Configuration,” on
page 206. The Java source files for your custom plug-in classes are added to the web application in
exactly the same way as the Java source code files for your custom exception classes (see 9.10.3, “Custom
Exception Classes,” on page 217): they are placed in their appropriate package folders in your
<client-dir>/<custom>/javasource folder, (where <custom> is the name of a custom component).

9.12.2 Custom Formatting
Custom formatting may be required when a value displayed on an application page is not in the required
format. A custom formatter might be used to pad values with extra characters, so that they appear to be

Chapter 9. Custom Data Conversion and Sorting 219

the same length; insert a currency symbol into money values; format numeric values without grouping
separator characters; or even take a date value based on the Gregorian calendar and format it after
converting it to another calendar system.
1. Identify an existing converter plug-in class that you want to customize. It will most likely be the

converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the format method.
3. In the implementation of the method, you can perform some processing before or after invoking the

super-class's method of the same name, or implement the formatting code from scratch.
4. Configure your new plug-in for the relevant domains.

The calendar scenario is somewhat unrealistic because the date selector widget would not be compatible,
but inserting a currency symbol, or an analogous operation, is something that you may want to do. If
multiple currencies are supported, then domains such as US_DOLLAR_AMOUNT or EURO_AMOUNT
might be used to represent values in each currency (though the out-of-the-box Cúram application uses a
different scheme for representing money values in different currencies). Custom converter plug-ins may
then be written to format money values for each of these domains by adding the appropriate currency
symbol.

This example shows how a converter plug-in can be written that takes a money value and prefixes the
formatted numeric value with a dollar symbol. The out-of-the-box Cúram application comes with a
converter plug-in that formats money values, but without any currency symbol, so you can reuse its
format operation to simplify the implementation.

The implementation is very trivial: the super-class does all the work and returns a nicely formatted
money value; the customization just adds the dollar symbol.

The configuration file for this customization is shown below. The file might also include entries for other
customizations that have been made. As the comparator and default value plug-ins have not been
customized, they do not appear in the configuration. These plug-ins will be inherited from the ancestors
of the US_DOLLAR_AMOUNT domain (probably the SVR_MONEY domain).

Values displayed on an application page (or even those passed behind the scenes in hidden page
connections) may be submitted back to the web application. If you write a formatter that inserts a
currency symbol, or you allow users to insert currency symbols in values that they type in, then you will
need to accommodate such values in the parse operation. The next section will demonstrate the custom
parse operation required to match this custom format operation.

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/

public class USDollarConverter
extends SvrMoneyConverter {

public String format(Object data)
throws ConversionException {

return "$" + super.format(data);
}

}

Figure 90. Custom Formatting for Currency Values

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:plug-in name="converter"

class="custom.USDollarConverter"/>
</dc:domain>

</dc:domains>

Figure 91. Configuration for Custom Formatting

220 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Another common need for custom formatting is to format integer values without grouping separator
characters. For example, an integer value that represents the year “2005” should probably be formatted as
“2005” and not “2,005”. If the year value is represented by the YEAR_VALUE domain and that domain is
derived from the SVR_INT16 domain, the custom format operation would look like this:

This converter overrides the format method of the SvrInt16Converter class and simply converts the data
object (a java.lang.Short) to a string. Unlike the routines used by the super-class, the toString method
will not do any locale-aware formatting or add any grouping separator characters. The parse method is
not overridden, so values that are entered with or without grouping separator characters will be
accepted. This converter is configured in the same way that the currency symbol converter was
configured.

9.12.3 Custom Parsing
Custom parsing is implemented when users must enter values in a form that existing parse operations do
not recognize or when some other processing must be performed on values before they are submitted to
the application server. Custom parsing may be as simple as a routine that first removes a currency
symbol from a numeric value before parsing it, where the currency symbol may have been entered by a
user or added by a custom format operation. It could also be something more unusual: a translation of a
date to another calendar system, a routine that pads string values, or an arbitrary calculation on numeric
values.
1. Identify an existing converter plug-in class that you want to customize. It will most likely be the

converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the parse method.
3. In the implementation of the method, you can perform some processing before or after invoking the

super-class's method of the same name, or implement the parsing code from scratch.
4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement the example shown for a
custom format operation above. The example below shows the same class developed to format money
values with a currency symbol; the class is now extended with a corresponding parse operation. In a case
like this, you do not write separate converter plug-ins for formatting and parsing; you must implement
both operations in the same converter plug-in and then associate the plug-in with the appropriate
domain.

/**
* Converter that formats year values without adding grouping
* separator characters.
*/
public class YearValueConverter

extends SvrInt16Converter {
public String format(Object data)

throws ConversionException {
return data.toString();

}
}

Figure 92. Custom Formatting without Grouping

Chapter 9. Custom Data Conversion and Sorting 221

The value passed to the parse method is the same value that was entered by the user; it is possible that it
contains no currency symbol or it might contain space characters between the currency symbol and the
value. You can use the UML domain definition options to ensure that the pre-parse operation will have
removed any whitespace before the currency symbol, or simply report an error if the currency symbol or
a digit is not the first character. The parse method above assumes that the currency symbol is the
optional first character and then leaves all other decisions up to the parse method of the super-class. This
is probably the best approach, as it limits the number of formatting rules that a user needs to be aware of
and keeps the code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the custom format operation.

9.12.4 Custom Validation
Custom validation can be performed in two ways: by setting the domain definition options in the UML
model, or by implementing a validate operation in a custom converter plug-in. It is also possible to
combine both ways to meet your validation requirements.

The domain definition options in the UML model are limited to a small number of validations that are
described in the Cúram Modeling Reference Guide and summarized in 9.9.2, “Converter Plug-ins,” on page
209 above. If the domain definition options meet your needs, you should use them in preference to any
programmatic alternative. If the options meet only some of your needs, you should use them and also
create a custom converter plug-in to complete the validations. If the options are not useful, you should
create a custom converter plug-in and implement all the validations there. Some uses for custom
validation routines might include the validation of check digits or the imposition of any other arbitrary
restrictions on the permitted values.
1. Identify an existing converter plug-in class that you want to customize. It will most likely be the

converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the validate method.
3. In the implementation of the method, invoke the super-class's method of the same name to perform

any existing validations (if that is appropriate).
4. Complete the implementation by performing your validations and throwing an exception if any

validation fails.
5. Configure your new plug-in for the relevant domains.

In this example, a new converter plug-in is created that extends the InternalIDConverter plug-in with a
validation that only permits even numbers. The InternalIDConverter is derived from the

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/

public class USDollarConverter
extends SvrMoneyConverter {

public String format(Object data)
throws ConversionException {

return "$" + super.format(data);
}

public Object parse(String data)
throws ConversionException {

if (data.startsWith("$")) {
return super.parse(data.substring(1));

}
return super.parse(data);

}
}

Figure 93. Custom Parsing for Currency Values

222 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

SvrInt64Converter class that is configured for use by the SVR_INT64 domain. Values in this domain are
represented by java.lang.Long objects.

The error message entry in the custom message catalog may look like this:

If this validation is to be applied to the EVEN_ID and the NOT_ODD_ID domains, then the configuration
will look like this:

9.12.5 Custom Sorting
When lists of values are displayed in an application page, a user can sort the list by clicking on the
column headers. The sort order of the rows will be determined by the sort order of the values in the
selected column. Successive clicks on a column header alternate between the forward and reverse sort
order for that column. The sort order for any type of data can be customized easily, though the sort-order
for code-table codes must be controlled using the code-table administration interface. The sort order is
calculated when responding to a user's request, so the user's active locale is available by calling the
inherited getLocale method and can be used to influence the sort order in a locale-specific manner.

The domain comparator plug-ins are responsible for making the comparisons that control the sort order.
The sorting algorithms swap the position of values in their value lists depending on the value returned
by the compare method of the plug-in. The comparator plug-ins used in the Cúram application behave as
described in 9.9.3, “Comparator Plug-ins,” on page 212. These sort orders are simple and intuitive, but
may not meet the needs of some specialized domains. In these cases, custom sort orders may be required
and there is no limitation on what order can be used.

What Values are Compared?: All compare operations are performed by invoking the comparator
plug-ins compare method. This takes two java.lang.Object arguments. The method is invoked

/**
* Reports ID numbers as invalid if they are odd.
*/
public class EvenIDConverter

extends InternalIDConverter {
public void validate(Object data)

throws ConversionException {
// Perform any existing validations first.
super.validate(data);

if (((Long) data).longValue() % 2 != 0) {
throw new CustomConversionException(-200010);

}
}

}

Figure 94. Custom Validation for Odd Numbers

-200010=ERROR: The field ’%0s’ must be an even number.

Figure 95. Custom Validation Failure Message

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:domain name="EVEN_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
<dc:domain name="NOT_ODD_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
</dc:domains>

Figure 96. Configuration for Custom Validation

Chapter 9. Custom Data Conversion and Sorting 223

automatically by the client infrastructure before the values are formatted. This means that the objects passed
are of the types shown in 9.11, “Java Object Representations,” on page 219, not formatted string
representations of the values.

In most cases, having access to Java object representations makes the comparisons much easier to
perform: comparing dates and numbers is much easier when they are represented by objects that
conveniently provide a compareTo method that returns the same values that the compare method must
return. However, there are some situations where, for example, encoded strings are decoded by the
format operation and comparing them before they are formatted is not simple or would involve the
duplication of the formatting code. In these cases, it is possible to invoke the appropriate formatter and
compare the results. This will be described later.

The general guidelines for implementing a custom comparator plug-in to control the sort order for a
domain are as follows:
1. Create a new sub-class of the AbstractComparator class described in 9.9.1, “Extending Existing

Plug-ins,” on page 207.
2. Implement the compare method to perform your custom comparison.
3. Configure your new plug-in for the relevant domains.

To illustrate this, you will see how to write a comparator that compares string values as if they were
numbers. Some of the entities in the Cúram application use a string-based domain for their key values to
support the use of identifiers that may not just contain digits. Sorting of these types works well in most
cases, but there can be problems. Because the base domain is a string, the values are sorted
lexicographically, not numerically. If the values are all of the same length, this is not a problem, but if the
lengths differ, the sorting becomes confusing. For example, the string values “22” and “33” will be sorted
into the order “22”, “33”, but if the values are “22” and “3”, the sort order will be “22”, “3”, because the
character “2” comes before the character “3” in a lexicographical sort and representations of numbers
with positional digits are not recognized.

There are a number of ways to solve this problem:
v The string values could be stored in the database with leading zeros used to pad all values to the same

length, this would trick the lexicographical sorting into working correctly (the lexicographical sort
order for “22” and “03” is “03”, “22”). If the leading zeros were not desired for display purposes, they
could be stripped by the format operation and replaced by the parse operation. Legacy data, however,
would need to be updated to conform to the new format.

v Write a custom comparison routine that parses the numeric values from the strings and then performs
the comparison. This would work fine, but the parsing is a little complicated and it may be
complicated further if the values have trailing check letters or other non-digit characters.

v Pad the value with zeros for the purposes of making the comparison, but do this inside the compare
operation, so that no other application changes are necessary.

The latter solution is, perhaps, the easiest to achieve. Here is an example of a custom comparator plug-in
that does this for values that are limited to no more than ten characters:

224 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The _pad method pads a value with leading zeros, so that all returned strings will be ten characters long
and numeric values will be compared correctly as the positional digits will all be aligned correctly. No
change needs to be made to the format or parse operations or to any existing values in the database; the
sort order is entirely controlled by this simple comparator code. While the numeric values could have
been parsed from the strings and a numeric comparison made, this sample code is much simpler and
more efficient.

Another need for custom sorting arises when values are in an encoded form that is decoded by the
format operation. In this case, sorting of the encoded form may not be meaningful. For example, if a
domain exists that uses an encoded string containing several localized messages and their locale codes
like this “en|Hello|es|Hola”, calculating the sort orders for such strings is meaningless. The string could
be decoded, but, as decoding must be done by the format operation, it is simpler to invoke the format
operation instead and compare the values that it returns.

This code retrieves the converter plug-in that implements the format operation for the same domain as
that of the values being compared. The returned converter will also be aware of the active user's locale.
The exact mechanism behind this is unimportant, simply copying the code above is all that is needed.
Other uses of the ClientDomain class are not supported. The exception handling is simple: it does
nothing. The compare method is not declared to throw exceptions, and thrown run-time exceptions trigger
an application error page, so there is not much useful error handling that can be performed. The reason
that none is attempted at all is that if the converter cannot be retrieved or the format operation fails, it
will be for reasons beyond the control of the comparator plug-in and these reasons will cause failures in

/**
* Compares string values after padding them with leading
* zeros to make the sorting work correctly for numeric
* values. Values must not be longer than ten characters.
*/
public class IDComparator

extends AbstractComparator {
public int compare(Object s1, Object s2) {

return _pad((String) s1).compareTo(_pad((String) s2));
}

private String _pad(String s) {
return "0000000000".substring(0, 10 - s.length()) + s;

}
}

Figure 97. Sorting Strings Numerically

/**
* Compares two encoded message strings using their
* formatted values.
*/
public class MessageComparator

extends AbstractComparator {
public int compare(Object value1, Object value2) {

final DomainConverter converter;

try {
converter = ((ClientDomain) getDomain())

.getConverter(getLocale());
return converter.format(value1)

.compareTo(converter.format(value2));
} catch (Exception e) {

// Do nothing except report the values to be equal.
return 0;

}
}

}

Figure 98. Sorting Formatted Values

Chapter 9. Custom Data Conversion and Sorting 225

other places that will be reported in time. In fact, the sorting operation is carried out just before the
infrastructure formats all of the values ready for display, so the very next operation will detect and report
the errors that may have been ignored by the comparator.

A final example shows how to make the Cúram application zero date (January 1,0001), appear after all
other dates instead of before them:

The comparator returns a negative number (the magnitude is not important) if the first date is the zero
date and the second date is not the zero date to indicate that the first date comes after the second in the
sort order. Likewise, a positive number is returned if the first date is not the zero date and the second
date is the zero date to indicate that the order is correct. Otherwise, the dates are compared as normal.
This causes the zero date to be positioned after all other dates instead of before them in the sort order.

This type of manipulation should be used with caution: the comparator plug-ins are also used during
pre-validation to check a value against the maximum and minimum values defined for its domain in the
UML model's domain definition options. In this case, if the UML domain definition options define a
maximum date and no date is set, then the zero date will be assumed and this will appear to be later
than all other dates, including the maximum date, and the pre-validation check will always fail with an
error. If no maximum value is specified in the model, then this comparator will work without problems.

To override the default comparator for all dates with this new comparator, the configuration will look
like this:

Now, all date values for all domains that are descendants of the root SVR_DATE domain, and values in
the root domain itself, will be sorted according to the new rules. There is no need to configure any other
domains, as they will all inherit this new comparator (unless, of course, a descendant domain has been
configured with another comparator that will override any inherited comparator). This comparator could
also be applied more selectively to descendant domains of SVR_DATE.

/**
* Compares dates, but places the zero date at the end,
* rather than the start, or the sort order.
*/

public class ZeroDateComparator
extends AbstractComparator {

public int compare(Object value1, Object value2) {
final Date date1 = (Date) value1;
final Date date2 = (Date) value2;

if (Date.kZeroDate.equals(date1)
&& !Date.kZeroDate.equals(date2)) {

return -1;
} else if (!Date.kZeroDate.equals(date1)

&& Date.kZeroDate.equals(date2)) {
return 1;

}
return date1.compareTo(date2);

}
}

Figure 99. Sorting Zero Dates

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:domain name="SVR_DATE">

<dc:plug-in name="comparator"
class="custom.ZeroDateComparator"/>

</dc:domain>
</dc:domains>

Figure 100. Configuration for Custom Sorting

226 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.12.6 Custom Error Reporting
It is possible that a plug-in performs the operations exactly as you require, but you need to customize the
error reporting. One area of the Cúram application where this may happen is in the pre-validation
operation when the pattern matching option is applied. A pattern is a regular expression defined in the
UML model. When this validation fails, the error reports that the data was “not in a recognized format”,
as few users would be able to interpret the meaning of a regular expression if presented to them. If the
format is a common and intuitive one (a phone number, say), then this message will probably suffice.
However, if the format is more obscure, the error message may need to be changed to present a
human-readable description of the format (correctly localized). There are two ways to achieve this:
v Remove the pattern option from the UML model and implement your own pattern match validation as

you would for any type of custom validation.
v Intercept the exception from the pre-validation operation and replace it with a different exception

carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual guidelines for such a
customization, but it is complicated by the need to access the pattern information and perform the
pattern matching operation. As you would then need to report your custom error message, it is much
simpler to let the existing infrastructure do all the pattern matching and just focus on the error message.

Custom error reporting is really only applicable to the parse and preValidate methods of a converter
plug-in. These are the only methods that may be invoked and passed values that a user has entered and
that a user may be able to correct in response to an error message. The converter plug-ins supplied with
the out-of-the-box Cúram application do not report any errors from their validate methods, so, unless
you want to customize another custom converter plug-in, the validate method can be ignored.
1. Identify the method that is generating the exception that carries the error message that you want to

customize. The likely candidates are the converter plug-in's parse and preValidate methods.
2. Create a new sub-class of the relevant converter plug-in and override the appropriate method.
3. In the implementation of the method, invoke the super-class's method of the same name and catch

any exception thrown.
4. Test the error number on the caught exception to ensure it is the one you want to override.
5. If the error number is correct, throw a new exception carrying your error message, otherwise,

re-throw the caught exception, as it is not the one you wish to override.
6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match failure message. The custom
exception class described in 9.10.3, “Custom Exception Classes,” on page 217 is used.

Chapter 9. Custom Data Conversion and Sorting 227

The error message entry in the custom message catalog will look like this:

Domains that require this converter can be configured in the same manner as shown for the other
converters above.

When using the error messages interception, please keep in mind, that Cúram error messages are subject
to change without notice. However, in the specific case of the pattern match failure message, the error
-122128 - ERR_CONV_NO_MATCH will be preserved, as the possible need to intercept this message is
recognized.

9.12.7 Custom Default Values
It is unlikely that you will ever need to customize a default value plug-in for a domain. The displayed
default value can be customized using the respective UML domain definition option. The predefined
assumed default values for the domains are probably sufficient for every need. However, in the unlikely
event that you need to customize an assumed default value, the steps are little different from those for
other plug-ins.

Another reason for customizing a default value plug-in is where the displayed default value is not fixed
and cannot be defined in the UML model. An example of this is the use of the current date as a
displayed default value.
1. Identify an existing default value plug-in class that you want to customize.
2. Create a new sub-class of the relevant default value plug-in and override the getDisplayedDefault

method.
3. The implementation of the method should simply return a value compatible with the Java type used

to represent values for the relevant root domain. These Java types are listed in 9.11, “Java Object
Representations,” on page 219.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated dynamically using a notional
CentralBank class that somehow returns the current interest rate.

/**
* Reports that social security numbers must match the format
* "xxx-xx-xxxx" when the regular expression defined in the
* UML model "\d{3}\-\d{2}\-\d{4}" does not match a social
* security number entered by a user.
*/

public class SSNConverter
extends SvrStringConverter {

public void preValidate(Object data)
throws ConversionException {

try {
super.preValidate(data);

} catch (ConversionException e) {
if (e.getMessageObject().getMessageID()

== e.ERR_CONV_NO_MATCH) {
throw new CustomConversionException(-200001);

}
throw e;

}
}

}

Figure 101. Custom Error Reporting

-200001=ERROR: The field ’%0s’ must use the format ’xxx-xx-xxxx’.

Figure 102. Custom Pattern Match Failure Message

228 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The example assumes that the InterestRateDefault class will be associated with a descendant of the
SVR_FLOAT domain that requires a default value to be of the java.lang.Float type. By extending the
SvrFloatDefault class, the new default value plug-in will automatically use zero as the assumed default
interest rate value.

The exception handling uses a CustomDomainException class. As the getDisplayedDefault method throws
a DomainException, and not a ConversionException, you could create such a custom exception class by
deriving it from DomainException in exactly the same way as the CustomConversionException class was
derived from ConversionException in 9.10.3, “Custom Exception Classes,” on page 217. You might note
that, as the DomainException class is an ancestor of the CustomConversionException class that the
CustomConversionException class could be used here instead. This will work, but you must not attempt to
report a message containing the “%0s” placeholder for the field label, as automatic replacement of the
field label is not supported when a DomainException type is expected.

The example above shows the unknown exception thrown by the CentralBank class being added to the
new custom exception. You only need to implement the appropriate constructor to support this. The
super-class already has a constructor with the same signature, so your constructor's implementation need
only call that. There is no need to extract a string value or stack trace from the exception; all will be
reported correctly when necessary.

9.13 Advanced Topics

9.13.1 Type Checking and Null Checking
You may have noticed that none of the examples in this chapter show the string or object values passed
to the methods being checked to see if they are null or of the wrong type. The reason is that it is not
necessary. The client infrastructure guarantees that no method will be called with a null value and that
no conversion operation will be invoked for an object that is not compatible with the class returned by
the converter plug-in's getDomainClass method. Your custom code need never include any error handling
and reporting code for these checks.

9.13.2 Plug-in Instance Management
For efficiency, a Cúram client application pools the minimum number of domain plug-in instances
possible. This reduces the overhead involved in creating new plug-in instances each time their operations
are invoked, but it does impose some restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and the active user's locale.
Custom code can access this state information by calling the getDomain and getLocale methods and use it
as required. The potential for concurrent access to plug-ins in typical multi-threaded servers impacts the
way the plug-in instances (with their state information) are managed. If concurrent requests are received

/**
* Returns the current interest rate by contacting the
* central bank!
*/
public class InterestRateDefault

extends SvrFloatDefault {
public Object getDisplayedDefault()

throws DomainException {
try {

return new Float(CentralBank.getInterestRate());
} catch (Exception e) {

throw new CustomDomainException(-200099, e);
}

}
}

Figure 103. Custom Default Date-Time Value

Chapter 9. Custom Data Conversion and Sorting 229

from users who are using different locales, then the same plug-in instance cannot be used when servicing
these requests, as only one locale value can be set in a plug-in instance. However, as any Cúram
application only supports a finite number of locales, maintaining a single plug-in instance for each locale
is sufficient to avoid concurrency problems or synchronization overheads. This, of course, has to be
multiplied by the number of domains, as the domain information also constitutes state. The result is that
each domain in the domain hierarchy accesses a pool of plug-in instances specific to that domain and
each pool contains one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins themselves. Each type of plug-in can
implement its own instantiation strategy most appropriate to its needs. However, to avoid
over-complicating instance management, the AbstractDomainPlugIn class (see 9.9.1, “Extending Existing
Plug-ins,” on page 207) implements the single, consistent pooling strategy that balances efficiency against
other considerations.

While it would be more efficient to dispense with the domain and locale state information and pass these
values to the various converter and comparator methods, this poses several other problems that make
this approach less desirable:
v The method signatures would be complicated by values that may not be used.
v Some method signatures, such as the compare method of the java.util.Comparator interface would

not be compatible.
v The addition of new state information in the future would break all existing implementations. Using

accessor methods for state information allows the abstract super-classes to implement the accessors and
the signatures of the other interface methods can remain unchanged. During an upgrade no changes
would need to be made to any existing custom code that has followed the guidelines and extended
these abstract super-classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on custom code that does not
attempt to implement the plug-in interfaces from scratch. This is why such an approach cannot be
supported.

The pooling strategy used means that there is one main limitation on how plug-ins can be written:
plug-ins must not attempt to store any state information. In short, no customization should add fields to a
plug-in class and attempt to store information in them; concurrent application requests will probably cause
such a plug-in to fail intermittently or introduce obscure bugs.

Domain plug-in classes must also provide a default constructor (i.e., a constructor that takes no
arguments). However, any Java class that does not explicitly define a default constructor will
automatically have one defined for it if the default constructor of an ancestor class is visible. For custom
plug-in classes that extend the plug-in classes and abstract plug-in classes provided with the
out-of-the-box Cúram application, no explicit default constructor is required.

9.13.3 Naming Conventions
Custom domain plug-in classes may implement utility methods to support the implementation of the
main interface methods. An example is the _pad method shown in 9.12.5, “Custom Sorting,” on page 223.
To avoid inadvertently overriding another inherited method, or using a method name that conflicts with
a method introduced in a later Cúram release, you should prefix such utility methods with an underscore
character as shown. Underscore characters will not be used in the client infrastructure, so they will
guarantee that no naming conflict will arise in the future. For similar reasons, do not create classes in
packages that might conflict with Cúram package names. All Cúram packages begin with “curam”, so
avoiding that name is sufficient. The examples in this chapter used the package name prefix “custom”,
but this is not a requirement.

230 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

9.13.4 Generic Parse Operations
The generic parse operation, performed by the DomainConverter interface's parseGeneric method, needs
some explanation, so that care can be taken not to disable its operation by mistake. The generic parse
operation is responsible for parsing the string representation of values defined in the UML model's
domain definition options. Domain options for maximum, minimum and default values are expressed in
formats that are not locale-specific, as the UML model is not locale-aware. Each of the root domains
accepts values in a particular format (e.g., ISO-8601 format for SVR_DATE domains) and customization of
this format is not supported. Therefore, the default implementations of the parseGeneric method must be
respected.

For some domains, the format supported by the converter's parse method is the same as the format
supported by the parseGeneric method. The default implementation of the parseGeneric method in the
AbstractConverter class just calls the parse method (which is not implemented in this class). Therefore, if
you sub-class the AbstractConverter class and implement a parse method, the same implementation will
be used by the parseGeneric method. This may be what you require, but, if it is not, you may want to
implement a different parseGeneric method.

All of the out-of-the-box, concrete converter classes separate the implementations of the two methods, so
you can override one without changing the behavior of the other. Again, this may be what you require,
but, if it is not, you may want to override both methods.

9.13.5 Code-Tables
Data conversion and sorting for code-table domains should be managed via the code-table administration
interface. While the client infrastructure uses the same plug-in mechanism described here to manage
code-table values, the customization of code-table-related plug-ins is not supported. Code-table data is
more complex to handle (formatting and parsing are not symmetrical operations as they are for other
types) and all of the necessary customizations can be accomplished without resorting to programmatic
means.

The formatting of code-table values is achieved by modifying the descriptions of each code. Parsing
operations receive the code values and simply pass them on. Pre-parsing, pre-validation, and validation
are not important. Default codes and custom sort orders are controlled entirely via the administration
interface.

Chapter 9. Custom Data Conversion and Sorting 231

232 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Chapter 10. Online Help

10.1 Introduction
The Curam Online Help system allows for the embedding of help information in the Curam client.

10.2 Key Features of Curam Online Help

10.2.1 Support for Multiple Content Types
The online help framework is composed of the help entries that are located within property files
associated with UIM. These entries provide help about specific properties -i.e., fields and actions - that
have been defined in the associated UIM file. Within these property files, help entries are situated on the
line immediately following the corresponding property definition. When the online help page is
generated, all field and action help definitions are listed in an easy to understand table format.

10.2.2 Single Source Development
The online help is developed within UIM property files. Each property defined in a property file is
immediately followed by a corresponding help definition. This enables online help developers to easily
compare and update UIM properties and help entries. In addition, having application properties and help
within the same file removes the need to maintain and synchronize a separate set of files for the help
system.

10.2.3 Integrated Localization
Online help localization is integrated with application localization. When localized properties files are
created for a particular locale, those property files will contain localized entries for both UIM properties
and the help properties.

10.2.4 Automatic Generation
Once the help content is added into the UIM property files, online help must be generated as part of the
"client" build target. At runtime online help is generated dynamically and thus does not need to be
deployed separately to the main application. This aids developers in reviewing their online help pages
quickly.

10.2.5 Accessing the Help Page
Access to each help page is provided in a context-sensitive manner; i.e., when a user presses the help
icon on an application page, it opens the corresponding help page in a new window.

10.2.6 Accessibility Features
Curam online help contains accessibility features that enable the help to be accessed by users with
disabilities. The following accessibility features are used:

10.2.6.1 Alternative Text
Alternate text allows screen readers to provide additional descriptions for non-text elements. Alternate
text is provided for all help links and help buttons.

© Copyright IBM Corp. 2012, 2013 233

10.3 Curam Online Help Development

10.3.1 Elements of Online Help:

10.3.1.1 Introduction to Curam Client Pages
Full Curam developer knowledge is not necessary to develop Curam Online Help content, but a basic
familiarity with the development structure is required. Client pages are installed in the
webclient/components directory of the Curam installation. Each page has a UIM (User Interface
Metadata) file associated with it that defines its content - links, buttons, fields. The UIM file does not
contain any actual text - it uses externalized properties files, which map property names to text strings.
UIM files may also import VIM files. VIM files are in the same format as UIM files, they basically define
a fragment of a UIM file. They also have properties files. The association between the UIM/VIM and the
property file is simple - they have the same name, apart from the file extension.

The online help content is composed of extra entries embedded in client property files (the advantages of
this are described in 10.2, “Key Features of Curam Online Help,” on page 233). Properties are lines of text
of the form:

If a button on a page is labeled in the UIM file with the property Button. Save , the following properties
file entry will exist

To explain this in the online help, create another property called Button. Save.Help

The online help framework is responsible for generating this into the online help format.

10.3.1.2 Page Descriptions
Use the Help.PageDescription property to provide a high-level overview of what the page is for. This
should not be used to provide details for each field or button - this can be done elsewhere.

10.3.1.3 Links and Actions
If there are any labeled links or action controls on the page, a help entry can be provided with a
description for them. When creating help entries, the online help system will create a table for them,
complete with title and abstract.

10.3.1.4 Fields and Columns
Help entries can also be provided for labeled fields or columns on a page. The online help system will
generate a separate table for these help entries.

PropertyName=Value of Property

Button.Save=Save

Button.Save.Help=Use this button to save.

Help.PageDescription=This page allows you to view a clause
record. Clauses describe the precedents for a decision made
on an appeal and the legal articles that affect it. These
clauses can be dynamically inserted into decision documents.

ActionControl.Label.Save=Save
ActionControl.Label.Save.Help=The Save action creates a new record from the information entered on the page.

Field.Label.Language=Language
Field.Label.Language.Help=The language for the clause from the drop-down list of languages, e.g., English, French.

234 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

10.3.2 Adding or Updating Help content
Help can be added for any new properties within the existing property file. However before updating
online help it is important to read the chapter on Chapter 8, “Domain Specific Controls,” on page 147

10.3.2.1 Updating Help for non 'Domain Specific Controls'
In order to update the online help, the following steps should be followed:
1. Identify the correct property file to edit, in order to update the online help: The help text for a

particular page in the application is contained in the property file with the same name. For example,
if the online help for the 'Person Search' in the application needs to be updated then this means that
some property/properties referenced by the Person_search.uim file will have to be customized. In this
case, these properties are contained in a file named Person_search.properties.

2. Location where to update online help The property file that is being updated should be modified in
the 'webclient/components/custom' directory only. E.g. If the 'webclient/components/core/Person/
Search/Person_search.properties' needs to be updated, then copy this file straight in to the
'webclient/components/custom' directory. The 'Person/Search' directories don't need to be created in
the custom directory.

3. Modify the relevant property file as described in the earlier sections of this chapter.
4. Build client after making all the changes. Help is built by default as part of the client build target. The

help is generated dynamically at runtime and does not need to be explicitly included in the
application.

10.3.2.2 Updating Help for 'Domain Specific Controls'
The address elements for a particular type of address would be a good example of a Domain Specific
Control. The field elements that are displayed on a page in the application depend on the locale that is
specified. For instance the format of the address elements displayed for an address in the US would be
different from those displayed in the UK. For this reason, the online help cannot be specified for each of
the elements within an address. For example, in the 'Register Employer' page in the application there is a
registered address and a business address. The name of the properties file which relates to this page is
Employer_registerView.properties . In order to update the online help regarding the Employer's business
address and registered we could add help properties as follows:

ADDING HELP HERE FOR REGISTERED ADDRESS
Field.Label.RegisteredAddress.Help=The Employer can enter their registered address in the fields displayed. The format of the
Employers registered address will depend on the Country in which they reside.
Field.Label.BusinessAddress=Business Address
ADDING HELP HERE FOR BUSINESS ADDRESS
Field.Label.BusinessAddress.Help=The Employer can enter their business address in the fields displayed. The format of the
Employers business address will depend on the Country in which they reside.

Chapter 10. Online Help 235

236 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Appendix A. Unsupported Dynamic UIM features

A.1 Introduction
This appendix lists the elements and attributes (features) that are not supported in dynamic UIM.

A.2 PAGE
Table 129. Unsupported PAGE Features

Name Feature Type

FIELD Child Element

CONTAINER Child Element

WIDGET Child Element

INCLUDE Child Element

SHORTCUT_TITLE Child Element

TAB_NAME Child Element

JSP_SCRIPTLET Child Element

SCRIPT Child Element

SCRIPT_FILE Attribute

POPUP_PAGE Attribute

APPEND_COLON Attribute

HIDE_CONDITIONAL_LINKS Attribute

COMPONENT_STYLE Attribute

TYPE Attribute

A.3 PAGE TITLE
For full details on the supported features of this element in static UIM, see 5.9.27, “PAGE TITLE,” on
page 89.

Table 130. Unsupported PAGE_TITLE Features

Name Feature Type

DESCRIPTION Child Element

ICON Attribute

A.4 CLUSTER
For full details on the supported features of this element in static UIM, see 5.9.5, “CLUSTER,” on page 59.

Table 131. Unsupported CLUSTER Features

Name Feature Type
Supported/Unsupported attribute
values

TITLE Child Element

DESCRIPTION Child Element

© Copyright IBM Corp. 2012, 2013 237

Table 131. Unsupported CLUSTER Features (continued)

Name Feature Type
Supported/Unsupported attribute
values

WIDGET Child Element

SUMMARY Attribute

TAB_ORDER Attribute

A.5 LIST
For full details on the supported features of this element in static UIM, see 5.9.23, “LIST,” on page 79.

Table 132. Unsupported LIST Features

Name Feature Type
Supported/Unsupported attribute
values

TITLE Child Element

DESCRIPTION Child Element

FOOTER_ROW Child Element

ACTION_CONTROL Child Element

SUMMARY Attribute

SORTABLE Attribute

PAGINATED Attribute

DEFAULT_PAGE_SIZE Attribute

PAGINATION_THRESHOLD Attribute

A.6 FIELD
For full details on the supported features of this element in static UIM, see 5.9.11, “FIELD,” on page 64.

Table 133. Unsupported FIELD Features

Name Feature Type

LABEL Child Element

SCRIPT Child Element

EDITABLE Attribute

LABEL_ABBREVIATION Attribute

DESCRIPTION Attribute

INITIAL_FOCUS Attribute

ALT_TEXT Attribute

CONTROL Attribute

CONFIG Attribute

238 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A.7 CONTAINER
For full details on the supported features of this element in static UIM, see 5.9.8, “CONTAINER,” on page
62.

Table 134. Unsupported CONTAINER Features

Name Feature Type

IMAGE Child Element

LABEL_ABBREVIATION Attribute

A.8 ACTION_SET
For full details on the supported features of this element in static UIM, see 5.9.4, “ACTION SET,” on
page 57.

Table 135. Unsupported ACTION_SET Features

Name Feature Type

CONDITION Child Element

SEPARATOR Child Element

TOP Attribute

BOTTOM Attribute

A.9 WIDGET
For full details on the supported features of this element in static UIM, see 5.10.2, “WIDGET,” on page
94.

Table 136. Unsupported WIDGET Features

Name Feature Type
Supported/Unsupported attribute
values

WIDTH Attribute

WIDTH_UNITS Attribute

ALIGNMENT Attribute

HAS_CONFIRM_PAGE Attribute

CONFIG Attribute

COMPONENT_STYLE Attribute

TYPE Attribute Only the value SINGLESELECT is
supported, all other values are
unsupported

A.10 ACTION_CONTROL
For full details on the supported features of this element in static UIM, see 5.9.3, “ACTION CONTROL,”
on page 54.

Table 137. Unsupported ACTION_CONTROL Features

Name Feature Type
Supported/Unsupported attribute
values

CONNECT Child Element

Appendix A. Unsupported Dynamic UIM features 239

Table 137. Unsupported ACTION_CONTROL Features (continued)

Name Feature Type
Supported/Unsupported attribute
values

SCRIPT Child Element

CONDITION Child Element

LABEL_ABBREVIATION Attribute

IMAGE Attribute

CONFIRM Attribute

DEFAULT Attribute

ACTION_ID Attribute

TYPE Attribute Only the values ACTION and SUBMIT (An
action of type SUBMIT is not
supported within a list action menu or
a page level action menu. A list action
menu is an ACTION_SET element
within a LIST that has a value of
'LIST_ROW_MENU' on it's 'TYPE'
attribute. A page level action menu is
an ACTION_SET defined at the PAGE
level. See the 5.9.4, “ACTION SET,” on
page 57 for further details. All other
submit actions are supported.) are
supported, all other values are
unsupported

(An action of type SUBMIT is not
supported within a list action menu or
a page level action menu. A list action
menu is an ACTION_SET element
within a LIST that has a value of
'LIST_ROW_MENU' on it's 'TYPE'
attribute. A page level action menu is
an ACTION_SET defined at the PAGE
level. See the 5.9.4, “ACTION SET,” on
page 57 for further details. All other
submit actions are supported.)

A.11 LINK
For full details on the supported features of this element in static UIM, see 5.9.22, “LINK,” on page 75.

Table 138. Unsupported LINK Features

Name Feature Type

CONDITION Child Element

PAGE_ID_REF Attribute

SAVE_LINK Attribute

URL Attribute

URI_REF Attribute

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

SET_HIERARCHY_RETURN_PAGE Attribute

240 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 138. Unsupported LINK Features (continued)

Name Feature Type

USE_HIERARCHY_RETURN_PAGE Attribute

HOME_PAGE Attribute

A.12 INLINE_PAGE
For full details on the supported features of this element in static UIM, see 5.9.17, “INLINE PAGE,” on
page 70.

Table 139. Unsupported INLINE_PAGE Features

Name Feature Type

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

A.13 MENU
For full details on the supported features of this element in static UIM, see 5.9.24, “MENU,” on page 81.

Table 140. Unsupported MENU Features

Name Feature Type Supported/Unsupported attribute values

CONNECT Child Element

MODE Attribute Only the value IN_PAGE_NAVIGATION is
supported, all other values are unsupported.

A.14 SERVER_INTERFACE
For full details on the supported features of this element in static UIM, see 5.9.29, “SERVER
INTERFACE,” on page 90.

Table 141. Unsupported SERVER_INTERFACE Features

Name Feature Type

ACTION_ID_PROPERTY Attribute

A.15 INFORMATIONAL
Only Informationals whose connections endpoints are associated with a server interface defined in the
DISPLAY phase, are supported. See 5.9.16, “INFORMATIONAL,” on page 70 for more details on
informationals.). Informationals with other any type of connection endpoints are not supported.

Appendix A. Unsupported Dynamic UIM features 241

242 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Appendix B. Maintaining Dynamic UIM Pages

This appendix provides details on how to load dynamic UIM pages into the application resource store.

The way you store your screens differs depending on whether you are working in a development
environment or a running system.

CAUTION:
Currently the development of custom dynamic UIM pages is only supported for the presentation of
decision details only. Refer to the the chapter Calculating and Displaying Decision Details in the Inside
Cúram Eligibility and Entitlement Using Cúram Express Rules documentation for more details.

Development of dynamic UIM for any purpose beyond that described in this guide is not supported.

B.1 Working in a Development Environment
In order to load a dynamic UIM page into the resource store, you must add two separate entries to the
AppResource.dmx file in the custom component, each entry corresponding to a dynamic UIM file and an
associated properties file.

The following is an example of how to add the DUIMSample dynamic UIM page to the AppResource.dmx
file, so that it will be loaded into the application resource store at build time.

© Copyright IBM Corp. 2012, 2013 243

Note: The value of the contentType attribute specifies the location on the file system that each entry
(dynamic UIM file and associated properties file) can be uploaded from. The value of the category

<row>
<attribute name="resourceid">
<value>1</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.uim</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_XML</value>
</attribute>

</row>
<row>

<attribute name="resourceid">
<value>2</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample.properties</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.properties</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_PROP</value>
</attribute>

</row>

244 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

attribute in the AppResource.dmx categorizes a dynamic UIM page resource so that they can be
distinguished from other kinds of resources in the resource store. The dynamic UIM file should be
categorized (as shown in the example) as a RS_XML resource. The associated properties file should be
categorized as RS_PROP. Each dynamic UIM resource that is added to the AppResource.dmx should also
be given the same value so that they all belong to the same category. See the section below for details of
how new dynamic UIM pages are loaded into the resource store at runtime. The value of the
localeIdentifier attribute should be empty (as in the example) if the user's required locale is English.
Otherwise the actual locale should be used as the value for this attribute for both the UIM and properties
file.

B.2 Working in a Running System
In order to navigate to the home dynamic UIM administration screen in the application, the user must do
the following:
v Log into the “admin” application.
v From the shortcut menu, select the “Dynamic UIM” menu item from the “Dynamic UIM” category.This

should open the home dynamic UIM administration screen

A user can maintain dynamic UIM pages in the resource store by performing the following actions:
v Add a dynamic UIM page to the Resource Store
v Edit a dynamic UIM page in the Resource Store
v Delete a dynamic UIM page from the Resource Store
v Validate a dynamic UIM page in the Resource Store

B.2.1 Search for Dynamic UIM Pages by Category
In order to view the current list of dynamic UIM pages in the resource store you must perform a search
based on the resource store category. This can be done from the home dynamic UIM administration
screen as follows:
v Select a menu item for the drop-down list on “Category Search” field.
v Click on the “Search” button. This will return the list of dynamic UIM pages for the selected category.

B.2.2 Uploading a Dynamic UIM page to the Resource Store
From the home dynamic UIM administration screen, a dynamic UIM page can be added to the resource
store by doing the following
v Select the New... page level action control. This will open a modal dialog page with four mandatory

fields.
v Enter the value of the page Page ID field. The value must be the same as the value of the PAGE_ID

attribute in the UIM file that is being uploaded, otherwise an error message will be displayed.
v Select the locale from the drop-down list on the locale field. The default is locale is English.
v Use the “Browse” button on the “UIM File” field to navigate to the dynamic UIM file that is to be

uploaded to the resource store. As indicated, this is a mandatory field.
v Use the “Browse” button on the “Properties File” field to navigate to the associated properties file to

upload to the resource store. As indicated, this is a mandatory field.

B.2.3 Editing a Dynamic UIM page in the resource store
From the home dynamic UIM administration, a dynamic UIM page can be added to the resource store by
doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like

to edit (by Page ID), and select the “Edit...” menu item for the list action menu. This should open a
modal dialog page with three fields.

Appendix B. Maintaining Dynamic UIM Pages 245

v If you would like to download the current version of the dynamic UIM file and associated properties
file (to be edited) from the Resource Store the locale file system, then select the “Download” button
and save the zip file - containing both aforementioned files - to the file system. The dynamic UIM file
and associated properties file can then be unzipped from the downloaded zip and edited as required.

v Use the “Browse” button on the “UIM File” field to navigate to the dynamic UIM file that is to be
uploaded to the resource store. As indicated, this is a mandatory field.

v Use the “Browse” button on the “Properties File” field to navigate to the associated properties file to
upload to the resource store. As indicated, this is a mandatory field.

B.2.4 Deleting a Dynamic UIM File from the Resource Store
From the home dynamic UIM administration, a dynamic UIM page can be deleted from the resource
store by doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like

to edit (by Page ID), and select the “Delete...” menu item for the list action menu. As a result of this
action a modal dialog will be displayed, with a message looking for confirmation that you want to
delete the selected dynamic UIM page from the resource store.

v The Yes button should be selected to delete the dynamic UIM page from the resource store. A new
search for dynamic UIM pages in the resource store should reflect the fact that this dynamic UIM page
has been removed from the resource store.

B.2.5 Validating a dynamic UIM file in the resource store
From the home dynamic UIM administration, a dynamic UIM page can be validated in the resource store
by doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like

to edit (by Page ID), and select the “Validate...” menu item for the list action menu. As a result of this
action a modal dialog will be displayed, with a message stating whether the validation has passed of
failed. If the validation fails, then the source of the error page will appear in the dialog and the full
details of the error can be found in the server logs.

B.2.6 Publish dynamic UIM files
The changes to the dynamic UIM files will not be made public until they are intentionally published to
the resource store. This can be done by selecting the “Publish...” page action control from the home
dynamic UIM administration screen. This action will open a modal dialog page asking for confirmation
that the changes are to be published to the resource store.

246 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 247

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

248 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, the Adobe logo, Adobe SVG Viewer, Adobe Reader, Adobe Flash, and Adobe Flex are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other countries,
or both.

Apache is a trademark of Apache Software Foundation.

Microsoft, Windows, Internet Explorer, and Word, are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Mozilla, is registered trademarks of Mozilla Foundation.

UNIX is a registered trademark of the Open Group in the United States and other countries.

WebLogic Server, Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 249

http://www.ibm.com/legal/us/en/copytrade.shtml

250 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Introduction
	1.2 Prerequisites
	1.3 Companion Guides
	1.4 Structure
	1.5 Summary

	Chapter 2. Concepts
	2.1 Objective
	2.2 Prerequisites
	2.3 Introduction
	2.4 Application User Interface Overview
	2.5 User Interface Meta-data
	2.5.1 Page Content Meta-data

	2.6 Applications
	2.7 Page Context
	2.8 Page “Look-and-Feel”
	2.9 Application Controller Java Server Page
	2.10 Direct Browsing
	2.11 Summary

	Chapter 3. Development
	3.1 Objective
	3.2 Prerequisites
	3.3 Introduction
	3.4 Outline of the Development Process
	3.5 Installation
	3.6 Project Folder Structure
	3.7 Application Components
	3.7.1 Component Folders
	3.7.2 Component Order
	3.7.2.1 Localized Components

	3.8 Component Artifacts
	3.9 Application Locales
	3.10 Building an Application
	3.10.1 Build Targets
	3.10.2 Related Build Targets
	3.10.3 Full and Incremental Builds
	3.10.4 Dependency Checking
	3.10.5 Build Logs
	3.10.6 Error Reporting
	3.10.7 Server Interface Reference
	3.10.8 Page Previews
	3.10.9 UIM Generator Tool
	3.10.10 External Client Applications

	3.11 Deployment
	3.11.1 Overview
	3.11.2 Configuring the Application
	3.11.2.1 Tracing

	3.11.3 Customizing the Web Application Descriptor
	3.11.3.1 Customizing the 404 or Page Not Found error response.

	3.12 Customization
	3.12.1 Overview
	3.12.2 Adding New Artifacts
	3.12.3 Overriding or Merging Artifacts
	3.12.4 Externalized Strings
	3.12.5 Images
	3.12.6 Image Mapping
	3.12.7 CuramLinks.properties
	3.12.8 XML Runtime Configuration Files
	3.12.9 Login Pages
	3.12.10 JavaScript Files
	3.12.11 Cascading Stylesheets
	3.12.11.1 Application Specific CSS
	3.12.11.2 Media Specific CSS
	3.12.11.3 Browser Specific CSS

	3.12.12 Application Configuration Files
	3.12.13 General Configuration
	3.12.13.1 Overview
	3.12.13.2 POPUP_PAGES
	3.12.13.3 MULTIPLE_POPUP_DOMAINS
	3.12.13.4 ERROR_PAGE
	3.12.13.5 MULTIPLE_SELECT
	3.12.13.6 FILE_DOWNLOAD_CONFIG
	3.12.13.7 ENABLE_COLLAPSIBLE_CLUSTERS
	3.12.13.8 APPEND_COLON
	3.12.13.9 ADDRESS_CONFIG
	3.12.13.10 ADMIN
	3.12.13.11 STATIC_CONTENT_SERVER
	3.12.13.12 FIELD_ERROR_INDICATOR
	3.12.13.13 SECURITY_CHECK_ON_PAGE_LOAD
	3.12.13.14 ENABLE_SELECT_ALL_CHECKBOX
	3.12.13.15 TRANSFER_LISTS_MODE
	3.12.13.16 HIDE_CONDITIONAL_LINKS
	3.12.13.17 DISABLE_AUTO_COMPLETE
	3.12.13.18 SCROLLBAR_CONFIG
	3.12.13.19 PAGINATION
	3.12.13.20 Customizing Configuration Settings
	3.12.13.21 Dividing the Configuration File

	3.12.14 Custom Resources

	Chapter 4. Localization
	4.1 Objective
	4.2 Prerequisites
	4.3 Introduction
	4.4 Numbers
	4.5 File Encoding
	4.5.1 XML Files
	4.5.2 Java properties files
	4.5.3 Non-XML Files

	4.6 Locales
	4.6.1 Non JavaScript property files
	4.6.2 JavaScript property files

	4.7 UIM Externalized Strings
	4.8 JavaScript Externalized Strings
	4.8.1 Accessing properties in JavaScript

	4.9 Image.properties
	4.10 Infrastructure Widget Properties Files
	4.10.1 Frequency Pattern Selector Localization

	4.11 CDEJResources.properties
	4.12 ApplicationConfiguration.properties
	4.13 Application-wide Menu
	4.14 Tabbed Configuration Artifacts
	4.15 Runtime Messages

	Chapter 5. UIM Reference
	5.1 Objective
	5.2 Prerequisites
	5.3 Introduction
	5.4 Creating UIM Documents
	5.5 UIM Document Types
	5.6 UIM Pages
	5.7 UIM Views
	5.8 Externalized Strings
	5.9 UIM Reference for Pages and Views
	5.9.1 Introduction
	5.9.2 Connection Types
	5.9.3 ACTION CONTROL
	5.9.3.1 File Downloads
	5.9.3.2 Attributes
	5.9.3.3 Child Elements

	5.9.4 ACTION SET
	5.9.4.1 Attributes
	5.9.4.2 Child Elements

	5.9.5 CLUSTER
	5.9.5.1 Attributes
	5.9.5.2 Child Elements

	5.9.6 CONDITION
	5.9.6.1 Attributes
	5.9.6.2 Child Elements

	5.9.7 CONNECT
	5.9.7.1 Attributes
	5.9.7.2 Child Elements

	5.9.8 CONTAINER
	5.9.8.1 Attributes
	5.9.8.2 Child Elements

	5.9.9 DETAILS_ROW
	5.9.9.1 Attributes
	5.9.9.2 Child Elements

	5.9.10 DESCRIPTION
	5.9.10.1 Attributes
	5.9.10.2 Child Elements

	5.9.11 FIELD
	5.9.11.1 Attributes
	5.9.11.2 Child Elements

	5.9.12 FOOTER_ROW
	5.9.12.1 Attributes
	5.9.12.2 Child Elements

	5.9.13 IMAGE
	5.9.13.1 Attributes
	5.9.13.2 Child Elements

	5.9.14 INCLUDE
	5.9.14.1 Attributes
	5.9.14.2 Child Elements

	5.9.15 INITIAL
	5.9.15.1 Attributes
	5.9.15.2 Child Elements

	5.9.16 INFORMATIONAL
	5.9.16.1 Attributes
	5.9.16.2 Child Elements

	5.9.17 INLINE PAGE
	5.9.17.1 Attribute
	5.9.17.2 Child Elements
	5.9.17.3 Restrictions on usage

	5.9.18 IS_FALSE
	5.9.18.1 Attributes
	5.9.18.2 Child Elements

	5.9.19 IS TRUE
	5.9.19.1 Attributes
	5.9.19.2 Child Elements

	5.9.20 JSP SCRIPTLET
	5.9.20.1 Attributes
	5.9.20.2 Child Elements

	5.9.21 LABEL
	5.9.21.1 Attributes
	5.9.21.2 Child Elements

	5.9.22 LINK
	5.9.22.1 Attributes
	5.9.22.2 Child Elements
	5.9.22.3 Modal Dialogs

	5.9.23 LIST
	5.9.23.1 Attributes
	5.9.23.2 Child Elements

	5.9.24 MENU
	5.9.24.1 Attributes
	5.9.24.2 Child Elements
	5.9.24.3 DYNAMIC and INTEGRATED_CASE type menus
	5.9.24.4 The IN_PAGE_NAVIGATION type menu
	5.9.24.5 WIZARD_PROGRESS_BAR menu
	5.9.24.6 The UIM wizard pages
	5.9.24.7 Wizard menu configuration

	5.9.25 PAGE
	5.9.25.1 Attributes
	5.9.25.2 Child Elements

	5.9.26 PAGE_PARAMETER
	5.9.26.1 Attributes
	5.9.26.2 Child Elements

	5.9.27 PAGE TITLE
	5.9.27.1 Attributes
	5.9.27.2 Child Elements

	5.9.28 SCRIPT
	5.9.28.1 Attributes
	5.9.28.2 Child Elements

	5.9.29 SERVER INTERFACE
	5.9.29.1 Attributes
	5.9.29.2 Child Elements

	5.9.30 SOURCE
	5.9.30.1 Attributes
	5.9.30.2 Child Elements

	5.9.31 TAB_NAME
	5.9.31.1 Child Elements

	5.9.32 TARGET
	5.9.32.1 Attributes
	5.9.32.2 Child Elements

	5.9.33 TITLE
	5.9.33.1 Attributes
	5.9.33.2 Child Elements

	5.9.34 VIEW
	5.9.34.1 Attributes
	5.9.34.2 Child Elements

	5.10 UIM Reference for Widgets
	5.10.1 Introduction
	5.10.2 WIDGET
	5.10.2.1 Attributes
	5.10.2.2 Child Elements

	5.10.3 WIDGET_PARAMETER
	5.10.3.1 Attributes
	5.10.3.2 Child Elements

	5.10.4 The EVIDENCE_COMPARE Widget
	5.10.5 The FILE_EDIT Widget
	5.10.5.1 User Machine Configuration

	5.10.6 The FILE_UPLOAD Widget
	5.10.7 The FILE_DOWNLOAD Widget
	5.10.8 The MULTISELECT Widget
	5.10.8.1 Confirmation Pages

	5.10.9 The SINGLESELECT Widget
	5.10.10 The RULES_SIMULATION_EDITOR Widget
	5.10.11 The IEG_PLAYER Widget

	5.11 Dynamic UIM Cross Reference
	5.12 Dynamic UIM System Initialization

	Chapter 6. Application Configuration
	6.1 Objective
	6.2 Prerequisites
	6.3 Introduction
	6.4 Configuration Files
	6.5 Applications
	6.5.1 Introduction
	6.5.2 Definition
	6.5.2.1 application-menu
	6.5.2.2 application-search
	6.5.2.3 section-ref

	6.5.3 Optional Header
	6.5.4 Example
	6.5.5 Associate an Application with User

	6.6 Sections
	6.6.1 Introduction
	6.6.2 Definition
	6.6.2.1 tab
	6.6.2.2 shortcut-panel-ref

	6.6.3 Example

	6.7 Section Shortcut Panel
	6.7.1 Introduction
	6.7.2 Definition
	6.7.2.1 node

	6.7.3 Example

	6.8 Tabs
	6.8.1 Introduction
	6.8.2 Definition
	6.8.2.1 page-param
	6.8.2.2 menu
	6.8.2.3 context
	6.8.2.4 navigation
	6.8.2.5 smart-panel
	6.8.2.6 tab-refresh

	6.8.3 Context Panel UIM
	6.8.4 Example

	6.9 Tab Actions Menu
	6.9.1 Introduction
	6.9.2 Definition
	6.9.2.1 menu-item
	6.9.2.2 submenu
	6.9.2.3 menu-separator
	6.9.2.4 loader-registry
	6.9.2.5 loader

	6.9.3 Dynamic Support
	6.9.4 File Download Menu Item
	6.9.5 Example

	6.10 Tab Navigation
	6.10.1 Introduction
	6.10.2 Definition
	6.10.2.1 nodes
	6.10.2.2 navigation-group
	6.10.2.3 navigation-page
	6.10.2.4 loader-registry
	6.10.2.5 loader

	6.10.3 Dynamic Support
	6.10.4 Example

	6.11 Opening Tabs and Sections
	6.11.1 Introduction
	6.11.2 Links
	6.11.3 Page to Tab Associations
	6.11.4 Tab to Section Associations
	6.11.5 Page Parameters

	Chapter 7. Session Management
	7.1 Objective
	7.2 Prerequisites
	7.3 Introduction
	7.4 Session Basics
	7.5 Tab Restoration
	7.6 Configuration
	7.7 Limitations
	7.8 Browser Specific Session Management

	Chapter 8. Domain Specific Controls
	8.1 Objective
	8.2 Prerequisites
	8.3 Introduction
	8.4 Dates
	8.5 Date-Times
	8.5.1 Representing time-only values
	8.5.2 Customizing the Time Format

	8.6 Frequency Pattern Selector
	8.7 Selection Lists
	8.7.1 Populated from a Code-Table
	8.7.2 Populated from Server Interface Properties
	8.7.3 Drop-down, Scrollable and Checkboxed List types
	8.7.3.1 Drop-down and Scrollable List
	8.7.3.2 Checkboxed List

	8.7.4 Adding an Empty Entry to a List for Non-Mandatory Fields
	8.7.5 Enabling Multiple Selection
	8.7.6 Transfer List Widget
	8.7.6.1 Overview
	8.7.6.2 Configuration

	8.8 User Preferences Editor
	8.9 Rules Trees
	8.9.1 Introduction
	8.9.1.1 Behavior of Summary and Highlight-On-Failure Rules Flags

	8.9.2 Default Rules View
	8.9.3 Summary Rules View
	8.9.4 Failed Rules View
	8.9.5 Dynamic Rules View
	8.9.5.1 Behavior of Summary and Highlight-On-Failure Indicator

	8.9.6 Dynamic Full Tree Rules View
	8.9.7 Rules Editor

	8.10 Meeting View
	8.10.1 Overview
	8.10.2 Single Selection Mode
	8.10.3 Multiple Selection Mode
	8.10.4 XML Formats

	8.11 Charts
	8.11.1 Overview
	8.11.2 Chart appearance
	8.11.3 Chart configuration
	8.11.4 Chart Data Formats

	8.12 Heatmap Widget
	8.12.1 Overview
	8.12.2 Configuration

	8.13 Workflow
	8.13.1 Overview
	8.13.2 Workflow Details
	8.13.3 Workflow XML Formats

	8.14 Evidence View
	8.14.1 Evidence Display Mode
	8.14.2 Evidence Comparison Mode
	8.14.3 Configuration
	8.14.4 Data Format

	8.15 Calendar
	8.16 Payment Statement View
	8.17 Batch Function View
	8.18 Addresses
	8.19 Schedule View
	8.20 Radio Button Group
	8.21 Pop-up Pages
	8.21.1 Configure the Pop-up Page
	8.21.2 Create the Pop-up Page
	8.21.2.1 A pop-up which returns existing items
	8.21.2.2 A pop-up which creates a new item

	8.21.3 Using the Pop-up Page
	8.21.4 Using Multiple Pop-up Search Pages for a Single Field
	8.21.5 Configure the Multiple Pop-up Page
	8.21.6 Using the Multiple Pop-up Page

	8.22 Agenda Player
	8.22.1 Agenda Player screen structure
	8.22.2 Navigation modes
	8.22.3 Navigator-less View
	8.22.4 Agenda Player Configuration
	8.22.5 Agenda Player Customization
	8.22.6 Player data

	8.23 LOCALIZED_MESSAGE Domain
	8.24 Decision Assist: Decision Matrix Widget
	8.24.1 Overview

	Chapter 9. Custom Data Conversion and Sorting
	9.1 Objective
	9.2 Prerequisites
	9.3 Introduction
	9.4 Data Conversion and Sorting Operations
	9.5 Data Conversion Life Cycle
	9.6 The Domain Hierarchy and Domain Plug-ins
	9.7 Overview of Domain Plug-ins
	9.7.1 Common Features of Plug-ins
	9.7.2 Converter Plug-ins
	9.7.3 Comparator Plug-ins
	9.7.4 Default Value Plug-ins

	9.8 Domain Plug-in Configuration
	9.9 Out-of-the-Box Domain Plug-ins
	9.9.1 Extending Existing Plug-ins
	9.9.2 Converter Plug-ins
	9.9.3 Comparator Plug-ins
	9.9.3.1 Localized (Cultural-aware) string sorting

	9.9.4 Default Value Plug-ins

	9.10 Error Reporting
	9.10.1 Infrastructure Errors
	9.10.2 Exception Classes
	9.10.3 Custom Exception Classes

	9.11 Java Object Representations
	9.12 Customization Guidelines
	9.12.1 Where to Start
	9.12.2 Custom Formatting
	9.12.3 Custom Parsing
	9.12.4 Custom Validation
	9.12.5 Custom Sorting
	9.12.6 Custom Error Reporting
	9.12.7 Custom Default Values

	9.13 Advanced Topics
	9.13.1 Type Checking and Null Checking
	9.13.2 Plug-in Instance Management
	9.13.3 Naming Conventions
	9.13.4 Generic Parse Operations
	9.13.5 Code-Tables

	Chapter 10. Online Help
	10.1 Introduction
	10.2 Key Features of Curam Online Help
	10.2.1 Support for Multiple Content Types
	10.2.2 Single Source Development
	10.2.3 Integrated Localization
	10.2.4 Automatic Generation
	10.2.5 Accessing the Help Page
	10.2.6 Accessibility Features
	10.2.6.1 Alternative Text

	10.3 Curam Online Help Development
	10.3.1 Elements of Online Help:
	10.3.1.1 Introduction to Curam Client Pages
	10.3.1.2 Page Descriptions
	10.3.1.3 Links and Actions
	10.3.1.4 Fields and Columns

	10.3.2 Adding or Updating Help content
	10.3.2.1 Updating Help for non 'Domain Specific Controls'
	10.3.2.2 Updating Help for 'Domain Specific Controls'

	Appendix A. Unsupported Dynamic UIM features
	A.1 Introduction
	A.2 PAGE
	A.3 PAGE TITLE
	A.4 CLUSTER
	A.5 LIST
	A.6 FIELD
	A.7 CONTAINER
	A.8 ACTION_SET
	A.9 WIDGET
	A.10 ACTION_CONTROL
	A.11 LINK
	A.12 INLINE_PAGE
	A.13 MENU
	A.14 SERVER_INTERFACE
	A.15 INFORMATIONAL

	Appendix B. Maintaining Dynamic UIM Pages
	B.1 Working in a Development Environment
	B.2 Working in a Running System
	B.2.1 Search for Dynamic UIM Pages by Category
	B.2.2 Uploading a Dynamic UIM page to the Resource Store
	B.2.3 Editing a Dynamic UIM page in the resource store
	B.2.4 Deleting a Dynamic UIM File from the Resource Store
	B.2.5 Validating a dynamic UIM file in the resource store
	B.2.6 Publish dynamic UIM files

	Notices
	Trademarks

