
IBM Cúram Social Program Management

Cúram Security Guide
Version 6.0.5

���





IBM Cúram Social Program Management

Cúram Security Guide
Version 6.0.5

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 59

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.



Contents

Figures . . . . . . . . . . . . . . . v

Tables . . . . . . . . . . . . . . . vii

Chapter 1. Cúram Security . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . 1
1.2 Audience . . . . . . . . . . . . . . 1
1.3 Overview . . . . . . . . . . . . . . 1
1.4 Chapters in this Guide . . . . . . . . . . 1

Chapter 2. Authentication . . . . . . . 3
2.1 Overview . . . . . . . . . . . . . . 3
2.2 Authentication . . . . . . . . . . . . 3
2.3 Authentication Architecture . . . . . . . . 4
2.4 Default Authentication . . . . . . . . . . 4
2.5 Alternate Login IDs . . . . . . . . . . . 5
2.6 The Login Page . . . . . . . . . . . . 6
2.7 Customization of the Login Page . . . . . . 6
2.8 Cúram JAAS Login Module . . . . . . . . 7
2.9 Password Management. . . . . . . . . . 7
2.10 Default Configuration for WebLogic Server . . 8
2.11 Default Configuration for WebSphere . . . . 8
2.12 Customization of the JAAS Login Module . . 10
2.13 Verification Process for Authentication . . . . 11
2.14 Default Authentication . . . . . . . . . 11
2.15 Default Verification Process . . . . . . . 11
2.16 Authentication Attempts . . . . . . . . 11
2.17 Customization of Default Authentication . . . 11
2.18 Identity Only Authentication . . . . . . . 11
2.19 Customization of Identity Only Authentication 13
2.20 External Access Security Authentication . . . 13
2.21 Custom Verifications . . . . . . . . . . 13

Chapter 3. Authorization . . . . . . . 15
3.1 Overview . . . . . . . . . . . . . . 15
3.2 Users, Roles and Groups . . . . . . . . . 15
3.3 Security Identifiers (SIDs) . . . . . . . . 16
3.4 Function Identifiers (FIDs) . . . . . . . . 16
3.5 Field Level Security Identifiers . . . . . . . 16
3.6 User Defined SIDs . . . . . . . . . . . 16
3.7 Runtime Authorization . . . . . . . . . 17
3.8 Client Authorization Checks . . . . . . . 17
3.9 Server Authorization Checks . . . . . . . 17

Chapter 4. Cryptography in Cúram. . . 19
4.1 Overview . . . . . . . . . . . . . . 19
4.2 Ciphering . . . . . . . . . . . . . . 19
4.3 Digesting . . . . . . . . . . . . . . 19
4.4 Cryptography Properties . . . . . . . . . 19
4.5 Cúram Cipher Settings . . . . . . . . . 20
4.6 Cúram Digest Settings . . . . . . . . . 21
4.7 Cipher-Encrypted Passwords . . . . . . . 21

Chapter 5. Security Data Caching . . . 23
5.1 Overview . . . . . . . . . . . . . . 23
5.2 Cúram Security Cache . . . . . . . . . 23
5.3 Cache Refresh . . . . . . . . . . . . 23
5.4 Cache Refresh Failure . . . . . . . . . . 23
5.5 WebSphere Caching Behavior . . . . . . . 23

Chapter 6. Security for Alternative
Clients . . . . . . . . . . . . . . . 25
6.1 Overview . . . . . . . . . . . . . . 25
6.2 Mandatory Cúram Users . . . . . . . . . 25
6.3 Web Services . . . . . . . . . . . . . 25
6.4 Batch Processing . . . . . . . . . . . 26
6.5 JMS Messaging . . . . . . . . . . . . 26
6.6 Deferred Processing . . . . . . . . . . 26

Chapter 7. External User Applications 27
7.1 Overview . . . . . . . . . . . . . . 27
7.2 External User Applications . . . . . . . . 27
7.3 User Scope . . . . . . . . . . . . . 27
7.4 Deployment of an External Application . . . . 28

Chapter 8. Using Single Sign On . . . 31
8.1 Overview . . . . . . . . . . . . . . 31
8.2 Single Sign On with WebSphere . . . . . . 31
8.3 Single Sign On for WebLogic Server . . . . . 32

Chapter 9. Other Security
Considerations . . . . . . . . . . . 33
9.1 Overview . . . . . . . . . . . . . . 33
9.2 SSL Settings for the Application . . . . . . 33
9.3 Using Cúram in a Secure Environment . . . . 33

Chapter 10. Customizing
Authentication . . . . . . . . . . . 35
10.1 Customizing the Login Page . . . . . . . 35
10.2 Applying Styling to the Login Page . . . . . 35
10.3 Enabling Usernames With Extended Characters
for WebLogic Server . . . . . . . . . . . 35
10.4 Changing the Case-Sensitivity of the Username 35
10.5 Adding Custom Verifications to the
Authentication Process . . . . . . . . . . 35
10.6 Configuring the Custom Authenticator. . . . 36
10.7 Configuring Identity Only Authentication. . . 36
10.8 Adding the Cache Refresh Failure Callback
Interface . . . . . . . . . . . . . . . 36
10.9 Turning Off SSL Settings for the Application . . 36
10.10 Modifying the web.xml File for the Client
Application . . . . . . . . . . . . . . 36
10.11 Modifying the Application Server
Configuration . . . . . . . . . . . . . 37
10.12 Analyzing the AuthenticationLog Database
Table . . . . . . . . . . . . . . . . 37

© Copyright IBM Corp. 2012, 2013 iii



Chapter 11. Customizing Authorization 39
11.1 Overview . . . . . . . . . . . . . 39
11.2 Creating Authorization Data Mapping . . . . 39
11.3 Creating a New Security Role . . . . . . . 39
11.4 Creating a New Security Group . . . . . . 39
11.5 Linking the Security Group to the Security Role 39
11.6 Creating the Security Identifier (SID) . . . . 39
11.7 Linking the Security Group to the SID . . . . 40
11.8 Linking the Security Role to the User . . . . 40
11.9 Loading Security Information onto the Database 40
11.10 Creating Function Identifiers (FIDs) . . . . 40
11.11 Switching Security off for a Process Method . 40
11.12 Security Considerations During Development 41
11.13 Controlling the Logging of Authorization
Failures for the Client . . . . . . . . . . . 41
11.14 Authorizing New SID Types . . . . . . . 41
11.15 Analyzing the AuthorisationLog Database
Table . . . . . . . . . . . . . . . . 42

Chapter 12. Customizing Cryptography 43
12.1 Overview . . . . . . . . . . . . . 43
12.2 Cipher Customization . . . . . . . . . 43
12.3 Key Management . . . . . . . . . . . 43
12.4 How to Create a New Keystore . . . . . . 44
12.5 Digest Customization . . . . . . . . . 45
12.6 How to Specify a Digest Salt . . . . . . . 45
12.7 How to Utilize the Superseded Digest Settings
for a Period of Migration . . . . . . . . . . 45
12.8 Modifying Your Crypto Configuration for a
Production System . . . . . . . . . . . . 47

Chapter 13. Customizing External User
Applications . . . . . . . . . . . . 49
13.1 Overview . . . . . . . . . . . . . 49
13.2 Creating an External User Application . . . . 49
13.3 Creating an External User Client Login Page. . 49
13.4 Creating an External User Client Automatic
Login Page . . . . . . . . . . . . . . 49
13.5 Extending the Public Access User Class . . . 51
13.6 Authenticating an External User . . . . . . 51
13.7 Determine External User Details . . . . . . 53
13.8 Authorizing an External User . . . . . . . 53
13.9 Determining the User Type . . . . . . . 54
13.10 Preventing the Deletion of a Security Role:
Role Usage Count . . . . . . . . . . . . 54
13.11 Retrieving a Registered Username . . . . . 55
13.12 Reading User Preferences . . . . . . . . 55
13.13 Modifying User Preferences . . . . . . . 56
13.14 Configuring External Access Security . . . . 56
13.15 Determining if a User is Internal or External
using the UserScope Interface . . . . . . . . 56
13.16 User Type Determination . . . . . . . . 57

Notices . . . . . . . . . . . . . . 59
Programming Interface Information . . . . . . 61
Trademarks . . . . . . . . . . . . . . 61

iv IBM Cúram Social Program Management: Cúram Security Guide



Figures

1. Authentication Architecture . . . . . . . 4
2. Default Authentication . . . . . . . . . 5
3. Default Authentication Flow for WebSphere 9
4. Authentication Flow for WebSphere with User

Registry Enabled . . . . . . . . . . . 10
5. Identity Only Authentication . . . . . . . 12

6. WebLogic Server Support for Logins With
Extended Characters . . . . . . . . . 35

7. Example Usage of isSIDAuthorised() . . . . 42
8. Automatic Login JSP . . . . . . . . . 50
9. Automatic Logout JSP . . . . . . . . . 51

© Copyright IBM Corp. 2012, 2013 v



vi IBM Cúram Social Program Management: Cúram Security Guide



Tables

1. Contents of the Authentication Log . . . . 37
2. Contents of the Authorization Log . . . . . 42

3. Relationship of keytool Command Arguments
to Cúram Crypto Properties . . . . . . . 44

© Copyright IBM Corp. 2012, 2013 vii



viii IBM Cúram Social Program Management: Cúram Security Guide



Chapter 1. Cúram Security

1.1 Purpose
The purpose of this guide is to describe the aspects of security that must be considered when developing
and deploying a IBM Cúram Social Program Managemententerprise application. The term security is
used to describe many different areas. For the purpose of this document, the following areas will be
covered: authentication and authorization. This guide also describes the securable elements of IBM
Cúram Social Program Managementapplications.

This guide is divided into two parts. The first part contains an overview of the security areas and should
be read by all interested parties, both technical architects and developers. The second part provides
development "how to" information and examples for application security.

1.2 Audience
There are two main audiences for this document:
v Technical Architects who need to consider integration with other systems at deployment time, e.g.,

LDAP.
v Developers who must consider the type of application that will developed, i.e., is the application for

internal users, external users, or both.

Note: Internal users are users that exist on the Cúram Users database table. They are part of the
organisation and typically are there to manage claims for participants. External users are all other types
of users. External users are not part of the organisation. Their access is limited. An example of an external
user would be a provider that provides a service to the organisation.

1.3 Overview
Security is built into the infrastructure that underpins the development of the IBM Cúram Social Program
Managementapplication. It supports the authentication of a user at login time as well as providing
support for the authorization process. The design of an application is not complete without first
considering the implications of securing the application against unauthorized access to sensitive data or
functionality. Security is therefore one of the key priorities during application development.

The following are the main concepts of IBM Cúram Social Program Managementsecurity:
v Authentication
v Authorization

There is also the concept of location based security. At the organization level, location security limits a
user's access to client and case information. Location data security can also be configured to allow a user
to access locations other than their own. This guide does not detail location based security. The Cúram
Location Administration Guide should be consulted for further details on location based security.

1.4 Chapters in this Guide
This guide is in two parts. Part 1 consists of the following chapters, which provide a high-level overview
of the IBM Cúram Social Program Management security architecture for the application and deployment
to application servers:

© Copyright IBM Corp. 2012, 2013 1



Chapter 2 Authentication
This chapter describes the authentication architecture for IBM Cúram Social Program
Management, giving a detailed description of each area and any customizable points available.

Chapter 3 Authorization
This chapter describes how authorization works and how this can be configured for users.

Chapter 4 Cryptography in Cúram
This chapter describes how IBM Cúram Social Program Management uses cryptography to secure
passwords.

Chapter 5 Security Data Caching
This chapter describes the in-built Cúram Security Cache and also describes the IBM®

WebSphere® Application Server cache and how it affects user authentication.

Chapter 6 Security for Alternative Clients
This chapter describes the usernames that must exist on the Cúram Users database table to
ensure processes like Workflow can run successfully.

Chapter 7 External User Applications
This chapter describes why an external user application would be needed and what should be
considered for this.

Chapter 8 Using Single Sign On
This chapter describes the application server properties that must be considered when IBM
Cúram Social Program Management will be used in a Single Sign On solution.

Chapter 9 Other Security Considerations
This chapter gives a brief overview of some external security practices and considerations.

Part 2 consists of the following chapters, which provide several how-to's on development activities for
coding and customizing security:

Chapter 10 Customizing Authentication
This chapter describes customization points and development artefacts relevant to authentication.

Chapter 11 Customizing Authorization
This chapter describes how to implement authorization for IBM Cúram Social Program
Management.

Chapter 12 Customizing Cryptography
This chapter describes how to customize Cúram's use of cryptography.

Chapter 13 Customizing External User Applications
This chapter describes how to develop an external user application.

2 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 2. Authentication

2.1 Overview
This chapter covers authentication for IBM Cúram Social Program Management. Authentication is the
process of determining if a user is who they say they are. Authentication is needed where a user must be
verified in order to access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them to enter username and
password credentials. These credentials are compared against the credentials stored on the system for this
username, if they match the user is considered an authenticated user for the system. For security reasons
the password for authenticating a user is stored on the system in a digested form.

The IBM Cúram Social Program Management web client is configured to support form-based
authentication, which means that before a user can access any of the web client content, they will be
redirected to a login form to authenticate.

The authentication process involves the verification of the username and password, and this is performed
by default by a JAAS (Java™ Authentication and Authorization Service) login module. HTTPS/SSL is
turned on by default in the web client ensuring the form-based login authentication mode is secure.

2.2 Authentication
Different authentication modes can be configured (depending on authentication requirements) via the
Cúram JAAS login module.

The following are the authentication modes supported:
v Default Authentication;
v Identity Only Authentication;
v External Access Security Authentication.

Each of these modes are described in detail in the sections below.

© Copyright IBM Corp. 2012, 2013 3



2.3 Authentication Architecture

2.3, “Authentication Architecture”, above, outlines the architecture for the authentication process of a
user. Out-of-the-box, default authentication is performed for a user. This behavior can be customized for
both internal and external users, depending on the authentication requirements. The following sections in
this chapter describe in detail each of the functional areas that make up the authentication architecture,
indicating where customizations are possible.

2.4 Default Authentication
Default out-of-the-box authentication for IBM Cúram Social Program Management involves the user
logging in via the login screen, where the user is prompted for a username and password as credentials.
These credentials are then passed to the Cúram JAAS login module configured in the application server.

The default authentication is invoked and the username and password entered are checked against the
username and password stored on the Cúram Users database table. The Cúram username is immutable,
but you have the option of configuring your system to use a Cúram login ID instead, which is
changeable. The login ID is a logical extension of the Cúram user and the same verifications checked for
the username are also checked for the login ID. See 2.5, “Alternate Login IDs,” on page 5 for more
information about alternate login IDs.

Authentication performs a number of verifications against the login credentials, 2.14, “Default
Authentication,” on page 11 should be consulted for details on the verifications.

Provided all verifications are successful, the user is considered to be authenticated by the application.

Figure 1. Authentication Architecture

4 IBM Cúram Social Program Management: Cúram Security Guide



Once the user is authenticated, the user is then added to the Cúram Security Cache. The Cúram Security
Cache stores the username and all related authorization data for that user in order to optimize the
authorization data retrieval for a user. Chapter 5, “Security Data Caching,” on page 23 should be
consulted for further details on the Cúram Security Cache. Figure 2.3 below highlights the path taken for
default authentication.

2.5 Alternate Login IDs
By default, Cúram utilizes the username and digested password stored in the Users table for
authentication. This username is immutable, once created it cannot be changed. This lack of flexibility
may not meet requirements for some installations. However, you have the option of using a login ID,
which can be updated, instead of the immutable username. The login ID functions as a logical extension
of the Cúram Users table. When the alternate login ID is used the username still exists and is used
internally by Cúram, but the user logs into Cúram using the login ID.

Things to note when using the alternate login ID:
v The use of the alternate login ID is mutually exclusive with the username. That is, you cannot have a

mix of Cúram users logging in with usernames and login IDs.
v The Cúram ExtendedUsersInfo table, where the login ID is stored, must be populated before turning

on the alternate login ID feature, which is explained in more detail below.
v When using login IDs authentication results are stored in the AuthenticationLog table and the AltLogin

column indicates whether the UserName column represents a username (false) or login ID (true).
v Login IDs are only applicable to internal Cúram users; i.e., users stored on the Cúram Users table.

However, if you are using identity-only with alternate Login IDs then wherever those IDs are stored
(e.g. WebSphere registry, LDAP, etc.) must match the login IDs stored in the Cúram ExtendedUsersInfo
table.

Figure 2. Default Authentication

Chapter 2. Authentication 5



v When assigning login IDs you need to take care with IDs that are used internally and/or have
dependencies (e.g. with property values) outside of the Cúram Users table. These are the usernames
that would cause issues if its login ID differed from the username without a corresponding change as
indicated:
– SYSTEM - In WebSphere this username is associated with JMS processing and is made part of the

WebSphere configuration at application deployment time. See 6.2, “Mandatory Cúram Users,” on
page 25 and the appropriate WebSphere Cúram Deployment Guide for information on changing this
ID.

– DBTOJMS - this is the default DBtoJMS username used by batch processing and is referenced by
property curam.security.credentials.dbtojms.username. See 6.2, “Mandatory Cúram Users,” on
page 25, 6.5, “JMS Messaging,” on page 26, 6.6, “Deferred Processing,” on page 26 and the Cúram
Batch Processing Guide for more information.

– WEBSVCS - this is the default web services username and is referenced by property
curam.security.credentials.ws.username. See 6.2, “Mandatory Cúram Users,” on page 25, 6.3,
“Web Services,” on page 25, and the Cúram Web Services Guide for more information.

– unauthenticated - is the principal WebSphere uses for unauthenticated users and this login ID
should not be changed.

To enable the use of the alternate login ID, once you've populated the ExtendedUsersInfo table, set the
curam.security.altlogin.enabled property to true (see the Cúram Server Developer's Guide for more
information on Cúram properties). This is a static property and Cúram must be restarted for it to take
effect.

To populate the ExtendedUsersInfo table before activating the feature you have a number of options; for
instance:
v With a simple SQL statement you can populate the table using the username in the Users table; so,

there is no immediate user impact: INSERT INTO EXTENDEDUSERSINFO (USERNAME, LOGINID,
UPPERLOGINID, VERSIONNO) (SELECT USERNAME, USERNAME, UPPER(USERNAME), 1 FROM USERS); You can
then roll-out your modifications to the login IDs in a controlled manner.

v You can implement an SQL application that implements your username and login ID mapping (e.g.
LDAP common names).

Note: You must maintain the username foreign key relationship between the Users and
ExtendedUsersInfo tables.

2.6 The Login Page
The default out-of-box login page is represented by the logon.jsp file. This logon.jsp represents the
login page for the user to complete form-based login authentication. By default, the logon.jsp file
contains the username and password fields. However, the logon.jsp file can be customized to pass an
additional parameter by adding the user_type field. This field determines the type of user logging in, i.e.,
internal or external user. The username, password and user_type (if present) are all passed to the Cúram
JAAS login module as part of the authentication process.

The default out-of-the-box logon.jsp file does not have the user_type property set. If this property is
omitted, the user is assumed to be internal. When this property is set, it indicates that an external user is
logging in. This property can be set to any value other than 'INTERNAL'.

2.7 Customization of the Login Page
The logon.jsp file can be customized, i.e. the logon.jsp file can be completely replaced by a custom
logon.jsp file, for a number of reasons including the following:

An external user client application is being developed;
If an external user client application is being developed, a new logon.jsp file must be created, as

6 IBM Cúram Social Program Management: Cúram Security Guide



the user type must be set to indicate an external user is logging in. 13.3, “Creating an External
User Client Login Page,” on page 49 should be referenced for further details.

Automatic login is needed;
Some external user client applications require no user authentication and hence a username and
password should not be requested, i.e. in the case of a external public access application. It is not
possible to disable authentication, so the best way to achieve this requirement is to write an
automatic login script. This is done by customizing the logon.jsp file for the external public
access application. 13.4, “Creating an External User Client Automatic Login Page,” on page 49
should be referenced for further details.

Different styling is required;
The section on Login Pages in the Cúram Web Client Reference Manual should be referenced for
further details on styling for the logon.jsp file.

A requirement exists for usernames to contain extended characters (valid only for Oracle WebLogic
Server).

WebLogic Server provides a proprietary attribute, j_character_encoding , which must be added to
the logon.jsp file. 10.3, “Enabling Usernames With Extended Characters for WebLogic Server,”
on page 35 should be consulted for further details.

2.8 Cúram JAAS Login Module
Authentication is performed by a JAAS login module. It is configured in the application server and is
invoked automatically by the application server as part of the authentication process for any access to the
IBM Cúram Social Program Managementapplication. The advantage to this approach is that the default
authentication mechanism can be used with, or replaced by, a custom approach, without affecting the
IBM Cúram Social Program Managementapplication.

As mentioned earlier, the Cúram JAAS login module can be configured to operate in three modes. For
more information on the configuration of the login modules and any application server specific behavior,
the section on Application Server Configuration within the Cúram Server Deployment Guide for the
application server being used should be consulted for further details.

Project specific requirements may mean that more than one login module is needed, e.g., a user may be
required to enter more than the username and password for verification purposes. It is possible to
configure multiple login modules in the application server. Each login module will be executed in the
order as determined by the settings in the application server. For more information on these settings, the
WebSphere or WebLogic Server documentation should be consulted.

Once the user is successfully authenticated by all login modules that require successful authentication of
the user (this is configurable in the application server), the user is considered authenticated by the
application.

2.9 Password Management
The passwords for all Cúram internal and external users are stored in their digest format on the Cúram
Users and ExternalUsers database tables. When the Cúram JAAS login module receives the password it is
digested before being sent to the login bean for comparison. Digesting is a one-way process to ensure the
security of the password. The password stored for the user on the database uses the same digest
algorithm, subject to your crypto settings, thereby ensuring the encrypted passwords can be successfully
compared to each other, but remain secure.

Users managed externally, e.g. via LDAP with Cúram identity-only configured, are not subject to the
above process. When authenticating against a third-party party system (e.g., LDAP or a SSO Server),
where there is a need for the Cúram application to pass the user-entered credentials to the third-party

Chapter 2. Authentication 7



system, the custom implementation of curam.util.security.PublicAccessUser can be used, as it will
allow access to the credentials with plain-text password.

2.10 Default Configuration for WebLogic Server
The Cúram JAAS login module is configured as an authentication provider in WebLogic Server . The
Cúram authentication provider is the only provider configured by the configuration scripts provided for
WebLogic Server . As it is the only configured authentication provider, the Cúram authentication provider
is responsible for authenticating and verifying the user. As mentioned previously, it is possible there may
be more than one authentication provider configured in WebLogic Server , in this case the Cúram
authentication provider may not be responsible for authenticating and verifying the user. 8.3, “Single Sign
On for WebLogic Server,” on page 32 should be referenced for further details.

2.11 Default Configuration for WebSphere
The Cúram JAAS login module is configured as a system login module in WebSphere . The default,
scripted security configuration within WebSphere involves the default file-based user registry and the
Cúram system login module. The user registry in WebSphere is the default authentication mechanism and
can be configured to be:
v A custom user registry;
v An LDAP directory server;
v The Local OS or;
v The WebSphere file-based repository.

There are multiple system login configurations for WebSphere . The Cúram system login module is
configured for the DEFAULT , WEB_INBOUND and RMI_INBOUND configurations. The same login module is used
for all three configurations. WebSphere automatically invokes the login modules configured as system
login modules under certain circumstances:
v DEFAULT

The login modules specified for the DEFAULT configuration are invoked for authentication of web
services and JMS invocations. They are also invoked during the startup phase of WebSphere ;

v WEB_INBOUND

The login modules specified for the WEB_INBOUND configuration are used for authentication of web
requests;

v RMI_INBOUND

The login modules specified for the RMI_INBOUND configuration are used for authentication of Java
clients.

The Cúram JAAS login module exists as a login module within a chain of login modules set up in
WebSphere . It is expected that at least one of these login modules be responsible for adding credentials
for the user. By default, the Cúram login module adds credentials for an authenticated user. As a result of
this, the configured WebSphere user registry handled by a subsequent login module does not add
credentials. Therefore, it is not necessary to define Cúram users within the WebSphere user registry. This
behavior is configurable through the use of the curam.security.user.registry.enabled property set in the
AppServer.properties file. The Cúram Deployment Guide for WebSphere Application Server or Cúram
Deployment Guide for WebSphere Application Server on z/OS should be consulted for further details on
setting this property. 2.11, “Default Configuration for WebSphere” below illustrates the default
authentication flow for WebSphere . 2.11, “Default Configuration for WebSphere” below illustrates the
authentication flow for WebSphere where its user registry is also queried, i.e. where the
curam.security.user.registry.enabled property is set to true.

8 IBM Cúram Social Program Management: Cúram Security Guide



Figure 3. Default Authentication Flow for WebSphere

Chapter 2. Authentication 9



As part of the security configuration there are certain users that are excluded from authentication and for
these users the configured user registry will be queried. This list of users is configured automatically to be
the WebSphere security user, as specified by the security.username property in AppServer.properties and
the database user, as specified by the curam.db.username property in Bootstrap.properties . These two
users are classified administrative users and not application users. It is possible to extend this list of
excluded users manually, see the Cúram Deployment Guide for WebSphere Application Server and Cúram
Deployment Guide for WebSphere Application Server on z/OS for more information.

Warning: The security.username and curam.db.username users are automatically added to the WebSphere
file-based user repository by the provided configuration scripts. If the configured WebSphere user registry
is not the default, these users must exist in the alternate WebSphere user registry.

2.12 Customization of the JAAS Login Module
It is possible that the Cúram JAAS login module may not support the authentication requirements for a
particular custom solution. We strongly recommend that when developing a custom login module, that
the Cúram JAAS login module be left in place and used with identity only authentication enabled.
However, if deemed necessary, the Cúram JAAS login module can be removed and replaced by a custom
solution. If this is the case Support must be consulted.

Warning: While it is possible to remove the Cúram JAAS login module completely, it should be noted
that users must still exist in the Cúram Users database table for authorization reasons.

The Cúram JAAS login module adds new users to the Cúram Security Cache automatically, and when
this Cúram JAAS login module is replaced by a custom JAAS login module, this functionality is no
longer present. If a custom JAAS login module is completely replacing the Cúram JAAS login module, it
is the responsibility of the custom JAAS login module to ensure an update of the Security Cache is
triggered when a new user is added to the database.

Figure 4. Authentication Flow for WebSphere with User Registry Enabled

10 IBM Cúram Social Program Management: Cúram Security Guide



2.13 Verification Process for Authentication
The type of verifications performed is dependent on the authentication mode being used. Below is a list
of the authentication modes/configurations and full details on the verifications completed for each
authentication mode.

2.14 Default Authentication
Default authentication is part of the out-of-the-box configuration and this mode of authentication involves
verifying the username and password specified during login against the Cúram Users database table. All
login information in this case is maintained by the IBM Cúram Social Program Managementapplication.

2.15 Default Verification Process
The verifications performed by the Cúram login module during default authentication are:
v username and password.
v account and/or password expiry.
v username synchronization with security cache.
v break-in detection, e.g. upper limit on password entry attempts, incorrect usernames, password change

failures.
v day and time access restrictions - day of the week and time range within the day.

The authentication and authorization of usernames is case sensitive by default, however it is possible to
disable case sensitive authentication. If duplicate case insensitive usernames exist (e.g. caseworker,
CaseWorker), authentication will fail due to an ambiguous username. 10.4, “Changing the
Case-Sensitivity of the Username,” on page 35 should be referenced for further details on this.

2.16 Authentication Attempts
Authentication failures are not reported directly to a client as this would provide extra information to an
intruder attempting to break into the system. For example, reporting an incorrect password would
indicate that the username is valid. All authentication attempts (both success and failure) are instead
logged in a database table called the AuthenticationLog . 11.15, “Analyzing the AuthorisationLog
Database Table,” on page 42 should be consulted for further details.

2.17 Customization of Default Authentication
The default implementation can be customized to use a mutable login ID instead of the Curam username
and the ability to add extra verifications is available by implementing the custom authenticator (2.21,
“Custom Verifications,” on page 13 should be referenced for further details).

2.18 Identity Only Authentication
Authentication can be configured to perform identity-only verification, in place of the default verifications
listed in 2.15, “Default Verification Process” above.

Identity only verification means that the authentication mechanism only ensures that the username for
the user logging in exists on the Cúram Users database table. Full authentication must be completed by
an alternative mechanism, to be configured in the application server.

An example of an alternative mechanism is an LDAP directory server, which is supported as an
authentication mechanism by both the WebSphere and WebLogic Server application servers. Another
alternative is to use a Single Sign-On Solution for authentication, or to implement a custom login module.
For custom application server solutions the IBM or Oracle documentation should be consulted.

Chapter 2. Authentication 11



With identity-only authentication (as for default authentication), entries are added to the
AuthenticationLog database table at the end of the authentication process.

For a successful login the following status is used:
v AUTHONLY

For a failure scenario, the following status is used:
v BADUSER

This is the only possible failure scenario where a user does not exist.

The loginFailures and lastLogin fields of the AuthenticationLog are not set. This is true even if
customized verifications are implemented.

When the password expiry information for a user is set (on the Cúram Users database table), the
password expiry warning will be displayed if it is about to expire. With identity-only authentication this
warning is misleading. It is recommended that any fields relating to the authentication verifications, such
as password expiry or account enabled, are not used if identity-only authentication is enabled.

When identity-only authentication is enabled, security is not used for authentication but is still used for
authorization purposes. As a result of this, all users requiring access to the application must still exist in
the Cúram Users database table, as well as in the alternative authentication mechanism, e.g., LDAP. It is
important to note that there are two users that must exist in both locations, i.e. the SYSTEM user and the
DBTOJMS user. Chapter 6, “Security for Alternative Clients,” on page 25 should be consulted for further
details on these users.

10.7, “Configuring Identity Only Authentication,” on page 36 should be consulted for details on how to
configure identity only for an application server.

Figure 5. Identity Only Authentication

12 IBM Cúram Social Program Management: Cúram Security Guide



2.19 Customization of Identity Only Authentication
The identity-only implementation cannot be customized, but extra verifications can be added by
implementing the custom authenticator. 2.21, “Custom Verifications” should be consulted for further
details.

2.20 External Access Security Authentication
The architecture allows a developer to implement their own custom authentication solution for external
users by providing a “hook” into the existing authentication and authorization infrastructure of the SDEJ.

To “hook” the custom solution into the application the curam.util.security.PublicAccessUser class must
be extended, which requires implementing the curam.util.security.ExternalAccessSecurity interface.
This class is used during the authentication and authorization process to determine required information
relating to the External User. Chapter 13, “Customizing External User Applications,” on page 49 should
be consulted for further details.

2.21 Custom Verifications
Support is provided for adding custom verifications to the authentication process e.g., a user may be
required to answer a security question that must then be verified. The custom code, if implemented, is
invoked after the relevant IBM Cúram Social Program Managementverifications or identity assertion, and
only if they have been successful.

After the custom verifications are invoked, the authentication process will update the relevant fields on
the Users database table.

10.5, “Adding Custom Verifications to the Authentication Process,” on page 35 should be consulted for
further details.

Chapter 2. Authentication 13



14 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 3. Authorization

3.1 Overview
In IBM Cúram Social Program Managementthe process of granting or refusing a user access to functional
elements of an application is called authorization. The functional element can be anything to which a
unique identifier can be attached, such as:
v a server process call,
v an element of the application that requires security checking, e.g. a series of registered welfare

products.

Access to the functional element is controlled by a Security Identifier (SID) that forms part of the IBM
Cúram Social Program Managementauthorization data. This data is linked to a user and can be
configured through the Cúram Administration screens or through the Data Manager. The Cúram Server
Developer's Guide should be consulted for further details.

The security data created for authorization is central to the processing performed during every
client-server call, and it is important that access be optimized for performance reasons. The Cúram
Security Cache is responsible for caching authorization data for a user. 5.2, “Cúram Security Cache,” on
page 23 should be consulted for further details.

The following sections describe the relationship for these authorization concepts and how this works
within IBM Cúram Social Program Management.

3.2 Users, Roles and Groups
The security information associated with an application must first be organized into security profiles
before it can be utilized in a runtime environment. A security profile consists of a security role, one or
more security groups and the associations between security identifiers (SIDs) and securable elements of
an application.

Every authorized user is assigned a security role during security configuration and these roles are
associated with a number of security groups. Each security group is associated with a number of security
identifiers. The security identifier represents the securable elements of IBM Cúram Social Program
Management, e.g., a method or a field. The role, groups and identifier information is stored on the
database in a number of tables and is configured using the application Data Manager or the Cúram
Administration screens.

This data structure makes it possible to authorize every user against any secured element of an
application. This is a powerful and flexible method of providing authorization to Cúram users.

There is a minimum set of SIDs required for a user to operate the Social Program Management Platform
application. These SIDs are associated to the out-of-the-box BASESECURITYGROUP group. The
EJBServer/components/core/data/initial/handcraftedscripts/Supergroup.sql file should be consulted
to identify the list of these SIDs. This file is responsible for linking the SIDs to the
BASESECURITYGROUP out-of-the-box.

A simple way to ensure that all users have the privileges from this set of SIDs is to create a single
security group for them and then associate that security group with every security role in the system.

© Copyright IBM Corp. 2012, 2013 15



3.3 Security Identifiers (SIDs)
Every secured element in IBM Cúram Social Program Managementis given a security identifier (SID) that
is unique across the entire application.

The authorization process is built into the infrastructure and once the securable elements have been
identified, the rest is handled by code generators, scripts and the Cúram Administration screens. The
analysis of what elements must be securable is a manual process that must be done by the developer or
security administrator. This section outlines the infrastructure available to set up authorization.

The first type of authorization to consider is that of the process method(facade) also known as
function-level security . In the Cúram model, a developer may choose if security is switched on or off at
the process method level. The option applies only to Business Process Objects (BPOs) since they
encapsulate the calls exposed to the client. Entity object methods are not included in the authorization
process.

There are a number of types of SIDs and these include:
v Function Identifiers (FIDs)
v Field Level Security Identifiers
v User defined SID types.

3.4 Function Identifiers (FIDs)
Function identifiers (FIDs) are a specialized type of security identifier (SID) where the type is set to
FUNCTION. When a method is made publicly accessible (by setting the stereotype as facade in the
model), a FID is generated for that method and security is automatically switched on.

It is possible to switch security off for a process method at design time. 11.11, “Switching Security off for
a Process Method,” on page 40 should be referenced for further details on this.

3.5 Field Level Security Identifiers
The Field Level SID allows authorization to be applied to specific fields on a publicly accessible method.
At runtime, if a user does not have access rights to view the field to be displayed, the contents of the
field are displayed as a number of asterisks (***). For more information on Field Level SIDs , the Cúram
Modeling Reference Guide should be consulted.

3.6 User Defined SIDs
In the previous sections, we have described

FIDs; An automatically generated SID of type function.

Field Level SID;
Security applied to specific fields on a method.

There is also the concept of a user defined SID. The authorization process is sufficiently flexible to
accommodate any securable element of an IBM Cúram Social Program Managementapplication. The
developer can effectively customize the authorization process by defining new types of SIDs. The new
types represent a conceptual element requiring security. The following server interface method enables
authorization to be invoked directly on these new user defined SID types.

curam.util.security.Authorisation.isSIDAuthorised()

16 IBM Cúram Social Program Management: Cúram Security Guide



Out-of-the-box, the LOCATION and PRODUCT SIDs are SIDs of this type. Using the above method there
is effectively no limit to the SID types that can be defined. 11.14, “Authorizing New SID Types,” on page
41 should be consulted for further details.

3.7 Runtime Authorization
The IBM Cúram Social Program Managementinfrastructure performs authorization checks from both the
web client and server side.

3.8 Client Authorization Checks
Before a user can access a method or field, the web client performs authorization checks before the page
is initially loaded. If the user does not have access, the client authorization check fails, and the server is
not invoked. This check is configurable in the curam-config.xml by setting the
SECURITY_CHECK_ON_PAGE_LOAD property. Section 3.12.13 General Configuration in the Cúram Web
Client Reference Manual should be consulted for further details on this.

By default any such web client authorization failures are not recorded. This behavior is configurable.
11.13, “Controlling the Logging of Authorization Failures for the Client,” on page 41 should be consulted
for further details.

3.9 Server Authorization Checks
To cater for other access to IBM Cúram Social Program Management, and where the web client
authorization check is disabled, there is a second level authorization check made by the server. This
server side check will always log authorization failures, and the client property does not affect this
logging.

The log of all authorization failures is stored on the database to allow these failures to be audited at a
later stage. The AuthorisationLog table contains the User Name and Security Identifier for the failed
authorization, as well as a timestamp indicating when the failure occurred. 11.15, “Analyzing the
AuthorisationLog Database Table,” on page 42 should be consulted for further details on the
AuthorisationLog table.

Chapter 3. Authorization 17



18 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 4. Cryptography in Cúram

4.1 Overview
In IBM Cúram Social Program Management cryptography refers broadly to two types of functionality
related to keeping your Cúram systems safe and secure:
1. ciphers - for two-way encryption of passwords used at various processing points
2. digests - for one-way hashing (or digesting) of passwords; e.g. used at login

The values for configuring cryptographic behavior are user-selectable via a property file
(CryptoConfig.properties) to provide you with the most control and security possible for your Cúram
installation. This flexibility provides the capability to adjust to changing security standards. See
Chapter 12, “Customizing Cryptography,” on page 43 for details on how to configure and customize
cryptography.

For any IBM Cúram Social Program Management users migrating for the first time to a level of Cúram
that has this level of cryptographic support, which was introduced in version 6.0.5.0, it is recommended
that you upgrade system (new cipher) and user (new digest) passwords from the existing out-of-the-box
(OOTB) defaults to improve your security.

Supported cryptographic configurations are:
1. AES: 128, 192, 256 (FIPS 140-2 and SP800-131a compliant);
2. Two-key Triple DES - DESede: 112 (FIPS 140-2 compliant);
3. Three-key Triple DES - DESede: 168 (FIPS 140-2 and SP800-131a compliant);
4. No cryptography configuration, which is configured by removing the CryptoConfig.properties file in

which case Cúram will revert to its previous OOTB crypto settings.

In the environment where Cúram runs, the application server, database, and other software (e.g. web
server, LDAP, etc.) will have its own cryptographic support and you should refer to the relevant vendor's
documentation as is appropriate to you.

4.2 Ciphering
Ciphering refers to the process of encrypting passwords, which are listed in 4.7, “Cipher-Encrypted
Passwords,” on page 21. That is, this is a two-way process representing decrypt-able values. There are
about a dozen of these encrypted passwords in various property files in Cúram and encrypting them
helps keep them secure and they are are decrypted at the necessary points for usage; e.g. connecting to
your database system.

4.3 Digesting
Digesting refers to the one-way process of handling passwords that do not require decrypting, but is used
for storing passwords for later comparison; e.g. Cúram user logins. That is, this is a one-way process
representing non-decryptable values.

4.4 Cryptography Properties
The Cúram CryptoConfig.properties file contains settings for cipher and digest cryptography. Therefore,
this file and all the files it refers to (i.e., keystore and salt) should be considered critical items to the
security of your system and should be provided with adequate access controls (e.g., file permissions) and
specifically modified and segregated when used for production systems. That is, if the details of these

© Copyright IBM Corp. 2012, 2013 19



files were to become widely known, while not necessarily a security risk themselves, would remove a
level of protection that might necessitate a disruptive crypto change (see 12.2, “Cipher Customization,”
on page 43 and 12.5, “Digest Customization,” on page 45).

Related topics:
v 4.5, “Cúram Cipher Settings”
v 4.6, “Cúram Digest Settings,” on page 21

4.5 Cúram Cipher Settings
Various passwords within Cúram property files and configurations are stored in an encrypted format
out-of-the-box (OOTB).

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify
these settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. by changing the cipher secret key).

The cipher settings are stored in the CryptoConfig.properties file. The properties and their values are as
follows:
v curam.security.crypto.cipher.algorithm

– Valid values: In JCE documentation, for example: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#Cipher. The supported ciphers are AES and the various forms
of Triple DES.

– Default: AES (FIPS 140-2 and SP800-131a compliant)
v curam.security.crypto.superseded.cipher.algorithm

– Valid values: See curam.security.crypto.cipher.algorithm

– Default: None
– Purpose: Provides for flexibility to support an upgrade/migration period for Cúram user passwords

with custom code (e.g. a batch program) via the
curam.util.security.EncryptionUtil.decryptSupersededPassword() API. The use of an
upgrade/migration period is explained in more detail in 12.7, “How to Utilize the Superseded
Digest Settings for a Period of Migration,” on page 45.

v curam.security.crypto.cipher.keystore.location

– Valid values: Path to keystore file containing secret key. This can be an absolute path specification
or relative to the classpath (e.g. CuramSample.keystore).

– Default: None
v curam.security.crypto.cipher.keystore.storepass

– Valid values: As per the JDK keytool command.
– Default: password
– Purpose: Specify the password used to access the keystore.

v curam.security.crypto.cipher.provider.class

– Valid values: Fully-qualified name of a JCE cryptography provider class.
– Default: blank
– Purpose: Optional way to enable the use of an alternate standards-compliant provider.

This ciphering functionality applies to the properties as described in 4.7, “Cipher-Encrypted Passwords,”
on page 21.

These Cúram cryptographic settings are enabled by default OOTB and represents changes that existing
Cúram installations must address as documented in the Cúram Upgrade Guide.

20 IBM Cúram Social Program Management: Cúram Security Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher


4.6 Cúram Digest Settings
Cúram users, internal and external, when not invoked with identity-only, are authenticated using
form-based login and the password entered in the form is digested and compared to the digest value
stored in the database for the user.

Note: This processing does not apply to users authenticated in third party systems like LDAP.

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify
these settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. digest salt encrypted value).

The digest settings are stored in the CryptoConfig.properties file. The properties and their values are as
follows:
v curam.security.crypto.digest.algorithm

– Valid values: In JCE documentation, for instance: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#MessageDigest. The supported digests are the SHA variants
(1, 256, etc.) and MD5.

– Default: SHA-256 (FIPS 140-2 and SP800-131a compliant)
– Purpose: Specification of the digest algorithm.

v curam.security.crypto.digest.salt.location

– Valid values: A path identifying the file containing the encrypted secret digest salt.
– Default: None
– Purpose: An optional file to specify the salt (encrypted) for digesting.

v curam.security.crypto.digest.iterations

– Valid values: 0 or a positive integer.
– Default: 0
– Purpose: Typically, higher values give better security, but at the cost of processing (e.g. at login

time).

There are a set of corresponding "superseded" properties to allow for flexibility when migrating from one
set of digest settings or standards to another. The following have a similar function to their counterparts
above, but are used by the Cúram encryption functionality to support both old and new settings for a
time of migration:
v curam.security.crypto.superseded.digest.algorithm

v curam.security.crypto.superseded.digest.salt.location

v curam.security.crypto.superseded.digest.iterations

The usage and behavior of the superseded properties are controlled by the
curam.security.convertsupersededpassworddigests.enabled property as managed by the Properties
Administration user interface. See 12.7, “How to Utilize the Superseded Digest Settings for a Period of
Migration,” on page 45 for more information on using the superseded properties.

4.7 Cipher-Encrypted Passwords
The following passwords are cipher-encrypted in Cúram:
v Bootstrap.properties:

– curam.db.password - database password
– curam.searchserver.sync.password - see Cúram Generic Search Server for more information

Chapter 4. Cryptography in Cúram 21

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest


v AppServer.properties: (typically this property file is used for configuring test servers and is not
appropriate for production systems)
– security.password - application server administration console password
– curam.security.credentials.async.password - replacing the runas.password property

v Application.prx - individual property descriptions are as documented with the properties in the
Curam Property Administration user interface:
– curam.security.credentials.dbtojms.password - (in conjunction with

curam.security.credentials.dbtojms.username), which replaces the
curam.omega3.DBtoJMSCredentialsIntf interface APIs previously used to provide custom credentials
for DB-TO-JMS

– curam.security.credentials.ws.password (in conjunction with
curam.security.credentials.ws.username), which replaces the build-time default web services
default credential settings.

– curam.meeting.request.reply.password - (an SMTP password)
– curam.ldap.password

– curam.citizenworkspace.password.protection.key

v BIBootstrap.properties - BIRT users only; see the Cúram Business Intelligence BIRT Developer Guide:
– curamsource.db.password

– central.db.password

– centraldm.db.password

v Web Services - See the Cúram Web Services Guide:
– ws_inbound.xml - <ws_service_password>
– services.xml - <parameter name="jndiPassword">

v CTM - Cúram Transport Manager:
– The Password column of the TargetSystemService table contains an encrypted password

22 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 5. Security Data Caching

5.1 Overview
This chapter describes the Cúram Security Cache, which stores all authorization data for a user. Details
on the WebSphere cache and how this affects the authentication of a user at login are also included in
this chapter.

5.2 Cúram Security Cache
Security information from the database tables supporting the profiles mentioned in 3.2, “Users, Roles and
Groups,” on page 15 is cached by the infrastructure. This is done to optimize the search and retrieval of
data during the authorization process.

To optimize performance, the cache is loaded on demand as security authorization requests come into the
application and is a shared resource. For application code, the cache is a protected resource and cannot be
accessed directly. It is accessible, for queries only, through the authorization interface (
curam.util.security.Authorisation ) which allows a developer to implement a customized
authorization procedure. 11.14, “Authorizing New SID Types,” on page 41 should be referenced for
further details on this.

When the curam.security.casesensitive property is set to false the security cache will store all usernames
in upper case and all queries to the cache will automatically change the specified username into the
upper case equivalent. It is also worth noting that the existence of duplicate case insensitive usernames
will cause a fatal error during the initialization of the security cache. 10.4, “Changing the Case-Sensitivity
of the Username,” on page 35 should be consulted for further details on this.

5.3 Cache Refresh
As security data is so important to the operation of IBM Cúram Social Program Management, the cache
must be refreshed whenever any changes have been made to security related database tables. The
refreshing of the Cúram Security Cache is an asynchronous process.

5.4 Cache Refresh Failure
The refreshing of the Cúram Security Cache is triggered by either an application reboot, or by the system
administrator (sysadmin) via the Cúram Administration screens, therefore, the administrator receives no
feedback if the cache reload fails. Having to check the system logs or manually verify the application
following a refresh to verify its success can be cumbersome. It is therefore recommended that the optional
callback interface for providing feedback in the event of a cache reload failure be implemented. 10.8,
“Adding the Cache Refresh Failure Callback Interface,” on page 36 should be consulted for further
details.

5.5 WebSphere Caching Behavior
WebSphere caches user information and credentials in its own security cache. The Cúram login module
will not be invoked while a user entry is valid in this cache. The default invalidation time for this
security cache is ten minutes, where the user has been inactive for ten minutes.

For example, the first time a user logs into the application from the web client they will be requested for
their username and password. The Cúram login module will be invoked, and will authenticate the
information specified. If the same user opens a second new web browser and attempts to access the
application, they will again be requested for their username and password. When WebSphere receives

© Copyright IBM Corp. 2012, 2013 23



this information it will query the security cache to determine if the username and password are already
in the cache. If they are, and the password matches, WebSphere will not query the login modules.

The impact of this behavior is that any modifications to a user's account restrictions or password will not
take effect until the user has been invalidated from the WebSphere security cache.

For more information see the appropriate WebSphere Application Server Information Center.

24 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 6. Security for Alternative Clients

6.1 Overview
There are processes that may not be associated with a specific logged in user. These include alternative
clients, e.g. non-web processes such as batch processing, web services and deferred processing. As any
process that interacts with a IBM Cúram Social Program Managementapplication must be authenticated, a
valid user must exist for each of these processes. The following sections provide details on the users that
must exist on the Cúram Users table as well as details on the processes that depend on these users.

6.2 Mandatory Cúram Users
A number of users must always exist in the Cúram Users database table. These users are necessary for
application processes such as deferred processing and workflow. If these users do not exist, then
authentication will fail and subsequently these processes will fail.

The usernames and passwords for each of the processed below are the default out-of-the-box credentials
and it is recommended that these credentials be changed for security reasons.

These users include:
v SYSTEM

The SYSTEM user is the user under which JMS messages are executed. This user must exist and the
username is case sensitive. 6.5, “JMS Messaging,” on page 26 should be referenced for further details.

v DBTOJMS
The DBTOJMS user is the default user under which the Database to JMS (DBToJMS) trigger for batch
processing is executed. This user must exist and the username is case sensitive. 6.4, “Batch Processing,”
on page 26 should be referenced for further details.

v WEBSVCS
The WEBSVCS user is the default user under web services are executed. This user must exist and the
username is case sensitive. 6.3, “Web Services” should be referenced for further details.

6.3 Web Services
For Apache Axis2 (the recommended implementation for web services) there are default credentials for
authentication. A user has the ability to change these credentials at a global level or per service if
required. To ensure that web services are not vulnerable to a security breach this default user is not
authorized to access web services by default. For authorization, a web service must be associated with a
security group and in turn a security role that is linked to the user (e.g. WEBSVCS) in order to access it.
Ensuring the user is authorized is a manual process. Please see the Customizing Receiver Runtime
Functionality section in the Cúram Web Services Guide for further details on web services and also the
chapter on Authorization in this book.

For Apache Axis 1.4, i.e. legacy web services, once a process is modeled as a web service, this web service
will automatically be logged into the application using default credentials. This default user is set up for
authorization automatically, i.e. the user will have access to the web service created. Therefore caution is
advised when making a class visible as a web service. Please see the Legacy Inbound Web Services section
within the Cúram Web Services Guide.

There are a number of other topics related to the security of web services - for example, encrypting data -
using Rampart. The Cúram Web Services Guide should be consulted for further details on these.

© Copyright IBM Corp. 2012, 2013 25



6.4 Batch Processing
Since the Batch Launcher does not require the application server to be running, it does not perform any
application level authentication or authorization. It must only authenticate against the database. The same
credentials as used by the application server (located in %SERVER_DIR%/project/properties/
Bootstrap.properties ) are used by the Batch Launcher to connect to the database and run batch
programs.

The Batch Launcher or batch programs can optionally trigger the application server to begin a DB-to-JMS
transfer. This involves logging in and invoking a method on the server, which in turn requires a valid
username and password. By default the DB-to-JMS transfer operation uses default credentials; therefore,
the DBTOJMS account must exist on the Cúram Users table and must be enabled and assigned the role
'SYSTEMROLE' to allow authorization. The locale DB-to-JMS transfer is the default locale for this user as
specified in field 'defaultLocale' on the Users table.

The Security Considerations section in the Cúram Batch Processing Guide guide should be consulted for
further details on changing the user for the DB-to-JMS transfer.

The property batch.username can be used to specify the user name for the operations run by the Batch
Launcher. This is set using the -D parameter. For example: build runbatch -Dbatch.username=admin

6.5 JMS Messaging
JMS messages are used for communication purposes by deferred processes and Workflow. Since JMS
messages are triggered by the application server and need to interact with the IBM Cúram Social
Program Managementapplication, valid Cúram credentials must exist. The SYSTEM user account must
exist on the Cúram Users table and must be enabled and assigned the role 'SYSTEMROLE' to ensure
authorization. The locale for JMS messages is the default locale for this user as specified in field
'defaultLocale' on the Users table.

It is possible to change the SYSTEM username during or after the deployment of the application. For
more information the Cúram Server Deployment Guide for the relevant application server should be
consulted.

6.6 Deferred Processing
A deferred process in IBM Cúram Social Program Managementis a business method that is invoked
asynchronously. As deferred processes interact with the application, valid Cúram credentials must exist.
The SYSTEM user account must exist on the Cúram Users table and must be enabled and assigned the
role 'SYSTEMROLE' to ensure authorization. The locale for deferred processes is the default locale for this
user as specified in field 'defaultLocale' on the Users table. In the case of offline unit-testing of deferred
processes, the username is blank and the effective locale is the default locale for the IBM Cúram Social
Program Managementserver.

26 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 7. External User Applications

7.1 Overview
The IBM Cúram Social Program Managementdefault, out-of-the-box application is enabled for internal
users. Internal users are users that exist on the Cúram Users database table. A typical internal user would
be a case worker who creates and manages claims for participants and has full access to the application.
The infrastructure provides functionality for authenticating and authorizing these internal users.

There is also the concept of a user that needs to securely access parts of the IBM Cúram Social Program
Managementapplication. These users are outside the organisation. Their access is limited. These users are
considered external users and authentication for these users is completely customizable through the use
of the External Access Security hook point provided. As external users are processed differently to
internal users, a specific web application is required for external users.

7.2 External User Applications
When developing an application for an external user, the following must be implemented:
v An external user client application, i.e., a separate EAR file containing the web client application.
v A custom logon.jsp , where the external application must pass in a parameter user_type indicating an

external user is logging in.
v A custom class that extends curam.util.security.PublicAccessUser, which requires implementing the

curam.util.security.ExternalAccessSecurity interface, must be provided. This abstract class contains
methods responsible for the authentication and authorization of an external user.

As well as there being internal and external user types. There can also be different types of external
users. For example, there may be an external user of type 'PUBLIC' who could have limited access to an
external application. There could be another external user of type 'PROVIDER' who is a registered
external user. The ability to have different types of external users provides more flexibility within an
external application, allowing finer grained control over authentication of the external user based on the
external user type.

7.3 User Scope
There are two different types, or scopes, of users within the IBM Cúram Social Program
Managementapplication: internal and external. The type of a user is determined in one of the following
ways:
v By the Cúram Security Cache;

If the user exists in the Cúram Security Cache, the type is assumed to be in internal. If the user does
not exist in the cache, the type is assumed to be external. In this case, (which is the default behavior)
all usernames, internal and external, must be unique.

v By the UserScope custom interface;
If the UserScope custom interface is implemented. This custom interface, takes precedence over the
check for a user in the Cúram Security Cache to determine the user type. Consult 13.15, “Determining
if a User is Internal or External using the UserScope Interface,” on page 56 for further details.

When the type of a user is external the implementation of the
curam.util.security.ExternalAccessSecurity.getSecurityRole() method will be used to determine the
user role instead of the internal security roles. 13.8, “Authorizing an External User,” on page 53 should be
consulted for further details on this method.

© Copyright IBM Corp. 2012, 2013 27



To support alternative methods for determining if a user is internal or external the custom interface,
UserScope , is available. Consult 13.15, “Determining if a User is Internal or External using the UserScope
Interface,” on page 56 for more details.

7.4 Deployment of an External Application
When deploying an application to an application server, the security configuration for the application
server is applicable to all IBM Cúram Social Program Management applications deployed to that
application server instance. Therefore, care must be taken when considering the deployment architecture
for more than one application. This is important when deciding if an internal and external application
will be deployed to the same application server instance.

An example of some considerations to think about are:
v Is identity only being used for internal users?
v Is an alternative authentication mechanism used , e.g., LDAP;
v Will both internal and external users be authenticated by LDAP?

The answers to the considerations above will affect the setting of the application server properties (i.e.
properties specified in the AppServer.properties file), that affect the behavior of the Cúram JAAS login
module. These considerations will also drive the implementation of the
curam.util.security.PublicAccessUser class and curam.util.security.ExternalAccessSecurity interface
for external users.

The application server properties in the Cúram JAAS login module allow for finer grained control over
the authentication of user types. External users and internal users can be authenticated differently, as can
different types of external users, in a situation where the internal and external applications are deployed
to the same application server. These properties include the following:
v curam.security.user.registry.disabled.types ;

Set this property to a comma separated list of user types for which the application server user registry
will not be queried, i.e. the implementation within the PublicAccessUser.authenticate() method is
responsible for authenticating the external user of this type. For example, LDAP could be configured to
be the user registry.

v curam.security.user.registry.enabled.types.
Set this property to a comma separated list of user types for which the user registry will be queried,
i.e., the implementation within the PublicAccessUser.authenticate() method does not have to fully
authenticate the user. The user registry will be responsible for authenticating this type of external user.
For example, LDAP could be configured as the user registry, and in this case, LDAP could be
responsible for the authentication of these external user types.

These properties are dependent on the implementation of the curam.util.security.PublicAccessUser
class and ExternalAccessSecurity interface.

Consider the following example project requirements:
v An internal user must authenticate with LDAP.
v An external user of type 'EXT_PUBLIC' must authenticate with IBM Cúram Social Program

Management and not LDAP;
v An external user of type, 'EXTERNAL' must authenticate with LDAP only and not IBM Cúram Social

Program Management.
v Both the internal and external applications are deployed to the same application server instance.

The following settings could cater for the example above:
v curam.security.check.identity.only set to true ;
v curam.security.user.registry.disabled.types=EXT_PUBLIC.

28 IBM Cúram Social Program Management: Cúram Security Guide



As well as the properties being set, the PublicAccessUser extension (and
curam.util.security.ExternalAccessSecurity implementation) must have the logic to cater for the
different types of external users and how they will be authenticated.

Chapter 7. External User Applications 29



30 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 8. Using Single Sign On

8.1 Overview
The number of applications in an enterprise often results in an increase in the number of usernames and
passwords in use, resulting in poor user experience and additional cost of maintaining them. Multiple
user names and passwords also compromise security as users either choose very simple passwords or
write down their passwords in easy to find locations. For the system administrators additional
applications result in an increased directory maintenance effort and fielding increased help desk calls to
reset passwords. Some of the problems caused by additional applications can be resolved by using single
sign-on functionality. Single sign-on (SSO) functionality allows users to access multiple secure
applications by authenticating only once.

Note: Secure refers to applications that require users to be authenticated before accessing the
functionality

Single sign on is supported for the supported application servers, by allowing alternative mechanisms to
be used alongside the Cúram login module. The implementation of an SSO solution is the responsibility
of the custom implementation. It is recommended that a third party tool be used, e.g. IBM Tivoli® ™ or
CA SiteMinder.

This chapter describes the application server properties that allows use of an SSO solution.

8.2 Single Sign On with WebSphere
When SSO is required with WebSphere, it can be achieved using the WebSphere lightweight third-party
authentication mechanism (LTPA) and additional custom login modules. The LTPA protocol results in a
token being created for an authenticated user. In WebSphere, a token is generated once credentials are
added for an authenticated user. This token is then used to retrieve identity information for an
authenticated user in an SSO environment.

Security is implemented as a Cúram login module within a chain of login modules set up in WebSphere.
It is expected that at least one of these login modules be responsible for adding credentials for the user.
By default, the Cúram login module adds credentials for an authenticated user. As a result of this, the
configured WebSphere user registry handled by a subsequent login module does not add credentials. The
recommended approach to implementing an SSO solution is to add a custom login module somewhere
along the chain of login modules.

The ability to disable the addition of credentials for an unauthenticated user is provided, thus enabling
an SSO solution to be implemented.

The Cúram JAAS login module for WebSphere checks if an LTPA token exists within WebSphere using
the WSCredTokenCallbackImpl callback for WebSphere. If this token exists and is valid, then no
authentication is performed by the Cúram login module.

Credentials may be added to the WebSphere user registry. Credentials include authentication information
on the user logging in, including the unique identifier for the user. WebSphere checks that credentials
exist for a user after all configured system login modules have executed, if the credentials exist, then the
WebSphere user registry is not queried. Credentials are not added by the Cúram JAAS login module if
the following settings are in place:
v curam.security.check.identity.only property is set to true.
v curam.security.user.registry.enabled property is set to true.

© Copyright IBM Corp. 2012, 2013 31



As mentioned in 7.4, “Deployment of an External Application,” on page 28, there are properties relating
to the type of external user that control if credentials are added to WebSphere for a specific external user
type. These include:
v curam.security.user.registry.enabled.types property.
v curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

In the case where the Cúram JAAS login module does not add credentials, the WebSphere user registry
will be queried to attempt to add credentials for the user.

8.3 Single Sign On for WebLogic Server
When SSO is required with WebLogic Server , it can be achieved by using the WebLogic Server
authentication provider or a custom authentication provider. Consult the WebLogic Server documentation
for further information on authentication providers. WebLogic Server expects credentials/principals and
the group the user belongs to, to be added by the configured authentication provider. For an SSO
solution the Cúram JAAS login module does not add credentials to the JAAS subject to allow for an
alternative authentication provider to be responsible for adding credentials.

Credentials are not added if the following settings are in place:
v curam.security.check.identity.only is set to true.
v curam.security.user.registry.enabled is set to true.

As mentioned in 7.4, “Deployment of an External Application,” on page 28, there are properties relating
to the type of external user that control if credentials are added to WebLogic Server for a specific external
user type. These include:
v curam.security.user.registry.enabled.types property.
v curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

The responsibility for adding credentials is left to another authentication provider, i.e., the main
authentication provider for authenticating the user. In an SSO scenario, only one of the authentication
providers needs to add credentials to the JAAS subject during the commit() method of the login module
for a user

32 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 9. Other Security Considerations

9.1 Overview
Another important security concern is protecting content as it is entered, displayed and transferred across
the network for the IBM Cúram Social Program Managementapplication. The default configuration uses
SSL provided by the application server to secure content as it is transferred.

In addition to this, during the development lifecycle, industry leading products are used to regularly
monitor for security vulnerabilities in the application. Examples of such potential vulnerabilities include:
cross site scripting, and SQL injection. Such threats are resolved within the infrastructure when
discovered.

It is recommended that customers perform similar security monitoring of their application.

9.2 SSL Settings for the Application
SSL is on by default for access to the web application. This ensures a secure SSL connection between the
client and server and also ensures data is encrypted. SSL is turned on for the client through settings in
the web.xml file for the web client application. SSL is turned on at the application server level by settings
in WebLogic Server and WebSphere . These settings for the application servers are done through the IBM
Cúram Social Program Managementconfiguration scripts.

Important: The configuration scripts ensure SSL is turned on by default, however, this is a default
configuration that must be updated and new certificates must be established for the SSL protocol.

It is recommended to leave SSL on for access to the IBM Cúram Social Program Managementapplication,
however depending on specific project configurations, there may be a need to turn SSL off for the
application.

It is possible, but not recommended to turn off SSL. 10.9, “Turning Off SSL Settings for the Application,”
on page 36 should be consulted for further details.

9.3 Using Cúram in a Secure Environment
Cúram can be used in a secure server environment (e.g. FIPS-compliant) and is dependent on the
requirements and capabilities of that environment (e.g. Websphere FIPS configuration). However there are
a few specific areas where Cúram-specific or related operation or configuration is required:
v When using the DB-to-JMS feature, which is enabled via the

curam.batchlauncher.dbtojms.notification.ssl property, described in the Cúram Batch Processing
Guide

v When using the Word Integration Control, used for the FILE_EDIT widget, documented in the Cúram
Web Client Reference Manual, which has two aspects to consider:
– When needing to use it with a browser in a TLS v1.2 environment, which is discussed in the "User

Machine Configuration" topic of the Cúram Web Client Reference Manual.
– The SP800-131a-compliant version of the supporting jar file can be used as long as your browser

JVM supports SHA2, regardless of whether the server environment supports SP800-131a. To digitally
sign the Word Integration jar for SP800-131a compliance you must build your environment using the
enable-sha-2-signed-jars property (e.g. -Denable-sha-2-signed-jars=true) when invoking the
Cúram build targets (e.g. server, client, websphereEAR).

© Copyright IBM Corp. 2012, 2013 33



34 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 10. Customizing Authentication

10.1 Customizing the Login Page
The default out-of-box login screen is represented by the logon.jsp file located in the lib/curam/web/jsp
directory of the Client Development Environment for Java (CDEJ). The logon.jsp file can be customized
by creating a copy of the out-of-the-box file and placing this in a webclient/components/<custom>/
WebContent folder, where <custom> represents the name of the custom web client component.

The section on Login Pages in the Cúram Web Client Reference Manual has guidelines on what needs to
remain in place in the logon.jsp file and should be referenced for further details.

10.2 Applying Styling to the Login Page
Styling changes can be applied to the logon.jsp in the usual way, i.e., by adding the relevant CSS to any
.css file in the custom component. The Cúram Web Client Reference Manual should be consulted for details
on styling.

10.3 Enabling Usernames With Extended Characters for WebLogic
Server
If the WebLogic Server application server is not being used, this section can be ignored.

In the event that you have Cúram user names or passwords with extended characters (e.g. "üßer")
WebLogic Server provides a proprietary attribute, j_character_encoding , which must be added to the
logon.jsp form-based login page. The WebLogic Server documentation should be consulted for more
information. The attribute must be added to the table element in the logon.jsp file, as illustrated below:
10.3, “Enabling Usernames With Extended Characters for WebLogic Server.”

10.4 Changing the Case-Sensitivity of the Username
The curam.security.casesensitive property controls the case sensitivity of usernames. By default, this is set
to true in the Application.prx file. When set to false in the Application.prx file, this will result in the
authentication and authorization mechanisms ignoring the case of the username.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

10.5 Adding Custom Verifications to the Authentication Process
To add custom verifications, the curam.util.security.CustomAuthenticator interface must be
implemented. This interface contains one method - authenticateUser() . The authenticateUser() method
is invoked for both default authentication and identity only authentication. The results of this method are
expected to be an entry from the curam.util.codetable.SECURITYSTATUS codetable. In the case of
successful authentication, the result must be curam.util.codetable.SECURITYSTATUS.LOGIN

<input type="hidden" name="j_character_encoding" value="UTF-8"/>

Figure 6. WebLogic Server Support for Logins With Extended Characters

© Copyright IBM Corp. 2012, 2013 35



For authentication failures anything, including null, can be returned. It is recommended though that
another code from the curam.util.codetable.SECURITYSTATUS codetable be used. This codetable can be
extended to include custom codes as detailed in the chapter on Code Tables in the Cúram Server
Developer's Guide.

After the custom verifications are invoked, the authentication process will update the relevant fields on
the Users database table. For example, if the result of the customized verifications is not
SECURITYSTATUS.LOGIN the number of login failures is increased by 1, and if the break-in threshold is
reached, the account will be disabled. Alternatively, if the result is SECURITYSTATUS.LOGIN , the login
failures are reset to 0 and the last successful login field is updated.

Note: When identity-only authentication is enabled the fields of the Users database table are not
updated, irrespective of the result of the custom verification.

10.6 Configuring the Custom Authenticator
To configure the application to use this custom extension, the property
curam.custom.authentication.implementation in the Application.prx must be set to the fully qualified
name of the class implementing the CustomAuthenticator interface.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

10.7 Configuring Identity Only Authentication
To configure identity-only authentication the curam.security.check.identity.only property should be set to
true in the AppServer.properties file before running the configure target. It is also possible to set this
property once the application is deployed through the application server console. For more information
on configuring the application server the Cúram Server Deployment Guides for the application server being
used should be consulted.

10.8 Adding the Cache Refresh Failure Callback Interface
The new callback class must implement the interface:
curam.util.security.SecurityCacheFailureCallback in a class that has a public default constructor. The
implementation of the callback is registered by setting the application property
curam.security.cache.failure.callback to the name of the implementation class. If the property is not set, no
attempt is made to invoke a callback handler.

10.9 Turning Off SSL Settings for the Application
SSL is on by default for access to the IBM Cúram Social Program Managementapplication. This ensures a
secure SSL connection between the client and server and also ensures data is encrypted. SSL can be
turned on and off for the client through settings in the web.xml file for the web client application, and at
the application server level by settings in WebLogic Server and WebSphere . These settings for the
application servers are configured via the configuration scripts. It is recommended to leave SSL on for
access to the application, however depending on specific project configurations, there may be a need to
turn SSL off for the application. The following sections detail how to do this.

10.10 Modifying the web.xml File for the Client Application
This can be modified by changing the <transport-guarantee> from CONFIDENTIAL to NONE in the web.xml
file. Note, this does not disable access to the web client over HTTPS, but enables additional access via
HTTP. For further details on modifying the web.xml file, the section on Customizing the Web Application
Descriptor in the Cúram Web Client Reference Manual should be referenced. An example of setting this

36 IBM Cúram Social Program Management: Cúram Security Guide



property is below:

10.11 Modifying the Application Server Configuration
Modifying the configuration for WebSphere can be done in one of two ways. The first approach below
being the recommended approach.
v Use the existing non-secure port, setup by default for Web Services (recommended approach). This

caters for both SSL and non-SSL connections.
1. Navigate to Environment -> Virtual Hosts -> client_host->Host aliases
2. Click New and enter * for host name and 9082 for port number, then click OK
3. On the next page click Save to store your new value to the server configuration. Please note that

the port 9082 corresponds to the CuramWebServicesChain configured in the default client application
and this port is now the port that can be used to access the application using HTTP

v Reuse the current SSL port of 9044 :
The current port can be set up as a non-secure port. The steps to do this are described in the Cúram
Deployment Guide for WebSphere Application Server - Section A.2.11 Server Configuration - Set up port
access. Follow Steps 7 to 11 inclusive. The only difference for Step 11, is that that the Transport Chain
Template should be set to 'WebContainer' (and not WebContainer Secure).

10.12 Analyzing the AuthenticationLog Database Table
All authentication attempts (both successes and failures) are logged in the AuthenticationLog database
table. The following are the rows of interest on this table:

Table 1. Contents of the Authentication Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the login attempt.

altLogin Boolean indication of whether the username represents an alternate
Login ID. When this column equals '1' (true) the value in the userName
column is an alternate login ID as per 2.5, “Alternate Login IDs,” on
page 5; otherwise, the userName column represents the userName from
the Users or ExternalUser table.

loginFailures The number of login failures for this user since their last successful
login.

lastLogin The date and time of the last successful login.

<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

Chapter 10. Customizing Authentication 37



Table 1. Contents of the Authentication Log (continued)

Field Meaning

loginStatus The status of the login attempt. This may be one of:

v LOGIN: Successful login.

v ACCDISABLE: The account has been explicitly disabled.

v ACCEXPIRED: The password expiry date has been reached.

v PWDEXPIRED: The number of days which the user was given to
change their password has been exceeded.

v BADUSER: The user does not exist.

v AUTHONLY: This is used in the case of identity only authentication
and indicates that only authorization verifications will be performed.

v BADPWD: The specified password was incorrect.

v BREAKIN: A specified number of incorrect passwords has been
reached. The account is disabled.

v RESTRICTED: The user is not allowed access the system at this time.

v LOGEXPR: The number of login attempts which the user was given
to change their password has been exceeded.

v AMBIGUOUS: The specified username is ambiguous as it is a case
insensitive duplicate of another username.

The LogAdmin API can be used to query the AuthenticationLog database table. The Java documentation
for this class should be referenced for further details.

38 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 11. Customizing Authorization

11.1 Overview
This chapter details how to set up authorization for users.

11.2 Creating Authorization Data Mapping
The authorization data for a user can be set up through the use of the Data Manager (DMX files) or
through the Cúram Administration screens. The Cúram System Configuration Guide should be consulted for
details on identifying how to group security from a business perspective.

To create a new security role for a user, the security identifiers (SIDs) that the user must have access to,
need to be identified. These SIDs should then be organized into groups of SIDs. The role, groups and
SIDs, once identified, need to be set up on the security tables that these represent.

Security data is considered essential for the set up of a IBM Cúram Social Program
Managementapplication. As such, the examples below describe adding security data to the data/initial
directory within the component.

11.3 Creating a New Security Role
To create a new security role, a new entry must be added to the SecurityRole database table, setting the
rolename attribute.

To do this, create/add to the SecurityRole.dmx file in the %SERVER_DIR%/components/<custom>/data/
initial , where <custom> is any new directory created under components that conforms to the same
directory structure as components/core.

11.4 Creating a New Security Group
To create a new security group, a new entry must be added to the SecurityGroup database table setting
the groupname attribute.

To do this, create/add to the SecurityGroup.dmx file in the %SERVER_DIR%/components/<custom>/data/
initial , where <custom> is any new directory created under components that conforms to the same
directory structure as components/core.

11.5 Linking the Security Group to the Security Role
The security role must be linked to the security group. To do this, create a new entry in the
SecurityRoleGroup table, setting the rolename and groupname attributes.

To do this, create/add to the SecurityRoleGroup.dmx file in the %SERVER_DIR%/components/<custom>/data/
initial , where <custom> is any new directory created under components that conforms to the same
directory structure as components/core.

11.6 Creating the Security Identifier (SID)
The create a new SID, an entry must be added to the SecurityIdentifier table, setting the sidname and
sidtype attributes.

© Copyright IBM Corp. 2012, 2013 39



To do this, create/add to the SecurityIdentifier.dmx file in the %SERVER_DIR%/components/<custom>/
data/initial , where <custom> is any new directory created under components that conforms to the same
directory structure as components/core.

11.7 Linking the Security Group to the SID
To link the security group with the SID, an entry must be added to the SecurityGroupSID table, setting
the groupname and sidname attributes.

To do this, create/add to the SecurityGroupSID.dmx file in the %SERVER_DIR%/components/<custom>/data/
initial , where <custom> is any new directory created under components that conforms to the same
directory structure as components/core.

11.8 Linking the Security Role to the User
To associate authorization data to a user, the security role must be linked to the user.

To do this, update the entry for the specified user in the Users.dmx file located in the
%SERVER_DIR%/components/<custom>/data/initial , where <custom> is any new directory created under
components that conforms to the same directory structure as components/core , setting the rolename
attribute to be the rolename as specified on the SecurityRole table.

11.9 Loading Security Information onto the Database
Once all of the information has been entered in the various DMX files, the Data Manager should be used
to load the DMX data onto the database. The Data Manager chapter in the Cúram Server Developer's Guide
should be consulted for further details.

11.10 Creating Function Identifiers (FIDs)
When a method is made publicly accessible; by setting the stereotype to be <<facade>>, security is
automatically switched on. This means a SID is automatically generated for that method and the security
enabled flag for the method is set to true . The SID and its fidenabled flag are stored in the
database-independent <ProjectName>_Fids.xml file located in the /build/svr/gen/ddl subdirectory. This
file is used to insert the FID information onto the database via the Data Manager.

A FID follows the naming convention of <classname>.<methodname> , and the maximum length of a FID
is 100 characters. For example, for a BPO called ProductEligibility , with two methods called
insertProduct and testProduct , two FIDs are created: ProductEligibility.insertProduct and
ProductEligibility.testProduct.

If security for a process method is switched off at design time in the model, a SID/FID is still generated
but the security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

11.11 Switching Security off for a Process Method
Setting the Generate_Security option on the process method to false in the model switches off security
for a process method.

If security for a process method is switched off at design time in the model, a FID is still generated but
the security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

40 IBM Cúram Social Program Management: Cúram Security Guide



11.12 Security Considerations During Development
It is important to consider the effect of these design options when implementing security during the
development of a IBM Cúram Social Program Managementapplication. They are the first and last line of
defense against unauthorized access to application process functionality. Generally speaking, security will
be switched on for almost all process methods. Security may be switched off for a process method that
does not need security, e.g., a login method that gets invoked when a user tries to login to an application.
As a user has not yet been authenticated or authorized, they need access to this method in order to login,
therefore switching off security for this method may be necessary.

During the initial design phase of an application the overhead of keeping the security environment “in
sync” with an evolving application can be tedious. It is possible to disable the authorization check by
setting the curam.security.disable.authorisation property in the Application.prx file.

warning: Warning

The curam.security.disable.authorisation property should only be turned on at design phase. This should
never be set to true in a production environment.

Finally, it should be noted that once the code and scripts have been generated from a working model, the
information associated with a FID cannot be changed. To change this information requires modifying the
model, re-generating and re-building the database.

11.13 Controlling the Logging of Authorization Failures for the Client
By default, web client authorization failures are not recorded.

The curam.enable.logging.client.authcheck property controls whether the authorization failures
encountered by the web client are logged or not. This property is false by default, meaning these failures
will not be logged. When set to true a log of these authorization failures is stored on the database table
AuthorisationLog . The Cúram Server Developers Guide , Application.prx - Dynamic properties section
should be consulted for more information on this property.

11.14 Authorizing New SID Types
A server interface method is provided to enable authorization to be performed directly. This method may
be added to a class that manipulates data on the conceptual element being secured by the new SID type.

curam.util.security.Authorisation.isSIDAuthorised()

A usage example of this method is below:

Chapter 11. Customizing Authorization 41



11.15 Analyzing the AuthorisationLog Database Table
All authorization failures are logged in a database table called the AuthorisationLog. The following are
the rows of interest on this table:

Table 2. Contents of the Authorization Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the authorization attempt.

identifierName The security identifier (SID) or functional identifier (FID) associated
with the failure.

The LogAdmin API can be used to query the AuthorisationLog database table. The Java documentation for
this class should be referenced for further details.

// The SID associated with the conceptual element
// to be secured.
String someSID = "someSID";

// Get the logged in username
String loggedUser =

curam.util.transaction.TransactionInfo.getProgramUser();

// Check if the user has access rights
if (curam.util.security.Authorisation.isSIDAuthorised(

someSID, loggedUser)) {
// Do something sensitive that this user has rights to do
...

} else {
// Throw an exception indicating the user doesn’t have
// access to perform this action

AppException exception
= new AppException(MESSAGE.ERR_USER_NO_ACCESS);

throw exception;
}

Figure 7. Example Usage of isSIDAuthorised()

42 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 12. Customizing Cryptography

12.1 Overview
This chapter details how to configure and customize cryptography for IBM Cúram Social Program
Management.

12.2 Cipher Customization
Modification of the default cipher settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a
time when in-progress changes won't be an impact. Also, consider any data (e.g., properties containing
encrypted passwords) managed by the Cúram Transport Manager (CTM) that will either need to be
updated or managed to prevent systems from being out of sync with one another (see the Cúram
Transport Manager Guide for more information).

Modification of the default cipher settings involves the following steps:
1. Choosing new settings for the CryptoConfig.properties and underlying artifacts - see 4.5, “Cúram

Cipher Settings,” on page 20
2. Depending on the settings, you may need to perform additional steps (e.g. when modifying the

keystore as per 12.4, “How to Create a New Keystore,” on page 44).
3. Modify the CryptoConfig.properties file; note the default location is <SERVER_DIR>/project/

properties.
4. Remove any existing CryptoConfig.jar files (these contain CryptoConfig.properties) that are found

in the <JAVA_HOME>/jre/lib/ext directory ($JAVA_HOME/lib/ext on IBM z/OS®). If any Cúram clients
or servers are running these will need to be terminated in order to be able to deploy an updated
CryptoConfig.jar file with the updated settings.

5. Re-encrypt the passwords in all existing property files as identified in 4.7, “Cipher-Encrypted
Passwords,” on page 21. The Apache Ant configtest, configure, and installapp targets will place an
updated CryptoConfig.jar file in the Java lib/ext directory.

6. Test and verify your changes.

Testing of your changes should include verifying any functionality that would be impacted; for example:
v Ensure the Ant configtest target still works.
v Ensure batch programs still work.
v If you utilize the Ant configure target ensure it still works.

Related topics:
v 4.6, “Cúram Digest Settings,” on page 21
v 4.7, “Cipher-Encrypted Passwords,” on page 21

12.3 Key Management
The management of the secret key for Cúram encrypted passwords is done via the JDK-provided keytool
command, or equivalent. You will need to make local decisions about placement and isolation of the
secret key for Cúram that are compatible with your local organization and standards.

© Copyright IBM Corp. 2012, 2013 43



Keep in mind that some settings passed to the keytool command need to be reflected in the
CryptoConfig.properties settings, which needs to be coordinated for successful deployment as discussed
in 12.2, “Cipher Customization,” on page 43. The following table shows the relationship between keytool
command arguments and the Cúram crypto properties.

Table 3. Relationship of keytool Command Arguments to Cúram Crypto Properties

Keytool argument CryptoConfig.properties property

-keyalg curam.security.crypto.cipher.algorithm

-alias curam.security.crypto.cipher.keystore.seckey.alias

-keystore curam.security.crypto.cipher.keystore.location

-storepass curam.security.crypto.cipher.keystore.storepass

Note: The secret key password defaults to the storepass password and should not be changed.

See the JDK documentation for more information on using the keytool command.

Related topics:
v 4.5, “Cúram Cipher Settings,” on page 20
v 4.4, “Cryptography Properties,” on page 19
v 12.4, “How to Create a New Keystore”

12.4 How to Create a New Keystore
Creating a new keystore to replace the Cúram default requires running the keytool command provided
with the JDK (or equivalent), modifying the CryptoConfig.properties settings to correspond (necessary,
only if the keystore name and/or location is changed from the default, but changing the name can make
your customizations more obvious), and ensure the Curam Ant targets can find the new keystore
(necessary, only if the default location is changed).

For example:

The section 12.3, “Key Management,” on page 43 identifies the keytool command arguments that relate
to the CryptoConfig.properties settings.

The default location of the keystore file is the <SERVER_DIR>/project/properties directory with a
sub-directory structure that reflects the JDK in use: “ibm” for the IBM JDK and “sun” for the Oracle JDK.
So, when creating a keystore file the Curam build scripts expect to find it in the case of the IBM JDK in:
<SERVER_DIR>/project/properties/ibm. If you desire to use a location different from the default you can
do one of two things:
1. Use an absolute location for the keystore file as described in 4.4, “Cryptography Properties,” on page

19. In this case the Curam default keystore files in CryptoConfig.jar will be ignored in favor of the
absolute setting CryptoConfig.properties.

2. Use the Ant crypto.prop.file.location property when you run any of the targets, described in 12.2,
“Cipher Customization,” on page 43, that create and copy the CryptoConfig.jar to point to your
alternate location. The location specified will have to reflect the structure of your JDK - “ibm” or
“sun”. For instance:
v Place the new keystore file in a location like this on Windows for the IBM JDK:

C:\Curam\keystore\ibm\MyOrganization.keystore

v Point to that location when running the build targets: ant configure
-Dcrypto.prop.file.location=C:\Curam\keystore

keytool -genseckey -v -alias MySecretKey -keyalg AES -keysize 128 -keystore MyOrganization.keystore -storepass secretpw -storetype jceks

44 IBM Cúram Social Program Management: Cúram Security Guide



Note: In the example above the change of keystore file name to MyOrganization.keystore will require a
corresponding change to CryptoConfig.properties as per 4.4, “Cryptography Properties,” on page 19.

Note: The only supported keystore type for Cúram cryptography is jceks.

Following the keystore creation you need to follow the steps in 12.2, “Cipher Customization,” on page 43.

Related topics:
v 12.3, “Key Management,” on page 43
v 12.2, “Cipher Customization,” on page 43

12.5 Digest Customization
Modification of the default digest settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a
time when in-progress changes won't be an impact. Also, consider any data (e.g., User passwords)
managed by the Cúram Transport Manager (CTM) that will either need to be updated or managed to
prevent systems from being out of sync with one another (see the Cúram Transport Manager Guide for
more information).

The process is covered in detail in 12.7, “How to Utilize the Superseded Digest Settings for a Period of
Migration.”

Related topics:
v 4.6, “Cúram Digest Settings,” on page 21
v 12.6, “How to Specify a Digest Salt”

12.6 How to Specify a Digest Salt
While Cúram doesn't specify one out-of-the-box, specifying a salt for digested passwords provides an
additional level of protection against brute-force attacks.

To specify a salt for your digested passwords:
1. Choose a sufficiently long and random string.
2. Encrypt this string using the Ant encrypt target (as documented in the Cúram Server Developer's

Guide).
3. Place the encrypted string in a file.
4. Specify the location of the file containing the encrypted salt string using the

curam.security.crypto.digest.salt.location property in CryptoConfig.properties and ensure that
any deployed CryptoConfig.jar files reflect the updated settings.

For manageability you should make these changes in conjunction with the steps in 12.7, “How to Utilize
the Superseded Digest Settings for a Period of Migration.”

12.7 How to Utilize the Superseded Digest Settings for a Period of
Migration
Utilizing the superseded digest settings means you are migrating your existing digested passwords to a
new crypto configuration (e.g. new salt) and would like Cúram user passwords automatically migrated
for a period of time. This applies to Cúram internal and external users, but does not apply to users
managed by third-party security systems such as LDAP.

Chapter 12. Customizing Cryptography 45



The process to do this is:
1. Choose a time when your Cúram system can be down and with the Cúram system not running.
2. Copy the existing digest property names and values in CryptoConfig.properties and rename the

properties to the new superseded property names.
3. Modify the existing digest property names in CryptoConfig.properties.
4. Set the curam.security.convertsupersededpassworddigests.enabled property to 'true'.
5. Set the curam.security.crypto.upgrade.start property to help you track when you introduced the

updated configuration. This value can be used below to help manage unmigrated user passwords.
6. Restart the application server, but note the following.

Note: The Cúram default web services user (WEBSVCS), or any user not processed via the
CuramLoginModule, is not available for automatic password migration. You must reset these users before
restarting the application server. To do this:
1. Obtain the new digest password value via the Ant digest target (e.g. ant digest

-Dpassword=password).
2. Update the password value in the database, which is easily done via SQL (e.g. UPDATE USERS SET

PASSWORD='<new digest value>' WHERE USERNAME='WEBSVCS';).
3. You can now start the application server

After a period of time (e.g. weeks or months) when you consider the migration period to be over set the
curam.security.convertsupersededpassworddigests.enabled property to 'false' and unset the
curam.security.crypto.upgrade.start property.

Users who did not login during the migration period will now see their logins fail due to password
mismatches. You have two approaches for addressing the passwords not updated during the migration
period:
1. Require these users to contact your internal support to have their password reset via the admin user

interface.
2. Manually identify the users in the Cúram USERS table who were not updated during the migration

period and either manually set new default password either via SQL (see the digest target described
in the Cúram Server Developer's Guide to obtain new digest password values) or via the admin user
screens. For example, using the following query: SELECT username FROM users WHERE lastwritten
between timestamp('2013-06-01 15:00:00') AND timestamp('2013-09-01 00:00:00')

You should not leave curam.security.convertsupersededpassworddigests.enabled set to true indefinitely
because:
1. It's meaningless to have gone to the trouble of upgrading from configuration 'A' to configuration 'B'

and leave the original 'A' configuration active;
2. It leaves potentially weaker crypto settings active in the system; and
3. In order to use this functionality for a future upgrade, say from configuration 'B' to 'C', you would

have to have upgraded all the 'A' passwords to at least 'B'.

Note: Any files, e.g. DMX, with stored digests need to be considered with respect to your migration
strategy so they reflect the correct values.

Note: Any use of the Cúram Transport Manager (CTM) during a migration needs to be considered in
terms of ensuring compatible settings and expectations between the source and target systems.

Related topics:
v 4.5, “Cúram Cipher Settings,” on page 20
v 4.6, “Cúram Digest Settings,” on page 21

46 IBM Cúram Social Program Management: Cúram Security Guide



12.8 Modifying Your Crypto Configuration for a Production System
While the out-of-the-box (OOTB) crypto settings are adequate for typical development or test
environments, they should be modified for production environments to protect and provide isolation
between these relatively low-risk environments and high-risk production environments.

Some typical changes to the OOTB crypto configuration, in preparation for production, might include:
v Providing a new secret key.

– Such a key can be generated using the JDK keytool utility; see 12.4, “How to Create a New
Keystore,” on page 44
- This secret key should be stored in a separate keystore.
- The properties for these secret key changes would be as described in 12.3, “Key Management,” on

page 43.
v Providing new digest settings

– New digest settings can include a new salt, iteration count, and/or algorithm.
- The properties for these digest changes would be as described in 4.6, “Cúram Digest Settings,” on

page 21 and 12.6, “How to Specify a Digest Salt,” on page 45 and the process described in 12.7,
“How to Utilize the Superseded Digest Settings for a Period of Migration,” on page 45.

Remember to keep your configuration files isolated from personnel who do not absolutely have to access;
specifically, keeping development, test, and production configuration information isolated.

Chapter 12. Customizing Cryptography 47



48 IBM Cúram Social Program Management: Cúram Security Guide



Chapter 13. Customizing External User Applications

13.1 Overview
As external users are processed differently to internal users, a separate IBM Cúram Social Program
Managementweb application is required specifically for external users.

13.2 Creating an External User Application
A new web client application must be developed for external users. The Cúram Web Client Reference
Manual should be consulted for details on creating a new web client application.

13.3 Creating an External User Client Login Page
A new logon.jsp must be created for an external user application.The Social Program Management
Platform ships with a default login page, logon.jsp , located in the lib/curam/web/jsp directory of the
CDEJ (Client Development Environment for Java). This file should be copied to a webclient/components/
<custom component>/WebContent folder in the web client application and modified as follows:

The table element should be extended to include a hidden input field user_type:

Where EXTERNAL indicates the type of external user. This can be set to any value, excluding INTERNAL.

13.4 Creating an External User Client Automatic Login Page
Some external user client applications require no user authentication and hence a username and
password should not be requested. It is not possible to disable authentication in IBM Cúram Social
Program Management, so the best way to achieve this requirement is to write an automatic login script.

The automatic login script takes a hard coded username and password and provides that as the
authentication information when requested. This means that all users for such an application will always
execute under the same username. Use of such a script should be limited to true open access
applications.

When implementing applications that have a need for an automatic login, the implications for session
management must be considered. Session management in IBM Cúram Social Program
Managementmaintains a user's session information to ensure when the user logs back in, the relevant
session information, i.e., their tabs and navigation opens to where they left off for them. In the case of a
user that has been automatically logged in, this information must not be maintained, therefore session
management may need to be turned off in this scenario. The Cúram Web Client Reference Manual should be
referenced for further details on how to turn this off.

The following are examples of automatic login and logout JSP scripts.

Note: Security implementations and configurations differ across application server vendors so these
examples may not work in all cases or for all application server versions.

<input type="hidden" name="user_type"
value="EXTERNAL"/>

© Copyright IBM Corp. 2012, 2013 49



<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>

<!-- Automatic redirect to login security check of user
details specified below -->

<html>
<head>

<script type="text/javascript">
function autoSubmit() {

document.getElementById("loginform").submit();
}

</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logonBody"

style="visibility: hidden;"
onload="autoSubmit()">

<form id="loginform"
name="loginform"
action="j_security_check"
method="post">

<input type="hidden"
name="j_username"
value="generalpublic" />

<input type="hidden"
name="j_password"
value="password" />

<input type="hidden"
name="user_type"
value="EXTERNAL" />

</form>
</body>

</html>
</jsp:root>

Figure 8. Automatic Login JSP

50 IBM Cúram Social Program Management: Cúram Security Guide



13.5 Extending the Public Access User Class
To “hook” the custom solution into the application the curam.util.security.PublicAccessUser abstract
class must be extended, which requires implementing the curam.util.security.ExternalAccessSecurity
interface. That concrete class will be used during the authentication and authorization process to
determine required information relating to the external user. This class and its methods are described in
detail below.

13.6 Authenticating an External User
The authenticate() method is responsible for authenticating an external user. It is invoked during the
authentication process if the user is identifier as an external user. In the case of external users this method
is invoked in place of the configured authentication.

Note: If an alternative authentication mechanism, e.g. LDAP, is configured, the external users must be
able to authenticate against this mechanism.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>
<html>

<head>
<script type="text/javascript">

function autoSubmit() {
document.getElementById("logout").submit();

}
</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logoutBody"

style="visibility: hidden;"
onload="autoSubmit()">

<form id="logout"
name="logout"
action="servlet/ApplicationController"
method="post">

<input type="submit"
name="j_logout"
value="Log Out" />

<input type="hidden"
name="logoutExitPage"
value="redirect.jsp" />

</form>
</body>

</html>
</jsp:root>

Figure 9. Automatic Logout JSP

Chapter 13. Customizing External User Applications 51



The input parameters to the method include an identifier, the digested password as an array of
characters, and the type of the external user to be authenticated.

The userType parameter is intended to allow for support of multiple types of external users that require
different authentication mechanisms. The use of this parameter depends on the custom implementation.

The expected result of this method will be an entry from the curam.util.codetable.SECURITYSTATUS
codetable. In the case of successful authentication the result must be:

For authentication failures this codetable contains a number of entries, including BADUSER , BADPWD and
PWDEXPIRED . This codetable can be extended to include custom codes as detailed in the Cúram Server
Developer's Guide.

The authentication result returned by this method is automatically logged in the AuthenticationLog
database table. For more information on this table see the Cúram Server Developers Guide.

The abstract class PublicAccessUser also defines the following abstract methods that any concrete
subclass must implement:
v Method upgradeSafePasswordValidation() is required to allow for password comparison and is

defined as follows:

v Method setPassword() is to allow the implementor to persist the password (e.g. a new password) in
the case of crypto upgrades. So this method gets called when the upgradeSafePasswordValidation()
method is called. Here is the method definition:

See the associated JavaDoc of the PublicAccessUser class for more details regarding the above methods.

/**
* The implementation of this method should validate the identifier and
* password and return the result of the validation. If the information is
* valid, the codetable code SecurityStatus.LOGIN should be returned.
*
* @param identifier The identifier of the external user.
* @param password The password as array of characters.
* @param userType The type of external user.
*
* @return The status of the authentication in the form of a codetable code.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/

public abstract String authenticate(String identifier,
char[] password, String userType)
throws AppException, InformationalException;

curam.util.codetable.SECURITYSTATUS.LOGIN

public final boolean upgradeSafePasswordValidation(
final String userName,
final String storedPasswordHash,
final String plaintextPassword)

public abstract void setPassword(String username, String hashedPassword)
throws AppException, InformationalException;

52 IBM Cúram Social Program Management: Cúram Security Guide



13.7 Determine External User Details
Details for an external user are retrieved by calling the getLoginDetails() method of the
curam.util.security.ExternalAccessSecurity interface. These details are returned directly after
authentication to direct the external user to the correct application homepage.

An instance of the curam.util.security.UserLoginDetails class must be created and returned from this
method. The following information should be returned using this class:
v UserLoginDetails . setApplicationCode(String code)

The code corresponding to the application homepage for the external user.
This must be a valid entry in the APPLICATION_CODE codetable.

v UserLoginDetails . setDefaultLocale(String defaultLocale)

The default locale for the external user.
This is the locale the application will be displayed in by default for the external user.

v UserLoginDetails . addInformationals(InformationalManager informationalManager)

Any informationals that must be displayed to the external user.
The curam.util.exception.InformationalManager class can be used to create a number of
informational or warning messages that will be displayed when the external user logs in. For example,
a warning to let the external user know that their password is due to expire.

13.8 Authorizing an External User
The getSecurityRole() method is used during authorization to determine the security role associated
with the external user. The security roles used for external users are configured in the same way as the
security roles for internal users.

/**
* The implementation of this method should retrieve the
* details of the user required to redirect them to the correct
* application page. This information includes the name of the
* application home page for the user, the default locale for
* the user and a list of warnings/messages for the user.
*
* @param identifier The identifier of the external user.
*
* @return The user details, including the application
* home page.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
UserLoginDetails getLoginDetails(String identifier)

throws AppException, InformationalException;

Chapter 13. Customizing External User Applications 53



The SDEJ will invoke an implementation of this method during the authorization process if the user does
not exist in the security cache. Only internal users can exist in the security cache. This means that the
identifiers used to identify external users must be unique and not conflict with usernames setup for
internal users, unless the custom UserScope interface as described in 7.3, “User Scope,” on page 27, is
implemented. Otherwise, if any usernames conflict the access rights assigned to the internal user will also
be used for the external user.

If a role cannot be determined for the external user, null must be returned so that the SDEJ can report the
authorization error correctly.

13.9 Determining the User Type
The getUserType() method is used to determine if a user is an external user.

The getProgramUserType() in curam.util.transaction.TransactionInfo will invoke this method to return
the type of user if the user is not recognized as an internal user. For internal users “INTERNAL” is
always returned.

For external users, there may be multiple types of external users, so this method should return the
specific type of external user.

13.10 Preventing the Deletion of a Security Role: Role Usage Count
The getRoleUsageCount() method is used to prevent the deletion of a security role that is currently
referenced by an external user.

/**
* The implementation of this method should return the security
* role associated with the external user for authorization
* purposes. If the user does not exist null should be
* returned.
*
* @param identifier The identifier of the external user.
*
* @return The security role for authorization.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/

String getSecurityRole(String identifier)
throws AppException, InformationalException;

/**
* Return the type of the user. This is to allow support for
* different types of external user. If there is only one
* type of external user, simply return "EXTERNAL".
*
* @param identifier The identifier of the external user.
*
* @return The type of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getUserType(final String identifier)

throws AppException, InformationalException;

54 IBM Cúram Social Program Management: Cúram Security Guide



Security roles that are referenced by any user, internal or external, cannot be removed. This method
should return a number of 1 or more if any external users reference the specified role.

13.11 Retrieving a Registered Username
The getRegisteredUserName() method is used retrieve the correct case username, which may be
independent of the username typed during login.

The default implementation for this method should return the username that has been provided. It is
only if the curam.security.casesensitive has been set to false that this method may need to change the case
of the username returned.

Note: Where the curam.security.casesensitive property has been set to false and is required for external
users, it is the responsibility of all methods in this interface to handle any case specific requirements.

13.12 Reading User Preferences
The getUserPreferenceSetID() method is used to retrieve the user preference set ID associated with an
external user. If no user preferences exist for an external user, then the default preferences will be used
for the external user. The User Preferences chapter in the Cúram Server Developer's Guide should be
referenced for further details on user preferences.

/**
* Return the number of users using a particular role. This
* method is used to ensure that a role cannot be deleted when
* it is in use by an external user.
*
* @param role The security role name.
*
* @return The number of users currently using the
* specified role.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
int getRoleUsageCount(String role)

throws AppException, InformationalException;

/**
* Gets the correct casing for this user independent of mixed
* case which may have been typed in by the logged in user.
*
* @param identifier The identifier of the external user,
* whose casing may not match that of the persisted identifier
* for the user.
*
* @return The actual case for this user, before its case has
* been modified by external factors.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
public String getRegisteredUserName(final String identifier)

throws AppException, InformationalException;

Chapter 13. Customizing External User Applications 55



The default implementation for this method should return the user preference set ID for the user
preferences associated with an external user.

13.13 Modifying User Preferences
The modifyUserPreferenceSetID() method is used to update the external user details with a new set of
user preferences. Please see User Preferences for further details on user preferences.

The default implementation for this method should update the user preference set id associated with an
external user.

13.14 Configuring External Access Security
The curam.custom.externalaccess.implementation property must be set in the Application.prx to
indicate the fully qualified name of the class which implements the above interface.

Note: The curam.custom.externalaccess.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

13.15 Determining if a User is Internal or External using the UserScope
Interface
To support alternative methods for determining if a user is internal or external the custom interface
UserScope is available. For example, even though usernames must be unique across the set of internal
and external users, this custom interface can be implemented to allow duplicate usernames across
internal and external applications in a limited way.

To provide a custom implementation for determining the type of user, the
curam.util.security.UserScope interface must be implemented. This interface has one method

/**
* This method is used to retrieve a set of user preferences
* associated with an external user. The userPrefSetID is a
* foreign key to the UserPreferenceInfo table.
* The UserPreferenceInfo table contains information on
* the user preferences.
*
* @param identifier The identifier of the external user.
*
* @return The userPrefSetID for the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getUserPreferenceSetID(final String identifier)

throws AppException, InformationalException;

/**
* This method updates the external user details with new user
* preferences.
*
* @param userPreferenceSetID The ID for the user preferences.
* @param username The identifier of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
void modifyUserPreferenceSetID(
final String userPreferenceSetID, final String username)

throws AppException, InformationalException;

56 IBM Cúram Social Program Management: Cúram Security Guide



isUserExternal() that determines the type of user. This method should return true if the user is
considered external or false indicating the user is internal.

For example, an installation might have application1 deployed with userA, a Cúram internal user, and
application2 deployed with userA being external (e.g. defined to LDAP). The ability for application1 to
use internal userA and application2 to use external userA would be controlled by different properties.
That is, Bootstrap.properties in properties.jar in the application1 EAR would have a different custom
property setting from application2 EAR and the implementation of
curam.util.security.UserScope.isUserExternal() would interrogate this setting to decide if the user is
internal or external.

To specify a custom implementation of the UserScope interface the
curam.custom.userscope.implementation property must be set in Application.prx. This should be set to
the fully qualified name of the class that implements the UserScope interface.

Note: The curam.custom.userscope.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

The isUserExternal() method of the UserScope interface is detailed in 13.16, “User Type Determination.”

13.16 User Type Determination
The isUserExternal() method is invoked anywhere in the application where the type of user is to be
determined. This includes when the user logs into the application and when they attempt authorization
to access secured elements of IBM Cúram Social Program Management.

/**
* The implementation of this method should determine the type of
* User that is logged into the application. There are 2 types of
* users: INTERNAL and EXTERNAL. If the user is an EXTERNAL user,
* then this method should return true. If false is returned,
* then the user is considered INTERNAL.
*
* @param username - The username.
* @return A boolean value of true indicating an EXTERNAL user,
* false indicates an INTERNAL user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
boolean isUserExternal(String username)

throws AppException, InformationalException;

Chapter 13. Customizing External User Applications 57



58 IBM Cúram Social Program Management: Cúram Security Guide



Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 59



IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

60 IBM Cúram Social Program Management: Cúram Security Guide



application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that allow the customer to write programs
to obtain the services of IBM Cúram Social Program Management.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Oracle, WebLogic Server, Java and all Java-based trademarks and logos are registered trademarks of
Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 61

http://www.ibm.com/legal/us/en/copytrade.shtml


62 IBM Cúram Social Program Management: Cúram Security Guide





����

Printed in USA


	Contents
	Figures
	Tables
	Chapter 1. Cúram Security
	1.1 Purpose
	1.2 Audience
	1.3 Overview
	1.4 Chapters in this Guide

	Chapter 2. Authentication
	2.1 Overview
	2.2 Authentication
	2.3 Authentication Architecture
	2.4 Default Authentication
	2.5 Alternate Login IDs
	2.6 The Login Page
	2.7 Customization of the Login Page
	2.8 Cúram JAAS Login Module
	2.9 Password Management
	2.10 Default Configuration for WebLogic Server
	2.11 Default Configuration for WebSphere
	2.12 Customization of the JAAS Login Module
	2.13 Verification Process for Authentication
	2.14 Default Authentication
	2.15 Default Verification Process
	2.16 Authentication Attempts
	2.17 Customization of Default Authentication
	2.18 Identity Only Authentication
	2.19 Customization of Identity Only Authentication
	2.20 External Access Security Authentication
	2.21 Custom Verifications

	Chapter 3. Authorization
	3.1 Overview
	3.2 Users, Roles and Groups
	3.3 Security Identifiers (SIDs)
	3.4 Function Identifiers (FIDs)
	3.5 Field Level Security Identifiers
	3.6 User Defined SIDs
	3.7 Runtime Authorization
	3.8 Client Authorization Checks
	3.9 Server Authorization Checks

	Chapter 4. Cryptography in Cúram
	4.1 Overview
	4.2 Ciphering
	4.3 Digesting
	4.4 Cryptography Properties
	4.5 Cúram Cipher Settings
	4.6 Cúram Digest Settings
	4.7 Cipher-Encrypted Passwords

	Chapter 5. Security Data Caching
	5.1 Overview
	5.2 Cúram Security Cache
	5.3 Cache Refresh
	5.4 Cache Refresh Failure
	5.5 WebSphere Caching Behavior

	Chapter 6. Security for Alternative Clients
	6.1 Overview
	6.2 Mandatory Cúram Users
	6.3 Web Services
	6.4 Batch Processing
	6.5 JMS Messaging
	6.6 Deferred Processing

	Chapter 7. External User Applications
	7.1 Overview
	7.2 External User Applications
	7.3 User Scope
	7.4 Deployment of an External Application

	Chapter 8. Using Single Sign On
	8.1 Overview
	8.2 Single Sign On with WebSphere
	8.3 Single Sign On for WebLogic Server

	Chapter 9. Other Security Considerations
	9.1 Overview
	9.2 SSL Settings for the Application
	9.3 Using Cúram in a Secure Environment

	Chapter 10. Customizing Authentication
	10.1 Customizing the Login Page
	10.2 Applying Styling to the Login Page
	10.3 Enabling Usernames With Extended Characters for WebLogic Server
	10.4 Changing the Case-Sensitivity of the Username
	10.5 Adding Custom Verifications to the Authentication Process
	10.6 Configuring the Custom Authenticator
	10.7 Configuring Identity Only Authentication
	10.8 Adding the Cache Refresh Failure Callback Interface
	10.9 Turning Off SSL Settings for the Application
	10.10 Modifying the web.xml File for the Client Application
	10.11 Modifying the Application Server Configuration
	10.12 Analyzing the AuthenticationLog Database Table

	Chapter 11. Customizing Authorization
	11.1 Overview
	11.2 Creating Authorization Data Mapping
	11.3 Creating a New Security Role
	11.4 Creating a New Security Group
	11.5 Linking the Security Group to the Security Role
	11.6 Creating the Security Identifier (SID)
	11.7 Linking the Security Group to the SID
	11.8 Linking the Security Role to the User
	11.9 Loading Security Information onto the Database
	11.10 Creating Function Identifiers (FIDs)
	11.11 Switching Security off for a Process Method
	11.12 Security Considerations During Development
	11.13 Controlling the Logging of Authorization Failures for the Client
	11.14 Authorizing New SID Types
	11.15 Analyzing the AuthorisationLog Database Table

	Chapter 12. Customizing Cryptography
	12.1 Overview
	12.2 Cipher Customization
	12.3 Key Management
	12.4 How to Create a New Keystore
	12.5 Digest Customization
	12.6 How to Specify a Digest Salt
	12.7 How to Utilize the Superseded Digest Settings for a Period of Migration
	12.8 Modifying Your Crypto Configuration for a Production System

	Chapter 13. Customizing External User Applications
	13.1 Overview
	13.2 Creating an External User Application
	13.3 Creating an External User Client Login Page
	13.4 Creating an External User Client Automatic Login Page
	13.5 Extending the Public Access User Class
	13.6 Authenticating an External User
	13.7 Determine External User Details
	13.8 Authorizing an External User
	13.9 Determining the User Type
	13.10 Preventing the Deletion of a Security Role: Role Usage Count
	13.11 Retrieving a Registered Username
	13.12 Reading User Preferences
	13.13 Modifying User Preferences
	13.14 Configuring External Access Security
	13.15 Determining if a User is Internal or External using the UserScope Interface
	13.16 User Type Determination

	Notices
	Programming Interface Information
	Trademarks


