
IBM Cúram Social Program Management

Cúram Workflow Reference Guide
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Workflow Reference Guide
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 139

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Chapter 1. Introduction 1
1.1 Overview 1
1.2 Prerequisites 1
1.3 How to use this document 1
1.4 Structure of this Document 1

1.4.1 Workflow Processes 1
1.4.2 Data Flow 2
1.4.3 Activities 2
1.4.4 Flow Control 3
1.4.5 Development and Runtime 4
1.4.6 Inbox Configuration and Customization . . 4

Chapter 2. Creating a Workflow Process 5
2.1 Process definition life cycle 5

2.1.1 Process creation 5
2.1.2 Process visualization 5
2.1.3 Releasing a process 6
2.1.4 Process versions (process editing) 6
2.1.5 Process import, export and copy 6
2.1.6 Localization 7

2.2 Process execution 8
2.2.1 Basic engine behavior 8
2.2.2 Executing multiple versions 8
2.2.3 Process Instance Administration 8

2.3 Method Reference Library. 9
2.3.1 Referencing Cúram methods 9
2.3.2 Method types 9

2.4 WDO templates 10
2.4.1 Metadata 10
2.4.2 Import and syncing 11
2.4.3 Validations 11

Chapter 3. Process Definition Metadata 13
3.1 Overview 13
3.2 Metadata 13
3.3 Validations 15
3.4 Description of Context WDOs 15

Chapter 4. Workflow Data Objects . . . 17
4.1 Overview 17
4.2 Metadata 18
4.3 Validations 20
4.4 List of Context WDOs. 21
4.5 Runtime Information 23

Chapter 5. Process Enactment 25
5.1 Overview 25
5.2 Code enactment (enactment service API) . . . 25

5.2.1 Metadata 26
5.2.2 Validations 27

5.2.3 Code 27
5.3 Event enactment 28

5.3.1 Configuration data 28
5.3.2 Validations 29

Chapter 6. Base Activity 31
6.1 Overview 31
6.2 Metadata 31

6.2.1 Localized Text 31
6.3 Validations 32
6.4 Basic Activity Types 32

6.4.1 Route Activity. 32
6.4.2 Start/End Process Activity 32

Chapter 7. Automatic 35
7.1 Prerequisites 35
7.2 Overview 35
7.3 Cúram Business Methods 35

7.3.1 Metadata 35
7.3.2 Validations 36
7.3.3 Code 36

7.4 Input Mappings. 36
7.4.1 Metadata 36
7.4.2 Validations 41
7.4.3 Runtime Information 42

7.5 Output Mappings 42
7.5.1 Metadata 42
7.5.2 Validations 46
7.5.3 Runtime Information 46

7.6 Description of Context WDOs 46

Chapter 8. Event Wait 49
8.1 Prerequisites 49
8.2 Overview 49
8.3 List of events 49

8.3.1 Metadata 50
8.3.2 Validations 51
8.3.3 Code 51
8.3.4 Runtime Information 52

8.4 Deadline 52
8.4.1 Prerequisites 52
8.4.2 Metadata 53
8.4.3 Validations 54
8.4.4 Code 55
8.4.5 Runtime Information 55
8.4.6 Description of Context WDOs 55

8.5 Output Mappings 55
8.5.1 Metadata 56
8.5.2 Validations 56
8.5.3 Runtime Information 56
8.5.4 Description of Context WDOs 56

8.6 Reminders 57
8.6.1 Metadata 57
8.6.2 Validations 58
8.6.3 Code 58

© Copyright IBM Corp. 2012, 2013 iii

8.6.4 Runtime Information 58

Chapter 9. Manual 59
9.1 Prerequisites 59
9.2 Overview 59
9.3 Task details 59

9.3.1 Metadata 60
9.3.2 Validations 63
9.3.3 Code 64
9.3.4 Runtime Information 65
9.3.5 Description of Context WDOs 65

9.4 Allocation strategy 65
9.4.1 Prerequisites 65
9.4.2 Metadata 65
9.4.3 Validations 70
9.4.4 Code 70
9.4.5 Runtime Information 72
9.4.6 Description of Context WDOs 72

9.5 Business Object Associations 73
9.5.1 Metadata 73
9.5.2 Validations 73
9.5.3 Code 74
9.5.4 Runtime Information 74

9.6 Event Wait 74
9.6.1 Prerequisites 74
9.6.2 Description of Context WDOs 74

Chapter 10. Decision. 75
10.1 Prerequisites 75
10.2 Overview 75
10.3 Task Details. 75

10.3.1 Metadata 76
10.3.2 Validations 77
10.3.3 Runtime Information 78

10.4 Question Details 79
10.4.1 Metadata 79
10.4.2 Validations 81
10.4.3 Runtime Information 82
10.4.4 Description of Context WDOs 82

Chapter 11. Subflow 83
11.1 Prerequisites 83
11.2 Overview 83
11.3 Subflow Process 83

11.3.1 Metadata 83
11.3.2 Validations 84

11.4 Input Mappings 84
11.4.1 Metadata 84
11.4.2 Validations 85

11.5 Output Mappings 85
11.5.1 Metadata 85
11.5.2 Validations 86

Chapter 12. Loop Begin and Loop End 87
12.1 Prerequisites 87
12.2 Overview 87

12.2.1 Loop Type 87
12.3 Metadata 87

12.3.1 Loop Begin Activity 87
12.3.2 Loop End Activity 88

12.4 Runtime Information. 89
12.5 Description of Context WDOs. 89

Chapter 13. Parallel 91
13.1 Prerequisites 91
13.2 Overview 91
13.3 Metadata 91

13.3.1 Generic Metadata for a Parallel Activity . . 91
13.3.2 Metadata for a Parallel Manual Activity . . 92
13.3.3 Metadata for a Parallel Decision Activity 93
13.3.4 Validations 95
13.3.5 Runtime Information 95
13.3.6 Description of Context WDOs 95

Chapter 14. Activity Notifications . . . 97
14.1 Overview 97
14.2 Notification Details 97

14.2.1 Metadata 97
14.2.2 Validations 99
14.2.3 Code 100
14.2.4 Runtime Information. 101

14.3 Notification Allocation Strategy 101
14.3.1 Prerequisites 101
14.3.2 Code 101

Chapter 15. Transitions 105
15.1 Overview 105
15.2 Metadata 105
15.3 Validations. 107
15.4 Runtime Information 107

Chapter 16. Conditions 109
16.1 Overview 109
16.2 Metadata 109
16.3 Validations. 112

Chapter 17. Split/Join 115
17.1 Introduction 115
17.2 Choice XOR Split 115

17.2.1 Metadata 115
17.3 Parallel AND split 116

17.3.1 Metadata 116

Chapter 18. Workflow Structure . . . 117
18.1 Overview 117
18.2 Graph Structure 117
18.3 Block Structure 117

18.3.1 An Analogy for Blocks 118
18.3.2 Block Types Supported by Workflow . . 118

18.4 Structural Rules 119
18.4.1 Graph Structure Rules 119
18.4.2 Block Structure Rules 119

18.5 Validations. 120
18.5.1 Simple Syntactic Checks 120
18.5.2 Graph Checks 120
18.5.3 Block Checks 120

Chapter 19. Workflow Web Services 123
19.1 Overview 123

iv IBM Cúram Social Program Management: Cúram Workflow Reference Guide

19.2 Exposing a workflow web service 123
19.2.1 Process Enactment 123
19.2.2 Process completion callback 124

19.3 Invocation from BPEL processes 124

Chapter 20. File Locations 127
20.1 Overview 127
20.2 Workflow Process Definition Files 127

20.2.1 Customizing Workflow Process Definition
Files 127

20.3 Event Definition Files 128

Chapter 21. Configuration 129
21.1 Overview 129
21.2 Application Properties 129

Chapter 22. JMSLite 131
22.1 Introduction 131

22.2 What JMSLite Does 131
22.3 Why JMSLite? 131
22.4 Using JMSLite 132
22.5 Debugging workflows 132

Chapter 23. Inbox and Task
Management 133
23.1 Overview 133
23.2 Inbox Configuration 133

23.2.1 Inbox List Sizes Configuration Settings 133
23.2.2 Get Next Task Configuration Settings . . 134
23.2.3 Task Redirection and Allocation Blocking
Settings 134

23.3 Inbox Customization 135
23.3.1 How to customize the Inbox 137

Notices 139
Trademarks 141

Contents v

vi IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Figures

1. Visualization of Close Case Workflow Process
Definition 5

2. Process Enactment Port Type 124

3. Callback Port Type. 124
4. WSDL extensions for BPEL 125
5. Customization Class Diagram 137

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Tables

1. Description of the ProcEnactmentEvt Table 28
2. Description of the ProcEnactEvtData Table 28
3. Subject Text Data Conversion 61
4. Condition Expression Operators 111

5. Inbox List Sizes Configuration Settings 133
6. Get Next Task Configuration Settings 134
7. Security Identifiers and Associated Actions 135
8. Customization Points 135

© Copyright IBM Corp. 2012, 2013 ix

x IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 1. Introduction

1.1 Overview
This is the Workflow Reference Guide and it is intended to provided detailed explanations of the
concepts of the Cúram Workflow Management System (WMS). It aims to describe how to define a
process to achieve certain goals by giving in-depth descriptions of the workflow metadata as well as the
effects of that metadata at runtime. This document not intended as a tutorial document but rather a
concise description of all the features available in Cúram workflow.

1.2 Prerequisites
This document assumes some familiarity with workflow concepts and how they are realized in the
Cúram WMS. In particular it assumes that you have at least read the Business Analyst Guides: Cúram
Workflow Overview Guide.

1.3 How to use this document
As this document is a reference manual the chapters are as independent of others as possible. The intent
is that a reader is aware of a concept that they wish to get further details on, finds the relevant chapter in
this document and need only read that chapter. While it is not expected that this document be read from
cover to cover it has been structured in such a way as to make such a reading possible and productive.

Some parts of the Cúram WMS itself draw heavily on each other and as such the documentation reflects
this. These external references come in two flavors: prerequisites which are pointers to information that is
indispensable in understanding the section at hand and general links which highlight related but not
required information.

1.4 Structure of this Document
This document may be also viewed in a number of distinct sections each of which reflects an area of the
Cúram WMS and how these interact with each other. The following sections include a summary of what
these logical sections are, what chapters are included in those logical sections and what areas of the
Cúram WMS are covered within those related chapters.

1.4.1 Workflow Processes
The Workflow Processes section of the document describes the metadata associated with a workflow
process definition. The lifecycle of a process definition is also described.

Chapter 2, “Creating a Workflow Process,” on page 5 describes how to create and visualize a workflow
process using the Cúram workflow system. Releasing a process is also described while the effect that this
has on the versioning associated with process definitions is also detailed. Importing and exporting
process definitions is discussed while the localization of the text contained within a process is outlined.
Executing a workflow process using the Cúram workflow engine is described in detail. A description of
the method library and the workflow data object (see Chapter 4, “Workflow Data Objects,” on page 17)
template library is also provided.

Chapter 3, “Process Definition Metadata,” on page 13 describes the metadata associated with a workflow
process definition. Each metadata field is outlined while the validations and context workflow data
objects associated with the workflow process as a whole are detailed.

© Copyright IBM Corp. 2012, 2013 1

1.4.2 Data Flow
The Data Flow section of the document describes how data is stored and manipulated in a process
instance. In particular issues of how data is conveyed from the outside world (at process enactment) and
between activities and transitions within the process is described.

Chapter 4, “Workflow Data Objects,” on page 17 describes the objects used to maintain and pass data
around in the workflow engine. The metadata that constitutes workflow data objects and their attributes
is outlined in detail. Validations that pertain to the creation and modification of workflow data objects are
discussed. Finally, the context workflow data objects that are made available by the Process Definition
Tool and workflow engine are also described in this chapter.

Chapter 5, “Process Enactment,” on page 25 describes the starting of a process instance (i.e. the
performing of the work defined in the process definition). The enactment service API is described while
the enactment mappings metadata associated with the enactment of a process is discussed. Associated
validations and code examples are also provided. It is also possible to start a process in response to an
event being raised and this is also described in this chapter. The configuration data to perform this action
is outlined in detail. Any validations that are executed when creating the mappings between events and
workflow processes are described.

1.4.3 Activities
Activities are central in a workflow process as they are the steps at which the business processing for the
workflow takes place. There are various activity types supported by the Cúram WMS and these are all
described in the Activities section of the document. As notifications are also pertinent to each activity
type, they are also described in this section of the document.

Chapter 6, “Base Activity,” on page 31 describes the metadata details common to all of the supported
activity types in the Cúram workflow system. The validations that are executed when creating or
modifying an activity are also outlined. Finally, some of the more simple activity types are described
including the route activity and the start and end process activities.

Chapter 7, “Automatic,” on page 35 describes the metadata details associated with an automatic activity.
Both the input and output mappings specified for the method associated with the automatic activity are
discussed in detail. The validations executed when creating or modifying the metadata for an automatic
activity are outlined. Finally, the Context_Result and Context_Error workflow data objects that are
available for use in transitions from automatic activities are also described in this chapter.

Chapter 8, “Event Wait,” on page 49 describes the metadata details associated with an event wait activity.
This includes the list of events, the deadline details (including any deadline reminders) associated with
an event wait and also any output mappings that may be specified. The validations executed when
creating or modifying event wait metadata are also described. The runtime information that is associated
with the execution of event wait activities by the workflow engine is also outlined in detail. Finally, the
Context_Event and Context_Deadline workflow data objects that are available for use in transitions from
event wait activities are also detailed in this chapter.

Chapter 9, “Manual,” on page 59 describes the metadata details associated with a manual activity. This
includes the manual task details, the allocation strategy, the business object associations and the event
wait associated with the manual activity. The validations executed when creating or modifying manual
activity metadata are also described. The runtime information that is associated with the execution of
manual activities by the workflow engine is also outlined in detail. Finally, a description of the
Context_Task workflow data object that is available for use in the various mappings associated with a
manual activity is also provided in this chapter.

Chapter 10, “Decision,” on page 75 describes the metadata details associated with a decision activity. This
metadata includes the decision task details (which is similar to the manual activity task details) and the
question details for multiple choice and free text questions. The various validations that are executed

2 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

when creating or modifying the task or question details associated with a decision activity are outlined.
This chapter also includes a description of the runtime information that is present when the workflow
engine executed a decision activity. A description of the Context_Decision workflow data object is also
provided in this chapter.

Chapter 11, “Subflow,” on page 83 describes the metadata details associated with a subflow activity. This
includes details of the subflow process associated with the subflow activity and any input mappings
required to enact that subflow process. There are various validations that are executed when creating or
modifying this metadata and a description of these is also provided in this chapter.

Chapter 12, “Loop Begin and Loop End,” on page 87 describes the metadata details associated with a
loop begin and loop end activity. The loop type, loop condition and end loop activity reference of a loop
begin activity are described. This chapter also includes a description of the runtime information that is
present when the workflow engine executes a loop in a workflow process definition. A description of the
Context_Loop workflow data object is also provided in this chapter.

Chapter 13, “Parallel,” on page 91 describes the metadata details associated with a parallel activity.
Parallel activities wrap existing activity types including Chapter 9, “Manual,” on page 59 activities and
Chapter 10, “Decision,” on page 75 activities. Since the metadata associated with these activity types
remains the same, it will not be described again in this chapter. The validations executed when creating
or modifying parallel activity metadata are also described. The runtime information that is associated
with the execution of parallel activities by the workflow engine is also outlined in detail. Finally, a
description of the Context_Parallel workflow data object that is available for use in the various
mappings associated with a parallel activity is also provided in this chapter.

Chapter 14, “Activity Notifications,” on page 97 describes the metadata details associated with an activity
notification. These details include the delivery mechanism, the subject, the body, the allocation strategy
and actions associated with the notification. There are a number of validations that are executed when
creating or modifying notification metadata and these are also outlined in this chapter. A description of
the runtime information when the workflow engine creates a notification is also provided. Finally, there
are a number of implementation details that are required in the Cúram application to allow notifications
to be delivered correctly. These are also discussed in this chapter.

1.4.4 Flow Control
A workflow process models the flow of information through an organization, passing through steps
carried out by human agent or computer software to achieve a business goal. The Flow Control section of
the document details how such information flow (between activities) is specified in and managed by the
Cúram WMS.

Chapter 15, “Transitions,” on page 105 describes the links between activities. The metadata associated
with transitions is described in detail. Validations that pertain to the creation and modification of
transitions are also discussed. The runtime information that is associated with the processing of
transitions by the workflow engine is also described.

Chapter 16, “Conditions,” on page 109 describes the process definition metadata construct that represents
a condition. Validations that pertain to the creation and modification of conditions are also discussed.

Chapter 17, “Split/Join,” on page 115 describes the metadata associated with activity splits and joins,
when they should be used and the various types available.

Chapter 18, “Workflow Structure,” on page 117 describes the structure of a workflow process as
determined by the activities in the process and the transitions between them. The constraints present
when constructing a process definition to ensure that it is a valid block structure are outlined while
validations that are executed as part of these constraints are discussed.

Chapter 1. Introduction 3

1.4.5 Development and Runtime
The Development and Runtime section of the document describes the specifics of the development and
runtime environment for Cúram workflows. Specifically, it details how to run, configure and debug
workflows.

Chapter 19, “Workflow Web Services,” on page 123 describes the steps necessary to allow process
enactment via web services by exposing Cúram workflow process as a web services.

Chapter 20, “File Locations,” on page 127 details where the various outputs of such utilities as the Process
Definition Tool and other administration user interfaces are exported to and version controlled. These
outputs include process definition metadata files and also the source files associated with events.

Chapter 21, “Configuration,” on page 129 describes the workflow related application properties, their
names, their default settings and what they are used for in the Cúram workflow system.

Chapter 22, “JMSLite,” on page 131 details the Cúram lightweight JMS server that can run alongside the
RMI testing environment in a supported Integrated Development Environment. The steps required to
start the JMSLite server are outlined while a detailed description of how to debug workflows using
JMSLite is also discussed.

1.4.6 Inbox Configuration and Customization
The Inbox Configuration and Customization section of the document describes the configuration and
customization options that are available in the Inbox and Task Management section of the Cúram WMS.
Specifically, it details how to configure the number of tasks that are displayed on the various lists
displayed in the Inbox and also how to customize the various Inbox and Task Management actions that
are available in the system.

Chapter 23, “Inbox and Task Management,” on page 133 describes the configuration options available to
be used in the Inbox. It also details how to customize the available Inbox and Task Management
functions through the use of the Google Guice framework.

4 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 2. Creating a Workflow Process

2.1 Process definition life cycle
The process definition is the central concept in any workflow system so naturally how it is created and
used is of critical importance. This chapter describes the facilities provided by the Cúram workflow
system to create and administer process definitions.

2.1.1 Process creation
The Cúram workflow system provides a Process Definition Tool (PDT) for creating and maintaining process
definitions which can then be interpreted by the workflow engine. Creating a process definition involves
using the Process Definition Tool to describe the desired process behavior in terms of activities and
transitions.

A number of utilities are provided as part of the Process Definition Tool that can aid in process creation.
The PDT allows a process definition to be visualized during design. Processes can also be copied,
imported, and exported using the PDT.

2.1.2 Process visualization
A read-only graphical utility is provided as part of the Process Definition Tool which enables process
administrators to visualize processes as they are being created or modified. This tool allows
administrators view all activities and transitions in a process definition and provides a high level view of
all the possible paths through the workflow process during execution. An example of a graphical
representation of a workflow process definition is shown below.

The visualized process comprises a number of nodes on a graph representing the activities in the process.
The nodes are linked by graph edges and these reflect the transitions defined in the process definition.
Clicking on an activity in the graph displays the details of the activity in the PDT. Similarly, clicking on a
transition between activities on the graph displays the details of the transition in the PDT.

The graphical tool displays the following information for each process visualized:
v The type and name of each activity. Each activity type is identified by a specific icon.

Figure 1. Visualization of Close Case Workflow Process Definition

© Copyright IBM Corp. 2012, 2013 5

v The notifications defined for each activity (See Chapter 14, “Activity Notifications,” on page 97). If an
activity has an associated notification, it will be represented as an envelope which is click-able through
to the associated activity notification page.

v The split/join type (See Chapter 17, “Split/Join,” on page 115) for each activity. A split or join type of
"choice" on an activity is represented as a circle, while a split or join type of "parallel" is represented as
a square.

v The transitions between activities. Where a transition between activities has an associated transition
condition (See Chapter 16, “Conditions,” on page 109), this is represented as an asterisk. The details of
the condition are displayed when the mouse is placed over that asterisk.

v The ordering of each choice split (See Chapter 17, “Split/Join,” on page 115) from an activity. As the
ordering of a choice split from an activity is important (the first eligible transition in the list will be
followed), the order of each transition from the activity is displayed as a number on that transition.

2.1.3 Releasing a process
Once a process definition has been created and is ready for use, it must be released before it can be
executed by the workflow engine (See 2.2, “Process execution,” on page 8). As a process is being released
using the PDT, it is examined to ensure all the information the engine needs to execute the process is
present and internally consistent. The validations required to release a process are described in the
various metadata sections of this document.

Only processes that have passed all of the required validations can be released and made available to the
workflow engine. Once a process definition has been released it becomes read-only and can no longer be
edited by the Process Definition Tool without creating a new version.

2.1.4 Process versions (process editing)
Changes may be required to a released process over time, but as a released process is read-only, a new
version is required before any modifications can be applied. Attempting to edit a released process in the
PDT will automatically create a new unreleased version of that process.

There can only be one unreleased version of a process at any time. If the administrator wishes to edit a
released process, any existing unreleased versions must first be released or deleted.

2.1.5 Process import, export and copy
The import and export functionality allows developers move process definitions as required. For example.
a process definition might be developed on a development system and only moved to a production
system after testing has been completed.

Exporting a process will export the process metadata to the file system. This metadata can then be
imported using the import process option in the PDT. A process imported in this way will be assigned
the highest version number available, and will be unreleased regardless of its released state when
imported. This is to ensure that imported process definitions are subject to the same release validations as
other definitions developed locally. An overwrite option is available when importing that ensures any
existing unreleased version of the process will be overwritten with the imported version.

There may be situations where a process definition differs only slightly from another in the workflow
system. A copy process option is available which allows an existing process to be copied to a new process
when required. The new process will always be unreleased when copied with a version set to 1,
regardless of the status of the original process.

2.1.5.1 Validations
v A process definition cannot be imported if an unreleased version of a process already exists with the

same name, and the overwrite option has not been selected.
v A process definition cannot be imported if a name for that process has not been specified

6 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v A process definition cannot be imported if a process already exists with the same name and different
process identifier. This validation ensures that an imported definition cannot inadvertently overwrite
an existing process definition unless the process identifiers match.

v When copying an existing process, the name of the new process must be unique within the workflow
system.

v The length of the name of the workflow process definition being imported must not exceed the
maximum length allowed for such a name. This length is 254 characters.

v The length of the names of any of the workflow data objects contained in the workflow process
definition being imported must not exceed the maximum length allowed for such a name. This length
is 75 characters.

v The length of the names of any of the workflow data object attributes contained in the workflow
process definition being imported must not exceed the maximum length allowed for such a name. This
length is 75 characters.

v Any code table values that are contained in the workflow process definition being imported must be
valid (i.e. the code table must exist and the specified code must exist in that codetable).

v Text for the default locale must be present for all the specified localizable text strings in the process
definition being imported.

v The identifiers for activities, transitions, transition condition expressions, loop condition expressions,
events and reminders must be unique in the workflow process definition being imported.

2.1.6 Localization
Workflow process definitions contain metadata text that needs to be viewed in different languages by
different users. For example, when a manual activity is executed, it creates a task which has an associated
subject. The Process Definition Tool enables the process developer to localize this subject string for each
of the locales supported by the application.

Localizable strings can be identified in a process definition by the metadata specified in 6.2.1, “Localized
Text,” on page 31. Any localizable text strings that have been specified in a process definition must have
an entry for the default server locale. The default server locale is specified in the Cúram application by
the property: curam.environment.default.locale. By default, the PDT uses this locale when adding
localized strings to a process definition. Any other locales required must be added using the localize
option provided.

The following is a list of the localizable text strings that may be specified in a process definition.
v Process description
v Workflow Data Object display name
v Workflow Data Object description
v Workflow Data Object attribute display name
v Activity name
v Activity description
v Manual Activity Task message
v Manual Activity Task Action message
v Parallel Manual Activity Task message
v Parallel Manual Activity Task Action message
v Decision Activity Action message
v Decision Activity Question message
v Decision Activity Secondary Action message
v Decision Activity Answer display value
v Parallel Decision Activity Action message
v Parallel Decision Activity Question message

Chapter 2. Creating a Workflow Process 7

v Parallel Decision Activity Secondary Action message
v Parallel Decision Activity Answer display value
v Activity Notification Subject message
v Activity Notification Body message
v Activity Notification Action message
v Reminder Notification Subject message
v Reminder Notification Body message
v Reminder Notification Action message

The LocalizableStringResolver API provides routines that resolve and return the various localizable
strings for tasks and notifications that exist in a workflow process definition for the locale of the current
user. Where a text string has not been localized for the current user locale, the text for the default server
locale is returned instead.

2.2 Process execution
A workflow process definition describes the tasks and flow of a business process in terms understood by
the Cúram Workflow Management System. To perform the work described in the specified process
definition, an instance of it must be created and executed by the workflow engine. The mechanism by
which this is done is described in this section. A process instance may be considered as the runtime data
for an enacted workflow process definition.

2.2.1 Basic engine behavior
The Cúram Workflow Management System includes a workflow engine which provides the runtime
execution environment for a process instance. There are various mechanisms available to enact a
workflow process and these are discussed in 19.2.1, “Process Enactment,” on page 123. When a process is
enacted, the workflow engine examines the relevant database table and uses the latest released version of
the specified process definition to create the process instance to run.

As each activity is executed, an associated activity instance record is created and managed by the
workflow engine. This record contains the runtime data for an activity instance in the enacted workflow.
As the workflow progresses, the engine evaluates the transitions (see Chapter 15, “Transitions,” on page
105) for the various activities to decide which path through the process to take. This involves determining
the types of splits and joins (see Chapter 17, “Split/Join,” on page 115) that the activity possesses and
also executing any conditions (see Chapter 16, “Conditions,” on page 109) that the various transitions in
the process may have. Transition instance records (which contain the runtime data for a workflow
transition) for each transition followed in the workflow process are also created and managed by the
engine.

2.2.2 Executing multiple versions
Modifying and releasing a new version of a process will not affect any currently executing instances of
that process. A process will run to completion in the workflow engine with the version that it was started
with, regardless of any subsequent versions that may have been released.

2.2.3 Process Instance Administration
A workflow administrator has the ability to influence the execution of a running process instance through
the Cúram Workflow Administration interface. The following functions are available for this purpose:

Suspend a Process Instance
Any currently executing process instance may be suspended. When this occurs, the workflow
engine will allow all activity instances that are in progress within that process instance to
complete. However, the next set of activities that are required to be executed for that process
instance are started by the workflow engine and immediately suspended. Any synchronous

8 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

subflow processes (see Chapter 11, “Subflow,” on page 83) associated with the process instance
being suspended will also be suspended by the workflow engine.

Resume a Process Instance
Any workflow process instance that has been suspended may be resumed. When this occurs, the
activity instances that were previously suspended for that process instance are restarted by the
workflow engine. Any suspended synchronous subflow processes (see Chapter 11, “Subflow,” on
page 83) associated with that process instance will also be resumed by the workflow engine.

Aborting a Process Instance
Any currently executing or suspended process instance may be aborted. All activities that are in
progress in the aborted process instance are completed. If the process contains any manual or
decision activities that are in progress, the associated tasks will be closed by the workflow engine
when the process instance is aborted. No new activities associated with an aborted process
instance will be started by the workflow engine. Any synchronous subflow processes (see
Chapter 11, “Subflow,” on page 83) associated with the process instance will also be aborted. An
aborted process instance cannot be resumed.

2.3 Method Reference Library
Several situations exist in the Cúram Workflow Management System where it is necessary to interact with
the Cúram application by calling some business process or entity methods (see 7.3, “Cúram Business
Methods,” on page 35 for one example of such an interaction). Any business process object (BPO) or
entity method in the application can be called by the workflow engine. However there are far too many
such methods to present to a process designer for use in their process definitions in an acceptable way.
The purpose of this library is to allow an administrator to assign methods that are likely to be of use in
process definitions to a more manageable list for use in process design. Of course it is not necessary to
pre-populate the library with all methods that could be used in the future. New methods can be added to
the library as required.

2.3.1 Referencing Cúram methods
Business process object (BPO) or entity methods must be added to the Method Reference Library before
they can be referenced in a process definition. The method type defined when adding to the library will
dictate where that method will be available for use within a process definition.

Note that removing a method reference from the Method Reference Library will not remove it from any
process definitions that reference it. As long as the method is still a valid Cúram application method any
process definitions that reference it will remain valid.

2.3.2 Method types
A Cúram business process object (BPO) or entity method must be added to the Method Reference Library
with one of the three defined method types. A method can be associated with more than one method
type, but the method will have to be added repeatedly with the different method type each time. Detailed
below are different method types in the Method Reference Library, along with the restrictions on their
use.

General
Methods with a type of General are only available as application methods to be invoked from
automatic activities (see 7.3, “Cúram Business Methods,” on page 35). The Process Definition Tool
restricts access to only these methods when selecting a method to be invoked from an automatic
activity.

Allocation
Methods in the library with an Allocation type are only available for use as allocation strategy
functions associated with manual activities, decision activities, parallel activities and activity
notifications. (See 9.4, “Allocation strategy,” on page 65). All methods specified with an allocation
method type must have a return type of curam.util.workflow.struct.AllocationTargetList.

Chapter 2. Creating a Workflow Process 9

Deadline
Methods of type Deadline in the method library can only be referenced as deadline handler
methods associated with event-wait, manual, decision and parallel activities. (See 8.4, “Deadline,”
on page 52).

2.4 WDO templates
Data is maintained and passed around in the workflow engine as workflow data objects (see: Chapter 4,
“Workflow Data Objects,” on page 17) The workflow data objects that a process can use are defined
within the process definition itself. However it is conceivable that some workflow data objects will be
useful in many process definitions. Therefore, it would be convenient if they could be imported from
some pool instead of having to be recreated in each individual process. This is the purpose of this library.

2.4.1 Metadata

The metadata defined for workflow data object templates is exactly the same as that defined for
workflow data objects. For a full description of this metadata, see Chapter 4, “Workflow Data Objects,”
on page 17. The workflow data object template library is stored on the WDOTemplateLibrary database
table.

<wdo is-list-wdo="false" initialize-attributes="false">
<wdo-name>TaskCreateDetails</wdo-name>
<display-name>

<localized-text>
<locale language="en">TaskCreateDetailsName</locale>

</localized-text>
</display-name>
<description>

<localized-text>
<locale language="en">The Task Create Details WDO

Template</locale>
</localized-text>

</description>
<attributes>

<attribute>
<attribute-name>subject</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task Subject</locale>

</localized-text>
</display-name>
<type>STRING</type>
<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<constant-value/>

</attribute>
<attribute>

<attribute-name>dueDate</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task Due Date</locale>

</localized-text>
</display-name>
<type>DATE</type>

<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<constant-value/>

</attribute>
</attributes>

</wdo>

10 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Note that the initialize-attributes element of a workflow data object and the required-at-enactment,
process-output and the constant-value elements of a workflow data object attribute are not available for
editing in workflow data object templates and are automatically initialized to their default values in the
associated metadata.

2.4.2 Import and syncing
The templates defined in the workflow data object template library are available for use when creating
process definitions. Importing a workflow data object template from the library will add the workflow
data object and all its attributes to the current process definition.

Once a workflow data object template has been imported into a process definition, it can be synchronized
with its corresponding entry in the workflow data object template library at any time. Synchronizing the
template for a process definition will force the name and display name of the workflow data object to be
updated from the template library. Along with this, any new attribute entries that exist in the template
library entry will automatically be added to the workflow data object in the process definition. The user
can optionally decide to override existing attributes in the workflow data object with those from the
template library when synchronizing. It should be noted that overriding existing attributes might
invalidate the process definition and require updates where the old attribute values have been used.

2.4.3 Validations
v A workflow data object cannot be imported from a template if one already exists in the associated

workflow process definition with the same name.

Chapter 2. Creating a Workflow Process 11

12 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 3. Process Definition Metadata

3.1 Overview
The process is the top level concept in a process definition. Primarily, it contains information to identify
and describe the process definition. This information includes the identifier and the version of the process
definition, it's name and a brief description. It also includes a description of the failure allocation strategy
that may be specified for a process. The following sections describe this top-level information.

3.2 Metadata

workflow-process
This is the parent tag of all process definition metadata.

id This is a 64-bit identifier supplied by the Cúram key server when a process is created in
the process definition tool. The process identifier is required to be unique in the Cúram
workflow system. The reason for this is that the process identifier in conjunction with the
process version number is how the workflow engine distinguishes one process definition
record from another for the purpose of database reads.

process-version
This number represents the version of a workflow process definition. A workflow process
definition record is uniquely identified by it's identifier and version number. A process
definition may have many released versions and one version that is in edit. Once a
process definition has been released, a new version is created and it can no longer be
updated. Any subsequent updates will require a new version to be created and this
version will not be active until it is released. When a process is enacted the highest
released version number is used. Process instances that begin with a given version
number remain bound to that version until completion.

<workflow-process id="100" process-version="2"
language-version="1.0"
released="false" category="PC5"
createdBy="testuser"
creationDate="20050812T135800">

<name>ApprovePlannedItem</name>
<description>

<localized-text>
<locale language="en">This workflow process may be
enacted to approve a planned item.</locale>

</localized-text>
</description>
<documentation>Refer to the approve planned

item documentation.
</documentation>
<web-service expose="true">

<callback-service>wsconnector.ApprovePlannedItem
</callback-service>

</web-service>
<failure-allocation-strategy>

<allocation-strategy type="target"
identifier="FAILUREALLOCATIONSTRATEGY" />

</failure-allocation-strategy>

...

</workflow-process>

© Copyright IBM Corp. 2012, 2013 13

language-version
The process definition metadata is the Cúram workflow language. As new features and
enhancements are added, this language may change. This version number will allow
either the workflow engine to run old language versions different to newer ones or more
likely upgrade tools to convert old process definitions to new language versions.

released
This represents a boolean flag indicating whether or not the process definition has been
released. Only process definitions that have been released can be enacted or selected as
sub-processes in a subflow activity (see: Chapter 11, “Subflow,” on page 83).

category
A process definition must be placed into a category. The category must be selected in the
Process Definition Tool and is taken from the ProcessCategory code-table. This attribute is
intended to be used for process definition search functionality and has no functional
effect on the process in the workflow engine.

createdBy
This represents the name of the user that created the workflow process definition. This
attribute is intended to be used for process definition search functionality and has no
functional effect on the process in the workflow engine.

creationDate
This represents the date and time that the workflow process definition was created. This
attribute is intended to be used for process definition search functionality and has no
functional effect on the process in the workflow engine.

name The name of the process definition is the means by which the process is identified for the
purpose of enactment. The enactment service (the API used to enact a process in code) identifies
the process to enact by it's name. As such this name is required to be unique within the workflow
system and cannot be changed once the process is created. Since the process name is effectively a
constant it is not localizable like an activity name.

description
A process can also have an optional description that briefly specifies what the process does for
the benefit of those editing the process definition in the future. This is localizable text field in the
same format as all localizable fields in a process definition (see: 6.2.1, “Localized Text,” on page
31).

documentation
A process can also have a link to some documentation that may explain the process in a more
descriptive fashion. This is a free-form text field where the developer can enter the name of a
document pertinent to the workflow process or indeed a link to such a document.

web-service
This optional element describes the web service details of a workflow process. A process can be
marked as a Web Service by setting this metadata value which indicates that the process should
be exposed as a Web Service. This allows the process to be able to participate in a BPEL (Business
Process Execution Language) orchestrated process and means that the process can be called from
a BPEL process. Further details on this functionality may be seen in Chapter 19, “Workflow Web
Services,” on page 123.

expose
This attribute represents a boolean flag indicating whether or not the process definition
should be exposed as a Web Service. A workflow process definition is not exposed as a
Web Service by default.

callback-service
This is an optional element because not all invocations from a BPEL process require a
callback. The value is a the fully qualified name of a class extending the
org.apache.axis.client.Service class (which is part of the Service (Axis API) of the

14 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Apache Axis project). The org.apache.axis.client.Service class is generated by the
Cúram web services connector functionality for outbound web services.

failure-allocation-strategy
A process can also have an optional failure allocation strategy specified for it. When allocating a
task (associated with a Chapter 9, “Manual,” on page 59 or Chapter 10, “Decision,” on page 75
activity), the workflow engine invokes the associated allocation strategy to retrieve the list of
allocation targets. If no allocation targets are returned from this invocation, the workflow engine
will then check for the presence of a failure allocation strategy and will use this strategy to
attempt to allocate the task. Since the allocation strategy of type TARGET specifies an allocation
target directly there is never a need to fall back to the failure allocation strategy. The failure
allocation strategy is a process-wide strategy and if specified will be used for all the manual and
decision activities in the process when required.

allocation-strategy
This describes the failure allocation strategy being used for the process. The failure
allocation strategy must be of type TARGET. If the work resolver cannot assign the task
to a user, an organizational object (e.g. organization unit, position or job) or a work queue
using the specified allocation target the task will be assigned to the default work queue.
The identifier attribute represents the identifier of the allocation target being used as the
failure allocation strategy.

3.3 Validations
v A workflow process must have a unique process name. This means that a process cannot be created if

the process name is empty or if a process with the same name already exists.
v A workflow process is required to specify a category.
v A released version of workflow process cannot be deleted once it has been enacted. This is required as

even if a newer version of a process exists, process instances that are in progress when the new version
becomes available run to completion with the version that they started with. Process definitions are
also a necessary historical record that is drawn upon to create auditing information.

v A released version of workflow process cannot be deleted if it is referenced by a subflow activity in a
released version of another process, where that released version is the latest released version.

v If a failure allocation strategy has been specified for the workflow process, then it's type must be
TARGET.

v The callback service class name cannot be specified if the workflow process has not been exposed as a
webservice.

v The callback service class name must represent a class that can be found on the application classpath.
v The callback service class name must represent a class that extends the

org.apache.axis.client.Service class.

3.4 Description of Context WDOs
Certain generic system runtime information about the workflow engine is required to be made available
to the activities and the transitions during the lifetime of a process instance. Details of the
Context_RuntimeInformation workflow data object that provides this information can see be seen in the
following location: 4.4, “List of Context WDOs,” on page 21.

Chapter 3. Process Definition Metadata 15

16 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 4. Workflow Data Objects

4.1 Overview
Data is maintained and passed around in the workflow engine as workflow data objects and list
workflow data objects. These are logical objects defined in the process definition that have a name and a
list of attributes of various types to which data can be assigned. They are conceptually similar to objects
in programming languages although their manifestation in the workflow system is of course quite
different. Workflow data object values may be written at process enactment or from the output of various
activity types.

Workflow data object instances and list workflow data object instances exist as soon as the process is
enacted and exist until the process completes. As such they are available to be used in the activities and
the transitions throughout the lifetime of that process instance. It is therefore the responsibility of the
process designer to ensure that attributes of workflow data objects are populated before they are used.
Attempts to use workflow data object attributes before they are populated will result in failures at
runtime.

© Copyright IBM Corp. 2012, 2013 17

4.2 Metadata

<workflow-process id="32456" >
<name>CreateManualTask</name>
.....
</description>
<enactment-mappings>

......
</enactment-mappings>
<wdos>

<wdo is-list-wdo="false" initialize-attributes="true">
<wdo-name>TaskCreateDetails</wdo-name>
<display-name>

<localized-text>
<locale language="en">Task Create Details</locale>

</localized-text>
</display-name>
<description>

<localized-text>
<locale language="en">This workflow data object
contains the attributes required for the
manual creation of a task.</locale>

</localized-text>
</description>
<attributes>

<attribute>
<attribute-name>subject</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task subject</locale>

</localized-text>
</display-name>
<type>STRING</type>
<required-at-enactment>true</required-at-enactment>
<process-output>true</process-output>

</attribute>
<attribute>

<attribute-name>participantRoleID</attribute-name>
<display-name>

<localized-text>
<locale language="en">Participant Role ID</locale>

</localized-text>
</display-name>
<type>INT64</type>
<required-at-enactment>true</required-at-enactment>
<process-output>true</process-output>

</attribute>
<attribute>
<attribute-name>deadlineDateTime</attribute-name>
<display-name>

<localized-text>
<locale language="en">Deadline date</locale>

</localized-text>
</display-name>
<type>DATETIME</type>
<required-at-enactment>true</required-at-enactment>
<process-output>false</process-output>

</attribute>
<attribute>

<attribute-name>deadlineDuration</attribute-name>
<display-name>

<localized-text>
<locale language="en">Deadline Duration</locale>

</localized-text>
</display-name>
<type>INT32</type>
<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<initial-value>300</initial-value>

</attribute>
<attribute>

tt ib t i it / tt ib t

18 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

wdos This is optional (as a workflow process definition does not have to contain any workflow data
objects) and contains the details of all the workflow data objects defined for the workflow process
definition.

wdo This contains the details of one the workflow data objects defined for the workflow process
definition. This includes the generic details of the workflow data object itself and also details of
each of it's attributes. The metadata that describe a workflow data object and it's attributes are
described below:

is-list-wdo
This contains a BOOLEAN value which indicates whether the specified workflow data object is a
list workflow data object or not. When set to true, the specified workflow data object will act as
a list and thus can be used to make lists of data available throughout the workflow.

initialize-attributes
This contains a BOOLEAN value which indicates whether the attributes associated with the
workflow data object should be initialized when the workflow data object is first used. The
default values used are the same as would be set in a Cúram struct.

wdo-name
This contains the name of the workflow data object.

display-name
This contains the display name of the workflow data object. This name represents a short
description of the workflow data object and is displayed throughout the Process Definition Tool.
It is a localizable string that does not contain any parameters. For more details on the localized
text and associated metadata, see 6.2.1, “Localized Text,” on page 31.

description
This contains a more detailed description of the workflow data object. It is also a localizable
string with no parameters. For more details on the localized text and associated metadata, see
6.2.1, “Localized Text,” on page 31.

attributes
This contains the details of all of the attributes associated with the workflow data object.

attribute
This contains the details of one of the attributes associated with the workflow data object. The
following metadata described below make up a workflow data object attribute:

attribute-name
This contains the name of the workflow data object attribute.

display-name
This represents the display name of the workflow data object attribute. This name
represents a short description of the workflow data object attribute. It is a localizable
string that does not contain any parameters. For more details of the localized text and
associated metadata, see 6.2.1, “Localized Text,” on page 31.

type Each workflow data object attribute defined must specify a type which must be a valid
Cúram base domain. When creating a workflow data object attribute in the Process
Definition Tool this type is selected from the DomainType codetable. This codetable should
be consulted to obtain the full list of types available for workflow data object attributes.
The type of a workflow data object attribute is utilized to ensure that the data mappings
contained within a workflow process are compatible and will not cause failures at
runtime. An example of this would be that if a business process object method parameter
field was of type STRING, then the workflow data object attribute used to map the data
into that field must also be of type STRING.

required-at-enactment
Enactment mappings represent the minimum amount of data that the workflow requires
in order to be enacted. They must contain an entry for each workflow data object

Chapter 4. Workflow Data Objects 19

attribute that has it's required at enactment flag set to true. Conversely, setting this flag
to false (the default) means that this workflow data object attribute is not required for
the enactment of the associated process. The Process Definition Tool is used to create
these enactment mappings and it does so by examining each workflow data object
attribute that has been defined and creating a mapping for those that have the required at
enactment flag set to true. When a released workflow process definition has been
selected as a subflow process in a subflow activity (see Chapter 11, “Subflow,” on page
83), all of the workflow data objects that have been marked as required for enactment in
the subflow process must be mapped before that parent process definition can be
released.

process-output
A workflow process can be marked as a Web Service by setting a metadata value which
indicates that the process should be exposed as a Web Service. This allows the process to
be able to participate in a BPEL (Business Process Execution Language) orchestrated
process and means that the process can be called from a BPEL process either
synchronously or asynchronously. It may also be necessary to map data out from a
workflow process back into the BPEL process that called it. When set to true, this
optional element indicates that the data from this workflow data object attribute should
be passed back to the calling BPEL process when the Cúram workflow process completes.
The default for this element is false.

constant-value
This optional element indicates if the workflow data object attribute represents a constant
value. In numerous places throughout a workflow process definition, workflow data
object attributes are used in input mappings (i.e. allocation function mappings, deadline
function mappings etc.). In some of these cases, it is required to be allowed to use
constants in some of these mappings. By providing a constant value, workflow data
object attributes of this type may be used for this purpose. A workflow data object
attribute cannot have it's required for enactment flag set to true and also contain a
constant value. Data that is passed in as enactment data is deemed to be dynamic and
subject to change. The data specified in a constant workflow data object attribute is not
suitable for this purpose as it's value is already known.

initial-value
This element indicates if the workflow data object attribute has an initial value. This
feature can be useful in the situations where a workflow data object attribute is used in
the workflow before it has been populated by an automatic activity or otherwise (i.e. to
prevent having to use an automatic activity to populate workflow data object attributes
just to ensure that these attributes are not null when they are used as part of transition
conditions later in the workflow). When this element has been populated, the workflow
data object attribute is initialized to the specified value the first time it is used. The initial
value of a workflow data object attribute can be overwritten later by the various output
mappings that exist in a workflow process. A workflow data object attribute cannot have
both a constant value and an initial value specified for it.

4.3 Validations
v A workflow process must contain one and only one Context_RuntimeInformation workflow data object.
v A workflow data object name must be unique in the context of the containing workflow process

definition.
v The name of a workflow data object must be a valid Java™ identifier.
v A user-defined workflow data object name cannot contain the prefix Context_ as this is a reserved

prefix in the Cúram workflow system.
v Each workflow data object specified in the workflow process definition must contain at least one

associated attribute.

20 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v The workflow data object attribute name must be a valid Java identifier.
v A workflow data object attribute cannot be created with the name "value". This is a reserved attribute

name in the Cúram workflow system.
v The type of a workflow data object attribute must be a valid Cúram base domain and must be

contained in the DomainType codetable.
v A workflow data object attribute cannot be both marked as required for enactment and also marked as

a constant value.
v A workflow data object attribute cannot have both a constant value and an initial value specified for it.
v If a workflow data object attribute has been marked as a constant, then a constant value must be

supplied. Conversely, if the attribute has not been marked as a constant, then no such value should be
specified.

v If the workflow data object attribute has been marked as a constant, then a blank value can only be
specified for that attribute if the type of the attribute is a STRING.

v If the workflow data object attribute has been specified with an initial value, then a blank initial value
can only be specified for that attribute if the type of the attribute is a STRING.

v If the workflow data object attribute has been marked as a constant, then the value specified as that
constant must be compatible with the type of the associated attribute.

v If the workflow data object attribute has been specified with an initial value, then the value specified
as that initial value must be compatible with the type of the associated attribute.

v The process output flag can only be set to true for a specified workflow data object attribute if the
associated workflow process has been exposed as a webservice.

4.4 List of Context WDOs
Context workflow data objects are those that are not explicitly defined in the workflow process definition
metadata but are made available by the Process Definition Tool and workflow engine at various places
during the execution of a process. The following is a brief description of these context workflow data
objects and links are provided to where further information may be found about them.

Context_RuntimeInformation Workflow Data Object
The Context_RuntimeInformation workflow data object is a workflow data object that is made
available and maintained by the workflow engine. It contains information that is pertinent
throughout the life-cycle of a workflow process instance and the attributes available reflect this.
These attributes are as follows:
v processInstanceID : The system generated identifier of the process instance (taken from the

Cúram key server using the workflow key set).
v enactingUser : The username of the user whose actions in the application resulted in the

workflow process being enacted.
v enactmentTime : The date and time at which the process was enacted.

Context_Result Workflow Data Object
A transition from an automatic activity should be able to use the return value of the invoked
method in it's condition directly without the need for mappings to workflow data object
attributes. However due to the transactional model of the workflow engine this data has to
persist outside the transaction of the business process object method invocation. In order to
achieve this, a workflow data object definition is created at runtime if the return value is used in
outbound transition conditions. These return value definitions never need to be persisted as they
are inferred wherever needed in the workflow engine The actual workflow data object data is
persisted until after the transitions from the activity instances in question have been evaluated, at
which point they are deleted. For more details on the Context_Result workflow data object, see
7.6, “Description of Context WDOs,” on page 46

Context_Event Workflow Data Object
The Context_Event workflow data object is available for use in a data item or function conditions

Chapter 4. Workflow Data Objects 21

(see Chapter 16, “Conditions,” on page 109) for a transition from an activity containing an event
wait. It makes available certain information (e.g. the event class and event type of the event
raised, the time the event was raised etc.) contained in the event raised to complete that activity
instance. This information can then be used to model the path from that specified activity. For
more details on the Context_Event workflow data object, see 8.5.4, “Description of Context
WDOs,” on page 56.

Context_Decision Workflow Data Object
The Context_Decision workflow data object is available for use in a data item or function
condition (see Chapter 16, “Conditions,” on page 109) for a transition from a decision activity. The
attributes available will depend on the answer format defined for the decision activity. For more
details on the Context_Decision workflow data object, see 10.4.4, “Description of Context WDOs,”
on page 82

Context_Task Workflow Data Object
The Context_Task workflow data object is available for use in various mappings associated with a
manual activity task (e.g. Allocation Function Input mappings, Deadline Function Input
mappings, Manual Activity Action Link parameters). This context workflow data object makes
available the identifier of the task created as a result of the execution of the containing activity.
For more details on the Context_Task workflow data object, see 9.3.5, “Description of Context
WDOs,” on page 65.

Context_Loop Workflow Data Object
The Context_Loop workflow data object is available for use when creating the loop condition
associated with a loop-begin activity. It is also available for creating outgoing transition
conditions for any activity within a loop, and for when specifying input mappings, text
parameters and action link parameters for some activities and functions contained within a loop.
This context workflow data object makes the number of times that a loop has been iterated over
available for such mappings. For more details on the Context_Loop workflow data object, see
12.5, “Description of Context WDOs,” on page 89.

Context_Deadline Workflow Data Object
The Context_Deadline workflow data object is available for use when creating a data item or
function condition (see Chapter 16, “Conditions,” on page 109) for a transition from an activity
that has an event wait with a deadline specified for it. It is available to allow a developer to
model different paths of execution from an activity containing a deadline depending on whether
that deadline has expired. For more details on the Context_Deadline workflow data object, see
8.4.6, “Description of Context WDOs,” on page 55.

Context_Parallel Workflow Data Object
The Context_Parallel workflow data object is available for use in the various mappings associated
with a parallel manual activity (e.g. task subject and task action text parameters, allocation
strategy mappings etc.) and a parallel decision activity (e.g. decision action text parameters,
secondary action text parameters, question text parameters etc.). It makes available the index of
the item from the Parallel Activity List Workflow Data Object that is used to create the specified
instance of the wrapped activity. For more details on the Context_Parallel workflow data object,
see 13.3.6, “Description of Context WDOs,” on page 95.

Context_Error Workflow Data Object
The Context_Error workflow data object is available for use in a data item or function condition
(see Chapter 16, “Conditions,” on page 109) for a transition from an automatic activity. It allows a
process developer to model an exception path out of an automatic activity i.e. a transition that is
followed if the automatic activity fails due to an un-handled exception. For more details on the
Context_Error workflow data object, see 7.6, “Description of Context WDOs,” on page 46

22 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

4.5 Runtime Information
Instances of workflow data objects and list workflow data objects exist as soon as a workflow process is
enacted and exist until the process completes. These workflow data object instances are thus available to
be used in the activities (e.g. pass data to a BPO method) and the transitions (e.g. make data available in
the evaluation of transition conditions) throughout the lifetime of that process instance.

The enactingUser attribute of the Context_RuntimeInformation Workflow Data Object is set to the
username of the user whose actions in the application resulted in the workflow process being enacted.
This does not result in the same value being assigned to the transaction when a BPO method is
subsequently invoked in the workflow process instance. This is due to the transaction demarcation in the
workflow engine when automatic activities (i.e. BPO methods) are invoked in the application server. Due
to the asynchronous nature of this invocation and the requirement to ensure that the call to the
application code is in it's own transaction, the BPO method is invoked by the workflow engine (SYSTEM
user) rather than the user who enacted the workflow process in the first place. Indeed in a real business
sense, the person who enacted the workflow may not even know they have invoked that BPO method.

In a similar fashion, it should be noted that the enacting user of a workflow process instance is not
passed into any of the subflow process instances that may be invoked from the parent process. If the
enacting user of the parent process instance is required in any of the subflow process instances, it should
be passed explicitly using a workflow data object attribute in the input mappings for that subflow
process.

Care should also be taken when updating workflow data object attribute instance data when executing
parallel automatic activities in a workflow process instance. If such automatic activities invoke the same
BPO method and that method attempts to update the data for the exact same workflow data object
attribute, then a database record deadlock situation may occur. The workflow process designer should
alleviate such situations occurring by designing the workflow process definition to ensure automatic
activities executed in parallel do not update the same workflow data object attribute.

Chapter 4. Workflow Data Objects 23

24 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 5. Process Enactment

5.1 Overview
A process definition defines the structure of a business process and to start performing the work defined
in that process definition an instance of the process must be created. The starting of a process instance is
referred to as process enactment. Most process definitions require a minimum set of initial data which is
used primarily to identify the specific business objects the process instance will operate on. All enactment
mechanisms must have a way to accept the input data for starting a given process. This input data is
known as the enactment data for a process.

Currently there are four enactment mechanisms supported by Cúram workflow:
v Enactment from code
v Enactment from an event
v Enactment as a subflow
v Enactment via a web service

The first two mechanisms are described in this chapter. The sub-flow enactment mechanism is described
in Chapter 11, “Subflow,” on page 83. The web service enactment mechanism is described in Chapter 19,
“Workflow Web Services,” on page 123.

5.2 Code enactment (enactment service API)
The most direct way of enacting a process is by identifying a location in the application from which a
process instance must be started. Code must then be inserted at that point to call the enactment service
API. This API allows the developer to specify the name of the process to start and to supply the
enactment data required by the process.

While enacting a process in this way is simple and intuitive, it does have the draw back of being hard
coded in the application logic. This being the case, alterations such as removing the enactment, changing
the process to start or indeed even minor changes to the required enactment data will require code
changes and redeployment of the application.

© Copyright IBM Corp. 2012, 2013 25

5.2.1 Metadata

enactment-mappings
Contains a list of mappings that can be used as initial data in enacting the associated process
instance. A process definition is not required to have enactment mappings defined in order for it
to be enacted.

mapping
A mapping represents a data item supplied from a Cúram struct attribute to be used in enacting
the associated process instance.

source-attribute
This represents a Cúram struct attribute to be used in populating the enactment data for the
process and is mandatory in an enactment mapping.

struct-name
The name of a Cúram struct that contains an attribute required to enact the workflow
process. Aggregated and list structs may also be used to pass enactment data into a
workflow process, as illustrated in the metadata snippet above.

name The name of the attribute of a Cúram struct required to enact the associated workflow
process. Where a field from an aggregated struct or list struct is being used, this name
represents the fully qualified name of that field. In such a case, the name consists of the
role name from the association between the parent and child struct in addition to the
actual field name. This is illustrated in the metadata snippet above.

target-attribute
This represents a workflow data object attribute which is to be populated with enactment data for
the process and is mandatory in an enactment mapping.

wdo-name
The name of a Cúram workflow data object containing the target attribute to be mapped.
(See Chapter 4, “Workflow Data Objects,” on page 17).

<enactment-mappings>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.TaskCreateDetails"
name="subject" />

<target-attribute
wdo-name="TaskCreateDetails"
name="subject" />

</mapping>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.GroupMemberDetails"
name="dtls.memberName" />

<target-attribute
wdo-name="MemberCreateDetails"
name="memberName" />

</mapping>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.ChildDetailsList"
name="dtls.identifier" />

<target-attribute
wdo-name="ChildDetails"
name="identifier" />

</mapping>

...

</enactment-mappings>

26 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

name The name of a Cúram workflow data object attribute that is marked as being required for
enactment. The value of the corresponding Cúram struct source attribute will be mapped
to this attribute when the process is enacted.

5.2.2 Validations
v The Cúram struct attribute used as a source attribute in an enactment mapping must be valid and be

of the correct type for the associated target workflow data object attribute.
v The target workflow data object attribute in an enactment mapping must be valid and must be marked

as being required for enactment.
v If the target attribute of the enactment mapping is from a list workflow data object, then the source

attribute must be a field from a list struct.

5.2.3 Code

v The EnactmentService API is provided to allow for the enacting of workflow processes from
application code. The list of Cúram structs provided to the startProcess() method must be sufficient
to fully populate the enactment mappings of the associated process. Note that enacting a process in
this way is asynchronous and the process will get kicked off once the current application transaction
completes.

v The startProcessInV3CompatibilityMode method is provided for the use of the core application Task
API only. Direct use of this method in custom code is not supported and may hamper future upgrades.

// Create the list we will pass to the enactment service.
final List enactmentStructs = new ArrayList();

final TaskCreateDetails taskCreateDetails =
new TaskCreateDetails();

taskCreateDetails.subject = "The subject of a Task";
taskCreateDetails.reservedBy = "someUser";

enactmentStructs.add(taskCreateDetailsStruct);

// An aggregated struct.
GroupMemberDetails groupMemberDetails

= new GroupMemberDetails();

groupMemberDetails.dtls.memberName = "Test User";

enactmentStructs.add(groupMemberDetails);

// A list struct.
ChildDetailsList childDetailsList

= new ChildDetailsList();

ChildDetails recordOne = new ChildDetails();
recordOne.identifier = 1;
childDetailsList.dtls.add(recordOne);

ChildDetails recordTwo = new ChildDetails();
recordTwo.identifier = 2;
childDetailsList.dtls.add(recordTwo);

enactmentStructs.add(childDetailsList);

EnactmentService.startProcess(
"TASKCREATEWORKFLOW", enactmentStructs);

Chapter 5. Process Enactment 27

5.3 Event enactment
It is possible to start a process in response to an event being raised. This requires the setup of some
configuration data (either through an administration interface or as pre-configured database entries). The
configuration specifies the process/processes to start in response to a specific event being raised.
Mappings of event data to the enactment data required by the process can also be configured in this way.

Process enactment event configuration is stored on the database and a user interface is supplied to allow
the manipulation of this data. As such process enactment created in this way can be enabled, disabled,
changed and even removed at runtime. The main drawback of this approach is that since events have a
finite amount of information, only process definitions that require such a small amount of enactment data
can be enacted in this way.

A Process Enactment Event Handler is supplied with Cúram and is automatically registered to listen for
events raised in the application. Where a process has been configured to be enacted from an event, the
data from the event is mapped into the enactment data of the process, and the process is started.

5.3.1 Configuration data
Enabling an event to enact a process requires an event-process association to be configured. Every event
raised in the application checks to see if any processes have been associated and are required to be
enacted. The latest released version of a process will always be enacted for an associated event.

The registration of an event to trigger a process is stored as a record on the ProcEnactmentEvt table. The
process enactment event handler searches a cached representation of this table for matching entries when
an event is raised in the application and enacts any matching processes. The following table describes the
data required to populate the ProcEnactmentEvt table.

Table 1. Description of the ProcEnactmentEvt Table

Entity Field Name Description of Field

procStartEventID The unique identifier of the event-process
association.

eventClass The event class of the event that has been
specified to enact the workflow process.

eventType The event type of the event that has been
specified to enact the workflow process.

processToStart If an event containing the specified event class
and type describe above is raised, the latest
released version of the workflow process
specified by this name will be enacted.

enabled This boolean flag indicates if the event-process
association is enabled. This allows the enactment
of a workflow process by a specified event to be
enabled/disabled at runtime.

The ProcEnactEvtData table stores the data to be mapped from a business event to a the workflow being
enacted when that specified event is raised. The following table describes the data required to populate
the ProcEnactEvtData table.

Table 2. Description of the ProcEnactEvtData Table

Entity Field Name Description of Field

procEventMappingID The unique identifier of the process enactment
event data mapping.

28 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Table 2. Description of the ProcEnactEvtData Table (continued)

Entity Field Name Description of Field

procStartEventID The unique identifier of the event-process
association. This field is the unique key on the
associated ProcEnactmentEvt table and is used to
associate all of the data required to enact the
workflow process when a specified event is
raised.

eventField This indicates which of the three fields of an
event will be used to populate the workflow
data object attribute. The values for this field are
taken from the EventField codetable and are
described in more detail below.

wdoAttribute The fully qualified name of a workflow data
object attribute to populate with data from the
given event field when a process is enacted. This
table will include an entry for each workflow
data object attribute that has been marked as
required for enactment in the process being
enacted by the raised event.

There are three fields of an event may be used as enactment mappings. These are enumerated in the
EventField codetable and are described below.

primary event data
A unique identifier related to the event class from which the event is raised. For example, where
the business object type specified for an event is equal to 'Case', the event data could be case
identifier.

secondary event data
This can be any numeric value and is intended for events that must represent an association
between two entities.

raised by user
The Cúram username of the user who raised the event.

5.3.2 Validations
v The data available from an event must be sufficient to fully populate the enactment data for the

associated process definition.
v Where a process has already been configured for event-based enactment, subsequent modifications to

the processes enactment data must satisfy the existing event data mappings.
v Where a process has been configured to be enacted from an event, it cannot have its latest released

version deleted if the next latest released version is unable to have its enactment data fully populated
from the event.

Chapter 5. Process Enactment 29

30 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 6. Base Activity

6.1 Overview
All the activity types supported by Cúram workflow have some base details in common. This
information allows them to be uniquely identified by the workflow engine and displayed both textually
and graphically in the Process Definition Tool. Every activity has a name and an optional description,
both of which are localizable. This allows various administration user interfaces to display the
information in the appropriate locale.

This base level uniformity allows activities to be identified and executed by the workflow engine without
the knowing the specific type of the activity. Each activity type knows it's own metadata and how to
behave when executed. This arrangement will allow the addition of new activity types, if required,
without affecting the core behavior of the workflow engine.

6.2 Metadata

id This is a 64-bit identifier supplied by the Cúram key server when activities are created in the
process definition tool. The activity identifier is required to be unique within a process definition
but global uniqueness within all of the process definitions on the system is not required.

category
An activity can optionally be placed into a category. The category must be selected in the Process
Definition Tool and is taken from the ActivityCategory code-table. This attribute is intended to
be used for searching functionality based on activities and has no functional effect on the activity.

name The name of the activity is the means by which the activity is identified for the purpose of
display. This is in contrast to the activity identifier which is used to identify the activity for the
purpose of execution by the workflow engine.

description
An activity can also have an optional description that briefly specifies what the activity does for
the benefit of those editing the process definition in the future.

6.2.1 Localized Text
As shown in the XML fragment above, the activity name and description are not just text fields, but are
defined in terms of a localized-text element. This is general purpose element used throughout the
process definition metadata where ever text is required to be localizable.

<automatic-activity id="1" category="AC1">
<name>

<localized-text>
<locale language="en">ApproveCase</locale>

</localized-text>
</name>
<description>

<localized-text>
<locale language="en">This automatic activity
will be executed to approve a case.</locale>

</localized-text>
</description>

...

</automatic-activity>

© Copyright IBM Corp. 2012, 2013 31

A valid localized-text element must have at least one locale child element. This ensures that there is
always some text for display for a particular field. In the process definition tool any localizable text that
is entered in most user interface screens other than the localization screen is saved under the default
sever locale as specified by the application property: curam.environment.default.locale.

locale This contains the text for the locale specified by the language and country attributes. Note: A
locale is uniquely identified by both the language and the country meaning that en, en_US and
en_GB all represent different locales.

language
This is mandatory and is the two letter ISO language code.

country
This is optional and is the two letter ISO country code.

6.3 Validations
v The activity name is mandatory and must be unique within a specified workflow process definition.

However, the activity name is also a localizable string. This validation also ensures that a specified
activity name is also unique for each locale specified.

v An activity must be one of the permitted activity types. In practice this rule is self-satisfying as there is
no way to create activities without selecting an appropriate type in the process definition tool. Even
when constructing process definitions manually in a text editor, the activity type names correspond to
the metadata element names making it impossible to create valid markup that represents a nonexistent
activity type.

6.4 Basic Activity Types
Some activity types namely route, start-process and end-process activities have no additional metadata
other than that common to all activity types. Their behavior is also sufficiently intuitive to be described
here. All of the other activity types have dedicated chapters.

6.4.1 Route Activity
A route activity is an activity that performs no business functionality. It can be considered a null activity
as its execution does not affect the application data nor the business process in any way.

The primary purpose of the route activity is to assist in flow control. Route activities are often used as
branch (split) and synchronization (join) points. They are also useful when the activities required by a
business process do not naturally form a valid block structure that the workflow engine can execute.

Since all activity types can have notifications associated with them (see: Chapter 14, “Activity
Notifications,” on page 97), route activities can be used to provide the effect of a pure notification that is
not connected to any other functionality.

6.4.2 Start/End Process Activity
The start-process and end-process activities provide markers for the beginning and end of a process. They
are anchor points to which other activities can be attached using transitions thus creating a series of steps
from the start to the end of the process. In a valid process definition traversing all the transitions between
activities starting from the start-process activity should lead to end-process activity (note that in a
running process instance not all paths will necessarily be traversed, for example if a split (see Chapter 17,

<localized-text>
<locale language="en">ApproveCase</locale>
<locale language="en" country="US">ApproveCase</locale>
<locale language="fr">ApprouverAffaire</locale>
<locale language="fr" country="CA">ApprouverAffaire</locale>

</localized-text>

32 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

“Split/Join,” on page 115) is encountered only some of the paths may actually be followed depending on
the evaluation of transition conditions). As such the simplest (and incidentally the most useless) process
definition is one that contains only these two activities and a transition from the start-process to the
end-process activity.

Every process definition must have exactly one start-process and exactly one end-process activity. When
defining a process using the Process Definition Tool these two activities are created automatically on
process creation and are not required to be (in fact cannot be) explicitly created by the user.

The start-process and end-process activities form the outermost block of a validly block structured
process definition as required by Cúram workflow.

Chapter 6. Base Activity 33

34 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 7. Automatic

7.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the automatic activity described here.

7.2 Overview
An automatic activity is a step in a workflow process that is wholly automated and under normal
circumstances no human intervention is required for the completion of such a step. An automatic activity
step invokes a method in the application to perform some processing required as part of the overall
business process. Typical uses for automatic activities include: performing calculations, updating entities
in the application and pulling data into the workflow engine.

7.3 Cúram Business Methods
Much of the processing for an automatic activity is performed in the application code that is invoked.
Automatic activities do their work by invoking Cúram business methods (both BPO (business process
object) and entity methods are supported). Technically these are public methods on Cúram business
process objects and entities. A critical part of the automatic activity definition is the method to invoke
and the parameters to pass to it. The following sections describe these.

7.3.1 Metadata

bpo-mapping
This contains the details of the Cúram business method that will be invoked when the associated
automatic activity is executed. These details include the name of the interface and associated
method and also any input and return mappings associated with the method being invoked. The
input and output mappings are described in the following sections. The mandatory attributes of a
business process object (BPO) mapping are described below.

interface-name
This represents the fully qualified name of the Cúram interface containing the method
associated with the automatic activity.

method-name
This represents the method on the specified Cúram interface that will be invoked when
the automatic activity is executed.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

...

</formal-parameters>
</bpo-mapping>

</automatic-activity>

© Copyright IBM Corp. 2012, 2013 35

7.3.2 Validations
v Both the interface and method names must be specified for the automatic activity business process

object method mapping.
v The interface name specified must be a valid class and this class must exist on the Cúram application

classpath.
v The method name must be a valid method name and must exist on the specified interface.

7.3.3 Code
As stated previously, any valid public Cúram business method (BPO or entity) may be associated with an
automatic activity in a workflow process and hence be invoked when that activity is executed. In general,
a failure of such a method when an automatic activity is executed will cause the Workflow Error
Handling strategy to be invoked. This may cause, for example, the activity associated with the failed
method to be retried a number of times. Based on this fact, the methods associated with automatic
activities should in general not throw exceptions. If the modeled exceptions feature is being used, then
when a BPO method throws an exception and has been retried the required number of times, all of the
transitions from the automatic activity that contain the Context_Error workflow data object are evaluated.
If any of these transitions evaluate to true, their paths are followed and in this way, remedial processing
may take place after the automatic activity BPO method failed.

7.4 Input Mappings
There must be a way to supply the parameters required by a method in order to invoke it in the
workflow engine. The workflow engine has a pool of data at its disposal in the form of workflow data
objects (see Chapter 4, “Workflow Data Objects,” on page 17). Input mappings are used to declare which
workflow data object attributes will be used to populate the values of the specific method parameters
when the method is invoked. Input mappings are optional where struct fields have been specified as
method parameters. However, primitive base type parameters must be mapped.

7.4.1 Metadata
The following metadata is common to all three types of parameter input mappings (base type, struct and
aggregated structs) and hence will not be described again.

formal-parameters
This contains the list of formal parameters as defined in the automatic activity business method
signature.

formal-parameter
This contains the details of one formal parameter input mapping as defined in the associated
business method signature. In this instance, a formal parameter mapping entry will exist for each
parameter defined in the associated business method.

index This represents the position of the formal parameter in the list of formal parameters
defined for the specified method. It is a zero-based index.

7.4.1.1 Input mappings for base type parameters
Base type parameters provide the simplest type of input mapping. In this instance, input mappings are
created for each base type formal parameter contained in the business method associated with the
automatic activity. A base type parameter in a Cúram business method represents a domain definition
(see the Cúram Modeling Reference Guide for details on domain definitions).

36 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

base-type
This contains the details of one base type input mapping. A base type mapping indicates that the
field being mapped to is primitive (unlike the struct and nested struct mappings described
below). A base type input mapping contains the following mandatory attribute:

type This describes the type of the primitive field being mapped to. For a base type input
mapping, this is the type of the domain definition specified as the formal parameter in
the method.

wdo-attribute
This contains the details of the workflow data object (see Chapter 4, “Workflow Data Objects,” on
page 17) attribute containing the data that will be used to populate the associated base type
parameter when the automatic activity business method is invoked. The mandatory attributes are
described below:

wdo-name
This describes the name of the workflow data object used in the input mapping.

name This describes the name of the attribute on the specified workflow data object used in the
input mapping.

7.4.1.2 Input mappings for struct parameters
Structs may be specified as parameters to business process object methods. This section describes the
metadata of the input mappings associated with such parameters.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createDelivery">
<formal-parameters>

<formal-parameter index="0">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</formal-parameter>
<formal-parameter index="1">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

Chapter 7. Automatic 37

struct This contains the details of one struct input mapping, including the type of the struct and
mappings for each field defined in that struct. A struct input mapping contains the following
mandatory attribute:

type This describes the type of the struct that has been specified as the formal parameter in
the method. This is represented as the fully qualified name of the struct specified as the
formal parameter.

field This contains the details of the input mapping for one of the fields defined in the struct
parameter. A field contains the details of the input mapping for the primitive base type associated
with that field as well as the following mandatory attribute:

name This describes the name of the field as defined in the struct specified as the formal
parameter.

base-type
This contains the details of one base type input mapping for the specified field. A base type input
mapping contains the following mandatory attribute:

type This describes the type of the primitive field being mapped to.

wdo-attribute
This contains the details of the workflow data object (see Chapter 4, “Workflow Data Objects,” on
page 17) attribute containing the data that will be used to populate the associated base type field
when the method is invoked. This will not be present if the user has not specified an input
mapping for this method parameter. This element, when specified, contains the following
mandatory attributes:

wdo-name
This describes the name of the workflow data object used in the input mapping.

name This describes the name of the attribute on the specified workflow data object used in the
input mapping.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
<struct
type="curam.struct.SampleBenefitPlanItemDetails">

<field name="description">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</field>
<field name="plannedItemIDKey">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</field>
<field name="plannedItemName">

<base-type type="STRING" />
</field>

</struct>
</formal-parameter>

</formal-parameters>
</bpo-mapping>

</automatic-activity>

38 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

7.4.1.3 Input mappings for aggregated struct parameters
Aggregated structs (see the Cúram Modeling Reference Guide for details on struct aggregation) may be
specified as parameters to business methods. In this instance, the metadata is similar to that described
above for struct formal parameters (see 7.4.1.2, “Input mappings for struct parameters,” on page 37). The
subtle difference is, however, that a field in the struct parameter defined may resolve down to another
struct and not to a primitive type as seen in the struct mappings example. In this scenario, the field name
is not the name of the field being mapped associated with the struct parameter but is the name of the
role contained in the association between the specified struct and the struct it aggregates. The following
metadata snippet provides an example of such input mappings. The metadata elements have been
previously described above in the struct input mappings section.

7.4.1.4 Input mappings for list struct parameters
Input mappings for list structure parameters may now also be specified. In this instance, the metadata is
similar to that described above for aggregate formal parameters (see 7.4.1.3, “Input mappings for
aggregated struct parameters”). The type of the struct specified in the metadata for a list struct parameter
is the name of the list structure. The name of the first field specifies the name of the role contained in the
association between the specified list struct and the child struct it aggregates. Typically, this field then
resolves down to another struct (the child struct contained within the list struct). The workflow data
object specified in such a mapping is a list workflow data object. The following metadata snippet
provides an example of such input mappings. The metadata elements have been previously described

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createBenefit">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.struct.PlannedItemDetails">

<field name="description">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</field>
<field name="plannedItemID">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</field>
<field name="dtls">

<struct type="curam.struct.PlannedItemKey">
<field name="subject">

<base-type type="STRING">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
<field name="concernRoleID">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="concernRoleID"/>
</base-type>

</field>
</struct>

</field>
</struct>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

Chapter 7. Automatic 39

above in the struct input mappings section.

7.4.1.5 Input mappings and indexed items from list workflow data objects
For activities contained within loops, an item from a list workflow data object can be used in an input
mapping to populate a formal parameter field. When this type of input mapping is used, each time the
loop containing the activity is iterated over, the formal parameter field will be populated with the next
value from that list workflow data object. This is highlighted here as the metadata syntax for such a
mapping is subtly different than that of the other input mapping types. The metadata snippet provides
an example of such input mappings. The name of the list workflow data object used to populate the
formal parameter field is qualified with the [Context_Loop.loopCount] syntax. This is used by the
workflow engine at runtime to determine which iteration of the loop is being executed and hence which
item from the list workflow data object to retrieve the data to populate the formal parameter field with.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="processClaimantDependents">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.sample.struct.

ClaimantDependentDetailsList">
<field name="dtls">

<struct type="curam.sample.struct.
ClaimantDependentDetails">

<field name="identifier">
<base-type type="INT64">

<wdo-attribute wdo-name="ClaimantDependent"
name="identifier"/>

</base-type>
</field>
<field name="firstName">

<base-type type="STRING">
<wdo-attribute wdo-name="ClaimantDependent"
name="firstName"/>

</base-type>
</field>
<field name="surname">

<base-type type="STRING">
<wdo-attribute wdo-name="ClaimantDependent"
name="surname"/>

</base-type>
</field>

</struct>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</bpo-mapping>

</automatic-activity>

40 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

7.4.2 Validations
v The workflow data object attributes specified in the input mappings must be valid. The criteria that

defines a valid workflow data object attribute may be seen in 4.3, “Validations,” on page 20
v The type of the formal parameter being mapped to and the type of the workflow data object attribute

being used in that input mapping must be compatible. For example, if the input mapping being
created is a struct field that has a type of STRING, then the workflow data object attribute being used
for that mapping must also be of type STRING.

v The Context_Task workflow data object cannot be used in an input mapping if the associated activity is
not a manual or decision activity.

v The Context_Loop workflow data object cannot be used in an input mapping if the associated activity is
not contained within a loop.

v A validation warning will be displayed if all struct parameters defined in the business process object
method do not contain an associated input mapping.

v All primitive base type formal parameters defined in the business process object method which must
contain an associated input mapping.

v If the formal parameter field being mapped is a base type parameter, then an attribute from a list
workflow data object cannot be used.

v If the formal parameter field being mapped is from a list structure, then it must be mapped to an
attribute from a list workflow data object.

v If the indexed item from a list workflow data object (i.e. ClaimantDependent[Context_Loop.loopCount])
is being used in an input mapping, then the associated workflow data object must be a list workflow
data object and the activity containing the input mappings must be contained within a loop.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="retrieveClaimantDependentDetails">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.sample.struct.

ClaimantDependentDetails">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute name="identifier"
wdo-name=

"ClaimantDependent[Context_Loop.loopCount]"/>
</base-type>

</field>
<field name="fullName">

<base-type type="STRING">
<wdo-attribute name="fullName"
wdo-name=

"ClaimantDependent[Context_Loop.loopCount]"/>
</base-type>

</field>
</struct>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

Chapter 7. Automatic 41

7.4.3 Runtime Information
The values of the workflow data object attributes defined in the input parameter mappings are provided
as input data to the specified method before it is invoked when the associated automatic activity is
executed.

7.5 Output Mappings
Workflow data objects (see Chapter 4, “Workflow Data Objects,” on page 17) are the workflow engines
data store. Some of the attributes on the specified workflow data objects are populated when the process
is enacted. It is useful, however, to update or set the values of workflow data object attributes as the
workflow process is executed. To support this, some activity types can map data back into the workflow
engine. This is particularly useful for automatic activities as the business methods they invoke could
conceivably access data stored on any entity in the application and return it for use in subsequent
activities in the workflow process. These return mappings from a business process object method
associated with an automatic activity are optional.

7.5.1 Metadata
In a similar fashion to input mappings (see 7.4, “Input Mappings,” on page 36), output mappings are
supported for primitive return types, struct return types, nested (aggregated) struct return types and list
struct return types. If the return type is a primitive type, one return mapping entry may be specified. If
the return type is a struct, an aggregated struct or a list struct, return mappings for one or more of the
fields in the specified struct may be created. The following metadata snippets provide examples of such
mappings:

7.5.1.1 Primitive return type

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</return>
</bpo-mapping>

</automatic-activity>

42 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

7.5.1.2 Struct return type

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="description">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="description"/>
</base-type>

</field>
<field name="subject">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
</struct>

</return>
</bpo-mapping>

</automatic-activity>

Chapter 7. Automatic 43

7.5.1.3 Aggregated struct return type

<automatic-activity id="1" category="AC1">
...
<bpo-mapping

interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="description">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="description"/>
</base-type>

</field>
<field name="subject">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
<field name="dtls">

<struct>
<field name="concernRoleID">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="concernRoleID"/>
</base-type>

</field>
<field name="participantID">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="participantID"/>
</base-type>

</field>
</struct>

</field>
</struct>

</return>
</bpo-mapping>

</automatic-activity>

44 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

7.5.1.4 List struct return type

return This contains the details of the output mappings specified for the business method associated
with the automatic activity. For a primitive return type, one entry of the base type metadata will
be present as shown in the example above (see 7.5.1.1, “Primitive return type,” on page 42). For a
struct, aggregated struct and list struct return types, the struct metadata tag is specified and
contains fields whose base types are mapped using workflow data object attributes.

struct This contains the details of the struct output mapping. A struct output mapping contains the
following mandatory attribute.

field This contains the details of the output mapping for one of the fields defined in the struct return
type. A field contains the details of the output mapping for the primitive base type associated
with that field as well as the following mandatory attribute:

name This represents the name of the field as defined in the struct specified as the return type.
For non-aggregated struct return types, this simply represents the name of the field on
the specified return struct that is being mapped. For aggregated struct and list struct
return types, the field name represents the name of the role contained in the association
between the specified struct and the struct it aggregates.

base-type
This contains the details of one base type output mapping for the specified field or a primitive
return type.

<automatic-activity id="1" category="AC1">
...
<bpo-mapping

interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="readClaimantDependentDetails">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="dtls">

<struct>
<field name="identifier">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="identifier"/>

</base-type>
</field>
<field name="firstName">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="firstName"/>

</base-type>
</field>
<field name="surname">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="surname"/>

</base-type>
</field>

</struct>
</field>

</struct>
</return>

</bpo-mapping>
</automatic-activity>

Chapter 7. Automatic 45

wdo-attribute
This contains the details of the workflow data object (see Chapter 4, “Workflow Data Objects,” on
page 17) attribute that the data present in the associated return type field will be mapped into
and persisted. The mandatory attributes are described below:

wdo-name
This represents the name of the workflow data object used in the output mapping.

name This represents the name of the workflow data object attribute used in the output
mapping.

7.5.2 Validations
v No duplicate output parameter mappings are allowed. In other words, a workflow data object attribute

can only be specified once in any list of output return mappings.
v All of the workflow data object attributes specified in the output mappings must be valid workflow

data object attributes in the context of the containing workflow process definition.
v The type of the return field being mapped from and the type of the workflow data object attribute

being mapped to must be compatible.
v Output mappings cannot be created for workflow data object attributes that have been marked as

constant workflow data object attributes. Constant workflow data object attributes represent data that
should remain constant for the lifetime of the process instance (see 4.2, “Metadata,” on page 18). If
these attributes were allowed to be utilized in output mappings, this data would be overwritten with
that specified in the output mappings.

v If the return struct is a list return struct, then the workflow data object used in the return mapping
must be a list workflow data object.

7.5.3 Runtime Information
The values of the return type fields defined in the output parameter mappings are persisted using the
specified workflow data object attributes after the associated automatic activity has been executed.

7.6 Description of Context WDOs
There are two context workflow data objects that are available when creating data item and function
conditions for transitions from an automatic activity. These are described below.

Context_Result Workflow Data Object
The Context_Result workflow data object is available for use in a data item or function conditions
(see Chapter 16, “Conditions,” on page 109) for a transition from an automatic activity. This
allows the use the of the return value of the invoked method in the said conditions. The
conventions for the attributes available for the Context_Result workflow data object are as
follows:
v If the return type is a base type, the attribute available is called value (i.e.

Context_Result.value).
v If the return value is a struct then the Context_Result attribute values available are all the fields

present on the struct return class (i.e. Context_Result.description etc.).
v If the return value is a nested (aggregated struct) then the Context_Result attribute values

available will be the fields available in the containing struct (i.e. Context_Result.description
etc.) and also the fully qualified names of those fields in the nested structs (i.e.
Context_Result.dtls:concernRoleID etc.). Regardless of the depth of the nesting of the return
value struct, there is only one Context_Result workflow data object available with the names of
the nested structs forming part of the attribute names. The separator between a nested struct
and it's fields is a colon as seen in the example above.

v If the return type is a list struct, the Context_Result workflow data object is not available.

46 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Context_Error Workflow Data Object
A BPO method being called by an automatic activity can sometimes fail (i.e. throw an exception
that causes the activity transaction to roll-back). When this happens, it can be useful to be able to
model follow-on actions after the failure. The Context_Error workflow data object enables this
type of "error path" modeling. It is available for use in a data item or function conditions (see
Chapter 16, “Conditions,” on page 109) for a transition from an automatic activity.. The
Context_Error workflow data object has one attribute exceptionOccurred which is described
below:
v The exceptionOccurred attribute is a boolean value indicating if the BPO method associated

with an automatic activity failed. It defaults to false and is set to true if the associated BPO
method fails.

At runtime, if the BPO method being called in an automatic activity fails (and is re-tried the
prerequisite number of times and still fails), the workflow engine will set the exceptionOccurred
attribute of Context_Error to true. Any transitions using the Context_Error workflow data object
are then evaluated and followed if they resolve to true. This enables a workflow process instance
to proceed along the defined error path even though the automatic activity failed.

If the BPO method being called fails and there are no transitions using the Context_Error
workflow data object, then the activity is halted and an entry is created in the Failed Messages
Admin console.

Note: The Context_Error workflow data object takes no account of the cause of the failure, only
whether or not there was one.

Chapter 7. Automatic 47

48 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 8. Event Wait

8.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the event wait activity described here.

8.2 Overview
The Cúram application has the ability to raise events at various points informing any registered listeners
of what has happened. A number of different event listeners may be registered to listen for a specified
event. These event listeners are application functions that implement the
curam.util.events.impl.EventHandler interface. When a specified event is raised, the workflow engine
invokes the associated event handler function (see the Cúram Server Developers Guide for more details on
events and event handlers).

Workflow uses this facility in a slightly different way through event wait activities. An event wait activity
pauses the execution of a particular branch of a process instance until a particular event has occurred.

8.3 List of events
It is not completely accurate to say that an event wait activity pauses a workflow process until a
particular event is raised. An event wait can in fact specify any number of events to wait for. If it has
been specified not to wait for all of these events to be raised to complete the activity, the first event that
matches one of the specified event waits will complete the activity and progress the workflow. In this
scenario, whether or not the rest of the events ever get raised has no effect on the process. It is also
possible to specify that all of the event waits must be matched by associated raised events before
completing the activity and continuing the workflow process.

© Copyright IBM Corp. 2012, 2013 49

8.3.1 Metadata

event-wait
This contains the details of the event wait associated with the specified activity. This includes the
details of all the events for the event wait.

wait-on-all-events
The value of this flag indicates to the workflow engine if it should wait for events to be
raised for all of the specified event waits before completing the associated activity. If set
to false, the first event that matches one of the specified event waits will result in the
completion of associated activity and the workflow progressing. When set to true, an
event must be raised for each of the event waits specified for the activity before the
activity is completed and the workflow progressed.

events This contains the details of all of the events that the specified activity is waiting on.

event This contains the details of one specific event that this activity is waiting on. The event details
contain the following mandatory attributes:

event-class
This represents the class of business event that this process is waiting on.

event-type
This represents the type of business event that this process is waiting on. The
combination of event-class and event-type will denote the business event required.

identifier
This represents the unique identifier of this event. The identifier is required to be unique
only within the list of events for this activity.

event-match-attribute
This represents the workflow data object attribute (see Chapter 4, “Workflow Data Objects,” on
page 17) that is used to match the required instance of the specific event. For example, in the first

<event-wait-activity id="1" category="AC1">

...

<event-wait wait-on-all-events="true">
<events>

<event event-class="Task" event-type="Close"
identifier="1">

<event-match-attribute name="taskID"
wdo-name="Context_Task"/>

</event>
<event event-class="Parent" event-type="Approve"

identifier="1">
<event-match-attribute name="identifier"

wdo-name="ParentList[Context_Loop.loopCount]"/>
</event>
<event event-class="Child" event-type="Approve"

identifier="2">
<event-match-attribute name="identifier"

wdo-name="ChildDetails"/>
<multiple-occurring-event>

<list-wdo-name>ChildDetails</list-wdo-name>
</multiple-occurring-event>

</event>
</events>

</event-wait>

...

</event-wait-activity>

50 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

event specified in the metadata above, the workflow data object attribute would refer to the task
identifier associated with the closing of a specific task. When this event is raised, the workflow
engine will use the data in the event match attribute to uniquely identify the task to close.

multiple-occurring-event
This signifies that this event will represent a multiple occurring event. This means that if this
metadata is specified for an event, the workflow engine will create one event wait record for each
item in the list workflow data object specified as the multiple occurring event when that activity
is executed. This allows the workflow engine to wait on multiple occurrences of the same event.

It should be noted that when the multiple occurring event is specified for an event, then an
attribute from the associated list workflow data object must be used as the event match data for
the event. This will ensure that each event generated by the workflow engine for the multiple
occurring event will be unique.

list-wdo-name
This represents the name of the list workflow data object to be used as the multiple
occurring event.

8.3.2 Validations
v A least one event must be defined for the event wait information associated with an event wait activity.
v The event class and type specified for each business event must be valid entries on the relevant event

database tables.
v An event and associated event match attribute can only be defined once in an event wait activity. That

is, the same event class, event type and event match attribute can only be used once as a specific event
being waited on for an event wait activity.

v The workflow data object attribute mapped to the event match attribute for an event must be valid,
and as it is used as a unique identifier in the event matching mechanism, it must be of type LONG to
reflect the 64-bit identifiers used in Cúram.

v The Context_Task workflow data object can only be used as the event match data workflow data object
attribute if the activity is either a manual or parallel manual activity and the event is not a multiple
occurring event.

v If an indexed item from a list workflow data object (i.e. ParentList[Context_Loop.loopCount]) is used
as the event match data, then the workflow data object must be a list workflow data object and the
activity containing the event mapping must be contained within a loop.

v If an indexed item from the Parallel List Workflow Data Object is used as the event match data, then
the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v If the multiple occurring event list workflow data object has not been specified for the event and the
activity containing the event mapping is not a parallel activity, then an attribute from a list workflow
data object cannot be used as the event match data for that event.

v If the multiple occurring event list workflow data object has been specified for the event, then an
attribute from this list workflow data object must be used as the event match data for that event.

v The workflow data object attribute mapped as the multiple occurring event must be valid. It must also
be a list workflow data object.

8.3.3 Code
A Workflow Event Handler is supplied with Cúram and is automatically registered to listen for events
raised in the application. Multiple event waits may be registered for a particular activity instance in a
workflow process. If the waitOnAllEvents flag is set to false for the specified event wait data, only one of
these event waits is required to be matched to complete that activity instance. The Workflow Event
Handler will process that event by completing the specified activity instance and driving the process
forward by starting the next set of activities in the process. All of the other event wait records that were

Chapter 8. Event Wait 51

registered for the completed activity instance are then removed. If output mappings (see 8.5, “Output
Mappings,” on page 55) have been specified for the event wait, they will be persisted by the workflow
engine and may be used in subsequent activities and transitions in the process.

When the waitOnAllEvents is set to true, all of the event waits specified for the activity instance must be
matched by raised events to complete the activity and progress the workflow. For each raised event that
matches an associated event wait for the activity instance, the Workflow Event Handler will process the
event by deleting the associated event wait record and persisting any output mappings (see 8.5, “Output
Mappings,” on page 55) that have been specified for the event wait. This processing continues until all of
the associated event waits have been matched by raised events. It is only then that the Workflow Event
Handler will complete the specified activity instance and drive the process forward by starting the next
set of activities in the process.

8.3.4 Runtime Information
An event raised in the application can only cause a process instance to continue if the event matches that
being waited on and the event match attribute specified for the event wait matches the primary event
data of the event.

8.4 Deadline
An event wait pauses a workflow process in lieu of some event being raised. However, in many cases it
is not desirable for a process to wait indefinitely. It is possible for a chain of events to occur that mean
the event the process is waiting on may never be raised. For example, by chance the event could be
raised before the process reaches the event wait activity. To mitigate against this risk it is possible to
optionally specify a deadline for an event to be raised after which a deadline handler will be invoked.

8.4.1 Prerequisites
v Deadline handler methods specified for an event wait deadline are Cúram business process object

methods. The input mappings for the formal parameters of these methods and their associated
metadata are described in Chapter 7, “Automatic,” on page 35. This chapter should therefore be
referenced for a description of these mappings.

52 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

8.4.2 Metadata

complete-activity
This represents a boolean flag which indicates whether the activity should complete if the
deadline duration expires. The default for this flag is false.

duration
This represents the duration of time that can elapse before the deadline handler method will be
invoked. The duration can be represented in either of the formats below which will subsequently
be used to calculate the deadline date time for the event wait:

seconds
The number of seconds that can elapse before the deadline handler will be invoked

<event-wait-activity id="1" category="AC1">

...

<deadline complete-activity="true">
<duration>

<mapped-duration>
<wdo-attribute wdo-name="TaskCreateDetails"

name="deadlineDuration" />
</mapped-duration>

</duration>
<deadline-handler interface-name=

"curam.core.sl.intf.WorkflowDeadlineFunction"
method-name="defaultDeadlineHandler">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.core.struct.TaskKey">

<field name="taskID">
<base-type type="INT64">

<wdo-attribute wdo-name="Context_Task"
name="taskID" />

</base-type>
</field>

</struct>
</formal-parameter>
<formal-parameter index="1">

<struct type="curam.core.struct.ChildKey">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute wdo-name=

"ClaimantDependents[Context_Loop.loopCount]"
name="identifier" />

</base-type>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</deadline-handler>
<deadline-output-mappings>

<duration-expired wdo-name="TaskDeadlineDetails"
name="booleanValue" />

<deadline-expiry-time wdo-name="TaskDeadlineDetails"
name="dateTimeValue" />

</deadline-output-mappings>
</deadline>

...

</event-wait-activity>

Chapter 8. Event Wait 53

mapped-duration
The attribute of a workflow data object that can be mapped as representing the number
of seconds that can elapse before the deadline handler will be invoked.

deadline-handler
This represents the method that is to be invoked once the deadline duration has expired. The
following metadata must be specified for a deadline handler:

interface-name
This represents the fully qualified name of the deadline handler interface class name.

method-name
This represents the required method in the deadline handler interface required to be
invoked when the deadline expires.

formal-parameters
This contains a list of the deadline handler method parameters and associated workflow
data object attributes that are mapped to those parameters when the deadline handler is
invoked. For details on method parameter mappings see 7.4, “Input Mappings,” on page
36.

deadline-output-mappings
This contains the deadline output data which can be optionally mapped to workflow data object
attributes. This data indicates whether or not the deadline duration expired and the date and
time the deadline duration expired.

8.4.3 Validations
v If a deadline handler is specified it must reference a valid Cúram business method that exists on the

application's classpath.
v The workflow data object attributes specified in the input mappings must be valid. The criteria that

defines a valid workflow data object attribute may be seen in 4.3, “Validations,” on page 20
v The type of the formal parameter being mapped to and the type of the workflow data object attribute

being used in that input mapping must be compatible. For example, if the input mapping being
created is a struct field that has a type of STRING, then the workflow data object attribute being used
for that mapping must also be of type STRING.

v If the indexed item from a list workflow data object (i.e. ClaimantDependent[Context_Loop.loopCount])
is being used in an input mapping, then the associated workflow data object must be a list workflow
data object and the activity containing the input mappings must be contained within a loop.

v If the Context_Parallel workflow data object is being used in an input mapping, then the activity
containing the input mappings must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is being used in an input mapping,
then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v The deadline duration may be specified by using a deadline duration in seconds or a workflow data
object attribute mapping, but not both.

v If the deadline duration has been specified using a workflow data object attribute, the attribute must
be valid and be of type INTEGER.

v If a deadline has been specified for an activity, then a deadline handler function must be specified
and/or the complete activity flag must be set to true. If this is not the case the workflow would not do
anything when the deadline is reached.

v If the duration expired value of the deadline output mappings has been mapped to a workflow data
object attribute, then the attribute must be valid and of type BOOLEAN.

v If the deadline expiry time value of the deadline output mappings has been mapped to a workflow
data object attribute, then the attribute must be valid and of type DATETIME.

54 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v The complete activity flag cannot be set to true if the activity containing the deadline is a parallel
activity. This is due to the fact that parallel activities do not support modeled deadlines.

8.4.4 Code
v Any return parameters associated with the deadline handler method are not used in the workflow

engine and are therefore irrelevant.
v The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines() is provided to allow

the scanning of event wait deadlines that have exceeded their specified duration. Any such event waits
will be processed and their associated handler function invoked or the associated activity completed.

8.4.5 Runtime Information
When the workflow engine executes an activity that contains deadline metadata, it creates the deadline
date time as follows:
v If the duration has been specified in seconds, then the calculation is the current date time + seconds

defined in metadata = deadline date time.
v If the duration has been specified as a workflow data object attribute then the calculation is the current

date time + the value as defined in workflow data object attribute = deadline date time

Deadlines that have expired are processed by invoking the ScanTaskDeadlines batch job. This batch job in
turn invokes the Workflow Deadline Scanner API described above which retrieves a list of all of the
deadlines that have expired and processes them. If a deadline handler method has been specified for the
deadline, the values of the workflow data object attributes defined in the parameter mappings are
provided as input parameters to the deadline handler method and it is invoked. If the complete activity
flag has been set to true, then the associated activity is completed. Any deadline output mappings
(duration expired and deadline expiry time) that may have been specified are persisted here. The
attributes of the Context_Deadline workflow data object are also persisted during this processing to allow
them to be used in transitions emanating from the activity containing the deadline.

8.4.6 Description of Context WDOs
The Context_Deadline workflow data object is available for use in a data item or function condition (see
Chapter 16, “Conditions,” on page 109) for a transition from an activity with an event wait that has a
deadline. The Context_Deadline workflow data object attributes available are:

Context_Deadline.durationExpired
Represents a boolean indicating if the deadline duration associated with the activity has expired.

Context_Deadline.expiryTime
An attribute containing the date and time at which the deadline duration expires.

8.5 Output Mappings
The event raised has some information in it that may be worth mapping back into the workflow engine.
The event has both primary and secondary event data. The primary event data is what was used to
match the event in the first place so there is little point in mapping this back into the process. The
secondary event data however may be unknown to the workflow engine and so can be mapped in. Also
since an event wait activity can wait on any number of events, the actual event that was raise may be of
interest and so can also be mapped into the workflow engine. Finally, the Cúram user raising the event
might be of interest and so this can also be mapped into the workflow engine.

It should be noted that if an activity instance should wait for all of it's associated event waits to be
matched, any event output mappings that exist for the activity instance will be processed each time an
event is raised that matches one of the event waits.

Chapter 8. Event Wait 55

8.5.1 Metadata

event-output-mappings
This contains the data that can be optionally mapped to the workflow engine from the event that
was raised.

event-type
This contains the business event that was raised which the activity instance was waiting on.

output-data
This contains the secondary event data that is to be mapped into the workflow engine.

raised-by
This contains the username of the Cúram user that caused the event to be raised.

time-raised
This contains the date and time that the event was raised.

8.5.2 Validations
v The event type event output mapping, if specified, must be a valid workflow data object attribute and

must be of type STRING.
v The raised by user name event output mapping, if specified, must be a valid workflow data object

attribute and must be of type STRING.
v The output data event output mapping, if specified, must be a valid workflow data object attribute and

must be of type LONG.
v The time raised output mapping, if specified, must be a valid workflow data object attribute and must

be of type DATETIME.

8.5.3 Runtime Information
When an event is raised in the application that an activity instance is waiting on, any workflow data
object attributes contained in event output mappings that have been defined for the event wait are
populated and persisted with the relevant data from the event.

8.5.4 Description of Context WDOs
The Context_Event workflow data object is available for use in a data item or function condition (see
Chapter 16, “Conditions,” on page 109) for a transition from an activity with an event wait. The
Context_Event workflow data object attributes available are:

Context_Event.raisedByUserName
The username of the Cúram user who raised the event.

<event-wait-activity id="1" category="AC1">

...

<event-output-mappings>
<event-type wdo-name="CaseEventResult"

name="eventType" />
<output-data wdo-name="TaskCreateDetails"

name="concernRoleID" />
<raised-by wdo-name="CaseEventResult"

name="eventRaisedBy" />
<time-raised wdo-name="CaseEventResult"

name="timeRaised" />
</event-output-mappings>

...

</event-wait-activity>

56 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Context_Event.timeRaised
The time at which the event was raised.

Context_Event.fullyQualifiedEventType
The fully qualified (both event class and event type) name of the business event that was raised.

Context_Event.outputData
The secondary event data associated with the raised event.

8.6 Reminders
A reminder can be set on any deadline associated with a manual, decision, event wait, parallel manual or
parallel decision activity. An arbitrary amount of reminders can be specified. Reminders utilize the
notification metadata described in the activity notification (see Chapter 14, “Activity Notifications,” on
page 97) chapter. This means that the typical notification subject, body, allocation strategy and actions can
be specified for a reminder.

8.6.1 Metadata

reminders
This is optional and encapsulates all reminder tags for the deadline.

reminder
This contains all reminder metadata for the deadline including the associated notification
metadata.

delivery-offset
This refers to a value from the codetable ReminderDeliveryOffset indicating what the seconds or
mapped-delivery-time will be offset from. In the case of a deadline, it is offset from the deadline
expiry time. This is the currently the only offset supported.

delivery-time
This contains either the seconds or mapped-delivery-time tag depending on which has been
specified.

seconds
This tag represents the seconds prior to the deadline expiry time that the reminder will be sent.

<reminders>

<reminder id="1" delivery-offset="DO1">
<delivery-time>

<seconds>93660</seconds>
</delivery-time>

or...

<delivery-time>
<mapped-delivery-time>

<wdo-attribute wdo-name="CaseWDO"
name="caseID"/>

</mapped-delivery-time>
</delivery-time>

...
<notification delivery-mechanism="DM1">

...standard notification metadata
</notification>

</reminder>

</reminders>

Chapter 8. Event Wait 57

mapped-delivery-time
This tag represents a workflow data object containing the seconds prior to the deadline expiry
time that the reminder will be sent.

8.6.2 Validations
v A reminder cannot be created if a deadline has not been associated with the relevant activity. In

addition, if a deadline does exist, but the deadline handler has not been set, or the complete activity
indicator has been set to false, a reminder cannot be created.

v Each reminder has an identifier. This must be unique to the deadline upon which it is associated.
v Either a mapped-delivery-time or seconds must be specified for a reminder.
v If a seconds is specified, it must be prior to the deadline expiry time.
v The workflow data object attribute referenced by the mapped-delivery-time must be of type INTEGER.
v All existing validations for activity notifications (see Chapter 14, “Activity Notifications,” on page 97)

are applicable to the notification metadata associated with reminders.

8.6.3 Code
The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines() includes a call to the
function deliverReminders() which processes and delivers any reminders that have reached their
delivery time.

8.6.4 Runtime Information
When an activity containing reminders has been executed, the reminders are persisted onto the Reminders
entity. The time that a reminder is due to be sent on is calculated as follows:
v The delivery duration for the reminder is retrieved in seconds. This may be specified directly in

seconds or in a workflow data object attribute.
v The duration for the deadline associated with the reminder is retrieved in seconds. This may be

specified directly in seconds or in a workflow data object attribute.
v If the delivery duration for the reminder is a positive number and this number is less than the

deadline duration (reminder deliveries cannot be specified for times that are greater than the deadline
date time for obvious reasons), then the time to deliver the reminder notification is calculated as the
deadline duration - the reminder delivery duration. This duration in seconds is then converted into a
date time and added to the date time the reminder is being created on. This is then stored on the
reminder record as the date time that the reminder notification is due to be sent on.

Reminders that have been configured for deadlines are processed and sent by invoking the
ScanTaskDeadlines batch job. This batch job invokes the DeadlineScanner. scanDeadlines() function
which scans for reminders that are due and sends the associated reminder notifications (using the
reminder notification allocation strategy to determine the users to send the notifications to). The
reminders that have been sent are removed from the Reminders entity to ensure that they are not sent
again. When the activity completes any reminders that were configured for that activity but which were
not sent are removed.

58 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 9. Manual

9.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the manual activity described here.

9.2 Overview
In any automated business process there is a need to interact with human agents to make decisions,
supply additional data or to perform tasks in the real world such as telephoning a client. In Cúram
workflow, such steps in a process are modeled using manual activities. A manual activity specifies where
in the business process human intervention is required. It also specifies the information the user will get
when notified that they must perform a task and also the selection of the agents to which the work will
be assigned.

9.3 Task details
To notify a user that they are required to do some work as part of some automated business process, a
task is assigned to them. A task is a message that appears in the users inbox. This inbox specifies the
work the user is expected to do. The task can also have a list of actions associated with it. Actions are
links to Cúram application pages where the work required to perform the task may be performed.

© Copyright IBM Corp. 2012, 2013 59

9.3.1 Metadata

<manual-activity id="1">
...
<task>

<message>
<message-text>

<localized-text>
<locale language="en">The following

case %1n for %1s must be approved</locale>
</localized-text>

</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID"/>

<wdo-attribute wdo-name=
"Claimant[Context_Loop.loopCount]"
name="caseID"/>

</message-parameters>
</message>
<actions>

<action page-id="Case_viewHome" principal-action="false"
open-modal="false">
<message>

<message-text>
<localized-text>

<locale language="en">
Case Home Page for case: %1n</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID"/>

</message-parameters>
</message>
<link-parameter name="childID">

<wdo-attribute wdo-name="ChildDependents"
name="identifier"/>

</link-parameter>
<link-parameter name="fullName">

<wdo-attribute wdo-name="ChildDependents"
name="fullName"/>

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependentList</list-wdo-name>
</multiple-occurring-action>

</action>
<action page-id="Person_confirmPersonDetails"

principal-action="true"
open-modal="true">

<message>
<message-text>

<localized-text>
<locale language="en">

Confirm Person Details for
person: %1s</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="fullName"/>
</message-parameters>

</message>
<link-parameter name="identifier">

<wdo-attribute wdo-name="
PersonDetailsList[Context_Loop.loopCount]"

name="identifier"/>
</link-parameter>

</action>
</actions>
<task-priority>

60 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

task This contains all of the details of a task including the message and details of the associated
actions. The various metadata associated with a task are described below

message
This contains the details of the parameterized message. When a manual activity is executed, a
task is created. When a user views their tasks in the inbox, this message represents the subject of
that task.

message-text
This contains the details of the message text. The text of the subject can contain replaceable
strings (%k), which will be replaced with the associated text parameters. A text parameter is a
mapping to a workflow data object attribute. Parameter k in the list will replace %k in the text
string, where k is the order of the parameter in the list. %k can be repeated within the string and
thus each workflow data object attribute must only be mapped once. A format for the replaceable
strings can optionally be specified by placing another letter after the replaceable string, e.g. %1d,
where d will format the value as a date.

Table 3. Subject Text Data Conversion

Formatting Letter Format As

s string

n numeric

d date

z date/time

t time

localized-text
This contains details of the localizable task message text. For more details of the localized text
and associated metadata, see 6.2.1, “Localized Text,” on page 31.

message-parameters
A task message may have parameters associated with it. This contains the details of the workflow
data object attribute parameters used to replace the placeholders in the associated text. For details
on workflow data objects and workflow data object attributes see Chapter 4, “Workflow Data
Objects,” on page 17.

actions
This contains the details of all of the actions associated with the manual activity task. These
actions are links to Cúram application pages where the work required to perform the task may be
performed.

action This contains the definition of a hyperlink to a Cúram page on which a task can be performed.
The following fields associated with the task action are described below:

page-id
This represents the identifier of the target Cúram page on which a user can begin to
perform the required action.

principal-action
Actions may be defined as primary or secondary actions. Principal actions usually contain
the links to the Cúram pages on which a user can begin to perform the actual required
work. Secondary actions usually contain links to supporting information that the user
assigned to do the work can refer to while carrying out the assigned task.

open-modal
The pages linked from a task action may be specified to open in a modal dialog. If this
indicator is set to true, then the page specified by the action link will be opened in a
modal dialog. If set to false (the default) then the client infrastructure will decide how to
open the link in the same fashion as it does with any other link in the application (i.e. if

Chapter 9. Manual 61

the page is part of a tab configuration, then it will open the appropriate tab - if not then
it will just replace the action link home page in the content area of the current tab).

message
This contains the details of the parameterized message that is associated with the action to be
performed, including the message text and the optional parameters that may be associated with
the text.

link-parameter
The links to the Cúram pages where the actual work for the task will be performed must contain
a page identifier (described above) and optional page parameters. These page parameters are
described by this metadata and they represent a name/value pair where the name attribute is the
name of a link parameter (the page parameter name in the associated Cúram client page) and the
value is provided by a workflow data object attribute. The following field associated with the link
parameter is described below:

name The name of the link parameter.

multiple-occurring-action
This signifies that this action will represent a multiple occurring action. This means that if this
metadata is specified for an action, the workflow engine will create one action record for each
item in the list workflow data object specified as the multiple occurring action, when that activity
is executed.

It should be noted that when the multiple occurring action is specified for an action, then an
attribute from the associated list workflow data object must be used as a link parameter for the
action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

wdo-attribute
The value used in the action link parameter is provided by the workflow data object attribute
mapping specified in this piece of metadata.

task-priority
A task can optionally contain a priority and this metadata contains those details. The priority of a
task be represented in either of the formats below:

priority
In this instance, the priority is selected in the Process Definition Tool and is taken from
the TaskPriority code-table.

mapped-priority
The priority of a manual task can be mapped using a workflow data object attribute. The
following metadata snippet provides an example of how this can be achieved:

62 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

allow-deadline-override
This represents is a boolean flag used to indicate if the deadline (see 8.4, “Deadline,” on page 52)
associated with the manual activity task may be overridden. Setting the value of this flag to true
(the default is false) indicates that the deadline time can be changed after the task has been
created by the workflow engine.

allow-task-forwarding
This is a boolean flag used to indicate if the task generated due the execution of the associated
manual activity can be forwarded to another user. When a task is generated, it is allocated to an
agent to carry out the work. Setting this flag to true (the default is true) allows that agent to
forward that task to another agent to carry out the specified work.

administration-sid
This field allows an administration security identifier to be specified for a manual task. This
allows a user in a group associated with the specified security identifier to modify the task
details, although the task may be reserved by another user in the application.

initial-comment
This allows an initial comment mapping to be specified for the manual task. The value of the
workflow data object attribute used in this mapping is used to place a record in the TaskHistory
table when the associated manual activity is executed.

9.3.2 Validations
v A subject must be defined for the manual activity task. This is a localizable string in the process

definition but an entry must exists for the server default locale.
v All of the workflow data objects used as subject text parameters in the manual activity task subject

message must be valid workflow data object attributes in the context of the containing workflow
process definition.

v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
used as a subject text parameter, then the workflow data object must be a list workflow data object and
the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a subject text parameter, then the activity
containing the mapping must be a Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a subject text parameter, then
the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

<manual-activity id="1">
...
<task>

<message>
......

</message>
<actions>

<action page-id="Case_viewHome" principal-action="true">
.....

</action>
</actions>
<task-priority>

<mapped-priority>
<wdo-attribute wdo-name="WorkflowTestWDO"

name="taskPriority"/>
</mapped-priority>

</task-priority>
.....

</task>
...

</manual-activity>

Chapter 9. Manual 63

v If actions have been specified for the manual activity task, any workflow data object attributes used as
mappings for action text parameters must be valid in the context of the containing workflow process
definition.

v If actions have been specified for the manual activity task, any workflow data object attributes used in
the action link parameter mappings of a manual activity action must be valid in the context of the
containing workflow process definition.

v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
used in the action text or action link parameter mappings, then the workflow data object must be a list
workflow data object and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used in the action text or action link parameter
mappings, then the activity containing the mapping must be a Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used in the action text or action link
parameter mappings, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v The number of placeholders used in the subject text and action text of the manual activity task must
equal the number of mapped workflow data object attributes for all the locales defined.

v The priority of a manual task may be specified by using a codetable code value or a workflow data
object attribute mapping, but not both.

v If a mapped priority has been specified for the manual activity task, the workflow data object attribute
specified for it must be valid in the context of the containing workflow process definition. It must also
be of type STRING.

v If an initial comment mapping has been specified for the manual activity task, the workflow data
object attribute specified for it must be valid in the context of the containing workflow process
definition. It must also be of type STRING..

v The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be a list workflow
data object.

v At least one attribute from the multiple occurring action list workflow data object must be utilized in
the link parameters specified for a multiple occurring action.

9.3.3 Code
Action Pages and Action Page Parameters

The actions specified for the manual activity task are links to Cúram application pages where the
work required to perform the task may be performed. The pages specified in the task actions
must be valid Cúram pages and must be available in the Cúram application. The parameters in
these pages must match the parameters specified as action link parameters in the associated task
actions.

LocalizableStringResolver TaskStringResolver API
The task subject and associated task action messages are displayed in the user's inbox to inform
them of the work required to be completed for the associated task. The
LocalizableStringResolver.TaskStringResolver API contains the functions to resolve both the
task subjects and action messages for the correct user locale. The replacement of the placeholders
with the associated workflow data object attribute values specified in the associated mappings is
also carried out as part of these functions.

Task Admin API
A number of functions have been provided on the TaskAdmin class to allow the manipulation of
tasks. For further details of the functions available, see the associated Javadoc specification for the
TaskAdmin class.

Task History Admin API
Various life cycle events for a task (i.e. when a task is created; when a task is allocated; when a

64 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

task is closed) are written to the TaskHistory table during the lifetime of a task. A number of
search functions have been provided on this API class to allow these entries to be examined. For
further details of the functions available, see the associated Javadoc specification for the
TaskHistoryAdmin entity.

Workflow Deadline Admin API
A number of functions have been provided on the WorkflowDeadlineAdmin class to allow the
manipulation of workflow deadlines. For further details of the functions available, see the
associated Javadoc specification for the WorkflowDeadlineAdmin class.

9.3.4 Runtime Information
When a manual activity is executed by the workflow engine, a task is created and is allocated to an agent
to perform that work (see 9.4, “Allocation strategy”).

9.3.5 Description of Context WDOs
The Context_Task workflow data object allows the unique identifier of the task created as part of the
execution of the associated manual activity to be available for use in the various metadata mappings
associated with a manual activity. Examples of some of these mappings include event match data
mappings (see 8.3, “List of events,” on page 49) and deadline function input mappings (see 8.4,
“Deadline,” on page 52). The one attribute available on this workflow data object is:

Context_Task.taskID
The taskID attribute represents the unique identifier of the task created when the associated
manual activity is executed.

9.4 Allocation strategy
An organization will typically have many human agents at various levels of responsibility that can
perform work for a given process definition. To select a specific agent or group of agents that can do the
work for a specific manual activity, an allocation strategy is assigned to the activity. There are four types
of allocation strategies currently supported by Cúram workflow: function, Classic rules, Cúram Express
rules (CER) and target. When an allocation strategy of type target is selected, the agent or group of
agents to assign the work to are named directly. Selecting a function allocation strategy results in the
invocation of the specified allocation function when the associated activity is executed by the workflow
engine. Finally, if a classic or Cúram Express rules (CER) allocation strategy is selected, the specified
ruleset is executed when the associated activity is executed.

9.4.1 Prerequisites
v If the allocation strategy associated with a manual activity is of type Function, these allocation

functions are Cúram business methods with a specific signature. The input mappings for the formal
parameters of these methods and their associated metadata are described in Chapter 7, “Automatic,”
on page 35. This chapter should therefore be referenced for a description of these mappings.

9.4.2 Metadata
As described previously, there are four types of allocation strategies. The required metadata for each of
these types is described in the following sections.

allocation-strategy
This contains the details of the allocation strategy defined for the manual task. The following
fields associated with an allocation strategy are described below:

type This contains the type of the allocation strategy. The four types of allocation strategies
currently supported by Cúram workflow are function, classic rules, CER rules and target.

identifier
This represents the identifier of the allocation strategy. For an allocation strategy of type

Chapter 9. Manual 65

function, this identifier represents the fully qualified name of the allocation function
being used. For an allocation strategy of type rule or curam express rule, this identifier
represents the identifier of the ruleset being used. Finally, when an allocation strategy of
type target is selected, this identifier represents the identifier of the allocation target being
used.

66 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

9.4.2.1 Function Allocation Strategy

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy

identifier="curam.core.sl.intf.
WorkflowAllocationFunction.manualAllocationStrategy"

type="function">
<function-mappings>

<formal-parameters>
<formal-parameter index="0">

<base-type type="INT32">
<wdo-attribute wdo-name="Context_Task"

name="taskID"/>
</base-type>

</formal-parameter>
<formal-parameter index="1">

<base-type type="INT64">
<wdo-attribute

wdo-name="Context_RuntimeInformation"
name="processInstanceID"/>

</base-type>
</formal-parameter>
<formal-parameter index="2">

<struct type="curam.struct.TaskDetails">
<field name="taskID">

<base-type type="INT64">
<wdo-attribute wdo-name="Context_Task"

name="taskID"/>
</base-type>

</field>
<field name="category">

<base-type type="STRING">
<wdo-attribute wdo-name="TaskCreateDetails"

name="category"/>
</base-type>

</field>
</struct>

</formal-parameter>
<formal-parameter index="3">

<struct type="curam.struct.PersonDetails">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute wdo-name=

"PersonDetailsList[Context_Loop.loopCount]"
name="identifier"/>

</base-type>
</field>
<field name="fullName">

<base-type type="STRING">
<wdo-attribute wdo-name=

"PersonDetailsList[Context_Loop.loopCount]"
name="fullName"/>

</base-type>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</function-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>

</manual-activity>

Chapter 9. Manual 67

function-mappings
This contains the details of the input mappings for the formal parameters of the specified
allocation function. Allocation functions are Cúram business methods (similar to those that are
specified for automatic activities) that have a distinct return signature (allocation functions must
have a return type of curam.util.workflow.struct.AllocationTargetList). Therefore, the
metadata used for these mappings are the same as those used for the input mappings for the
business process object methods that are associated with automatic activities. The reader should
refer to the 7.4, “Input Mappings,” on page 36 section of the automatic activity chapter for further
details of this metadata and it's meaning.

9.4.2.2 CER Rules Allocation

ruleset-mappings
This contains the details of all the mappings for the ruleset specified in the allocation identifier. It
is not required to map all of the rules data object attributes specified in the ruleset (mappings for
a subset of them may be created).

rdo-mapping
This contains the details of one mapping between a rules data object attribute specified in the
allocation ruleset and it's associated workflow data object attribute. The following metadata
constitute a valid mapping:

source-attribute
This contains the details of the source attribute in the mapping (i.e. where the data will
be provided from at runtime). A source attribute consists of a workflow data object name
and it's associated attribute name (see Chapter 4, “Workflow Data Objects,” on page 17).

target-attribute
This contains the details of the target attribute in the mapping (i.e. where the data will be
mapped into at runtime). A target attribute consists of a rules data object name and it's
associated attribute name.

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="rule"

identifier="PRODUCT_1">
<ruleset-mappings>

<rdo-mapping>
<source-attribute wdo-name="TaskCreateDetails"

name="caseID" />
<target-attribute rdo-name="TaskDetails"

name="caseID" />
</rdo-mapping>
<rdo-mapping>

<source-attribute wdo-name="TaskCreateDetails"
name="concernRoleID" />

<target-attribute rdo-name="TaskDetails"
name="concernRoleID" />

</rdo-mapping>
</ruleset-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>
...

</manual-activity>

68 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

9.4.2.3 CER Rules Allocation

cer-set-mappings
This contains the details of all the mappings for the CER rule set specified in the allocation
identifier. The primary class parameter should point to a rule class that contains the targets
attribute for this allocation strategy. It is recommended that mappings are created for all specified
attributes in the selected rule class.

cer-class-mapping
This contains the details of one mapping between a rule class attribute specified in the cer rule
set and it's associated workflow data object attribute. The following metadata constitute a valid
mapping:

source-attribute
This contains the details of the source attribute in the mapping (i.e. where the data will
be provided from at runtime). A source attribute consists of a workflow data object name
and it's associated attribute name (see Chapter 4, “Workflow Data Objects,” on page 17).

target-attribute
This contains the details of the target attribute in the mapping (i.e. where the data will be
mapped into at runtime). A target attribute consists of a CER class name and it's
associated attribute name.

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="curam express rule"

identifier="Sample allocation Rules">
<cer-set-mappings primary-class="sampleAllocationClass">

<cer-class-mapping>
<source-attribute wdo-name="TaskCreateDetails"

name="caseID" />
<target-attribute cer-class-name="SampleAllocationClass"

name="caseID" />
</cer-class-mapping>
<cer-class-mapping>

<source-attribute wdo-name="TaskCreateDetails"
name="concernRoleID" />

<target-attribute cer-class-name="SampleAllocationClass"
name="concernRoleID" />

</cer-class-mapping>
</cer-set-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>
...

</manual-activity>

Chapter 9. Manual 69

9.4.2.4 Target Allocation Strategy

No further metadata is required to describe an allocation strategy of type target. As stated previously, the
identifier in this case is the identifier of the allocation target containing the agent or group of agents that
the task will be assigned to.

9.4.3 Validations
v An allocation strategy must be defined for a manual task.
v If the allocation strategy is of type function, the function specified must be a valid and must exist on

the Cúram application classpath.
v If the allocation strategy is of type function, the return type of the function must be

curam.util.workflow.struct.AllocationTargetList.
v If the allocation strategy is of type function, any of the input parameters of the specified function that

are mapped must be to valid workflow data object attributes and the type of the workflow data object
attribute must match the type of the input parameter field.

v If the allocation strategy is of type function and an indexed item from a list workflow data object is
used in an input mapping, then the workflow data object must be a list workflow data object and the
activity containing the mapping must be contained within a loop.

v If the allocation strategy is of type rule, the specified ruleset must be valid.
v If the allocation strategy is of type rule, all of the source attributes specified in the mappings must be

valid workflow data object attributes in the context of the containing workflow process definition. All
of the target attributes must be valid rules data object attributes in the context of the specified ruleset.
The type of the workflow data object attribute specified as the source attribute must match the type of
the rules data object attribute specified as the target attribute in the mapping.

v No duplicate target attribute mappings are allowed. In other words, a rules data object attribute can
only be specified once in any list of ruleset mappings.

v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
used in the function or rule allocation strategy mappings, then the workflow data object must be a list
workflow data object and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used in the function or rule allocation strategy
mappings, then the activity containing the mapping must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used in the function or rule
allocation strategy mappings, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

9.4.4 Code
As stated previously, any business process object method specified as an allocation function must return a
structure of type curam.util.workflow.struct.AllocationTargetList.

<manual-activity id="1" category="AC1">
...
<task>
...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULER"/>
<event-wait>
...
</event-wait>
...

</manual-activity>

70 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

As is the case with business methods associated with automatic activities, a failure of the allocation
function when a manual activity is executed will cause the Workflow Error Handling strategy to be
invoked. This may cause, for example, the activity associated with the failed method to be retried a
number of times. Based on this fact the allocation functions associated with the allocation strategies of
manual or decision activities should in general not throw exceptions unless an unrecoverable situation
occurs.

The application must implement the curam.util.workflow.impl.WorkResolver callback interface to
determine how tasks will be allocated in the application. The application property
curam.custom.workflow.workresolver must refer to the curam.util.workflow.impl.WorkResolver
implementation class in the application as the workflow engine will use this property to determine the
correct function to allocate the task.

The curam.util.workflow.impl.WorkResolver class has an overloaded method resolveWork because the
various allocation strategy types return the allocation targets in different formats. However this is an
implementation detail that developers of custom work resolver classes should not have to deal with
especially since the business processing for all versions of the method should be the same.

To mitigate this issue the curam.core.sl.impl.DefaultWorkResolverAdapter provides a more convenient
mechanism for implementing a work resolver. This class implements the different methods and converts
their input parameters into allocation target lists allowing developers of custom work resolution logic to
extend this class and implement one method that is called regardless of the source of the allocation
targets.

package curam.util.workflow.impl;

...

public interface WorkResolver {

void resolveWork(
final TaskDetails taskDetails,
final Object allocationTargets,
final boolean previouslyAllocated);

void resolveWork(
final TaskDetails taskDetails,
final Map allocationTargets,
final boolean previouslyAllocated);

void resolveWork(
final TaskDetails taskDetails,
final String allocationTargetID,
final boolean previouslyAllocated);

...
}

Chapter 9. Manual 71

In addition to this adapter class, the application ships with a work resolver implementation that is used
out-of-the-box. This class is called curam.core.sl.impl.DefaultWorkResolver and it also serves as an
example of how to extend the adapter.

9.4.5 Runtime Information
When a manual activity is executed, the workflow engine processes the allocation strategy defined in the
metadata to retrieve the list of allocation targets for that task. If the allocation strategy is of type function,
the workflow engine processes the input mappings defined for the associated allocation function and
invokes it to retrieve the list of allocation targets. If the allocation strategy is of type rule, the workflow
engine processes the mappings for the specified ruleset and calls the rules engine to run the ruleset to
retrieve the list of allocation targets. If the allocation strategy is of type target, the allocation target is
simply the one specified in the metadata and no further processing is required.

As described in the metadata for a workflow process (see Chapter 3, “Process Definition Metadata,” on
page 13), a failure allocation strategy may be specified for a process. This strategy will be processed and
used if the invocation of the allocation strategy associated with the task results in no allocation targets
being returned.

The workflow engine then uses the curam.custom.workflow.workresolver property to determine the
implementation of the function used to allocate tasks in the application. This function is then called by
the workflow engine passing to it the list of allocation targets as determined by the allocation strategy
and also details of the task to be allocated.

After the work resolver has been called for the task, the workflow engine makes a call to the method
checkTaskAssignment in the curam.core.sl.impl.TaskAssignmentChecker class. This function will check
the assignment status of the task (i.e. to ensure that it has been assigned to at least one user or
organizational object (organization unit, position or job) or to a work queue). If the task has not been
assigned, the application property curam.workflow.defaultworkqueue is examined to see what has been
specified as the default work queue for workflow. The task is then assigned to that work queue.

If the task has been assigned to one user and only one user after the work has been resolved, the system
checks the value of the application property curam.workflow.automaticallyaddtasktousertasks. This flag
controls whether the system will automatically add the specified task being processed to the list of that
user's tasks to allow them to work on it. The default value for the property is NO but if it has been
specified as YES, then the system will automatically add that task to the user's My Tasks list in their Inbox
to allow them to work on it.

9.4.6 Description of Context WDOs
The Context_Task workflow data object is available for both allocation function and allocation ruleset
mappings. This context workflow data object and it's attribute have already been described above: (see
9.3.5, “Description of Context WDOs,” on page 65).

package curam.core.sl.impl;

...

public abstract class DefaultWorkResolverAdapter
implements curam.util.workflow.impl.WorkResolver {

public abstract void resolveWork(
final TaskDetails taskDetails,
final AllocationTargetList allocationTargets,
final boolean previouslyAllocated);

...
}

72 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

9.5 Business Object Associations
Manual activities, and indeed workflow in general, perform operations on entities that exist in the
application. For this reason, it may be useful to associate a task with the entities that are related to it for
that process. Business object associations essentially provide links between a task and any application
entities of interest for that process The quintessential examples in Cúram include the Case and Concern
entities.

9.5.1 Metadata

biz-object-associations
This contains the details of all the business object associations that have been specified for the
manual activity.

biz-object-association
This contains the details of one business object association that has been specified for that manual
activity. This includes the business object type and the workflow data object attribute mapping
associated with that type. This workflow data object attribute mapping represents the unique
identifier of the business object in the association (i.e. for a business object association of type
Case, this would represent the unique identifier of the case being linked to the task).

biz-object-type
This details the actual business object type for the business object association for the
manual activity. The business object type must be selected in the Process Definition Tool
and is taken from the BusinessObjectType code-table.

9.5.2 Validations
v The business object type specified must be a valid codetable code contained within the

BusinessObjectType codetable.
v The workflow data object attribute mapped to the business object type of a manual activity business

object association must be valid. This attribute type must be assignable to a type LONG as this
represents a mapping to a unique identifier (e.g. a case identifier or participant identifier).

v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
used in a business object association mapping, then the workflow data object must be a list workflow
data object and the activity containing the mapping must be contained within a loop.

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="target"

identifier="1"/>
<event-wait>

...
</event-wait>
<biz-object-associations>

<biz-object-association biz-object-type="BOT1">
<wdo-attribute wdo-name="TaskCreateDetails"

name="caseID"/>
</biz-object-association>
<biz-object-association biz-object-type="BOT2">

<wdo-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="identifier"/>
</biz-object-association>

</biz-object-associations>
</manual-activity>

Chapter 9. Manual 73

v If the Context_Parallel workflow data object is used in a business object association mapping, then
the activity containing the mapping must be a Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used in a business object association
mapping, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

9.5.3 Code
Business Object Association Admin API

A number of functions have been provided on the BusinessObjectAssociationAdmin class to
allow the manipulation of business object associations. For further details of the functions
available, see the associated Javadoc specification for the BusinessObjectAssociationAdmin class.

9.5.4 Runtime Information
Business object associations have no functional impact on the execution of a manual activity. The
workflow engine simply examines the metadata and places a record on the BizObjAssociation entity for
each business object association specified. The business object type, the value of the workflow data object
attribute mapping and the identifier of the newly created task associated with the manual activity are all
used in the creation of this record.

9.6 Event Wait
Since a manual activity requires some action to be taken by a user before it can be completed and the
process can continue, there must be some way to notify the workflow engine when the work required has
been performed. Since this semantic is similar to that of the event wait activity the event wait mechanism
is re-used for manual activities.

9.6.1 Prerequisites
v The details of an event wait and it's associated metadata (which are also applicable to a manual

activity) may be found in Chapter 8, “Event Wait,” on page 49.

9.6.2 Description of Context WDOs
The Context_Task workflow data object is available for use in the input mappings for deadline functions
associated with the event wait of a manual activity. It is available for the input mappings associated with
allocation function or rule input mappings. It is also available to use as a mapping for the event match
data of a specified event wait associated with a manual activity. This context workflow data object and
it's attribute have already been described above (see 9.3.5, “Description of Context WDOs,” on page 65).

74 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 10. Decision

10.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the decision activity described here.
v There are also workflow metadata constructs that are common between manual activities and decision

activities (i.e. allocation strategy, task subject, task deadline etc). The details of these may be found in
Chapter 9, “Manual,” on page 59.

10.2 Overview
A typical requirement in business processes is to have a human agent make decisions that have simple
answers. An example of such a decision is to approve or reject a case or to supply some simple
information such as the age of the claimant. Using manual activities to solicit such information would
require that a different user interface screen for each question be available in the application. This is
cumbersome and since process definitions can change over time, such user interface screens would be
some what temporary.

The Decision activity is a specialization of a Manual activity that drives a metadata driven user interface
for asking simple questions. The questions and possible answers are in the activity metadata thus
allowing a single user interface to be used for a wide range of questions. Two types of questions are
currently supported. These are multiple choice type questions and questions requiring an answer that can
be supplied in one field on the user interface.

10.3 Task Details
Similar to a Chapter 9, “Manual,” on page 59, decision activities will notify users that they are required to
do some work, and assign a task to them based on the allocation strategy defined. The task will
automatically link to a user interface page in the application that assembles the decision question from
the decision activity question metadata and moves the workflow forward once the decision answer has
been provided. A decision activity, therefore, can have only one associated task action and requires no
action page to be defined for that action.

In addition to the task action, a decision activity can have zero or more secondary actions associated with
it. Secondary actions contain a link to a page which may provide supplementary information to help the
user answer the decision question.

© Copyright IBM Corp. 2012, 2013 75

10.3.1 Metadata

<decision-activity id="1">

...

<allocation-strategy type="target" identifier="1" />
<message>

<message-text>
<localized-text>

<locale language="en">
Decide the age of the user %1s for Case %2n.</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="userName" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>
<decision-action>

<message>
<message-text>

<localized-text>
<locale language="en">
Participant Home Page %1n for Case %2n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="concernRoleID" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>

</decision-action>
<secondary-actions>

<secondary-action page-id="Case_viewDetails">
<message>

<message-text>
<localized-text>

<locale language="en">View case details.</locale>
</localized-text>

</message-text>
</message>

</secondary-action>
<secondary-action page-id="Case_viewUserDetails">

<message>
<message-text>

<localized-text>
<locale language="en">View details for user %1s.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"ChildDependents[Context_Loop.loopCount]"
name="userName" />

</message-parameters>
</message>
<link-parameter name="userName">

<wdo-attribute wdo-name="ChildDependents"
name="childName" />

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependents</list-wdo-name>
</multiple-occurring-action>

</secondary-action>

76 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

allocation-strategy
This describes the allocation strategy used to determine the user assigned to the associated task.
For details on allocation strategies, see 9.4, “Allocation strategy,” on page 65.

message
This represents the parameterized subject message of the task created. For full details on
parameterized messages, see Chapter 9, “Manual,” on page 59.

decision-action
This represents the parameterized action text message associated with the task. The user will click
on this action text to bring up the auto-generated user interface decision screen with the relevant
question.

deadline
This describes the deadline details for the decision activity. If an answer has not been provided
for the decision activity within the deadline duration specified, the associated deadline handler
method is invoked. For more details on deadlines, see 8.4, “Deadline,” on page 52

secondary-actions
This describes any optional secondary actions which may be included with the decision activity.

secondary-action
A secondary action contains a parameterized message and a parameterized link to
supporting information to help the user answer the decision question. For details of
parameterized messages and parameterized links within actions, see 9.3.1, “Metadata,” on
page 60

page-id
This represents the identifier of the target Cúram page which contains the
supplementary information being linked to by the secondary action.

multiple-occurring-action
This signifies that this secondary action will represent a multiple occurring action.
This means that if this metadata is specified for a secondary action, the workflow
engine will create one secondary action record for each item in the list workflow
data object specified as the multiple occurring action, when that activity is
executed.

It should be noted that when the multiple occurring action is specified for a
secondary action, then an attribute from the associated list workflow data object
must be used as a link parameter for the secondary action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring
action.

10.3.2 Validations
v An activity subject must be defined.
v Every workflow data object attribute mapped to the decision activity subject must be a valid workflow

data object attribute.
v If an indexed item from a list workflow data object (i.e. CaseList[Context_Loop.loopCount]) is used as

a decision subject text parameter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a decision subject text parameter, then the
activity containing the mapping must be a Parallel decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a decision subject text
parameter, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

Chapter 10. Decision 77

v The number of placeholders used in the subject text and action text must equal the number of mapped
workflow data object attributes (for all locales).

v If an indexed item from a list workflow data object (i.e. CaseList[Context_Loop.loopCount]) is used as
a decision task action text parameter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a decision action text parameter, then the
activity containing the mapping must be a Parallel decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a decision action text
parameter, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v An allocation strategy must be defined.
v The allocation target, function or rule set specified as an allocation strategy must be valid. If the

allocation type is function, it must be a valid Cúram business method and must exist on the
application classpath. If the allocation type is rule, it must be a valid allocation ruleset.

v The optional deadline handler, if specified, must be a valid Cúram business method.
v All deadline handler input mappings must be valid. This means that all the input parameter fields

required by the specified method are mapped to valid workflow data object attributes of the correct
type.

v Each secondary action must have a page link specified, which cannot contain white spaces.
v Each secondary action must have a message specified.
v Secondary action message text must contain a number of placeholders equal to the number of message

parameters specified.
v Secondary action message parameters must be mapped to valid workflow data object attributes of the

correct type.
v Secondary action page link parameters must be mapped to valid workflow data object attributes.
v If an indexed item from a list workflow data object (i.e. ChildDependents[Context_Loop.loopCount]) is

used in the secondary action text or secondary action link parameter mappings, then the workflow
data object must be a list workflow data object and the activity containing the mapping must be
contained within a loop.

v If the Context_Parallel workflow data object is used in the secondary action text or secondary action
link parameter mappings, then the activity containing the mapping must be a Parallel decision
activity.

v If an indexed item from the Parallel List Workflow Data Object in the secondary action text or
secondary action link parameter mappings, then the activity containing the mappings must be a
Parallel Activity (i.e. ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

v The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be of type List.

v At least one attribute from the multiple occurring action list workflow data object must be utilized in
the link parameters specified for a multiple occurring action.

10.3.3 Runtime Information
When a decision activity is executed, the workflow engine creates the associated task. A snapshot of the
workflow data object data required for the decision activity subject and action text parameters, and any
secondary action message text and link parameters, is taken and stored. The allocation strategy associated
with the decision activity is invoked to determine the user(s) who will be assigned the decision task. The
workflow engine also creates an event wait for the DECISION.MADE event with the associated task identifier
as the event match data. The workflow is then paused at this point, awaiting the raising of this event
which will indicate the result of the decision made.

78 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

10.4 Question Details
The decision activity currently supports both multiple choice and free text questions as question formats.
The auto-generated decision page examines the question format required and generates the relevant
question from the question metadata once the user clicks on the action associated with the task.

10.4.1 Metadata

10.4.1.1 Multiple Choice

<decision-activity id="1">

...

<question>
<message>

<message-text>
<localized-text>

<locale language="en">
Is the claimant, %1s, for Case %2n, over 18?
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="Participant"
name="userName" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>
<answers multiple-selection="false">

<answer name="yesAnswer">
<answer-text>

<localized-text>
<locale language="en">Yes</locale>

</localized-text>
</answer-text>
<choice-output-mapping>

<wdo-attribute wdo-name="DecisionResult"
name="ageBracket" />

<selected-value>18-65/selected-value>
<not-selected-value>0-17</not-selected-value>

</choice-output-mapping>
</answer>
<answer name="noAnswer">

<answer-text>
<localized-text>

<locale language="en">No</locale>
</localized-text>

</answer-text>
<choice-output-mapping>

<wdo-attribute wdo-name="DecisionResult"
name="ageBracket" />

<selected-value>0-17</selected-value>
<not-selected-value>18-65</not-selected-value>

</choice-output-mapping>
</answer>

</answers>
</question>

...

</decision-activity>

Chapter 10. Decision 79

question
This represents the question associated with the decision activity, which for a multiple choice
question contains the metadata outlined below.

message
This represents the parameterized text of the question to be asked for all locales.

answers
This represents a list of answers the user can choose from for the multiple choice question.

multiple-selection
This represents a flag that indicates if the user can select multiple answers from those
supplied, or whether only one can be selected.

answer
This represents an answer that the user can select. There must be at least one answer supplied for
a multiple choice question.

name This represents the name of the answer. Once the user selects an answer or answers, the names of
the selected answers are passed to the workflow engine and the process is progressed. As the
engine treats these answers similar to workflow data object attributes, answer names must be
valid Java identifiers.

answer-text
This represents the answer text that the user can select for all locales.

choice-output-mapping
This tag encloses the metadata that describes how the output from a multiple choice answer will
be persisted.

wdo-attribute
The name of the workflow data object attribute used to store the value of the multiple
choice answer.

selected-value
If specified, the value in this element will be persisted to the workflow data object
attribute if that answer has been selected by the user. If the workflow data object attribute
is a boolean type this value need not be specified, it will get a default value of true.

not-selected-value
If specified, the value in this element will be persisted to the workflow data object
attribute if that answer has not been selected by the user. If the workflow data object
attribute is a boolean type this value need not be specified, it will get a default value of
false.

80 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

10.4.1.2 Free Text

question
This represents the question associated with this decision activity, which for a free text question
contains the metadata outlined below.

message
This represents the parameterized text of the question to be asked for all locales.

free-text
This contains the details of the free text answer that the user must supply.

type This represents the required data type of the free text answer that must be supplied.

wdo-attribute
This represents the workflow data object attribute that maps the free text answer back into the
workflow engine.

10.4.2 Validations
v The answer format and question text must be specified for a decision activity.
v The number of placeholders used in question text must equal the number of mapped workflow data

object attributes (for all locales).
v If an indexed item from a list workflow data object (i.e. CaseList[Context_Loop.loopCount]) is used as

a question text parameter, then the workflow data object must be a list workflow data object and the
activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a question text parameter, then the activity
containing the mapping must be a Parallel decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a question text parameter,
then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

<decision-activity id="1">

...

<question>
<message>

<message-text>
<localized-text>;

<locale language="en">
What is the age of the claimant, %1s?
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="Participant"
name="userName" />

</message-parameters>
</message>
<free-text type="INT32">

<wdo-attribute wdo-name="DecisionResult"
name="ageOfClaimant" />

</free-text>
</question>

...

</decision-activity>

Chapter 10. Decision 81

v For a question with a Free Form Text answer format, the answer data type must be specified and the
workflow data object attribute mapped must be valid and match the answer data type. The workflow
data object attribute mapped cannot be a constant workflow data object attribute.

v For a question with a List answer format at least one answer option must be listed. All answer names
must be valid Java attribute names.

10.4.3 Runtime Information
When an answer for a decision activity question has been supplied, the DECISION.MADE event is raised
with the task identifier of the decision activity task used as the event match data. The workflow event
handler will process this event and this will cause the workflow process to be progressed.

If the answer supplied is a free text answer it will be mapped to the specified workflow data object
attribute for use later in the process where required.

10.4.4 Description of Context WDOs
The Context_Decision workflow data object is available for use in a data item or function condition (see
Chapter 16, “Conditions,” on page 109) for a transition from a decision activity. The attributes available
will depend on the answer format defined for the activity.

Free Text Answer
If the answer format is a free text answer the attribute available is:

Context_Decision.value
The value of the free text answer supplied. This can be used in transition conditions and
can be mapped to a specified workflow data object attribute.

Multiple Choice Answer
In this instance, the Context_Decision workflow data object will be populated with attributes for
each of the answers available, each being of type boolean. This indicates whether that answer had
been selected or not. In the multiple choice answer metadata snippet above, (10.4.1.1, “Multiple
Choice,” on page 79, if the user selected the first answer (Yes), this would be reflected with the
following Context_Decision workflow data object attribute being set to true:

Context_Decision.yesAnswer
This represents a boolean indicating whether the yes answer for the question had been
selected. This can only be used in transition conditions from the decision activity.

Alternatively, if the user selected the second answer (No), this would be reflected with the
following Context_Decision workflow data object attribute being set to true:

Context_Decision.noAnswer
This represents a boolean indicating whether the no answer for the question had been
selected. This also can only be used in transition conditions from the decision activity.

82 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 11. Subflow

11.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the subflow activity described here.

11.2 Overview
When designing a complex business process it may become too large to manage as one monolithic
process definition. A sub-flow activity allows another process definition to enacted as part of another
process.

It may be a prudent decision to design process definitions as a set of sub-flows regardless of whether
there are concerns over size. This would allow sections of the business process to change without
affecting others. Also the subflow processes could act as reusable components that customers can reuse in
building their own higher order process definitions.

11.3 Subflow Process
To enact a process as a subflow, the subflow activity must identify the process that will be enacted by
name. As with the other process enactment mechanisms, the latest released version of the process is the
one that will be enacted.

Subflows can be enacted synchronously. This means that the branch of the parent workflow containing the
subflow activity that started the subflow process waits for that subflow process to finish before
continuing.

Alternatively, a subflow may be enacted asynchronously. This means that once the subflow activity starts
the subflow process, the branch containing that subflow activity continues immediately with the outcome
of the subflow process having no effect on the parent process.

11.3.1 Metadata

subflow

workflow-process
The name of the workflow process to start when the activity is executed. Process names
are case sensitive and the process name specified here must exactly match that of the
process to start as a subflow.

synchronous
A flag to indicate whether the sub-flow should be executed synchronously or not (see:
11.3, “Subflow Process”) relative to its parent process.

<subflow-activity id="1">
...

<subflow workflow-process="ApproveCase" synchronous="true"/>

...
</subflow-activity>

© Copyright IBM Corp. 2012, 2013 83

11.3.2 Validations
v A workflow process for the subflow activity must be specified.
v The workflow process specified as the subflow must have at least one released version.

11.4 Input Mappings
Data is supplied to the subflow when it is enacted from the parent process workflow data objects. The
subflow activity defines the mapping between the parent process's workflow data objects and the
subflows enactment data.

11.4.1 Metadata

input-mappings
This specifies how data is mapped from the currently executing process to a sub-process as
enactment data when the sub-process is started. The process specified as a subflow may not have
any workflow data object attributes marked as required at enactment in which case no input
mappings are required.

mapping
A mapping represents the data that will be pushed from a workflow data object attribute to an
attribute in the process being enacted as a subflow. If a list of data is required to enact the
subflow process, attributes from list workflow data objects can be used for this purpose. The
number of mappings specified is governed by how many attributes are marked as required at
enactment in the subflow process, since all such attributes must be populated when the process
starts.

source-attribute
This represents a workflow data object attribute from the parent process to use to populate the
associated attribute in the subflow when it is enacted.

<subflow-activity id="1">
...

<input-mappings>
<mapping>

<source-attribute wdo-name="ManintainCase"
name="caseID" />

<target-attribute wdo-name="ApproveCase"
name="caseID" />

</mapping>
<mapping>

<source-attribute wdo-name="MaintainCase"
name="concernRoleID" />

<target-attribute wdo-name="ApproveCase"
name="concernRoleID" />

</mapping>
<mapping>

<source-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="identifier" />
<target-attribute wdo-name="PersonDetails"

name="identifier" />
</mapping>
<mapping>

<source-attribute wdo-name="ChildDetailsList"
name="identifier" />

<target-attribute wdo-name="ClaimantDependentList"
name="identifier" />

</mapping>
</input-mappings>

</subflow-activity>

84 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

target-attribute
This represents a workflow data object attribute from the subflow to be populated with data from
the associated attribute in the parent process at enactment time.

source/target-attribute

wdo-name
This represents the name of a Cúram workflow data object as described in Chapter 4,
“Workflow Data Objects,” on page 17).

name This represents the name of a Cúram workflow data object attribute as described in
Chapter 4, “Workflow Data Objects,” on page 17).

11.4.2 Validations
v Every workflow data object attribute marked as required for enactment in the subflow must be specified

in the input mappings. If no workflow data object attributes have been marked as required for
enactment in the subflow process, then no input mappings should be specified.

v The data type of the workflow data object attribute specified by the target-attribute tag must match
or be assignable from the attribute specified by the source-attribute tag.

v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
specified in the source-attribute tag of the subflow input mapping, then that workflow data object
must be a list workflow data object and the subflow activity containing the input mapping must be
contained within a loop. The data type of the workflow data object attribute specified by the
target-attribute tag must match or be assignable from the attribute specified by the
source-attribute tag.

v If the specified subflow input mapping uses a list workflow data object then the workflow data object
attributes for both the parent source-attribute and subflow process target-attribute must be list
workflow data objects.

11.5 Output Mappings
Output Mappings are only applicable to synchronous subflow activities as asynchronous subflows can
continue without completing the activity. Data is supplied to the parent process from the subflow activity
after it completed. The subflow activity defines the mapping between a subflow workflow data object
attribute and the parent process's workflow data object attribute.

11.5.1 Metadata

<subflow-activity id="1">
...

<output-mappings>
<mapping>

<source-attribute wdo-name="SubflowCaseWDO"
name="participantName" />

<target-attribute wdo-name="CaseWDO"
name="participantName" />

</mapping>
<mapping>

<source-attribute wdo-name="SubflowChildDetailsList"
name="identifier" />

<target-attribute wdo-name="ChildDetailsList"
name="identifier" />

</mapping>
</output-mappings>

...
</subflow-activity>

Chapter 11. Subflow 85

output-mappings
This specifies how data is mapped from the invoked sub-process to the parent process when the
sub-process has completed. The process specified as a subflow may not have any output
mappings defined, in which case the subflow completes as normal.

mapping
This represents the data that will be pushed from a subflow workflow data object attribute to an
attribute in the parent process. If a list of data is being pushed from the subflow process to the
parent process, attributes from list workflow data objects can be used for this purpose. The
number of mappings specified is governed by the number of output mappings specified.

source-attribute
This represents a workflow data object attribute from the subflow process which is used to
populate the associated attribute in the parent process upon completion.

target-attribute
This represents a workflow data object attribute from the parent to be populated with data from
the associated attribute in the subflow process when completed.

source/target-attribute

wdo-name
This represents the name of a Cúram workflow data object (as described in Chapter 4,
“Workflow Data Objects,” on page 17).

name This represents the name of a Cúram workflow data object attribute (as described in
Chapter 4, “Workflow Data Objects,” on page 17).

11.5.2 Validations
v The parent target-attribute and subflow source-attribute workflow data object attributes used in

the subflow output mapping must be valid within the context of the containing process definition.
v The data type of the workflow data object attribute specified by the parent target-attribute tag must

match or be assignable from the attribute specified by the subflow source-attribute tag.
v If the specified subflow output mapping uses a list workflow data object then the mapped workflow

data object attributes for both the parent target-attribute and subflow process source-attribute
must be of type list.

86 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 12. Loop Begin and Loop End

12.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the loop begin/loop end activities
described here.

12.2 Overview
Many business processes are required to repeat until some condition is met. In Cúram, this is
implemented using the loop-begin and loop-end activities. All activities that are between a loop-begin
and its associated loop-end activity are repeated until the loop completes.

In a process definition, loop begin and loop end activities come in pairs, and the metadata allows each
loop-begin to know its associated loop-end and vice versa. To add a sequence of activities to a loop, a
transition is created from the loop-begin activity to the first activity to be repeated. Subsequent activities
in the sequence are linked using transitions as would normally be done outside a loop; however, the last
activity in the sequence has a transition to the loop-end activity. A common impulse is to also add a
transition from the loop-end activity to the start to create the cycle; however, this is incorrect and results
in an invalid process definition.

A loop must also specify the criteria the loop will use to determine whether or not to terminate. To
support this, a loop in Cúram workflow has a loop-exit condition.

Loops can contain other loops as long as they are fully nested and do not interleave each other. This
ensures that the loops and therefore the process definition remains a valid block structure as required by
the Cúram workflow engine (see Chapter 18, “Workflow Structure,” on page 117).

12.2.1 Loop Type
In addition to the loop-exit condition, a loop also specifies whether the condition should be tested before
the loop executes (a while loop) or at the end of a loop execution (a do-while loop). A while loop may
never execute the activities in the loop and jump to the activity following the loop if the exit condition is
met at the start of the loop, where as a do-while loop will execute the activities in the loop at least once.

12.3 Metadata

12.3.1 Loop Begin Activity

© Copyright IBM Corp. 2012, 2013 87

loop-type
The loop-type specifies how the loop will be executed as detailed in 12.2.1, “Loop Type,” on page
87. The only two valid values for the name attribute are while and do-while.

condition
The condition tag specifies the condition that will be evaluated based on Workflow Data Object
values (see: Chapter 4, “Workflow Data Objects,” on page 17). When list workflow data objects
are present in the workflow, two attributes that are not part of that workflow data object
metadata are made available when creating a loop condition expression using a list workflow
data object. These are as follows:
v size() : This will evaluate to a number (of type INTEGER) to indicate the number of items in

the list.
v isEmpty() : This will evaluate to a BOOLEAN flag to indicate if the list contains any elements

or not.

The actual condition metadata is used in other places in the process definition metadata and is
thus described in the dedicated chapter, Chapter 16, “Conditions,” on page 109.

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-begin-activity to recognize its
associated loop-end-activity. This information is useful to the workflow engine when executing
the loop. For example, when a while loop's exit condition evaluates to true before the loop
executes, the block-endpoint-ref tells the workflow engine which activity to jump to and
continue the execution of the process.

12.3.2 Loop End Activity

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-end-activity to recognize its associated
loop-begin-activity. This information is useful to the workflow engine when executing the loop.
For example, if after the execution of a loop the exit condition evaluates to false, the
block-endpoint-ref tells the workflow engine which activity to jump to in order to begin another
iteration of the loop.

<loop-begin-activity id="1">
...

<loop-type name="do-while"/>

...

<condition>
<expression id="1" data-item-lhs="Context_Loop.loopCount"

operation="<" data-item-rhs="UserAccountWDO.size()"/>
</condition>

<block-endpoint-ref activity-id="5"/>

</loop-begin-activity>

<loop-end-activity id="3">
...

<block-endpoint-ref activity-id="1"/>

</loop-end-activity>

88 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

12.4 Runtime Information
It is expected that any activity within a loop will be executed more than once during the execution of a
process instance. To prevent the process instance data for the activity becoming corrupted by subsequent
iterations, each activity instance is associated with a specific iteration and so is uniquely identifiable by
the workflow engine regardless of the number of times the loop is executed.

12.5 Description of Context WDOs
The Context_Loop workflow data object is available on the following occasions:
v When creating the loop condition associated with a loop-begin activity.
v When creating the outgoing transition conditions from a loop-begin activity, or from any activity

contained within a loop (see Chapter 16, “Conditions,” on page 109).
v When creating the input mappings for any automatic activity or subflow activity within a loop.
v When creating the input mappings for any allocation strategy function or deadline handler function

present in an activity within a loop.
v When specifying a subject text parameter for a Manual or Decision Activity that is contained within a

loop, or for a notification attached to an activity that is contained within a loop.
v When specifying action text parameters and action link parameters for a Manual or Decision Activity

that is contained within a loop, or for a notification attached to an activity that is contained within a
loop.

v When specifying the identifier for a business object association for a Manual Activity that is contained
within a loop.

v When specifying a question text parameter for both a free-form or multiple choice question for a
Decision Activity that is contained within a loop.

v When specifying a body text parameter for a notification attached to an activity that is contained
within a loop.

The Context_Loop workflow data object attributes available are:

Context_Loop.loopCount
The number of times that a loop has been iterated over.

Chapter 12. Loop Begin and Loop End 89

90 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 13. Parallel

13.1 Prerequisites
v The base details common to all the activity types supported by Cúram workflow are described in

Chapter 6, “Base Activity,” on page 31 and are applicable to the parallel activity described here.
v As parallel activities wrap existing activities in a workflow process definition, the metadata described

in Chapter 9, “Manual,” on page 59 and Chapter 10, “Decision,” on page 75 is also relevant to the
parallel activity described here.

13.2 Overview
In business processes, it may be required to send multiple tasks to different human agents at the same
time to expedite the progress of the overall process. When the number of parallel paths are known at
development time this can easily be achieve using a split. However in some cases the number of paths
will not be know until runtime. Such situations can be modeled using parallel activities.

A parallel activity acts as a wrapper around existing activities. The effect of using one of these new
activities at runtime is that multiple instances of the wrapped activity are executed in parallel. To date,
the only supported types of wrapped activity are Manual (Chapter 9, “Manual,” on page 59) and
Decision (Chapter 10, “Decision,” on page 75) activities. Therefore, executing a parallel activity currently
equates to the creation and allocation of multiple tasks in parallel.

13.3 Metadata
A parallel activity must specify the type of activity it wraps. A list workflow data object must also be
associated with the parallel activity. The number of items in this list workflow data object will then
determine the number of instances of that wrapped activity that will be created by the workflow engine
at runtime.

13.3.1 Generic Metadata for a Parallel Activity

© Copyright IBM Corp. 2012, 2013 91

manual-activity/decision-activity
This reflects the type of activity wrapped by the parallel activity. Currently, two types of wrapped
activities are supported, Chapter 9, “Manual,” on page 59 and Chapter 10, “Decision,” on page 75
activities. The types of activity that may be wrapped by a parallel activity can be seen in the
ParallelActivityType codetable.

list-wdo-name
Each parallel activity must have a list workflow data object associated with it. The number of
instances of the wrapped activity that are created at runtime is determined by the number of
items in this list workflow data object.

13.3.2 Metadata for a Parallel Manual Activity
The example below illustrates the metadata associated with the wrapped activity of type Manual. This
metadata is exactly the same that as that seen for a manual activity described in Chapter 9, “Manual,” on
page 59 and hence will not be described here again. Any validations pertaining to the parallel manual
activity mappings are also described in Chapter 9, “Manual,” on page 59. The Context_Parallel
Workflow Data Object and an indexed item from the Parallel Activity List WDO can be used in all the
available mappings for a Parallel Manual Activity. Examples of such usage can be seen below:

<parallel-activity id="1" category="AC1">
<list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
<manual-activity>

<name>
<localized-text>

<locale language="en">
CheckEmployerDetailsTasks</locale>

</localized-text>
</name>
..........

</manual-activity>
</parallel-activity>

or

<parallel-activity id="1" category="AC1">
<list-wdo-name>ChildDetailsListWDO</list-wdo-name>
<decision-activity>

<name>
<localized-text>

<locale language="en">ValidateChildDetails</locale>
</localized-text>

</name>
..........

</decision-activity>
</parallel-activity>

92 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

13.3.3 Metadata for a Parallel Decision Activity
The example below illustrates the metadata associated with the wrapped activity of type Decision. This
metadata is exactly the same that as that seen for a decision activity described in Chapter 10, “Decision,”
on page 75 and hence will not be described here again. Any validations pertaining to the parallel decision
activity mappings are also described in Chapter 10, “Decision,” on page 75. The Context_Parallel
Workflow Data Object and an indexed item from the Parallel Activity List WDO can be used in all the
available mappings for a Parallel Decision Activity. Examples of such usage can be seen below:

<parallel-activity id="1" category="AC1">
<list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
<manual-activity>

...
<task>

<message>
<message-text>

<localized-text>
<locale language="en">Check employer
details for %1s. This is employer number: %1n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />

<wdo-attribute
wdo-name=
"Context_Parallel" name="occurrenceCount" />

</message-parameters>
</message>
...

</task>
...
<event-wait wait-on-all-events="false">

<events>
<event identifier="1" event-class="EMPLOYER"

event-type="DETAILSCHECKED">
<event-match-attribute wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="identifier" />

</event>
</events>

</event-wait>
<biz-object-associations>

<biz-object-association biz-object-type="BOT2">
<wdo-attribute
wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="identifier" />

</biz-object-association>
</biz-object-associations>

</manual-activity>
</parallel-activity>

Chapter 13. Parallel 93

<parallel-activity id="1" category="AC1">
<list-wdo-name>ChildDetailsListWDO</list-wdo-name>
<decision-activity>

...
<message>

<message-text>
<localized-text>

<locale language="en">In this task the details
for child %1s must be validated. This is child
number: %1n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />

<wdo-attribute
wdo-name=
"Context_Parallel" name="occurrenceCount" />

</message-parameters>
</message>
<decision-action>

<message>
<message-text>

<localized-text>
<locale language="en">Validate the child details
for %1s associated with this case %2n.</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />
<wdo-attribute wdo-name="CaseDetails"

name="identifier" />
</message-parameters>

</message>
</decision-action>
...
<question>

<message>
<message-text>

<localized-text>
<locale language="en">Are the details for this
child whose first name is %1s and second name
%2s correct?</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="firstName" />
<wdo-attribute

wdo-name=
"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"

name="surname" />
</message-parameters>

</message>
<answers multiple-selection="false">

<answer name="answerYes">
<answer-text>

<localized-text>
<locale language="en">Yes</locale>

</localized-text>
</answer-text>

</answer>
<answer name="answerNo">

<answer-text>
<localized-text>

94 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

13.3.4 Validations
v A workflow data object must be specified for a parallel activity. This must be a list workflow data

object and it must be valid in the context of the containing workflow process definition.
v All of the other validations pertaining to parallel activities are described in the chapters that describe

the activities that a parallel activity can wrap (i.e. Chapter 9, “Manual,” on page 59 and Chapter 10,
“Decision,” on page 75).

13.3.5 Runtime Information
The workflow engine loads the instance data for the list workflow data object associated with the parallel
activity. For each item in the list workflow data object, a new instance of the wrapped activity is created
and executed. The details of what occurs when these instances of the wrapped activity are executed may
be found in the relevant chapters describing the activities that a parallel activity can wrap (Chapter 9,
“Manual,” on page 59 and Chapter 10, “Decision,” on page 75).

At runtime, the Workflow Engine treats a Parallel Activity as if it were multiple activities, contained
within a Parallel (AND) Split/Join block. One Activity Instance is created per item in the Parallel Activity
List WDO (e.g. if that list contains three items, then three Activity Instances will be created). This ensures
that all of the activity instances associated with the parallel activity must be completed before the actual
parallel activity is deemed to be complete and the workflow can progress.

In order to resolve the mappings associated with a Parallel Activity, each instance of the wrapped activity
is associated with one item from the Parallel Activity List WDO. The item is indexed using the
Context_Parallel Workflow Data Object (e.g. ChildDetailsListWDO[Context_Parallel.occurrenceCount]).

13.3.6 Description of Context WDOs
Each Parallel Activity Instance is associated with one item from the Parallel Activity List WDO. This item
is accessed by using the Context_Parallel Workflow Data Object to index the Parallel Activity List WDO
(e.g. ChildDetailsListWDO[Context_Parallel.occurrenceCount]). Indexed items can then be used to map
data in the usual way. Examples of such mappings may be seen in the metadata examples shown above
(see 13.3.2, “Metadata for a Parallel Manual Activity,” on page 92 and 13.3.3, “Metadata for a Parallel
Decision Activity,” on page 93. The one attribute available on this workflow data object is:

Context_Parallel.occurrenceCount
Each Parallel Activity Instance is associated with one item from the Parallel Activity List WDO.
The occurrenceCount attribute is the index of that item within the Parallel Activity List WDO. It
is of type INTEGER and is a zero-based index.

Chapter 13. Parallel 95

96 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 14. Activity Notifications

14.1 Overview
The workflow engine is able to notify interested users about the progress of a workflow process instance.
Essentially the workflow engine can raise a notification when an activity executes if the notification has
been specified in the associated process definition metadata. A notification is specified for an activity as
additional metadata that can be attached to any activity type.

When the workflow engine executes an activity it checks whether a notification has been configured for
that activity. If one exists, a notification is created by the workflow engine detailing that a particular step
in the workflow process has been preformed. The delivery of these notifications to the user is determined
by the notification delivery mechanism configured in the Cúram application. Notifications may be
delivered using emails, as alerts sent to a user's inbox, or using both emails and alerts.

14.2 Notification Details
A notification is simply information that is sent to a human agent when a step in the process executes.
Notifications manifest themselves as alerts in a user's inbox or as emails. The agents to which the
notification must be sent are determined by the allocation strategy (see 14.3, “Notification Allocation
Strategy,” on page 101) specified for the notification. The details that are displayed to the user in the alert
or email are specified as part of the notification metadata.

14.2.1 Metadata

© Copyright IBM Corp. 2012, 2013 97

<manual-activity id="1" category="AC1">

...

<notification delivery-mechanism="DM1">
<subject>
<message>

<message-text>
<localized-text>

<locale language="en">
The case number %1n for Claimant %2s has
been closed.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

<wdo-attribute wdo-name="PersonDetails"
name="userName" />

</message-parameters>
</message>

</subject>
<body>

<message>
<message-text>

<localized-text>
<locale language="en">
This case concerned %1n and claimant %2s.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

<wdo-attribute wdo-name="PersonDetails"
name="fullName" />

</message-parameters>
</message>

</body>
<allocation-strategy type="target" identifier="1" />
<actions>

<action page-id="viewTaskHome" principal-action="false">
<message>

<message-text>
<localized-text>

<locale language="en">
View the task associated with the %1n case.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID" />

</message-parameters>
</message>
<link-parameter name="childID">

<wdo-attribute wdo-name="ChildDependents"
name="childID" />

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependents</list-wdo-name>
</multiple-occurring-action>

</action>
<action page-id="viewCaseHome" principal-action="false">

<message>
<message-text>

<localized-text>
<locale language="en">
View the case details for %1n.
</locale>

98 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

delivery-mechanism
This describes the mechanism used to deliver the notification. The delivery mechanisms available
are specified in the application codetable DeliveryMechanism. Both the Cúram application and
customers can extend this codetable and add further delivery mechanisms if required. The
delivery mechanism specified plays no functional role in the workflow engine as it simply calls
the delivery mechanism configured in the application to deliver the newly created notification.

subject
This represents a parameterized text message detailing the subject of the notification for all
locales. This subject will be displayed in the user's inbox for the notification alert. For details on
parameterized messages, see Chapter 9, “Manual,” on page 59.

body This represents a parameterized text message representing the body of the text associated with
this notification for all locales. When the user clicks on the notification subject in the inbox, this
body text will be displayed as the full text of the notification.

allocation-strategy
This represents the allocation strategy used to determine the agents to which this notification will
be sent to (see 14.3, “Notification Allocation Strategy,” on page 101).

actions
In the same way a Chapter 9, “Manual,” on page 59 can have actions associated with it's task, a
notification can have associated actions the notified user can take. This piece of metadata
represents the details of these notification actions and the metadata details for actions is detailed
in 9.3, “Task details,” on page 59.

multiple-occurring-action
This signifies that this notification action will represent a multiple occurring action. This means
that if this metadata is specified for a notification action, the workflow engine will create one
action record for each item in the list workflow data object specified as the multiple occurring
action, when that activity is executed.

It should be noted that when the multiple occurring action is specified for a notification action,
then an attribute from the associated list workflow data object must be used as a link parameter
for the notification action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

14.2.2 Validations
v A subject must be defined for the notification.
v Every workflow data object attribute mapped to a notification subject must exist in the containing

process definition and be a valid workflow data object.
v If an indexed item from a list workflow data object (i.e. CaseList[Context_Loop.loopCount]) is used as

a notification subject text parameter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a notification subject text parameter, then the
activity containing the notification must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a notification subject text
parameter, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v A notification body must be defined.
v Every workflow data object attribute mapped to an notification body must exist in the containing

process definition and be a valid workflow data object.

Chapter 14. Activity Notifications 99

v If an indexed item from a list workflow data object (i.e. CaseList[Context_Loop.loopCount]) is used as
a notification body text parameter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a notification body text parameter, then the
activity containing the notification must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used as as a notification body text
parameter, then the activity containing the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

v An allocation strategy must be defined for an activity notification.
v If a function is specified as the notification allocation strategy, it must be a valid Cúram business

method that returns an AllocationTargetList object.
v Any rule set specified as the notification allocation strategy must be a valid allocation rule set.
v A delivery mechanism must be defined for an activity notification.
v The workflow data object attributes mapped to the notification action text and notification action link

parameters for a notification action must exist in the containing process definition.
v If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is

used as a notification action text or notification action link parameter mapping, then the workflow data
object must be a list workflow data object and the activity containing the mapping must be contained
within a loop.

v If the Context_Parallel workflow data object is used as a notification action text or notification action
link parameter mapping, then the activity containing the notification must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used as as a notification action text
or notification action link parameter mapping, then the activity containing the mapping must be a
Parallel Activity (i.e. ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

v The number of placeholders used in the notification subject text, notification action text and notification
body text must equal the number of mapped workflow data object attributes (for all locales).

v The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be of type List

v At least one attribute from the multiple occurring action list workflow data object must be utilized in
the link parameters specified for a multiple occurring action.

14.2.3 Code
For each action defined, the action page must refer to a valid Cúram page in the application whose page
parameters are fully populated by the action link parameters contained in the notification metadata.

A LocalizableStringResolver API is provided to the application which allows for parameterized
message strings to be resolved. The methods in this API will resolve and return the specified message for
the required locale. Along with this, any workflow data objects to be used in the message placeholders
will be resolved and included as part of the string returned.

As part of the LocalizableStringResolver API, a NotificationStringResolver interface is provided for
resolving the parameterized messages associated with notifications. The notification subject, body, and
action text can be resolved for use in the application using the methods contained in this API. The
application should use these methods to process the notification once the workflow engine invokes the
associated notification delivery method in the application.

100 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

14.2.4 Runtime Information
After the workflow engine has completed executing an activity, it checks whether an associated
notification has been defined for that activity. If one has been defined, the engine determines the users to
be notified from the allocation strategy employed and calls the notification delivery method in the
application with the notification details.

14.3 Notification Allocation Strategy

14.3.1 Prerequisites
The notification allocation strategy determines the user or users to be notified once the associated activity
has occurred. Defining the notification allocation strategy to be used is exactly the same as that used for
manual activity tasks (see 9.4, “Allocation strategy,” on page 65).

14.3.2 Code
The application must implement the NotificationDelivery callback interface to determine how
notifications are handled in the application.

The workflow engine will call the deliverNotification method in the
curam.util.workflow.impl.NotificationDelivery implementation class in order to process the
notification. The engine will pass both the list of allocation targets determined by the allocation strategy
and the details of the required notification to this application method.

The application property curam.custom.notifications.notificationdelivery defines what implementation of
the NotificationDelivery interface will be used by the workflow engine to process the notification.

The deliverNotification method in this default implementation class is overloaded. This is because the
various allocation strategy types return the allocation targets in different formats. However this is an
implementation detail that developers of custom notification delivery classes should not have to deal
with especially since the business processing for all versions of the method should be the same.

To mitigate against this issue the curam.core.sl.impl.DefaultNotificationDeliveryAdapter provides a
more convenient mechanism for implementing a work resolver. This class implements the different
methods and converts their input parameters into allocation target lists allowing developers of custom
notification delivery logic to extend this class and implement one method that is called regardless of the

package curam.util.workflow.impl;

...

public interface NotificationDelivery {

boolean deliverNotification(
final NotificationDetails notificationDetails,
final Object allocationTargets);

boolean deliverNotification(
final NotificationDetails notificationDetails,
final Map allocationTargets);

boolean deliverNotification(
final NotificationDetails notificationDetails,
final String allocationTargetID);

...
}

Chapter 14. Activity Notifications 101

source of the allocation targets.

In addition to this adapter class the application ships with a notification delivery implementation that is
used out-of-the-box. This class is called curam.core.sl.impl.DefaultNotificationDelivery and it also
serves as an example of how to extend the adapter.

The notification delivery strategies are listed in the DELIVERYMECHANISM code table. Adding a new
strategy is simply a matter of extending this code table with a new strategy (for example SMS) and
implementing a delivery strategy that recognizes this code and performs the appropriate logic. However
since the notification delivery class is set using a single application property, replacing the
curam.core.sl.impl.DefaultNotificationDelivery class would disable out-of-the-box delivery
mechanisms. If the goal is to extend rather replacing the out-of-the-box delivery mechanisms, custom
classes should extend the curam.core.sl.impl.DefaultNotificationDelivery in a way that preserves the
original functionality. The curam.core.sl.impl.DefaultNotificationDelivery class has been implemented
with this in mind.

The curam.core.sl.impl.DefaultNotificationDelivery class implements the deliverNotification
method from the abstract adapter but immediately delegates the identification of the mechanism to use to
a protected method. The protected selectDeliveryMechanism method can be overridden by subclasses to

package curam.core.sl.impl;

...

public abstract class DefaultNotificationDeliveryAdapter
implements curam.util.workflow.impl.NotificationDelivery {

public abstract boolean deliverNotification(
final NotificationDetails notificationDetails,
final AllocationTargetList allocationTargets);

...
}

package curam.core.sl.impl;

public class DefaultNotificationDelivery
extends DefaultNotificationDeliveryAdapter {

public boolean deliverNotification(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

return selectDeliveryMechanism(
notificationDetails, allocationTargetList);

}

protected boolean selectDeliveryMechanism(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

boolean notificationDelivered = false;
if (notificationDetails.deliveryMechanism.equals(

curam.codetable.DELIVERYMECHANISM.STANDARD)) {
notificationDelivered = standardDeliverNotification(

notificationDetails, allocationTargetList);
} else if (
...
return notificationDelivered;

}

...

}

102 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

identify any custom delivery mechanisms and perform the appropriate operations as shown in the
example below:

Notice that the selectDeliveryMechanism method in the custom class first delegates to its super class
before executing any of its own logic. Extending the functionality in this was allows custom classes to
invoke the out-of-the-box delivery mechanism without having to know the specific codes the parent class
recognizes. This approach is also upgrade friendly as if a future version of Cúram supports more delivery
mechanisms out-of-the-box a custom class implemented as shown here will not need to change to avail of
the new functionality.

The boolean flag returned from the notification delivery function above is used to indicate to the
Workflow Engine if the notification was delivered to at least one user on the system. If it was not, then
the engine writes a workflow audit record detailing this fact.

public class CustomNotificationDeliveryStrategy
extends DefaultNotificationDelivery {

protected boolean selectDeliveryMechanism(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

boolean notificationDelivered = false;
boolean superNotificationDelivered = false;
superNotificationDelivered = super.selectDeliveryMechanism(

notificationDetails, allocationTargetList);
if (notificationDetails.deliveryMechanism.equals(

curam.codetable.DELIVERYMECHANISM.CUSTOM)) {
notificationDelivered = customDeliverNotification(

notificationDetails, allocationTargetList);
}
return (superNotificationDelivered || notificationDelivered);

}
}

Chapter 14. Activity Notifications 103

104 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 15. Transitions

15.1 Overview
Transitions provide the links between activities. They are the primary flow control construct and dictate
the order in which activities will be executed. Transitions are unidirectional and an activity can have
multiple outgoing and incoming transitions forming branch and synchronization points respectively. Since
every process definition must have one start and one end activity (see Chapter 6, “Base Activity,” on
page 31), a process definition can be thought of informally as a directed graph in which activities are the
vertices, transitions are the arcs and every path from the start activity eventually leads to the end activity.

15.2 Metadata

© Copyright IBM Corp. 2012, 2013 105

transitions
A workflow process definition must contain at least one transition. This contains the details of all
of the transitions between the activities in the specified workflow process definition.

transition
This contains the details of one transition between two activities in the specified workflow
process definition. The following mandatory fields that constitute a transition are described
below:

id This is a 64-bit identifier supplied by the Cúram key server when transitions are created
in the Process Definition Tool (PDT). The transition identifier is required to be unique
within a process definition but global uniqueness within all of the process definitions on
the system is not required.

<workflow-process id="32456" >
<name>WorkflowTestProcess</name>
...
<wdos>
...
</wdos>
<activities>

<start-process-activity id="512">
...

</start-process-activity>
<route-activity id="513" category="AC1">

...
</route-activity>
<route-activity id="514" category="AC1">

...
</route-activity>
<end-process-activity id="515">

...
</end-process-activity>

</activities>
<transitions>

<transition id="1" from-activity-idref="512"
to-activity-idref="513" />

<transition id="2" from-activity-idref="513"
to-activity-idref="514">

<condition>
<expression id="5"

data-item-lhs="TaskCreateDetails.reservedByInd"
operation="==" data-item-rhs="true"
opening-brackets="2"/>

<expression id="6"
data-item-lhs="TaskCreateDetails.subject"
operation="&gt;"
data-item-rhs="&quot;MANUAL&quot;"
conjunction="and" closing-brackets="1"/>

<expression id="7"
data-item-lhs="TaskCreateDetails.status"
operation="!="
data-item-rhs="&quot;OPEN&quot;"
conjunction="or"/>

<expression id="8"
data-item-lhs="TaskCreateDetails.status"
operation="&lt;="
data-item-rhs="&quot;INPROGRESS&quot;"
conjunction="or" closing-brackets="1"/>

</condition>
</transition>
<transition id="3" from-activity-idref="514"

to-activity-idref="515">
</transitions>

</workflow-process>

106 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

from-activity-idref
This is the 64-bit identifier of the source activity of the transition.

to-activity-idref
This is the 64-bit identifier of the target activity of the transition.

condition
Transitions can optionally have a condition to decide whether or not the given transition will be
followed. A condition is a list of expressions that perform logical operations on workflow data
objects attributes. Conditions are described in more detail in Chapter 16, “Conditions,” on page
109

15.3 Validations
v The source activity defined for the transition must be a valid activity within the containing workflow

process definition.
v The target activity defined for the transition must be a valid activity within the containing workflow

process definition.
v The source and target activities defined for a transition cannot be the same activity.
v The start process activity in a workflow process definition must not contain any incoming transitions.
v The end process activity in a workflow process definition must not contain any outgoing transitions.
v All activities defined in the workflow process definition, except for the end process activity, must

contain at least one inbound transition.
v All activities defined in the workflow process definition, except for the start process activity, must

contain at least one outbound transition.

15.4 Runtime Information
Activities that perform some application related work (as opposed to workflow engine only work such as
route and end process activities) require a clear transactional boundary between the engine and
application code. It is also useful to have asynchronous invocations between the workflow engine and the
application (e.g. a user should not have to wait while workflow transitions to the next activity before
control is returned to them in the user interface).

To this end, there are three distinct functions present in a workflow activity, start(), execute() and
complete(). After the completion of an activity in the workflow process instance, the workflow engine
calls the function to continue the process. This function evaluates the outgoing transitions from that
activity to determine which one(s) will be followed.

For each activity to be followed, the corresponding start() function is called. The appropriate activity
instance data is then set up for that activity. If the activity is to be executed directly with no JMS (Java
Message Service (JMS) API is a part of Java EE) messaging required (i.e. a route activity is always
executed directly as there is no application related work involved), the execute() method is called here.
Otherwise, a JMS message is sent to execute the specified activity (i.e. an automatic activity). The
workflow message handler resolves the process and activity specified in the message and calls the
execute() function on the activity.

After calling the application code to carry out the work specified by the activity, another message is sent
to complete the activity. Again, the workflow message handler resolves the process and activity specified
in the message and calls the complete function for the activity. After marking the activity as complete, the
function to continue the process is called again to resolve the set of transitions to be followed from the
completed activity and the process begins again.

Chapter 15. Transitions 107

108 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 16. Conditions

16.1 Overview
The flow control constructs described in Chapter 15, “Transitions,” on page 105 and Chapter 12, “Loop
Begin and Loop End,” on page 87 require or support the evaluation of conditions to determine how the
workflow should proceed. The Loop Begin activities must have some metadata that specifies the loop exit
conditions, while transitions can optionally have a condition to decide whether or not the given transition
will be followed.

This chapter describes the process definition metadata construct that represents a condition. A condition
is a list of expressions that perform logical operations on workflow data objects attributes. The condition
itself is a compound whose value is conjunction or disjunction of its constituent expressions. The parent
constructs (loops and transitions) are responsible for taking appropriate actions as a result of the
evaluation of conditions.

16.2 Metadata

© Copyright IBM Corp. 2012, 2013 109

condition
This metadata is mandatory for a loop begin activity (as a loop must have an exit condition
specified for it) but optional for a transition (a transition may not have a condition specified for
it). It contains the details of all the expressions defined for the condition.

<workflow-process id="32456" >
...
<activities>
...
</activities>
<transitions>

<transition id="1" from-activity-idref="512"
to-activity-idref="513">

<condition>
<expression id="5"

data-item-lhs="TaskCreateDetails.reserveToMeInd"
operation="==" data-item-rhs="true"
opening-brackets="2"/>

<expression id="6"
data-item-lhs="TaskCreateDetails.caseID"
operation="&amp;gt;"
data-item-rhs="2" conjunction="and"
closing-brackets="1"/>

<expression id="7"
data-item-lhs="TaskCreateDetails.status"
operation="!="
data-item-rhs=""Completed""
conjunction="or"/>

<expression id="8"
data-item-lhs="TaskCreateDetails.status"
operation="&amp;lt;="
data-item-rhs=""Closed""
conjunction="or" closing-brackets="1"/>

</condition>
</transition>
<transition id="2" from-activity-idref="512"

to-activity-idref="513">
<condition>

<expression id="9" function="isNothing"
data-item-rhs="TaskCreateDetails.subject"/>

</condition>
</transition>
<transition id="3" from-activity-idref="513"

to-activity-idref="514">
<condition>

<expression id="10"
data-item-rhs="TaskCreateDetails.reserveToMeInd"
conjunction="and" function="not" />

</condition>
</transition>
<transition id="4" from-activity-idref="514"

to-activity-idref="515">
<condition>

<expression id="6"
data-item-lhs
="ClaimantDependents[Context_Loop.loopCount]"
operation="&amp;gt;"
data-item-rhs="20"
conjunction="and"
closing-brackets="1"/>

</condition>
</transition>

</transitions>
</workflow-process>

110 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

expression
This contains the details of one expression contained in a condition. There may be one or many
expressions specified for an associated condition. Two types of expression may be defined in a
condition. These are function expressions (using one of two predefined functions, not() and
isNothing()) and data item expressions (where the condition expression created applies the
chosen operator to either two workflow data object attributes, or a workflow data object attribute
and a constant). A transition expression consists of the following attributes:

id This represents a 64-bit identifier supplied by the Cúram key server when transition
expressions are created in the PDT. The expression identifier is required to be unique
within a process definition but global uniqueness within all of the process definitions on
the system is not required.

data-item-rhs
This represents the name of the data item to use on the right hand side of the condition
expression. In the case of a data item condition expression, it may represent a workflow
data object attribute (see Chapter 4, “Workflow Data Objects,” on page 17 or a constant
value that the chosen operator will be applied to. For function condition expressions, this
represents a workflow data object attribute that either of the two predefined functions
will be used against to evaluate the condition.

data-item-lhs
This metadata tag is optional as it is not required for a function condition expression. In
the case of a data item condition expression, it represents the name of the data item to
use on the left-hand side of the condition (i.e. a workflow data object attribute).

operation
This metadata tag is optional as it is not required for a function condition expression. In
the case of a data item condition expression, it represents an identifier for the logical
operation that will be applied to either two workflow data object attributes or a workflow
data object attribute and a constant value. The following is the list of valid operators that
may be used in a data item condition expression:

Table 4. Condition Expression Operators

Operator Explanation

== equal to

!= not equal to

<= less than or equal to

>= greater than or equal to

< less than

> greater than

conjunction
This represents an identifier for a logical conjunction that may be used in either a
function or data item condition expression. There are two possible values for this
attribute, and (the default) and or. When a condition consists of multiple expressions, the
logical conjunction is used in the evaluation of the complete condition.

function
This is optional as it is only used when specifying a function condition expression. As
stated previously, there are two predefined functions, Not() and isNothing(). The Not()
function acts as a logical inversion operator. In normal cases, this is applied to a boolean
value. The isNothing() function may be applied to any workflow data object attribute
type other than a boolean value. It may be used to test the scenarios where required data
does not exist or has not been provided. The function returns a boolean value of True if
the workflow data object attribute being examined does not contain any data.

Chapter 16. Conditions 111

opening-brackets
This is optional (the default is 0) as it may not be specified for either type of condition
expression. It represents the number of opening brackets to insert at the start of the
expression.

closing-brackets
This is optional (the default is 0) as it may not be specified for either type of condition
expression. It represents the number of closing brackets to insert at the end of the
expression.

The number of opening and closing brackets specified for an individual expression do not
have to match (unless of course there is only one expression in the condition). The overall
number of opening and closing brackets in the condition as a whole (with all of the
expressions included) must be the same. Care should therefore be taken when specifying
the number and position of opening and closing brackets within an individual expression,
and the condition as a whole, as these brackets help determine how the condition and the
individual expressions within that condition are evaluated. The same care should be
taken when specifying the conjunction of an expression as failure to do so can lead to
unexpected results.

16.3 Validations
v The workflow data object attribute specified as the right hand side data item of the condition

expression must be a valid workflow data object attribute in the context of the containing workflow
process definition.

v The workflow data object attribute specified as the left hand side data item of the condition expression
must be a valid workflow data object attribute in the context of the containing workflow process
definition.

v The operator specified in a data item condition expression must be a valid and supported operator.
v The function specified in a function condition expression must be a valid and supported function.
v The conjunction specified in a condition expression must be valid and supported conjunction.
v The number of opening brackets and the number of closing brackets must be equal in the context of

the overall condition.
v If the function Not() is specified for a function condition expression, then the type of the workflow

data object attribute specified as the right hand side data item of the expression must be of type
BOOLEAN.

v If the function isNothing() is specified for a function condition expression, then the type of the
workflow data object attribute specified as the right hand side data item of the expression must not be
of type BOOLEAN.

v If the right hand side data item of a data item condition expression is a workflow data object attribute,
the type of this attribute must be compatible with the corresponding left hand side data item workflow
data object attribute. Likewise, if the right hand side data item has been specified as a constant value,
it must be compatible with the type of the corresponding left hand side data item workflow data object
attribute.

v If either the right hand side or left hand side of a transition condition expression contains an indexed
item from a list workflow data object (i.e. ChildDependents[Context_Loop.loopCount].age), then the
associated workflow data object must be a list workflow data object and the activities involved in the
transition must be contained within a loop.

v For a loop condition expression, if either the right hand side or left hand side of the expression
specifies the size() attribute for a workflow data object, then that workflow data object must be a list
workflow data object.

v For a loop condition expression, if either the right hand side or left hand side of the expression
specifies the size() attribute for a workflow data object, then the item on the other side of the
expression must be assignable to the type INTEGER.

112 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v For a loop condition expression, if either the right hand side or left hand side of the expression
specifies the isEmpty() attribute for a workflow data object, then that workflow data object must be a
list workflow data object.

v For a loop condition expression, if either the right hand side or left hand side of the expression
specifies the isEmpty() attribute for a workflow data object, then the item on the other side of the
expression must be assignable to the type BOOLEAN.

Chapter 16. Conditions 113

114 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 17. Split/Join

17.1 Introduction
Transitions link activities in a process definition. In the most basic configuration of activities and
transitions, each activity has only one incoming and one outgoing transition. However it is often useful to
follow more than one path out of an activity resulting in a split (i.e. multiple transitions emanating from
an activity). To support a valid block structure in a process definition (see Chapter 18, “Workflow
Structure,” on page 117), each split must be matched by a join (i.e. multiple transitions meeting at one
activity). In general a split allows multiple threads of work to be done at the same time while a join is the
reciprocal synchronization point for those threads.

There are two reasons for an activity to have a split (and by extension some other activity down the line
to have a join). The first is to allow work that does not have dependencies to be done in parallel while
the second is to allow a choice to be made between a number of different paths in the workflow.

At the metadata level, each activity has a split and a join type. When the activity has only one outgoing
or incoming transition a type of none is assigned to the split or join respectively. The other two split and
join types, choice (also known as XOR) and parallel (also known as AND), are self explanatory and are
the primary subject of this chapter.

17.2 Choice XOR Split

17.2.1 Metadata

split This is present for each activity and it contains the details of the split from the activity. This
includes a list of the transitions from the specified activity that will be resolved by the workflow
engine when the associated activity is completed to examine if they can be followed or not.

The order of the transitions in this list is important for a split type of XOR as it is the first
transition that is eligible in the ordered list of transitions that will be followed by the workflow
engine. In the metadata example above, if the transition conditions for transition identifiers 2, 3
and 4 are satisfied, it is the transition with the identifier of 2 that will be followed as this is the
first eligible transition in the list of ordered transitions.

type This represents the type of the split. As described above, there are three possible split
types. A split type of none indicates that there is only one outgoing transition from the

<manual-activity id="1" category="AC1">
...
<join type="and"/>
<split type="xor">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>
<task>

...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULE"/>
<event-wait>

...
</event-wait>

</manual-activity>

© Copyright IBM Corp. 2012, 2013 115

specified activity. A split type of xor indicates a choice and this means that the first
eligible transition from the list of ordered transitions will be followed. A split type of and
indicates a parallel path of execution which ensures that all of the eligible transitions
listed in the ordered list of transitions will be followed in parallel.

transition-id
This contains a reference to the specified transition. There will be multiple entries of this
metadata tag when the split type is xor or and.

idref This contains a reference to a transition in the workflow process definition.

17.3 Parallel AND split

17.3.1 Metadata

The metadata for the split type of and is similar to the split type of xor (see 17.2, “Choice XOR Split,” on
page 115). The difference is that the type of split is specified as and. This ensures that when the workflow
engine is determining the list of transitions to follow from a specified activity, the order of the transitions
in this list is not important as all eligible transitions in an and split will be followed. The ordered list of
transitions is maintained in this instance for this split type to facilitate the changing of the split type from
and to an xor, in which case the order of the transitions becomes important again.

<manual-activity id="1" category="AC1">
...

<join type="none"/>
<split type="and">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>
<task>

...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULE"/>
<event-wait>

...
</event-wait>

</manual-activity>

116 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 18. Workflow Structure

18.1 Overview
The structure of a workflow process is determined by the activities in the process and the transitions
between them. Hence a workflow forms a Graph in which the activities are vertices and the transitions
are arcs (the graph formed by a workflow can be viewed using the Visualize Workflow Process feature in
the Process Definition Tool).

In order for the workflow engine to successfully interpret and execute a process, the graph formed by
that process must meet certain criteria. This chapter presents those criteria under two main headings:
Graph Structure and Block Structure.

18.2 Graph Structure
Since a the set of activities and transitions in a process form a Graph, Graph Theory can be applied to
catch several well-known structural problems before a process is ever executed.

Graph Theory: Graph Theory is a branch of mathematics. Fortunately, those parts of graph theory that
are relevant to workflow are very simple. Hence, this chapter does not require any prior knowledge of
graph theory (a degree in mathematics is definitely not required!). There is a wealth of information about
graph theory on the Internet, where further discussion on many of the topics discussed in this chapter
can be easily found.

For example: consider a process in which an activity has a transition to another activity, which in turn
has a transition back to the first activity. This forms a cycle in the process graph.

If there were no conditions on the transitions, the process would be guaranteed to end up in an infinite
loop. These loops are known as informal loops (or 'ad-hoc' loops) and their presence renders several
useful structural validations impossible. For this reason (among others), Cúram workflow provides
formal constructs for delimiting iterative sections of a process (the loop-begin and loop-end activities).
This allows it to detect the presence of ad-hoc loops in processes and prevents such processes from being
released.

Code Analogies: Many developers will be familiar with the programming-language GOTO statement
and the curly braces commonly used to delimit the start ({) and end (}) of a formal loop.

GOTO is analogous to ad-hoc loops in a workflow. The curly braces are analogous to the formal
loop-begin and loop-end activities in a workflow.

18.3 Block Structure
There are several workflow elements which can affect the choice of flow path (or paths) through a
workflow at runtime. These include:
v 17.2, “Choice XOR Split,” on page 115
v 17.3, “Parallel AND split,” on page 116
v Chapter 12, “Loop Begin and Loop End,” on page 87

These elements always come in pairs. This is because they demarcate areas where the process should
exhibit a specific behavior (one related to the flow of control). These areas are normally referred to as
'blocks', because they have a specific start-point that must have a corresponding end-point.

© Copyright IBM Corp. 2012, 2013 117

Consider a process with a structure where all paths emerging from a Choice Split (guaranteed to only
follow one outbound path) all converge at a Parallel Join (which will wait until all inbound paths
complete before executing the next activity). In this case, the process is guaranteed to stall at the Parallel
Join. This is an example of a problem with the block-structure that can be caught by validations before a
process is even executed.

18.3.1 An Analogy for Blocks
A common analogy for how "blocks" work in a workflow is the way that brackets (like this!) work in a
sentence. Brackets have an explicit start point '(', which is always matched by a specific end-point ')'.
They demarcate an area of the sentence that has a specific meaning.

The way that brackets work in a mathematical expression is a closer analogy. In addition to matching
opening and closing brackets, a mathematical expression can use several types of brackets. The bracketed
expressions can be nested inside one another, but cannot be interleaved. This is very similar to how
blocks work in a workflow.

18.3.2 Block Types Supported by Workflow
The following sections describe the different types of blocks in Cúram workflow, how they begin/end
and what their purpose is.

18.3.2.1 'Choice' (XOR) Block
A Choice Block is started at a Choice (XOR) Split and ended at a Choice (XOR) Join (the 'brackets'). It
indicates that, of the possible paths within the block, no more than one can be followed.

The split has several transitions outbound from it, indicating the possible paths that a process instance
could follow. Since this is a Choice block, the paths are mutually exclusive - only one will be followed by
a given process instance.

The Choice Split must be matched by a corresponding Choice Join. This indicates the point at which the
process ceases to be distinct for each path, so the paths are merged back together (i.e. the remaining
process is common).

18.3.2.2 'Parallel' (AND) Block
A Parallel Block is started at a Parallel (AND) Split and ended at a Parallel (AND) Join (the 'brackets'). It
indicates that, of the possible paths within the block, many or all can be followed.

The split has several transitions outbound from it, indicating the possible paths that a process instance
could follow. Since this is a Parallel block, any number of the paths can be followed in parallel (assuming
their transition conditions are met).

The Parallel Split must be matched by a corresponding Parallel Join. This indicates the point at which all
the parallel paths must be synchronized before the workflow can continue.

18.3.2.3 'Loop' Block
A Loop Block is started at a loop-begin activity and ended at a loop-end activity (the 'brackets'). It
indicates that the section of the workflow delimited by the loop-begin and loop-end activities should be
repeated as long as the loop condition is met.

The loop-begin activity marks the point to which execution should return if the loop condition is met (i.e.
the place to return to if the engine determines that the loop should iterate). The loop-end activity marks
the point to which execution should jump if the loop condition is not met.

118 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

18.4 Structural Rules
There are certain structural rules that workflow designers should be aware of when constructing process
definitions. When a Cúram workflow process is validated, the validations assess whether the structure of
the process conforms to these rules. Like all validations, the aim is to ensure that the process can be
executed by the workflow engine.

18.4.1 Graph Structure Rules
A Cúram process must form a graph that has the following properties: directed, connected and acyclic.
This may sound complicated, but these are just the technical terms for some very simple graph
properties.
v A "directed" graph is one in which each edge only goes one way (it is usually referred to as a digraph).

In workflow terms, this means that a transition from activity A to activity B cannot be used to get from
B back to A. This is a given in Cúram workflow. It is mentioned here only because the 'acyclic'
property (see below) is defined differently for graphs and digraphs.

v A "connected" graph is one in which every vertex can be reached. In workflow terms, this means that
every Activity in the process must be reachable on at least one path from the start activity to the end
activity.
This prevents workflows from having a structure such that one or more activities could never be
executed.

v Finally, an "acyclic" digraph is one in which there are no directed cycles. In workflow terms, this means
there can be no ad-hoc loops (i.e. loops constructed using transitions instead of loop-begin and
loop-end activities).
Ad-hoc loops may seem convenient, but (like GOTO statements in programming languages) they can
make a process very difficult to read and understand. Using explicit loop constructs leads to clearer,
more understandable process definitions.
In addition, it allows the engine to know where looping can occur, so it can keep track of how many
times a loop has iterated at runtime.

18.4.2 Block Structure Rules
As mentioned earlier, the way that brackets work in a mathematical expression is a close analogy for how
"blocks" work in a workflow. Recall - there are several types of blocks: Choice, Parallel and Loop. In
Cúram workflow:
v Any block-starting constructs (Choice Split, Parallel Split or Loop- Begin Activity) must be terminated

by a corresponding block-ending construct (Choice Join, Parallel Join or Loop- End Activity
respectively).
In the case of Splits and Joins - all paths outbound from a split must converge at the corresponding
Join.

Rationale: Requiring Splits and Joins (for example) to be matched improves readability. In a section
containing multiple paths, it makes it clear whether a single path (or many) can be followed. This in
turn makes it clear whether or not synchronization is required at the point where the paths merge.

If they were not required to match, it would be possible (easy!) to model processes that would be
guaranteed to stall, or ones in which the end of the process could be reached before some activities had
finished executing.

v Blocks can be nested within each other (e.g. a Choice Split inside a Loop), but they cannot be
interleaved (e.g. None of the transitions from the choice split can go to an activity outside the loop).
This helps avoid situations that are difficult for the engine to process and are very unintuitive for
workflow developers.
Consider a Loop that contains a Join, where the Join has two inbound transitions: one from an activity
inside the loop, the other from an activity outside the loop.

Chapter 18. Workflow Structure 119

It is very difficult in this situation to decide how the join synchronization should work. One inbound
transition can only fire once, the other can fire multiple times. Any rules for handling such a situation
in the would be arbitrary and hence unintuitive.
Workflows defined using Choice, Parallel and Loop blocks have a clear, simple structure whose
meaning can be understood at a glance.

18.5 Validations
A valid Cúram workflow must form a directed, connected, acyclic graph that is block-structured. For the
most part these properties (directed, connected, acyclic) are discrete and so they can be checked
independently by the Process Definition Tool (PDT) before releasing a process. The structural validations
performed on a process definition are done in a distinct order and these are outlined below.

18.5.1 Simple Syntactic Checks
The first set of structural validations carried out are simple syntactic checks. These ensure that the activity
joins and splits (see Chapter 17, “Split/Join,” on page 115) in the process definition are set up correctly.
These validations include:
v All activities except the start and end activities must have at least one inbound and one outbound

transition.
v Any activity with more than one inbound transition must have a join type specified (i.e. a join type not

equal to NONE).
v Any activity with more than one outbound transition must have a split type (i.e. a split type not equal

to NONE).
v Any activity with exactly one inbound transition must have a join type of NONE.
v Any activity with exactly one outbound transition must have a split type NONE.
v The split type for a Parallel activity must be NONE.
v The join type for a Parallel activity must be NONE.
v A Parallel activity must have exactly one inbound transition.
v A Parallel activity must have exactly one outbound transition.
v The split type of the activity on the far side of the incoming transition to a Parallel activity must be

NONE.
v The join type of the activity on the far side of the outgoing transition from a Parallel activity must be

NONE.

18.5.2 Graph Checks
The second set of structural validations carried out are graph checks. These ensure the flow graph is a
directed, connected acyclic graph. These validations include:
v The workflow must form a 'connected' graph. This means that each activity must appear on at least one

path from the start activity to the end activity.
v The workflow must form an acyclic digraph. This means that there can be no path through the

workflow that hits the same activity twice. This validation checks for cycles created by transitions only
- cycles created with loop-begin and loop-end activities are perfectly valid.

v Every instance subgraph within the workflow graph must correctly terminate. This means that starting
at the start activity, every possible path through the workflow must end up at the end activity.

18.5.3 Block Checks
The third set of structural validations carried out are block checks. These ensure ensuring that the flow
graph is correctly block-structured.

120 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

The block-start constructs are: Start Process Activity, Loop Begin Activity, Parallel (AND) Split and Choice
(XOR) Split. Their corresponding block-end constructs are: End Process Activity, Loop End Activity,
Parallel (AND) Join and Choice (XOR) Join.

Based on these, the following block-structure validations are executed:
v For every block start, there must be a corresponding block end (i.e. if there is a Loop Begin activity in

the workflow, then there must be a corresponding Loop End activity).
v The block start/end types must match (i.e. if there is a Parallel (AND) Split present in the workflow

graph, then this must be matched by a corresponding Parallel (AND) Join).
v Blocks can be nested but not interleaved.

Chapter 18. Workflow Structure 121

122 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 19. Workflow Web Services

19.1 Overview
Cúram workflows can inter-operate with other workflow systems through support for specific aspects of
the Oasis group's Business Process Execution Language (BPEL) standard. BPEL processes can enact Cúram
workflow processes and be notified when the process completes.

The Cúram workflow engine is not intended to be a fully fledged BPEL orchestration engine. Instead the
Cúram workflows should be able to participate in BPEL orchestrated processes. This is done by providing
functionality to expose Cúram workflow processes as web services that can be invoked from BPEL
process partner links.

19.2 Exposing a workflow web service
Workflow web services build on top of the existing Cúram web services support. In particular the
workflow engine requires a Business Process Object (BPO) modeled as a Document Oriented Web Service
(see the Cúram Inbound Web Services chapter of the Cúram Modeling Reference Guide for details).

The web service BPO is just a front end to the workflow enactment API
(curam.util.workflow.impl.EnactmentService). This being the case only one such BPO is required per
application. An appropriate BPO is already provided in the Cúram application: Logical
View::MetaModel::Curam::Facades::
Workflow::WebService::WorkflowProcessEnactment.

To use workflow web services the BPO named Logical View::MetaModel::Curam::Facades::
Workflow::WebService::WorkflowProcessEnactment must be assigned a server component of stereotype
webservice.

Cúram web services can be customized in other ways for example making them secure using
WS-Security as described in the Secure Web Services chapter of the Cúram Modelling Reference Guide. All
customizations for workflow web services must be made to this BPO.

Note: Since all workflow web services are handled by the same BPO any customizations will affect all
process definitions that are exposed as web services.

19.2.1 Process Enactment
Exposing a Cúram workflow process definition as a web service simply requires marking it as such in the
Process Definition Tool (PDT) or directly in the metadata as described in Chapter 3, “Process Definition
Metadata,” on page 13. Once the process definitions have been marked as web services the server, the
server EAR and the web services EAR file must be rebuilt.

Like other Cúram web services the WSDL for the service can only be accessed once the web services EAR
has been deployed. The name of workflow web service is the same as the process name. Thus the WSDL
can be accessed at a URL similar to the following: http://testserver:9082/CuramWS/services/
<ProcessName>?wsdl

The content of the WSDL is determined in part by the input to the process (the WDO attributes marked
as required for enactment) and the process output (the WDO attributes marked as process output) (see
4.2, “Metadata,” on page 18). The WSDL port type is the process name and the operation to enact a
process is always startProcess.

© Copyright IBM Corp. 2012, 2013 123

19.2.2 Process completion callback
An external system (probably but not necessarily a BPEL process) that enacts a Cúram workflow via web
services will often require notification that the process completed and possibly some output data from the
process definition. Doing this requires a web service that will be invoked when the process completes to
be specified for each process definition.

The callback web service is specified in the process definition metadata using the PDT or directly in the
metadata as described in Chapter 3, “Process Definition Metadata,” on page 13.

Note: Before use in a workflow process definition the callback web service must be registered as a
Cúram outbound web service connector as described in the Cúram Outbound Web Service Connectors
chapter of the Cúram Modeling Reference Guide.

The callback web service must be implemented by an external system but conform to a port type
definition specified by the Cúram workflow web service, 19.3, “Invocation from BPEL processes” has
further details.

19.3 Invocation from BPEL processes
The creation of BPEL processes that enact Cúram workflow processes is out of the scope of this
document. However the WSDL for each workflow process web service contains information that can be
used by BPEL processes.

Callback Port Type
There is a port type in WSDL for a Cúram workflow web service that is not implemented by the
service itself. The name of this port type is the name of the process with the word "Complete"
appended to it (<ProcessName>Complete).

The purpose of this unimplemented port type is to define the web service interface that a Cúram
workflow web service expects to be implemented by the BPEL process that enacted it. This port
type that must be implemented by the callback web service configured in the process definition
(see 19.2.2, “Process completion callback”).

<wsdl:portType name="SomeCuramWorkflow">
<wsdl:operation name="startProcess">

<wsdl:input message="intf:startProcessRequest"
name="startProcessRequest"/>

<wsdl:output message="intf:startProcessResponse"
name="startProcessResponse"/>

<wsdl:fault message="intf:InformationalException"
name="InformationalException"/>

<wsdl:fault message="intf:AppException"
name="AppException"/>

</wsdl:operation>
</wsdl:portType>

Figure 2. Process Enactment Port Type

<!--Implemented by the BPEL process-->
<wsdl:portType name="SomeCuramWorkflowComplete">

<wsdl:operation name="processCompleted">
<wsdl:input message="intf:processCompletedRequest"

name="processCompletedRequest"/>
</wsdl:operation>

</wsdl:portType>

Figure 3. Callback Port Type

124 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Partner Link Type
Technically the only thing necessary to allow a Cúram workflow process to participate in a BPEL
orchestrated process is to expose the process as a web service. However it is possible to add some
metadata to assist the BPEL process developer by defining the port types involved in the partner
link and the roles they play.

The BPEL specification allows partner link types to be defined in the WSDL for the service to be
invoked in the partner link using the WSDL extension mechanism. The WSDL generated for a
Cúram workflow web service defines the partner link type it expects to participate in and
specifies the port types that play each role.

<!--Partner link type-->
<partnerLinkType name="CuramWorkflowPartnerLink"

xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
<role name="curamService">

<portType name="tns1:SomeCuramWorkflow"/>
</role>
<role name="partnerService">

<portType name="tns1:SomeCuramWorkflowComplete"/>
</role>

</partnerLinkType>

Figure 4. WSDL extensions for BPEL

Chapter 19. Workflow Web Services 125

126 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 20. File Locations

20.1 Overview
While there are utilities like the Process Definition Tool PDT and other administration user interfaces, the
outputs of such tools often need to be exported and version controlled. Of course these externalized files
need to be put back into the runtime system when building or installing Cúram. The pattern in Cúram is
to place such files into a predefined source folder from which they are loaded onto the database (perhaps
after some pre-processing). This chapter describes the location of workflow related source files.

20.2 Workflow Process Definition Files
Workflow process definitions (both released and unreleased) can be imported onto the relevant database
table using the standard build database target.

These workflow process definitions must be stored in XML files in a workflow subdirectory under the
relevant Cúram server component directory (e.g. ...\EJBServer\components\core\workflow for the core
component or ...\EJBServer\components\Appeal\workflow for the Appeal component etc.).

Each component in the Cúram application can have a workflow directory containing the process
definition XML files relevant to it. Any process definition files stored in these workflow directories will
automatically be imported when the build database target is executed. If the process definition files are
not valid or if the name and version of the definitions do not match those used in the filenames, the
import will fail.

The workflow process definition XML files on the file system must follow a strict naming convention.
This is as follows: Process Name_vProcess Version.xml where:
v Process Name is the name of the workflow process.
v Process Version is the version of the workflow process.

The same version of a process definition can exist in multiple components in the Cúram application. The
version imported will always be taken from the component with the highest component order
precedence. Component order precedence is configured using the COMPONENT_ORDER_PRECEDENCE
environment variable.

Each process definition when imported will be assigned a new process definition identifier that is unique
for the database it is imported onto. Different versions of the same process definition will be assigned the
same unique identifier and only one unreleased version of a process definition can be imported. To
handle invalid workflow process definitions loaded during the build database target, strict validations are
in place in the workflow engine. These ensure that a workflow process definition cannot be loaded into
the process definition cache and executed unless it passes all of the process validations first. These
validations are described in the earlier chapters of this document.

20.2.1 Customizing Workflow Process Definition Files

20.2.1.1 Creating New Workflow Process Definition Files
All new workflow process definition files must be created in the workflow subdirectory of the
...\EJBServer\components\custom directory. To create a new process definition file, the PDT may be used
to create the required definition and enter all the details. The definition may then be exported to a file by
the tool and placed in the location specified above.

© Copyright IBM Corp. 2012, 2013 127

20.2.1.2 Changing An Existing Workflow Process Definition File
Using the PDT, view the latest version of the process definition that requires modification. Create a new
version of that process definition using the tool. Make the changes, validate it and release the workflow.

Export the newly released workflow process definition using the PDT and place it into the workflow
subdirectory of the ...\EJBServer\components\custom directory.

20.3 Event Definition Files
Events provide a mechanism for loosely-coupled parts of the Cúram application to communicate
information about state changes in the system. When one module in the application raises an event, one
or more other modules receive notification of that event having occurred provided they are registered as
listeners for that event. To make use of this functionality, some events have to be defined, some
application code must raise these events, and some event handlers have to be defined and registered as
listeners to such events.

Events are defined in Cúram in XML files, that specify both the event classes and the event types. These
files are created with a .evx extension and are placed in the events of a Curam component (e.g.
...EJBServer\components\core\events) from where they are picked up and processed by the build
scripts.

There are two types of output generated by the evgen command; .java files (for code constants that make
the use of events less error prone) and .dmx files (Cúram database scripts for loading event definitions
onto the database). The Java artifacts produced from a merged event files are placed in the
/build/svr/events/gen/[package] directory, where [package] is the package attribute specified in the
event definition file. The database scripts produced from a merged event files are placed in the
/build/svr/events/gen/dmx directory.

Chapter 10 of the Cúram Server Developer's Guide provides a comprehensive description of events and
how they may be used in the Cúram application.

128 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 21. Configuration

21.1 Overview
For the most part, configuration options are not global across all workflow process definitions. Rather
they are specific to each definition and hence are held within the actual process definition itself. That
said, there are a small number of application properties that affect the Cúram Workflow Management
System as a whole. This chapter describes those properties.

21.2 Application Properties
The following application properties can be set in the Application.prx file:

Property Name Description

curam.custom.
workflow.workresolver

Purpose: The fully-qualified name of the application class that implements the
WorkResolver callback interface. See 9.4, “Allocation strategy,” on page 65 for
further information.

Type: String

Default Value: curam.core.sl.impl.DefaultWorkResolver

curam.workflow.
automaticallyaddtasktousertasks

Purpose: After the resolution of the allocation targets for a task, if that task is
assigned to one user and one user only and the value of this property is set to
yes/true, the system will automatically add this task to a user's My Tasks list in
their Inbox to allow them to work on it.

Type: String

Default Value: NO

curam.custom.notifications.
notificationdelivery

Purpose: The fully-qualified name of the application class that implements the
NotificationDelivery callback interface. See 14.3, “Notification Allocation Strategy,”
on page 101 for further information.

Type: String

Default Value: curam.core.sl.impl.NotificationDeliveryStrategy

curam.workflow.disable.audit.
wdovalueshistory.before.activity

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property will ensure that no data is written to the WDO data
auditing table before an activity is executed.

Type: BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit.
wdovalueshistory.after.activity

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property will ensure that no data is written to the WDO data
auditing table after an activity has been executed.

Type: BOOLEAN

Default Value: FALSE

© Copyright IBM Corp. 2012, 2013 129

Property Name Description

curam.workflow.disable.audit.wdovalueshistory
.transition.evaluation

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property will ensure that no data is written to the WDO data
auditing table before the transitions from an activity are evaluated..

Type: BOOLEAN

Default Value: FALSE

curam.custom.workflow.processcachesize Purpose: The workflow engine caches released versions of process definitions in
memory (to minimize overheads when looking up metadata). This property controls
the maximum number of process versions stored in the cache. When this number
has been reached, the engine will begin ejecting process versions from the cache,
using a least-recently-used ejection policy. Runtime modifications to the value of
this property will take affect the next time the workflow engine attempts to insert a
process version in the cache.

Type: Integer

Default Value: 250

curam.batchlauncher.dbtojms.
notification.batchlaunchermode

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
notification.encoding

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
notification.host

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
messagespertransaction

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
notification.port

See Cúram Batch Processing Guide, Section 5.3 for further information.

130 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 22. JMSLite

22.1 Introduction
JMSLite is a Cúram-developed lightweight Java Message Service (JMS) server that runs alongside the
RMI-based test environment. Hence it can run inside supported Integrated Development Environments
(IDEs).

This allows process definitions to be tested inside an Integrated Development Environment, i.e. without
requiring the application to be deployed to an EJB server. When used in conjunction with the Process
Definition Tool, JMSLite allows developers to define, deploy and enact workflows - all within their
Integrated Development Environment.

22.2 What JMSLite Does
JMSLite is a JMS server that implements only those sections of the JMS specification necessary to support
Integrated Development Environment based testing of Cúram workflows: namely transactional,
point-to-point messaging. This means that JMSLite supports ACID transactions involving the application
database and the infrastructure-defined workflow queue destinations. It does not support custom
(application-defined) queues or the publish-subscribe domain (i.e. topics).

Consequently, JMSLite allows the workflow enactment service and workflow engine to send JMS
messages asynchronously. This means that application calls to workflow-related infrastructure APIs (such
as the enactment service and event service) are non-blocking. The APIs pass messages to the workflow
engine, which drives process instances asynchronously (e.g. executes automatic activities, creates and
allocates Tasks, etc).

22.3 Why JMSLite?
The purpose of JMSLite is to make the workflow engine behave in an Integrated Development
Environment in the the closest possible way to how it behaves when deployed on an application server.
This increases the likelihood of catching problems early (while testing in the Integrated Development
Environment) rather than late (when testing on an application server), thereby reducing both risk and
cost.

For example, consider the following situation: Suppose the WMS (running in an Integrated Development
Environment) were to enact workflows synchronously.

Reminder: In production, workflows are enacted asynchronously because they are assumed to be
long-lived (on the order of hours, days or weeks) relative to normal user operations (order of seconds or
milliseconds).
Suppose also that a developer were to write a method that enacted an automated case-approval
workflow and then (immediately after the call to the enactment service) tried to do something with the
result (e.g. check if the case was automatically approved). Since the test environment operates in a
different manner (synchronously) from the production environment - the code would work fine in test,
but would fail in production (this is an example of a 'temporal coupling' bug).

However, since JMSLite executes asynchronously - this problem would show up in the Integrated
Development Environment in the same way as it would on an application server, thereby allowing the
developer to catch it early.

© Copyright IBM Corp. 2012, 2013 131

22.4 Using JMSLite
The JMSLite server polls queues and unpacks any messages it finds on them. These messages result in
calls from the JMSLite server to the RMI server that is required for Integrated Development Environment
-based testing of Cúram methods (commonly referred to as StartServer). The JMSLite server is launched
as a thread when invoking the (StartServer) process. Since the JMSLite server dispatches messages to the
workflow engine running on the RMI server, it is necessary to start the StartServer in debug mode when
debugging workflow methods.

22.5 Debugging workflows
Normally, Cúram infrastructure methods are invoked by the application. However, in workflow the call is
often made the other way around - i.e. the workflow engine (infrastructure) calls an application method
(e.g.g a Work Allocation method). In these cases, it is not possible for an application developer to step
from the call to the curam.util.workflow.impl.EnactmentService.startProcess() method into their
application (Work Allocation) method. In this case, the developer must set breakpoints within the method
they wish to debug and then execute the method that enacts the workflow. The workflow engine will
then (asynchronously) invoke the application method, thereby causing the breakpoint to be reached. The
debugger will then suspend execution at the specified breakpoint, thereby allowing normal debugging.

Application methods that fall into the above category are:
v Automatic Activity methods
v Work Allocation Functions
v The application Notification Delivery Method
v The application Work Resolver Method

132 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Chapter 23. Inbox and Task Management

23.1 Overview
Tasks are used to assign and track the work of system users and are generated when Chapter 9,
“Manual,” on page 59, Chapter 10, “Decision,” on page 75 or Chapter 13, “Parallel,” on page 91 activities
are executed by the Workflow Engine. The Inbox and the associated task management functions are used
by the users of the Cúram application to manage these tasks. The following sections describe the
configuration and customization options that are available for the Inbox and Task Management areas of
the Cúram WMS.

23.2 Inbox Configuration

23.2.1 Inbox List Sizes Configuration Settings
There are a number of task list views available in the Inbox. These include the following:
v My Open Tasks : A list of tasks that the user is currently working on.
v My Deferred Tasks : A list of tasks that the user is working on but has deferred to a later date.
v Available Tasks : A list of tasks that are available to the user to work on.
v Task Query Search Results : A list of tasks that are the result of running a task query.
v Work Queue Tasks : A list of tasks that are assigned to a work queue.

There is also a list in the Inbox that displays the notifications that have been delivered to a user.
v My Notifications : A list of notifications that have been delivered to the user.

The Inbox list views can be configured to limit the number of records returned to the user. The following
application properties can be set in the Application.prx file to effect this change.

Table 5. Inbox List Sizes Configuration Settings

Property Name Description

curam.inbox.max.task.list.size Purpose: The value of the property controls the number of tasks
displayed in the various Inbox task list views. The Inbox task
lists pages affected by the value of this property include the
following: My Open Tasks; My Deferred Tasks; Available Tasks;
Task Query Search; Work Queue Tasks. If the number of tasks to
be displayed exceeds the specified value then a message is
displayed informing the user that not all the records that match
the search criteria of the page are being displayed. This message
displays both the number of tasks being displayed and also the
total number of tasks that match the search criteria.

Type: Integer

Default Value: 100

© Copyright IBM Corp. 2012, 2013 133

Table 5. Inbox List Sizes Configuration Settings (continued)

Property Name Description

curam.notification.max.list.size Purpose: The value of the property controls the number of
notifications displayed in the Inbox My Notifications list view. If
the number of notifications to be displayed exceeds the specified
value then a message is displayed informing the user that not all
the records that match the search criteria of the page are being
displayed. This message displays both the number of
notifications being displayed and also the total number of
notifications that match the search criteria.

Type: Integer

Default Value: 100

23.2.2 Get Next Task Configuration Settings
There are a number of shortcut functions available in the Inbox to retrieve the next task to work on.
These functions include the following:
v Get Next Task - retrieves the next task from the tasks available to the user.
v Get Next Task From Preferred Org Unit - retrieves the next task assigned to the user's preferred

organization unit.
v Get Next Task From Preferred Queue- retrieves the next task assigned to the user's preferred work

queue.
v Get Next Task From Queue- retrieves the next task assigned to a work queue that the user selects.

The algorithm used by these shortcut functions to retrieve the next task may be configured by using the
following application properties in the Application.prx file:

Table 6. Get Next Task Configuration Settings
Property Name Description

curam.workflow.
reservenexttaskwithpriorityfilter

Purpose: The value of the property controls whether the get next task algorithm uses
the priority of a task to determine the next task to retrieve. If set to YES, the default,
the priority of the task is used for this purpose (the priorities as specified in the
curam.workflow.taskpriorityorder) property. Otherwise, the task to be retrieved is
based on tasks that have been assigned to the user for the longest period of time.

Type: String

Default Value: Yes

curam.workflow.taskpriorityorder Purpose: There are three task priorities specified in the Workflow Management
System, namely High, Medium and Low (which correspond to the codetable codes
TP1, TP2 and TP3 in the TaskPriority codetable). In some cases, customers may
have a requirement to add a new task priority (e.g. Critical with a codetable code
value of TP4). Retrieving tasks using the task priority containing this value would
therefore ensure that critical tasks would appear after those that have a low priority
(when the intention would be that tasks with this priority should be retrieved first).
This property allows the task priorities to be specified in whatever order is required
to satisfy the customer's requirements.

Type: String

Default Value: TP1,TP2,TP3

23.2.3 Task Redirection and Allocation Blocking Settings
Task redirection enables the user to redirect tasks to another user, organizational object (organization unit,
position or job) or work queue for a specified period of time. Task allocation blocking enables the user to
ensure that no tasks are assigned to them for a specified period of time. This functionality is available to
the user in the Task Preferences area of the Inbox. However, all users on the system may not require
access to set up task redirection or task allocation blocking periods for themselves. To facilitate this

134 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

requirement, these areas of functionality in the Inbox may be disabled for specific users through the use
of security identifiers. The following table details the security identifiers that a user must have in order to
avail of this functionality.

Table 7. Security Identifiers and Associated Actions

Security Identifier Name Action Allowed

UserTaskRedirection.
listTaskRedirectionHistoryForUser

Allows a user to view all of the task redirection periods specified
for them.

UserTaskRedirection.
redirectTasksForUser

Allows a user to create a task redirection period for themselves.

UserTaskRedirection.
clearTaskRedirectionForUser

Allows a user to clear one of their task redirection periods.

UserTaskAllocationBlocking.list.
TaskAllocationBlockingHistoryForUser

Allows a user to view all of the task allocation blocking periods
specified for them.

UserTaskAllocationBlocking.
blockTaskAllocationForUser

Allows a user to create a task allocation blocking period for
themselves.

UserTaskAllocationBlocking.
clearTaskAllocationBlockForUser

Allows a user to clear one of their task allocation blocking
periods.

23.3 Inbox Customization
The default behavior of the Inbox Actions, Task Actions and Task Search functionalities can be changed
by using Guice to call custom code which overrides the default behavior.

Note: Guice is a framework developed by Google and is beyond the scope of this document. For more
information on Guice please refer to the Guice user's guide.

The Cúram Workflow Management System contains the following customization points and their
corresponding default implementations:

Table 8. Customization Points

Customization Point Interface Class Default Implementation Class

Inbox Actions curam.core.hook.
task.impl.InboxActions

curam.core.hook.
task.impl.InboxActionsImpl

Task Actions curam.core.hook.
task.impl.TaskActions

curam.core.hook.
task.impl.TaskActionsImpl

Task Search and Available Task
Search

curam.core.hook.
task.impl.SearchTask

curam.core.hook.
task.impl.SearchTaskImpl

Task Query curam.core.hook.
task.impl.TaskQuery

curam.core.hook.
task.impl.TaskQueryImpl

Task Search SQL generation curam.core.hook.
task.impl.SearchTaskSQL

curam.core.hook.
task.impl.SearchTaskSQLImpl

The following Inbox Actions may be customized:
v Get Next Task
v Get Next Task From Preferred Organization Unit
v Get Next Task From Preferred Queue
v Get Next Task From Work Queue
v Subscribe User To Work Queue
v Unsubscribe User From Work Queue

Chapter 23. Inbox and Task Management 135

The following Task Actions may be customized:
v Add Comment
v Close
v Create
v Defer
v Restart
v Forward
v Modify Time Worked
v Modify Priority
v Modify Deadline
v Reallocate
v Add To My Tasks

The following Task Search and Available Task Search methods may be customized:
v countAvailableTasks

v countTasks

v searchAvailableTasks

v searchTask

v validateSearchTask

The following Task Query methods may be customized:
v createTaskQuery

v modifyTaskQuery

v runTaskQuery

v validateTaskQuery

The following Task Search SQL generation methods may be customized. These methods are used to
generate the SQL for all of the above task search functionalities.
v getBusinessObjectTypeSQL

v getCategorySQL

v getCountSQLStatement

v getCreationDateSQL

v getDeadlineSQL

v getFromClause

v getOrderBySQL

v getOrgObjectSQL

v getPrioritySQL

v getReservedBySQL

v getRestartDateSQL

v getSelectClause

v getSQLStatement

v getStatusSQL

v getTaskIDSQL

v getWhereClause

136 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

23.3.1 How to customize the Inbox
The following is a description of how to customize the Inbox action
curam.core.hook.task.impl.InboxActionsImpl.getNextTask. The same process may be followed to
customize any of the other customization points.

A custom hook point class must be created. This class must extend the default implementation class. The
diagram below shows the relationships between the classes:

Note: The custom class must never directly implement the interface class, as this could lead to compile
time exceptions during an upgrade if new methods were added to the interface. In this case the custom
class would not implement the new methods and hence the contract between the interface class and the
implementation class would be broken leading to compile time exceptions.

23.3.1.1 Customizing the default implementation
The signature of the getNextTask function on the curam.core.hook.task.impl.InboxActions interface is as
follows:

Figure 5. Customization Class Diagram

Chapter 23. Inbox and Task Management 137

package curam.core.hook.task.impl;

@ImplementedBy(InboxActionsImpl.class)
public interface InboxActions {

public long getNextTask(String userName);

.

.

.

.
}

The default implementation for the function is specified in the
curam.core.hook.task.impl.InboxActionsImpl class
package curam.core.hook.task.impl;

public class InboxActionsImpl implements InboxActions {

public long getNextTask(String userName) {
// Default implementation code is here....

}

.

.

.

.
}

To customize getNextTask, the method must be implemented in the new custom class created earlier
which extends the default curam.core.hook.task.impl.InboxActionsImpl implementation class.
package custom.hook.task.impl;

public class CustomInboxActionsImpl extends InboxActionsImpl {

public long getNextTask(final String userName) {
// Custom implementation code goes here

}

}

To ensure that the application executes the new custom class rather than the default implementation a
new class custom.hook.task.impl.Module.java which extends com.google.inject.AbstractModule must
be written with the configure method implemented as the following example shows:
package custom.hook.task.impl;

public class Module extends com.google.inject.AbstractModule {
protected void configure() {

bind(
curam.core.hook.task.impl.InboxActions.class).to(

custom.hook.task.impl.CustomInboxActionsImpl.class);
}

}

Finally the custom.hook.task.impl.Module class name must be inserted into the ModuleClassName column
of the ModuleClassName database table. This can be inserted by adding an extra row to the
ModuleClassName.DMX file or directly into the database table if required.

Using this approach, when the application is redeployed, the system will now invoke the customized
version of the getNextTask function rather than the default implementation.

138 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 139

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

140 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 141

http://www.ibm.com/legal/us/en/copytrade.shtml

142 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Overview
	1.2 Prerequisites
	1.3 How to use this document
	1.4 Structure of this Document
	1.4.1 Workflow Processes
	1.4.2 Data Flow
	1.4.3 Activities
	1.4.4 Flow Control
	1.4.5 Development and Runtime
	1.4.6 Inbox Configuration and Customization

	Chapter 2. Creating a Workflow Process
	2.1 Process definition life cycle
	2.1.1 Process creation
	2.1.2 Process visualization
	2.1.3 Releasing a process
	2.1.4 Process versions (process editing)
	2.1.5 Process import, export and copy
	2.1.5.1 Validations

	2.1.6 Localization

	2.2 Process execution
	2.2.1 Basic engine behavior
	2.2.2 Executing multiple versions
	2.2.3 Process Instance Administration

	2.3 Method Reference Library
	2.3.1 Referencing Cúram methods
	2.3.2 Method types

	2.4 WDO templates
	2.4.1 Metadata
	2.4.2 Import and syncing
	2.4.3 Validations

	Chapter 3. Process Definition Metadata
	3.1 Overview
	3.2 Metadata
	3.3 Validations
	3.4 Description of Context WDOs

	Chapter 4. Workflow Data Objects
	4.1 Overview
	4.2 Metadata
	4.3 Validations
	4.4 List of Context WDOs
	4.5 Runtime Information

	Chapter 5. Process Enactment
	5.1 Overview
	5.2 Code enactment (enactment service API)
	5.2.1 Metadata
	5.2.2 Validations
	5.2.3 Code

	5.3 Event enactment
	5.3.1 Configuration data
	5.3.2 Validations

	Chapter 6. Base Activity
	6.1 Overview
	6.2 Metadata
	6.2.1 Localized Text

	6.3 Validations
	6.4 Basic Activity Types
	6.4.1 Route Activity
	6.4.2 Start/End Process Activity

	Chapter 7. Automatic
	7.1 Prerequisites
	7.2 Overview
	7.3 Cúram Business Methods
	7.3.1 Metadata
	7.3.2 Validations
	7.3.3 Code

	7.4 Input Mappings
	7.4.1 Metadata
	7.4.1.1 Input mappings for base type parameters
	7.4.1.2 Input mappings for struct parameters
	7.4.1.3 Input mappings for aggregated struct parameters
	7.4.1.4 Input mappings for list struct parameters
	7.4.1.5 Input mappings and indexed items from list workflow data objects

	7.4.2 Validations
	7.4.3 Runtime Information

	7.5 Output Mappings
	7.5.1 Metadata
	7.5.1.1 Primitive return type
	7.5.1.2 Struct return type
	7.5.1.3 Aggregated struct return type
	7.5.1.4 List struct return type

	7.5.2 Validations
	7.5.3 Runtime Information

	7.6 Description of Context WDOs

	Chapter 8. Event Wait
	8.1 Prerequisites
	8.2 Overview
	8.3 List of events
	8.3.1 Metadata
	8.3.2 Validations
	8.3.3 Code
	8.3.4 Runtime Information

	8.4 Deadline
	8.4.1 Prerequisites
	8.4.2 Metadata
	8.4.3 Validations
	8.4.4 Code
	8.4.5 Runtime Information
	8.4.6 Description of Context WDOs

	8.5 Output Mappings
	8.5.1 Metadata
	8.5.2 Validations
	8.5.3 Runtime Information
	8.5.4 Description of Context WDOs

	8.6 Reminders
	8.6.1 Metadata
	8.6.2 Validations
	8.6.3 Code
	8.6.4 Runtime Information

	Chapter 9. Manual
	9.1 Prerequisites
	9.2 Overview
	9.3 Task details
	9.3.1 Metadata
	9.3.2 Validations
	9.3.3 Code
	9.3.4 Runtime Information
	9.3.5 Description of Context WDOs

	9.4 Allocation strategy
	9.4.1 Prerequisites
	9.4.2 Metadata
	9.4.2.1 Function Allocation Strategy
	9.4.2.2 CER Rules Allocation
	9.4.2.3 CER Rules Allocation
	9.4.2.4 Target Allocation Strategy

	9.4.3 Validations
	9.4.4 Code
	9.4.5 Runtime Information
	9.4.6 Description of Context WDOs

	9.5 Business Object Associations
	9.5.1 Metadata
	9.5.2 Validations
	9.5.3 Code
	9.5.4 Runtime Information

	9.6 Event Wait
	9.6.1 Prerequisites
	9.6.2 Description of Context WDOs

	Chapter 10. Decision
	10.1 Prerequisites
	10.2 Overview
	10.3 Task Details
	10.3.1 Metadata
	10.3.2 Validations
	10.3.3 Runtime Information

	10.4 Question Details
	10.4.1 Metadata
	10.4.1.1 Multiple Choice
	10.4.1.2 Free Text

	10.4.2 Validations
	10.4.3 Runtime Information
	10.4.4 Description of Context WDOs

	Chapter 11. Subflow
	11.1 Prerequisites
	11.2 Overview
	11.3 Subflow Process
	11.3.1 Metadata
	11.3.2 Validations

	11.4 Input Mappings
	11.4.1 Metadata
	11.4.2 Validations

	11.5 Output Mappings
	11.5.1 Metadata
	11.5.2 Validations

	Chapter 12. Loop Begin and Loop End
	12.1 Prerequisites
	12.2 Overview
	12.2.1 Loop Type

	12.3 Metadata
	12.3.1 Loop Begin Activity
	12.3.2 Loop End Activity

	12.4 Runtime Information
	12.5 Description of Context WDOs

	Chapter 13. Parallel
	13.1 Prerequisites
	13.2 Overview
	13.3 Metadata
	13.3.1 Generic Metadata for a Parallel Activity
	13.3.2 Metadata for a Parallel Manual Activity
	13.3.3 Metadata for a Parallel Decision Activity
	13.3.4 Validations
	13.3.5 Runtime Information
	13.3.6 Description of Context WDOs

	Chapter 14. Activity Notifications
	14.1 Overview
	14.2 Notification Details
	14.2.1 Metadata
	14.2.2 Validations
	14.2.3 Code
	14.2.4 Runtime Information

	14.3 Notification Allocation Strategy
	14.3.1 Prerequisites
	14.3.2 Code

	Chapter 15. Transitions
	15.1 Overview
	15.2 Metadata
	15.3 Validations
	15.4 Runtime Information

	Chapter 16. Conditions
	16.1 Overview
	16.2 Metadata
	16.3 Validations

	Chapter 17. Split/Join
	17.1 Introduction
	17.2 Choice XOR Split
	17.2.1 Metadata

	17.3 Parallel AND split
	17.3.1 Metadata

	Chapter 18. Workflow Structure
	18.1 Overview
	18.2 Graph Structure
	18.3 Block Structure
	18.3.1 An Analogy for Blocks
	18.3.2 Block Types Supported by Workflow
	18.3.2.1 'Choice' (XOR) Block
	18.3.2.2 'Parallel' (AND) Block
	18.3.2.3 'Loop' Block

	18.4 Structural Rules
	18.4.1 Graph Structure Rules
	18.4.2 Block Structure Rules

	18.5 Validations
	18.5.1 Simple Syntactic Checks
	18.5.2 Graph Checks
	18.5.3 Block Checks

	Chapter 19. Workflow Web Services
	19.1 Overview
	19.2 Exposing a workflow web service
	19.2.1 Process Enactment
	19.2.2 Process completion callback

	19.3 Invocation from BPEL processes

	Chapter 20. File Locations
	20.1 Overview
	20.2 Workflow Process Definition Files
	20.2.1 Customizing Workflow Process Definition Files
	20.2.1.1 Creating New Workflow Process Definition Files
	20.2.1.2 Changing An Existing Workflow Process Definition File

	20.3 Event Definition Files

	Chapter 21. Configuration
	21.1 Overview
	21.2 Application Properties

	Chapter 22. JMSLite
	22.1 Introduction
	22.2 What JMSLite Does
	22.3 Why JMSLite?
	22.4 Using JMSLite
	22.5 Debugging workflows

	Chapter 23. Inbox and Task Management
	23.1 Overview
	23.2 Inbox Configuration
	23.2.1 Inbox List Sizes Configuration Settings
	23.2.2 Get Next Task Configuration Settings
	23.2.3 Task Redirection and Allocation Blocking Settings

	23.3 Inbox Customization
	23.3.1 How to customize the Inbox
	23.3.1.1 Customizing the default implementation

	Notices
	Trademarks

