
IBM Cúram Social Program Management

Cúram XML Infrastructure Guide
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram XML Infrastructure Guide
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0 5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Objective 1
1.2 Prerequisites 1
1.3 Introduction 1
1.4 Third-Party Libraries 1

Chapter 2. XML Concepts 3
2.1 Objective 3
2.2 Prerequisites 3
2.3 Introduction 3
2.4 XML 3
2.5 Document Type Definition 4
2.6 XML Documents 5
2.7 Summary 5
2.8 Further Reading 5

Chapter 3. Developing for XML 7
3.1 Objective 7
3.2 Prerequisites 7
3.3 Introduction 7
3.4 XML Documents 7

3.4.1 Documents 7
3.4.2 The XMLDocument Class 7
3.4.3 Encoding 8
3.4.4 Creating an XMLDocument 9
3.4.5 Opening an XMLDocument Object 10
3.4.6 Adding Data to an XMLDocument Object 10
3.4.7 Closing an XMLDocument Object 10
3.4.8 Saving an XMLDocument Object 11
3.4.9 Loading an XMLDocument Object 11

3.5 The XML Print Stream 11
3.5.1 Overview 11
3.5.2 The XMLPrintStream Class 12
3.5.3 Default Configuration for XMLPrintStream 12
3.5.4 Creating an XMLPrintStream Object . . . 12
3.5.5 Configuring an XMLPrintStream Object . . 13
3.5.6 Opening an XMLPrintStream Object . . . 15
3.5.7 Closing an XMLPrintStream Object 15
3.5.8 Print Previewing 15

3.6 Sample Usage 16
3.6.1 Overview 16
3.6.2 Saving XML Data to a File 16
3.6.3 Printing an XML Document 16
3.6.4 Saving and Loading XML Documents . . . 17
3.6.5 Previewing an XML Print Job 19
3.6.6 Building a Document from a List 21

3.7 Load Balancing and Fail-over 22

3.8 Summary 22

Chapter 4. The XML Server 25
4.1 Objective 25
4.2 Prerequisites 25
4.3 Introduction 25
4.4 The XML Server 25
4.5 Configuring the XML Server 26

4.5.1 Overview 26
4.5.2 Network Configuration. 28
4.5.3 Default Value Configuration 28
4.5.4 Server Command Configuration. 28
4.5.5 Template Cache Configuration 30
4.5.6 Debug Configuration 30
4.5.7 Log4j Logging. 30
4.5.8 RenderX Configuration. 31
4.5.9 Custom Configuration 31
4.5.10 Font Configuration 32
4.5.11 Sample Configuration Files 33

4.6 Running the XML Server. 38
4.6.1 Running the XML Server as a Windows
Service or UNIX Daemon. 38

4.7 Overriding the Default Port 39
4.8 Overriding the Default Configuration 39
4.9 Switching Off Configuration File Schema
Validation 39
4.10 Shutting Down the XML Server 39
4.11 Statistics 40
4.12 Summary 40

Chapter 5. Cúram XML and XSL
Templates 41
5.1 Objective 41
5.2 Prerequisites 41
5.3 Introduction 41
5.4 Cúram XML 41
5.5 Examples 42
5.6 Job Types and Template Types 44

5.6.1 Overview 44
5.6.2 Templates for PDF Documents 44
5.6.3 Templates for RTF Documents 44
5.6.4 Templates for HTML Documents 45
5.6.5 Templates for Plain Text Documents . . . 45

5.7 XSL Template Example 45
5.8 Generating Templates from RTF Documents . . 47
5.9 Globalization Considerations 47
5.10 Summary 47
5.11 Further Reading 47

Notices 49
Trademarks 51

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Figures

1. XMLDocument Constructor 9
2. Opening an XMLDocument 10
3. Adding to an XMLDocument 10
4. Closing an XMLDocument 10
5. Saving an XMLDocument 11
6. Loading an XMLDocument 11
7. XMLPrintStream Constructor. 12
8. Configuring an XMLPrintStream 13
9. Opening an XMLPrintStream. 15

10. Closing an XMLPrintStream 15
11. Configuring an XMLPrintStream for

Previewing. 15
12. Saving XML Data to a File: Method 1 16
13. Printing an XML Document: Method 1 . . . 17
14. Saving and Loading an XML Document 18
15. Previewing an XML Print Job 20
16. Adding a List to a Document 21
17. Adding Elements of a List to a Document 22

18. XML Processing Architecture. 25
19. Sample FOP Configuration File 32
20. Batch File for Printing a Document (Windows) 34
21. Configuration for Printing a Document

(Windows) 34
22. Displaying a Document for Testing (Windows) 35
23. Setting up RenderX as the rendering tool for

Right To Left Document processing 35
24. Sample Shell Script for Printing a Document

(UNIX and z/OS) 37
25. Configuration for Printing a Document (UNIX

and z/OS) 38
26. Cúram XML Document Type Definition (DTD) 42
27. An Example XML Document. 43
28. An Example XML Document with a List 43
29. An Example XSL Template 46
30. Example output 46

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Tables

1. XML Character Encoding Constants 8
2. The application prx settings for

XMLPrintStream 12
3. Right-to-Left Supported Languages and Locale

Codes 13

4. XMLPrintStream Job Types 14
5. Configuration Options 26
6. XML Server Command Tokens 29

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Chapter 1. Introduction

1.1 Objective
In this guide you will learn how to develop applications that use the XML1features of the IBM® Cúram
Social Program Management Server Development Environment (SDEJ).

1.2 Prerequisites
Before reading this guide you should be familiar with application server development and the Server
Development Environment (SDEJ). These topics are covered in the following guides in the IBM Cúram
Social Program Management documentation:
v Cúram Modeling Reference Guide;
v Cúram Server Developer's Guide.

This document makes a number of references to struct classes which are fully defined in the Cúram Server
Modeling Guide.

1.3 Introduction
This guide presents all aspects of the IBM Cúram Social Program Management XML functionality
provided with the Server Development Environment (SDEJ), from modeling to development to runtime
management.

Chapter 2, “XML Concepts,” on page 3 provides a brief introduction to XML. Chapter 3, “Developing for
XML,” on page 7 presents the application server development infrastructure elements that allow you to
create XML documents and send them to the XML Server. Chapter 4, “The XML Server,” on page 25
describes the IBM Cúram Social Program Management XML Server and how it can be used to convert
XML data into formatted PDF2, RTF3, HTML4or plain text documents and then manipulate these
documents for printing, e-mailing, etc. Chapter 5, “Cúram XML and XSL Templates,” on page 41
describes the XML format used by IBM Cúram Social Program Management and provides instructions on
how it can be used to create XSL5templates.

This breakdown should be considered when reading the document as terms may be introduced in an
early chapter and detailed in the succeeding chapters, without a specific cross reference being provided.

1.4 Third-Party Libraries
This product includes software developed by the Apache Software Foundation (http://www.apache.org/
). The IBM Cúram Social Program Management XML infrastructure is based on the Apache XML Project's
suite of Java™ XML libraries. These libraries are the de facto standard implementation of XML. Apache
Xerces is the XML parser used; Apache Xalan is used for XSL processing; and Apache FOP (Formatting
Objects Processor) for the PDF rendering

1. XML means Extensible Markup Language.

2. PDF is the Adobe Portable Document Format. For more information about PDF, or to download free software to read PDF files on
most platforms, go to the Adobe PDF web site: http://www.adobe.com/products/acrobat/adobepdf.html

3. RTF is the Rich Text Format, a format developed by Microsoft and that can be read by most common work processing applications.

4. HTML means Hypertext Markup Language and is a document format used on the World-Wide Web.

5. XSL means Extensible Stylesheet Language and is a W3C standard defining stylesheets for (and in) XML.

© Copyright IBM Corp. 2012, 2013 1

http://www.apache.org/
http://www.adobe.com/products/acrobat/adobepdf.html

Bertrand Delacrétaz's JFOR library (now part of the Apache FOP) is used for rendering documents in RTF
format (http://www.jfor.org/).

2 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://www.jfor.org/

Chapter 2. XML Concepts

2.1 Objective
In this chapter, you will be introduced to the Extensible Markup Language (XML), what it is and how it is
used to represent data.

2.2 Prerequisites
There are no prerequisites for this chapter.

2.3 Introduction
This chapter presents a brief overview of the Extensible Markup Language (XML). XML is a data
representation standard that is growing enormously in popularity as the growth of the Internet requires
that more and more data be readable on a multitude of different systems.

IBM Cúram Social Program Management can generate XML data from struct classes at runtime, a typical
use of which is to print documents based on XSL templates and the contents of these classes. It is useful
to know what XML is prior to seeing how it fits into IBM Cúram Social Program Management and the
next section presents a brief overview of the standard. Chapter 5, “Cúram XML and XSL Templates,” on
page 41 provides an introduction to XSL templates.

2.4 XML
XML is a meta-markup language that defines how to write your own markup languages. Unlike HTML,
XML markup languages are case-sensitive and all documents must be well-formed (more about this
below). Well-formed XML-based markup can be parsed by generic parsers and processors regardless of
the tags and attributes chosen for the application.

A tag is an entity in XML that defines an element. Tags are identifiers that are enclosed in angle brackets
(< and >). For every opening tag there must be a closing tag. Closing tags are similar to opening tags
except that there is a slash (/) before the tag name. In between the tags is the value of the element
defined by the tag. For example, here is a <NAME> element defined using NAME tags:

XML elements can be nested to define structure and white-space can be used to make the structure easier
to identify:

XML is deemed to be well-formed:

a. If every element has an opening and closing tag.

b. Elements do not overlap (i.e. the elements delimited by opening and closing tags nest properly within
each other).

c. There is a root element.

<NAME>Joe Bloggs</NAME>

<PERSON>
<FIRST_NAME>Joe</FIRST_NAME>
<SURNAME>Bloggs</SURNAME>
<E_MAIL>jbloggs@acme.com</E_MAIL>

</PERSON>

© Copyright IBM Corp. 2012, 2013 3

d. Case-sensitivity is respected and

e. <, >, &, , and " characters are escaped.

The following is not-well-formed XML because the elements overlap:

Characters with meaning in XML are escaped using & for a &, < for a <, > for a >, ' for a ,
and " for a ". These are called character entities.

The requirement for a root element makes this XML invalid:

as no single element forms the root. The following is valid, however, as NAME_LIST forms the root
element:

XML elements can have attributes. Attributes are specified as part of the tag and can be used to hold
meta-data about the elements (this is what they are usually used for but there is no prescription for their
use).

XML supports empty tags. These are tags where the start tag and end tag are combined into one and there
is no element data. These tags start with a < and end with a />. Typically attributes are used to store the
data in these tags. For example, here is an empty PERSON tag with NAME and SEX attributes:

Comments can be entered in an XML document using an opening <!-- tag and a closing --> tag. For
example:

That was XML in a nutshell.

2.5 Document Type Definition
As described in the previous section an XML document is an entity that contains XML data of a
particular type. The primary requirement is that a document have a root element, and XML defines some
simple rules for data representation. To make sense of data represented in XML, it is necessary to know
what the chosen element tags, etc. mean. This meaning is provided by a Document Type Definition (DTD)
that defines what tags can be used and where they can be used. A unit of XML data that conforms to the
rules defined in a DTD is an XML document

<BOLD>The quick brown <ITALICS>fox
jumps</BOLD> over the lazy dog.</ITALICS>

<NAME>Joe Bloggs</NAME>
<NAME>Jane Doe</NAME>

<NAME_LIST>
<NAME>Joe Bloggs</NAME>
<NAME>Jane Doe</NAME>

</NAME_LIST>

<NAME_LIST ELEMENTS="4" RANGE="A-D">
<NAME SEX="MALE">Hop Along</NAME>
<NAME SEX="MALE">Joe Bloggs</NAME>
<NAME SEX="MALE">P Cutter</NAME>
<NAME SEX="FEMALE">Jane Doe</NAME>

</NAME_LIST>

<PERSON NAME="Joe Bloggs" SEX="MALE"/>

<!--This is an empty PERSON tag-->
<PERSON NAME="Joe Bloggs" SEX="MALE"/>

4 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

2.6 XML Documents
A particular set of XML tags has been defined to allow any data in IBM Cúram Social Program
Management to be represented as XML6. All XML is from struct classes defined in the application model.
The IBM Cúram Social Program Management XML definition uses tags to generically identify the parts of
these model entities. So, these XML includes tags for structs, fields, values, types, lists, etc. These tags are
described in an IBM Cúram Social Program Management -specific Document Type Definition (DTD) which
is shown in 5.4, “Cúram XML,” on page 41.

This DTD is shown for the sake of completeness. The only area of the XML infrastructure where the
developer requires knowledge of the exact format of the XML is in XSL template development although
they may wish to manipulate the XML directly for some unforeseen reason.

2.7 Summary
v XML stands for Extensible Markup Language.
v XML allows data to be defined in plain text and structured using nested elements defined using tags

that appear within angle-brackets < >. Elements can be defined with attributes.
v XML is case-sensitive and requires that documents be well-formed: they must have a root element and

elements cannot overlap.
v XML uses several character entities to avoid confusing data with the XML markup.
v In IBM Cúram Social Program Management a specific set of tags has been chosen to generically

represent data that is generated from an applications struct classes at runtime. These tags are contained
in a supplied Document Type Definition.

2.8 Further Reading
The World-Wide-Web Consortium (http://www.w3c.org/) is responsible for the development of the XML
and related standards. There is much more detailed information on their web-site about XML that is
worth reading.

6. An input field that contains a period (".") on a line by itself (i.e., "." surrounded by "\n" or "\r") will cause the XML Server, when
the data is processed, to throw an error. This is because, as documented in 4.5.6, “Debug Configuration,” on page 30, the XML
Server uses this particular character sequence to mark the end of client transmission; but, in the particular context of data entered
from a web client this is undesirable behavior.

Chapter 2. XML Concepts 5

http://www.w3c.org/

6 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Chapter 3. Developing for XML

3.1 Objective
In this chapter, you will learn how to incorporate XML support into your application servers and produce
XML documents

3.2 Prerequisites
Before reading this chapter, you should be familiar with the IBM Cúram Social Program Management
application server development with UML Modeling and the Server Development Environment (SDEJ).
These topics are covered in the following guides in IBM Cúram Social Program Management
documentation:
v Cúram Modeling Reference Guide;
v Cúram Server Developer's Guide.

You should also have read the previous chapter which provided a brief introduction to XML.

3.3 Introduction
This chapter describes the two most important classes you need when adding XML functionality to your
applications: curam.util.xml.impl.XMLDocument and curam.util.xml.impl.XMLPrintStream. The classes
are presented in depth before samples of their use are presented to demonstrate how they can be used
together to generate XML and print documents.

3.4 XML Documents

3.4.1 Documents
A number of operations can be performed on XML documents.
v A document can be created and stored in memory. This document can then be stored in the database,

or written to a stream, or both.
v A document can be created and written to a stream directly to reduce storage requirements. This is

particularly useful for very large documents that do not require an archived copy.
v A previously archived document can be retrieved from the database and written to a stream.

As streams are flexible, there are many things you can do with them.
v You can use a stream to save the XML data to a file.
v You can use the XMLPrintStream class to request that a document should be printed.
v You can use a stream to transfer information over a network via a socket connection.
v You can use a java.io.BufferedOutputStream to buffer all the XML data.
v You can create your own stream classes (or use any of the standard stream classes) to do just about

anything you want with the XML data!

3.4.2 The XMLDocument Class
IBM Cúram Social Program Management XML data is generated according to the rules of a simple DTD.
The XMLDocument class is used to hold the generated XML and wraps the data in the necessary root
element. This class is central to all XML operations that you can perform in IBM Cúram Social Program

© Copyright IBM Corp. 2012, 2013 7

Management. Its interface can be found in the curam.util.xml.impl package within the supplied SDEJ
JavaDoc. In the rest of this section, you will learn how to use this interface to create XML documents
from your application data.

The use of the XMLDocument class follows the following broad pattern:
1. Create a new instance of the XMLDocument class.
2. Open the XML document to create the root element and provide a context for the XML data that you

want to create.
3. Add a struct class (or struct classes) to the open XML document to create the XML data.
4. Close the XML document to complete the root element.

These steps will be covered in the following sub-sections. First, however, you must be aware of the
importance of XML data encoding.

3.4.3 Encoding
All XML data are represented in plain-text. A small number of characters have a particular meaning to
XML (“<”, “>”, “'”, “”, “&”) and if these occur in your data they are automatically converted to their
corresponding XML character entities to avoid problems. However, if you use characters outside the
normal US-ASCII range (characters 0-127), even plain-text becomes ambiguous. For example, in Western
Europe, you might typically store your data using the ISO-8859-1 character set also known as “Latin 1”.
In this character set, the character “ë” (e-umlaut) is character number 235. However if you sent this XML
data to a person in Greece who would typically use the ISO-8859-7 (Greek) character set, the same
character 235 would appear as the lower-case Greek letter lambda.

To avoid this problem, XML allows the character encoding used for a document to be stated in the XML
processing instruction found at the top of all XML documents. Now, when you create your document you
can explicitly state that you want to use ISO-8859-1 for your data because that is the form in which it is
stored in your database. When you send the file to Greece, the person there knows not to use the
ISO-8859-7 character set to interpret the data but ISO-8859-1 instead. In general, this will be handled by
their XML parsing software which will read the encoding information from the document.

By default, XML uses an encoding scheme known as UTF-8. This modified Unicode scheme creates a
document that uses two bytes to represent characters greater than 127. However, you will need to set the
encoding explicitly if the data stored in your database uses a different encoding scheme.

IBM Cúram Social Program Management XML provides a range of constants for the common encoding
schemes. The available schemes are shown in 3.4.3, “Encoding” below.

Table 1. XML Character Encoding Constants

Constant Alternative Constant Encoding Scheme

kEncodeUTF8 UTF-8

kEncodeISO10646UCS2 ISO-10646-UCS-2

kEncodeISO10646UCS4 ISO-10646-UCS-4

kEncodeISO88591 kEncodeISOLATIN1 ISO-8859-1

kEncodeISO88592 kEncodeISOLATIN2 ISO-8859-2

kEncodeISO88593 kEncodeISOLATIN3 ISO-8859-3

kEncodeISO88594 kEncodeISOLATIN4 ISO-8859-4

kEncodeISO88595 kEncodeISOCYRILLIC ISO-8859-5

kEncodeISO88596 kEncodeISOARABIC ISO-8859-6

kEncodeISO88597 kEncodeISOGREEK ISO-8859-7

8 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 1. XML Character Encoding Constants (continued)

Constant Alternative Constant Encoding Scheme

kEncodeISO88598 kEncodeISOHEBREW ISO-8859-8

kEncodeISO88599 kEncodeISOLATIN5 ISO-8859-9

kEncodeISO885910 kEncodeISOLATIN6 ISO-8859-10

kEncodeISO885913 kEncodeISOLATIN7 ISO-8859-13

kEncodeISO885914 kEncodeISOLATIN8 ISO-8859-14

kEncodeISO885915 kEncodeISOLATIN9 ISO-8859-15

kEncodeISO2022JP ISO-2022-JP

kEncodeSHIFTJIS Shift_JIS

kEncodeEUCJP EUC-JP

The relevant constant should be specified when constructing a new XMLDocument in order to set the
encoding scheme as appropriate for the XML document. This encoding will be used for the XML
document declaration as well as for the XML document itself. If loading an XML document from the
database, the encoding of that document should match the encoding used to construct the XMLDocument
class. If you supply no value, no encoding scheme will be specified in the XML and XML parsers will
thus assume UTF-8 according to the XML standard. If the encoding scheme you wish to use is not among
those listed, you may supply a string containing the encoding value you wish to use.

All of the encoding constants are within the XMLEncodingConstants interface. To use, for example, the
Latin 1 set, you would use XMLEncodingConstants. kEncodeISOLATIN1 or XMLEncodingConstants.
kEncodeISO88591.

3.4.4 Creating an XMLDocument
As XML data is created it is written to a stream. By default, an instance of the XMLDocument class
maintains an internal stream that will hold the XML data. By allowing the document to store the data in
this stream, you may later save the document to the database or write it to another stream. If you have
no wish to save the document, you can specify an alternative stream where the XML data should be
written as it is created. This can help to reduce memory overhead if the data stream is very large. For
example, data for a large report may not need to be stored in the database. This data can be generated
and processed on-the-fly without any intermediate storage.

Both constructors take a parameter to set the character encoding. You can set the encoding value using
one of the encoding constants or an encoding string of your own choosing.

The first constructor is used when you want the XML document to use its internal string buffer to store
the XML data. This allows you to save the document to the database later or to write to another stream
once it is complete. If you intend to load an XML document from the database, you should also use this
constructor. In that event, the encoding string is irrelevant.

The second constructor allows you to specify an output stream that the document should be written to as
it is created. This precludes the possibility of storing the document in the database once it is complete.
However, for large documents that do not need to be stored but rather printed, saved to a file, or
transferred over a network, this is a more efficient method that the first. For streams such as file and
print streams that are required to be explicitly opened, it is important that the stream passed to this
constructor is already open as the document will expect to be able to write to it immediately.

XMLDocument(String encoding);
XMLDocument(OutputStream stream, String encoding);

Figure 1. XMLDocument Constructor

Chapter 3. Developing for XML 9

3.4.5 Opening an XMLDocument Object

Once you have instantiated an XMLDocument object, you need to open it in one of two ways. If you want
to write the details of a single struct class to the XML document, you must open the document with the
open() method. If you want to write the details of several different struct classes of the same type to the
document, you must open the document with the openForList() method. This latter method allows you
to create a document that contains a list of struct classes where each one is added in turn. All the struct
classes must be of the same type. The former method allows you to add only a single struct class to the
document before closing it. This single struct class can, however, contain fields that are lists of struct
classes.

Both of the open methods take several parameters that can be used to set meta-data for the document.
You can include the name of the entity that generated the document, the date and time on which it was
generated, the version of the document, and any other comments you wish to associate with the
document. Each parameter is a string and you can use any length of data formatted in any way you
wish. You must, however, respect the requirement of XML that certain characters be converted to
character entities. If your strings contain any of the following characters: “'”, “”, “<”, “>”, or “&”, you
must convert them to their character entity values. This can be done by calling the XMLDocument. escape()
method. The method takes a string parameter and returns a new string with the character entity
conversions done for you.

Once opened, you can begin adding struct classes to your XML document.

3.4.6 Adding Data to an XMLDocument Object

The add() method of the XMLDocument class can be used to produce XML data from an instance of a struct
class.

For documents opened with the open() method, you may only issue a single call to add() before closing
your document. For documents opened with openForList(), you may use several calls to add() but
should ensure that you only add instances of the same struct class type.

addFromXML() is a convenience method allowing an XML fragment to be directly added to the document,
rather than using the struct class. It is the responsibility of the caller to ensure this fragment respects the
DTD.

3.4.7 Closing an XMLDocument Object

Once you have finished adding data to an XML document, you need to close it. The close method of the
XMLDocument class takes no parameters. Calling the close method will not close the output stream you
specified as a parameter to the XML document. You must close this stream separately.

open(String generatedBy, String generatedDate, String version,
String comment);

openForList(String generatedBy, String generatedDate,
String version, String comment);

Figure 2. Opening an XMLDocument

add(Object value);
addFromXML(String xmlFragment);

Figure 3. Adding to an XMLDocument

close();

Figure 4. Closing an XMLDocument

10 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Once closed, a document will write all remaining XML information to the stream to complete a well
formed XML document. If the document object is using an internal string stream buffer, you may save
the document to the database or write it to another stream.

3.4.8 Saving an XMLDocument Object

Once closed, any XML document you created to write to the default internal string stream buffer can be
saved to the database. This is useful if you want to print information yet keep a record of what was
printed. As information in the database may change, it will not always be possible to simply print out the
same form, letter, etc., and expect it to contain the same data as before. Using the XML document archive,
however, you are guaranteed that the data will be identical as it represents a snapshot of the values at a
particular point in time.

Each document can be saved along with the details of an associated template. This allows any print job,
for example, to be rerun in the future with the same data and the same version of the template. The save
method takes two input parameters and has one return value. The input parameters allow you to specify
a name for this saved document. This can be any string-type information that you want. The maximum
length is 100 characters. The second parameter is the template instance (version of a template) that you
want to associate with this document.

The return value is the key value of the new archived document record that will be created to hold the
XML data. This key value can be stored elsewhere to keep track of what documents are available. For
example, if you print a letter to send to a client, you could associate this key with a diary entry recording
the sending of the letter. The letter could then be reprinted at any time in the future by accessing the key
stored with the diary entry.

3.4.9 Loading an XMLDocument Object

To load an XML document from the document archive, you should first create a default XMLDocument
object. The load method takes one parameter which is the key to the archive document. The details
returned include the template information that you saved with the document such as its version and
locale, and the XML representation of the data in the document.

Once loaded, the XML document object can be treated like any other document object that was created,
opened, had data added and was closed.

3.5 The XML Print Stream

3.5.1 Overview
The SDEJ includes the XML Server (see Chapter 4, “The XML Server,” on page 25). For developers, the
interface to this server is via the XMLPrintStream class. This class allows you to send print job requests
(and more besides) to the IBM Cúram Social Program Management XML Server.

This section describes the use of the print stream and how XML documents can be printed using its
facilities.

save(String name, XSLTemplateInstanceKey templateKey);

Figure 5. Saving an XMLDocument

load(XMLArchiveDocumentID key);

Figure 6. Loading an XMLDocument

Chapter 3. Developing for XML 11

3.5.2 The XMLPrintStream Class
The public interface to the XMLPrintStream class can be found in the curam.util.xml.impl package within
the SDEJ JavaDoc.

In use the following basic pattern will be followed:
1. Create a new instance of the XMLPrintStream class.
2. Set the various printing options.
3. Open the connection to the XML Server.
4. Write to the print stream object. (This will usually be done by an XMLDocument object).
5. Close the print stream object to initiate the print job.

The following subsections will look at these steps in detail, but first there are steps you can take to
configure default values for your print streams.

3.5.3 Default Configuration for XMLPrintStream
The XMLPrintStream class lets you set a number of options when you want to submit a print job. These
are the printer name, the paper tray name, the server host name, and the server port number. Each of
these options can be set in your project's properties as described in the Cúram Server Developer's Guide.
The values required are shown in the 3.5.3, “Default Configuration for XMLPrintStream.” All are entered
as strings and are not converted to any other data-type. You must make sure to convert any special
characters with a meaning in XML to character entities.

Table 2. The application prx settings for XMLPrintStream

Variable Name Description

curam.xmlserver.printer The name of the default printer to use for jobs submitted by this application.
On Microsoft Windows, this might be, for example, \\\\myhost\\printer1, or
lpt1:.

curam.xmlserver.tray The name of the paper tray to use for jobs submitted by this application.

curam.xmlserver.host The host on which the XML Print Server resides. The property may also be
specified as a '/' separated list of host names in order to use multiple XML
Servers.

curam.xmlserver.port The port on which the XML Print Server is listening. The property may also
be specified as a '/' separated list of ports in order to use multiple XML
Servers.

curam.xmlserver.fileencoding The default encoding used for the encoding of files provided to the
XMLServer. This value can be overriden for individual instances of
XMLPrintStream using the setEncoding method. The default value for this
property is UTF-8.

curam.xmlserver.serializelocaleneutral Specify that XML Server data will be serialized in a locale-neutral way
instead of being based on the locale properties on the server.

When your application submits a print job, these values will be used as the defaults for the job. You can
use the individual setter methods to override these defaults.

3.5.4 Creating an XMLPrintStream Object

XMLPrintStream(String host, int port)
XMLPrintStream(final XMLServerEndPoint[] endpoints)
XMLPrintStream()

Figure 7. XMLPrintStream Constructor

12 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

An XMLPrintStream object can be instantiated by providing the name of the host on which the XML
Server resides and the port on which the XML Server is listening. However, as documented in the Java
documentation, these properties are not used and it is recommended to use the empty constructor.

3.5.5 Configuring an XMLPrintStream Object

Once instantiated, an XMLPrintStream object can be configured. In 3.5.3, “Default Configuration for
XMLPrintStream,” on page 12 the default configuration was covered. You can override the printer name
and paper tray values using the setPrinterName and setPaperTray methods respectively. In addition, you
can also set a user name and an e-mail address for the print job. The user name might be that of the user
who initiated the print job, or any other user name you prefer to use. The e-mail address, similarly, can
be any e-mail address you want to associate with the job.

The encoding can also be set here. This encoding is used within the XMLServer for such purposes as
printing documents in the specific encoding. If the encoding is not explicitly set through the setEncoding
method, then the value will be taken from the curam.xmlserver.fileencoding configuration property. If
this property is not set, then the default encoding of UTF-8 will be used.

Note: It is important to set the encoding correctly when using XMLDocument and XMLPrintStream classes
together. For example, if you create an XMLDocument class with an encoding of UTF-8 and you create the
XMLPrintStream class setting the encoding to be US-ASCII, there may be some issues with the document
being printed. As US-ASCII contains a smaller character code set than UTF-8, some characters may not be
supported and therefore when printing the document, the resulting document may contain
unrecognizable characters. Therefore, if you wish to have the UTF-8 document printed correctly, you
should set the encoding of the XMLPrintStream instance to use UTF-8 encoding. Please see 3.4.3,
“Encoding,” on page 8 for further information on encoding.

All the parameters are strings and you must respect the requirement of XML that certain characters must
be replaced with character entities. You can use the XMLDocument. escape(String value) method for this
conversion.

Overriding the default values allows you, for example, to print a document to a printer nearest the
current user, rather than to a default printer.

By default, the XML Server will combine your XML data with an XSL template and attempt to render the
resulting document as a PDF document. The XML is transformed based on the template locale and for
Right-to-Left languages. These are the supported languages, which are specified by locale code:

Table 3. Right-to-Left Supported Languages and Locale Codes

Language Locale Code

Arabic ar

Farsi fa

Hebrew he

Hebrew iw

Yiddish ji

Yiddish yi

setPrinterName(String name);
setPaperTray(String tray);
setUserName(String user);
setEmailAddress(String email);
setEncoding(String encoding);
setJobType(String job);

Figure 8. Configuring an XMLPrintStream

Chapter 3. Developing for XML 13

Table 3. Right-to-Left Supported Languages and Locale Codes (continued)

Language Locale Code

Pashto/Pushto ps

Urdu ur

Due to the limitations of FOP, you must have a supporting Right-to-Left implementation in the XML
Server configuration (e.g., see 4.5.8, “RenderX Configuration,” on page 31). For this rendering step to
work, the combination of the XML data and XSL template should produce a document marked up using
XSL Formatting Objects. As an alternative to PDF output, you can specify RTF, HTML or plain text
output using the setJobType() method. This method can be used to specify any of the supported output
formats using the appropriate constant as shown in 3.5.5, “Configuring an XMLPrintStream Object,” on
page 13. All the constants are within the XMLPrintStreamConstants class and should be prefixed with
XMLPrintStreamConstants in your code unless you have implemented this class as an interface.

Table 4. XMLPrintStream Job Types

Job Type Description

kJobTypePDF This is the default job type. The XML data will be combined with the
XSL template and the resulting document will be rendered as a PDF
document. The template should be developed to produce a document
marked up with XSL Formatting Objects. Temporary files will be given
the extension “.pdf”.

kJobTypeRTF The XML data will be combined with the XSL template and the
resulting document will be rendered as an RTF document. The template
should be developed to produce a document marked up with XSL
Formatting Objects. Temporary files will be given the extension “.rtf”.

kJobTypeHtml The XML data will be combined with the XSL template and the
resulting document is assumed to be HTML. Appropriate indentation
will be applied automatically. The <xml> declaration at the top of the file
will be omitted. The template should be developed to produce a
document marked up with HTML. Temporary files will be given the
extension “.html”.

kJobTypeText The XML data will be combined with the XSL template and the
resulting document is assumed to be plain text. The <xml> declaration at
the top of the file will be omitted. Temporary files will be given the
extension “.txt”.

In addition to the predefined job types it is possible to define a custom job type. If a custom job type is to
be used the setJobType() method should be passed a string matching the new job type, where the job
type is defined in the XML Server configuration file. For more information on defining and implementing
custom job types consult 4.5.9, “Custom Configuration,” on page 31.

14 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

3.5.6 Opening an XMLPrintStream Object

Opening an XMLPrintStream object, establishes a connection with the chosen XML Server, sends the job
configuration information, and the XSL template. Once open, the XML data can be written to the
connection. In general, you will let an XMLDocument object write the data to the stream. All XML
documents must be accompanied with an XSL template to allow the data to be formatted.

There are a number of open() methods. The main difference between these is that you can specify a key
to an XSL template in the database or provide the XSL template document directly in a string. Also, you
can provide the connection information for the XML Server (host and port) or alternatively leave these
values to be picked up from the curam.xmlserver.host and curam.xmlserver.port properties.

Once opened, you should immediately begin writing data to the connection. A long delay will cause a
time-out to occur and the connection will be lost.

3.5.7 Closing an XMLPrintStream Object

Closing an XMLPrintStream object causes the print job to be started. Before closing the object, a
well-formed XML document must have been written to it. The close method takes no parameters.

3.5.8 Print Previewing

The XML Server takes an XML document and an XSL template and processes the two to produce another
document which could be in PDF, RTF, HTML, or plain text format. Normally, the XML Server will run a
further command to print, or otherwise process, the document. However, you can instead direct the XML
Server to return the document to your application server rather than process it further. This allows you to
preview the document before printing it or just store the document in the database for later retrieval.

To preview a document, you must specify a preview stream when configuring the print stream object.
After the XML Server has generated the PDF it will return it to the print stream object which will in turn
write it to the stream specified as a parameter to the setPreviewStream method. This stream could be a
simple string stream buffer or a file stream, whatever is required. If no stream is specified, the XML
Server will assume that a preview is not required.

open(XSLTemplateInstanceKey key);
open(String xslTemplate);
open(XSLTemplateInstanceKey key,

String host,
int port);

open(String xslTemplate,
String host,
int port);

open(XSLTemplateInstanceKey key,
XMLServerEndPoint[] endpoints)

open(String xslTemplate,
XMLServerEndPoint[] endpoints)

Figure 9. Opening an XMLPrintStream

close();

Figure 10. Closing an XMLPrintStream

setPreviewStream(OutputStream preview);

Figure 11. Configuring an XMLPrintStream for Previewing

Chapter 3. Developing for XML 15

Once the print stream object is closed, the preview stream will contain the document and the application
server can manipulate it in any way required. For example, it could be returned to the client application
and displayed in an appropriate viewer of some kind.

Note: If a preview stream has been specified, the XML Server will not print anything, nor will it create a
temporary file containing the document.

3.6 Sample Usage

3.6.1 Overview
This section presents some samples of the way the XMLDocument and XMLPrintStream objects can be used
together. The samples included cover the following scenarios:
v Saving XML data to a file.
v Printing a simple XML document.
v Saving and loading XML documents using the archive.
v Previewing an XML print job's output.
v Building a document from a list.

Along with the code samples are suggestions of how they be further developed and used.

All the methods are developed as methods of process stereotyped classes in the application model.

3.6.2 Saving XML Data to a File
This sample demonstrates how XML data can be created and written to a stream, in this case a file
stream. The function assumes that a file name and an instance of a struct class are passed as parameters.

This method demonstrates the use of a FileWriter.

3.6.3 Printing an XML Document
This sample shows how the struct class used in the previous sample could be written to an
XMLPrintStream object to print the data. It is assumed that a template instance key is supplied to the
function and that the default configuration values will be used.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import java.io.FileWriter;

public class XMLSample {

void saveToFile1(String fname, MyStruct myStruct) {
FileWriter myFile = new FileWriter(fname);

XMLDocument myDoc =
new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open(A User, 31-Dec-2002, 1.0, Sample 1);
myDoc.add(myStruct);
myDoc.close();

myFile.write(myDoc.toString());
myFile.close();

}
}

Figure 12. Saving XML Data to a File: Method 1

16 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

3.6.4 Saving and Loading XML Documents
In this sample, two functions are presented. The first, based on the previous sample, saves a document to
the archive. The second retrieves the document and prints it again. The direct streaming method cannot
be used to create the document if it is to be saved.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import

curam.util.administration.struct.XSLTemplateInstanceKey;

public class XMLSample {

void printDoc1(XSLTemplateInstanceKey tempKey,
MyStruct myStruct) {

XMLPrintStream myPrintStream = new XMLPrintStream();
myPrintStream.open(tempKey, MyPC, 1234);
myPrintStream.setEncoding(

XMLEncodingConstants.kEncodeISOLATIN1);
XMLDocument myDoc =

new XMLDocument(myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();

myPrintStream.close();
}

}

Figure 13. Printing an XML Document: Method 1

Chapter 3. Developing for XML 17

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import curam.util.xml.struct.XMLArchiveDocumentID;
import curam.util.xml.struct.XMLArchiveDocDetails;

public class XMLSample {

/*
* Creates an XMLDocument and saves it to the database.
*/
XMLArchiveDocumentID saveDoc(

XSLTemplateInstanceKey tempKey, MyStruct myStruct) {

XMLDocument myDoc = new XMLDocument(
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();

// Save the document to the database.
final XMLArchiveDocumentID docKey =

myDoc.save("Sample Saved Document 1", tempKey);
return docKey;

}

/*
* Loads an XMLDocument from the database and prints it.
*/
void loadDoc(XMLArchiveDocumentID docKey) {

// First load the archived data for the document and get
// its template details and data content.
final XMLDocument docForLoading = new XMLDocument(

XMLEncodingConstants.kEncodeISOLATIN1);
final XMLArchiveDocDetails docDetails =

docForLoading.load(docKey);

final XSLTemplateInstanceKey tempKey =
new XSLTemplateInstanceKey();

tempKey.templateID = docDetails.templateID;
tempKey.templateVersion = docDetails.templateVersion;
tempKey.locale = docDetails.locale;

final String xmlContent = docDetails.document;

docForLoading.close();

// Now use this information to reconstruct a new
// XMLDocument and print it.
final XMLPrintStream myPrintStream =

new XMLPrintStream();
myPrintStream.open(tempKey, MyPC, 1234);
myPrintStream.setEncoding(

XMLEncodingConstants.kEncodeISOLATIN1);
XMLDocument docForPrinting = new XMLDocument(

myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

docForPrinting.addFromXML(xmlContent);
myPrintStream.close();

}

}

Figure 14. Saving and Loading an XML Document

18 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

3.6.5 Previewing an XML Print Job
This sample demonstrates how you can process an XML print job and receive a preview of the data that
would have been printed for that XML document and XSL template.

Chapter 3. Developing for XML 19

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.exception.AppException;
import curam.util.exception.DatabaseException;
import curam.util.exception.InformationalException;
import curam.util.internal.xml.impl.XMLPrintStreamConstants;
import curam.util.type.Blob;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class XMLServerTest {

MyResult previewJob(
final XSLTemplateInstanceKey tempKey,
final MyStruct myStruct)
throws DatabaseException, AppException,
InformationalException, IOException {

final XMLPrintStream myPrintStream =
new XMLPrintStream();

final ByteArrayOutputStream previewBuffer =
new ByteArrayOutputStream();

myPrintStream.setPreviewStream(previewBuffer);

// Explicitly specify that a PDF document be created:
myPrintStream.setJobType(

XMLPrintStreamConstants.kJobTypePDF);

myPrintStream.open(tempKey, MyPC, 1234);
final XMLDocument myDoc =

new XMLDocument(
myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();
myPrintStream.close();

// Now that we have created the PDF document the
// following code illustrates three things that
// can be done with it.

// (1) Save the document to disk.
final FileOutputStream previewFile =

new FileOutputStream("/preview.pdf");
previewBuffer.writeTo(previewFile);
previewFile.close();

// This class contains both a String and
// a Blob for demonstration purposes.
final MyResult result = new MyResult();

// (2) Store the PDF preview in a String:
result.previewDocString = previewBuffer.toString();

// (3) Store the PDF document in a Blob:
result.previewDocBlob =

new curam.util.type.Blob(previewBuffer.toByteArray());

return result;
}

}

Figure 15. Previewing an XML Print Job

20 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Having received the PDF preview of the data, this sample illustrates three ways in which the preview can
be used:
1. Save it to disk.
2. Store it in a String variable.
3. Store it in a Blob. This is recommended if the document is to be stored on the database.

This example used an java.io.ByteArrayOutputStream as a buffer to hold the generated PDF document
because this class was most suited to the three examples above. However any sub-class of
java.io.OutputStream can be used, depending on your needs. For example, a java.io.FileOutputStream
could be used if you wish to write the data to a file.

3.6.6 Building a Document from a List
In these final samples, the use of list documents is demonstrated. Once an XML document built from a
list has been closed, it may be manipulated in the same manner as any other XML document.

The first sample shows how a vector of struct classes can be added to an XML document.

In the second sample below, the list of struct classes is iterated over and only those elements whose value
field is greater than 100 are added to the document. You can, of course, apply any condition you like to
this basic pattern. In IBM Cúram Social Program Management, the list of a type called MyStruct is called
MyStructList, and the dtls field of the list is a java.util.Vector of the basic struct class type, this is
assumed below.

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
void listDoc1(MyStructList myStructList) {

XMLDocument myDoc =
new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.openForList("A User",
"31-Dec-1999",
"1.0",
"Sample 1");

myDoc.add(myStructList);
myDoc.close();

// The document may now be manipulated as before.
}

}

Figure 16. Adding a List to a Document

Chapter 3. Developing for XML 21

3.7 Load Balancing and Fail-over
The XMLPrintStream supports load balancing and fail-over. Load balancing increases the capacity of the
XML Server by sharing the load among a number of replicated XML Servers and making them appear as
one large virtual server. Fail-over provides the capability to switch over automatically to a redundant
XML Server upon the failure or abnormal termination of the previously active XML Server.

Load balancing and fail-over are implemented in the XMLPrintStream, and XMLServerEndPoint classes. An
instance of the XMLServerEndPoint class contains the endpoint details such as server name, port number
and a weight between 0 and 1 which dictates the percentage of requests that are directed to this server.
The open() method of the XMLPrintStream class can optionally take a list of XMLServerEndPoints as
parameter. The connection will be performed to one of these endpoints based on the weight attached to it
as well as its availability.

Load balancing and fail-over can also be configured using the curam.xmlserver.host and
curam.xmlserver.port properties. The curam.xmlserver.host property specifies the machine names hosting
the XML Server as a '/' separated list of host names. For example:
curam.xmlserver.host="server1/server2/server3"

The curam.xmlserver.port property specifies the ports the XML Server is running on as a '/' separated list
of entries in the following format: port[#weight], where the part in square brackets is optional and weight
is a number between 0 and 1. The weight dictates the percentage of requests that are directed to the
particular server and port. For example:
curam.xmlserver.port="1801#0.6/1802#0.2/1803#0.3"

There is a one to one mapping between the servers and ports specified. For example, server1 is running
the XML Server on port 1801 and server3 is running the XML Server on port 1803.

3.8 Summary
v The XMLDocument class allows well-formed XML documents to be generated using struct classes or lists

of struct classes.

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
void listDoc2(MyStructList myStructList) {

XMLDocument myDoc = new XMLDocument(
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.openForList("A User",
"31-Dec-1999",
"1.0",
"Sample 1");

for (int i = 0; i < myStructList.dtls.size(); i++) {
if (myStructList.dtls.item(i).value > 100) {

myDoc.add(myStructList.dtls.item(i));
}

}
myDoc.close();

// The document may now be manipulated as before.
}

Figure 17. Adding Elements of a List to a Document

22 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

v Care must be taken to ensure that the character encoding scheme used for your data is specified for the
XML document.

v Instances of XMLDocument can be created, saved, loaded, and written to arbitrary output streams.
v The XMLPrintStream class is a type of output stream that allows jobs to be submitted to the XML Server

for processing. Used in combination with the XMLDocument class and XSL templates, it allows XML data
to be formatted and printed

v The XMLPrintStream can be configured on a per-server or per-job basis for maximum flexibility.
v The XMLPrintStream class includes features for previewing documents generated by the server.

Chapter 3. Developing for XML 23

24 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Chapter 4. The XML Server

4.1 Objective
In this chapter, you will learn about the IBM Cúram Social Program Management XML Server, the
component that processes and renders XML documents.

4.2 Prerequisites
There are no prerequisites for this chapter.

4.3 Introduction
The XML Server is a Java application that processes XML documents generated by a IBM Cúram Social
Program Management server application, applying XSL templates (which are described in more detail in
Chapter 5, “Cúram XML and XSL Templates,” on page 41) and rendering to PDF, RTF, HTML, or plain
text. The IBM Cúram Social Program Management server application and the XML Server do not have to
be co-located; they may be hosted on different machines. There can also be any number of XML Servers,
each responsible for a specific task. The XML Server was primarily designed to support printing of XML
documents, however, it can be configured in a myriad of ways to perform many different tasks.

This chapter describes how the XML Server fits into the IBM Cúram Social Program Management
application architecture and how the server can be configured, and also suggests many ways in which it
can be used.

4.4 The XML Server
4.4, “The XML Server” below shows how the XML Server fits into the architecture of a IBM Cúram Social
Program Management application. An application can read application data from a database and using
curam.util.xml.impl.XMLDocument and curam.util.xml.impl.XMLPrintStream can transmit XML data to
the XML Server. The XML Server processes the data and renders a document in any of a number of
formats. This document is then submitted to the system allowing arbitrary commands to be executed on
the document so that it can be printed, e-mailed, transferred, stored, etc. in any system-specific way.

Figure 18. XML Processing Architecture

© Copyright IBM Corp. 2012, 2013 25

The connection from XMLPrintStream to the XML Server is over a TCP/IP socket allowing the XML Server
to be located remotely. The XML Server is configured, at startup, to run a command on its host to process
the document.

The XML Server is fully threaded, allowing it to process multiple jobs simultaneously.

4.5 Configuring the XML Server

4.5.1 Overview
The XML Server has a number of configuration options used to specify how it should work. All the
options are set in a configuration file written using XML notation. This file is picked up when the XML
Server is started and as such the configuration cannot be changed without stopping and starting the
server. There are a number of areas of the operation of the server that can be configured:
v Network;
v Default Values;
v Server Command;
v Template Cache;
v Debugging;
v Apache log4j Logging;
v RenderX Configuration;
v Custom.

These categories are covered in the following sub-sections. The final sub-section presents some samples to
help you develop your own configuration files. All the configuration options are enclosed in an XML root
element <XML_SERVER_CONFIG>. As with all XML documents, you must ensure that the characters,, <, >,
and & used in the values of your options in the configuration file are replaced with their respective
character entities: ', ", <, >, and &.

Table 5. Configuration Options

Option Category Description

<SERVER_PORT> Network The TCP/IP port number that the XML Server will
use to listen for client connections.

<SO_TIMEOUT> Network A positive integer value specifying the timeout (in
milliseconds) on socket operations. If zero value is
specified then it will be interpreted as an infinite
timeout. If this option is not specified a default value
of 60000 milliseconds will be used.

<DEFAULT_PRINTER> Default Values The name of the default printer. The format used
should be that required by the server command.

<DEFAULT_TRAY> Default Values The name of the default printer tray. The format
used should be that required by the server
command.

<DEFAULT_USERNAME> Default Values The name of the default user. The format used
should be that required by the server command.

<DEFAULT_EMAIL> Default Values The default e-mail address. The format used should
be that required by the server command.

<SERVER_COMMAND> Server Command The command string to use to process the document.
If the command string is empty, no processing will
be attempted.

26 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 5. Configuration Options (continued)

Option Category Description

<USE_PIPE> Server Command Indicate that the output document from the XML
Server should be piped to the standard input of the
server command when it is executed. One of
USE_PIPE or USE_TMP_FILE is required to betrue.

<USE_TMP_FILE> Server Command Indicate that the output document from the XML
Server should be written to a temporary file before
the server command is executed. One of USE_PIPE or
USE_TMP_FILE is required to betrue.

<USE_STDOUT_SINK> Server Command Start a thread to read and discard any data written
to standard output by the server command.

<USE_STDERR_SINK> Server Command Start a thread to read and discard any data written
to standard error by the server command.

<TMP_DIRECTORY> Server Command Specifies the directory into which temporary files
containing the document data should be written.
Required only if USE_TMP_FILE wastrue.

<TMP_FILE_ROOT> Server Command Specifies the root part of the file name to use to
create the temporary file. A sequence number and
the appropriate extension will be appended to create
the full file name. Required only if USE_TMP_FILE
wastrue.

<FOP_CONFIG_FILE> Server Command The name and location of a FOP configuration file.
This can be used to add additional fonts for use
when processing PDF files. Consult the Apache FOP
documentation for more information.

<RENDERX_CONFIG_FILE> RenderX
Configuration

The name and location of a RenderX configuration
file. This is required to initiate the RenderX
rendering engine. RenderX can be used as an
alternative to Apache FOP. Consult the RenderX
documentation for more information.

<RENDERX_LOGGING> RenderX
Configuration

Specifies how RenderX 's internal logging should be
configured. Consult the RenderX documentation for
more information.

<USE_TEMPLATE_CACHE> Template

Cache

Indicates that the template cache should be used to
avoid having to read templates each time a job is
submitted.

<TEMPLATE_CACHE_DIR> Template

Cache

The name of the directory in which to store the
cached template files. Required only if
USE_TEMPLATE_CACHE wastrue.

<CLEAR_TEMPLATE_CACHE> Template

Cache

When the server is started, this option will force all
files in the template cache directory to be deleted.

<TRACE_TRAFFIC> Debug A debug option to echo all data received by the
server to the servers standard output.

<STATISTICS_FOLDER> Debug This option will output statistics for the XML Server
in the folder specified by the option.

<THREAD_POOL_SIZE> Sizing The amount of threads in the pool.

Chapter 4. The XML Server 27

Table 5. Configuration Options (continued)

Option Category Description

<THREAD_POOL_QUEUE_SIZE> Sizing This can be tuned if needed so that requests are held
inside the XMLServer rather than out in the TCP
backlog queue. The process memory space required
for an accepted TCP/IP connection should be taken
into consideration when setting this configuration
parameter.

<JOBS> Custom The parent element of <JOB> children elements which
specify a job type for the XML Server.

<JOB> Custom Specifies a job type for the XML Server. Multiple
<JOB> elements can be defined, each detailing a new
job type and the implementing class.

4.5.2 Network Configuration
There are two network settings that can be set to all XML Server s.

The TCP/IP port number on which to listen for connections. Clients of the XML Server connect to the
host on which the server is running and must specify which port should be used for communications.
The <SERVER_PORT> element is used to specify the port number. The number should be that of an
available port on the system. Generally, this means a port number between about 1000 and 32767. If the
server is started with a port that is already in use, this will be reported and you can select a different
port.

A timeout value can be specified for network socket operations to ensure that the job threads are not
blocked indefinitely, while reading template files across the network and in the event of any network
problems. The <SO_TIMEOUT> element is used to specify the timeout value (in milliseconds). This option
allows a network socket operation to block for the time specified. If the timeout expires, a
java.net.SocketTimeoutException is raised, although the socket is still valid. A timeout value of zero is
interpreted as an infinite timeout. If this option is not specified, a default value of 60000 (i.e. one minute)
is used.

4.5.3 Default Value Configuration
There are a number of default values that can be specified for the server. These are the default printer
name, the default paper tray, the default e-mail address, and the default user name. They are specified
using the elements <DEFAULT_PRINTER>, <DEFAULT_TRAY>, <DEFAULT_EMAIL>, <DEFAULT_USERNAME>
respectively. The values can be anything you wish.

If a job submitted to the XML Server via an instance of the XMLPrintStream class includes these values,
the defaults will be overridden for that job.

4.5.4 Server Command Configuration
Once a job has been processed by the XML Server (providing the client did not request a preview), the
server will run its server command.

Note: The server command cannot be set per invocation, if multiple commands are required multiple XML
Server s must be used
The server command is a command that is sent to the system to manipulate the output document. Usually
this will involve printing or e-mailing the document, but there are no restrictions on what the command
can do other than those imposed by your system. No built in server commands are provided. The
command is free-form and is specified using the <SERVER_COMMAND> element.

28 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The server command uses token substitution to pass parameters to the system. The tokens consist of a %
character followed by a letter (it is case-insensitive). Tokens that appear in the server command string are
substituted with the relevant value of the token just before the server command is executed for each job.
The tokens are listed in 4.5.4, “Server Command Configuration,” on page 28 below.

Table 6. XML Server Command Tokens

Token Meaning

%p The name of the printer is being set to either the default printer ID attribute on the Users
table (i.e. the user trying to print the document) or the default printer name as specified in
the XML server configuration.

%t The name of the paper tray as specified in the job configuration received from the client, or
the default paper tray as specified in the server configuration.

%u The name of the connecting user, or the default username specified in the server
configuration. This could be the application username that the user logged in as.

%e The e-mail address of the connecting user, or the default e-mail address specified in the
server configuration. This can be used if you want to e-mail the result of the XML job back
to the user. For example, you could configure a server to e-mail PDF to a user as well as
print the PostScript output. You could even use this to configure two servers where one
supplies e-mailed copies and the other generates hard-copies.

%f The name of the file where the document was saved. This will be a generated temporary file
name and will not include that path to the file. The file extension will depend on the
specified job type and will default to.pdf.

%d The directory where the temporary file is located. You may use a trailing directory separator
character and then specify %d%f or you can leave out the character and use, for example,
%d/%f. The XML Server will not insert one for you. Care should be taken to use the correct
separator character for your system.

%% If you want to use a % character in a command but not as a token, use %% instead. The first %
will be removed before invoking the command.

For example, if the server command is specified as:

mail -s 'Your Print Job' %e

the %e token will be replaced with the e-mail address specified for the job (or the default e-mail address if
none was supplied).

For more complex server commands it may be necessary to wrap the actual commands in a batch/script
files. This batch file is then executed via a server command such as:

<SomeLocation>/MyBatch.bat 'Your Print Job' %e

The server command tokens are not available in the batch file but are only replaced in the server
command specified in the server configuration file and must be passed into the batch program as normal
parameters.

The main consideration when writing a server command is to identify whether you want the output
document of the XML Server piped to your command or stored in a temporary file for your command to
process. This can be chosen by setting one of the mutually exclusive <USE_TMP_FILE> or <USE_PIPE>
elements in your configuration.

If you opt to use a temporary file. The document data will be written to the temporary file and then the
server command will be executed. The XML Server will not delete the temporary file for you. You should
have your server command do that if that is what you wish. The temporary file will be named using the
value of the TMP_FILE_ROOT element with a sequence number and the appropriate extension appended

Chapter 4. The XML Server 29

according to the job type. For example, if the value was temp, and the job type was
XMLPrintStreamConstants. kJobTypePDF the first file generated by the XML Server would be temp0.pdf,
the next file temp1.pdf, etc. This is useful if you start several XML Server s that all share the same
temporary directory to avoid servers over-writing each others temporary files. The file will be created in
the directory specified by the <TMP_DIRECTORY> element in the configuration. This element should contain
an absolute path or a path relative to the directory in which the XML Server was started. The directory
name and the generated file name are made available to your command using the %d and %f tokens
respectively.

If you opt to use a pipe, your command will be executed and the XML Server will begin to write
document data to the standard input of the command. No temporary file will be created. There is,
however, an issue that must be resolved when using pipes: if the command write buffered data to
standard error or standard output that is not read by any process, once the buffer is full, the command
may block. As no process will ever read from the streams, the command will remain blocked indefinitely;
in other words, it hangs. There are two methods that can be employed to avoid this. The first is to ensure
that all unused output from your command is redirected to a device that will read all the output and
ensure the process does not block. The second is to have the XML Server do this for you using the
<USE_STDOUT_SINK> and <USE_STDERR_SINK> elements. While the former method is recommended where
possible, the use of the XML Server sinks can help in situations or on systems where it is not possible.
Both elements cause threads to be created in the XML Server to read and discard data output by the
server command.

More details on how to write server commands are provided in the section including samples below.

4.5.5 Template Cache Configuration
Each job submitted to the XML Server requires an XSL template to be applied to an XML document. Both
the template and the document must be supplied by the client. As it is likely that a template may be used
more than once, the server can be instructed to store copies of the templates in local files rather than
request that the client send a new copy of a template each time it is used.

The cache is enabled using the element <USE_TEMPLATE_CACHE>. The templates are then stored in the
directory specified using the TEMPLATE_CACHE_DIR element. Only templates that are supplied to the
XMLPrintStream with a template ID and template version number will be cached.

The files in the template cache are not deleted when the XML Server is shut down. They will be reused
the next time the server is started. If this behavior is not desired, the <CLEAR_TEMPLATE_CACHE> element
will ensure that all files in the template cache directory are deleted on server start up.

4.5.6 Debug Configuration
If the server complains that your XSL template or XML document contain errors, you can take a look at
what the server sees by tracing all network traffic received by the server. Use the element
<TRACE_TRAFFIC> to enable this debugging feature. The output will be written to the servers standard
output. For server communications, lines in the template that start with a period or full-stop character.
have an extra period character inserted. The end of the client transmission is marked by a line containing
only a single period. You should just ignore these extra periods.

4.5.7 Log4j Logging
Logging with log4j is used to improve the performance of logging. This can be configured via the
log4j.properties file in the XML Server directory. Further information on how to configure log4j can be
found on the Apache website, http://logging.apache.org/log4j.

30 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://logging.apache.org/log4j

4.5.8 RenderX Configuration
The XML Server provides support for RenderX as an alternative to the Apache FOP document rendering
engine. It must be installed on the machine on which XML Server is running before it can be used within
the XML Server. Further information on RenderX as a rendering tool can be found on the RenderX
website, http://www.renderx.com.

<RENDERX_CONFIG_FILE> is used to locate the configuration file required by RenderX engine to start up.

<RENDERX_LOGGING> is used to configure RenderX 's internal logging.
v default - RenderX 's DEFAULT_LOGGER will be used to log information.
v null - RenderX 's NULL_LOGGER will be used to log information.
v File Path - RenderX 's DEFAULT_LOGGER will be used, but the logging stream will be redirected to

the file specified.

The default value for this property is default, if it's not specified. Further information on
DEFAULT_LOGGER and NULL_LOGGER can be found on RenderX 's Java API.

4.5.9 Custom Configuration
The XML Server provides support for defining custom rendering implementations, which allows the use
of third party rendering tools. A custom rendering implementation can be added in the form of a new job
type; alternatively the default implementation can be replaced.

By default, the XML Server provides four <JOB> definitions catering for processing four types of
documents: HTML, RTF, TEXT, PDF. The default rendering implementations are listed below:
v HTML - curam.util.xmlserver.HTMLDocumentGenerator
v RTF - curam.util.xmlserver.RTFDocumentGenerator
v TEXT - curam.util.xmlserver.TEXTDocumentGenerator
v PDF - curam.util.xmlserver.PDFDocumentGenerator

The default document formatting solution uses Apache Formatting Objects Processor (FOP) to define
processing for the document types HTML, PDF, RTF, TEXT. This default implementation can be replaced
with a custom implementation by implementing the curam.util.xmlserver.DocumentGenerator interface.

Due to FOP 's limited capabilities on processing Right-To-Left (RTL) documents, a second pdf rendering
tool can be used to specifically handle RTL documents. This can be done using the direction attribute
when defining a <JOB>. This attribute is optional, and only applicable for pdf job type. The possible
values it may contain are: rtl and ltr. The default value is ltr.

4.5.9.1 Custom Job Type
A new job type is specified using a <JOB> element which must be created with the <JOBS> element. The
new job type should be specified using the type attribute. This attribute is case insensitive, and may not
contain spaces. Attribute class should be used to specify the fully qualified name of the class
implementing the curam.util.xmlserver.DocumentGenerator interface.

For example:
<JOB type="CUSTOM_JOB_TYPE" class="custom.JobImpl" />

The configuration file supports the definition of any number of <JOB> elements.

The curam.util.xmlserver.DocumentGenerator interface requires the following two methods to be
implemented.

Chapter 4. The XML Server 31

http://www.renderx.com

/**
* This method should be implemented to generate the document
* for the custom job type. The method is provided with the
* xml template and xml data to be merged to create the
* document. The document result should be sent to the
* output stream provided.
*
* @param xslTemplate The XSL template transformer.
* @param xmlDataStream The input stream from which to read
* the XML data.
* @param docOutput The output stream for the generated
* document.
*
* @throws XMLJobException Generic exception to be thrown on
* error. Exception handing should be handled within the
* implemented method.
*/
void generateDocument(final Transformer xslTemplate,

final InputStreamReader xmlDataStream,
final OutputStream docOutput)

throws XMLJobException;

/**
* This method should return a String containing the file
* extension for the file to be generated. For example if
* generating a HTML file the method should return the
* String ".html".
*
* @return The extension of the file to be generated.
*/

String getFileExtension();

4.5.10 Font Configuration
By Default the XML Server uses FOP (Formatting Objects Processor) for rendering documents in various
formats. FOP supports a default set of fonts, including Helvetica, Times and Courier, and it is possible
using a FOP configuration file to include support for additional fonts, for example a simplified Chinese
font. The <FOP_CONFIG_FILE> configuration option allows you to specify the name and location of a FOP
configuration file. The path specified for the configuration file can be absolute (c:/directory/fop-config-
file.xml) or relative (./fop-config-file.xml) to the xmlserver directory. Any references to files within
the FOP configuration file can also be absolute or relative to the xmlserver directory.

The example FOP configuration file above references a font metrics file (pmingliu.xml) and an embed file
(mingliu.ttc). The embed file is the true type collection font file. True type collection font files can be
found on a Windows machine in the installed fonts directory, for example c:/Windows/Fonts. Apache
provides utilities to generate the necessary font metrics file from a true type collection font file and also
from other formats. The Apache FOP documentation should be consulted for more information on font
configuration.

<fop>
<renderers>
<renderer mime="application/pdf">

<fonts>
<font metrics-url=".\chinese\pmingliu.xml" kerning="yes"

embed-url=".\chinese\mingliu.ttc">
<font-triplet name="PMingLiu" style="normal"

weight="normal"/>

</fonts>
</renderer>
</renderers>

</fop>

Figure 19. Sample FOP Configuration File

32 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

4.5.11 Sample Configuration Files

4.5.11.1 Overview
In this section a number of samples are presented to illustrate ways the XML Server can be configured.
These configurations are dependent on the platform or operating system used and include:
v Printing a document (Windows);
v Displaying a document for testing purposes (Windows);
v Printing a document (UNIX and IBM z/OS®).

Where path names are specified (e.g. to commands) your customizations may need to be changed if you
base your configurations on any of these samples.

The server command (and all other options) should be entered on a single line in the configuration file.
In this document they may display with line wrapping for formatting purposes (e.g. 4.5.11.2, “Printing a
Document (Windows)”; but, in your implementation they will need to be specified on a single line to be
valid.

4.5.11.2 Printing a Document (Windows)
On Windows the server command (specified in the <SERVER_COMMAND> element) is not executed in a
command shell unless explicitly invoked via the Windows command interpreter (cmd.exe) and this is
necessary in order to use such facilities as pipes and redirection. The configuration described here is
representative for Windows platforms.

Depending on the file type, your printing requirements, and the target printer there are a number of
possible options and configurations for printing on Windows. For instance, your particular version of
Adobe Reader may allow for direct printing or your printer may support direct PDF printing.

A convenient way to implement print functionality is to write a batch file for the Windows command
interpreter to invoke and perform any necessary operations and to get the server to execute this batch
file. A sample batch file is shown in 4.5.11.2, “Printing a Document (Windows)” below. Let us assume that
the batch file is saved as c:\xmlsrv\xmlserverprint.bat7. The server command can pass parameters to
the batch file through the command line and the batch file accesses these as %1 for the first parameter, %2
for the second, etc. These parameters are provided to the batch file via the server command tokens
specified in the batch file invocation in the server configuration file and replaced when it is invoked. (See
4.5.4, “Server Command Configuration,” on page 28 and 4.5.11.2, “Printing a Document (Windows)” for
more information on command tokens.)

While Windows applications sometimes allow the use of either forward-slash (/) or back-slash (\)
characters interchangeably as a path separator, the Windows command interpreter only allows the \
character. Care must be taken to ensure that all paths that may be visible to the command interpreter use
back-slash characters (\) as separators. As path information will not be available in the context of your
batch file, commands must have fully specified paths. The interpreters built-in commands do not require
a path.

The following example illustrates the use of the sample SimplePrintService class, which is implemented
using the Java Print Service API. You could utilize this API for your own custom solution; for instance, to
utilize specific printer features in your environment. To print a PDF file using this sample class would
require the printer to have direct PDF print support.

7. Note that you should choose a target destination for setting up your XML Server and its customizations to avoid being
overwritten by subsequent service pack updates.

Chapter 4. The XML Server 33

Instead of the sample Java program above any appropriate processing could be specified or additional
processing prior to printing or cleanup after printing could also be implemented as needed. If you use
any command that may send output to the console, make sure that you add null redirection. This output
needs to be redirected to the null device or it will cause the command to block and the batch file will
hang. Therefore, redirection must be added to the command pointing to the null device; e.g.: > nul:,
which avoids the problem of blocking the XML Server. Setting the <USE_STDOUT_SINK> and
<USE_STDERR_SINK> elements in the configuration will not work on Windows.

A sample configuration file used to launch this batch file is shown in 4.5.11.2, “Printing a Document
(Windows),” on page 33 below. Note how the printer name and the details of the temporary file are
passed to the batch file using the command tokens.

The command interpreter (cmd.exe) uses the/C option to specify a batch file to execute. The batch file is
passed two parameters. The first parameter is the name of the temporary PDF file created by
concatenating the expanded %d token for the temporary directory name, a back-slash separator, and the
expanded %f token for the name of the temporary PDF file. The second parameter is the expanded %p
token for the name of the printer. The configuration file also includes a default printer name. But this
may be overridden by the client. See 4.5.4, “Server Command Configuration,” on page 28 for a more
detailed description of these tokens.

@ECHO OFF

echo -- ^
>> XMLServer.log

REM log output
echo File: %1 ^

>> XMLServer.log
echo Print Server: %2 ^

>> XMLServer.log

REM Call the system print command
echo Starting Print ^

>> XMLServer.log
echo %JAVA_HOME%\bin\java ^

-cp xmlserver.jar;xmlservercommon.jar ^
curam.util.xmlserver.SimplePrintService ^
%2 "%1" >> XMLServer.log 2>&1

%JAVA_HOME%\bin\java ^
-cp xmlserver.jar;xmlservercommon.jar ^
curam.util.xmlserver.SimplePrintService ^
%2 "%1" >> XMLServer.log 2>&1

echo Printing Completed ^
>> XMLServer.log

echo -- ^
>> XMLServer.log

Figure 20. Batch File for Printing a Document (Windows)

<XML_SERVER_CONFIG>
<SERVER_PORT>6789</SERVER_PORT>
<SERVER_COMMAND>

c:\Windows\System32\CMD.EXE
/C c:\xmlsrv\xmlserverprint.bat %d\%f %p

</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
<TMP_DIRECTORY>c:\xmlsrv\tmp</TMP_DIRECTORY>
<DEFAULT_PRINTER>\\MyPC\ps1</DEFAULT_PRINTER>
...

</XML_SERVER_CONFIG>

Figure 21. Configuration for Printing a Document (Windows)

34 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

4.5.11.3 Displaying a Document for Testing (Windows)
When testing a new XSL template against XML data, it is useful to see the PDF output without printing it
each time. If the code you are writing does not use the preview facilities of the XMLPrintStream class, you
will need to look at the PDF output of the XML Server manually.

A simple solution is to run an XML Server on your development machine and configure it to open Adobe
Reader to display the PDF data each time you submit a job. This will save you from running to a printer
or manually opening PDF files. The configuration is shown in 4.5.11.3, “Displaying a Document for
Testing (Windows).”

You cannot include space characters in the path to the server command as Java will interpret these as the
end of the command file name and there is no way of escaping them. To avoid the problem, the above
configuration file shows how the DOS short name of the directory containing the space character is used:
PROGRA~1 instead of Program Files. As the command was not passed to a command interpreter, the
choice of / or \ as a path separator character is arbitrary.

4.5.11.4 Installing RenderX for Right-To-Left (RTL) PDF Document Processing
(Windows)
Due to the lack of support for RTL writing languages in Apache FOP the XML Server also provides the
functionality to use alternative rendering tools.

RenderX is one of a number of third party document rendering engines that supports RTL writing
languages. If RenderX is installed, and the XML Server is configured to use RenderX, the XML Server will
automatically use RenderX to generate all RTL PDF documents. In order to use the default RenderX
implementation in IBM Cúram Social Program Management the following steps should be completed:
v Install RenderX according to RenderX 's installation guide.
v Set a system environment variable RENDERX_HOME to point to RenderX 's installation directory.
v Customize xmlserver_config.xml to use curam.util.xmlserver.RenderXDocumentGenerator to process

Right To Left PDF documents. See example below for details.

Note: In order to use a relative path with a default installation of RenderX, the images should be stored
relative to the RenderX location. For example, if the RENDERX_HOME is C:\projects\RenderX\, and the

<XML_SERVER_CONFIG>
<SERVER_PORT>6789</SERVER_PORT>
<SERVER_COMMAND>c:/PROGRA~1/Adobe/AcrobatReader/AcroRd32.exe

%d/%f</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
<TMP_DIRECTORY>c:/xmlsrv/tmp</TMP_DIRECTORY>
...

</XML_SERVER_CONFIG>

Figure 22. Displaying a Document for Testing (Windows)

<XML_SERVER_CONFIG>
...
<RENDERX_CONFIG_FILE>C:/RENDERX/xep.xml</RENDERX_CONFIG_FILE>
<RENDERX_LOGGING>off</RENDERX_LOGGING>
...
<JOBS>

...
<JOB type="pdf" direction="RTL"
class="curam.util.xmlserver.RenderXDocumentGenerator"/>

</JOBS>
</XML_SERVER_CONFIG>

The customizations in this example assume RenderX is installed to c:/RenderX directory
Figure 23. Setting up RenderX as the rendering tool for Right To Left Document processing

Chapter 4. The XML Server 35

images are stored in C:\projects\RenderX\images, then the relative path to an image would be
"./images/curam/curam.jpg" which is the equivalent of C:\projects\RenderX\images\curam\curam.jpg.

4.5.11.5 Printing a Document (UNIX and z/OS)
Printing a document on UNIX and z/OS can be done similarly to Windows in that an invoked shell
script can execute commands or other necessary processing. That is, you write a shell script that is
invoked by the XML Server as per your configuration and the shell script performs the processing
specific to the platform. For example, see 4.5.11.5, “Printing a Document (UNIX and z/OS)” below. Let us
assume that the shell script is saved as /usr/local/xmlsrv/xmlserver.sh8. The server command can pass
arguments to the shell script, which are accessed in a typical way: $1 for the first parameter, $2 for the
second, etc. These arguments are provided to the shell script via the server command tokens specified in
the script invocation in the server configuration file and replaced when the script is invoked. (See 4.5.4,
“Server Command Configuration,” on page 28 and 4.5.11.5, “Printing a Document (UNIX and z/OS)” for
more information on command tokens.)

In general, printing capabilities vary widely by OS distribution, version, installed software, physical
printer capabilities, etc. Review your local environment for requirements and how to best implement
printing support. For instance, a z/OS implementation might use the IBM InfoPrint Server9.

The following example illustrates how printing might be done on various UNIX platforms. For instance,
as on z/OS, if the software and printer hardware supports it direct printing via the the system print
command (lp or lpr) may be possible. On IBM AIX® you would require third-party software to convert
the input PDF to PostScript for printing. For ease of monitoring the script contains echo commands to
provide progress during its execution and appends the output to a file named XMLServer.log.

Note: On the z/OS platform you will have to covert the encoding of the xmlserverprint.sh script from
ASCII to EBCDIC. For example:

8. Note that you should choose a target destination for setting up your XML Server and its customizations to avoid being
overwritten by subsequent service pack updates.

9. The installation and configuration of the InfoPrint Server is beyond the scope of this document.

tr -d ’\15\32’ < xmlserverprint.sh > xmlserverprint.sh-ASCII
iconv -t IBM-1047 -f ISO8859-1 xmlserverprint.sh-ASCII \
> xmlserverprint.sh
chmod a+rx xmlserverprint.sh

36 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The configuration file used to launch this shell script is shown in 4.5.11.5, “Printing a Document (UNIX
and z/OS),” on page 36 below. Note how the printer name (%p) and the details of the temporary file (%d
and %f) are passed to the shell script using the command tokens. These are interpreted by the shell as
two arguments inside the script: 1) The temporary directory and file name are concatenated with a
forward-slash separator; and 2) name of the printer, which may be overridden by the client. See 4.5.4,
“Server Command Configuration,” on page 28 for a more detailed description of these tokens.

#!/bin/sh

Sample UNIX script for XMLServer printing.

echo -- \
>> XMLServer.log

log output
echo File: $1 >> XMLServer.log
echo Print Server: $2 >> XMLServer.log
Platform=`/bin/uname`
echo Platform: $Platform >> XMLServer.log

The following illustrates some possible print solutions
for various platforms:

case $Platform in
z/OS:
OS/390)

On OS/390 (z/OS) use of the lop command as
illustrated would be dependent on the InfoPrint
Server installation and configuration, related
software, and a printer with direct PDF support
and sufficient memory.
echo Starting print... >> XMLServer.log
lp -d $2 $1
echo Printing Completed >> XMLServer.log

;;

AIX)
AIX has no native print support for PDF files,
so you would need to implement functionality such as
pdf2ps to convert the generated PDF file to
PostScript for printing with lpr; e.g.:
see the IBM Redbook SG24-6018-00
pdf2ps $1 $1.ps
lpr -P $2 $1.ps
echo $Platform printing implementation is TBD. \

>> XMLServer.log
;;

Other platforms:
*)

Your local print functionality to be implemented here ...
echo $Platform printing implementation is TBD. \

>> XMLServer.log
;;

esac

echo -- \
>> XMLServer.log

Figure 24. Sample Shell Script for Printing a Document (UNIX and z/OS)

Chapter 4. The XML Server 37

4.6 Running the XML Server
The XML Server application is delivered as a separate component in IBM Cúram Social Program
Management. The XML Server is started from the XML Server installation directory using Apache Ant.
For example:

ant -file xmlserver.xml

A default xmlserver_config.xml is provided on install which contains the default configuration file for
the server. You can apply changes to this file as required.

When the server starts, it displays the configuration information it has read from the configuration file
and displays the status of each job it receives.

Note: In addition to running as a command line application, the XML server can also be run in the
background as a Windows service as discussed in 4.6.1, “Running the XML Server as a Windows Service
or UNIX Daemon.”

4.6.1 Running the XML Server as a Windows Service or UNIX Daemon
For a production environment it can be more effective, for purposes of ensuring availability at restart,
avoiding accidental shutdowns via an open shell prompt, etc., to run the XML Server as a Windows
service or UNIX daemon.

To run a program as a Windows service requires specific Windows infrastructure; that is, batch files and
programs cannot be run this way out-of-the-box. However, there are third-party tools available to enable
this functionality. One example of such a tool is the Java Service Wrapper from Tanuki Software
(http://wrapper.tanukisoftware.com).

With Tanuki Java Service Wrapper we recommend, after installation, integrating the XML Server using
the WrapperStartStopApp class (setting
wrapper.java.mainclass=org.tanukisoftware.wrapper.WrapperStartStopApp) and you would need to:
v Set the classpath to include the necessary Ant libraries;
v Pass the Ant home into the environment;
v Ensure adequate memory (e.g. 768MB);
v Pass in the necessary parameters to invoke the XML Server Ant script.

Specifically, for the Java Service Wrapper the properties would look like:

<XML_SERVER_CONFIG>
...
<SERVER_COMMAND>

./xmlserverprint.sh %d/%f %p
</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_DIRECTORY>./tmp</TMP_DIRECTORY>
<TMP_FILE_ROOT>doc</TMP_FILE_ROOT>
<DEFAULT_PRINTER>printer1</DEFAULT_PRINTER>
...

</XML_SERVER_CONFIG>

Figure 25. Configuration for Printing a Document (UNIX and z/OS)

38 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://wrapper.tanukisoftware.com

The values in angle brackets above would need to be substituted with the appropriate values for your
local installation. See the Java Service Wrapper documentation for more details on installation,
configuration and running.

Running the XML Server as a UNIX daemon is something that can typically be done with shell scripting
and system facilities (e.g. cron); but, UNIX -compatible versions of Java Service Wrapper are available.

4.7 Overriding the Default Port
The Cúram XML Server application runs on port 1800 by default. To override the default port the
-Dxmlserver.port option can be specified, overriding the Ant script. For example:

ant -file xmlserver.xml -Dxmlserver.port=1805

4.8 Overriding the Default Configuration
The Cúram XML Server application comes and runs with a default configuration file which it generates
each time the application is started.

To override this default version, take a copy of the xmlserverconfig.xml10and place in a custom location.
To start the server using this custom configuration use the following Ant command:

ant -f xmlserver.xml -Dxmlserver.config.file=C:\Custom\xmlserverconfig.xml

4.9 Switching Off Configuration File Schema Validation
The Cúram XML Server application validates the XML Server configuration file at start up by default.

To switch off validation the novalidation option can be specified as an additional argument to the Ant
script invocation. For example:

ant -file xmlserver.xml -Dadditional.args=-novalidation

4.10 Shutting Down the XML Server
In an environment where few jobs are printed or you can be sure the XMLServer is idle, you can safely
shut down the XML Server with a simple Control-C key combination without causing any problems.
However, the recommended and safer method is to use the XMLServerShutdown command. This will shut
down any XML Server in an orderly fashion: the server will refuse any new jobs and allow all
outstanding jobs to complete before exiting. This is done through the following Ant command:

10. The xmlserverconfig.xml is created from the xmlserverconfig.xml.template file the first time the XML Server is run. This file
contains all the configuration elements for the XML Server.

wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant.jar
wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant-launcher.jar
wrapper.java.additional.<n>=-Dant.home=<ANT_HOME>
wrapper.java.maxmemory=768
wrapper.app.parameter.1=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.2=2
wrapper.app.parameter.3=-f
wrapper.app.parameter.4=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.5=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.6=true
wrapper.app.parameter.7=3
wrapper.app.parameter.8=-f
wrapper.app.parameter.9=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.10=stop

Chapter 4. The XML Server 39

ant -file xmlserver.xml stop

The server will be switched into shut down mode and all outstanding jobs will be completed before the
server exits and the XMLServerShutdown command informs you that the server has been shut down.
Depending on the number of jobs being processed, this may take some time to complete.

4.11 Statistics
Once you shutdown the XMLServer various statistics data for the XML Server are collected in the
statistics folder, specified in xmlserverconfig.xml.

The statistics log includes the below columns:-
v Success - Whether or not the job was successful(true, false).
v Job preview type - The job preview type (PDF,HTML,TEXT,RTF).
v Elapsed connection - the time elapsed (in milliseconds) since processing of a connection started until

the connection was closed.
v Elapsed job - The time (in milliseconds) it takes to run the job.
v Elapsed job preview send - The time (in milliseconds) it takes to send the preview data to the client.
v Job preview data length - The length of the preview data (in bytes) sent to the client.
v Timestamp - The timestamp (Java time stamp value) when the connection entered the system.
v Template ID - The ID for the template being processed.
v Template version - The version number of the template being processed.
v Template locale - The locale of the template being processed.

4.12 Summary
v The Cúram XML Server processes jobs submitted by a client to produce a formatted document.
v Each job requires an XML document and an XSL template.
v Multiple servers can be run on the same host by specifying different port numbers for each server.

Each server can perform a different operation, but can only perform one operation.
v Default values for a printer name, printer tray, e-mail address, and user name can be specified in the

configuration.
v The server can be configured to perform any required operation on the output document such as

printing, e-mailing, display, etc. by specifying a command that should be run against the document
data.

v The configuration can specify whether the document should be piped to the server command or first
written to a temporary file.

v The template cache can be used to improve performance where templates are reused regularly.
v Debugging options are available to help solve problems with templates or XML data.
v Custom implementations can be defined to overwrite the default job types, or to define new job types.
v The server is a Java application started from the command line and displays its configuration and

status when run.
v The server can be shut down safely using the shutdown command.

40 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Chapter 5. Cúram XML and XSL Templates

5.1 Objective
In this chapter, you will learn about the IBM Cúram Social Program Management XML format used for
all XML documents generated by your application server. You will need to know this format if you wish
to write XSL templates for formatting and printing the XML documents.

5.2 Prerequisites
Before reading this chapter you should be familiar with the basic concepts behind XML and Document
Type Definitions (DTD).

5.3 Introduction
Every XML document generated by the XML infrastructure uses a fixed format regardless of the struct
classes being converted. This makes the development of XSL templates easier, as the format of the XML
does not change. The following sections present that format and show what IBM Cúram Social Program
Management XML documents look like. This will help you when you are developing XSL templates.

5.4 Cúram XML
5.4, “Cúram XML” below presents the DTD for Cúram XML. The DTD can also be found in the /lib
directory of the SDEJ. The structure is relatively simple and, with the comments, this needs no further
explanation.

© Copyright IBM Corp. 2012, 2013 41

5.5 Examples
5.5, “Examples” below shows a simple XML document generated for a struct that contains two fields.
Note that the field types will always be the basic types and not the domain definitions derived from
those basic types.

<!--A DOCUMENT element has an optional META element
followed by a mandatory DATA element.-->

<!ELEMENT DOCUMENT (META?, DATA)>

<!--A META element has a number of optional elements that
it can contain in no particular order.-->

<!ELEMENT META (GENERATED_DATE | GENERATED_BY |
VERSION | COMMENT)*>

<!--A DATA element contains a single mandatory STRUCT_LIST
or STRUCT element.-->

<!ELEMENT DATA ((STRUCT_LIST | STRUCT))>

<!--A STRUCT_LIST element has one or more STRUCT
elements.-->

<!ELEMENT STRUCT_LIST (STRUCT+)>

<!--A STRUCT element has an optional SNAME element and one
or more FIELD elements.-->

<!ELEMENT STRUCT (SNAME?, FIELD+)>

<!--A FIELD element has an FNAME and either a TYPE
element and a VALUE element, or a STRUCT_LIST element,
or a STRUCT element (in that order).-->

<!ELEMENT FIELD (FNAME, ((TYPE, VALUE) | STRUCT_LIST | STRUCT))>

<!--All these elements contain parsed character data only
and do not contain sub-elements. Use ISO-8601 when
formatting date values.-->

<!ELEMENT GENERATED_DATE (#PCDATA)>
<!ELEMENT GENERATED_BY (#PCDATA)>
<!ELEMENT VERSION (#PCDATA)>
<!ELEMENT COMMENT (#PCDATA)>
<!ELEMENT SNAME (#PCDATA)>
<!ELEMENT FNAME (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>

<!--A TYPE element can have a SIZE attribute. If not
supplied, the attribute will not be set by default
and will have a null value. This is normally used
for SVR_STRING types.-->

<!ATTLIST TYPE SIZE CDATA #IMPLIED>

Figure 26. Cúram XML Document Type Definition (DTD)

42 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

In the next example, the format of an XML document describing a list of structs is presented. Note that
the <STRUCT> elements are the same as previously, but multiple <STRUCT> elements are contained within a
<STRUCT_LIST> element.

<DOCUMENT>
<META>

<GENERATED_BY>My Server</GENERATED_BY>
</META>
<DATA>

<STRUCT>
<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>12796</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is the subject.</VALUE>

</FIELD>
</STRUCT>

</DATA>
</DOCUMENT>

Figure 27. An Example XML Document

<DOCUMENT>
<META>

<GENERATED_BY>My Server</GENERATED_BY>
</META>
<DATA>

<STRUCT_LIST>
<STRUCT>

<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>12796</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is the subject.</VALUE>

</FIELD>
</STRUCT>
<STRUCT>

<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>35667</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is another subject.</VALUE>

</FIELD>
</STRUCT>

</STRUCT_LIST>
</DATA>

</DOCUMENT>

Figure 28. An Example XML Document with a List

Chapter 5. Cúram XML and XSL Templates 43

If a field of a struct is itself a struct, then instead of a <TYPE> and <VALUE> element, the <FIELD> element
will contain a whole <STRUCT> element. Fields can also contain <STRUCT_LIST> elements in the same
manner.

5.6 Job Types and Template Types

5.6.1 Overview
You saw in Chapter 3, “Developing for XML,” on page 7 how different job types can be specified when
using the XMLPrintStream class to communicate with the XML Server. These job types require different
types of templates in order to be successful. While all the templates use XSL for formatting, there are two
parts of that standard that are used in specific situations.
v XSL Transformations (XSLT)

XSLT is a standard that defines a language for transforming XML documents in other XML documents.
Elements of the XSLT language allow data from one XML document to be combined with static
elements of a template (or stylesheet).

v XSL Formatting Objects (XSL-FO)

XSL-FO defines a set of elements for describing the physical layout of a document: paper size, fonts,
spacing, image locations, etc. The layout model used is based on that used for PDF documents. A
formatting objects processor can convert data marked up with formatting objects into other
representations such as PDF or RTF.

The following subsections outline how these standards can be used to develop templates for each of the
supported job types.

XSL and XSL-FO are extensive standards and it is beyond the scope of this document to describe them in
more than cursory detail. Reference to books and useful Internet sites on these topics are included at the
end of this chapter. You are advised to obtain such materials to learn how to use these technologies.

5.6.2 Templates for PDF Documents
Generating PDF documents is a two stage process. It is perhaps easiest to describe the process in reverse
order.

PDF documents are generated from documents marked up with XSL-FO in a process called rendering.
The document contains the data that should appear in the document (text, figures, etc.) and the XSL-FO
mark-up needed to define how this data should be laid out (margins, paper-size, fonts, line-spacing,
location of paragraphs, etc.) This rendering stage is handled by the Apache FOP library.

To prepare an XSL-FO document for rendering, the raw data is supplied in an XML document and a
template uses XSLT to combine this raw data with the XSL-FO mark-up and the other static elements of
the document. In essence, the XSLT inserts the raw data into the template creating the XSL-FO document.
This transformation stage is handled by the Apache Xalan library.

Thus, templates for rendering documents as PDF are largely XSL-FO documents with elements of XSLT
used to insert values from the XML document at the appropriate point. An example of such a template is
given in the next section.

5.6.3 Templates for RTF Documents
RTF templates are identical to PDF templates. The same template can be used to produce output in either
format. Again, the template is mostly XSL-FO with XSLT used to insert values from the XML document
in the appropriate locations.

44 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The JFOR library is used to render RTF documents from XSL-FO documents, however, not all XSL-FO
elements are supported. Unless you need to edit the documents in a word processor after they have been
generated, you should use the better supported PDF generator.

5.6.4 Templates for HTML Documents
Templates for HTML documents are simpler than those for PDF or RTF. XSL-FO mark-up is not used as
the HTML mark-up is used to define the formatting. As such, there is no rendering step when generating
HTML documents. The templates consists of HTML mark-up and XSLT elements that insert values from
the XML document in the appropriate locations to create a HTML document.

As XSLT can only convert one XML document into another, the output will include some XML elements.
These elements are automatically removed for this job type so that the output is a pure HTML document.
The HTML will be automatically indented during the processing.

5.6.5 Templates for Plain Text Documents
As with templates for HTML documents, templates for plain text documents contain no XSL-FO mark-up
and there is no rendering step. The templates comprise plain text with embedded XSLT elements to insert
values from the XML document in the appropriate locations.

Again, XML elements in the output document are stripped. As XML and XSL generally do not preserve
white-space, use of the <text> element around white-space that is to be preserved is advised (for
example, line breaks, indentation, etc.).

5.7 XSL Template Example
Presented here is a simple example to get your started. It shows the basic method of identifying and
extracting data from an XML document containing a single struct.

Chapter 5. Cúram XML and XSL Templates 45

The output is formatted for A4 paper (210x297mm) with 30mm margins and should appear like this, if
the earlier sample XML document is used:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:template match="DOCUMENT">
<xsl:apply-templates select="DATA"/>

</xsl:template>

<xsl:template match="DATA">
<xsl:apply-templates select="STRUCT[SNAME=’DPTicketDtls’]"/>

</xsl:template>

<xsl:template match="STRUCT">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master page-master-name="only"

page-height="297mm" page-width="210mm"
margin-top="30mm" margin-bottom="30mm"
margin-left="30mm" margin-right="30mm">

<fo:region-body/>
</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence>
<fo:sequence-specification>

<fo:sequence-specifier-single
page-master-reference="only"/>

</fo:sequence-specification>

<fo:flow>
<fo:block font-size="12pt" font-family="serif"

line-height="20mm">
Ticket ID: <xsl:apply-templates

select="FIELD[FNAME=’ticketID’]"/>
</fo:block>

<fo:block font-size="12pt" font-family="serif"
line-height="20mm">

Subject: <xsl:apply-templates
select="FIELD[FNAME=’subject’]"/>

</fo:block>
</fo:flow>

</fo:page-sequence>
</fo:root>

</xsl:template>

<xsl:template match="FIELD">
<xsl:value-of select="VALUE"/>

</xsl:template>

</xsl:stylesheet>

Figure 29. An Example XSL Template

Ticket ID: 12796

Subject: This is the subject.

Figure 30. Example output

46 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

5.8 Generating Templates from RTF Documents
While templates cannot be generated directly from RTF documents, software is available to convert an
RTF document created by a word processor into the corresponding XSL-FO document. Once the XSL-FO
document has been generated, you can insert the appropriate XSLT mark-up to convert it into a usable
template.

5.9 Globalization Considerations
As described above structs are transmitted to the XML Server for printing by calling method
curam.util.xml.impl.XMLDocument .add(your-struct). This data can be sensitive to locale differences.

Structs are serialized into an XML representation which is then transformed into a human-readable
document using XSLT. By default the following data types are serialized by calling their toString()
method:
v curam.util.type.Date

v curam.util.type.DateTime

v curam.util.type.Money

The toString() method of Date and DateTime returns a string dependent on the value of property
'curam.environment.default.dateformat ' and the toString() method of Money returns a value dependent
on the value of property 'curam.environment.default.locale '.

For example, if 'curam.environment.default.locale ' was set to ' en_GB ', a Money amount would be
serialized in the form ' 12,345.67 ' whereas for ' es_ES ' it would be formatted like '12.345,67' (i.e.,
commas and dots reversed). This prevents the XSLT from de-serializing the data in a locale neutral way.
So if the server locale was set to English, then the XSL template for a Spanish letter would have to parse
an English formatted numeric string instead of a numeric value.

Locale related problems like this can be avoided in two ways:
v Use string fields to transfer all data to the XML Server, and ensure that these string fields are correctly

formatted for the appropriate locale on the server beforehand.
v Transfer fields to the XML Server in a locale-neutral way by setting property

'curam.xmlserver.serializelocaleneutral ' to true. For Date and DateTime the formats are ' yyyyMMdd '
and ' yyyyMMddTHHmmss ' respectively. For Money it is the same as for floating point decimals.

5.10 Summary
v Cúram XML uses a fixed format for all generated XML.
v The format is defined in a document type definition (DTD).
v XML documents can be formatted using XSL transformations and marked-up using XSL-FO ready for

rendering as PDF or RTF.
v XML documents can be formatted using XSL transformations only to produce HTML and plain text

documents.

5.11 Further Reading
Some books that cover XML, XSL, and XSL-FO are:
v Harold, Elliotte Rusty, The XML Bible, Hungry Minds Inc.
v Bradly, Neil, The XSL Companion, Addison-Wesley.
v Pawson, Dave, XSL-FO, OReilly.

Useful web-sites for information on XSL, XSLT, and XSL-FO are:

Chapter 5. Cúram XML and XSL Templates 47

v http://www.ibiblio.org/xml/books/bible/updates/ has all the XML chapters from The XML Bible
book.

v http://www.w3c.org/ is the home of the World Wide Web Consortium. This organization controls and
maintains the XSL specifications.

v http://www.dpawson.co.uk/ is a site with some nice tutorials and frequently asked question (FAQ)
lists about XSL and XSL-FO.

The third-party libraries used are available from these locations:
v http://xml.apache.org/ is the home of the Xerces, Xalan, and FOP libraries used by the XML Server.
v http://www.jfor.org/ is the home of JFOR, the XSL-FO to RTF converter.

48 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://www.ibiblio.org/xml/books/bible/updates/
http://www.w3c.org/
http://www.dpawson.co.uk/
http://xml.apache.org/
http://www.jfor.org/

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 49

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

50 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, Adobe Reader, and Portable Document Format (PDF), are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Apache is a trademark of Apache Software Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of the Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 51

http://www.ibm.com/legal/us/en/copytrade.shtml

52 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Objective
	1.2 Prerequisites
	1.3 Introduction
	1.4 Third-Party Libraries

	Chapter 2. XML Concepts
	2.1 Objective
	2.2 Prerequisites
	2.3 Introduction
	2.4 XML
	2.5 Document Type Definition
	2.6 XML Documents
	2.7 Summary
	2.8 Further Reading

	Chapter 3. Developing for XML
	3.1 Objective
	3.2 Prerequisites
	3.3 Introduction
	3.4 XML Documents
	3.4.1 Documents
	3.4.2 The XMLDocument Class
	3.4.3 Encoding
	3.4.4 Creating an XMLDocument
	3.4.5 Opening an XMLDocument Object
	3.4.6 Adding Data to an XMLDocument Object
	3.4.7 Closing an XMLDocument Object
	3.4.8 Saving an XMLDocument Object
	3.4.9 Loading an XMLDocument Object

	3.5 The XML Print Stream
	3.5.1 Overview
	3.5.2 The XMLPrintStream Class
	3.5.3 Default Configuration for XMLPrintStream
	3.5.4 Creating an XMLPrintStream Object
	3.5.5 Configuring an XMLPrintStream Object
	3.5.6 Opening an XMLPrintStream Object
	3.5.7 Closing an XMLPrintStream Object
	3.5.8 Print Previewing

	3.6 Sample Usage
	3.6.1 Overview
	3.6.2 Saving XML Data to a File
	3.6.3 Printing an XML Document
	3.6.4 Saving and Loading XML Documents
	3.6.5 Previewing an XML Print Job
	3.6.6 Building a Document from a List

	3.7 Load Balancing and Fail-over
	3.8 Summary

	Chapter 4. The XML Server
	4.1 Objective
	4.2 Prerequisites
	4.3 Introduction
	4.4 The XML Server
	4.5 Configuring the XML Server
	4.5.1 Overview
	4.5.2 Network Configuration
	4.5.3 Default Value Configuration
	4.5.4 Server Command Configuration
	4.5.5 Template Cache Configuration
	4.5.6 Debug Configuration
	4.5.7 Log4j Logging
	4.5.8 RenderX Configuration
	4.5.9 Custom Configuration
	4.5.9.1 Custom Job Type

	4.5.10 Font Configuration
	4.5.11 Sample Configuration Files
	4.5.11.1 Overview
	4.5.11.2 Printing a Document (Windows)
	4.5.11.3 Displaying a Document for Testing (Windows)
	4.5.11.4 Installing RenderX for Right-To-Left (RTL) PDF Document Processing (Windows)
	4.5.11.5 Printing a Document (UNIX and z/OS)

	4.6 Running the XML Server
	4.6.1 Running the XML Server as a Windows Service or UNIX Daemon

	4.7 Overriding the Default Port
	4.8 Overriding the Default Configuration
	4.9 Switching Off Configuration File Schema Validation
	4.10 Shutting Down the XML Server
	4.11 Statistics
	4.12 Summary

	Chapter 5. Cúram XML and XSL Templates
	5.1 Objective
	5.2 Prerequisites
	5.3 Introduction
	5.4 Cúram XML
	5.5 Examples
	5.6 Job Types and Template Types
	5.6.1 Overview
	5.6.2 Templates for PDF Documents
	5.6.3 Templates for RTF Documents
	5.6.4 Templates for HTML Documents
	5.6.5 Templates for Plain Text Documents

	5.7 XSL Template Example
	5.8 Generating Templates from RTF Documents
	5.9 Globalization Considerations
	5.10 Summary
	5.11 Further Reading

	Notices
	Trademarks

