
IBM Cúram Social Program Management
Version 6.0.5

Cúram Express Rules Reference
Manual

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 253

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Cúram Express Rules Reference 1
Introduction 1

Audience 1
Related Reading 1
Structure of this Reference Manual 2

CER overview 2
What Is CER? 2

Rules Language 3
Authoring and Testing Environment 4
Runtime Environment 5

What Are Its Benefits? 5
How Can It Be Used? 6
Guiding Principles 6

CER Development and Testing Tools 7
CER Rules Editor 7
Localization Support. 7

Localization of calculated data 8
Localization of CER rule artefact descriptions 10

The Rule Set Validator 10
The Rule Set Interpreter 11

Read in the Rule Set 12
Start a CER Session. 12
Create a New Rule Object 13
Execute Rules 13

CER Test Code Generator. 13
How to Generate Code 15

Rule Set Coverage Tool 16
CER Publication Area 17
Schema and Catalog Generation 18
RuleDoc 18

A Simple Example 18
A More Useful Example 21
How to Generate RuleDoc 23

SessionDoc 24
Unused rule attributes 27
CER Rule Set Consolidator 28

Example 28
Handling Data 29

CER Sessions 29
External and Internal Rule Objects. 32

External Rule Objects 32
Internal Rule Objects 36

Handling Data Types 39
Supported Data Types 39
Where to Specify Data Types 49

Handling Data that Changes Over Time 49
What Is Timeline Data? 49
Comparing Timeline and Point-in-time
Perspectives 52
Constructing Timelines 57
Operating on Timelines 62

Testing Timeline Outputs 69
Timeline Properties 73

Triggering Recalculation When Data Changes . . 75
The Dependency Manager 75

Dependency Manager Concepts 76
Dependency Manager Functions 78

Storage of Dependency Records 79
Capture of Precedent Change Items 82
Identification of Potentially Affected
Dependents 84
Recalculation of Identified Dependents . . . 84

Dependency Manager Deferred Processing . . . 84
Setting the System Limit for Deferred
Processing 85
Error Handling in the Deferred Processing . . 85

Dependency Manager Batch Processing 85
Submit Precedent Change Set 86
Perform Batch Recalculations From Precedent
Change Set 87
Complete Precedent Change Set 89
Dependency Manager Batch Tooling 90

Integration between CER and the Dependency
Manager 90

CER Utility to Identify Dependencies to Store 90
CER uses the Dependency Manager to store
dependencies for CER-stored attribute values . 95
The Dependency Manager requests CER to
recalculate any stored calculated attributes
values 95

Compliancy 95
About the CER Editor 95

CER Editor Global Menu 96
CER Editor Global Menu 96
CER Editor Search Tools 96
Business View 97
Technical View 97

Diagram Canvas. 98
Drag and Drop 98
Toggle to Show Detailed Diagrams 98
Pan and Zoom Controls 98

Tools and Template Palettes 98
Business Palettes 98
Data Types Palette. 100
Technical Palette 101
Household Units Template 102
Financial Units Template 103
Food Assistance Units Template 103
Decision Table Template 103

Rule Element Pop-up Menus 104
Rule Element Properties 104

Collapsible Property and Validation Panels 104
General properties for all rule elements. . . 105
Properties for Rule class 105
Properties for Attribute 105

Rule Element Wizards 106
Rule Element Reference for CER Editor Palettes 106

© Copyright IBM Corp. 2012, 2014 iii

Introduction 107
Palettes 107
Collapsible Palettes 107

Rule Element Reference for the Default and
Extended Business Palettes 107

Rule 107
And Rule Group 109
Or Rule Group 109
Not. 109
Choose 110
Compare 110
When 110
Arithmetic 110
MIN 111
MAX 111
SUM 111
Repeating Rule 111
Filter 112
Size. 113
Otherwise 113
Legislation Change 113
Era 113

Rule Element Reference for Data Types Palette 114
Boolean 114
String 114
Number 114
Date 114
Code Table 115
Rate 115
Frequency Pattern 115
Resource Message 116
Xml Message 116
Null 117

Rule Element Reference for Technical Logic
Palette 117

Create 117
Search 117
Fixed List. 118
Property 118
Custom Expression 119
Existence Timeline 119
Timeline 120
Interval 120
CombineSuccessionSet 120
Call 121
Period Length 122
ALL 122
ANY 122
This 123
Sort 123
Shared Rule Reference 123
CONCAT. 124
Join Lists 124

Rule Element Reference for Household Units
Templates 125

Household Composition. 125
Household Category 125

Rule Element Reference for Financial Units
Templates 125

Financial Unit 125
Financial Unit Category 125

Financial Unit Member 125
Rule Element Reference for Food Assistance
Units Templates 126

Food Assistance Unit 126
Food Assistance Single Person Category . . 126
Food Assistance Multi Person Category . . 126
Meal Group Members 126
Relatives 126
Discard 126
Member for household unit 126
Optional Members. 126
Exceptions 126

Rule Element Reference for Decision Table
Templates 127

Decision Table 127
CER Best Practices. 127

The description Rule Attribute 127
Getting a Rule Set Working Quickly 134
Naming Rule Elements 135
When to Use the Reference Expression 135
Use RuleDoc 136
Normalize Common Rules 136
Remove Unused Rules 137
Order of Declarations. 137

Order of Rule Classes within a Rule Set . . 137
Order of Calculated Rule Attributes within a
Rule Class 137
Order of Initialized Attributes within a Rule
Class 137
Order of Boolean Conditions 137

Creating Rule Objects 138
Pass Rule Objects in Preference to Passing IDs 138
Developing Static Methods 138
Avoid Common Pitfalls in Tests 141

Avoid JUnit's assertEquals 141
Remember to Use .getValue() 142
Remember to Specify All Values Required by
the Calculations Being Tested 143
Do Not Specify the Same Value More than
Once 143
Specify the Correct Type of Value for an
Attribute 144
Create all Rule Objects for a Session before
Running getValue Calculations 145

CER XML Dictionary 146
Rule Set 146
Include Statement 147
Rule Class 148

Initialized Attributes 148
Calculated Attributes 148

Attribute 149
Expressions 150

Boolean Logic 150
Value Comparison. 150
Constants 150
Conditional Logic 150
List Aggregations 150
List Transformations 150
Localizable Messages 151
Numerical Calculations 151
References 151

iv IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Creation 151
Retrieval 151
Java Callouts 151
Markers 151
Timelines 151
Product Delivery Eligibility and Entitlement 152
Full Alphabetical Listing of Expressions . . 152

Annotations 235
Full Alphabetical Listing of Annotations . . 235

Useful List Operations 239
Using CER with the Datastore 242

The DataStoreRuleObjectCreator 242
Example 243

Compliancy for CER 247
CER's Public API 247

Identifying the API 248
Outside the API 248

CER Expressions 248
Rule Sets Included with the Application . . . 248
Examples in this Guide 248
CER's Database Tables 248

CREOLERuleSet 249
CREOLEMigrationControl 250
Other CER Infrastructure database tables . . 250

The Dependency Manager 250

Notices 253
Privacy Policy considerations 255
Trademarks 256

Contents v

vi IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Figures

1. Example Coverage Report. 17
2. RuleDoc for the HelloWorldRuleSet 19
3. RuleDoc for the HelloWorld rule class 20
4. RuleDoc for the greeting rule attribute 21
5. RuleDoc showing derivation and usage 23
6. SessionDoc for the

testSelfMadeMillionaireScenario test . . . 25
7. Rule Objects for the

FlexibleRetirementYearRuleSet rule set . . . 25
8. SessionDoc for the FlexibleRetirementYear

rule object 26
9. Examples of Timeline Data 51

10. Truth Table for Lone parent of a minor rule 53

11. Timelines for Joe, Mary and James's
circumstances 55

12. Timelines for Joe, Mary and James's status as a
lone parent of a minor 56

13. A Total Income Timeline, Calculated using sum 63
14. A Requirement for a Date-Addition Timeline 64
15. A Requirement for a Date-Spreading Timeline 67
16. SessionDoc showing rule object description

values 132
17. SessionDoc for a rule object with no

description override 133
18. Use of description in an integrated

development environment 134

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Tables

1. Description of Related Documents 1
2. Calculation of interval values for Mary's

isLoneParentOfMinorTimeline value 75
3. Example Dependency Matrix. 77
4. Example Dependency Storage 78
5. Example Fine-Grained Dependency Matrix 81
6. Example Coarse-Grained Dependency Matrix 82
7. Precedents Identified Directly by CER. . . . 91
8. Dependencies Stored For Tax Liability Example 93
9. Example Precedent Change Items for Tax

Liability. 94
10. Menu Bar 96
11. Search Criteria 97
12. New Menu items 97
13. New Menu items 98
14. Rule Elements on Business Palettes 99
15. Rule Elements on Data Type Palette 100
16. Rule Elements on Technical Palette 101
17. Rule Elements on Household Units Template

Palette 102
18. Rule Elements on Financial Units Template

Palette 103
19. Rule Elements on Food Assistance Units

Template Palette 103
20. Elements on Decision Table Palette 104
21. General Pop-up Menus items 104
22. General properties 105
23. Rule Class Properties 105
24. Attribute Properties 105
25. Rule Element Wizard Table 106
26. Types of scenarios to use the Rule elements 107
27. Reference properties items 108
28. Rule Element Pop-up Menus items 108
29. And Rule Group Element Pop-up Menus

items 109
30. Or Element Pop-up Menus items 109
31. Not Element Pop-up Menus items 110
32. Choose Element Pop-up Menus items 110
33. Compare Element Pop-up Menus items 110
34. Arithmetic properties items 111
35. Min Element Pop-up Menus items 111
36. Max Element Pop-up Menus items 111
37. Repeating Rule properties items 112
38. Repeating Rule Pop-up Menus items 112
39. Filter properties items. 112
40. Filter Pop-up Menus items 113
41. Size properties items 113

42. Legislation Change Element Pop-up Menus
items 113

43. Boolean Pop-up Menus items 114
44. String properties items 114
45. Number properties items. 114
46. Date properties items 114
47. Code Table properties items. 115
48. Rate properties items 115
49. Frequency Pattern properties items 115
50. Filter Pop-up Menus items 116
51. Resource Message properties items 116
52. Resource Message Pop-up Menus items 116
53. XML Message properties items. 116
54. Xml Message Pop-up Menus items 116
55. Create properties items 117
56. Create Element Pop-up Menus items 117
57. Search properties items 117
58. Search Element Pop-up Menus items 118
59. FixedList properties items 118
60. Property properties items 118
61. Property Pop-up Menus items 119
62. Custom Expression Pop-up Menus items 119
63. Existence Timeline properties items 119
64. Existence Timeline Element Pop-up Menus

items 120
65. Existence Timeline properties items 120
66. Timeline Element Pop-up Menus items 120
67. Interval Element Pop-up Menus items 120
68. CombineSuccessionSet Element Pop-up

Menus items 121
69. Call properties items 121
70. Call Pop-up Menus items 121
71. Period Length properties items 122
72. ALL Element Pop-up Menus items 122
73. ANY Element Pop-up Menus items 123
74. ANY Element Pop-up Menus items 123
75. Shared Rule Reference properties items 123
76. Shared Rule Reference Element Pop-up

Menus items 124
77. Concat properties items 124
78. Join Lists properties items 124
79. Join Lists Pop-up Menus items. 125
80. Household Category Pop-up Menus items 125
81. Food Assistance Multi Person Category

Pop-up Menus items 126
82. Decision Table properties items 127
83. Decision Table Pop-up Menus items 127

© Copyright IBM Corp. 2012, 2014 ix

x IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Cúram Express Rules Reference

Cúram Express Rules are used to perform business calculations. A development
environment for authoring and testing Cúram express rule sets is available. Rules
can be executed at run time. The CER editor is a tool for business and technical
users to view create and manage CER rule sets.

Introduction
A description of the Cúram Express Rules (CER) rule language, development
environment and runtime features.

Audience
This reference manual should be consulted by anyone involved in the use of CER
to implement business calculation rules, including:
v Business analysts, who are gathering requirements which involve business

calculations; knowing CER's capabilities and approaches will help you structure
your requirements in a way which makes implementation in CER more
straightforward;

v Rule set developers, who are responsible for encoding business logic in a rule
set; you will need to understand the CER language in order to encode business
logic; and

v Testers, who are responsible for ensuring that the implementation meets the
requirements; you will need to understand CER's testing support in order to
decide your testing approach.

As can often be the case, any given person may well perform more than one (if not
all) these roles. Depending on your role and/or background, you should read the
chapters in this manual in the order that suits you best.

Related Reading
Table 1. Description of Related Documents

Document Document Type How Related

Working with Cúram
Express Rules

Developer Guide This provides step-by-step
instructions on how to create
CER rule sets in the CER
editor using samples ranging
in rules complexity.

Inside Cúram Eligibility and
Entitlement Using Cúram
Express Rules

Developer Guide This describes how the
Cúram Eligibility and
Entitlement Engine interacts
with CER to calculate
determinations for product
delivery cases.

How to Build a Product Developer Guide This describes all the tasks
that need to be completed as
part of building a product,
including the assignment of
CER rules to a product.

© Copyright IBM Corp. 2012, 2014 1

Table 1. Description of Related Documents (continued)

Document Document Type How Related

Universal Access
Customization Guide

Developer Guide This describes how to use
CER rules in Cúram
Universal Access module to
provide screening results to
citizens.

Structure of this Reference Manual
This manual is part overview and part reference material. You should not
(necessarily) read it from start to finish.

“CER overview”
This chapter explains what CER is, its benefits, and how it can be used.

“CER Development and Testing Tools” on page 7
This chapter describes the tools available for developing and testing your
CER rule sets.

“Handling Data” on page 29
This chapter explains how CER handles and stores data, and reacts to
changes in data.

“The Dependency Manager” on page 75
This chapter describes how the application records that a calculated value
depends on input values, and how these dependency records are used to
support automatic recalculations.

“About the CER Editor” on page 95
This chapter describes the different parts of the CER Editor.

“Rule Element Reference for CER Editor Palettes” on page 106
This chapter describes in detail how to construct the elements of a rule set
in the CER Editor.

“CER Best Practices” on page 127
This chapter provides advice on how to write good CER rule sets.

“CER XML Dictionary” on page 146
This appendix provides a reference to the XML format used to store CER
rule sets.

“Useful List Operations” on page 239
This appendix describes some useful operations available on lists.

“Using CER with the Datastore” on page 242
This appendix describes how CER can draw data from the Datastore.

“Compliancy for CER” on page 247
This appendix explains how to develop with CER in a compliant manner.

CER overview
A brief overview of CER, including concepts, benefits, and guiding principles.

What Is CER?
CER is:
v a language for expressing the rules for business calculations (in "rule sets"); and
v a development environment for authoring and testing these rule sets.

2 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v a runtime environment for executing rules.

Rules Language
CER is a language for defining questions that can be asked, and the rules for
determining the answers to those questions.

Each question specifies:
v its name;
v the type of data that provides the answer to the question; and
v the rules for providing the answer (if the question is asked).

The answer to a question can be as simple as yes or no, for example, the question
"Is this person eligible to receive benefit?". However, you can define answer types
to be as complex as you need, for example, the question "Which groups of people
in the household have an urgent need?" can be answered by providing a list of
household groups, with each household group that contains a list of people.

The rules for determining the answer to a question again can be as simple or as
complex as you need, for example, the rule for the answer to the question "What is
the claimant's date of birth?" is likely to (trivially) be "the date that the claimant
declared their date of birth to be", whereas the rule for answering the question "Is
this person eligible to receive a benefit?" is likely to involve further questions such
as "What level of income does this person have?" or "How many children does this
person have?".

CER has its own terminology for these concepts:
v Rule Class

A rule class is a type of "thing" that has data, such as a Person, an Income, or a
Claim. A new rule class can be created in the CER Editor. See “Technical View”
on page 97

v Rule Object

A rule object is an instance of a Rule Class, for example, John Smith (a Person),
John Smith's income from a part-time job (Income), or John Smith's application
for child support benefits (Claim).

v Rule Attribute

A rule attribute is a question that can be asked. It is defined on a Rule Class and
might be asked of any Rule Object of that class, for example, the Person rule
class might define the dateOfBirth rule attribute, and so the John Smith rule
object might be asked its dateOfBirth, (for example, 3rd October 1970). A new
Attribute can be created for the selected rule class in the CER Editor. See
“Technical View” on page 97

v Expression

An expression is a calculation step that can be used to answer a question, e.g. if
the eligibility of a claim depends on a person's total income being below a
certain threshold, we can use a "sum" expression to calculate the total income
and then use a "compare" expression to compare that total with the threshold
amount. To create an expression, a "sum" rule element can be dragged to the
rule attribute in the CER Editor. See “Business View” on page 97

v Rule Set

A rule set is a collection of rule classes, typically centered around a specific
purpose, for example, a rule set for child benefit determination might include
the rule classes Claim, Person, and Income. A new rule set can be created in the
Rules and Evidence section of the Administration Interface.

Cúram Express Rules Reference 3

Note: Since Cúram V6, rule sets are no longer stand-alone. A class in one rule
set can extend a rule class from another rule set; the data type of a rule attribute
in one rule set can be a rule class from another rule set; and expressions to read
or create rule objects can use rule classes from other rule sets.

v Rule Session

A rule session controls the running of rules. For example, your application might
create a rule session to determine John Smith's eligibility for child benefit, by
invoking the appropriate rule set and asking eligibility questions about John's
personal circumstances.

Authoring and Testing Environment
CER rule sets are created and maintained in the CER Editor. CER rule sets are
stored as XML data on the application database. The XML data for a CER rule set
adheres to the CER-supplied rule schema.

CER also includes a comprehensive rule set validator which can detect errors in
your rule set before allowing your rules to execute. You can validate your rule set
in the CER Editor. See “CER Editor Global Menu” on page 96

CER supports you running rule sessions in:
v production environments, where CER integrates with your application to answer

questions when needed; and
v a stand-alone test environment where you create repeatable automated tests for

your rule sets.

CER rule sets are fully dynamic. In production environments, CER supports the
uploading of changes to rule sets which take effect when published; no rebuilding
or redeploying of your application is required.

The testing of CER rule sets can be at whatever level suits you. You may choose to
provide detailed test data for a complete "business scenario", and/or you can
create isolated tests for parts of your rule set without having to carefully set up
large amounts of input data.

For example, the determination of a person's eligibility for child benefit might be a
complex calculation involving (amongst other things) the comparison of the
person's total income to a certain threshold. Furthermore, the calculation of the
person's total income is itself a complex calculation, involving decisions regarding
whether certain types of income are "countable" for the purposes of child support
eligibility.

When testing the eligibility calculation, in traditional development you might have
to carefully set up income data to provide a calculated total income, which in turn
you can use to test the eligibility calculation. Depending on the complexity of the
calculations, this set up of data might be very tedious to do and be very brittle to
change.

By comparison, in CER you can simply "stub out" a calculation without having to
supply low-level detailed data; CER makes it extremely straightforward to produce
a test which effectively says "for the purposes of this test, the total income is $10 -
do not attempt to calculate the total income during this test".

This CER facility makes it easy to test all the functionality in your rule set at a
level that makes sense.

4 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The authoring environment also includes tools to assist with development and
testing of your rules:
v RuleDoc

An HTML extract of the structure of your rule sets.
v SessionDoc

An HTML representation of the data in your rule objects.
v Coverage Tool

Reports the extent of your rule set which was exercised by your tests.

Runtime Environment
CER executes rules on demand at runtime.

Since Cúram V6, CER also has features:
v to store rule objects on the database, so that the rule objects are available for

future processing; and
v to integrate with the Dependency Manager to detect when input data has

changed, and to automatically update calculation results which depend on these
input data items (akin to familiar spreadsheet processing).

What Are Its Benefits?
CER offers these key benefits:
v Simplicity

CER rule sets are only as complex as your business requirements. Business users
and technical users alike can read CER rule sets and easily understand "what's
going on". Rule sets are simple to write and simple to test.

v Flexibility

Rule sets are easy to change. You can add new questions at any time and CER
guarantees that existing behavior is entirely unaffected. You can make changes to
the way an existing questions is answered, and CER will show you which
calculations depend on that question, so that you are fully in control of the effect
of your change.

v Localization Support

CER can produce localizable output, so that answers to questions can be
displayed to your end users according to their language and locale preferences.

v Validity

CER works hard to detect errors in your rule set before you run it. The CER rule
set validator reports as many errors as it can so you can fix them in one go. CER
finds technical problems in your rule set so that you only have to concentrate on
the functionality of your rule set.

v Testability

You can test your CER rule sets at the granularity that suits you. CER allows
you to keep control over your large rule sets by creating tests for discrete
sections of your rules.

v Dynamic support

You can make changes to your CER rule set in a running system and your
changes take effect immediately upon publication.

v Spreadsheet-like behavior

Construction of CER rules is akin to layering formulae in the cells of a
spreadsheet (which will be familiar to many users). When input data (such as

Cúram Express Rules Reference 5

evidence, personal data or payment rates) change, CER integrates with the
Dependency Manager to automatically recalculate derived values which are
affected by the change.

How Can It Be Used?
The CER development environment tightly integrates with the wider application
development environment.

CER is used by a number of application areas, including (but not limited to):
v Cúram's Universal Access Module

The Cúram Universal Access Module relies on CER to determine potential
eligibility for social services programs when citizens use the self service module
to perform self-screening. Based on the data captured, CER determines which
programs the citizen is potentially eligible for, and provides a textual
explanation (in the citizen's language) of why that citizen is or is not potentially
eligible.

v Advisor

The Advisor uses CER rules to compute advice to display to users. This advice
is automatically updated when circumstances change.

v Eligibility and Entitlement Engine

Cúram's Case Eligibility and Entitlement Engine tightly integrates with CER to
provide determinations of a case's eligibility and entitlement (and explanations
of how these were derived) across the full lifetime of the case. The Case
Eligibility and Entitlement Engine relies on the integration between CER and the
Dependency Manager to identify when to recalculate a case's determination,
either due to case-specific changes such as evidence data, or from wider data
changes such as changes to personal data or product-wide rate data.

You can also use CER to perform calculations for your own custom business areas.

The CER runtime does not have any in-built business concepts; instead, each
business area communicates with CER via the use of:
v interface rule classes which encapsulate the business concepts; and/or
v extensions to the CER language which are business-concept aware.

For details on how application components utilize CER, see the business and
technical guides for that component.

Guiding Principles
At its heart, CER upholds certain key principles. Knowing a little about these
principles may help you to understand CER's approach:
v Questions are answered only when needed

The work done to answer a question is only done when that question is asked.
v All data is immutable

The answer to a question is a value which cannot be accidentally changed by
something outside CER. If the answer to a question is recalculated, then a fresh
answer value will be created.

v Allow multiple questions

A rule set does not execute once through; rather a rule set allows as many
questions to be asked as is needed.

v Specify rules, not order of execution

6 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

You specify the rules for answering a question, and leave CER to efficiently
answer those questions at runtime.

v No volatility

Identical inputs processed by identical rules always produces the same output.
v No "working storage"

There no counters or running totals. An count or total is a question in its own
right - you provide the rules for answering it, and CER worries about the order
of execution when answering it.

v Name what you need to

You only have to provide names for business concepts and questions. You do
not have to think up descriptive names for interim results (unless you want to).

v Development and testing go hand-in-hand

CER provides strong support for managing the testing of your rules.
v No in-built business concepts

The CER runtime intentionally contains no business concepts. You define the
business concepts you need, leaving the CER runtime to be a general-purpose
environment.

v Rule implementation maps neatly to rule requirements

The implementation of your rule requirements is as complex as those
requirements - but no more so. CER rule sets "make sense" when viewed by the
business analysts who gathered the original requirements.

v Lean on well-known Java support

CER does not reinvent the wheel - functionality provided by existing Java™

technology is easily reused in CER rule sets.
v Management of calculation dependencies

CER integrates with the Dependency Manager to manages calculation
dependencies so that you don't have to. When an input data item changes, the
Dependency Manager and CER know what to recalculate. You do not have to
write any special processing which guesses at which calculated outputs might be
affected.

CER Development and Testing Tools
The tools that are available for developing and testing your CER rule sets.

CER Rules Editor
CER Editor provides a user-friendly environment and interface for both technical
and business users to create, edit, and validate a rule set and its rule classes.

For information about using the CER Editor, see “About the CER Editor” on page
95.

Localization Support
A description of localization in CER.

Localization in CER covers these two distinct tasks:
v localization of calculated data returned by a CER rule attribute, so that the

output can be displayed to users in different locales; and
v localization of the descriptions for artefacts in your CER rule sets, so that the

users viewing rule sets in the CER Editor can do so in their own locale.

Cúram Express Rules Reference 7

These items are covered in more detail in the following sections.

Important: The names of rule set elements such as rule classes and attributes cannot
be localized, as they are used within the CER language as identifiers, e.g. the name
of an attribute in a reference expression.

Instead, the descriptions of rule elements can be localized, leaving the names of
elements unchanged.

Localization of calculated data
CER supports the commonplace Java class String.

Strings may be useful in the initial phases of developing your rule set; however, if
your rules contain output which needs to be displayed to users in different locales,
then you may need to take advantage of CER's support for localization.

The String value “Hello World” in this example is fine for users who read English;
but what if they do not?
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="HelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

CER includes a curam.creole.value.Message interface which enables the
conversion of a value to locale-specific String at runtime.

For a list CER expressions which can create an instance of
curam.creole.value.Message, see “Localizable Messages” on page 151.

Now we will rewrite the HelloWorld example to be localizable:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="LocalizableHelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<!-- Use Message, not String -->
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- Look up the value from a localizable
property, instead of hard-coding a
single-language String -->

8 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<ResourceMessage key="greeting"
resourceBundle="curam.creole.example.HelloWorld"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

Localization of “Hello, world!” in English.
file curam/creole/example/HelloWorld_en.properties

greeting=Hello, world!

Localization of “Hello, world!” in French.
file curam/creole/example/HelloWorld_fr.properties

greeting=Bonjour, monde!

How will this message behave at runtime? Any code which interacts with your
rule set must invoke the toLocale method on any messages, to convert them to the
required Locale.

This example shows interaction with the localized rule set.
package curam.creole.example;

import java.util.Locale;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.LocalizableHelloWorldRuleSet.impl.HelloWorld;
import
curam.creole.ruleclass.LocalizableHelloWorldRuleSet.impl.HelloWorld_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Message;

public class TestLocalizableHelloWorld extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestLocalizableHelloWorld testLocalizableHelloWorld =
new TestLocalizableHelloWorld();

testLocalizableHelloWorld.testLocalizedRuleOutput();

}

/**
* A simple test case, displaying output localized into different
* locales.
*/
public void testLocalizedRuleOutput() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

Cúram Express Rules Reference 9

new StronglyTypedRuleObjectFactory()));

final HelloWorld helloWorld =
HelloWorld_Factory.getFactory().newInstance(session);

// returns a Message, not a String
final Message greeting = helloWorld.greeting().getValue();

// to decode the message, we need to use the user’s locale
final String greetingEnglish =

greeting.toLocale(Locale.ENGLISH);
final String greetingFrench = greeting.toLocale(Locale.FRENCH);

System.out.println(greetingEnglish);
System.out.println(greetingFrench);

assertEquals("Hello, world!", greetingEnglish);
assertEquals("Bonjour, monde!", greetingFrench);

}

}

If used within a localizable message, the following data types are formatted at
runtime in a locale-aware way:
v Rule objects (using the value of the rule object's description attribute;
v Dates (using curam.util.type.Date);
v Code table items; and
v nested localizable messages.

All other objects are displayed using their toString method.

Localization of CER rule artefact descriptions
The CER Editor allows you to place a description on these rule set artefacts (via
the "Label" annotation):
v Rule Set;
v Rule Class;
v Rule Attribute; and
v Expression.

When a CER rule set is published using the Cúram Administration Application,
then the descriptions on these rule set artefacts are stored in the application's
resource store as property files (named RULESET- (rule set name) (rule set
version number) . You may localize these property files as for any other resource
in the resource store.

Support for localizing CER rules artefacts via the CER Editor will be included in a
future release of the CER Editor.

The Rule Set Validator
CER contains a validator which checks the structure of your rule sets. Ordinarily,
you will validate your rule sets using the Cúram Administration Application or the
CER Editor.

For rule sets on the file system, you can run this command to validate the
structure of these rule sets:

build creole.validate.rulesets

10 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The target will run the CER rule set validator on your rule sets to report any errors
and/or warnings about your CER rule sets.

Tip: The CER rule set validator will also report any warnings about any non-fatal
problems in your rule sets. These warnings will not prevent you running and
testing your rules, but should be addressed to ensure an optimal rule set.

The Rule Set Interpreter
CER contains an interpreter which can execute dynamically-defined rule sets.

This sample code uses the CER rule set interpreter to run rules from a
HelloWorldRuleSet.
package curam.creole.example;

import junit.framework.TestCase;
import curam.creole.execution.RuleObject;
import curam.creole.execution.session.InterpretedRuleObjectFactory;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import curam.creole.parser.RuleSetXmlReader;
import curam.creole.ruleitem.RuleSet;
import curam.creole.storage.inmemory.InMemoryDataStorage;

public class TestHelloWorldInterpreted extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestHelloWorldInterpreted testHelloWorld =
new TestHelloWorldInterpreted();

testHelloWorld.testUsingInterpreter();
}

/**
* Reads the HelloWorldRuleSet from its XML source file.
*/
private RuleSet getRuleSet() {

/* The relative path to the rule set source file */
final String ruleSetRelativePath = "./rules/HelloWorld.xml";

/* read in the rule set source */
final RuleSetXmlReader ruleSetXmlReader =

new RuleSetXmlReader(ruleSetRelativePath);

/* dump out any problems */
ruleSetXmlReader.validationProblemCollection().printProblems(

System.err);

/* fail if there are errors in the rule set */
assertTrue(!ruleSetXmlReader.validationProblemCollection()

.containsErrors());

/* return the rule set from the reader */
return ruleSetXmlReader.ruleSet();

}

/**
* A simple test case, using the fully-dynamic CER rule set
* interpreter.
*/

Cúram Express Rules Reference 11

public void testUsingInterpreter() {

/* read in the rule set */
final RuleSet ruleSet = getRuleSet();

/* start a session which creates interpreted rule objects */
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new InterpretedRuleObjectFactory()));

/* create a rule object instance of the required rule class */
final RuleObject helloWorld =

session.createRuleObject(ruleSet.findClass("HelloWorld"));

/*
* Access the "greeting" rule attribute on the rule object -
* the result must be cast to the expected type (String)
*/
final String greeting =

(String) helloWorld.getAttributeValue("greeting")
.getValue();

System.out.println(greeting);
assertEquals("Hello, world!", greeting);

}

}

You can run this sample class either as a stand-alone Java application (i.e. via its
main method) or as a JUnit test. These two ways of running this class are provided
merely as a convenience - so when you write your own code to run rule sets, pick
whichever suits you better.

Now we will dive down into the detail of this code. The test method
testUsingInterpreter performs these key functions:
v it reads in the rule set;
v it starts a CER Session;
v it creates a new rule object instance in the Session; and
v it executes rules by retrieving an attribute's value from the rule object.

Read in the Rule Set
/* read in the rule set */

final RuleItem_RuleSet ruleSet = getRuleSet();

This line calls a utility method to read the rule set from an XML source file.

The rule set is explicitly validated to ensure that it contains no errors:
/* dump out any problems */

ruleSetXmlReader.validationProblemCollection().printProblems(
System.err);

/* fail if there are errors in the rule set */
assertTrue(!ruleSetXmlReader.validationProblemCollection()
.containsErrors());

Start a CER Session
/* start a session which creates interpreted rule objects */

final Session session =
Session_Factory.getFactory().newInstance(

12 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

new RecalculationsProhibited(),
new InMemoryDataStorage(
new InterpretedRuleObjectFactory()));

These lines create a new CER Session for the rule set.

A session manages the rule objects created for the classes in the rule set. In this
example, we are using a session which creates fully-dynamic rule objects (by using
InterpretedRuleObjectFactory); as we will see below, in an interpreted session,
each reference to a rule class or attribute name is via an API call taking that names
as a String parameter.

Create a New Rule Object
/* create a rule object instance of the required rule class */

final RuleObject helloWorld =
session.createRuleObject("HelloWorld");

This line creates a new rule object (an instance of the "HelloWorld" rule class) and
stores the rule object in the CER Session's memory.

Execute Rules
/*

* Access the "greeting" rule attribute on the rule object -
* the result must be cast to the expected type (String)
*/
final String greeting =
(String) helloWorld.getAttributeValue("greeting")
.getValue();

This line retrieves the value of the "greeting" attribute from the rule object created
above.

When the attribute's value is requested, CER executes the rules for deriving the
attribute's value (in this case, returning the constant string "Hello, world!").

Note: When running an interpreted session, you must cast the output of getValue
to the expected data type.

In this example, we have just requested the value of one attribute; however, whilst
the Session is still active, code can request the value of any attribute on any rule
object in the session. CER remembers values already calculated and only takes the
hit of performing a calculation the first time it is requested.

CER Test Code Generator
CER includes with a code generator which can generate Java wrapper classes for
your rule classes. These generated classes can simplify the writing of your test
code and allow the compiler to detect problems which otherwise would only occur
at runtime.

The CER rule set interpreter allows reference to rule class and attribute names
through strings. Whilst this allows fully dynamic configuration of rule sets, for
testing purposes it can be cumbersome to have to use strings and cast attribute
values. If you enter a rule class or attribute name incorrectly, or use the wrong
type of cast, then your code may compile with no errors but you will get errors at
runtime.

Cúram Express Rules Reference 13

Now to rewrite our code for running the HelloWorldRuleSet to show running rules
with the CER-generated test rule classes.
package curam.creole.example;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import curam.creole.ruleclass.HelloWorldRuleSet.impl.HelloWorld;
import
curam.creole.ruleclass.HelloWorldRuleSet.impl.HelloWorld_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;

public class TestHelloWorldCodeGen extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestHelloWorldCodeGen testHelloWorld =
new TestHelloWorldCodeGen();

testHelloWorld.testUsingGeneratedTestClasses();

}

/**
* A simple test case, using the CER-generated test classes for
* strong typing and ease of coding tests.
*/
public void testUsingGeneratedTestClasses() {

/* start a strongly-typed session */
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

/*
* create a rule object instance of the required rule class, by
* using its generated factory
*/
final HelloWorld helloWorld =

HelloWorld_Factory.getFactory().newInstance(session);

/*
* use the generated accessor to get at the "greeting" rule
* attribute - no cast necessary, and any error in the
* attribute name would lead to a compile error
*/
final String greeting = helloWorld.greeting().getValue();

System.out.println(greeting);
assertEquals("Hello, world!", greeting);

}

}

Note the following comparisons with our TestHelloWorldInterpreted code:
v the Session used with the code generator uses StronglyTypedRuleObjectFactory,

so named as it deals with generated Java classes rather than dynamic
RuleObject instances;

14 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v the loading of the rule set is not required (hence no utility method);
v the reference to the HelloWorld rule class is via an identically-named Java

interface; any typo in the name will be detected by the Java compiler;
v similarly, the reference to the greeting rule attribute is via an identically-named

Java method on the interface;
v no casting of the return type is required, as the generated greeting method

returns the correct type (String).

warning: The generated code is only intended for use in test environments where
it is a straightforward matter to recompile changes to code.

The generated code is not portable across machines, as it contains absolute paths to
the rule sets on the local machine.

In particular, you must not use the generated code in any production environment
where rule sets may change dynamically.

How to Generate Code
To run the CER code generator, run the following command:

build creole.generate.test.classes

The target will also run the CER rule set validator on your rule sets. If there are
any errors, the CER rule set validator reports the errors and processing halts. If
there are no errors, the CER generator will output generated Java classes and
interfaces for your CER rule sets and rule classes.

Tip: The CER rule set validator will also report any warnings about any non-fatal
problems in your rule sets. These warnings will not prevent you running and
testing your rules, but should be addressed to ensure an optimal rule set.

The CER code generator will place its output in the EJBServer/build/svr/
creole.gen/source directory.

Here is an example generated Java interface for the HelloWorld rule class:
/*
* Generated by Curam CREOLE Code Generator
* Generator Copyright 2008-2010 Curam Software Ltd.
*/
package curam.creole.ruleclass.HelloWorldRuleSet.impl;
/**
* Code-generated interface for tests.
* <p/>
* Clients must not implement this interface.
*/
public interface HelloWorld extends
curam.creole.execution.RuleObject {
/**
* Code-generated accessor for tests.
* @return container for the greeting attribute value
*/
public curam.creole.execution.AttributeValue<? extends
java.lang.String> greeting();
}

Tip: You should regenerate your test classes if you make structural changes to
your rule sets on the file system, e.g.
v create a new rule set or remove an existing rule set;

Cúram Express Rules Reference 15

v add a new rule class to a rule set or remove an existing rule class to a rule set;
v add a new rule attribute to a rule class or remove an existing rule attribute from

a rule class;
v change the "extends" value for an existing rule class; and/or
v change an attribute's data type.

You do not need to regenerate the test classes if your changes are limited to the
implementation of a rule attribute (i.e. its derivation expressions). The derivations
are always processed dynamically from the rule set at run time and are not present
in the generated test classes.

Rule Set Coverage Tool
CER includes a tool to report on the parts of a rule set that are "covered" are
runtime.

Coverage statistics can be reported for any processing which requests values from
CER, including:
v the running online application; and
v executions of JUnit tests.

To capture coverage data, set the environment property
curam.creole.coverage.logfile (in Bootstrap.properties) to the location of a file.
As rules execute, lines containing coverage information will be appended to the
file when CER expressions are evaluated.

Tip: To clear the coverage data, just delete the file specified in your
curam.creole.coverage.logfile setting.

Over time, the coverage data file can become big, so you should turn off the
capturing of coverage data when not required, by removing (or commenting out)
your curam.creole.coverage.logfile setting.

To create a coverage report, run the following target:

build creole.report.coverage -Dfile.coverage.log= file location

A simple color-coded drillable report will be written to .../EJBServer/build/svr/
creole.gen/coverage/index.html, where
v Green = covered
v Yellow = partially covered
v Red = not covered

Rule attributes with a derivation of <specified> are intentionally excluded from the
report. A sample report is shown below:

16 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Note that rule sets and classes which are "included" in other rule sets (using the
<Include> mechanism) essentially become part of the source of the outermost
including rule set. This should be borne in mind when analyzing coverage reports.

CER Publication Area
The Cúram Administration Application contains screens to list CER rule sets.

From here, you can:
v view an existing rule set (in the CER editor), and view historical versions of any

CER rule set;
v once opened, make changes to an existing rule set (in the CER editor);
v create a new rule set (and open it in the CER editor to add rules); and/or
v remove an existing rule set.

Since Cúram V6, changes to CER rule sets do not take effect immediately, but
instead are stored in the publication area until published.

You can accumulate many changes to CER rule sets in this area; indeed, you may
have to accumulate changes to many rule sets, if the change you are making affects
more than one rule set.

You can choose to validate your pending changes at any time. When you are
happy with your changes, you can choose to publish the changes. The system will
re-validate that the rule sets are valid, and if so will allow publication to continue.

Figure 1. Example Coverage Report

Cúram Express Rules Reference 17

Publication of the CER rule set changes occurs in deferred processing, as existing
CER rule objects will need to be updated in line with any changes to CER rule
classes, and/or recalculations queued for an attributes whose derivations have
changed.

Schema and Catalog Generation
The schema for CER rule sets is assembled dynamically to take into account the
fixed schema for CER rule sets, classes and attributes; and contributions to CER
expressions and annotations by application components.

Ordinarily the dynamically-assembled schema resides in memory when CER
performs validation processing. However, on some occasions, it can be helpful to
have this schema (and a catalog pointing to it) on the file system.

To generate the CER schema file (EJBServer/build/svr/creole.gen/schema/
RuleSet.xsd), run the following command:

build creole.generate.schema

To generate a catalog (EJBServer/build/svr/creole.gen/catalog/
CREOLECatalog.xml) pointing to the CER schema file, run the following command:

build creole.generate.catalog

RuleDoc
RuleDoc is a set of documentation that you can automatically generate from your
Cúram Express Rules (CER) rule sets and rule classes. CER provides a tool to
generate RuleDoc.

RuleDoc is useful for the following tasks:
v Discussing the behavior of your CER rule set with a non-technical audience.
v Visualizing the dependencies between your rule attributes, particularly as your

rule sets grow in complexity.
v Understanding the impacts of any changes you make to a derivation of a rule

attribute.

A Simple Example
Here is the XML for a simple Hello Worldrule set:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="HelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

18 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Here is the generated RuleDoc for the above rule set, listing its single rule class:

Clicking on the HelloWorld rule class shows its RuleDoc:

Figure 2. RuleDoc for the HelloWorldRuleSet

Cúram Express Rules Reference 19

And clicking on the greeting attribute scrolls to its derivation:

Figure 3. RuleDoc for the HelloWorld rule class

20 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A More Useful Example
For more complex rule sets, RuleDoc can help you:
v navigate the dependencies between the rule classes in your rule set;
v understand each rule attribute's derivation calculation; and
v see which other rule attributes depend on a particular rule attribute.

Here is the XML for a more complex rule set for a retirement-year calculator:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="RetirementYearRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="RetirementYear">

Figure 4. RuleDoc for the greeting rule attribute

Cúram Express Rules Reference 21

<Attribute name="yearOfBirth">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<Number value="1970"/>
</derivation>

</Attribute>

<Attribute name="ageAtRetirement">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<Number value="65"/>
</derivation>

</Attribute>

<Attribute name="yearOfRetirement">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="+">
<reference attribute="yearOfBirth"/>
<reference attribute="ageAtRetirement"/>

</arithmetic>
</derivation>

</Attribute>

</Class>

</RuleSet>

Here is the generated RuleDoc for the retirement-year calculator rule set:

22 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This example shows:
v the derivation of the yearOfRetirement rule attribute (with links to the

yearOfBirth and ageAtRetirement rule attributes on which it depends); and
v the yearOfBirth rule attribute, with a link to the yearOfRetirement rule attribute

which directly depends on it.

How to Generate RuleDoc
To run the CER RuleDoc generator, run the following command:

build creole.generate.ruledoc

Figure 5. RuleDoc showing derivation and usage

Cúram Express Rules Reference 23

The target will also run the CER rule set validator on your rule sets. If there are
any errors, the CER rule set validator reports the errors and processing halts. If
there are no errors, the CER generator will output RuleDoc for your rule sets and
rule classes.

Tip: The CER rule set validator will also report any warnings about any non-fatal
problems in your rule sets. These warnings will not prevent you running and
testing your rules, but should be addressed to ensure an optimal rule set.

The CER RuleDoc generator will place its output in the EJBServer/build/svr/
creole.gen/ruledoc directory.

SessionDoc
You can output HTML documentation called SessionDoc during a session.
SessionDoc provides a record of all the rule objects created during the session, and
can be a powerful debugging aid when used in conjunction with your tests.

It can be useful to use the JUnit tearDown hook point to force all the test methods
in your test class to output their SessionDoc:
@Override

protected void tearDown() throws Exception {
/*
* Write out SessionDoc, to a directory named after the test
* method.
*/
final File sessionDocOutputDirectory =
new File("./gen/sessiondoc/" + this.getName());
sessionDoc.write(sessionDocOutputDirectory);

super.tearDown();
}

Here is the main SessionDoc page for a testSelfMadeMillionaireScenario test :

24 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Some key details on this page are:
v The date and time that the SessionDoc was created;
v The strategies that the session was created with;
v A list of rule sets whose rule objects were captured in the SessionDoc; and
v Whether "used by" links are included.

Clicking on the link for the sole rule set FlexibleRetirementYearRuleSet shows its
rule objects:

This page shows:
v The "external" (bootstrap) rule objects created by client code during this session

(only one was created in the test); and

Figure 6. SessionDoc for the testSelfMadeMillionaireScenario test

Figure 7. Rule Objects for the FlexibleRetirementYearRuleSet rule set

Cúram Express Rules Reference 25

v The "internal" rule objects created by rules during this session (none calculated
for this test).

Clicking on the details link for the sole FlexibleRetirementYear rule object shows
its SessionDoc:

At the top (not shown) are summary details for the rule object, and then every rule
attribute on the rule object is listed, with the following details:
v Name

The name of the rule attribute;
v Declared type

The type of the rule attribute as declared in the rule set. The actual runtime
value may be from a subtype of this declared type;

v State

The state of the value, i.e. whether it was:
– CALCULATED

Calculated by rules;
– SPECIFIED

Explicitly specified by client code, replacing any defined calculation, or
initialized as part of a create expression;

Note: Before Cúram V6, the state INITIALIZED was used. From Cúram V6,
the state SPECIFIED is used instead.

– NOT_YET_CALCULATED

Figure 8. SessionDoc for the FlexibleRetirementYear rule object

26 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Not explicitly specified, not calculated during rules execution (because the
value was never requested by any other calculations or tests); or

– ERROR

An error occurred during the calculation of the value (see the application logs
or console output for details and calculation stack of the error).

v Value

A display representation of the value. If the value was never calculated
(NOT_YET_CALCULATED), or is in error (ERROR) then “?” will be displayed.
If the value is a rule object, then the value will be shown as a navigable
hyperlink so that you can see the details of that rule object; and

v Derivation

The RuleDoc derivation of the attribute (without any links). For more
information on RuleDoc, see “RuleDoc” on page 18.

v Depends on

Links to the attributes which were used to calculate this value.
v Used by

(Optional) Links to the attributes which used this value when calculating their
values.

Tip: Implementation of a description rule attribute on each rule class may make
your SessionDoc easier to understand. See “The description Rule Attribute” on
page 127 for more details.

If you are running SessionDoc against a large database, then it may be useful to
suppress the output of "used by" links, since the inclusion of such links might
cause very many rule objects to be output by SessionDoc. To suppress the output
of "used by" links, use the
curam.creole.execution.session.SessionDoc.write(File, boolean), passing false
as the second parameter.

For rule objects that are stored on CER's database tables, you can create SessionDoc
for these stored rule objects by running the
curam.creole.util.DumpOutRuleObjects class, with a single argument being the
name of a directory in which to create the SessionDoc. The DumpOutRuleObjects
utility retrieves all rule objects from CER's database tables, and thus the action for
each external rule object will be "retrieved". Any internal rule objects will be
created (as they are not stored) and thus will show an action of "created".

Tip: The DumpOutRuleObjects utility can be a useful way of "browsing" the rule
objects stored on CER's database tables, and can be a useful debugging aid once
you have reached the point of integrating CER rules into your online application.

You can browse the rule objects to see the values of calculated attributes on rule
objects, together with a technical view of how any calculation result was arrived at.

Unused rule attributes
CER includes support for reporting rule attributes which are not referenced from
any other calculations in your rule set and thus are candidates for removal.

To run the CER unused attribute report, run the following command:

build creole.report.unused.attributes

Cúram Express Rules Reference 27

CER will validate your rule sets and report any unused rule attributes to the
console.

warning: Note that it is perfectly possible for a rule attribute to be a "top-level"
rule attribute which is only referenced from client code; such attributes may be
reported as "unused" by this report, but any seemingly-unused rule attributes
should not be removed from your rule set unless you are certain that no client
code or tests depend on them.

CER Rule Set Consolidator
In Cúram V5.2, CER allowed you to split your rule set into smaller files which
may aid the concurrent development of rule sets among several documents.

See “Include Statement” on page 147 for details on how to split up your rule set.

Prior to loading your CER rule set onto the data, it will be automatically
"consolidated" into a single rule set file by the application's build scripts
(specifically, the build creole.consolidate.rulesets target).

Note: The CER rule set consolidator only collapses Include statements which
contain a RelativePath location.

All other types of Include statement are intentionally left unchanged in the
consolidated output.

Example
Here is a CER rule set which includes another rule set:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Include"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<Include>
<RelativePath value="./HelloWorld.xml"/>

</Include>

</RuleSet>

And here is the same rule set after consolidation:
<?xml version="1.0" encoding="UTF-8"?><RuleSet
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="Example_Include" xsi:noNamespaceSchemaLocation=
"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

28 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<!--Start inclusion of ./HelloWorld.xml-->
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>
<!--End inclusion of ./HelloWorld.xml-->

</RuleSet>

Handling Data
A description of how CER handles data. CER performs calculations on data in
order to come up with results which are themselves data. Since Cúram V6, CER
supports the storage of rule object data on the database and in snapshots.

CER Sessions
The main data items used with CER are:
v Rule Objects

A rule object is an instance of a rule class from a CER rule set; for example, the
rule object for the person "John Smith"; and

v Attribute Values

An attribute value is the value of a CER rule attribute on a particular rule object;
for example John Smith's date of birth.

All interaction with CER rule objects and attribute values occurs within a CER
Session. These interactions include the creation, retrieval and/or removal of CER
rule objects, and any calculation or recalculation of attributes on rule objects.

Each CER Session is created by use of the
curam.creole.execution.session.Session_Factory class.

When a CER Session is created, the following must be specified:
v Recalculation Strategy

Cúram Express Rules Reference 29

The strategy for handling a request to recalculate a CER attribute value within a
CER session

Note: The ability for CER to perform recalculations directly is now superseded
by the Dependency Manager (see “The Dependency Manager” on page 75). The
CER recalculation strategy interface and implementations are provided for
backwards compatibility only.
.
The strategy for handling a request to recalculate a CER attribute value; for
example whether to recalculate immediately, defer the recalculation to another
transaction, or disallow the recalculation altogether.

v Data Storage

The storage mechanismto use for persistent rule objects; for example in-memory
only (which will be lost when the session goes out of scope), database storage,
or snapshot storage.

Note:

Since Cúram V6, CER offers a choice of data storage implementations. These
data storage implementations affect whether rule objects, created or changed in
one transaction, can be retrieved or changed in another transactions.

Importantly, the choice of data storage does not affect the semantics of your rule
expressions. This means that you can use a light-weight (in-memory) data
storage for your JUnit tests (so that large numbers of JUnit tests can execute
quickly), and a persistent (database) data storage for your production logic (so
that rule objects are persisted across transactions), without any differences in
your underlying calculations.

In turn, implementations of data storage must specify a rule object factory to use.
This factory governs whether rule objects are created in a strongly-typed or
interpreted-only way.

The application includes these implementations:
v Recalculation Strategy:

– curam.creole.execution.session.RecalculationsProhibited

Throws an error if any recalculation within the CER session is attempted.
– curam.core.sl.infrastructure.propagator.impl.ImmediateRecalculationStrategy

Performs recalculations immediately (synchronously, within the same
database transaction).

– curam.core.sl.infrastructure.propagator.impl.DeferredRecalculationStrategy

Defers recalculations (for stored attribute values) to another database
transaction.
Defers recalculations (for stored attribute values) to another database
transaction.

v Data Storage:
– curam.creole.storage.inmemory.InMemoryDataStorage

Keeps rule objects in memory only. Rule objects in this data storage are only
available while the data storage is in scope - typically for a single database
transaction only.

– curam.creole.storage.database.DatabaseDataStorage

30 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Note: As an optimization, only external rule objects and their attribute values
are retrieved from data in the Cúram database. Internal rule objects and their
attributes, by their nature, can be reliably recomputed later, whereas external
rule objects typically contain data from external sources and thus cannot be
recomputed.
Retrieves external rule objects from either:

– curam.creole.execution.session.RuleObjectsSnapshot.SnapshotDataStorage

Creates an XML document containing details of a set of rule objects involved
in the dependencies of one or more attribute calculations. Provides an "audit
trail" of the data ultimately used in that calculation. Typically the XML
document can be stored on a database table so that the snapshot of rule
objects can be queried (but not altered) by a subsequent database transaction.
- a Rule Object Converter registered with the Database Data Storage. Each

rule object converter nominates the rule classes that it handles, and when
invokedthe rule object converter will read underlying business tables to
obtain the appropriate data and populate rule objects in memory and
return them to Database Data Storage; or

- CER's own database tables for storing rule objects, if no rule object
converter is registered to handle the rule class requested.

Note: Note that each rule object converter is permitted to impose limits on its
support for “readall” on page 204 and “readall” on page 204 expressions.
For example, some rule object converters may not support the execution of a
“readall” on page 204 (without a nested match), or place restrictions on
which rule attributes can be named in the match 's retrievedattribute value.
Any violations of the rule object converter's limitations will result in an
exception being thrown at runtime. You should ensure that your rule set tests
include logic which invokes the rule object converters (that is, which runs
against Database Data Storage) - in contrast to the majority of your rules logic
tests which will use In Memory Data Storage (and which thus do not invoke
the rule object converters). See the documentation for each rule object
converter implementation to understand any limits it imposes on its support
for “readall” on page 204.
External rule objects are available for retrieval and manipulation by
subsequent database transactions.

– curam.creole.storage.hybrid.HybridDataStorage

Combines behavioral aspects of InMemoryDataStorage and
DatabaseDataStorage. Reserved for Cúram internal use only.

v Rule Object Factory:
– curam.creole.execution.session.StronglyTypedRuleObjectFactory

Creates and retrieves rule objects as instances of Java classes generated by the
CER Test Code Generator (see “CER Test Code Generator” on page 13).

Note: Must not be used in production code.
– curam.creole.execution.session.InterpretedRuleObjectFactory

Creates and retrieves rule objects in a fully-interpreted (and thus dynamic)
way. (see “The Rule Set Interpreter” on page 11).

Important: In general you should not use more than one CER Session within one
database transaction. The in-memory copies of rule objects in a CER Session are
independent of in-memory copies of rule objects in all other CER Sessions.

Cúram Express Rules Reference 31

Behavior is not guaranteed if more than one CER Session (in the same transaction)
attempts to retrieve or query the same rule object from the database.
v Unit tests

Use an InMemoryDataStorage (for speed of execution) with a
StronglyTypedRuleObjectFactory (so that generated Java classes can be used in
tests), and RecalculationsProhibited (so that tests do not accidentally change data
part-way through).

v Production logic with dynamic rule sets

Use a DatabaseDataStorage (so that rule objects are available across transactions)
with an InterpretedRuleObjectFactory (so that rule sets are fully dynamic), and
RecalculationsProhibited, and use the features provided by the Dependency
Manager (see “The Dependency Manager” on page 75) to perform any requests
to recalculate CER values in a new (and independent) CER session.

v Snapshots

Use a SnapshotDataStorage (so that rule objects are read from an unalterable
XML document) with an InterpretedRuleObjectFactory (so that rule sets are fully
dynamic), and RecalculationsProhibited (snapshots do not support changes).

External and Internal Rule Objects
CER allows the creation of Rule Objects in these different ways:
v External

Rule objects created by clients of CER, outside of the context of any calculation.
External rule objects tend to represent real-world or agency concepts such as a
Person or Case.

v Internal

Rule objects created by CER rules (or within Java code called out to by CER
rules). Internal rule objects tend to be "calculators" or derived data for an interim
step in a complex chain of calculations.

The distinction between external and internal rule objects is explained below, and
affects:
v whether a rule object can be retrieved using the “readall” on page 204

expression; and
v whether a rule object can be stored on the database for retrieval in subsequent

transactions.

External Rule Objects
CER allows client code to ask questions of a rule object (and CER will execute
rules to provide the answers to those questions).

However, for client code to ask a question of a rule object, that rule object must be
known to both client code and CER; as such, the CER rule session must have at
least one "bootstrap" rule object created or retrieved by client code. This client code
could be test code or code which integrates CER with an application.

An external rule object is the starting point for the client code to ask questions;
however, the answer to such a question might well provide a rule object or list of
rule objects which were either created from rules or retrieved from other external
rule objects.

Important: Once calculations have commenced, the RecalculationsProhibited
strategy prevents the creation of any more rule objects which would invalidate any
previously-calculated “readall” on page 204 calculations.

32 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

To avoid such errors, you should structure your client code or tests so that the
creation of all your test rule objects occurs before any calculations (i.e. before any
execution of getValue).

Example: Here is an example rule set:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_externalRuleObjects"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- These attributes must be specified at creation time -->
<Initialization>

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>

</Attribute>

<Attribute name="lastName">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

<Attribute name="incomes">
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<!-- Read all the rule objects of
type "Income" -->

<readall ruleclass="Income"/>
</derivation>

</Attribute>

</Class>

<Class name="Income">
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

In the rule set above, the “readall” on page 204 expression is used to retrieve all
instance of the Income rule class.

To create an external rule object, your client code or tests must specify the session
when creating the rule object:
package curam.creole.example;

import junit.framework.TestCase;

Cúram Express Rules Reference 33

import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.RuleObject;
import curam.creole.execution.session.InterpretedRuleObjectFactory;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import curam.creole.parser.RuleSetXmlReader;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Income;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Income_Factory;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Person;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Person_Factory;
import curam.creole.ruleitem.RuleSet;
import curam.creole.storage.inmemory.InMemoryDataStorage;

/**
* Tests external rule objects created directly by client code.
*/
public class TestCreateExternalRuleObjects extends TestCase {

/**
* Example showing the creation of external rule objects using
* generated code.
*/
public void testUsingGeneratedTestClasses() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

/**
* Note that the compiler enforces that the right type of
* initialization arguments are provided.
*/
final Person person =

Person_Factory.getFactory().newInstance(session, "John",
"Smith");

CREOLETestHelper.assertEquals("John", person.firstName()
.getValue());

/**
* These objects will be retrieved by the
*
* <readall ruleclass="Income"/>
*
* expression in the rule set.
*/
final Income income1 =

Income_Factory.getFactory().newInstance(session);
income1.amount().specifyValue(123);

final Income income2 =
Income_Factory.getFactory().newInstance(session);

income2.amount().specifyValue(345);

}

/**
* Example showing the creation of external rule objects using
* the CER rule set interpreter.

34 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

*/
public void testUsingInterpreter() {

/* read in the rule set */
final RuleSet ruleSet = getRuleSet();

/* start an interpreted session */
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new InterpretedRuleObjectFactory()));

/**
* Note that the compiler cannot enforce that the right type of
* initialization arguments are provided - if these are wrong
* CER will report a runtime error.
*/
final RuleObject person =

session.createRuleObject(ruleSet.findClass("Person"),
"John", "Smith");

CREOLETestHelper.assertEquals("John", person
.getAttributeValue("firstName").getValue());

/**
* These objects will be retrieved by the
*
* <readall ruleclass="Income"/>
*
* expression in the rule set.
*/
final RuleObject income1 =

session.createRuleObject(ruleSet.findClass("Income"));
income1.getAttributeValue("amount").specifyValue(123);

final RuleObject income2 =
session.createRuleObject(ruleSet.findClass("Income"));

income2.getAttributeValue("amount").specifyValue(345);
}

/**
* Reads the Example_externalRuleObjects from its XML source
* file.
*/
private RuleSet getRuleSet() {

/* The relative path to the rule set source file */
final String ruleSetRelativePath =

"./rules/Example_externalRuleObjects.xml";

/* read in the rule set source */
final RuleSetXmlReader ruleSetXmlReader =

new RuleSetXmlReader(ruleSetRelativePath);

/* dump out any problems */
ruleSetXmlReader.validationProblemCollection().printProblems(

System.err);

/* fail if there are errors in the rule set */
assertTrue(!ruleSetXmlReader.validationProblemCollection()

.containsErrors());

/* return the rule set from the reader */
return ruleSetXmlReader.ruleSet();

}

}

Cúram Express Rules Reference 35

When to Use External Rule Objects: You should create external rule objects for:
v "bootstrap" or top-level rule objects which must always exist for your client code

to ask meaningful questions. These rule objects are typically singletons (i.e. the
one-and-only instance of the particular rule class during the session); and

v rule objects which are created based on some external data (such as a Person or
Case).

Internal Rule Objects
CER allows rules to create new rule objects as the result or by-product of
performing calculations.

To create a rule object, use the “create” on page 171 expression, specifying the
initialization argument values required by the rule class and/or additional values
to specify on the created rule object.

Important: Rule objects created by using the “create” on page 171 expression
cannot be retrieved by using “readall” on page 204 expressions, because CER
cannot guarantee that all internal rule objects have been or will be created
(depending on whether a “create” on page 171 expression is encountered in the
execution path for a calculation).

Example: Here is an example CER rule set which uses the “create” on page 171
expression to conditionally create rule objects from rules:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_internalRuleObjects"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Uses <create> to get a new rule object.

Other calculations (on this or other rule objects) can
access this newly-created rule object by referring to
this attribute, i.e.

<reference attribute="minorAgeRangeTest"/> .

The rule object created CANNOT be retrieved using a
<readall> expression.

-->
<Attribute name="minorAgeRangeTest">

<type>
<ruleclass name="AgeRangeTest"/>

</type>
<derivation>

<!-- Create an age-range test which checks whether this
person is aged between 0-17 inclusive (i.e. is
under 18 years).

-->
<create ruleclass="AgeRangeTest">

<this/>
<Number value="0"/>

36 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<Number value="17"/>
</create>

</derivation>

</Attribute>

<!-- Uses the age-range check to determine whether this person
is a minor. -->

<Attribute name="isMinor">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<reference attribute="isPersonInAgeRange">
<reference attribute="minorAgeRangeTest"/>

</reference>
</derivation>

</Attribute>

<!-- Uses <create> to get a new rule object, within
another expression.

Because the new rule object is created "anonymously",
it is not available to any other rule objects (but
it will still show up as "created" in any SessionDoc.

-->
<Attribute name="isOfWorkingAge">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<!-- Create an age-range test which checks whether this
person is legally permitted to work (i.e. is aged
at least 16 and less than 65), and then check
whether the test passes. -->

<reference attribute="isPersonInAgeRange">
<create ruleclass="AgeRangeTest">

<this/>
<Number value="16"/>
<Number value="64"/>

</create>
</reference>

</derivation>

</Attribute>

</Class>

<!-- A generic test which checks whether the
person’s age lies within a specified (inclusive)
range. -->

<Class name="AgeRangeTest">
<Initialization>

<Attribute name="person">
<type>

<ruleclass name="Person"/>
</type>

</Attribute>
<Attribute name="minimumAge">

<type>
<javaclass name="Number"/>

</type>
</Attribute>
<Attribute name="maximumAge">

<type>
<javaclass name="Number"/>

</type>

Cúram Express Rules Reference 37

</Attribute>
</Initialization>

<Attribute name="isPersonInAgeRange">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<all>
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<compare comparison=">=">
<reference attribute="age">

<reference attribute="person"/>
</reference>
<reference attribute="minimumAge"/>

</compare>
<compare comparison="<=">

<reference attribute="age">
<reference attribute="person"/>

</reference>
<reference attribute="maximumAge"/>

</compare>
</members>

</fixedlist>
</all>

</derivation>
</Attribute>

</Class>

</RuleSet>

Note: As for all CER expressions, the “create” on page 171 expressions will only
be calculated if requested, e.g. the minorAgeRangeTest rule object will only be
created if its value or the value of isMinor is requested by client code or another
calculation.

In the above example, the isOfWorkingAge uses the technique of creating a rule
object "anonymously" by wrapping the creation of a rule object within an
expression which references some attribute on the newly-created rule object. Such
rule objects are not available to other calculations but will still show up in any
generated SessionDoc.

An anonymous rule object can be useful when you need to access rule attributes in
a created rule object, but you do not need to make that created rule object itself
available to any other calculations.

Pooling of Internal Rule Object

Since Cúram V6, CER keeps a "pool" of internal rule objects that have been created
during a Session.

The Session's pool is queried whenever a “create” on page 171 expression is
evaluated. If a rule object with the same initialization and/or specified parameters
has already been created, then it will be reused from the pool rather than a new
rule object created.

38 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This pooling approach improves efficiency in the situation where many “create”
on page 171 statements attempt to create "identical" rule objects. The use of a
single rule object means that any calculated attributes on the single rule object are
calculated at most once, instead of identical calculations occurring on many
"identical" rule objects.

Re-use of pooled rule objects is guaranteed to be safe, because CER's core
principles ensure that any calculation depends only on its inputs; and thus
identical inputs guarantee identical outputs.

When to Use Internal Rule Objects: You should use this mode for conditionally
creating rule objects according to rules, or where the initialization attribute values
are calculated from other rules, or where the rule object is only an interim step in a
calculation.

For a very complex calculation, you should expect to have one external rule object
holding an attribute for the calculation result, several external rule objects for input
data from outside of rules, and possibly a very large number of internal rule
objects for the intermediate calculation steps.

If you have rule objects which will always exist and/or require to be accessed by
“readall” on page 204 expressions, then consider creating external rule objects
directly in your code instead.

Handling Data Types
Every attribute and expression in a CER rule set returns a piece of data (when
requested). CER supports a flexible set of data types, which must be specified on
every attribute and some expressions in your rule set.

Supported Data Types
CER includes support for the following types of data:
v Rule classes;
v Java classes; and
v Application code tables.

Rule Classes: Any CER rule class defined in your rule set may be used as a data
type in the same rule set.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ruleclassDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="favoritePet">
<type>

<!-- The type of this attribute is a rule class
defined elsewhere in this rule set. -->

<ruleclass name="Pet"/>

Cúram Express Rules Reference 39

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Inheritance

CER supports simple implementation inheritance for rule classes.

A rule class may optionally specify an extends declaration to sub-class another rule
class in the same rule set.

A sub-rule class inherits the calculated rule attributes of all its ancestor classes, and
optionally may override any of these attributes to provide different derivation
calculation rules.

A sub-rule class also inherits the initialized rule attributes of all its ancestor classes,
and any “create” on page 171 expression for the sub-rule class must specify the
value of the initialized attributes for all the ancestor rule classes of the sub-rule
class ahead of any declared on the sub-rule class itself.

CER allows an attribute to be declared “abstract” on page 152. Every rule class
that defines or inherits (but does not override) an abstract attribute must itself be
declared abstract. An abstract class cannot be used in a “create” on page 171
expression.

CER will allow a rule object instance of a rule class to be returned wherever one of
its ancestor rule classes is expected.

The CER rule set validator will report an error if an expression in your rule set
attempts to return an incompatible value:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ruleclassInheritance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- The CER rule set validator will insist that this
rule class is marked abstract, because it contains
an abstract rule attribute. -->

<Class name="Resource" abstract="true">
<Initialization>

40 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- Whenever a Resource rule object is created,
its owner must be initialized.

Since Resource is abstract, it cannot itself be
used in a <create> expression, only concrete
subclasses can. -->

<Attribute name="owner">
<type>

<ruleclass name="Person"/>
</type>

</Attribute>
</Initialization>

<!-- The monetary value of the resource. -->
<Attribute name="value">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<!-- Every resource has an amount, but it’s
calculated in a sub-class-specific way. -->

<abstract/>
</derivation>

</Attribute>
</Class>

<!-- A building is a type of resource. -->
<Class name="Building" extends="Resource">

<!-- The physical address of the building,
e.g. 123 Main Street.

The address value must be specified
in addition to the inherited owner
rule attribute, which is an
initialized attribute on the super-rule
class. -->

<Initialization>
<Attribute name="address">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

<!-- Building is a concrete class
(no pun intended!), and so the CER
rule set validator will insist that this
class inherits or declares a calculation
for all inherited abstract rule attributes. -->

<Attribute name="value">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="-">
<reference attribute="purchasePrice"> </reference>
<reference attribute="outstandingMortgageAmount"/>

</arithmetic>

</derivation>
</Attribute>

<!-- The price originally paid for the building. -->
<Attribute name="purchasePrice">

<type>

Cúram Express Rules Reference 41

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The amount of outstanding loans or mortgages against
this building. -->

<Attribute name="outstandingMortgageAmount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Vehicle" extends="Resource">
<Initialization>

<Attribute name="registrationPlate">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

<Attribute name="value">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- The value of this type of Resource is
directly specified, rather than calculated.-->

<specified/>

</derivation>
</Attribute>

</Class>

<Class name="Person">

<!-- A sample attribute showing how initialized attributes
are inherited. -->

<Attribute name="sampleBuilding">
<type>

<ruleclass name="Building"/>
</type>
<derivation>

<create ruleclass="Building">
<!-- The first initialized rule attribute

is inherited from Resource.

Set this person to be the owner -->
<this/>
<!-- The second initialized rule attribute

is specified directly on Building.

Set the address of the Building. -->
<String value="123 Main Street"/>

</create>
</derivation>

</Attribute>

42 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- a sample attribute which shows how a Building can be
returned as a Resource (because a Building *IS* a
Resource -->

<Attribute name="sampleResource">
<type>

<ruleclass name="Resource"/>
</type>
<derivation>

<reference attribute="sampleBuilding"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

The Root Rule Class

If a rule class does not specify another rule class to extend, then the rule class
automatically extends CER's "root" rule class, which contains a single description
rule attribute.

The description rule attribute provides a localizable description of the rule object
instance. Rule classes are free to override the derivation of the description rule
calculation for their rule object instances.

Every rule class ultimately inherits from the root rule class (and thus contains a
description rule attribute), similar to the way that all Java classes ultimately
inherit from java.lang.Object.

The default implementation of the description rule attribute, supplied by the root
rule class, uses the “defaultDescription” on page 180 expression.

Java Classes: Any Java class on your application's classpath may be used as a
data type in your CER rule set.

Important: When storing rule objects on the database, you may only use data
types for which there is a type handler registered with CER.

CER includes type handlers for most commonly-used data types.

Package Names

The name of a Java class must be fully qualified with its package name, except for
classes in the following packages:
v java.lang.*; and
v java.util.*.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isMarried">
<type>

<!-- java.lang.Boolean does not need its
package specified -->

<javaclass name="Boolean"/>
</type>

Cúram Express Rules Reference 43

<derivation>
<specified/>

</derivation>
</Attribute>

<Attribute name="dateOfBirth">
<type>

<!-- Fully qualified name to a Cúram class -->
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Tip: Primitive Java types such as boolean cannot be used in CER; use their class
equivalents instead (e.g. Boolean).

Immutable Objects

A core principle of CER is that each value, once calculated, cannot be changed.

To comply with this principle, any Java classes you use should be immutable.

Important: If you use a mutable Java class as a data type in your CER rule set, you
must ensure than no Java code attempts to modify the value of any objects of that
Java class. CER cannot guarantee the reliability of calculations if values are being
changed "underneath it"!

Fortunately, there are a wide range of immutable classes which will typically cater
for most of your data type requirements. In general you may need to look at a Java
class's JavaDoc to determine whether it is immutable.

Listed here are some useful immutable classes which in all likelihood will prove
sufficient for your needs:
v java.lang.String;
v java.lang.Boolean;
v Implementations of java.lang.Number; in any case, CER converts instances of

Number to its own numerical format (backed by java.math.BigDecimal) before
performing any arithmetic or comparison;

v Implementations of java.util.List which do not support its optional operations
(see the JavaDoc for List);

v curam.util.type.Date;
v Implementations of curam.creole.value.Message; and
v curam.creole.value.CodeTableItem.

Inheritance

CER recognizes the inheritance hierarchy of Java classes and interfaces.

CER will allow a value of a Java class to be returned wherever one of its ancestor
Java classes or interfaces is expected:

44 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassInheritance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isMarried">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMarriedAsObject">
<type>

<!-- For the sake of example, returning this
value as an java.lang.Object (which is
unlikely to be useful in a "real" rule
set. -->

<javaclass name="Object"/>
</type>
<derivation>

<!-- This is ok, as a Boolean *IS* an Object. -->
<reference attribute="isMarried"/>

</derivation>
</Attribute>

<Attribute name="isMarriedAsString">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- The CER rule set validator would report the error
below (as a Boolean *IS NOT* an String):

ERROR Person.isMarriedAsString
Example_javaclassInheritance.xml(28, 41)
Child ’reference’ returns ’java.lang.Boolean’,
but this item requires a ’java.lang.String’. -->

<!-- <reference attribute="isMarried"/> -->

<!-- (Declaring as specified so that this example
builds cleanly) -->

<specified/>

</derivation>
</Attribute>

</Class>

</RuleSet>

Parameterized Classes

Java 5 introduced support for parameterized classes, and CER enables you to use
parameterized Java classes in your rule set.

The parameters to a parameterized class are simply listed within the <javaclass>
declaration:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassParameterized"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

Cúram Express Rules Reference 45

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="favoriteWords">
<type>

<!-- A list of Strings -->
<javaclass name="List">

<javaclass name="String"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="luckyNumbers">
<type>

<!-- A list of Numbers -->
<javaclass name="List">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="children">
<!-- A list of Person rule objects.

Because java.util.List can be parameterized with
any Object, we can use a rule class as a parameter.

-->
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The dogs owned by this person. -->
<Attribute name="dogs">

<type>
<javaclass name="List">

<ruleclass name="Dog"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The cats owned by this person. -->
<Attribute name="cats">

<type>
<javaclass name="List">

<ruleclass name="Cat"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

46 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- All the pets owned by this person. -->
<Attribute name="pets">

<type>
<javaclass name="List">

<ruleclass name="Pet"/>
</javaclass>

</type>
<derivation>

<joinlists>
<fixedlist>

<listof>
<javaclass name="List">

<ruleclass name="Pet"/>
</javaclass>

</listof>
<members>

<!-- all the dogs - dogs are a type of pet -->
<reference attribute="dogs"/>
<!-- all the cats - cats are a type of pet -->
<reference attribute="cats"/>

<!-- CER will not allow "children" in this
expression; a child is not a pet regardless
of whether he or she is adorable or claws
the furniture. -->

<!-- CANNOT BE USED -->
<!-- <reference attribute="children"/> -->
<!-- CANNOT BE USED -->

</members>
</fixedlist>

</joinlists>
</derivation>

</Attribute>

</Class>

<Class abstract="true" name="Pet">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Dog" extends="Pet">

<Attribute name="favoriteTrick">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Cat" extends="Pet">

Cúram Express Rules Reference 47

<Attribute name="numberOfLives">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- It’s well known that every cat
has 9 lives. -->

<Number value="9"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

CER allows you to use any type (including rule objects) for parameters which
allow java.lang.Object. CER will enforce "strong typing" even though the
parameter (e.g. a rule class) are dynamically defined. CER will also recognize the
inheritance hierarchy of rule classes when deciding whether one parameterized
class is assignable to another.

Code Tables: Any application code table may be used as a data type in your CER
rule set.

Tip: The code table does not necessarily need to exist at development time; if an
administrative user uses the online application to create a new code table, that
code table can then be used as a data type in dynamically-defined CER rule sets.

To create an instance of a code table entry (i.e. to refer to a particular item in the
code table), use the “Code” on page 168 expression.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_codetableentryDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="gender">
<type>

<!-- The value of this attribute will
be an entry from the "Gender" Cúram
code table. -->

<codetableentry table="Gender"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMale">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Use "Code" to create a codetableentry value
for comparison. -->
<equals>

<reference attribute="gender"/>
<Code table="Gender">

<!-- The code from the code table -->
<String value="MALE"/>

</Code>
</equals>

48 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</derivation>
</Attribute>

</Class>

</RuleSet>

Where to Specify Data Types
Every “Attribute” on page 149 (both calculated and initialized) must specify its
type.

For most expressions, the type is either fixed (e.g. the “all” on page 156
expression always returns a Boolean) or can be inferred (e.g. a “reference” on
page 208 returns the type declared by the referenced Attribute).

However, for some expressions the type must be explicitly specified. These
expressions are:
v “call” on page 163; and
v “choose” on page 165.

Additionally, the “fixedlist” on page 186 expression declares the type of item in
the List returned within its listof statement.

Handling Data that Changes Over Time
Since Cúram V6, CER supports a powerful feature named Timelines. A CER
Timeline is simply a value that varies over time, and it is the simplicity of this
concept that allows timelines to be used to great effect in the application.

What Is Timeline Data?
A timeline is a sequence of values of a give type, where each value is effective
from a particular date (up until it is superseded by another value). For any given
date, a timeline has a value applicable to that date.

Examples of data that may be modeled as CER Timelines: To introduce the
concept of a timeline, here are some everyday examples of data which can vary
over time:
v A person's total income will tend to vary over time as the person receives pay

rises or moves between employments. Given that a person's income at a point in
time can be represented as a Number, then a person's varying income over time
can be represented as a timeline of Numbers, which for simplicity we will write
here as Timeline<Number>;

Note: The notation used in this guide intentionally borrows from that of Java
Generics.

v Regardless of total income, a person's employment record will tend to vary over
time as the person moves between jobs (or has periods of time when the person
has no job). If at any one time a person has at most one primary employment,
then the person's history of primary employment can be represented as a
Timeline<Employment>, where Employment is some rule class or Java type
which holds employment details, and during periods of no primary employment
the value of the timeline is some special marker value such as null (to represent
"no employment");

v A person might own an asset which is eventually disposed of, for example a
person might buy and subsequently sell a car. On any date, the person either
does or does not own the car, which can be modeled as a Boolean. Over time,

Cúram Express Rules Reference 49

the condition of whether the car is owned on a particular date can be modeled
as Timeline<Boolean>. The timeline's value will be false prior to the car's
purchase date, and true from the purchase date up to and including the date of
sale (or “until further notice” if the car is not known to be sold).

v Similarly, a person has a date of birth and, eventually a date of death. Persons
who are still alive have a blank date of death recorded. On any date, the person
is either alive or dead, and so the derived value for “is the person alive?” can be
modeled as a Boolean. Over time, the condition of whether the person is alive
can be modeled as Timeline<Boolean>. The timeline's value will be false prior
to the person's date of birth, and true from the person's date of birth up to and
including the date of death (or “until further notice” if the person has no date of
death).

v A parent may have many children, born on different dates. On any particular
date, the parent has a list of children who are alive on that date, which can be
modeled as List<Person>. Over time, the list of children will change as more
children are born or children reach the age of maturity (or, less happily, die in
childhood), which can be modeled as Timeline<List<Person>>

The examples above are shown in graph form in the figure below.

50 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Examples of non-timeline data: Before going on to look at timelines in more
detail, a cautionary note about data that tends not to be suitable for timelines.

Certain types of data are not suited to timelines, as the data does not vary over
time. Common examples include:
v Unique identifiers

Figure 9. Examples of Timeline Data

Cúram Express Rules Reference 51

One of the features of a unique identifier is it intentionally does not vary over
time, for example each person might be assigned a unique social security
number. The social security number should be modeled as a Number, not a
Timeline<Number>. By contrast, a person's name may vary over time, e.g. due
to marriage or change of name by deed poll, which is one of the reasons it is a
poor choice as an identifier (along with lack of uniqueness);

v Dates

Data of type date does not vary over time. For example, a person's date of birth
is one particular date, and so should be modeled as a Date, not as a
Timeline<Date>. Dates may be used to construct a Timeline (e.g. a person's date
of birth and date of death would be used to construct a Timeline<Boolean> for
whether the person is alive, but the dates themselves are not Timelines).

Note: In Cúram, certain pieces of data, such as Evidence, may have two kinds of
history stored:
– A history of successions of data regarding changes of circumstances in the real

world, i.e. where an event occurs in the real world which means the system's
representation of that data is now out-of-date, e.g. a change in a person's
income due to a pay rise; and

– A history of corrections to data held on the system, where the system is found
to have an incorrect representation of real-world circumstances, e.g..a person's
start date of employment is found to have been recorded incorrectly.

As such, for data items of type Date, the data may be corrected in the system, but
never succeeded. Thus there may be a correction history for the data item, but this
correction history (i.e. the dates on which the data item was created) is rarely of
interest when creating CER rules.

Typically, data types used in CER rules should model real-world circumstances,
rather than corrections to the system representation. Use Timeline where those
real-world circumstances can change over time; and do not use Timeline where
the real-world data cannot vary over time.

v Point-in-time data

Some data intentionally captures data which applies to a particular date only.
For example, a data item for surnameAtBirth should be modeled as a String, not
a Timeline<String>. A data item for incomeAtRetirement should be modeled as a
Number, not a Timeline<Number>

Important: It is very important when modeling data to be clear about whether the
data item does indeed vary over time. Only use Timeline for data items where the
value can vary over time.

Comparing Timeline and Point-in-time Perspectives
CER handles timelines in a natural way, so that when designing CER rules you can
mentally switch back and forth between a point-in-time perspective and a timeline
perspective.

The following sections describe these perspectives by way of example. First let's
take a point-in-time perspective, which does not involve Timelines. Then we'll
revisit the example from a timeline perspective.

A point-in-time perspective: Let's say we have the following business
requirement for a derivation:

52 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

rule: On any given date, a person is considered to be a lone parent of a minor if, on
that date, the person is:
v not married; and
v has a dependent who is younger than 16 years of age.

From this simple requirement, it is possible to construct a simple truth table for
whether a person is considered to be a lone parent of a minor, on a given date:

Let's introduce a narrative for an example real-world change of circumstances. On
1st January 2001, Mary and Joe marry. Joe has a son, James, from a previous
marriage which ended in divorce on 30th November 1998. James was born on 1st
June 1990. On 30th April 2004, Joe sadly dies (and so Mary's marriage ends in
widowhood).

We can use the truth table above to determine whether each of the persons is
considered to be a lone parent of a minor on various dates:
v On 1st October 1997 (to pick a date somewhat at random), Mary is not a lone

parent of a minor because on that date she is not married, but she does not have
any dependents;

v On 2nd October 1997 Mary is still not a lone parent of a minor, as her
circumstances haven't changed since the day before;

v On 30th November 1998 Joe is not a lone parent of a minor, because on that date
his son was under 16 but Joe was still married;

v On 1st December 1998 Joe becomes a lone parent of a minor, because on that
date his son was still under 16 but Joe was no longer married;

v On 1st January 2001 Mary is still not a lone parent of a minor; although she now
has a dependent under 16, she is now married, so for slightly different reasons
that earlier she is still not a lone parent;

v On 1st January 2001 Joe is no longer a lone parent of a minor; although he still
has a dependent under 16, he is now married again;

Figure 10. Truth Table for Lone parent of a minor rule

Cúram Express Rules Reference 53

v On 1st May 2004 Mary becomes a lone parent of a minor, because her marriage
ended due to Joe's death, but James is still her dependent and is under 16;

v On 1st June 2006 Mary stops being a lone parent of a minor, because James
turns 16;

v On 1st March 2009 (again somewhat at random) James is not a lone parent of a
minor because although he is unmarried, he has no dependents.

Note that we have to evaluate the truth table for various dates in order to build up
a picture of when each person is or is not a lone parent of a minor. To some extent,
we either have to try dates which we suspect might be “interesting”, or try out
dates somewhat at random. For example, we suspected that Mary's date of
marriage might be interesting, but it turns out that her marriage to Joe does not
affect her lone-parent-of-a-minor status. However, Joe's lone-parent-of-a-minor
status does change when he marries Mary. We didn't think to test whether Joe was
a lone parent of a minor on dates before James was born.

A Timeline Perspective: Now let's revisit the example rule and circumstances
from a Timeline perspective.

Firstly, let's slightly reword the requirement as follows:

rule (reworded): A person is considered to be a lone parent of a minor whenever the
person is:
v not married; and
v has a dependent who is younger than 16 years of age.

(We have removed the phrases “On any given date” and “on that date”, and used
“whenever” instead. This rewording is subtle, but can be key to help making the
mental switch from thinking about points in time, to thinking about data which
changes over time.)

Now let's draw timelines (of type Timeline<Boolean> for when each of the persons
is:
v married; and
v has a dependent under 16 years of age.

54 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

From these timelines of Joe, Mary and James's circumstances, let's draw new
timelines to derive how their lone-parent-of-a-minor statuses change over time:

Figure 11. Timelines for Joe, Mary and James's circumstances

Cúram Express Rules Reference 55

Note that we can immediately read how the lone-parent-of-a-minor status of each
person changes, without having to guess at interesting dates:
v Joe is a lone parent of a minor from 1st December 1998 to 31th December 2000

inclusive;

Figure 12. Timelines for Joe, Mary and James's status as a lone parent of a minor

56 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v Mary is a lone parent of a minor from 1st May 2004 to 30th June 2006 inclusive;
and

v James is never a lone parent of a minor.

Constructing Timelines
We have seen how to apply expressions to pre-existing timeline data in order to
calculate data which itself is a timeline.

This section will covers how timeline data is created in the first place.

There are two ways in which timelines may be created:
v in Java code, either by a client of CER or within Java code invoked during a

callout from CER; and/or
v in CER rules, using CER Expressions which create timeline data from primitive

(non-timeline) data.

Constructing Timelines in Java Code: In Java, each piece of Timeline data is an
instance of the curam.creole.value.Timeline parameterized class. For full details
of this class, see its JavaDoc available at EJBServer/components/
CREOLEInfrastructure/doc in a development installation of the application.

Each Timeline holds a collection of Intervals, where an Interval is value applicable
from a particular start date. A collection of appropriate intervals must be passed to
the Timeline's constructor.

For example, suppose you need to create a Timeline<Number> with these intervals
(recall that a timeline stretches infinitely far into the past and future):
v 0 up to and including 31st December 2000;
v 10,000 from 1st January 2001 up to and including 30th November 2003; and
v 12,000 from 1st December 2004 until further notice.

Here is some sample Java code to create such a timeline:
package curam.creole.example;

import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class CreateTimeline {

/**
* Creates a Number Timeline with these interval values:
*
* 0 up to and including 31st December 2000;
* 10,000 from 1st January 2001 up to and including 30th
* November 2003; and
* 12,000 from 1st December 2004 until further notice.
*
*/
public static Timeline<Number> createNumberTimeline() {

return new Timeline<Number>(

// first interval, application from the "start of time"
new Interval<Number>(null, 0),

// second interval
new Interval<Number>(Date.fromISO8601("20010101"), 10000),

Cúram Express Rules Reference 57

// last interval (until further notice)
new Interval<Number>(Date.fromISO8601("20041201"), 12000)

);

}
}

As another example, here is some sample Java code, which is callable a CER call
expression, to calculate a timeline for a person's age, up to the person's 200th
birthday (recall that age timelines must be artificially limited so that the timeline
contains a finite number of value changes):
package curam.creole.example;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class AgeTimeline {

/**
* Creates a timeline for the age of a person, artificially
* limited to 200 birthdays.
* <p>
* Can be invoked from CER rules via a <call> expression.
*/
public static Timeline<? extends Number> createAgeTimeline(

final Session session, final Date dateOfBirth) {

/**
* The artificial limit, so that the age timeline has a finite
* number of value changes.
*/
final int NUMBER_OF_BIRTHDAYS = 200;

final Collection<Interval<Integer>> intervals =
new ArrayList<Interval<Integer>>(NUMBER_OF_BIRTHDAYS + 2);

/*
* age before date of birth will still be recorded as 0 -
* create an initial interval application from the
* "start of time"
*/
final Interval<Integer> initialInterval =

new Interval<Integer>(null, 0);
intervals.add(initialInterval);

/*
* Identify each birthday up to the limit. Note that the person
* is deemed to be age 0 even before the date-of-birth (see
* above); so the interval here from the date of birth up to
* the first birthday will be merged into a single interval by
* the timeline; no matter (it’s clearer to keep the logic as
* is).
*/

for (int age = 0; age <= NUMBER_OF_BIRTHDAYS; age++) {

// compute the birthday date
final Calendar birthdayCalendar = dateOfBirth.getCalendar();

58 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

/*
* NB use .roll rather than .add to get the correct
* processing for leap years
*/
birthdayCalendar.roll(Calendar.YEAR, age);
final Date birthdayDate = new Date(birthdayCalendar);

/*
* the age applies from this birthday until the next birthday
*/
intervals.add(new Interval<Integer>(birthdayDate, age));

}

final Timeline<Integer> ageTimeline =
new Timeline<Integer>(intervals);

return ageTimeline;

}
}

Note: In general, timeline data tends to be created outside of rules, by clients of
CER.

In particular, the Cúram V6 Eligibility/Entitlement processing contains logic to
help convert Cúram Evidence into timeline data.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide for more details.

Constructing Timelines in CER Rules: Typically, timeline data is created outside
of rules by clients of CER, and used to populate the value of a CER attribute using
the specify mechanism.

However, CER also contains some expressions for creating timelines directly in
CER rules:
v Timeline, in conjunction with Interval; and
v existencetimeline.

Timeline and Interval

A Timeline can be created natively in CER rules by first explicitly creating a list of
intervals, and then using this list to create a timeline.

In practice, such fixed timelines tend to be useful only as a temporary measure
while you flesh out your rule set. This is an example of usingTimeline and Interval
to create a timeline
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Timeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateTimelines">

<!-- This example uses <initialvalue> to set the value valid
from the start of time. -->

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

Cúram Express Rules Reference 59

</javaclass>
</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<!-- Value from start of time -->
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- The remaining intervals -->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="Number"/>

</intervaltype>
<start>

<Date value="2004-12-01"/>
</start>
<value>

<Number value="12000"/>
</value>

</Interval>

</members>
</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

<!-- This example does not use <initialvalue>. -->
<Attribute name="aStringTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="String"/>
</javaclass>

</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="String"/>
</intervaltype>

<!-- The list of intervals must include one valid from the

60 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

null date (start of time), otherwise an error will
occur at runtime, if this expression is evaluated. -->

<intervals>
<fixedlist>

<listof>
<javaclass name="curam.creole.value.Interval">

<javaclass name="String"/>
</javaclass>

</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="String"/>
</intervaltype>
<start>

<!-- "from the start of time" -->
<null/>

</start>
<value>

<String value="Start of time string"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="String"/>

</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<String value="2001-only String"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="String"/>

</intervaltype>
<start>

<Date value="2002-01-01"/>
</start>
<value>

<String value="2002-onwards String"/>
</value>

</Interval>
</members>

</fixedlist>
</intervals>

</Timeline>
</derivation>

</Attribute>
</Class>

</RuleSet>

existencetimeline

Some business objects have natural start and end dates, which together specify a
period for which the business object exists. Either or both of the start and end dates
may be optional, in which case the existence period for the business object is
open-ended.

Examples may include:
v an employment, which starts and later ends;
v an asset, which is purchased and later sold; and
v a person who is born and later dies.

Cúram Express Rules Reference 61

The start and end dates for a business object can be used to divide up time into
these three periods (or fewer, if either of the start date or end date is blank):
v Pre-existence period

the period of time before the business start date (if the start date exists);
v Existence period

the period of time from the business start date up to and including the business
end date;

v Post-existence period

the period of time after the business end date (if the end date exists).

It can often be convenient to ascribe a different value to each of these periods for a
business object, and to create a timeline from these values. CER contains an
existencetimeline expression to create a timeline of pre-existence/existence/post-
existence values based on optional start and end dates.

If the start date does not exist, then there will be no pre-existence interval in the
timeline. For example, if an asset does not have a purchase date recorded, then its
effective value will apply from the start of time, with no "zero value" period.

If the end date does not exist, then there will be no post-existence interval in the
timeline. For example, if an asset does not have a sold date, then the asset's value
will hold until further notice (i.e. arbitrarily far into the future)

See “Existence Timeline” on page 119 for details on how to use existence timeline
in the CER Editor.

Operating on Timelines
CER Timelines are useful for storing data which varies over time. CER supports a
"Timeline Operation" feature which allows CER expressions to operate on timeline
data items to produce timeline results.

Preserving change dates: All expressions can operate on Timelines in a way in
which the change dates for the input timeline values map naturally through to the
change dates for the resultant timeline value.

The examples above have introduced the concept of operating on timelines (is
married timeline, has a dependent under 16 years of age timeline) to produce an output
timeline (is lone parent of a minor timeline).

More formally, for any CER expression that operates on one or more values, CER
allows that expression to operate on a timeline of those values too. In general, any
operation that can be applied to primitive types (e.g. Date, Number, String,
Boolean, etc.) in order to come up with a result, can instead be applied to
Timelines of those types (e.g. Timeline<Date>, Timeline<Number>,
Timeline<String>, Timeline<Boolean>) to come up with a result which is a
Timeline value.

CER contains special expressions named “timelineoperation” on page 226 and
“intervalvalue” on page 190 which shield the other CER expressions from
"knowing" that they are operating on Timelines.

For example, CER contains a “sum” on page 221 expression to add a list of
numbers. If a person has several incomes, then we can sum those incomes at a
point in time in order to derive the person's total income at that point in time.
However, if instead we have timelines of how those income amounts change over

62 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

time, then we can just as easily use the “sum” on page 221 expression to derive
how the total income changes over time:

Date-shifting: Depending on your business requirements, you may need to create
a timeline based from another timeline, where the dates of value change in the
resultant timeline are different from those in the input timeline.

CER does not include any expressions for date-shifting, as the types of
date-shifting required tend to be business specific. The recommended approach is
to create a static Java method to create your required timeline and invoke the static
method from rules by use of the “call” on page 163 expression.

Important: When implementing a date-shifting algorithm, take care to ensure that
there is no attempt to create a timeline with more than one value on any given
date, as such an attempt will fail at runtime.

The tests for your algorithm should include any tests for edge cases, such as
leap-years or months which have different numbers of days.

Figure 13. A Total Income Timeline, Calculated using sum

Cúram Express Rules Reference 63

Date addition example

You have a business requirement as follows: a person may not apply for a type of
benefit within three months of receiving that benefit.

To implement this business requirement, you already have a timeline
isReceivingBenefitTimeline that shows the periods of time for which a person is
receiving benefit.

You now need another timeline isDisallowedFromApplyingForBenefitTimeline
which shows the periods when it is invalid for that person to reapply for the
benefit. This timeline is a date-addition of 3 months to the value-change dates in
isReceivingBenefitTimeline:

Here is a sample implementation of a static method which can be called from CER
rules:
package curam.creole.example;

import java.util.Calendar;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class DateAdditionTimeline {

/**
* Creates a Timeline based on the input timeline, with the date
* shifted by the number of months specified.
* <p>

Figure 14. A Requirement for a Date-Addition Timeline

64 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

* Note that the timeline’s parameter can be of any type.
*
* @param session
* the CER session
* @param inputTimeline
* the timeline whose dates must be shifted
* @param monthsToAdd
* the number of months to add to the timeline change
* dates
* @param <VALUE>
* the type of value held in the input/output timelines
* @return a new timeline with the values from the input
* timeline, shifted by the number of months specified
*/
public static <VALUE> Timeline<VALUE> addMonthsTimeline(

final Session session, final Timeline<VALUE> inputTimeline,
final Number monthsToAdd) {

/*
* CER will typically pass a Number, which must be converted to
* an integer
*/
final int monthsToAddInteger = monthsToAdd.intValue();

/*
* Find the intervals within the input timeline
*/
final List<? extends Interval<VALUE>> inputIntervals =

inputTimeline.intervals();

/*
* Amass the output intervals. Note that we map by start date,
* because when adding months, it is possible for several
* different input dates to be shifted to the same output date.
*
* For example 3 months after these dates: 2002-11-28,
* 2002-11-29, 2002-11-30, are all calculated as 2003-02-28
*
* In this situation, we use the value from the earliest input
* date only - input dates are processed in ascending order
*/
final Map<Date, Interval<VALUE>> outputIntervalsMap =

new HashMap<Date, Interval<VALUE>>(inputIntervals.size());

for (final Interval<VALUE> inputInterval : inputIntervals) {
// get the interval start date
final Date inputStartDate = inputInterval.startDate();

/*
* Add the number of months - but n months after the start of
* time is still the start of time
*/

final Date outputStartDate;
if (inputStartDate == null) {

outputStartDate = null;
} else {

final Calendar startDateCalendar =
inputStartDate.getCalendar();

startDateCalendar.add(Calendar.MONTH, monthsToAddInteger);
outputStartDate = new Date(startDateCalendar);

}

// check that this output date has not yet been processed
if (!outputIntervalsMap.containsKey(outputStartDate)) {

Cúram Express Rules Reference 65

/*
* the output interval uses the same value as the input
* interval, but with a shifted start date
*/

final Interval<VALUE> outputInterval =
new Interval<VALUE>(outputStartDate,

inputInterval.value());
outputIntervalsMap.put(outputStartDate, outputInterval);

}
}

// create a timeline from the output intervals
final Collection<Interval<VALUE>> outputIntervals =

outputIntervalsMap.values();
final Timeline<VALUE> outputTimeline =

new Timeline<VALUE>(outputIntervals);
return outputTimeline;

}
}

Date spreading example

You have a business requirement as follows: a car must be taxed for any month
where the car is “on the road” for one or more days in that month.

Note: If a car is put back on the road part-way through a month, the keeper of the
car must ensure that tax is retrospectively paid for the entire month.

To implement this business requirement, you already have a timeline
isOnRoadTimeline that shows the periods of time for which a car is “on the road”.

You now need another timeline taxDueTimeline which shows the periods when the
car must be taxed. This timeline is a spread-out of the dates within
isOnRoadTimeline:

66 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Here is a sample implementation of a static method which can be called from CER
rules:
package curam.creole.example;

import java.util.Calendar;
import java.util.Collection;
import java.util.GregorianCalendar;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class DateSpreadingTimeline {

/**
* Creates a Timeline for the period for which a car must be
* taxed.
* <p>
* The car must be taxed for the entire month for any month where
* that car is on-the-road for one or more days during that
* month.
*/
public static Timeline<Boolean> taxDue(final Session session,

final Timeline<Boolean> isOnRoadTimeline) {

/*
* Find the intervals within the input timeline
*/
final List<? extends Interval<Boolean>> isOnRoadIntervals =

isOnRoadTimeline.intervals();

/*
* Amass the output intervals. Note that we map by start date;
* a car may go off the road during a month, which would imply

Figure 15. A Requirement for a Date-Spreading Timeline

Cúram Express Rules Reference 67

* that no tax is required at the start of the next month, only
* to return to the road part-way through the next month, in
* which case it does require taxing after all.
*
* For example, car is put back on the road 2001-01-15, so tax
* is required (retrospectively) from 2001-01-01.
*
* On 2001-01-24 the car is taken back off the road, so it’s
* possible that the car does not require taxing from
* 2001-02-01.
*
* However, on 2001-02-05 the car is put back on the road, and
* so it does require taxing from 2001-02-01 after all. The
* resultant timeline will merge these periods to show that the
* car requires taxing from 2001-01-01 onwards (thus covering
* from 2001-02-01 too).
*/
final Map<Date, Interval<Boolean>> taxDueIntervalsMap =

new HashMap<Date, Interval<Boolean>>(
isOnRoadIntervals.size());

for (final Interval<Boolean> isOnRoadInterval :
isOnRoadIntervals) {

// get the interval start date
final Date isOnRoadStartDate = isOnRoadInterval.startDate();

if (isOnRoadStartDate == null) {
// at the start of time, the car must be taxed if it is on
// the road
taxDueIntervalsMap.put(null, new Interval<Boolean>(null,

isOnRoadInterval.value()));
} else if (isOnRoadInterval.value()) {

/*
* start of a period of the car being on-the-road - the car
* must be taxed from the start of the month containing the
* start of this period
*/

final Calendar carOnRoadStartCalendar =
isOnRoadStartDate.getCalendar();

final Calendar startOfMonthCalendar =
new GregorianCalendar(

carOnRoadStartCalendar.get(Calendar.YEAR),
carOnRoadStartCalendar.get(Calendar.MONTH), 1);

final Date startOfMonthDate =
new Date(startOfMonthCalendar);

/*
* Add to the map of tax due periods - note that this will
* push out of the map any "tax not due" interval
* speculatively added if the car went off-the-road during
* the previous month
*/
taxDueIntervalsMap.put(startOfMonthDate,

new Interval<Boolean>(startOfMonthDate, true));
} else {

/*
* Start of a period of the car being off the road -
* speculate that from the start of next month, the car may
* not require tax. This speculation will hold unless the
* car is subsequently found to be put back on the road
* next month, in which case this speculation will be
* discarded (i.e. pushed out of the map).
*/

final Calendar carOffRoadStartCalendar =
isOnRoadStartDate.getCalendar();

68 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

final Calendar startOfNextMonthCalendar =
new GregorianCalendar(

carOffRoadStartCalendar.get(Calendar.YEAR),
carOffRoadStartCalendar.get(Calendar.MONTH), 1);

startOfNextMonthCalendar.add(Calendar.MONTH, 1);

final Date startOfNextMonthDate =
new Date(startOfNextMonthCalendar);

/*
* Add to the map of tax due periods - note that this will
* push out of the map any "tax not due" interval
* speculatively added if the car went off-the-road during
* the previous month
*/
taxDueIntervalsMap.put(startOfNextMonthDate,

new Interval<Boolean>(startOfNextMonthDate, false));
}

}

// create a timeline from the tax due intervals
final Collection<Interval<Boolean>> taxDueIntervals =

taxDueIntervalsMap.values();
final Timeline<Boolean> taxDueTimeline =

new Timeline<Boolean>(taxDueIntervals);
return taxDueTimeline;

}
}

Testing Timeline Outputs
A rule attribute that returns a timeline of values should be tested in your JUnit
tests in a similar fashion to tests for primitive (non-timeline) values.

To simplify your tests, you do not need to test that “timelineoperation” on page
226 correctly accumulates change dates (unless you want to). To keep your tests
simple, generally you can use input timelines which have a constant value forever.

For example, let's say you have a rule attribute which calculates (in a timeline
way) the total from a list of numbers:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_NumberSumTimeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Totalizer">

<!-- The timelines to total -->
<Attribute name="inputNumberTimelines">

<type>
<javaclass name="List">

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The resultant total -->
<Attribute name="totalTimeline">

Cúram Express Rules Reference 69

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<timelineoperation>
<sum>

<dynamiclist>
<list>

<reference attribute="inputNumberTimelines"/>
</list>
<listitemexpression>

<intervalvalue>
<current/>

</intervalvalue>
</listitemexpression>

</dynamiclist>

</sum>
</timelineoperation>

</derivation>
</Attribute>

</Class>
</RuleSet>

Then you can write a simple test which uses input timelines which have a constant
value for all time:
package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Timeline;

public class TestForeverValuedTimelines extends TestCase {

public void testNumberSumTimeline() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

// use input values that do not vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(1);

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(2);

70 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(3);

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

// check that the resultant timeline is 6 forever
CREOLETestHelper.assertEquals(new Timeline<Number>(6),

totalizer.totalTimeline().getValue());

}
}

Tip: The Timeline class has a convenience constructor to create a timeline with a
constant value forever.

In some situations, e.g. where you have created your own date-shifting algorithm,
or you genuinely need to test that the change dates for input timelines are
accurately reflected in resultant timelines, then there are different approaches you
can take according to your needs:
v Strict checking

Check that the resultant timeline is exactly equal to an expected timeline value.
(The equality semantics of the Timeline class behave as you would expect - two
timelines are equal if they contain exactly the same collection of intervals, i.e. the
values from the two timelines are identical for every possible date).

v Lax checking

Check that the resultant timeline has the value you expect on particular dates.

This example shows the strict testing of a resultant timeline.
package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class TestStrictTimelineChecking extends TestCase {

public void testNumberSumTimeline() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

Cúram Express Rules Reference 71

// use input values that vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 1),
new Interval<Number>(Date.fromISO8601("20010101"), 1.1)

));

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 2),
new Interval<Number>(Date.fromISO8601("20020101"), 2.2)

));

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 3),
new Interval<Number>(Date.fromISO8601("20030101"), 3.3)
));

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

// strictly check the exact value of the resultant timeline
CREOLETestHelper.assertEquals(

new Timeline<Number>(Arrays.asList(
new Interval<Number>(null, 6),
new Interval<Number>(Date.fromISO8601("20010101"), 6.1),
new Interval<Number>(Date.fromISO8601("20020101"), 6.3),
new Interval<Number>(Date.fromISO8601("20030101"), 6.6)

)),

totalizer.totalTimeline().getValue());

}
}

The example shows more lax testing of a resultant timeline.
package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class TestLaxTimelineChecking extends TestCase {

public void testNumberSumTimeline() {

final Session session =

72 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

// use input values that vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 1),
new Interval<Number>(Date.fromISO8601("20010101"), 1.1)

));

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 2),
new Interval<Number>(Date.fromISO8601("20020101"), 2.2)

));

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 3),
new Interval<Number>(Date.fromISO8601("20030101"), 3.3)

));

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

/*
* Do not strictly check that the resultant timeline is exactly
* as expected - instead check the resultant timeline’s value
* on particular dates.
*
* It is possible that the timeline has incorrect values on
* other dates, but depending on the purpose of your test, you
* may wish to trade strictness for improved readability.
*/

final Timeline<? extends Number> resultantTimeline =
totalizer.totalTimeline().getValue();

CREOLETestHelper.assertEquals(6.1,
resultantTimeline.valueOn(Date.fromISO8601("20010101")));

CREOLETestHelper.assertEquals(6.6,
resultantTimeline.valueOn(Date.fromISO8601("20130101")));

}
}

Timeline Properties
Each CER Timeline has some important properties that you must know before
working with Timelines in your CER rule sets, rule tests, and any code that is a
client of CER:
v each CER Timeline is immutable (like all data types used in CER);
v each reference to Timeline is parameterized with the type of value held in the

Timeline, which can be primitives such as String, Date, Number, Boolean etc. or
an arbitrarily complex type such as a Rule Class or another parameterized type
such as List. As for other parameterized types in CER, the parameter itself
should be an immutable object;

v each CER Timeline extends infinitely far into the past and infinitely far into the
future. In other words, each CER Timeline has a value on any date, no matter
how far in the past or future that date might be;

Cúram Express Rules Reference 73

Note: Each Timeline covers an infinite amount of time, but can only contain a
finite number of dates on which its value changes.

v when a CER Timeline is created, the timeline is divided into a collection of
intervals, with each interval holding a constant value for a period of time within
the timeline. Contiguous intervals always have different values, otherwise they
would have been merged into a single interval.each CER Timeline extends
infinitely far into the past and infinitely far into the future;

Note: Same or different values are detected by the semantic of the Java
Object.equals(...). All types that are used as a parameterized type to Timeline
must have sensible implementations of Object.equals(...) and
Object.hashCode().

There are a number of consequences of these properties:
v it is not possible to have a "gap" in the middle of a timeline - all intervals in a

timeline are contiguous;
v it is not possible to have a timeline which starts on a particular date; in certain

circumstances a sensible default will need to be chosen, for example if you have
a Timeline<Number> for the income arising from an Employment, then that
income should be 0 on all dates before the Employment start date;

v it is not possible to have a timeline which ends on a particular date - the last
value in the timeline applies "until further notice", i.e. arbitrarily far into the
future; in certain circumstances a sensible default will need to be chosen, for
example if you have a Timeline<Number> for the income arising from an
Employment, then if there is a known end date for that Employment, then the
income should be 0 on all dates after the Employment has ended; otherwise if
there is no known end date for that Employment, then the latest income should
apply until further notice;

v any attempt to create a timeline that does not have a value for any date will fail.
In particular, each timeline must have a value which applies from the start of
time, signified by a start date of null;

v each timeline can contain a finite number of value changes. This presents a
limitation for timelines that represent values that change an arbitrary number of
times. For example, you might have a Timeline<Number> to represent a
person's age, with the value 0 up until the person's first birthday, the value 1 up
until the person's second birthday and so on. For Persons who are still alive it is
not possible to predict how many more birthdays they will have, and so a
practical limit (for example, 200) must be imposed. In practice, this limitation
should not present any difficulties.

Example of Timeline Intervals: In the example of Joe, Mary and James's
circumstances, we saw that Mary was not a lone parent of a minor before she
married Joe, and that when she married Joe she was still not a lone parent of a
minor, but for different reasons.

Under the hood here, when Mary's isLoneParentOfMinorTimeline value is being
calculated, the input timelines which are used are Mary's isMarriedTimeline and
her hasMinorDependentsTimeline.

CER identifies each date on which the input timelines change, for each of those
dates calculates the resultant value (on that date) for whether Mary is a lone parent
of a minor on that date, as follows:
v Dates on which Mary's isMarriedTimeline changes:

– 1st January 2001; and

74 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

– 1st May 2004.
v Dates on which Mary's hasMinorDependentsTimeline changes:

– 1st January 2001; and
– 1st June 2006.

v Therefore dates on which one or more inputs changed are:
– 1st January 2001 (both of Mary's input timelines happen to change on this

date); and
– 1st May 2004 (only Mary's isMarriedTimeline changes on this date); and
– 1st June 2006 (only Mary's hasMinorDependentsTimeline changes on this date).

So, for each of these dates, calculate the required value for
isLoneParentOfMinorTimeline, using primitive Boolean/truth table logic:

Table 2. Calculation of interval values for Mary's isLoneParentOfMinorTimeline value

Date on which
one or more
input timelines
changes value

Value of
isMarriedTimeline
on this date

Value of
hasMinorDependentsTimeline
on this date

Required value of
isLoneParentOfMinorTimeline on this
date

start of time (this
date is always
included)

FALSE FALSE FALSE

1st January 2001 TRUE TRUE FALSE

1st May 2004 FALSE TRUE TRUE

1st June 2006 FALSE FALSE FALSE

Finally, a timeline is constructed with the required values for
isLoneParentOfMinorTimeline - at this point the construction of the timeline
recognises that the value for start-of-time (FALSE) and 1st January 2001 (FALSE)
are identical, and these intervals are merged into a single interval which stretches
from the start of time up to (but not including) 1st May 2004 (when the value
becomes TRUE).

Note: The resultant timeline has value changes on 1st May 2004 and 1st June 2006
only.

The timeline intentionally does not hold any record that 1st January 2001 was used
during is construction, as the timeline's value did not change on that date - that
date holds no relevance at all for the resultant timeline.

Triggering Recalculation When Data Changes
The ability for CER to perform recalculations directly is now superseded by the
Dependency Manager (see “The Dependency Manager”).

It is recommended that you use the Dependency Manager in preference to CER's
recalculation strategies.

The Dependency Manager
The application includes a Dependency Manager which is responsible for storing
and managing dependencies between input data items ("precedents") and output
data items ("dependents").

Cúram Express Rules Reference 75

CER and its clients (such as the Eligibility and Entitlement Engine, and Advisor)
integrate tightly with the Dependency Manager to support the recalculation of CER
results whenever inputs which have been used in CER calculations change.

This chapter provides an overview of the Dependency Manager as follows:
v the concepts underlying the Dependency Manager and the terminology used to

describe them;
v the functions that the Dependency Manager performs;
v the batch processing included with the Dependency Manager;
v how CER integrates with the Dependency Manager; and
v compliancy for the Dependency Manager.

Dependency Manager Concepts
Whenever the value of one data item is derived from the values of one or more
other data items, then we say that the derived value depends on the values used to
derive it. If one or more of the values depended on subsequently change, then the
derived data item must be recalculated to obtain its new value.

The Dependency Manager uses the following terms to encapsulate these concepts:
v Dependent

A derived data item whose value is calculated from other data items
(precedents).

v Precedent

A data item whose value may be used to calculate derived data items
(dependents).

v Dependency

A record of the fact that the value of a particular dependent depends on the
value of a particular precedent.

v Precedent Change Item

A record of the fact that the value of a particular precedent has changed in some
way.

v Precedent Change Set

A set of precedent changes items, grouped together for processing; used to
identify potentially affected dependents which require recalculation.

v Dependent Recalculation

The recalculation of a dependent which is potentially affected by one or more of
the changes to precedents in a precedent change set.

These concepts are best explained by way of an example.

Let's say that a claimant's entitlement to benefit is calculated from data such as:
v the claimant's personal details;
v evidence gathered for the claimant's case; and
v benefit rates and income thresholds.

Joe, a claimant, has two cases (123 and 124) and Mary, another claimant, has one
case (125). There are cases and personal details for other claimants too, and also
some allowance rates used for other calculations.

76 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

In this example, the calculated entitlement for each case is a dependent and the
personal details, evidence and rates/thresholds are precedents.

We can draw a sparse matrix which shows the dependencies between the
dependents and the precedents (an "X" signifies the presence of a dependency):

Table 3. Example Dependency Matrix

Precedent
Case 123's
Entitlement

Case 124's
Entitlement

Case 125's
Entitlement

Case 126's
Entitlement

Joe's Personal
Details

X X

Mary's Personal
Details

X

Frank's Personal
Details

Case 123's
Evidence

X

Case 124's
Evidence

X

Case 125's
Evidence

X

Case 126's
Evidence

X

Benefit Rates X X X X

Income
Thresholds

X X X X

Allowance Rates

So, to look at some examples from the dependency matrix:
v The entitlement for case 123 depends on Joe's personal details but not on Mary's;
v Joe's personal details are used in the calculation of both his cases (123 and 124);

and
v All the cases use the benefit rates and income thresholds but not the allowance

rates.
v No case's entitlement depends on Frank's personal details.

Note that the matrix can be read:
v by column, to understand all the precedents upon which a particular dependent

depends - these are the set of dependencies that must be maintained every time
a dependent is calculated; and/or

v by row, to understand all the dependents which depend upon a particular
precedent - these are the set of dependents that must be recalculated every time
the value of the precedent changes.

As the number of precedents and dependents in the system grow, the dependency
matrix becomes very large. Because the matrix is only sparsely populated (i.e. each
dependent depends on only a small fraction of the available precedents), the data
in the matrix is stored only for dependencies which are present, as follows:

Cúram Express Rules Reference 77

Table 4. Example Dependency Storage

Dependent Precedent

Case 123's Entitlement depends on Joe's Personal Details

Case 123's Entitlement depends on Case 123's Evidence

Case 123's Entitlement depends on Benefit Rates

Case 123's Entitlement depends on Income Thresholds

Case 124's Entitlement depends on Joe's Personal Details

Case 124's Entitlement depends on Case 124's Evidence

Case 124's Entitlement depends on Benefit Rates

Case 124's Entitlement depends on Income Thresholds

Case 125's Entitlement depends on Mary's Personal Details

Case 125's Entitlement depends on Case 125's Evidence

Case 125's Entitlement depends on Benefit Rates

Case 125's Entitlement depends on Income Thresholds

Case 126's Entitlement depends on Case 126's Evidence

Case 126's Entitlement depends on Benefit Rates

Case 126's Entitlement depends on Income Thresholds

(Note that the table above is shown sorted by dependent, which makes it easy to
see the set of dependencies for each dependent, but it could also be shown sorted
by precedent which would make it easy to see the dependents potentially affected
by a change in that precedent's value.)

Let's say that Joe's personal details change. Because dependencies are recorded
against Joe's personal details, the Dependency Manager is able to identify that
cases 123 and 124 require recalculation. When the cases are recalculated, their
entitlement values change (due to the change in Joe's personal details); but note
that in typical situations, the dependencies themselves do not change - prior to the
recalculation, case 123 depended on Joe's person details, the evidence stored
against the case, the benefit rates and income thresholds, and the same is true after
the recalculation.

It is possible for more than one precedent value to change simultaneously, for
example if the agency chooses to alter both its benefit rates and its income
thresholds then all cases must be recalculated. Naively, each case would be
identified twice (once from the change to benefit rates and once again for the
change to income thresholds); however, the Dependency Manager supports the
grouping of these two precedent changes into one Precedent Change Set. When the
Dependency Manager processes the Precedent Change Set it automatically filters
out any duplicate dependents identified so that the minimum work necessary is
performed to recalculate the dependents.

Dependency Manager Functions
The Dependency Manager performs these main functions:
v it stores dependency records identified by a client, e.g. by the Eligibility and

Entitlement Engine when calculating an initial assessment determination;
v it captures changes in precedent values which potentially affect the values of

dependents;

78 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v it identifies the dependents which are potentially affected by items in a
precedent change set; and

v it controls the recalculation of these identified dependents.

These functions are described in more detail in the following sections.

Storage of Dependency Records
The Dependency Manager is responsible for the creation of new dependency
records on the database, and for the removal of existing dependency records which
are no longer required.

Note: Each dependency record does not contain any modifiable information, and
the Dependency Manager never modifies any existing dependency records - it only
ever creates new records or removes existing records.

Every time that a client of the Dependency Manager calculates the value of a
dependent, the client is responsible for identifying the precedents used in that
calculation, and for passing that dependent and its set of precedents to the
Dependency Manager. The Dependency Manager uses that dependent to retrieve
its existing set of stored dependencies (if any) from the database, and creates or
removes dependency records in line with the new set of precedents identified by
the client.

Typically, the first time that the Dependency Manager is invoked for a dependent,
the Dependency Manager will create several new rows on the database to store the
dependencies on the precedents identified.

However, on subsequent invocations of the Dependency Manager for the same
dependent, it is very common for the Dependency Manager to find that the new
set of required dependencies passed in exactly matches those already stored on the
database, and so under these circumstances there are no database writes for the
Dependency Manager to perform. Occasionally the Dependency Manager will find
that a small number of new dependency rows are required, and/or a small
number of existing dependency rows are now extraneous and must be removed;
and under these circumstances the Dependency Manager performs a small number
of database writes to bring the stored rows up-to-date with the required
dependencies, leaving the bulk of the dependency records unchanged for the
dependent.

Clients of the Dependency Manager may identify that dependency records are no
longer required for a dependent, and can instruct the Dependency Manager to
remove all dependency records for that dependent.

Example: When an entitlement for a case is performed for the first time, the
Dependency Manager stores new dependency records to show that the case
entitlement depends on the claimant's personal details, the evidence recorded
against the case, rates, etc.

If the case is subsequently recalculated (either automatically by the Dependency
Manager in response to a change in personal details, say, or manually requested by
a user), then after recalculation the Dependency Manager compares the
dependencies identified during the calculation with those already on the database
and finds no differences.

If a new member of the household is added to the case, then when entitlement is
recalculated a new dependency will be identified - namely that the case's

Cúram Express Rules Reference 79

entitlement now also depends on the new household member's personal details, in
addition to the existing dependencies already stored against the case. The
Dependency Manager creates a new dependency record on the database to store
the additional dependency.

If the new household member is later removed, then when entitlement is
recalculated there will be no dependency on the now-removed household
member's personal details. The Dependency Manager identifies that the stored
dependency on that household member's personal details is now extraneous and
removes it from the database, leaving the other dependency records (on the
claimant's personal details, the evidence recorded against the case, rates, etc.) still
intact.

When the case is eventually closed, it will no longer require support for
recalculations and so the dependency records are no longer required.

Note: Assuming a reassessment strategy of "Do not reassess closed cases". See the
Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.
For good housekeeping, the Dependency Manager is invoked to remove all
dependency records for the case's entitlement. If the case is subsequently reopened
then its entitlement can be recalculated and the Dependency Manager recreates all
the required dependency records.

No Understanding of Dependents or Precedents: The Dependency Manager
intentionally does not maintain any records of all known dependents or precedents
in the system, as to do so would:
v duplicate data held elsewhere in the system; and
v become a bottleneck during processing, potentially leading to concurrency issues

when the system becomes aware of new data used as precedents in calculations.

Rather, the Dependency Manager only records information about dependencies.
Each dependency is merely a link between a particular dependent and a particular
precedent. If a particular dependent has no precedents, or vice versa, then there
will simply be no dependency records stored for it.

The Dependency Manager does not "understand" the dependent and precedent
information stored in a dependency record; instead, each type of dependent and
each type of precedent has a "handler" registered with the Dependency Manager,
and the Dependency Manager calls upon these handlers to perform
business-specific processing appropriate to the type, e.g. to decode a precedent or
dependent into a human-readable description, or to recalculate a dependent when
required.

Dependency Storage is Optional: It is important to note that use of the
Dependency Manager to store dependency records is optional.

Clients of the Dependency Manager can choose whether or not dependency
records are required - i.e. whether or not the client requires the Dependency
Manager's ability to automatically identify and recalculate dependents.

For example, the Eligibility and Entitlement Engine uses the Dependency Manager
to store dependency records for Case Assessment Determinations (i.e.
determinations which typically lead to financial payments and/or bills). The
Eligibility and Entitlement Engine requires that the Dependency Manager notify it
when a case must be reassessed, which is why the dependency records must be
stored.

80 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

By contrast, the Eligibility and Entitlement Engine also contains a feature for a case
worker to manually check the eligibility and entitlement of a case, based off in-edit
evidence. These manual eligibility/entitlement calculations use the same
calculation methods but do not require any dependency storage, as the system is
never required to recalculate such determinations - rather, manual
eligibility/entitlement calculations are always triggered by an explicit request from
a case worker.

Granularity of Dependencies: Note that the precedent data items used in the
earlier example are deliberately vague - the term "personal details" would in all
likelihood cover a great many individual data fields such as dates of birth/death,
demographics, etc. The Dependency Manager does not know or care about the
meanings of the dependencies that it stores between dependents and precedents -
it is up to clients of the Dependency Manager to attach meanings to these and to
store dependencies at an appropriate granularity.

The choice of granularity involves finding an acceptable trade-off between the two
extremes of:
v Very fine granularity

Very accurate dependencies are stored between dependents and individual data
fields, enabling an extremely tight identification of dependents affected by
precedent changes, but at the cost of very high numbers of dependency records
being stored; vs.

v Very coarse granularity

Very broad dependencies are stored between dependents and groupings of large
numbers of individual data fields into one "data item", leading to low numbers
of dependency records being stored, but at risk of spurious recalculations being
requested (i.e. recalculations which turn out not to be needed because the
calculation is not affected by the particular data field which changed).

It is the responsibility of designers of clients of the Dependency Manager to
consider these trade-offs and make sensible choices about the level at which to
store dependency information in the Dependency Manager.

For example, let's say that the system records these personal details about a
claimant (in a realistic system there might be many more fields regarded as
"personal details"):
v date of birth (used in entitlement calculations);
v number of children (used in entitlement calculations); and
v mother's birth surname (the answer to a security question, used only to confirm

the claimant's identity - not used in entitlement calculations).

A very fine-grained set of dependencies would show that a case's entitlement
depends on the date of birth and number of children, but not on the mother's birth
surname (as it was not accessed during calculations):

Table 5. Example Fine-Grained Dependency Matrix

Precedent Case 127's Entitlement

Frank's date of birth X

Frank's number of children X

Frank's mother's birth surname

Cúram Express Rules Reference 81

This fine-grained dependency storage could end up requiring many rows to be
stored; but note that only changes to the date of birth and/or number of children
will trigger a recalculation of the case's entitlement - if a typo is corrected in the
mother's birth surname only, then no case entitlement recalculation will be
triggered.

By contrast, a very coarse-grained set of dependencies would show a much simpler
record that the case's entitlement depends on the overall personal details:

Table 6. Example Coarse-Grained Dependency Matrix

Precedent Case 127's Entitlement

Frank's personal details X

This coarse-grained dependency storage stores fewer dependency records but if a
typo is corrected in the mother's birth surname then the overall personal details
have changed and a recalculation of the case's entitlement will be triggered, even
though the recalculation will show that the calculation result has not changed.

Capture of Precedent Change Items
Clients must notify the Dependency Manager whenever the value of a precedent
has changed. The Dependency Manager accumulates these changes into a
Precedent Change Set for later processing.

The most prevalent example is the Eligibility and Entitlement Engine, which
contains "rule object propagators" - these propagators are responsible for listening
to changes in entities and evidence, and for notifying these changes to the
Dependency Manager.

The Dependency Manager supports these modes for dealing with precedent
changes:
v Queue for Deferred Processing (the default); and
v Queue for Batch Processing (for use by clients identifying precedent changes

which are likely to lead to a large number of dependents being recalculated).

These modes are described in greater detail in the following sections.

Queue for Deferred Processing: This is the default mode for handling precedent
changes.

If any precedent change items are identified during the scope of a database
transaction, then the Dependency Manager:
v creates a single new precedent change set on the database;
v adds all the precedent change items identified during the transaction to this new

precedent change set; and
v enqueues a request for a deferred process to process this new precedent change

set.

Queue for Batch Processing: This is a special mode, used only by clients which
identify changes in precedent values which are likely to lead to a large number of
dependents being recalculated. The Dependency Manager maintains a special
system-wide "batch" precedent change set which accumulates precedent changes
from across (potentially) many different transactions.

82 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

If any precedent change items are identified during the scope of a database
transaction, then the Dependency Manager:
v retrieves the special system-wide batch precedent change set;
v adds all the precedent change items identified during the transaction to this

batch precedent change set; and
v writes an informational message to the application logs to prompt an

administrator to schedule batch processing to process this batch precedent
change set.

Example: When Joe's personal details are updated on the system, the Entity Rule
Object Propagator notifies the Dependency Manager of the change and the
Dependency Manager writes the precedent change to a new precedent change set
and enqueues a deferred process. The deferred processing identifies that Joe's two
cases are potentially affected and reassesses them.

Later an administrator publishes some changes to CER rule sets. The Dependency
Manager records these changes to CER rule sets by adding a precedent change
item record to the system-wide batch precedent change set. The administrator also
publishes some changes to rates, and the Dependency Manager records these
changes to rates by adding another precedent change item record to the
system-wide batch precedent change set. The administrator arranges to run the
Dependency Manager batch suite to identify and reassess the affected cases.

Lifecycle of a Precedent Change Set: Each Precedent Change Set goes through a
simple lifecycle as follows:
v Open

The state of a precedent change set when it is initially created. In this state new
precedent change items can be added to the precedent change set.

v Submitted

The precedent change set has been submitted into dependent-identification
processing. No more precedent change items can be added to the precedent
change set.

v Complete

The recalculation of all dependents affected by the precedent changes has been
completed. The precedent change set is kept for historical purposes only.

The transitions between each state occur differently depending on the mode in
which precedent changes were captured:
v Queue for Deferred Processing:

– the transaction that captures the precedent changes opens a new precedent
change set and submits it by requesting a deferred process; and

– the deferred process accepts the submitted precedent change set, identifies and
recalculates affected dependents, and completes the precedent change set.

v Queue for Batch Processing:
– the transaction that captures the precedent changes writes them to the

currently- open batch precedent change set;
– the suite of Dependency Manager batch processes performs the following

steps:
- retrieves the currently- open batch precedent change set and submits it into

the next step in the batch process, and creates a new open batch precedent
change set to capture any further precedent changes identified;

Cúram Express Rules Reference 83

Note: In a running system, this is how a new batch precedent change set is
created, that is, by its predecessor being submitted. The initial open batch
precedent change set is supplied by a DMX file included in the application.

- performs streamed batch processing to identify and recalculate the
dependents affected by the changes in the now- submitted batch precedent
change set; and

- completes the batch precedent change set.

Identification of Potentially Affected Dependents
Once the Dependency Manager has captured one or more precedent change items
and grouped them into a precedent change set, then the Dependency Manager can
identify which dependents are potentially affected by one or more of the precedent
change items, by examining the stored dependency records for each precedent in
the precedent change set. It is at this point that the Dependency Manager filters
out any dependents which are identified more than once.

This identification of the potentially affected dependents occurs either in deferred
processing or in batch processing, depending on the mode in effect when the
precedent change items were captured (see “Capture of Precedent Change Items”
on page 82).

For example, if a single database transaction writes changes to several database
rows, then the deferred processing step will identify each affected case only once,
even though each changed database row on its own affects a particular case.

Similarly, if the batch precedent change set contains changes to both CER rule sets
and rates, then the batch processing step will again identify each affected case only
once, even though the CER rule set change on its own affects a particular case, as
does the rate change on its own, too.

Recalculation of Identified Dependents
Once the Dependency Manager has identified all the dependents which are
potentially affected by precedent changes, then the Dependency Manager requests
that each of those dependents be recalculated. The Dependency Manager does not
understand what each dependent represents, so the appropriate recalculation is
achieved by the Dependency Manager looking up a registered handler for each
dependent and delegating the responsibility for the recalculation to the handler.

For example, the registered dependent handler for case assessment determinations
understands that the appropriate recalculation for a case is to reassess the case.

This recalculation of a dependent occurs either in deferred processing or in batch
processing, depending on the mode in effect when the precedent change items
were captured (see “Capture of Precedent Change Items” on page 82). Once this
step has completed, the system is now up-to-date with respect to the precedent
changes which were captured.

Note: Because each dependent handler may be called from online, deferred, or
batch transactions, it is imperative that each dependent handler make no
assumptions on the transaction type in effect.

Dependency Manager Deferred Processing
The previous section (“Dependency Manager Functions” on page 78) described
how the Dependency Manager supports the capturing of precedent change items

84 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

in a system-wide batch precedent change set, and how the Dependency Manager
contains deferred processing to identify potentially affected dependents and
recalculate them.

This section provides more details on the Dependency Manager's deferred
processing.

The deferred processing will initially pre-calculate the total amount of potentially
affected dependents there are, and hence how many recalculations it must perform
and make one of two decisions:
v If this calculation is below the system limit, then the precedent change set

recalculations will be performed by the deferred process there and then; or
v If this calculation exceeds a system limit, then the precedent change set

calculations will be moved to the Dependency Manager's batch processing
(“Dependency Manager Batch Processing”). At this point the precedent change
set will be marked with a status of 'Deferred To Batch'.

Setting the System Limit for Deferred Processing
The system limit for deferred processing can be set via the application property
curam.dependency.deferred.processing.limit.

While the default for this is set to 50, it should be noted that the true figure for
any system will depend on a multitude of factors such as available memory. As a
result it is recommended that the value set is based on system testing to find a
suitable value that can process most, if not all deferred processes normally, but will
move any problematic ones to batch processing.

Error Handling in the Deferred Processing
If an error occurs during running of the Dependency Manager Deferred Process,
after the normal number of retries, the system will move the work to batch
processing instead. This protects against failures due to transaction timeouts and
ensures that every avenue for processing the calculations has been tried.

Additionally, the status of the precedent change set in this case will be changed to
be 'Deferred To Batch' to indicate that the deferred process was in error and a
notification will be raised for the originator of the deferred process.

Dependency Manager Batch Processing
A previous section (“Dependency Manager Functions” on page 78) described how
the Dependency Manager supports the capturing of precedent change items in a
system-wide batch precedent change set, and how the Dependency Manager
contains batch processing to identify potentially affected dependents and
recalculate them.

This section provides more details on the Dependency Manager's batch processing.

The Dependency Manager maintains control records on the database to point to
the following batch precedent change sets:
v the currently-open batch precedent change set (there will always be exactly one

batch precedent change set which is open for accepting new precedent change
items); and

v the batch precedent change set which is currently being processed by the
Dependency Manager batch suite (if any - only populated during batch
processing; most of the time there is no batch precedent change set in this state).

Cúram Express Rules Reference 85

These control records are fundamental to the behavior of the Dependency Manager
batch suite.

Whenever there are precedent changes in "queue for batch processing" mode, then
the application logs will show a message notifying the administrator that a run of
the Dependency Manager batch suite is required. The user who made the changes
which were queued for batch processing will also receive an on-screen
informational message advising that a run of the Dependency Manager batch suite
is required.

The Dependency Manager batch suite is made up of these separate batch
processes:
v Submit Precedent Change Set

The start point for the batch suite. A lightweight single-stream process that
submits the currently-open batch precedent change set.

v Perform Batch Recalculations From Precedent Change Set

The heavyweight multiple-stream process that identifies the dependents which
are potentially affected by the changes in the submitted precedent change set,
and recalculates them. The time taken to run this process will vary according to
how many dependent recalculations are required, and may be considerable.

v Complete Precedent Change Set

The end point for the batch suite. A lightweight single-stream process that
completes the currently-submitted batch precedent change set.

These batch processes are described in more detail in the following sections.

Submit Precedent Change Set
This batch process is the starting point for the batch suite, containing a lightweight
single-stream process that submits the currently-open batch precedent change set,
and creates a new open batch precedent change set, which will be used to capture
any subsequent precedent changes identified and queued for batch processing.

To run this batch process, execute the following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.SubmitPrecedentChangeSet.process

-Dbatch.username=SYSTEM

If this batch process completes successfully, it will output a simple message
confirming that the open batch precedent change set has been submitted.

Tip: A common error is to attempt to run this batch process when another batch
precedent change set is still in the submitted state.

This process will output a simple error message if there is another such batch
precedent change set which has not yet been completely processed by the batch
suite.

As a convenience, this batch process also outputs a list of the dependent types
which are registered with the Dependency Manager - this list of dependent types is
important when running the next step (“Perform Batch Recalculations From
Precedent Change Set” on page 87).

86 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The dependent types included with the application are:
v Case Assessment Determination Result

The calculation of an assessment determination for a product delivery case.
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

v Advice Context

The calculation of advice.
See the Cúram Advisor Configuration Guide.

v Stored Attribute Value

The calculation of an attribute stored on CER's database tables.
See “CER uses the Dependency Manager to store dependencies for CER-stored
attribute values” on page 95.

Perform Batch Recalculations From Precedent Change Set
This batch process is the heavyweight multiple-stream process that identifies the
dependents that are potentially affected by the changes in the submitted precedent
change set, and recalculates them. The time that is taken to run this process varies
according to how many dependent recalculations are required, and can be
considerable.

The Perform Batch Recalculations From Precedent Change Set step must be ran
multiple times - once for each dependent type that is registered with the
Dependency Manager (see the output that is produced by the previous step
“Submit Precedent Change Set” on page 86). You are free to choose the most
appropriate order in which to process the dependent types; for example, it is likely
to be more critical to your business to reassess case determinations (see the Inside
Cúram Eligibility and Entitlement Using Cúram Express Rules guide) than it is
to identify out-of-date advice (see the Advisor Configuration Guide). You are also
free to spread the processing for different dependent types over several days, but
note that further precedent change items queued for batch cannot be processed
until the currently-submitted precedent change set has completed the full
Dependency Manager batch suite.

The Perform Batch Recalculations From Precedent Change Set step uses Cúram's
Batch Streaming Architecture (see the Cúram Batch Performance Mechanisms Guide)
and as such the processing is divided into these phases:
v Identify Chunks

A phase, which must be run as a single process, that identifies the dependents
(of a given dependent type) potentially affected by changes in the submitted
batch precedent change set. The IDs of the identified dependents are written to
"chunks" for processing by the next phase.

v Process Chunks

A phase, amenable to concurrent execution by multiple processes, that takes a
chunk of identified dependents and recalculates each dependent.

To run this batch process for a particular dependent type, issue the following
command on one line:

build runbatch -Dbatch.program=
curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSet.process
-Dbatch.username=SYSTEM
-Dbatch.parameters="dependentType= code-for-dependent-type "

Cúram Express Rules Reference 87

By default, the single process performs both phases; however, you can run extra
"Stream" processes concurrently on other computers to perform the second phase
in parallel (For more information about parallel processing and the environment
variables that govern the parallel processing behavior of this Perform Batch
Recalculations From Precedent Change Set process, see the Cúram Batch Performance
Mechanisms Guide. To run a "stream" process for a particular dependent type, run
the following command on one line:

build runbatch -Dbatch.program=
curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSetStream.process
-Dbatch.username=SYSTEM
-Dbatch.parameters="dependentType= code-for-dependent-type "

The batch process fails to start with a unrecoverable error if any of the following
occur:
v the dependentType is not supplied, or is supplied but is not the code for any

dependent type that is registered with the Dependency Manager; or
v there is no batch precedent change set in the "submitted" state (that is, the

Submit Precedent Change Set process has not yet run since the last run of
Complete Precedent Change Set).

Otherwise, the batch process starts, and attempt to identify and recalculate the
affected dependents. The result of attempting to recalculate a particular dependent
is either:
v Success

The dependent was found and recalculated correctly and processing continues
normally.

v Not found

The dependent was not found and so could not be processed. This situation can
occur if a client of the Dependency Manager decides that a dependent should no
longer exist, but neglects to request the Dependency Manager to remove
dependency records for that dependent. Under these circumstances, the
Dependency Manager automatically removes the extraneous dependency records
and writes a warning to application log/batch stream output.

v Error

An exception was thrown during the recalculation of the dependent. For
example, if a CER calculation encountered a "division by zero" problem. The
thrown exception is written to the batch stream output and recovery processing
is handled by the Cúram's Batch Streaming Architecture's "skip" processing.

When the Perform Batch Recalculations From Precedent Change Set process
finishes, a comprehensive report is written with details of how many dependents
were processed successfully, vs. not found, vs. encountered errors. If any errors
were encountered, examine the output logs from your batch streams to obtain
details of the errors.

Important: If you set the standard Cúram log level to "verbose" or higher, then
before recalculating each dependent the Dependency Manager outputs:
v a human-readable description of the dependent; and
v the subset of precedent changes (from the precedent change set) that caused the

dependent to be identified.

This log level is suitable for development environments only. Verbose logging can
adversely affect performance and scalability in a production system.

88 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This output can be helpful in understanding why a particular dependent was
identified as requiring a recalculation.

Note: If you accidentally run this batch process more than once for the same
dependent type, then recalculations of the dependents occur, but the recalculation
finds that the dependent is already up-to-date.

As such, this kind of accidental extra run for a dependent type does not harm the
system but it uses up valuable processing time.

Take careful note of the list of dependent types, and track which dependent types
you process and which dependent types remain to be processed.

Complete Precedent Change Set
The end point for the batch suite, containing a lightweight single-stream process
that completes the currently-submitted batch precedent change set.

Important: Do not run this batch process until you are sure that the previous step
(“Perform Batch Recalculations From Precedent Change Set” on page 87) has
completed for each dependent type registered with the Dependency Manager.

To run this batch process, execute the following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.CompletePrecedentChangeSet.process

-Dbatch.username=SYSTEM

If this batch process completes successfully, it will output a simple message
confirming that the submitted batch precedent change set has been completed.

Tip: A common error is to attempt to run this batch process before the Submit
Precedent Change Set has been run.

This process will output a simple error message if there is no batch precedent
change set in the "submitted" state.

After the batch precedent change set has been completed, the processing checks to
see if any new precedent changes were queued for further batch processing since
the batch suite began. This situation can occur if
v the recalculation of any dependent during the batch run gave rise to changes in

data which is also used as precedent; and/or
v the online system has been running concurrently with the batch suite and a user

has made changes which resulted in precedent change items being queued for
batch processing.

The processing will output a simple message reporting that either:
v there are no further precedent change items queued for batch processing (and

thus the system is up-to-date with respect to batch precedent change items); or
v further precedent change items have been queued for batch processing, and

another run of the Dependency Manager batch suite is required to process these
further items. In this situation, you will need to decide whether to execute the
additional run immediately or wait until a later time (perhaps when even more
batch precedent change items have been queued for batch).

Cúram Express Rules Reference 89

Dependency Manager Batch Tooling
For information on the tooling provided to assist with running the Dependency
Manager batch suite, please see the 'Dependency Manager Batch Tooling' section of
the 'Cúram Operations Guide'.

Integration between CER and the Dependency Manager
CER integrates with the Dependency Manager in a number of important ways:
v CER can identify dependencies for the clients of the Dependency Manager to

store;
v CER uses the Dependency Manager to store dependencies for any calculated

attribute values stored on CER's database tables; and
v the Dependency Manager requests CER to recalculate any calculated attributes

values stored on CER's database tables if any of their precedents change.

These integration points between CER and the Dependency Manager are explained
in more detail in the following sections.

CER Utility to Identify Dependencies to Store
A client of CER uses CER to perform complex calculations. Often the client of CER
may also need to store dependencies in the Dependency Manager so that the
Dependency Manager can notify the client whenever precedents change, and that
client can then re-invoke CER to recalculate its output, taking the changes to
precedent data into account.

CER contains a utility to help its clients identify dependencies to store in the
Dependency Manager. The utility takes in an attribute value (that CER has
calculated) and returns a set of precedents for that attribute value. A client of CER
can then pass its dependent and the identified precedents to the Dependency
Manager to store dependency records.

When CER calculates an attribute value, it keeps in memory a full tree of logical
dependencies containing:
v at its root, the calculated attribute value itself;
v at its branch nodes intermediate calculate values (typically on internal rule

objects);
v at its leaf nodes, the external input data retrieved during the CER calculation.

The utility is able to parse this tree of logical dependencies in order to provide a
much smaller set of precedents, typically based off the leaf nodes of the tree; that is
to say, typically the intermediate calculation results are ignored and the
dependencies stored reflect that calculated attribute value ultimately depends on
the external input data accessed during calculations.

Note: Any non-trivial calculation, such as those typically performed by CER, will
have a number of intermediate derived values "in between" the overall dependent
and its input precedents.

These intermediate values are not passed to the Dependency Manager; rather, the
Dependency Manager stores dependency records which link high-level dependents
(such as a case's entitlement) directly to its low-level precedents (such as entity,
evidence and rate data).

Intermediate values are not of interest when storing dependencies.

90 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The precedents identified by the utility are a mixture of:
v precedents identified directly by CER; and
v precedents identified by the rule object converters registered with CER's

Database Data Storage.

Precedents Identified Directly by CER:

The utility directly identifies these types of dependencies for a calculated attribute
value.

The overall calculation is the calculation of the attribute itself, or on any of the
internal attribute values on which it ultimately depends (the "intermediate"
calculations between the calculated attribute value and its external data inputs).

Table 7. Precedents Identified Directly by CER

Name When Identified Trigger for Recalculation

Stored Attribute
Value Identifies any "input" attribute

value stored on CER's database
tables that was retrieved during
the overall calculation of the
attribute value.

The precedent ID refers to the
internal ID for the stored
attribute's database row on CER's
database tables.

If the value of the stored attribute
changes, then a precedent change
item for the stored attribute value
will be written to a precedent
change set.

Rule Set
Definitions Identifies each rule set containing

any of the attributes used within
the overall calculation of the
attribute value.

The precedent ID refers to the
name of the rule set containing one
or more attribute definitions
encountered during the overall
calculation.

If changes to a CER rule set are
published, then a precedent change
item for the changed rule set will
be written to a precedent change
set.

'readall' search
Identifies any “readall” on page
204 (with no nested match)
expressions encountered during
the overall calculation, which
retrieved rule objects stored on
CER's database tables (as opposed
to rule objects retrieved using rule
object converters - see “Precedents
Identified by Rule Object
Converters” on page 95 instead).

The precedent ID refers to the
name of the rule class sought by
the “readall” on page 204
expression.

A precedent change item for the
rule class will be written to a
precedent change set if:

v A new rule object for that rule
class is stored on CER's database
tables and/or

v An existing rule object for that
rule class is removed from CER's
database tables.

Cúram Express Rules Reference 91

Table 7. Precedents Identified Directly by CER (continued)

Name When Identified Trigger for Recalculation

'readall/match'
search Identifies any “readall” on page

204 expressions encountered
during the overall calculation,
which retrieved rule objects stored
on CER's database tables (as
opposed to rule objects retrieved
using rule object converters - see
“Precedents Identified by Rule
Object Converters” on page 95
instead).

The precedent ID refers to the
name of the rule class sought by
the “readall” on page 204
expression, together with the
attribute name and value used as
the search criterion.

A precedent change item for the
rule class and its attribute name
and match value will be written to
a precedent change set if:

v Anew rule object for that rule
class is stored on CER's database
tables;

v An existing rule object for that
rule class is removed from CER's
database tables; and/or

v The value of the attribute used
in the search criterion changes
for an existing rule object (in
which case two precedent
change items will be written -
one for the old value of the
attribute and another for the
new value of the attribute).

These types of dependencies are best illustrated with an example.

Let's say a new system is written which uses CER to calculate a person's tax
liability. This Tax Liability system uses the Dependency Manager to store
dependencies, so that the tax liability can be recalculated (using CER) if the
person's circumstances change.

The Tax Liability system stores system-wide "tax threshold" information in rule
objects, with these rule objects stored on CER's database tables. The CER rules for
calculating a person's tax liability include a “readall” on page 204 expression to
retrieve all the tax thresholds in the system.

The Tax Liability system also stores system-wide "asset" information in rule objects,
with these rule objects stored on CER's database tables. Each asset specifies its
owner and its market value. The CER rules for calculating a person's tax liability
include a “readall” on page 204 expression to retrieve all assets owned by that
person (i.e. those with an Asset.ownedByPersonID matching the Person.personID).
It is possible for an asset's market value to change, and/or for an asset to be
transferred from one person to another, by changing its Asset.ownedByPersonID
from one person's ID to another.

The CER rules for calculating a person's tax liability involve summing the
Asset.marketValue of all the assets owned by that person.

The Tax Liability system contains separate CER rule sets for retrieving the input
data required for the tax liability calculation vs. the actual business calculations
which use that retrieved data to calculate a person's tax liability.

A user uses the Tax Liability system to calculate the tax liability for Joe (personID
456) and for Mary (personID 457), who each have one asset. The Tax Liability
system uses the CER utility to identify dependencies, and passes these to the
Dependency Manager for storage, resulting in the following dependencies being
stored:

92 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 8. Dependencies Stored For Tax Liability Example

Dependent
Type

Dependent
ID

Precedent
Type Precedent ID

Tax Liability 456 (Joe's
person ID)

'readall'
search

Rule class: TaxThreshold

Stored because the calculation of Joe's tax
liability caused a retrieval of all
TaxThreshold rule objects.

Tax Liability 456 'readall/
match' search

Rule class: Asset, with attribute value
ownedByPersonID=456

Stored because the calculation of Joe's tax
liability caused a retrieval of all Asset rule
objects owned by Joe.

Tax Liability 456 Stored
Attribute
Value

789 (the internal ID of Asset.marketValue
for Joe's asset)

Stored because the calculation of Joe's tax
liability accessed the stored value of
marketValue on the single asset retrieved
for Joe.

Tax Liability 456 Rule Set
Definitions

TaxLiabilityDataRetrievalRuleSet

Stored because the calculation of Joe's tax
liability involved the definitions of rule
attributes in the
TaxLiabilityDataRetrievalRuleSet (used to
retrieve the TaxThreshold and Asset rule
objects).

Tax Liability 456 Rule Set
Definitions

TaxLiabilityBusinessCalculationsRuleSet

Stored because the calculation of Joe's tax
liability involved the definitions of rule
attributes in the
TaxLiabilityBusinessCalculationsRuleSet
(used to compute the overall tax liability
based on input data).

Tax Liability 457 (Mary's
person ID)

'readall'
search

Rule class: TaxThreshold

Stored because the calculation of Mary's
tax liability caused a retrieval of all
TaxThreshold rule objects.

Tax Liability 457 'readall/
match' search

Rule class: Asset, with attribute value
ownedByPersonID=457

Stored because the calculation of Mary's
tax liability caused a retrieval of all Asset
rule objects owned by Mary.

Tax Liability 457 Stored
Attribute
Value

780 (the internal ID of Asset.marketValue
for Mary's asset)

Stored because the calculation of Mary's
tax liability accessed the stored value of
marketValue on the single asset retrieved
for Mary.

Cúram Express Rules Reference 93

Table 8. Dependencies Stored For Tax Liability Example (continued)

Dependent
Type

Dependent
ID

Precedent
Type Precedent ID

Tax Liability 457 Rule Set
Definitions

TaxLiabilityDataRetrievalRuleSet

Stored because the calculation of Mary's
tax liability involved the definitions of rule
attributes in the
TaxLiabilityDataRetrievalRuleSet (used to
retrieve the TaxThreshold and Asset rule
objects).

Tax Liability 457 Rule Set
Definitions

TaxLiabilityBusinessCalculationsRuleSet

Stored because the calculation of Mary's
tax liability involved the definitions of rule
attributes in the
TaxLiabilityBusinessCalculationsRuleSet
(used to compute the overall tax liability
based on input data).

We can now see how recalculations of tax liability will be triggered by various
changes in data:

Table 9. Example Precedent Change Items for Tax Liability

Data Change Precedent Change Items Recorded
Recalculations
Triggered

The market value of Joe's asset increases
from $100 to $120

v Stored Attribute Value, 789 v Joe's tax liability
is recalculated

Mary sells her asset and its rule object is
removed

v 'readall/match' search, Rule class: Asset, with
attribute value ownedByPersonID=457

v Mary's tax liability
is recalculated

Joe receives a new asset, stored as a new
rule object

v 'readall/match' search, Rule class: Asset, with
attribute value ownedByPersonID=456

v Joe's tax liability
is recalculated

Joe transfers his first asset to Mary, thus the
asset's ownedByPersonID changes from 456
to 457

v 'readall/match' search, Rule class: Asset, with
attribute value ownedByPersonID=456 (old
value)

v 'readall/match' search, Rule class: Asset, with
attribute value ownedByPersonID=457 (new
value)

v Joe's tax liability
is recalculated

v Mary's tax liability
is recalculated

An administrator introduces a new tax
threshold, stored as a new rule object

v 'readall' search, Rule class: TaxThreshold v Joe's tax liability
is recalculated

v Mary's tax liability
is recalculated

An administrator removes an existing tax
threshold, thus removing its rule object

v 'readall' search, Rule class: TaxThreshold v Joe's tax liability
is recalculated

v Mary's tax liability
is recalculated

An administrator publishes changes to the
TaxLiabilityBusinessCalculationsRuleSet rule
set

v Rule Set Definitions,
TaxLiabilityBusinessCalculationsRuleSet

v Joe's tax liability
is recalculated

v Mary's tax liability
is recalculated

94 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Precedents Identified by Rule Object Converters: The Rule Object Converters
registered with CER's Database Data Storage can also contribute to the
dependencies identified by the CER utility.

See the documentation for each rule object converter for details on the
dependencies identified.

CER uses the Dependency Manager to store dependencies for
CER-stored attribute values
For rule objects that are stored on CER's database tables, each attribute value on
those rule objects may play a role as:
v a dependent - i.e. an attribute value which is derived by calculating its values

from input data; and/or
v a precedent - i.e. an attribute value which is used as input data during the

calculation of a dependent.

CER registers a dependent handler and a precedent handler with the Dependency
Manager to allow its stored attribute values to be used as dependents and/or
precedents in stored dependencies.

For example, if an attribute totalIncome is present on a Person rule object stored
on CER's database tables, and the calculation of totalIncome involved the retrieval
of Income.amount attribute values also stored on CER's database tables, then CER
would request the Dependency Manager to store the fact that the
Person.totalIncome attribute value depends on the Income.amount attribute values.

The Dependency Manager requests CER to recalculate any
stored calculated attributes values
When precedent values change, then the Dependency Manager will identify any
stored attribute values in CER that depend on those changed precedent values, and
request CER to recalculate its dependent values, via the dependent handler that
CER registers with the Dependency Manager.

For example, if an Income.amount attribute value stored on CER's database tables
changed its value, then CER would notify the Dependency Manager that the
Income.amount precedent had changed, and the Dependency Manager would
subsequently identify that the Person.totalIncome dependent requires
recalculation, and invoke CER to recalculate it.

Compliancy
See “The Dependency Manager” on page 250 for the compliancy statement for the
Dependency Manager.

About the CER Editor
The CER Editor facilitates the creation and maintenance of CER rulesets. Some
rulesets are distilled from legislation and others are to assist users to perform
certain activities. Therefore the CER editor has two basic views: the Business View
for those who familiar with the structure and text required by legislation and the
Technical View for those users familiar with the implementation aspects of rules
development.

The CER Editor contains a global menu bar that consist of common user features
such as Save, Search and Undo and Redo. There are other Save options to allow the
user to Export, Validate and Save All rule sets.

Cúram Express Rules Reference 95

CER Editor Global Menu
The CER Editor provides common functionality as part of the global menu for
easier access.

CER Editor Global Menu
Table 10. Menu Bar

Name Description

Undo To cancel the last edit choose the undo from the menu bar.

Redo To cancel the last undo choose the Redo from the menu bar
this will roll back the last action taken.

Include Rule Sets To see the included rule sets and allows rule sets to be added
by providing a classpath.

Export The CER editor supports exporting all diagrams in the rule
outline view to PNG images which can be saved as a single
ZIP archive file to the user's local hard disk.

Save A rule set can be saved at any time one its opened in the
editor. Saving a rule set that has a status of published results
in an “In Edit” record being created for that rule set. Any
modifications you make are saved to the in edit record. Saving
a rule set that has a status of “In Edit” saves your
modifications directly. Rule sets can also have a status of
“Newly Created”. Saving modifications to a newly created
rule set will result in the modifications being saved directly to
that newly created rule set.

Save All The CER editor supports opening a number of rule sets from
within one instance of the editor. A number of CER elements
can point to classes or attributes that are defined in the other
rule sets. CER elements that point to something in a different
rule set will have a menu option Open Rule Set. This allows a
user to have any number of rule sets opened in the editor at
any one time. The Save All menu option will save all] rule
sets that are opened in the editor and have been modified.

Validate Allows the user to validate their changes to a rule set. The
rule set validator of the CER rule engine is called. CER rule
sets are XML files which adhere to the CER-supplied rule
schema. CER also includes a comprehensive rule set validator
which can detect errors in your rule set before allowing your
rule set to execute. The CER rule set validator reports a list of
errors in the Properties and Validations panel so they can
resolved by the user. If there are any errors, the CER rule set
validator reports the errors and processing halts.

Search Allows the user to do a quick text based search that will open
a search results popup which matching results. More
information on the functionality provided and how to refine a
search can be found in the Search Tools section.

CER Editor Search Tools

CER Editor Search Criteria: A user can perform a general text based search for
the following criteria (Rules and Rule References, Descriptions, Folders, Technical
Data and Codetables):

96 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 11. Search Criteria

Name Description

Rules and Rule References Search for rule by giving the name of the rule.

Descriptions Search for rules or attributes within a rule by entering some of
text used to describe the rule or attribute.

Folders Search for a folder by giving the name of the folder.

Technical Data Search for any attributes that are specified or not specified
attributes.

Codetables Search for any attributes that are specified as codetables.

Business View
The Business View provides the business user with a rules centric view where the
relevant elements for creating and maintaining the business rules are available. It
consists of a tree or hierarchical view of the rules, rules canvas, business element
palettes and the properties and validation panel.

Rules Outline View: This displays all the top level rules and folders in which
they are located. There is a context menu available on each item within the outline
view:

Table 12. New Menu items

Name Description

Folder (Button) Create a folder by providing a new folder name.

Rule (Button) Create a new Rule by providing a new rule name and the data
type for this rule which will be defaulted to a Boolean type.
The rule will be created in the selected folder. If no folder is
selected the new rule will be created at the root level.

New Folder Create a folder by providing a new folder name.

New Rule Create a new Rule by providing a new rule name and the data
type for this rule which will be defaulted to a Boolean type.
The rule will be created in the selected folder. If no folder is
selected the new rule will be created at the root level.

Delete Delete a folder or rule depending on what is highlighted in
the outline view.

Set Rule Type Create derivation for an attribute. A list of data types is
provided for a new rule.

Move Rule This allows the rules developer to move a rule from one folder
to another folder by selecting the folder name.

Find References To This
Rule

Allows the user to find all the references to the selected rule.

Technical View
The Technical tab displays all classes and attributes for the rule being edited. You
can remove all classes and attributes by again clicking on the context menu
associated with each class or attribute.The actions available in the Business tab in
the Outline View are the following:

Class Outline View: This displays all the top level rules and folders in which
they are located. There is a context menu available on each item within the outline
view:

Cúram Express Rules Reference 97

Table 13. New Menu items

Name Description

Class (Button) Create a class by providing a new class name.

Attribute (Button) Create a new attribute within a given class by providing a
new attribute name. The button will only be enabled once a
class is selected from the outline view otherwise the button
remains inactive.

New Attribute Create a new attribute within a given class by providing a
new attribute name.

Delete Delete a class or attribute depending on what is highlighted in
the tree view.

Set Rule Type Allows the rules developer to create a derivation for an
attribute.

Find References To This
Rule

Allows the user to find all the references to the selected rule.

Diagram Canvas
The diagram canvas provides the drag and drop, technical toggle and pan and
zooming controls

Drag and Drop
A rule element can be dragged and dropped from any palette to the diagram. For
example, drag and drop a "rule" element to an attribute. A visual indicator will
appear on the target if it can accept the rule element being dragged.

Additionally rule elements can be dragged and dropped between rule element
containers. For example, drag and drop a "rule" element from a result section of
the "when" rule element to a result section of another "when" rule element.

Toggle to Show Detailed Diagrams
The CER Editor provides two different types of views for the rule elements. The
business view is a simple version that is aimed at the business rule writer. The
technical view is more detailed and is primarily for the technical rule designer. The
CER editor provides a toggle to switch between the technical and business views.
The toggle icon is located above the pan and zoom controls on the rule canvas.

Pan and Zoom Controls
The CER editor provides pan and zoom controls to allow the user better view and
edit the ruleset. The arrows on the circular control can be used to pan around any
large rules. Clicking on the center button of the pan control will recenter the image
to the starting position. The plus button can be used to zoom in and the minus
button can be used to zoom out:

Tools and Template Palettes
The CER Editor provides four types of rule element palettes and three rule
templates palettes. These palettes contain the following: Business (default),
Business (extended), Data Types and Technical. The templates are grouped into the
following: Household Units, Financial Units, Food Assistance Units and the
Decision Table.

Business Palettes
The Business palettes, both the default and extended include a range of rule
elements that can be used to design the business logic in the diagram form.

98 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 14. Rule Elements on Business Palettes

Image Name Description

Rule The Rule element provides a graphical
representation of the 'reference' expression. See
“Rule” on page 107.

And Rule Group The And Rule Group element provides a graphical
representation of the 'all' expression and returns a
Boolean value. See “And Rule Group” on page 109.

Or Rule Group The Or Rule Group element provides a graphical
representation of the 'any' expression and returns a
Boolean value. See “Or Rule Group” on page 109.

Not The Not element provides a graphical
representation of the 'not' expression and negate a
Boolean value. See “Not” on page 109.

Choose The Choose element provides a graphical
representation of the 'choose' expression and
chooses a value based on a condition being met.
See “Choose” on page 110.

Compare The Compare element provides a graphical
representation of the 'compare' expression and
compares a left-hand-side value with a
right-hand-side value, according to the comparison
provided. See “Compare” on page 110.

When The When element is part of the Choose element
and contains a condition to test, and a value to
return if the condition passes. See “When” on page
110.

Arithmetic The Arithmetic element provides a graphical
representation of the 'arithmetic' expression and
performs an arithmetical calculation on two
numbers (a left-hand-side number and a
right-hand-side number) and optionally rounds the
result to the specified number of decimal places.
See “Arithmetic” on page 110.

MIN The Min element provides a graphical
representation of the 'min' expression and
determines the smallest value in a list (or null if
the list is empty). See “MIN” on page 111.

MAX The Max element provides a graphical
representation of the 'max' expression and
determines the largest value in a list (or null if the
list is empty). See “MAX” on page 111.

Sum The SUM element provides a graphical
representation of the 'sum' expression and
calculates the numerical sum of a list of Number
values. See “SUM” on page 111.

Repeating Rule The Repeating Rule element provides a graphical
representation of the 'dynamiclist' expression and
creates a new list by evaluating an expression on
each item in an existing list. See “Repeating Rule”
on page 111.

Cúram Express Rules Reference 99

Table 14. Rule Elements on Business Palettes (continued)

Image Name Description

Filter The Filter element provides a graphical
representation of the 'filter' expression and creates
a new list containing all the items in an existing list
which meet the filter condition. See “Filter” on
page 112.

Size The Size element provides a graphical
representation of the 'property' expression and the
name of the property is set to 'size'. See “Size” on
page 113.

Otherwise The Otherwise element is part of the Choose
element and contains a value to return. See
“Otherwise” on page 113.

Legislation Change The Legislation Change element provides a graphic
representation of the 'legislationchange' and can
contain more than one Era element. See
“Legislation Change” on page 113.

Era The Era element is a part of the Legislation Change
elements and contains a date entry (empty from),
and a value to return to the Legislation Change
element. See “Era” on page 113.

Data Types Palette
The Data Types palette includes a range of rule elements that can be used to
design the data types in the diagram form.

Table 15. Rule Elements on Data Type Palette

Image Name Description

Boolean The Boolean element provides a graphical
representation of both 'true' and 'false' expression.
By default, the Boolean element is set to true. See
“Boolean” on page 114.

String The String element provides a graphical
representation of the 'String' expression that is a
literal Number constant value. See “String” on
page 114.

Number The Number element provides a graphical
representation of the 'Number' expression that is a
literal Number constant value. See “Number” on
page 114.

Date The Date element provides a graphical
representation of the 'Date' expression that is a
literal Date constant value. See “Date” on page 114.

Codetable The Codetable element provides a graphical
representation of the 'Code' expression that is a
literal constant value representing a code from a
Cúram code table. See “Code Table” on page 115.

Rate The Rate element provides a graphical
representation of the 'rate' expression that is a
literal constant value representing a rate from a
rate table. See “Rate” on page 115.

100 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 15. Rule Elements on Data Type Palette (continued)

Image Name Description

Frequency Pattern The Frequency Pattern element provides a
graphical representation of the 'FrequencyPattern'
expression that is a literal FrequencyPattern
constant value. See “Frequency Pattern” on page
115.

Resource Message The Resource Message element provides a
graphical representation of the 'ResourceMessage'
expression and creates a localizable message from a
property resource. See “Resource Message” on
page 116.

XML Message The XML Message element provides a graphical
representation of the 'XMLMessage' expression and
creates a localizable message from a property
resource. See “Xml Message” on page 116.

Null The null element provides a graphical
representation of 'null'. The null element can be
used in elements like Choose, When, Compare etc...
to compare any value to 'null'. See “Null” on page
117.

Technical Palette
The Technical palette includes a range of rule elements that can be used to design
the technical logic in the diagram form.

Table 16. Rule Elements on Technical Palette

Image Name Description

Create The Create element provides a graphical
representation of the 'create' expression and gets a
new instance of a rule class in the session's
memory. See “Create” on page 117.

Search The Search element provides a graphical
representation of the 'readall' expression and
retrieves all rule object instances of a rule class
which were created by client code. See “Search” on
page 117.

Fixed List The Fixed List element provides a graphical
representation of the 'fixedlist' expression and
creates a new list from items known at rule set
design time. See “Fixed List” on page 118.

Property The Property element provides a graphical
representation of the 'property' expression. The
Property element obtains a property of a Java
object. See “Property” on page 118.

Custom Expression Custom Expression provides a graphical
representation for any user defined valid XML
node. See “Custom Expression” on page 119.

Existence Timeline The Existence Timeline element provides a
graphical representation of the 'existencetimeline'
expression. See “Existence Timeline” on page 119.

Timeline The Timeline element provides a graphical
representation of the 'Timeline' expression. See
“Timeline” on page 120.

Cúram Express Rules Reference 101

Table 16. Rule Elements on Technical Palette (continued)

Image Name Description

Interval The Interval element provides a graphical
representation of the 'Interval' expression.. See
“Interval” on page 120.

Combine Succession
Set

The Combine Succession Set element provides a
graphical representation of the
'combineSuccessionSet' expression. See
“CombineSuccessionSet” on page 120.

Call The Call element provides a graphical
representation of the 'call' expression and calls out
to a static Java method to perform a complex
calculation. See “Call” on page 121.

Period Length The Period Length element provides a graphical
representation of the 'periodlength' expression and
calculates the amount of time units between two
dates. See “Period Length” on page 122.

ALL The ALL element provides a graphical
representation of the 'all' expression and returns a
Boolean value. See “ALL” on page 122.

ANY The ANY element provides a graphical
representation of the 'all' expression and returns a
Boolean value. See “ANY” on page 122.

This The This element provides a graphical
representation of the 'this' expression that is a
reference to the current Rule Object. See “This” on
page 123.

Sort The Sort element provides a graphical
representation of the 'sort' expression. Sort takes a
list as child element and performs sorting on it..
See “Sort” on page 123.

Shared Rule
Reference

Shared Rule Reference is basically a normal
Reference with a Create element in it. See “Shared
Rule Reference” on page 123.

CONCAT The Concat element provides a graphical
representation of the 'concat' expression and creates
a message by concatenating a list of values. See
“CONCAT” on page 124.

Join Lists The JoinLists element provides a graphical
representation of the 'joinlists' expression and
creates a new list by joining together some existing
lists. See “Join Lists” on page 124.

Household Units Template
The Household Units Template includes a range of rule elements that can be used
to design the Household Units in the diagram form.

Table 17. Rule Elements on Household Units Template Palette

Image Name Description

Household
Composition

See “Household Composition” on page 125.

102 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 17. Rule Elements on Household Units Template Palette (continued)

Image Name Description

Household Category See “Household Category” on page 125.

Financial Units Template
The Financial Units Template includes a range of rule elements that can be used to
design the Financial Units in the diagram form.

Table 18. Rule Elements on Financial Units Template Palette

Image Name Description

Financial Unit See “Financial Unit” on page 125.

Financial Unit
Category

See “Financial Unit Category” on page 125.

Financial Unit
Member

See “Financial Unit Member” on page 125.

Food Assistance Units Template
The Food Assistance Units template includes a range of rule elements that can be
used to design the Food Assistance Units in the diagram form.

Table 19. Rule Elements on Food Assistance Units Template Palette

Image Name Description

Food Assistance Unit TODO: link to See food assistance unit

Food Assistance
Single Person
Category

TODO: link to See food assistance single person
category “Food Assistance Single Person Category”
on page 126.

Food Assistance Multi
Person Category

See “Food Assistance Multi Person Category” on
page 126.

Meal Group Members See “Meal Group Members” on page 126.

Relatives See “Relatives” on page 126.

Discard See “Discard” on page 126.

Member for
household unit

See “Member for household unit” on page 126.

Optional Members See “Optional Members” on page 126.

Exceptions See “Exceptions” on page 126.

Decision Table Template
The Decision Table Template contains the decision table element which is used to
create decision tables.

Cúram Express Rules Reference 103

Table 20. Elements on Decision Table Palette

Image Name Description

Decision Table The Decision Table provides a graphical
representation of a 'decision table'. See “Decision
Table” on page 127 for more information.

Rule Element Pop-up Menus
The Rule Element Pop-up Menu provides general items (functions) for all rule
elements and specific items (functions) for an individual rule element. See “Rule
Element Reference for CER Editor Palettes” on page 106 for the specific rule
element pop-up menu items.

Table 21. General Pop-up Menus items

Name Description

Cut Cut the rule element and be ready to move to other location.

Copy Copy the existing rule element and be ready to create a new
copy in other location.

Delete Delete the rule element from the diagram.

Collapse Collapse the children of the rule element.

Expand Expand the children of the rule element.

Make Timeline Only available for the technical view. Create a timeline for the
rule element.

Make Timeline Interval Only available for the technical view. Create a timeline interval
for the rule element.

Remove Timeline Only available for the technical view. Remove a timeline from
the rule element.

Remove Timeline Interval Only available for the technical view. Remove a timeline
interval from the rule element.

Rule Element Properties
This section describes the general, rule class and attribute properties. See “Rule
Element Reference for CER Editor Palettes” on page 106 for the specific rule
element properties.

Collapsible Property and Validation Panels
The property and validation panels can be expanded and collapsed by clicking on
the toggle button on the panel containers border. Expanding the property and
validation panels reveals the currently selected diagram property details.
Collapsing the property and validation panel hides these details to provide more
space to view the diagram canvas.

Property panels have been grouped by Business and Technical tabs to show
various property information based on the perspective of the rules developer. For
example, a business rules developer would not be expected to enter the tags for a
rule element as this level of detail would be completed by the technical rule
developer.

104 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

General properties for all rule elements
Table 22. General properties

Name Description

Display Name This is a localisable name. The field supports multi byte and
accented characters. This field is available in the Business Tab.

Description The description support free-text entries for either rules or
attributes. Multi byte and accented characters are supported. It
requires the rules developer to enter a meaningful business
description of the rule or attribute. This field is available in the
Business Tab. The content of the description field is localizable
and can contain multi byte or accented characters.

Legislation Link A link to any legislation website. This field is available in the
Business tab.

Display Name ID An ID for the name of the rule element. This field is available
in the Technical tab.

Tag The tag annotation supports free-text tag entries for any
element that supports annotations. It is used for searching the
rule element. This field is available in the Business tab.

Properties for Rule class
Table 23. Rule Class Properties

Name Description

Primary Attribute Select an attribute from a drop-down to be a primary attribute
of this rule class. This is visible in the Business Tab.

Abstract The class will be an abstract class if this property is selected.
This is visible in the Business Tab.

Extends Users can extend this rule class from other rule class that
either belongs to the current or external rule set by the Change
Rule Set and Rule Class Wizard. This is visible in the Business
Tab.

Class The name of the rule Class. This is visible in the Technical Tab.

SuccessionSet The SuccessionSet annotation will be added if this property is
selected. Users need to select date attributes from both "Start
Date Attribute" and "End Date Attribute" drop-downs. This is
visible in the Technical Tab.

ActiveInEditSuccessionSet The ActiveInEditSuccessionSet annotation will be added if this
property is selected. Users need to select date attributes from
both "Start Date Attribute" and "End Date Attribute"
drop-downs. This is visible in the Technical Tab.

Properties for Attribute
Table 24. Attribute Properties

Name Description

Data Type The data type of an Attribute. If the user wishes to change the
data type into a Timeline, check the Timeline box. If the user
wishes to change the data type to a list, check the list box.
This is visible in the Business Tab.

Cúram Express Rules Reference 105

Table 24. Attribute Properties (continued)

Name Description

Display The Display annotation will be added if this property is
selected. It requires users to enter a value. This is visible in the
Business Tab.

Display Subscreen The Display Subscreen annotation will be added if this
property is selected. This is visible in the Business Tab.

Class The name of the Rule Class the attribute belongs to. This is
visible in the Technical Tab.

Attribute The Name of the Attribute. This is visible in the Technical Tab.

Related Succession Set The Related Succession Set annotation will be added if this
property is selected. It requires users to select either one of
them (none, parent, child) from the drop-down. This is visible
in the Technical Tab.

Related Evidence Type The Related Evidence Type annotation will be added if this
property is selected. It requires users to select either one of
them (none, parent, child) from the drop-down. This is visible
in the Technical Tab.

Abstract The attribute will be set to an "abstract" rule element and the
class will be an abstract class if this property is selected. This
is visible in the Technical Tab.

Rule Element Wizards
Change Rule Set and Rule Class Wizards are used by some rule elements (for
example, Rule, Create rule element) to link to other rule class of either current rule
set or external rule set. The three available options in this wizard are:

Table 25. Rule Element Wizard Table

Name Description

Create an Empty Rule
Reference

This allows the rules writer to create a placeholder for a Rule
element which can edited at a later point whilst developing
the rule.

Create New Rule This allows the rules writer to create a new rule by specifying
the name of the rule and the result type of the new rule from
the drop-down combo box.

Use Existing Rule This allows the rules writer to choose from an already created
rule by selecting the Rule from the drop-down combo box. If
the rule is not contained in the existing rule the rules writer
can select another ruleset by entering the name of the ruleset
and hitting the search button. This will open another dialog
box allowing the rules writer to choose the appropriate Rule
Set.

Rule Element Reference for CER Editor Palettes
Definitions of all the rule elements included with the CER Editor. The rule
elements are categorized by different types of rule element palettes; see the
previous information for helpful categorizations of these rule elements.

106 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Introduction
This section defines all the rule elements included with the CER Editor. The rule
elements below are categorized by different types of rule element palettes; see the
previous sections for helpful categorizations of these rule elements.

Palettes
The palettes can be un-docked by dragging the palette from the original position
onto the diagram canvas. To re-dock the palette simply drag the palette back to the
right hand side of the screen.

Collapsible Palettes
The palette container can be expanded and collapsed by clicking on the toggle
button on the palette containers border. Expanding the palette container reveals the
currently selected palette name and textual descriptions of each of the rule
elements. Collapsing the palette container hides the textual descriptions and
reduces the amount of space the container takes up on the diagram.

Rule Element Reference for the Default and Extended
Business Palettes

Rule
The Rule element provides a graphical representation of the 'rule' expression and
negates a Boolean value. No other palette elements can be added to the Reference
element. The Rule element can be added to other palette elements, for example,
And Rule Group, Or Rule Group or Repeating Rule. There are seven different
types of scenarios to use the Rule elements. A reference to a rule can be added
when a user is in the Business View (See Section 2.3.1, of the Working With CER)
and in the Technical View (See Section 2.3.2, of the Working With CER). When a
user is in the Business View the following options are available:
v Empty Reference - users can create an empty reference;
v Create New Rule - users can create a new rule; and
v Use Existing Rule - users can select a rule from the current ruleset or perform a

search of external rulesets and select a rule from an external ruleset.

When a user is in the Technical View the following options are available:
v Use Existing Rule - users can select a rule from the current ruleset or perform a

search of external rulesets and select a rule from an external ruleset; and
v Create New Rule - users can create a new rule.

If a user is in the Business View and they wish to add a reference to a specific Rule
Class or Attribute, the user must switch to the Technical View.

Table 26. Types of scenarios to use the Rule elements

Name Description

Nested Reference A nested reference can be created on the reference which
points to an attribute that is of another rule class type, for
example, it is not contained in the existing class. The outer
most reference attribute is an object of inner reference attribute
class. This structure can be created only if the inner reference
attribute, which is of another rule class type, is located in the
class where the inner reference is being created.

Cúram Express Rules Reference 107

Table 26. Types of scenarios to use the Rule elements (continued)

Name Description

Nested Reference with
Create

A nested reference can be created on the reference which
points to an attribute that is of another rule class type, for
example, it is not contained in the existing class, but the
attribute is not located in the current class. The outer most
reference attribute is an object of inner reference attribute
class. This structure can be created only if the inner reference
attribute (which is of another rule class type) is located in the
class which is not the class where the inner reference is being
created.

CurrentUnitMemeber To refer to the member in the current unit that satisfies the
exceptional test condition.

FARelationship To refer to the class that is used as the relationship record for
the meal group member.

FAException To refer to a class that is used to check if other members in a
unit satisfy the exceptional condition.

HC Current To refer to a current list element (like Household member etc)
in the household composition HCCurrent is used.

Current To refer to a current list element in the lists like dynamiclist
Current element is used. If an attribute of the current list
element class has to be referred then a reference pointing to
that attribute is wrapped around the current element.

The following table lists specific properties items for this element:

Table 27. Reference properties items

Name Description

Class The name of the Rule Class. This is visible in the Business Tab.

Attribute The name of an attribute. This is visible in the Business Tab.

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is active when the Single Item Box is
checked.

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found. This is active
when the Single Item Box is checked.

The following table lists specific pop-up menu items for this element:

Table 28. Rule Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Rule element in the Or Rule Group element.

Wrap in AND Wrap the Rule element in the And Rule Group element.

Edit Rule Edit the Rule element by choosing the rule you want to refer
to. See the Edit Rule Wizard as follows.

Open Diagram For This
Rule

Opens the diagram for the rule that is being referenced in a
new diagram tab.

108 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 28. Rule Element Pop-up Menus items (continued)

Name Description

Include Rule Logic Here If the Rule element is referring to another rule (in the same
ruleset or in another external ruleset), the logic for that rule
can be included in the current rule being viewed in the editor.

And Rule Group
The And Rule Group element provides a graphical representation of the 'all'
expression and returns a Boolean value. It operates on a list of Boolean values to
determine whether all of the list values are true. The list of Boolean values is
typically provided by a fixedlist. Other palette elements, e.g., Reference, Repeating
Rule or Choose that provide a list of Boolean values can be added to the empty
member of the And element for calculation. The And Rule Group element can be
added to other palette elements, for example, And Rule Group, Or Rule Group or
When.

The following table lists specific pop-up menu items for this element:

Table 29. And Rule Group Element Pop-up Menus items

Name Description

Wrap in AND Wrap the And Rule Group element in another And Rule
Group element.

Wrap in OR Wrap the And Rule Group element in the Or Rule Group
element.

Change to Or Change the And Rule Group element to the Or Rule Group
element.

Or Rule Group
The Or Rule Group element provides a graphical representation of the 'any' of
Boolean values can be added to the empty member of the Or Rule Group element
for calculation. The Or Rule Group element can be added to other palette elements,
for example, And Rule Group, Or Rule Group or When.

The following table lists specific pop-up menu items for this element:

Table 30. Or Element Pop-up Menus items

Name Description

Wrap in Or Rule Group Wrap the Or Rule Group element in another Or Rule Group
element.

Wrap in And Rule Group Wrap the Or Rule Group element in the And Rule Group
element.

Change to And Change the Or Rule Group element to the And Rule Group
element.

Not
The Not element provides a graphical representation of the 'not' expression and
negate a Boolean value. Other palette elements, e.g., Reference, Or or And that
return a Boolean value can be added to the Not element. The Not element can be
added to other palette elements, for example, And Rule Group, Or Rule Group or
Repeating Rule.

The following table lists specific pop-up menu items for this element:

Cúram Express Rules Reference 109

Table 31. Not Element Pop-up Menus items

Name Description

Wrap in And Wrap the Not element in another And Rule Group element.

Wrap in Or Wrap the Not element in the Or Rule Group element.

Choose
The Choose element provides a graphical representation of the 'choose' expression
and chooses a value based on a condition being met. The edit choose wizard
provides nine data types that are String, Number, Boolean, Date, Datetime,
Codetable, Message, timeline, Codetable, Rule Class, Java Class and Message. Only
When and Otherwise elements can be added to the Choose element. The Choose
element can be added to other palette elements, for example, And Rule Group, Or
Rule Group or the complex view of the Compare.

The following table lists specific pop-up menu items for this element:

Table 32. Choose Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Choose element in Or Rule Group element.

Wrap in AND Wrap the Choose element in the And Rule Group element.

Edit Choose Provide a list of data types for Choose. See the Edit Choose
Dialog box as follows.

Compare
The Compare element provides a graphical representation of the 'compare'
expression and compares a left-hand-side value with a right-hand-side value,
according to the comparison provided. When a compare is added to a diagram it
creates empty members for the left-hand-side and right-hand-side arguments. The
Compare element can be added to other palette elements, for example, When, And
Rule Group or Repeating Rule.

The following table lists specific pop-up menu items for this element:

Table 33. Compare Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Compare element in Or Rule Group element.

Wrap in AND Wrap the Compare element in the And Rule Group element.

When
The When element is part of the Choose element and contains a condition to test,
and a value to return if the condition passes. Other palette elements, for example,
Code or Any can be added to the empty condition of the When element. Other
palette elements, for example, Number or Reference can be added to the empty
value of the When element.

Arithmetic
The Arithmetic element provides a graphical representation of the 'arithmetic'
expression and performs an arithmetical calculation on two numbers (a
left-hand-side number and a right-hand-side number) and optionally rounds the
result to the specified number of decimal places. Other palette elements, e.g., Max,

110 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Min or Reference can be added to the Arithmetic element. The Arithmetic element
can be added to other palette elements, e.g., When or Repeating Rule.

The following table lists specific properties items for this element:

Table 34. Arithmetic properties items

Name Description

Decimal Places A place for a user to enter how many decimal places. This is
visible in the Business Tab.

Rounding Provide different type of rounding (ceiling, down, floor, half
down, half even, half up, up). This is visible in the Business
Tab.

MIN
The Min element provides a graphical representation of the 'min' expression and
determines the smallest value in a list (or null if the list is empty). The Min
element has a fixedlist that contains any type of comparable object. Other palette
elements, for example, Number or Rule Reference can be added to the Empty
Member (fixedlist) of the Min element. The Min element can be added to other
palette elements, for example, When or Repeating Rule.

The following table lists specific pop-up menu items for this element:

Table 35. Min Element Pop-up Menus items

Name Description

Change To Max Change the Min element to the Max element.

MAX
The Max element provides a graphical representation of the 'max' expression and
determines the largest value in a list (or null if the list is empty). The Max element
has a fixedlist that contains any type of comparable object. Other palette elements,
for example, Number or Rule Reference can be added to the Empty Member
(fixedlist) of the Max element. The Max element can be added to other palette
elements, for example, When or Repeating Rule.

The following table lists specific pop-up menu items for this element:

Table 36. Max Element Pop-up Menus items

Name Description

Change To Min Change the Max element to the Min element.

SUM
The SUM element provides a graphical representation of the 'sum' expression and
calculates the numerical sum of a list of Number values. The SUM element has a
fixedlist that contains any type of numerical object. Other palette elements, for
example, Number or Rule Reference can be added to the Empty Member (fixedlist)
of the SUM element. The SUM element can be added to other palette elements, for
example, When or Repeating Rule.

Repeating Rule
The Repeating Rule element provides a graphical representation of the
'dynamiclist' expression and creates a new list by evaluating an expression on each
item in an existing list. Other palette elements, for example, Rule Reference can be

Cúram Express Rules Reference 111

added to the empty list of the Repeating Rule element. Other palette elements, for
example, Sum or Choose can be added to the empty member (listitemexpression)
of the Repeating Rule element. The Repeating Rule element can be added to other
palette elements, for example, And Rule Group, Or Rule Group or When.

The following table lists specific properties items for this element:

Table 37. Repeating Rule properties items

Name Description

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is active when the 'Single Item' is checked.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is active when the 'Single Item' is checked.

The following table lists specific pop-up menu items for this element:

Table 38. Repeating Rule Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Repeating Rule element.

Concatenate Results Concatenate the items in the Repeating Rule element.

Join Inner Lists Join the lists together to make one list.

Succeed On Any Wrap the Repeating Rule element in the Any.

Succeed On All Wrap the Repeating Rule element in the All.

Sum Items Sum up a list of numbers.

Filter
The Filter element provides a graphical representation of the 'filter' expression and
creates a new list containing all the items in an existing list which meet the filter
condition. Other palette elements, e.g., Reference can be added to the empty list of
the Filter element. Other palette elements, e.g., Sum or Choose can be added to the
empty member (listitemexpression) of the Filter element. The Filter element can be
added to other palette elements, e.g., And, Or or When.

The following table lists specific properties items for this element:

Table 39. Filter properties items

Name Description

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is active when the 'Single Item' is checked.

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found. This is active
when the 'Single Item' is checked.

The following table lists specific pop-up menu items for this element:

112 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 40. Filter Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Filter element.

Concatenate Results Concatenate the items in the Filter element.

Join Inner Lists Join the lists together to make one list.

Wrap in OR Wrap the Filter element in Or Rule Group element.

Wrap in AND Wrap the Filter element in the And Rule Group element.

Size
The Size element provides a graphical representation of the 'property' expression
and the name of this element is set to 'size'. The Size element obtains a property of
a Java object. Other palette elements, for example, Rule Reference or Repeating
Rule can be added to the Size element. The Size element can be added to other
palette elements, for example, When or Repeating Rule.

The following table lists specific properties items for this element:

Table 41. Size properties items

Name Description

Value The name of the property element.

Otherwise
The Otherwise element is part of the Choose element and contains a value to
return. Other palette elements, for example, Number or Rule Reference can be
added to the empty value of the Otherwise element.

Legislation Change
The Legislation Change element provides a graphic representation of the
'legislationchange' and can contain more than one Era element. The Legislation
Change wizard provides ten data types (String, Number, Boolean, Date, Datetime,
List, Message, Codetable, Ruleclass and Javaclass). The selected data type is used
to define a returning value of the Era element.

The following table lists specific pop-up menu items for this element:

Table 42. Legislation Change Element Pop-up Menus items

Name Description

Edit Legislation Change Edit the Legislation Change by choosing a type for the new
rule. See the Edit Legislation Change Dialog box as follows.

Era
The Era element is a part of the Legislation Change elements and contains a date
entry (empty from), and a value to return to the Legislation Change element. Other
palette elements, for example, Date or Rule Reference can be added to the empty
date entry of the Era element. Other palette elements, for example, Choose or
Reference can be added to the empty value of the Era element.

Cúram Express Rules Reference 113

Rule Element Reference for Data Types Palette

Boolean
The Boolean element provides a graphical representation of both 'true' and 'false'
expression. By default, the Boolean element is set to true. The Boolean element can
be added to other palette elements, for example, And Rule Group, Or Rule Group
or Repeating Rule elements. No element can be added to the Boolean element.

The following table lists specific pop-up menu items for this element:

Table 43. Boolean Pop-up Menus items

Name Description

Change To False Change the boolean rule element to false if its value is true.

Change To True Change the boolean rule element to true if its value is false.

String
The String element provides a graphical representation of the 'String' expression
that is a literal Number constant value. The String element can be added to other
palette elements, for example, When or Repeating Rule. No element can be added
to the String element.

The following table lists specific properties items for this element:

Table 44. String properties items

Name Description

Value The value of the string. This is visible in the Business Tab.

Number
The Number element provides a graphical representation of the 'Number'
expression that is a literal Number constant value. The Number element can be
added to other palette elements, for example, When or Repeating Rule. No element
can be added to the Number element.

The following table lists specific properties items for this element:

Table 45. Number properties items

Name Description

Value The value of the number. This is visible in the Business Tab.

Date
The Date element provides a graphical representation of the 'Date' expression that
is a literal Date constant value. The Date element can be added to other palette
elements, for example, PeriodLength or Era. No element can be added to the Date
element.

The following table lists specific properties items for this element:

Table 46. Date properties items

Name Description

Value The value of the date. The default is set to today's date. This is
visible in the Business Tab.

114 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 46. Date properties items (continued)

Name Description

Zero Date By checking the 'Zero Date' checkbox, the user can use the
Cúram 'Zero Date'. This is visible in the Business Tab.

Code Table
The Code Table element provides a graphical representation of the 'Code'
expression that is a literal constant value representing a code from a Cúram code
table. The CodeTable element can be added to other palette elements, for example,
When. No element can be added to the CodeTable element.

The following table lists specific properties items for this element:

Table 47. Code Table properties items

Name Description

Codetable Name The name of the code table. Leave blank and search for all
available codetables. Input a value and search for a codetable
starting with the input value. This is visible in the Business
Tab.

Codetable Value A dropdown box containing all the items contained in selected
codetable. This is visible in the Business Tab.

Rate
The Rate element provides a graphical representation of the 'rate' expression that is
a literal constant value representing a rate from a Cúram rate table. The Rate
element can be added to other palette elements, for example, When. No element
can be added to the Rate element.

The following table lists specific properties items for this element:

Table 48. Rate properties items

Name Description

Table Name The name of the rate table. This is visible in the Business Tab.

Row The row's value of the rate table. This is visible in the Business
Tab.

Column The column's value of the rate table. This is visible in the
Business Tab.

Frequency Pattern
The Frequency Pattern element provides a graphical representation of the
'FrequencyPattern' expression that is a literal FrequencyPattern constant value. The
Frequency Pattern element can be added to other palette elements, for example,
When or Create. No element can be added to the Frequency Pattern element.

The following table lists specific properties items for this element:

Table 49. Frequency Pattern properties items

Name Description

Pattern The frequency pattern. This is visible in the Business Tab.

The following table lists specific pop-up menu items for this element:

Cúram Express Rules Reference 115

Table 50. Filter Pop-up Menus items

Name Description

Edit Frequency Pattern Edit the selected frequency pattern.

Resource Message
The Resource Message element provides a graphical representation of the
'ResourceMessage' expression and creates a localizable message from a property
resource. The Resource Message element can be added to other palette elements,
for example, When or Create. No element can be added to the Resource Message
element.

The following table lists specific properties items for this element:

Table 51. Resource Message properties items

Name Description

Key Resource Bundle objects contain an array of key-value pairs.
You specify the key, which must be a String, when you want
to retrieve the value from the Resource Bundle. This is visible
in the Business Tab.

Resource Bundle The name of the resource bundle. This is visible in the
Business Tab.

The following table lists specific pop-up menu items for this element:

Table 52. Resource Message Pop-up Menus items

Name Description

New Argument Add a new argument to the resource message rule element.

Remove Argument Remove an argument from the resource message rule element.

Xml Message
The Xml Message element provides a graphical representation of the 'XmlMessage'
expression and creates a message from the free-form XML content. The Xml
Message element can be added to other palette elements, e.g., When or Create. No
element can be added to the Xml Message element.

The following table lists specific properties items for this element:

Table 53. XML Message properties items

Name Description

Value The value of the Xml resource's content.

The following table lists specific pop-up menu items for this element:

Table 54. Xml Message Pop-up Menus items

Name Description

Edit Message Provide a dialog box in which a user can enter the content of
the message.

116 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Null
The null element provides a graphical representation of the 'null'. The null element
can be used in element like Choose/When, Compare etc. to compare any value to
null.

Rule Element Reference for Technical Logic Palette

Create
The Create element provides a graphical representation of the 'create' expression
and gets a new instance of a rule class in the session's memory. The Create element
supports two types of parameters (standard and the mandatory). Other palette
elements, for example, Rule Reference, Repeating Rule or Choose can be added to
the parameters of the Create element. The Create element can be added to other
palette elements, for example, Repeating Rule or When.

The following table lists specific properties items for this element:

Table 55. Create properties items

Name Description

Class The name of the rule class that is chosen as a type. This is
visible in the Technical Tab.

The following table lists specific pop-up menu items for this element:

Table 56. Create Element Pop-up Menus items

Name Description

Edit Create Edit the Create element by choosing the rule class and rule set
you want to refer to.

New Parameter Create a new parameter by selecting the attribute you want to
add a parameter for.

New Mandatory
Parameter

Create a new mandatory parameter.

Search
The Search element provides a graphical representation of the 'readall' expression
and retrieves all rule object instances of a rule class which were created by client
code. It can retrieve a single item from a list if the 'singleitem' expression is
selected. The Search element can be added to other palette elements, for example,
Filter or Create. No element can be added to the Search element.

The following table lists specific properties items for this element:

Table 57. Search properties items

Name Description

Class The name of the rule class that is chosen as a type. This is
visible in the Technical Tab.

Rule Set The name of the rule set that includes the chosen rule class.
This is visible in the Technical Tab.

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Cúram Express Rules Reference 117

Table 57. Search properties items (continued)

Name Description

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is activated when the 'Single Item' box is
checked.

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found. This is activated
when the 'Single Item' box is checked.

The following table lists specific pop-up menu items for this element:

Table 58. Search Element Pop-up Menus items

Name Description

Edit Search Edit the Search element by choosing the rule class and rule set
you want to refer to.

Fixed List
The Fixed List element provides a graphical representation of the 'fixedlist'
expression and creates a new list from items known at rule set design time. The
Fixed List wizard provides nine data types that are String, Number, Boolean, Date,
Date time, Codetable Entry, Rule Class, Java Class and Message. The sub-list
function is provided. Other palette elements, for example, Rule Reference,
Repeating Rule or Choose can be added to the empty member of the Fixed List
element. The Fixed List element can be added to other palette elements, for
example, And Rule Group, Or Rule Group or When. The fixed list element will be
wrapped by other rule element depending on which data type is selected. For
example, And Rule Group/Or Rule Group rule elements for the boolean type,
Concat rule element for the string type, Max/Min/Sum rule elements for the
number type.

The following table lists specific properties items for this element:

Table 59. FixedList properties items

Name Description

Data Type The data type of the fixedlist. This should correspond to the
data type of the attribute. If the user wishes to change the data
type into a Timeline, check the Timeline box. If the user
wishes to change the data type to a list, check the list box.
This is visible in the Business Tab.

Property
The Property element provides a graphical representation of the 'property'
expression. The Property element obtains a property of a Java object. Other palette
elements, for example, Rule Reference or Repeating Rule can be added to the
Property element. The Property element can be added to other palette elements, for
example, When or Repeating Rule.

The following table lists specific properties items for this element:

Table 60. Property properties items

Name Description

Value The name of the property element.

118 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The following table lists specific pop-up menu items for this element:

Table 61. Property Pop-up Menus items

Name Description

Wrap in OR Wrap the property element in the Or Rule Group element.

Wrap in AND Wrap the property element in the And Rule Group element.

New Argument Add a new argument to the property rule element.

Remove Argument Remove an argument from the Property rule element.

Important: Since Cúram V6, CER and the Dependency Manager support the
automatic recalculation of CER-calculated values if their dependencies change.

If you change the implementation of a property method, CER and the Dependency
Manager will not automatically know to recalculate attribute values that were
calculated using the old version of your property method.

Once a property method has been used in a production environment for stored
attribute values, rather than changing the implementation you should instead
create a new property method (with the required new implementation), and
change your rule sets to use the new property method. When you publish your
rule set changes to point to the new property method, CER and the Dependency
Manager will automatically recalculate all instances of the affected attribute values.

Custom Expression
Custom Expression provides a graphical representation for any user defined valid
XML node. Custom Expression can be added to any element in CER and its
mandatory for the user to make sure that the Custom Expression nodes names do
not match with any CER language node names.

The following table lists specific pop-up menu items for this element:

Table 62. Custom Expression Pop-up Menus items

Name Description

Edit Custom Expression Displays the popup to edit the custom expression.

Existence Timeline
The Existence Timeline element provides a graphical representation of the
'existencetimeline' expression. Other palette elements, for example, Date or Rule
Reference can be added FromDate and ToDate of the Existence Timeline element.
Other palette elements, for example, Date or Rule Reference can be added
preExistenceValue, postExistenceValue and ExistenceValue of the Existence
Timeline element. The Existence Timeline element can be added to other palette
elements, for example, Repeating Rule.

The following table lists specific properties items for this element:

Table 63. Existence Timeline properties items

Name Description

Data Type The data type of the Existence Timeline. If the user wishes to
change the data type into a Timeline, check the Timeline box.
If the user wishes to change the data type to a list, check the
list box. This is visible in the Business Tab.

Cúram Express Rules Reference 119

The following table lists specific pop-up menu items for this element:

Table 64. Existence Timeline Element Pop-up Menus items

Name Description

Edit Existence Timeline Provide 10 data types (String, Number, Boolean, Date,
Datetime, Codetable Entry, Rule class, Java Class, List and
Message) for an interval type of the existence timeline rule
element.

Timeline
The Timeline element provides a graphical representation of the 'Timeline'
expression. An initial value can be set for a Timeline element using the menu
option on it. Other palette elements, for example, Interval, FixedList, Repeating
Rule etc. can be added to the Timeline element.

The following table lists specific properties items for this element:

Table 65. Existence Timeline properties items

Name Description

Data Type The data type of the Timeline. If the user wishes to change the
data type into a Timeline, check the Timeline box. If the user
wishes to change the data type to a list, check the list box.
This is visible in the Business Tab.

The following table lists specific pop-up menu items for this element:

Table 66. Timeline Element Pop-up Menus items

Name Description

Add Intervals Adds intervals to the Timeline

Add Initial Value Adds the initial value to the Timeline

Remove Intervals Removes intervals from the Timeline

Remove Initial Value Removes the initial value from the Timeline

Edit Timeline Shows the Timeline wizard to edit the Timeline

Interval
The Interval element provides a graphical representation of the 'Interval'
expression. Other palette elements, for example, Date or Reference can be added
FromDate and ToDate of the Existence Timeline element. Interval can only be
added to the Intervals element of a Timeline element. Interval type can be set
using the interval wizard. Interval element contains a start element and a value
element as child elements.

The following table lists specific pop-up menu items for this element:

Table 67. Interval Element Pop-up Menus items

Name Description

Edit Interval Shows the wizard to edit the interval

CombineSuccessionSet
The CombineSuccessionSet element provides a graphical representation of the
'combineSuccessionSet' expression. Other palette elements, for example, Filter or

120 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Fixed List can be added to the CombineSuccessionSet element. The
CombineSuccessionSet element can be added to other palette elements, for
example, When or Create.

The following table lists specific pop-up menu items for this element:

Table 68. CombineSuccessionSet Element Pop-up Menus items

Name Description

Edit
CombineSuccessionSet

Edit the CombineSuccessionSet element by choosing the rule
class and rule set you want to refer to.

Call
The Call element provides a graphical representation of the 'call' expression and
calls out to a static Java method to perform a complex calculation. The new
argument can be added to the Call element. Other palette elements, for example,
Date, Period Length or Rule Reference can be added to the argument of the Call
element. The Period Length element can be added to other palette elements, for
example, Create.

The following table lists specific properties items for this element:

Table 69. Call properties items

Name Description

Class The name of the class that has the calling method. This is
visible in the Technical Tab.

Method Name The name of the method that will be called. This is visible in
the Technical Tab.

Date Type The return type of the call. This should be the same as the
data type of the attribute. If the user wishes to change the data
type into a Timeline, check the Timeline box. If the user
wishes to change the data type to a list, check the list box.
This is visible in the Business Tab.

The following table lists specific pop-up menu items for this element:

Table 70. Call Pop-up Menus items

Name Description

Wrap in AND Wrap the call rule element in the And Rule Group element.

Wrap in OR Wrap the call rule element in the Or Rule Group element.

New Argument Add a new argument to the call rule element.

Remove Argument Remove an argument from the call rule element.

Important: Since Cúram V6, CER and the Dependency Manager support the
automatic recalculation of CER-calculated values if their dependencies change.

If you change the implementation of a static method, CER and the Dependency
Manager will not automatically know to recalculate attribute values that were
calculated using the old version of your static method.

Once a static method has been used in a production environment for stored
attribute values, rather than changing the implementation you should instead
create a new static method (with the required new implementation), and change

Cúram Express Rules Reference 121

your rule sets to use the new static method. When you publish your rule set
changes to point to the new static method, CER and the Dependency Manager will
automatically recalculate all instances of the affected attribute values.

Period Length
The Period Length element provides a graphical representation of the
'periodlength' expression and calculates the amount of time units between two
dates. Other palette elements, for example, Date, Call or Rule Reference can be
added to the Period Length element. The Period Length element can be added to
other palette elements, for example, Create.

The following table lists specific properties items for this element:

Table 71. Period Length properties items

Name Description

Unit Provide four types of units (days, weeks, months, years) for
the period length rule element. This is visible in the Technical
Tab.

EndDateInclusion Provide two types of date inclusions (inclusive or exclusive).
This is visible in the Technical Tab.

ALL
The ALL element provides a graphical representation of the 'all' expression and
returns a Boolean value. It operates on a list of Boolean values to determine
whether all of the list values are true. The ALL element does not have a fixedlist
with it. Other palette elements, for example, Repeating Rule or Fixed List can be
added to the ALL element. The ALL element can be added to other palette
elements, for example, Repeating Rule.

The following table lists specific pop-up menu items for this element:

Table 72. ALL Element Pop-up Menus items

Name Description

Wrap in OR Wrap the And Rule Group element in another Or Rule Group
element.

Wrap in AND Wrap the And Rule Group element in another And Rule
Group element.

Change to OR Change the And Rule Group element to the Or Rule Group
element.

ANY
The ANY element provides a graphical representation of the 'any' expression and
returns a Boolean value. It operates on a list of Boolean values to determine
whether any of the list values are true. The ANY element does not have a fixedlist
with it. Other palette elements, for example, Repeating Rule or Fixed List can be
added to the ANY element. The ANY element can be added to other palette
elements, for example, Repeating Rule.

The following table lists specific pop-up menu items for this element:

122 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 73. ANY Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Or Rule Group element in another Or Rule Group
element.

Wrap in AND Wrap the Or Rule Group element in the And Rule Group
element.

Change to AND Change the Or Rule Group element to the And Rule Group
element.

This
The This element provides a graphical representation of the 'this' expression that is
a reference to the current Rule Object. The This element can be added to other
palette elements, for example, When or Any. No element can be added to the This
element.

Sort
The Sort element provides a graphical representation of the 'sort' expression. Sort
takes a list as child element and performs sorting on it.

The following table lists specific pop-up menu items for this element:

Table 74. ANY Element Pop-up Menus items

Name Description

New Ascending Sort Items Allows to add an ascending sort item.

New Descending Sort
Items

Allows to add a descending sort item.

Shared Rule Reference
Shared Rule Reference is basically a normal Reference with a Create element in it.
Shared Rule reference shows a wizard that displays the names of the Rule classes
that have Primary attribute set in the current rule set. Shared Rule Reference can
be edited by selecting the "Edit Shared Rule Reference" menu option on the
diagram. A shared rule is a class with a primary attribute in it. The Shared Rule
Wizard allows the user to create a Shared Rules that can be used for creating the
Shared Rule References.

The following table lists specific properties items for this element:

Table 75. Shared Rule Reference properties items

Name Description

Class The name of the rule class. This is visible in the Business Tab.

Attribute The name of an attribute. This is visible in the Business Tab.

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is active when the Single Item Box is
checked.

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found. This is active
when the Single Item Box is checked.

Cúram Express Rules Reference 123

The following table lists specific pop-up menu items for this element:

Table 76. Shared Rule Reference Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Shared Rule Reference element in Or Rule Group
element.

Wrap in AND Wrap the Shared Rule Reference element in the And Rule
Group element.

Edit Reference Edit the Reference element by choosing the rule you want to
refer to.

Edit Shared Rule
Reference

Edit the Shared Rule Reference element by choosing the
shared rule you want to refer to. See the Shared Rule Edit
Reference Dialog box as follows.

New Parameter Create a new parameter by selecting the attribute you want to
add a parameter for. See the New Parameter Dialog box as
follows.

New Mandatory
Parameter

Create a new mandatory parameter.

CONCAT
The Concat element provides a graphical representation of the 'concat' expression
and creates a localizable message by concatenating a list of values. The Concat
element has a fixedlist that contains String objects. Other palette elements, for
example, String or Rule Reference can be added to the Empty Member (fixedlist) of
the Concat element. The Concat element can be added to other palette elements,
for example, When or Repeating Rule.

The following table lists specific properties items for this element:

Table 77. Concat properties items

Name Description

Data Type The data type of the Concat element. This must correspond
with the data type of the attribute. If the user wishes to
change the data type into a Timeline, check the Timeline box.
If the user wishes to change the data type to a list, check the
list box. This is visible in the Business Tab.

Join Lists
The JoinLists element provides a graphical representation of the 'joinlists'
expression and creates a new list by joining together some existing lists. Other
palette elements, for example, Rule Reference or Choose can be added to the
empty member (fixedlist) of the JoinLists element. The JoinLists element can be
added to other palette elements, for example, And Rule Group, Or Rule Group or
When.

The following table lists specific properties items for this element:

Table 78. Join Lists properties items

Name Description

Single Item Only one item returned from the element.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found.

124 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 78. Join Lists properties items (continued)

Name Description

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found.

The following table lists specific pop-up menu items for this element:

Table 79. Join Lists Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Join Lists element.

Concatenate Results Concatenate the items in the Join Lists element.

Join Inner Lists Join the lists together to make one list.

Rule Element Reference for Household Units Templates

Household Composition
This Composition template is used within Curam Global Income Support (CGIS)
rules and presents a household Composition.

Household Category
This template represents a new household category for a household within CGIS
rules.

The following table lists specific pop-up menu items for this element:

Table 80. Household Category Pop-up Menus items

Name Description

Add Mandatory Member Add a new mandatory member to the household category rule
element.

Remove Mandatory
Member

Remove a mandatory member from the household category
rule element.

Add Optional Member Add a new optional member to the household category rule
element.

Remove Optional Member Remove an optional member from the household category rule
element.

Rule Element Reference for Financial Units Templates

Financial Unit
This template is used within Curam Global Income Support rules and presents a
financial unit.

Financial Unit Category
This template represents a new financial unit category for a financial unit within
CGIS rules.

Financial Unit Member
This template represents a new financial unit member for a financial unit within
CGIS rules.

Cúram Express Rules Reference 125

Rule Element Reference for Food Assistance Units Templates

Food Assistance Unit
This template represents a new food assistance unit within CGIS rules.

A food assistance diagram must first be configured before it can be fully edited.
Certain wizards in the editor require that the configuration be set before they will
provide food assistance specific menu options, for example, the reference wizard. A
food assistance diagram configuration can be changed at any time.

Food Assistance Single Person Category
This template represents a new food assistance single person category within CGIS
rules.

Food Assistance Multi Person Category
This template represents a new food assistance multiple person category within
CGIS rules.

The following table lists specific pop-up menu items for this element:

Table 81. Food Assistance Multi Person Category Pop-up Menus items

Name Description

Remove Meal group Remove a meal group from the Food Assistance Multi Person
Category rule element.

Remove Relatives Remove relatives from the Food Assistance Multi Person
Category rule element.

Remove Discard Remove discard from the Food Assistance Multi Person
Category rule element.

Remove Head of
Household Members

Remove a head of household members from the Food
Assistance Multi Person Category rule element.

Remove Optional Member Remove an optional member from the Food Assistance Multi
Person Category rule element.

Meal Group Members
This template represents new food assistance meal group members within CGIS
rules.

Relatives
This template represents new food assistance relatives within CGIS rules.

Discard
This template represents new food assistance discard within CGIS rules.

Member for household unit
This template represents a new food assistance member of household unit within
CGIS rules.

Optional Members
This template represents new food assistance optional members within CGIS rules.

Exceptions
This template represents new food assistance exceptions within CGIS rules.

126 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Rule Element Reference for Decision Table Templates

Decision Table
The Decision Table element provides a graphical representation of the 'decision
table' expression. When a Decision Table has been dragged onto a rule or an
attribute the Create Decision Table wizard is displayed. The user must set the
following options:
v Number of Rows - this is the number of rows that will be contained in the

Decision table, the maximum number of rows is 99;
v Result Type - this is the return type of the decision table, the result type must

match with the result type of the rule or attribute containing the decision table;
and

v Rule Class - users can select the current rule class, or change rule classes.

When the user hits the Next button, they can use an existing rule; or choose to
create a new rule.

The following table lists specific properties items for this element:

Table 82. Decision Table properties items

Name Description

Class The name of the rule class that is chosen as a type. This is
visible in the Business Tab.

Attribute The name of the attribute containing the Decision Table. This
is visible in the Business Tab

Single Item Only one item returned from the element. This is visible in the
Technical Tab.

Behavior when no items
found

Return either one of these results (error, return null) when no
items found. This is activated when the 'Single Item' box is
checked.

Behavior when multiple
items found

Return either one of these results (error, return null, return
first, return last) when multiple items found. This is activated
when the 'Single Item' box is checked.

The following table lists specific pop-up menu items for this element:

Table 83. Decision Table Pop-up Menus items

Name Description

Edit Decision Table Change the Result Type or the associated attribute.

Add new row. Ad done new row to the decision table.

CER Best Practices
Follow these best practices when writing CER rule sets to make your rule sets
easier to develop, test and maintain.

The description Rule Attribute
Each rule class ultimately inherits from a CER “root rule class”. This root class
includes a description rule attribute which has a default (but not particularly
helpful) implementation.

Cúram Express Rules Reference 127

The value of a rule object's description is output in RuleDoc, and also by the
toString method on a RuleObject (which many Java IDEs use when you “click”
on a variable). As such, a meaningful description can be indispensable when
understanding the behavior of your rule set.

You should override the default description calculation by explicitly creating a
description attribute on each of your rule classes. You can use the CER Editor to
create a description attribute like creating a normal attribute on any rule class.
The CER rule set validator will issue a warning if you have a rule class which does
not define (or inherit from another defined rule class) a description rule attribute.

The description attribute is a localizable message and (just like other rule
attributes) its calculation can be as simple or as complex as is needed.

Here is an example rule set, where some rule classes provide an implementation of
description:
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_description"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="lastName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Override the default description -->
<Attribute name="description">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- Concatenate the person’s first and last names -->
<concat>

<fixedlist>
<listof>

<javaclass name="Object"/>
</listof>
<members>

<reference attribute="firstName"/>
<String value=" "/>
<reference attribute="lastName"/>

</members>
</fixedlist>

</concat>
</derivation>

</Attribute>

128 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</Class>

<Class name="Income">
<!-- The person to which this

income record relates. -->
<Attribute name="person">

<type>
<ruleclass name="Person"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute name="startDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Override the default description -->
<Attribute name="description">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- Concatenate the person’s description and the start
date-->

<concat>
<fixedlist>

<listof>
<javaclass name="Object"/>

</listof>
<members>

<reference attribute="description">
<reference attribute="person"/>

</reference>
<!-- In a real rule set, this description would use

a <ResourceMessage> to avoid hard-coded
single-language Strings. -->

<String value="’s income, starting on "/>
<reference attribute="startDate"/>

</members>
</fixedlist>

</concat>
</derivation>

</Attribute>

</Class>

<Class name="Benefit">
<!-- NB no override of <description>; the CER rule set validator

will issue a warning, and rule objects of this class will
be more difficult to understand in RuleDoc or a Java
integrated development environment. -->

<!-- The person to which this

Cúram Express Rules Reference 129

benefit record relates. -->
<Attribute name="person">

<type>
<ruleclass name="Person"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="amount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

</RuleSet>

And here is a test class which creates some rule objects (a Person, an Income and a
Benefit):
package curam.creole.example;

import java.io.File;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.SessionDoc;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import curam.creole.ruleclass.Example_description.impl.Benefit;
import
curam.creole.ruleclass.Example_description.impl.Benefit_Factory;
import curam.creole.ruleclass.Example_description.impl.Income;
import
curam.creole.ruleclass.Example_description.impl.Income_Factory;
import curam.creole.ruleclass.Example_description.impl.Person;
import
curam.creole.ruleclass.Example_description.impl.Person_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.util.type.Date;

/**
* Tests the description rule attribute.
*/
public class TestDescription extends TestCase {

/**
* Tests the description rule attribute.
*/
public void testDescriptions() {

/**
* Create a new session.
*/
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

130 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

/**
* Create a SessionDoc to report on rule objects.
*/
final SessionDoc sessionDoc = new SessionDoc(session);

/*
* Create a Person rule object.
*/
final Person person =

Person_Factory.getFactory().newInstance(session);
person.firstName().specifyValue("John");
person.lastName().specifyValue("Smith");

/*
* Create an Income rule object.
*/
final Income income =

Income_Factory.getFactory().newInstance(session);
income.person().specifyValue(person);
income.amount().specifyValue(123);
income.startDate().specifyValue(Date.fromISO8601("20070101"));

/*
* Create a Benefit rule object.
*/
final Benefit benefit =

Benefit_Factory.getFactory().newInstance(session);
benefit.person().specifyValue(person);
benefit.amount().specifyValue(234);

/*
* The .toString method evaluates the description rule
* attribute
*/
System.out.println(person.toString());

/*
* println calls an object’s toString method to print it.
*/
System.out.println(income);

/*
* The benefit rule class does not provide an implementation of
* the description rule attribute, so we’ll get a default
* description here
*/
System.out.println(benefit);

/*
* Write out SessionDoc for this session.
*/
sessionDoc.write(new File("./gen/sessiondoc"));

>
}

}

When the test is run, it produces this output, showing the rule object descriptions:
John Smith
John Smith’s income, starting on 01/01/07 00:00
Undescribed instance of rule class ’Benefit’, id ’3’

At the end of the test, the session's rule objects are output as SessionDoc. The
high-level SessionDoc summary shows the rule objects created, and lists each rule

Cúram Express Rules Reference 131

object's description:

The description for the Benefit rule object is the default description; in the absence
of a good implementation of description, someone reading the SessionDoc might
have to navigate to the SessionDoc for the Benefit rule object in order to make
sense of it:

Figure 16. SessionDoc showing rule object description values

132 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Lastly, this screen shot shows how an integrated development environment (such
as Eclipse, shown) uses an object's toString method when debugging, which (for
rule objects) calculates the description:

Figure 17. SessionDoc for a rule object with no description override

Cúram Express Rules Reference 133

Tip: Remember that the aim of the description is to describe a rule object
instance, not the rule class itself.

In particular, the calculation of your description rule attribute should include data
that means that it is easy to distinguish between different rule object instances of
your rule class.

Getting a Rule Set Working Quickly
It can be useful to get a CER rule set "up and running" quickly by deferring certain
rule development tasks.

Consider using one or more of the following short cuts:
v Create empty rule classes (i.e. no rule attributes) for each of your business

concepts; rule attributes can be added later. For example, you can use the CER
Editor to create an empty rule class and add an attribute to it later.

v Create hard-coded derivations for rule attributes; the business rules can be
added later. For example, declaring the calculation of an isEligible rule
attribute to be <true> may enable you to write tests and/or integrate CER with
your own application - you can replace the hard-coded "always eligible"
derivation with the real business rules later. For example, you can use the CER
Editor to drag the "Boolean" rule element (its default value is set to true) to an
isEligible rule attribute.

v Create messages as plain single-locale hard-coded Strings; you can convert the
Strings to localizable messages later. For example, you can use the CER Editor to
drag the "Resource Message" or "XML Message" rule element to a rule attribute.

Figure 18. Use of description in an integrated development environment

134 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v Use String values instead of application code table values; you can convert the
Strings to codes later (and update rules that test for them). For example, you can
use the CER Editor to drag the "String" rule element to a rule attribute.

Important: Simply taking these shortcuts does not remove the need to do the work
more rigorously, it merely defers some of this working until after the point at
which your rule set is "runnable".

You should not hold off on creating tests for your rules; in particular, if you take
these shortcuts, a good body of rule set tests will help prevent you introducing
certain types of error when you come to undo the shortcuts. Create your tests as
you write your rules.

You may also be tempted to hold off on creating description rule attributes for
your rule classes; however, in the early stages of rule set design, such a short cut
can prove to be false economy, as the description rule attributes can greatly assist
you in debugging rules, for a relatively cheap cost.

Naming Rule Elements
CER rule attributes should be named to describe their business meaning. Name a
rule attribute in line with the result it provides, rather than describing how the
rule attribute provides it.

A rule set name can take a combination of letters (unaccented, in the standard A-Z
character range), numbers and under scores. A rule set name should start with an
upper case letter.

A class name can take a combination of letters (unaccented, in the standard A-Z
character range), numbers and under scores. A class name should start with an
upper case letter.

An attribute name can take a combination of letters (unaccented, in the standard
A-Z character range), numbers and under scores. An attribute name should start
with a lower case letter.

Tip: Use "camelCase" to name your rule elements.

camelCase is the practice of writing compound words or phrases in which the
elements are joined without spaces, with each elements initial letter capitalized
within the compound and the first letter is either upper or lower case.

Note: Each rule element has a single name which cannot be localized. For
localizable descriptions, use the "Label" annotation, as described in “Localization of
CER rule artefact descriptions” on page 10.

When to Use the Reference Expression
Correct use of the reference expression is key to the structure of a good CER rule
set. Use of reference goes hand-in-hand with creating the right number of rule
attributes. The CER Editor provides different types of scenarios to create and use
the rule reference element. See "rule" item in “Rule” on page 107.

Striking the right balance (between too few uses of reference and too many) is
perhaps more art than science; however, here are some general guidelines:
v If you find that some of your expressions are nested very deeply or are

otherwise complex, then you may have too few references. Consider breaking up

Cúram Express Rules Reference 135

complex expressions by creating rule attributes for a meaningful block of
expressions, and using a reference to the new rule attribute instead.

v If your requirements have a strong concept or calculation which does not map
neatly to a rule attribute, then you should consider creating such a rule attribute.

v If several expressions repeat the same kind of calculations, then your rule set
might benefit from the creation of a rule attribute to implement the common
logic.

v If you find a rule attribute is difficult to name, then the rule attribute might be
an unnecessary encapsulation of logic, and you might have too many uses of
reference in your rule set. Consider removing the rule attribute and "inlining"
its derivation in the places where it is used, especially in the case where the rule
attribute is only referenced from one other calculation.

Use RuleDoc
When your CER rule sets are small in size, you may open them directly in the CER
Editor and easily understand them in full.

However, as your rule set grows in complexity, you can gain insights into the
structure and behavior of your rule set by taking advantage of CER's RuleDoc tool.

See “RuleDoc” on page 18 for how to generate RuleDoc from your CER rule sets.

Normalize Common Rules
As you develop your rule set, you may notice rules which are similar across
different parts of your rule set functionality.

You should endeavor to identify common rules and centralize them.

Broadly you have two options available when centralizing common rules:
v Inheritance

Use CER's support for implementation inheritance to allow one rule class to
extend another. The CER Editor provides the inheritance mechanism to design
the rule. See "extends" item in “Properties for Rule class” on page 105.

v Containment

Use CER's support for creating new rule objects from rules to allow a rule class
to create new instances of another rule class when required. The CER Editor
provides the containment mechanism to design the rule. See change rule set and
rule class section in “Rule Element Wizards” on page 106.

Sometimes it can be tricky to identify which mechanism to use when centralizing
common rules. In general you should use inheritance carefully, only when the
sub-rule class represents a business concept which genuinely "is an" instance of the
business concept represented by the super-class. In particular, CER does not
support multiple inheritance.

An example of inheritance is where a person has resources, and each resource
might be a building or a vehicle. The Building and Vehicle rule classes each
extend an abstract Resource rule class. See the listing in “Rule Classes” on page 39.

You should use containment when the business concept represented by a rule class
"has an" instance of the business concept represented by the rule class being
contained.

136 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

An example of containment is where a person has many different age range tests
applied. The Person rule class creates many instance of AgeRangeTest.

If you find you have similar rule classes across different rule sets, you should
consider using CER's facilities (since Cúram V6) for allowing one rule set to
reference artefacts in other. Place the common rule classes in one or more common
rule sets, and place rule classes which are not common in other rule sets.

Remove Unused Rules
As you centralize common rules, you might find that some rule attributes are no
longer referenced from other calculations and can be removed from your rule set
(as part of a "decluttering" exercise).

CER includes support for reporting rule attributes which are not referenced from
any other calculations in your rule set and thus are candidates for removal. You
can also use the CER Editor to delete any rule class and rule attribute. See
“Technical View” on page 97.

To run the CER unused attribute report, see “Unused rule attributes” on page 27.

warning: Note that it is perfectly possible for a rule attribute to be a "top-level"
rule attribute which is only referenced from client code; such attributes may be
reported as "unused" by this report, but any seemingly-unused rule attributes
should not be removed from your rule set unless you are certain that no client
code or tests depend on them.

Order of Declarations
In general, the order of declaration in your rule sets has no effect on behavior.

Order of Rule Classes within a Rule Set
You are free to reorder the rule classes in your rule set into whatever order is most
useful to you. Reordering rule classes has no effect on the behavior of your rule
sets.

Order of Calculated Rule Attributes within a Rule Class
Similarly, you are free to reorder the calculated rule attributes in your rule class into
whatever order is most useful to you. Reordering calculated rule attributes has no
effect on the behavior of your rule sets.

Order of Initialized Attributes within a Rule Class
Whenever a rule object instance of the class is created, whether within rules by use
of the create expression or via Java code using the generated rule classes or the
dynamic rule API, the values of all the initialized attributes must be specified in the
order that they are defined in the rule class.

warning: As such, you should avoid re-ordering the attributes in an
Initialization block unless you are prepared to also update all places (in rules or
Java code) which create rule object instances of the rule class.

Order of Boolean Conditions
The order of Boolean conditions within an all or any expression does not affect the
logical value of the result.

Cúram Express Rules Reference 137

However, at runtime, processing of the boolean conditions halts as soon as a result
is confirmed; as such, you should consider ordering the Boolean conditions so that
the all or any expression tends to obtain its result as quickly as possible.

This means:
v for all expressions, placing boolean conditions which are likely to evaluate to

false earlier in the list; and
v for any expressions, placing boolean conditions which are likely to evaluate to

true earlier in the list.

You can use the CER Editor to change the order of the Boolean rule elements
within the Any rule element. For example, arrange all Boolean rule elements with
true value first.

Creating Rule Objects
You should consider carefully how your rule objects are created.

In particular, if you are using CER in your own application, you should decide
early on which rule objects are created by your application code, vs. which rule
objects are created by your rules.

See “External and Internal Rule Objects” on page 32 for more details.

Pass Rule Objects in Preference to Passing IDs
When you use the “create” on page 171 expression to create an internal rule
object, you can pass data to the new rule object by use of the initialization block
and/or specify elements.

If the data you are passing includes a reference to external data that has an
identifier (e.g. a case, identified by a caseID), consider designing the rule class for
the created rule object so that it is initialized with a rule object that represents that
data rather than being initialized by an ID value.

The use of such a rule object for initialization can increase the "type safety" of your
data - it may help prevent another rules designer from creating their own internal
rule objects for the same rule class but accidentally passing an ID that represents a
different kind of external data.

It is likely that passing the wrong kind of ID will cause rules to fail at run time
(e.g. because an attempt to convert a rule object for that ID will not find the
underlying data); whereas passing a rule object for type safety will allow the CER
rule set validator to detect the problem at design time.

Developing Static Methods
CER has support for a variety of expressions which are likely to provide the
calculations you need.

If you have a business calculation which cannot be implemented using CER's
expressions, then CER supports the call expression to allow you to call out from
your rule set to a static method on a custom Java class. The CER Editor provides
few rule elements, e.g., "call" to allow users to define a static method on a custom
Java class. See "call" rule element in “Call” on page 121.

Here is an example rule set which calls out to a Java method:

138 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_StaticMethodDevelopment"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Income">

<Attribute name="paymentReceivedDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="amount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Person">

<Attribute name="incomes">
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="mostRecentIncome">
<type>

<ruleclass name="Income"/>
</type>
<derivation>

<!-- In early development, the method
identifyMostRecentIncome_StronglyTyped would be used.

In practice, you would not maintain two versions of
each method; you would simply weaken the argument
and return types, and keep a single method.

-->

<call class="curam.creole.example.BestPracticeDevelopment"
method="identifyMostRecentIncome_WeaklyTyped">
<type>

<ruleclass name="Income"/>
</type>
<arguments>

<this/>
</arguments>

</call>
</derivation>

</Attribute>
</Class>

</RuleSet>

Cúram Express Rules Reference 139

When you develop your static method, you can start by using CER's generated
Java classes as argument types and/or return type for the method:
package curam.creole.example;

import java.util.List;

import curam.creole.execution.session.Session;
import
curam.creole.ruleclass.Example_StaticMethodDevelopment.impl.Income;
import
curam.creole.ruleclass.Example_StaticMethodDevelopment.impl.Person;

public class BestPracticeDevelopment {

/**
* Identifies a person’s most recent income.
*
* Note that this calculation can be performed using CER
* expressions, but is shown here in Java just to illustrate the
* use of generated types when developing static Java methods for
* use with CER.
*
* This method is suitable only for use in development; for
* production, see the
* {@linkplain #identifyMostRecentIncome_WeaklyTyped} below.
*
* In practice, you would not maintain two versions of each
* method; you would simply weaken the argument and return types,
* and keep a single method.
*/
public static Income identifyMostRecentIncome_StronglyTyped(

final Session session, final Person person) {

Income mostRecentIncome = null;
final List<? extends Income> incomes =

person.incomes().getValue();
for (final Income current : incomes) {

if (mostRecentIncome == null
|| mostRecentIncome.paymentReceivedDate().getValue()

.before(current.paymentReceivedDate().getValue())) {
mostRecentIncome = current;

}
}

return mostRecentIncome;
}

}

Once the Java method is working to your satisfaction, you must weaken the types
to use dynamic rule objects instead of the generated Java classes (which should not
be used in a production environment):
/**

* Identifies a person’s most recent income.
*
* Note that this calculation can be performed using CER
* expressions, but is shown here in Java just to illustrate the
* use of generated types when developing static Java methods for
* use with CER.
*
* This method is suitable for use in production; for initial
* development, see
* {@linkplain #identifyMostRecentIncome_StronglyTyped} above.
*
* In practice, you would not maintain two versions of each
* method; you would simply weaken the argument and return types,

140 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

* and keep a single method.
*/
public static RuleObject identifyMostRecentIncome_WeaklyTyped(

final Session session, final RuleObject person) {

RuleObject mostRecentIncome = null;
final List<? extends RuleObject> incomes =

(List<? extends RuleObject>) person.getAttributeValue(
"incomes").getValue();

for (final RuleObject current : incomes) {
if (mostRecentIncome == null

|| ((Date) mostRecentIncome.getAttributeValue(
"paymentReceivedDate").getValue())
.before((Date) current.getAttributeValue(

"paymentReceivedDate").getValue())) {
mostRecentIncome = current;

}
}

return mostRecentIncome;

}

Important: If you change the implementation of a static method, CER will not
automatically know to recalculate attribute values that were calculated using the
old version of your static method.

Once a static method has been used in a production environment for stored
attribute values, rather than changing the implementation you should instead
create a new static method (with the required new implementation), and change
your rule sets to use the new static method. When you publish your rule set
changes to point to the new static method, CER will automatically recalculate all
instances of the affected attribute values.

Any static method (or property method) invoked from CER:
v must only depend on the data passed to it (i.e. its behavior must be

deterministic, based on its input parameters). It must not get data from other
sources such as the database, environment variables or variable globals, as to do
so means that CER is unable to detect when such data has changed, and thus
recalculations would become unreliable; and

v must not perform any side-effects (such as writing data to the database), as CER
makes no guarantees about the order in which processing occurs nor how often
the static/property methods will be invoked.

Avoid Common Pitfalls in Tests
Writing JUnit tests for your CER rule sets is largely straight-forward, but there are
a number of pitfalls which you should be aware of.

This section shows some test code examples which at first glance look fine, but
each of them would fail to produce the required behavior.

Avoid JUnit's assertEquals
JUnit tests inherit assertion methods for testing. Typically you will assert that an
expected result is matched by an actual result.

A common pitfall is to use JUnit's assertEquals, only to find that it does not work
correctly for numerical comparisons (and with a slightly confusing error message
to boot).

Cúram Express Rules Reference 141

CER converts all instances of Number to its own numerical format (backed by
java.math.BigDecimal) before processing, to ensure no loss of precision. This
conversion can be problematic and unintuitive if you use JUnit's assertEquals
method.

CER includes a replacement in a helper class. Use CREOLETestHelper.assertEquals,
which will correctly compare numbers of any type.

For other data types, CREOLETestHelper.assertEquals behaves identically to JUnit's
assertEquals, so in general it is good practice to use
CREOLETestHelper.assertEquals throughout your tests, to avoid possible confusion
(even in the places where technically it is unnecessary).
public void creoleTestHelperNotUsed() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - getValue returns CER’s own numerical handler,
* but 65 is an integer.
*
* JUnit will report the somewhat confusing message:
* junit.framework.AssertionFailedError: expected:<65> but
* was:<65>
*
* Use CREOLETestHelper.assertEquals instead.
*/
assertEquals(65, flexibleRetirementYear.ageAtRetirement()

.getValue());

}

Remember to Use .getValue()
The CER test code generator creates a Java interface for each rule class, and an
accessor method on the interface for each rule attribute.

This generated accessor method returns a CER AttributeValue, not the attribute's
value directly. To obtain the value itself, you must call the .getValue() method on
the AttributeValue.

If you forget to use .getValue() in a test, then your test will probably compile fine
but fail to behave correctly when it is run.
public void getValueNotUsed() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - ageAtRetirement() is a calculator, not a
* value.
*
* JUnit will report the message:
* junit.framework.AssertionFailedError: expected:<65> but
* was: <Value: 65>

142 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

*
* Remember to use .getValue() on each attribute calculator!
*/
assertEquals(65, flexibleRetirementYear.ageAtRetirement());

}

Note that in this example, the value of the AttributeValue shows as the String
"Value: 65", rather than the number 65 (which is what .getValue() would have
returned).

Remember to Specify All Values Required by the Calculations
Being Tested
In your tests, you need only specify the values which will be accessed during rules
execution.

However, it can be easy to forget to specify a value; if so, when CER attempts a
calculation, it may encounter an attribute whose derivation is <specified> but for
which no value has been specified in your test code, and CER will report a stack of
errors:
public void valueNotSpecified() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

/**
* Will not work - a value required for calculation was marked
* as <specified> but no value was specified for it.
*
* CER will report a stack of messages:
*
*
* Error calculating attribute ’ageAtRetirement’ on rule
* class ’FlexibleRetirementYear’ (instance id ’1’, description
* ’Undescribed instance of rule class
* ’FlexibleRetirementYear’, id ’1’).
*
* Error calculating attribute ’retirementCause’ on rule
* class ’FlexibleRetirementYear’ (instance id ’1’, description
* ’Undescribed instance of rule class
* ’FlexibleRetirementYear’, id ’1’).
*
* Value must be specified before it is used (it cannot be
* calculated).
*
*
*
*
* Remember to specify all values required by calculations!
*/
CREOLETestHelper.assertEquals(65, flexibleRetirementYear

.ageAtRetirement().getValue());

}

Do Not Specify the Same Value More than Once
CER allows you to specify a value which would otherwise be calculated.

However, when using the RecalculationsProhibited strategy, CER will raise a
runtime error if you try to specify the value of an attribute (on a particular rule

Cúram Express Rules Reference 143

object) more than once; once the value has been specified, it cannot be changed (as
to do so might mean that previously-performed calculations would now be
“wrong”).
public void valueSpecifiedTwice() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - the same attribute value cannot be specified
* a second time.
*
* CER will report the message: A value cannot be specified,
* as the current state of this calculator is ’SPECIFIED’.
*
* Do not attempt to specify the same value twice!
*/
flexibleRetirementYear.retirementCause().specifyValue(

"Lottery winner");

}

Specify the Correct Type of Value for an Attribute
Each CER AttributeValue has a specifyValue method to allow the attribute's
value to be specified (rather than calculated). The method takes any value, but if
you specify the wrong type of value, CER will raise a runtime error as shown:
public void incorrectValueType() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

/**
* Will not work - retirementCause() expects a String, not a
* Number.
*
* CER will report the message: Attempt to set the value ’123’
* (of type ’java.lang.Integer’) on attribute ’retirementCause’
* of rule class ’FlexibleRetirementYear’ (which expects a
* ’java.lang.String’).
*/
flexibleRetirementYear.retirementCause().specifyValue(123);

}

Note:

Technical readers might wonder why AttributeValue.specifyValue does not use
Java 5 generics to restrict the value type it can receive.

If rule class A extends rule class B, then A is free to override the derivation of any
of B's attributes. A is also free to redeclare any of B's attributes to be a
more-restrictive type (i.e. A's declaration of the attribute specifies its type to be a
subtype of that declared by B).

The generated Java interface for A extends the generated Java interface for B.
Because the accessors return calculators, rather than the value type directly, all
interfaces must use wildcard extension so that the compiler will allow A's

144 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

declaration of the attribute's accessor to extend that of B's. Because wildcard
extension is used, specifyValue cannot restrict to a type, and thus must be
declared to receive any Object.

From another point-of-view, if a Java class C were to extend Java D, then C can
define a more restrictive return type for one of D's getters, but cannot restrict D's
setters to a subtype - C must implement D's setter, and detect any undesirable
values at runtime (although to do so might arguably violate Liskov's substitution
principle).

Another justification is that when purely-dynamic rule objects are used (i.e. in an
interpreted session), compile-time restriction of values cannot be used.

Thus, CER uses its knowledge of declared attribute types to detect incorrect values
at runtime, not compile time.

Create all Rule Objects for a Session before Running getValue
Calculations
Your rule set tests can set up any number of rule objects in a CER session before
going on to check any number of calculated values on those rule objects.

However, once calculations have commenced, the RecalculationsProhibited
strategy prevents the creation of any rule objects which invalidate the value of a
previously-calculated “readall” on page 204 calculations.

You should structure your tests so that the creation of all your test rule objects
occurs before any calculations (i.e. before any execution of getValue). In practice
this is not unduly restrictive.

If your test attempts to create a new rule object in a session after a calculation has
occurred, then (if previously-calculated readall calculations are affected), the
RecalculationsProhibited strategy will raise a runtime error:
public void newObjectsAddedAfterCalculationsStarted() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Calculate the age at retirement and test its value
*/
CREOLETestHelper.assertEquals(65, flexibleRetirementYear

.ageAtRetirement().getValue());

/**
* Create another rule object.
*/

/**
* May not work - new rule objects added to the session once
* calculations have started could invalidate earlier
* <code><readall></code> calculations.
*
* {@linkplain RecalculationsProhibited} may report the
* message: "Cannot create new rule objects for this session,
* because this session has already accepted a calculation
* request."
*

Cúram Express Rules Reference 145

* To avoid this problem, create all your rule objects before
* attempting any calculations!
*/
final FlexibleRetirementYear flexibleRetirementYear2 =

FlexibleRetirementYear_Factory.getFactory().newInstance(
session);

}

warning: If your rule set does not currently contain any readall expressions, you
might get away with not structuring your tests so that all rule object creation
occurs before any calculations.

However, if you change your rule set in the future to contain readall expressions,
you would need to restructure your tests at that point.

To avoid rework, always structure your tests so that all rule object creation is
performed before calculations begin.

CER XML Dictionary
A description of the elements that make up the CER language for rule sets.

Rule Set
A Rule Set specifies its name and contains any number of rule Class es and/or
Include statements. Optionally the RuleSet may contain Annotations.

The XML structure of a rule set and its elements is constrained by the CER
RuleSet.xsd schema. This schema is dynamically constructed, so that extensions to
CER can contribute expressions and annotations to the schema.

Here is a sample outline of a rule set:
RuleSet

Annotations (optional)
...
...

Include
...

Include
...

... more Include statements
Class

Annotations (optional)
...
...

Initialization (optional)
Attribute

Annotations (optional)
...
...

type
...

Attribute
type

...
... more initialized attributes

Attribute
Annotations (optional)

...

...
type

146 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

...
derivation

(expression)
Annotations (optional)

...

...
(sub-expression)
...

Attribute
type

...
derivation

...
... more calculated attributes

... more rule classes

Include Statement
You may find it convenient to break a large rule set into smaller pieces for ease of
parallel development or re-use. Each rule set may contain Include statements to
"pull in" other rule sets and classes. The root element in an included item must be
either:
v Class

A single rule class; or
v RuleSet

An entire rule set, which itself may contain its own Include statements which
will be processed recursively.

Different types of Include statements are supported:
v RelativePath

Includes an XML file with a path relative to the containing file; this mechanism
may be useful during stand-alone development of the rule set by developers
using a file-based development environment;

v Classpath

Includes an XML file which is present at the named location on the runtime
classpath; this mechanism may be useful to refer to common rule sets which
rarely change and are built into the application.

Tip: Within a rule set, there is no meaning attached to the order that Include
statements are specified. You are free to reorder Include statements within a rule
set without affecting the behavior of the rule set.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Include"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

Cúram Express Rules Reference 147

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<Include>
<RelativePath value="./HelloWorld.xml"/>

</Include>

</RuleSet>

See “CER Rule Set Consolidator” on page 28 for how to collapse a rule set which
contains RelativePath inclusions into a single rule set file.

Rule Class
A rule class defines the behavior of its rule object instances.

A rule class specifies its name (which must be unique amongst the rule classes in
the rule set) and whether it is abstract, and contains:
v Initialization

Optionally, a block of attributes which must have their values specified
whenever a rule object instance of the class is created; and

v Attribute

Zero or more calculated Attribute statements, each describing a value that the
rule class can calculate.

A rule class may be defined in its own XML file (i.e. where the root XML element
is Class) and included into a parent rule set using an “Include Statement” on page
147 statement.

Initialized Attributes
The Initialization block contains one or more Attribute statements, each
specifying the attribute's type, but not specifying any derivation.

Whenever a rule object instance of the class is created, whether within rules by use
of the create expression or via Java code using the generated rule classes or the
dynamic rule API, the values of all the initialized attributes must be specified in the
order that they are defined in the rule class.

warning: As such, you should avoid re-ordering the attributes in an
Initialization block unless you are prepared to also update all places (in rules or
Java code) which create rule object instances of the rule class.

Calculated Attributes
Calculated attributes are listed directly within the rule class.

Tip: Within a rule class, there is no meaning attached to the order that calculated
attributes are specified. You are free to reorder calculated attributes within a rule
class without affecting the behavior of the rule class.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_RuleClass"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Initialization>
<!-- Initialized attributes each contain a type

but no derivation.

148 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

You should NOT arbitrarily reorder
initialized attributes. -->

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>

</Attribute>
<Attribute name="age">

<type>
<javaclass name="Number"/>

</type>
</Attribute>

</Initialization>

<!-- Each calculated attribute specifies both
a type and a derivation.

You are free to arbitrarily reorder
calculated attributes. -->

<Attribute name="isAdult">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="18"/>

</compare>
</derivation>

</Attribute>

<Attribute name="isSeniorCitizen">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="65"/>

</compare>
</derivation>

</Attribute>

</Class>

</RuleSet>

Attribute
Each attribute specifies its name (which must be unique amongst the rule attributes
defined on or inherited by the rule class), and contains:

Each Attribute contains:
v type

Defines the type of value that this attribute provides (see “Supported Data
Types” on page 39); and

v derivation (calculated attributes only)

Defines how the attribute calculates its value. Each derivation contains a single
CER expression (see “Full Alphabetical Listing of Expressions” on page 152).

Important: There are special marker expressions which can alter the semantics
of the rule attribute - see “Markers” on page 151.

Cúram Express Rules Reference 149

Expressions
CER supports a wide range of expressions. The expressions are listed
alphabetically below, but are also logically grouped here for reference (note that
some expressions intentionally appear in more than one logical group).

Boolean Logic
v “true” on page 233
v “false” on page 183
v “all” on page 156
v “any” on page 158
v “not” on page 195

Value Comparison
v “equals” on page 180
v “compare” on page 169
v “sort” on page 217

Constants
These expressions provide literal constant values.
v “true” on page 233
v “false” on page 183
v “null” on page 196
v “String” on page 219
v “Number” on page 197
v “Date” on page 176
v “Code” on page 168
v “FrequencyPattern” on page 189

Conditional Logic
v “choose” on page 165

List Aggregations
These expressions aggregate a list of values into a derived value.
v “all” on page 156
v “any” on page 158
v “sum” on page 221
v “min” on page 193
v “max” on page 192
v “concat” on page 170
v “singleitem” on page 215

For further operations directly provided from the Java java.util.List interface,
see “Useful List Operations” on page 239.

List Transformations
These expressions transform a list to create a new list.
v “dynamiclist” on page 176
v “fixedlist” on page 186
v “filter” on page 184

150 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v “joinlists” on page 190
v “removeduplicates” on page 211
v “sort” on page 217
v “sublists” on page 220

Localizable Messages
These expressions allow the creation of messages which can be displayed in the
end-user's language/locale.
v “concat” on page 170
v “ResourceMessage” on page 213
v “XmlMessage” on page 233

Numerical Calculations
These expressions support numerical calculations:
v “Number” on page 197
v “arithmetic” on page 161
v “periodlength” on page 198
v “sum” on page 221
v “max” on page 192
v “min” on page 193

References
These expressions allow a calculation to refer to another item.
v “reference” on page 208
v “current” on page 174
v “this” on page 223

Creation
This expression allows the creation of a new rule object.
v “create” on page 171

Retrieval
This expression allows the retrieval of rule objects.
v “readall” on page 204

Java Callouts
These expressions allow the invocation of Java code to perform a calculation.
v “property” on page 200
v “call” on page 163

Markers
These expressions are special markers (they are not calculations as such).
v “abstract” on page 152
v “specified” on page 219

Timelines
These expressions process CER Timelines.

For more details on CER Timelines, see “Handling Data that Changes Over Time”
on page 49 in this guide.
v “Interval” on page 189

Cúram Express Rules Reference 151

v “Timeline” on page 224
v “existencetimeline” on page 182
v “intervalvalue” on page 190
v “timelineoperation” on page 226

Product Delivery Eligibility and Entitlement
These expressions provide business-specific calculations for eligibility and
entitlement of product delivery cases.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide for a description of these expressions.
v “combineSuccessionSets” on page 169
v “legislationChange” on page 192
v “rate” on page 204

Full Alphabetical Listing of Expressions
This section defines all the expressions included with CER included with the
application.

The expressions below are listed alphabetically; see the previous sections for
helpful categorizations of these expressions.

Note: Some expressions are for business-specific derivations in the application.
Any such expressions are still included here but the reader is referred to other
Cúram guides which describe those expressions in their business context.

For brevity, example rule sets are shown without annotations; in practice, rule sets
saved using the CER Editor will contain annotations for diagram and description
information.

abstract:
A marker expression to denote that the attribute's derivation must be specified on
concrete sub-classes (or one of their superclasses).

If one or more attributes in a rule class is marked abstract, then the CER rule set
validator will insist that the class itself is marked abstract="true", and prevent the
rule class from being used in any “create” on page 171 expressions.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_abstract"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Base class for all types of benefit.
Every concrete subclass has its own
calculation of "name" and "isEligible". -->

<Class name="Benefit" abstract="true">
<Initialization>

<!-- The person for which benefit eligibility
is being determined. -->

<Attribute name="person">
<type>

<ruleclass name="Person"/>
</type>

</Attribute>
</Initialization>

152 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- The name of this type of benefit -->
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
<derivation>

<abstract/>
</derivation>

</Attribute>

<!-- Whether the person is eligible for this benefit. -->
<Attribute name="isEligible">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<abstract/>
</derivation>

</Attribute>

</Class>

<!-- A concrete subclass of Benefit.
Contains concrete derivations for the inherited
abstract attributes. -->

<Class name="MedicalBenefit" extends="Benefit">
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
<derivation>

<String value="Medical Benefit"/>
</derivation>

</Attribute>
<Attribute name="isEligible">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<all>
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<!-- NB the person attribute is inherited from Benefit
-->

<reference attribute="isPoor">
<reference attribute="person"/>

</reference>
<reference attribute="isSick">

<reference attribute="person"/>
</reference>

</members>
</fixedlist>

</all>

</derivation>
</Attribute>

</Class>

<!-- Another concrete subclass of Benefit,
with different concrete derivations for the inherited
abstract attributes. -->

<Class name="NeedyBenefit" extends="Benefit">

Cúram Express Rules Reference 153

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Medical Benefit"/>
</derivation>

</Attribute>
<Attribute name="isEligible">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<all>
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<reference attribute="isPoor">
<reference attribute="person"/>

</reference>
<any>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<reference attribute="isHungry">
<reference attribute="person"/>

</reference>
<reference attribute="isDeprived">

<reference attribute="person"/>
</reference>

</members>
</fixedlist>

</any>
</members>

</fixedlist>

</all>

</derivation>
</Attribute>

</Class>

<Class name="Person">

<Attribute name="isPoor">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isSick">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isHungry">

154 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isDeprived">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- A list of all the benefits for
which the person is being assessed. -->

<Attribute name="allBenefits">
<type>

<javaclass name="List">
<ruleclass name="Benefit"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="Benefit"/>
</listof>
<members>

<!-- Create instances of the concrete rule classes -->
<create ruleclass="MedicalBenefit">

<this/>
</create>
<create ruleclass="NeedyBenefit">

<this/>
</create>

</members>
</fixedlist>

</derivation>
</Attribute>

<!-- The benefits for which this person
is eligible.

Note that the list is of the abstract
rule class "Benefit", but that each
concrete instance determines its
eligibility in its own way. -->

<Attribute name="eligibleBenefits">
<type>

<javaclass name="List">
<ruleclass name="Benefit"/>

</javaclass>
</type>
<derivation>

<filter>
<list>

<reference attribute="allBenefits"/>
</list>
<listitemexpression>

<reference attribute="isEligible">
<current/>

</reference>

Cúram Express Rules Reference 155

</listitemexpression>
</filter>

</derivation>
</Attribute>

</Class>

</RuleSet>

all:
Operates on a list of Boolean values to determine whether all of the list values are
true.

Calculation stops at the first false value encountered in the list. If the list is empty,
this expression returns true.

The list of Boolean values is typically provided by a “fixedlist” on page 186 or
“dynamiclist” on page 176.

Tip: The ordering of items in the list makes no difference to the value of this
expression; however, for performance reasons, you may wish to structure a
“fixedlist” on page 186 so that “fail fast” values are nearer the top of the list, and
any values which may be more costly to calculate are nearer the bottom of the list.

Note: Since Cúram V6, CER no longer reports errors in child expressions in
situations where the error does not affect the overall result.

For example, if a fixed list of three Boolean attributes has these values:
v true;
v <error during calculation>; and
v false

then the calculation of the value of all for these values will return false, because
at least one of the items is false (namely the third in the list), regardless of the
second item returning an error.

By contrast, if another fixed list of three Boolean attributes has these values:
v true;
v <error during calculation>; and
v true

then the calculation of the value of all for these values will return the error
reported by the second item in the list, as this error prevents the determination of
whether all items have the value true.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_all"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isLoneParent">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <all> operating on a <fixedlist> -->
<!-- To be considered a "lone parent", a person must

156 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

be both unmarried and have at least one child -->
<all>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<!-- We happen to know that most people on our
database

are married, so we test this condition first.

If it so happens that the isMarried value is not
specified for a Person, then if that Person has
no children then the <all> will return false;
otherwise it will return an error indicating that
the value of isMarried was not specified.
-->

<not>
<reference attribute="isMarried"/>

</not>
<not>

<property name="isEmpty">
<object>

<reference attribute="children"/>
</object>

</property>
</not>

</members>
</fixedlist>

</all>
</derivation>

</Attribute>

<Attribute name="hasNoYoungChildren">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <all> operating on a <dynamiclist>.

If it so happens that one child’s age cannot be
calculated, and there is at least one child under 5,
then the <all> will return false; otherwise, it
will return the error showing why the child’s age could
not be calculated.

-->

<!-- Check whether the children are all over 5 years of age
-->

<all>
<dynamiclist>

<list>
<reference attribute="children"/>

</list>
<listitemexpression>

<compare comparison=">">
<reference attribute="age">

<current/>
</reference>
<Number value="5"/>

</compare>
</listitemexpression>

</dynamiclist>
</all>

</derivation>
</Attribute>

Cúram Express Rules Reference 157

<!-- The children of this person - each child is a person too!
-->

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMarried">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

any:
Operates on a list of Boolean values to determine whether any of the list values are
true.

Calculation stops at the first true value encountered in the list. If the list is empty,
this expression returns false.

The list of Boolean values is typically provided by a “fixedlist” on page 186 or
“dynamiclist” on page 176.

Tip: The ordering of items in the list makes no difference to the value of this
expression; however, for performance reasons, you may wish to structure a
“fixedlist” on page 186 so that “succeed fast” values are nearer the top of the list,
and any values which may be more costly to calculate are nearer the bottom of the
list.

Note: Since Cúram V6, CER no longer reports errors in child expressions in
situations where the error does not affect the overall result.

For example, if a fixed list of three Boolean attributes has these values:
v false;
v <error during calculation>; and
v true

158 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

then the calculation of the value of any for these values will return true, because at
least one of the items is true (namely the third in the list), regardless of the second
item returning an error.

By contrast, if another fixed list of three Boolean attributes has these values:
v false;
v <error during calculation>; and
v false

then the calculation of the value of any for these values will return the error
reported by the second item in the list, as this error prevents the determination of
whether any items have the value true.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_any"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="qualifiesForFreeTravelPass">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <any> operating on a <fixedlist> -->
<!-- To qualify for a free travel pass, the person

must be aged, blind or disabled -->
<any>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<!-- We happen to know that most people on our
database are senior citizens, so we test
this condition first.

If it so happens that the isBlind value is not
specified for a Person, then if that Person is
disabled then the <any> will return false;
otherwise it will return an error indicating that
the value of isBlind was not specified.
-->

<compare comparison=">=">
<reference attribute="age"/>
<Number value="65"/>

</compare>
<reference attribute="isBlind"/>
<reference attribute="isDisabled"/>

</members>
</fixedlist>

</any>
</derivation>

</Attribute>

<Attribute name="qualifiesForChildBenefit">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <any> operating on a <dynamiclist>.

If it so happens that one child’s age cannot be

Cúram Express Rules Reference 159

calculated, and there is at least one child under 16,
then the <any> will return true; otherwise, it
will return the error showing why the child’s age could
not be calculated.

-->
<!-- To qualify for child benefit, this person must

have one or more children aged under 16. -->
<any>

<dynamiclist>
<list>

<reference attribute="children"/>
</list>
<listitemexpression>

<compare comparison="<">
<reference attribute="age">

<current/>
</reference>
<Number value="16"/>

</compare>
</listitemexpression>

</dynamiclist>
</any>

</derivation>
</Attribute>

<!-- The children of this person - each child is a person too!
-->

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isBlind">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isDisabled">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

160 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</Class>

</RuleSet>

arithmetic:
Performs an arithmetical calculation on two numbers (a left-hand-side number and
a right-hand-side number) and optionally rounds the result to the specified
number of decimal places.

The operations supported are:
v Addition

left hand side + right hand side;
v Subtraction

left hand side - right hand side;
v Multiplication

left hand side * right hand side; and
v Division

left hand side / right hand side.

If rounding is required, then you must specify:
v the number of decimal places to round to; and
v the rounding mode, i.e. the direction in which to round when rounding is

performed. See the JavaDoc for RoundingMode for the list of supported rounding
modes and a detailed explanation of their behavior.

warning: For division operations, in general you should supply a rounding mode
and a number of decimal places. If you do not, and at runtime an exact result
cannot be calculated, then a runtime error will occur.

The CER rule set validator will issue a warning if it detects any division operation
in your rule set which does not specify rounding specified.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_arithmetic"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="ArithmeticExampleRuleClass">

<!-- 3 + 2 = 5 -->
<Attribute name="addANumberToAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="+">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 - 2 = 1 -->
<Attribute name="subtractANumberFromAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

Cúram Express Rules Reference 161

http://java.sun.com/j2se/1.5.0/docs/api/java/math/RoundingMode.html

<arithmetic operation="-">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 * 2 = 6 -->
<Attribute name="multiplyANumberByAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="*">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 / 2 = 1.5 -->
<!-- Because the division is by 2,

we can get away without rounding.
A warning will still be issued by the
CER rule set validator, though. -->

<Attribute name="divideANumbersByAnother">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="/">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- (3 + 2) * 4 = 20 -->
<Attribute name="chainedArithmetic">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="*">
<arithmetic operation="+">

<Number value="3"/>
<Number value="2"/>

</arithmetic>
<Number value="4"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 1.23 + 3.45 = 4.68,
= 4.7 when rounded to the nearest 1 decimal place-->

<Attribute name="roundedAddition">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic decimalPlaces="1" operation="+"
rounding="half_up">
<Number value="1.23"/>
<Number value="3.45"/>

</arithmetic>
</derivation>

</Attribute>

162 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- 2 / 3, = 0.667 to 3 decimal places -->
<!-- If no rounding is specified,

then a runtime error will occur -->
<Attribute name="roundedDivision">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic decimalPlaces="3" operation="/"
rounding="half_up">
<Number value="2"/>
<Number value="3"/>

</arithmetic>
</derivation>

</Attribute>

</Class>

</RuleSet>

call:
Calls out to a static Java method to perform a complex calculation.

The call expression declares:
v type

The data type of the value returned (see “Supported Data Types” on page 39);
and

v arguments (optional)

A list of values to pass as arguments.

The Java method must be on a class which is on the classpath at rule set validation
time. The first argument to the method must be a Session object, and the
remaining arguments must match those specified in the rule set.

warning: You should ensure that any Java code invoked by a call expression does
not attempt to mutate any values on rule object attributes.

In general, CER rule sets use immutable data types, but it is possible to use your
own mutable Java classes as data types; if so, it is your responsibility to ensure
that no invoked code causes the value of a custom Java data type to be modified,
as doing so could mean that previously-performed calculations would now be
"wrong".
package curam.creole.example;

import curam.creole.execution.RuleObject;
import curam.creole.execution.session.Session;

public class Statics {

/**
* Calculates a person’s favorite color.
*
* This calculation is too complex for rules and so has been
* coded in java.
*
* @param session
* The rule session
* @param person
* the person
* @return the calculated favorite color of the specified person

Cúram Express Rules Reference 163

*/
public static String calculateFavoriteColor(

final Session session, final RuleObject person) {

// Note that the retrieval of the attribute value must be
// cast to the correct type
final String name =

(String) person.getAttributeValue("name").getValue();
final Number age =

(Number) person.getAttributeValue("age").getValue();

final String ageString = age.toString();
// Calculate the person’s favorite color according
// to the digits in their age and their name
if (ageString.contains("5") || ageString.contains("7")) {

return "Blue";
} else if (name.contains("z")) {

return "Purple";
} else {

return "Green";
}

}
}

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_call"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="favoriteColor">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- Call a java static method
to perform the calculation -->

<call class="curam.creole.example.Statics"
method="calculateFavoriteColor">
<type>

<javaclass name="String"/>
</type>
<arguments>

<!-- Pass in this person
as an argument to the
static method -->

<this/>
</arguments>

164 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</call>
</derivation>

</Attribute>

</Class>

</RuleSet>

Important: Since Cúram V6, CER and the Dependency Manager support the
automatic recalculation of CER-calculated values if their dependencies change.

If you change the implementation of a static method, CER and the Dependency
Manager will not automatically know to recalculate attribute values that were
calculated using the old version of your static method.

Once a static method has been used in a production environment for stored
attribute values, rather than changing the implementation you should instead
create a new static method (with the required new implementation), and change
your rule sets to use the new static method. When you publish your rule set
changes to point to the new static method, CER and the Dependency Manager will
automatically recalculate all instances of the affected attribute values.

choose:
Chooses a value based on a condition being met.

The choose expression contains:
v type

a data type specifier (see “Supported Data Types” on page 39) declaring the type
of value which will be chosen;

v test (optional)

an expression which specifies the value to test against the condition in each
when expression in turn. If no test expression is specified, the condition in each
when expression is tested in turn to check if it returns the value true;

v when (1 or more)

each contains a condition to test, and a value to return if the condition passes;
and

v otherwise

an expression containing a value to return (so that no matter what, a value is
always chosen).

The conditions are evaluated in top-down order of the when expressions, stopping
at the first condition to pass the test. Subsequent conditions are not evaluated.

The choose expression reflects that of if / else if /.../ else statements typical of
most programming languages. It can be effectively used to implement a decision
table.

You might consider ordering your conditions so that those most likely to succeed
are near the top of the list (to prevent needless calculations).

warning: For simple conditions (e.g. those which test equality to a single value),
typically you can reorder your conditions without affecting the behavior of the rule
set.

Cúram Express Rules Reference 165

However, for more complex conditions (and thus in general), you must carefully
consider whether reordering your conditions will introduce any unwanted
behavior changes.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_choose"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="ageCategory">
<type>

<javaclass name="String"/>
</type>
<derivation>

<choose>
<!-- There’s no explicit <test> clause, so this

<choose> statement will test each condition to
see if it is TRUE. -->

<type>
<javaclass name="String"/>

</type>

<!-- Note that the order of these conditions is
important; if we were to swap the positions of the
"Newborn" and "Infant" tests, then all children
under 5 (including those under 1) would be
identified as Infants; no children would be
identified as Newborns. -->

<when>
<condition>

<compare comparison="<">
<reference attribute="age"/>
<Number value="1"/>

</compare>
</condition>
<value>

<String value="Newborn"/>
</value>

</when>
<when>

<condition>
<compare comparison="<">

<reference attribute="age"/>
<Number value="5"/>

</compare>
</condition>
<value>

<String value="Infant"/>
</value>

</when>
<when>

<condition>
<compare comparison="<">

<reference attribute="age"/>
<Number value="18"/>

</compare>

166 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</condition>
<value>

<String value="Child"/>
</value>

</when>
<otherwise>

<value>
<String value="Adult"/>

</value>
</otherwise>

</choose>
</derivation>

</Attribute>

<Attribute name="numberOfSpouses">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="maritalStatus">
<type>

<javaclass name="String"/>
</type>
<derivation>

<choose>
<type>

<javaclass name="String"/>
</type>
<!-- Test the number of spouses -->
<test>

<reference attribute="numberOfSpouses"/>
</test>
<!-- Note that the order of the "0" and "1" tests do not

matter -
so you might want to order these according to whether

most
Person instances being tested have 0 or 1 spouses.

-->
<when>

<condition>
<Number value="0"/>

</condition>
<value>

<String value="Unmarried"/>
</value>

</when>
<when>

<condition>
<Number value="1"/>

</condition>
<value>

<String value="Married - single spouse"/>
</value>

</when>
<otherwise>

<value>
<String value="Married - multiple spouses"/>

</value>
</otherwise>

</choose>

</derivation>
</Attribute>

Cúram Express Rules Reference 167

</Class>

</RuleSet>

Code:
A literal constant value representing a code from an application code table.

The Code expression specifies a code table name, and takes a single argument
specifying the value of the code required from the table.

Note: You must specify the code's String value; code table generated constants
cannot be used, as CER is a fully dynamic language and cannot be dependent on
build-time constructs.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Code"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- Boolean representation of gender -->
<Attribute name="isMale">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Code representation of gender -->
<Attribute name="gender">

<type>
<codetableentry table="Gender"/>

</type>
<derivation>

<Code table="Gender">
<choose>

<type>
<javaclass name="String"/>

</type>
<when>

<condition>
<reference attribute="isMale"/>

</condition>
<value>

<!-- use the "MALE" code from the codetable -->
<String value="MALE"/>

</value>
</when>
<otherwise>

<value>
<!-- use the "FEMALE" code from the codetable -->
<String value="FEMALE"/>

</value>
</otherwise>

</choose>
</Code>

</derivation>
</Attribute>

</Class>

</RuleSet>

168 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

combineSuccessionSets:
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

compare:
Compares a left-hand-side value with a right-hand-side value, according to the
comparison provided.

The comparisons supported are:
v <

left hand side "is less than" right hand side;
v <=

left hand side "is less than or equal to" right hand side;
v >

left hand side "is greater than" right hand side; and
v >=

left hand side "is greater than or equal to" right hand side.

The left hand side and right hand side values can be of any type of comparable
object, including (but not limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format
(backed by java.math.BigDecimal) before comparison.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_compare"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="CompareExampleRuleClass">

<!-- 3 >= 2 - TRUE-->
<Attribute name="compareTwoNumbers">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<compare comparison=">=">
<Number value="3"/>
<Number value="2"/>

</compare>
</derivation>

</Attribute>

<!-- New Year earlier than Christmas - TRUE -->
<Attribute name="compareTwoDates">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<compare comparison="<">
<Date value="2007-01-01"/>
<Date value="2007-12-25"/>

</compare>
</derivation>

</Attribute>

Cúram Express Rules Reference 169

</Class>

</RuleSet>

concat:
Creates a localizable message (see “Localization Support” on page 7) by
concatenating a list of values.

The concat strings together its values with no additional spaces or text; if you
require more complex formatting or localizable text, consider using
“ResourceMessage” on page 213 instead.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_concat"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- An identifier for a person, including
first name, surname and date of birth, e.g.
John Smith (03 Oct 1970).

First name and surname are plain Strings,
but date of birth will be localized
according to the user’s locale.
-->
<Attribute name="personIdentifier">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<concat>
<fixedlist>

<listof>
<!-- Note we use Object, as we have a

mixture of String and Date items
in the list. -->

170 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<javaclass name="Object"/>
</listof>
<members>

<reference attribute="firstName"/>
<!-- space separator between names -->
<String value=" "/>
<reference attribute="surname"/>
<String value=" ("/>
<reference attribute="dateOfBirth"/>
<String value=")"/>

</members>
</fixedlist>

</concat>
</derivation>

</Attribute>

</Class>

</RuleSet>

create:
Gets a new instance of a rule class in the session's memory. Any initialization
values required by the rule object must be specified as child elements of the create
expression.

Since Cúram V6, create can be used to create an new instance of a rule class from
a different rule set, by setting the value of the optional ruleset XML attribute.

Note: Rule objects created using create cannot be retrieved during rules execution,
as to do so would violate CER's ordering principle.

Since Cúram V6, there is a choice of syntax when passing values to a created rule
object:
v initialization block

CER continues to support a block of attributes defined within an Initialization
element. This syntax can be useful for attributes which must always be set and
have no default implementation; and

v specify elements

Since Cúram V6, CER also supports arbitrary attributes having their value
overridden by use of a specify element which names the attribute to set and
which contains the value to use. This syntax can be useful for attributes which
are only sometimes set and/or have a default implementation.

Since Cúram V6, created rule objects are “pooled” within the session. This pool
enables identical requests to create a rule object to be served by a single rule object,
which can conserve memory usage and also prevent identical calculations from
taking place, leading to lower CPU load. Two requests to create a rule object are
considered identical if they request the same rule class and the values of all
initialized and specified attributes are equal.

In the example below, if a person's work phone number is identical to the person's
home phone number, then a single rule object will be used for each number, and
thus the derived value for isOutOfThisArea will only be calculated once. Otherwise
if the work and home phone numbers are different then two different rule objects
will be created.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_create"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Cúram Express Rules Reference 171

xsi:noNamespaceSchemaLocation=
"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<!-- Phone number details as gathered in evidence -->
<Attribute name="homePhoneAreaCode">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="homePhoneNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="workPhoneAreaCode">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="workPhoneNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Create PhoneNumber rule objects
and place them in a list -->

<Attribute name="phoneNumbers">
<type>

<javaclass name="List">
<ruleclass name="PhoneNumber"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="PhoneNumber"/>
</listof>

<members>

<!-- Phone Number for the home details. -->
<create ruleclass="PhoneNumber">

<!-- The value for PhoneNumber.owner -->
<this/>
<!-- The value for PhoneNumber.number -->
<reference attribute="homePhoneNumber"/>
<specify attribute="areaCode">

<!-- The value for PhoneNumber.areaCode -->
<reference attribute="homePhoneAreaCode"/>

172 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</specify>
</create>

<!-- Phone Number for the work details.

If a person’s work phone number is identical to the
person’s home phone number (i.e. the area code and
number are the same), then this <create> expression
will return the same rule object as the rule object
returned by the <create> expression above. If the
phone numbers are not identical, then two different
rule objects will be returned.-->

<create ruleclass="PhoneNumber">
<this/>
<reference attribute="workPhoneNumber"/>
<specify attribute="areaCode">

<reference attribute="workPhoneAreaCode"/>
</specify>

</create>

</members>
</fixedlist>

</derivation>
</Attribute>

</Class>

<Class name="PhoneNumber">

<Initialization>
<!-- The values for these attributes must be passed, in order,

by any <create> expression. -->
<Attribute name="owner">

<type>
<ruleclass name="Person"/>

</type>
</Attribute>
<Attribute name="number">

<type>
<javaclass name="Number"/>

</type>
</Attribute>

</Initialization>

<!-- The value for this attribute may be passed by a <specify>
element within a <create> expression, which will override
the default derivation here. -->

<Attribute name="areaCode">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- Default implementation, used if the <create> expression
does not <specify> a value for this attribute. -->

<Number value="123"/>
</derivation>

</Attribute>

<!-- For a pooled rule object, this derived value will only be
calculated once.

For example, if a person’s work phone number is identical
to the person’s home phone number, then the same rule
object will be used for both home and work phone numbers,
and the "isOutOfThisArea" value for this single rule
object will be calculated only once.

Cúram Express Rules Reference 173

-->
<Attribute name="isOutOfThisArea">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<not>
<equals>

<reference attribute="areaCode"/>
<!-- The area code for the agency’s area -->
<Number value="123"/>

</equals>
</not>

</derivation>
</Attribute>

</Class>
</RuleSet>

current:
Refers to an item in a list being processed.

The current expression may only appear within an expression which processes
items in a list, such as:
v the listitemexpression in a “filter” on page 184 or “dynamiclist” on page

176 expression; or
v the sortorder in a “sort” on page 217 expression.

For clarity, you can assign an alias to the current expression, which must match
the alias on the list expression referred to. Alias are required if there are more
than current expressions in scope in the same calculation.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_listitem"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="adults">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<filter>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<!-- The reference uses current to refer
to an item in the list of Person
rule objects. -->

<reference attribute="isAdult">

174 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<current/>
</reference>

</listitemexpression>
</filter>

</derivation>
</Attribute>

</Class>

<Class name="Person">

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isAdult">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="18"/>

</compare>

</derivation>
</Attribute>

<!-- The children of this person who
are not yet adults. -->

<Attribute name="dependentChildren">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<filter>
<!-- Use an alias to avoid confusion (for human

readers of the rule set!) between the parent
Person and the child Person. -->

<list alias="child">
<reference attribute="children"/>

</list>
<listitemexpression>

<not>
<reference attribute="isAdult">

<!-- The alias on the current must match
that on the list. -->

<current alias="child"/>
</reference>

Cúram Express Rules Reference 175

</not>
</listitemexpression>

</filter>
</derivation>

</Attribute>

</Class>

</RuleSet>

Date:
A literal Date constant value, of type curam.util.type.Date.

The Date 's value is specified in the form yyyy-mm-dd.

Note: There is intentionally no function in CER to obtain the current date - such a
function would be volatile in that today it returns one value, tomorrow a different
value.

Volatile functions are forbidden in CER, as if a function's result can change, it
could mean that previously-performed calculations would now be "wrong".
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Date"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="DateExampleRuleClass">

<Attribute name="nullDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<!-- A null Date -->
<null/>

</derivation>
</Attribute>

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<!-- The Date 3rd October, 1970 -->
<Date value="1970-10-03"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

dynamiclist:
Creates a new list by evaluating an expression on each item in an existing list.

The new list will have one entry corresponding to each entry in the existing list,
with ordering preserved.

A dynamiclist expression specifies:
v list

The existing list; and

176 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v listitemexpression

The expression to evaluate on each item in the existing list.

A dynamiclist can be used when the number of items in the desired list is not
known as design time (i.e. it can differ from execution to execution, depending on
the value of other attributes). If the number of items is fixed (i.e. is known at
design time), consider using “fixedlist” on page 186 instead.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_dynamiclist"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isDisabled">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="totalIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="pets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">
<Initialization>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

</Class>

Cúram Express Rules Reference 177

<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="containsDisabledPerson">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<any>
<!-- gets a list of Booleans, corresponding

to the isDisabled attribute on each
Person members of this Household -->

<dynamiclist>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<reference attribute="isDisabled">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</any>

</derivation>
</Attribute>

<Attribute name="totalIncomeOfAdultMembers">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<sum>
<dynamiclist>

<list>
<!-- filter the members down to

just the adults -->
<filter>

<list>
<reference attribute="members"/>

</list>
<listitemexpression>

<compare comparison=">=">
<reference attribute="age">

<current/>
</reference>
<Number value="18"/>

</compare>
</listitemexpression>

</filter>
</list>
<listitemexpression>

<reference attribute="totalIncome">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</sum>

178 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</derivation>
</Attribute>

<Attribute name="memberAges">
<type>

<javaclass name="List">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<dynamiclist>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<reference attribute="age">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</derivation>

</Attribute>

<Attribute name="youngestAge">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<min>
<reference attribute="memberAges"/>

</min>
</derivation>

</Attribute>

<!-- get all the pets in the household,
by joining together each person’s
list of pets -->

<Attribute name="allPets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<joinlists>
<!-- a list of list of pets, one

list for each household
member -->

<dynamiclist>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<reference attribute="pets">
<current/>

</reference>
</listitemexpression>

</dynamiclist>

</joinlists>
</derivation>

</Attribute>

</Class>

</RuleSet>

Cúram Express Rules Reference 179

defaultDescription:
Provides a default implementation of the description attribute that all rule classes
inherit from the root rule class. See “Supported Data Types” on page 39.

Each rule class should override the description attribute from the root rule class
to provide a more meaningful description. If no override is provided (or inherited),
a warning will be issued when the rule set is validated.

Important: The defaultDescription expression is for use only by the root rule
class; you must not use it in your own rule classes.
<Class name="RootRuleClass" abstract="true">

<Attribute name="description">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- For use ONLY in the RootRuleClass -->
<defaultDescription/>

</derivation>
</Attribute>

</Class>

equals:
Determines whether two objects (a left-hand-side object and a right-hand-side
object) are equal.

Number values are converted to CER's own numerical format (backed by
java.math.BigDecimal) before comparison; differences in leading or trailing zeros
are ignored.

null values are compared safely; if both left hand side and right hand side are
null, then the equals expression returns true; if only one of the left hand side and
right hand side values are null, then the equals expression returns false.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_equals"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="EqualsExampleRuleClass">

<!-- TRUE -->
<Attribute name="identicalStrings">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<String value="A String"/>
<String value="A String"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="differentStrings">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<String value="A String"/>
<String value="A different String"/>

180 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</equals>
</derivation>

</Attribute>

<!-- TRUE -->
<Attribute name="identicalNumbers">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<!-- These numbers are the same,

disregarding trivial
differences in leading/trailing
zeroes -->

<Number value="123"/>
<Number value="000123.000"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="differentTypes">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<!-- These objects are of

different types, so are
not equal even if they
"look" the same.-->

<String value="123"/>
<Number value="123"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="oneNull">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<null/>
<Number value="456"/>

</equals>
</derivation>

</Attribute>

<!-- TRUE -->
<Attribute name="twoNulls">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<null/>
<null/>

</equals>
</derivation>

</Attribute>

</Class>

</RuleSet>

Cúram Express Rules Reference 181

existencetimeline:
Creates a Timeline of a specified type from a pair of inclusive start and end dates,
either of which is optional.

See “Constructing Timelines” on page 57.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_existencetimeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- will be null if the person is still alive -->
<Attribute name="dateOfDeath">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Creates a timeline which is false before the Person is
born, true while the Person is alive, and false after the
Person dies. If the Person has no date-of-death recorded,
there will be no trailing "false" interval. -->

<Attribute name="isAliveTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<existencetimeline>
<intervaltype>

<javaclass name="Boolean"/>
</intervaltype>
<intervalfromdate>

<reference attribute="dateOfBirth"/>
</intervalfromdate>
<intervaltodate>

<reference attribute="dateOfDeath"/>
</intervaltodate>
<preExistenceValue>

<false/>
</preExistenceValue>
<existenceValue>

<true/>
</existenceValue>
<postExistenceValue>

<false/>
</postExistenceValue>

</existencetimeline>

</derivation>

182 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</Attribute>

<!-- Creates a timeline which is "Before Birth" before the Person
is born, "During Lifetime" while the Person is alive, and
"After Death" after the Person dies. If the Person has no
date-of-death recorded, there will be no trailing "After
Death" interval. -->

<Attribute name="lifeStatus">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="String"/>

</javaclass>
</type>
<derivation>

<existencetimeline>
<intervaltype>

<javaclass name="String"/>
</intervaltype>
<intervalfromdate>

<reference attribute="dateOfBirth"/>
</intervalfromdate>
<intervaltodate>

<reference attribute="dateOfDeath"/>
</intervaltodate>
<preExistenceValue>

<String value="Before Birth"/>
</preExistenceValue>
<existenceValue>

<String value="During Lifetime"/>
</existenceValue>
<postExistenceValue>

<String value="After Death"/>
</postExistenceValue>

</existencetimeline>

</derivation>
</Attribute>

</Class>
</RuleSet>

false:
The Boolean constant value “false”.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_false"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="FalseExampleRuleClass">

<Attribute name="isCuramExpertRulesFantastic">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<false/>

</not>
</derivation>

</Attribute>

<Attribute name="didCookbookWinPulitzerPrize">
<type>

Cúram Express Rules Reference 183

<javaclass name="Boolean"/>
</type>
<derivation>

<false/>
</derivation>

</Attribute>

</Class>

</RuleSet>

filter:
Creates a new list containing all the items in an existing list which meet the filter
condition.

The filter expression contains:
v list

an existing list to filter; and
v listitemexpression

the test to apply to each item in the list.

Typically the listitemexpression contains one or more calculations applied to the
“current” on page 174 item in the list.

The relative order of the list items in the filtered result will preserve the relative
order of the list items in the original list. If none of the items in the list meet the
filter condition, then an empty list is returned.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_filter"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The spouse of this person, or
null if unmarried -->

<Attribute name="spouse">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The children of this person -->
<Attribute name="children">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

184 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Household">

<!-- All the people in the household -->
<Attribute name="members">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- All the adults in the household -->
<Attribute name="adultMembers">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<compare comparison=">=">
<reference attribute="age">

<current/>
</reference>
<Number value="18"/>

</compare>
</listitemexpression>

</filter>
</derivation>

</Attribute>

<!-- All the lone parents in the household -->
<Attribute name="loneParents">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<all>
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

Cúram Express Rules Reference 185

<!-- No spouse -->
<equals>

<reference attribute="spouse">
<current/>

</reference>
<null/>

</equals>
<!-- At least one child -->
<not>

<property name="isEmpty">
<object>

<reference attribute="children">
<current/>

</reference>
</object>

</property>
</not>

</members>
</fixedlist>

</all>
</listitemexpression>

</filter>
</derivation>

</Attribute>

</Class>

</RuleSet>

fixedlist:
Creates a new list from items known at rule set design time.

The fixedlist expression specifies:
v listof

The type of item in the list returned (see “Supported Data Types” on page 39);
and

v members

The items in the list.

The created list will contain its members in the order listed in the rule set.

Tip: The members element may contain 0, 1 or many child elements.

However, if the fixedlist is contained within a list processing operation but only
specifies 0 or 1 list members, the CER rule set validator will issue a warning,
indicating that the list may be unnecessary.

If you need to create a list where the number of items in the list is not known at
design time, consider using “dynamiclist” on page 176 instead.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_fixedlist"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The pets owned by this Person -->
<Attribute name="pets">

<type>
<javaclass name="List">

186 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<ruleclass name="Pet"/>
</javaclass>

</type>
<derivation>

<!-- A fixed list of Pets -->
<fixedlist>

<listof>
<ruleclass name="Pet"/>

</listof>
<members>

<!-- Every Person has exactly two pets,
Skippy and Lassie -->

<create ruleclass="Pet">
<String value="Skippy"/>
<String value="Kangaroo"/>

</create>
<create ruleclass="Pet">

<String value="Lassie"/>
<String value="Dog"/>

</create>
</members>

</fixedlist>
</derivation>

</Attribute>

<Attribute name="isEntitledToBenefits">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<all>
<!-- A fixed list of Boolean conditions -->
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<!-- Must be an adult -->
<compare comparison=">=">

<reference attribute="age"/>
<Number value="18"/>

</compare>
<!-- Must be resident in the state -->
<reference attribute="isResidentInTheState"/>
<!-- Must have income under the threshold for benefits

-->
<compare comparison="<">

<reference attribute="totalIncome"/>
<Number value="100"/>

</compare>
</members>

</fixedlist>

</all>

</derivation>
</Attribute>

<Attribute name="totalIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A pointless sum of one item -
the CER rule set validator will warn that this

Cúram Express Rules Reference 187

fixedlist may be unnecessary. -->
<sum>

<fixedlist>
<listof>

<javaclass name="Number"/>
</listof>
<members>

<!-- Sum up only the earned income -->
<reference attribute="earnedIncome"/>

</members>
</fixedlist>

</sum>

</derivation>
</Attribute>

<Attribute name="earnedIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isResidentInTheState">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Initialization>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>

</Attribute>

<Attribute name="species">
<type>

<javaclass name="String"/>
</type>

</Attribute>

</Initialization>

188 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</Class>

</RuleSet>

FrequencyPattern:
A literal FrequencyPattern constant value, of type
curam.util.type.FrequencyPattern.

The FrequencyPattern 's value is specified as a 9-digit number. See the JavaDoc for
curam.util.type.FrequencyPattern for the meaning of the digit string.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_FrequencyPattern"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="FrequencyPatternExampleRuleClass">

<Attribute name="nullFrequencyPattern">
<type>

<javaclass name="curam.util.type.FrequencyPattern"/>
</type>
<derivation>

<!-- A null FrequencyPattern -->
<null/>

</derivation>
</Attribute>

<Attribute name="weeklyOnMondays">
<type>

<javaclass name="curam.util.type.FrequencyPattern"/>
</type>
<derivation>

<!-- The Frequency Pattern string for
"Weekly on Mondays" -->

<FrequencyPattern value="100100100"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Interval:
Creates an Interval (see “Handling Data that Changes Over Time” on page 49) of a
given type, with a value valid from a specified date.

This expression is typically used as part of the construction of a “Timeline” on
page 224.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Interval"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateInterval">

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

Cúram Express Rules Reference 189

<Timeline>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- Another interval-->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<!-- Creates an interval of the specified type.
Typically used as input into a <Timeline>. -->

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
</members>

</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

</Class>
</RuleSet>

intervalvalue:
Wraps an expression which returns a Timeline (see “Handling Data that Changes
Over Time” on page 49), and allows a containing expression to operate on the
individual values within the Timeline. This expression effectively shields an outer
expression from "knowing" that it is operating on a Timeline.

This expression can only be used when nested within a “timelineoperation” on
page 226 expression. For further description and usage examples of intervalvalue,
see “timelineoperation” on page 226.

joinlists:
Creates a new list by joining together some existing lists.

The joinlists expression takes a single argument which must be a list of lists.

The order of the items in the new list is identical to the order in their source list.
The lists are joined in the order they are provided.

If the lists being joined can contain duplicate items, consider wrapping the
joinlists expression in a “removeduplicates” on page 211 expression.

190 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_joinlists"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="pets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">
<Initialization>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

</Class>

<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- get all the pets in the household,
by joining together each person’s
list of pets -->

<Attribute name="allPets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<joinlists>
<!-- a list of list of pets, one

list for each household
member -->

<dynamiclist>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<reference attribute="pets">
<current/>

</reference>
</listitemexpression>

Cúram Express Rules Reference 191

</dynamiclist>

</joinlists>
</derivation>

</Attribute>

</Class>

</RuleSet>

legislationChange:
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

max:
Determines the largest value in a list (or null if the list is empty).

The list can contain any type of comparable object, including (but not limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format
(backed by java.math.BigDecimal) before comparison.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_max"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="MaxExampleRuleClass">

<!-- Will pick out "Cherry" as the "largest" String value -->
<Attribute name="alphabeticallyLastFruit">

<type>
<javaclass name="String"/>

</type>
<derivation>

<max>
<reference attribute="fruits"/>

</max>
</derivation>

</Attribute>

<Attribute name="fruits">
<type>

<javaclass name="List">
<javaclass name="String"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<javaclass name="String"/>
</listof>
<members>

<String value="Apple"/>
<String value="Banana"/>
<String value="Cherry"/>

</members>
</fixedlist>

</derivation>
</Attribute>

192 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- Determines the number of spots on the spottiest dog -->
<Attribute name="largestNumberOfSpots">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<max>
<dynamiclist>

<list>
<reference attribute="dalmatians"/>

</list>
<listitemexpression>

<reference attribute="numberOfSpots">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</max>

</derivation>
</Attribute>

<Attribute name="dalmatians">
<type>

<javaclass name="List">
<ruleclass name="Dalmation"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Dalmation">

<Attribute name="numberOfSpots">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

min:
Determines the smallest value in a list (or null if the list is empty).

The list can contain any type of comparable object, including (but not limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format
(backed by java.math.BigDecimal) before comparison.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_min"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

Cúram Express Rules Reference 193

<Class name="MinExampleRuleClass">

<!-- Will pick out New Year as the "earliest" Date value -->
<Attribute name="eariestDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<min>
<reference attribute="publicHolidays"/>

</min>
</derivation>

</Attribute>

<Attribute name="publicHolidays">
<type>

<javaclass name="List">
<javaclass name="curam.util.type.Date"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<javaclass name="curam.util.type.Date"/>
</listof>
<members>

<Date value="2007-01-01"/>
<Date value="2007-12-25"/>

</members>
</fixedlist>

</derivation>
</Attribute>

<!-- Determines the number of strips on the least-stripey
zebra-->

<Attribute name="smallestNumberOfStripes">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<min>
<dynamiclist>

<list>
<reference attribute="zebras"/>

</list>
<listitemexpression>

<reference attribute="numberOfStripes">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</min>

</derivation>
</Attribute>

<Attribute name="zebras">
<type>

<javaclass name="List">
<ruleclass name="Zebra"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

194 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<Class name="Zebra">

<Attribute name="numberOfStripes">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

not:
Negates a Boolean value.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_not"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isLivingInUSA">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<!-- Note that this not-within-not is somewhat contrived.
-->

<not>
<reference attribute="isLivingOutsideUSA"/>

</not>
</derivation>

</Attribute>

<Attribute name="isLivingOutsideUSA">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<equals>

<reference attribute="country"/>
<String value="USA"/>

</equals>
</not>

</derivation>
</Attribute>

<!-- The country in which this person resides. -->
<Attribute name="country">

<type>
<javaclass name="String"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

Cúram Express Rules Reference 195

</Class>

</RuleSet>

null:
A null constant value.

Setting a value to null may be useful to indicate that no value applies.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_null"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Pet">

<Initialization>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

<Class name="Person">

<!-- This Person’s favorite Pet, or
null if the Person owns no pet. -->

<Attribute name="favoritePet">
<type>

<ruleclass name="Pet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The name of this Person’s
favorite Pet, or null if
the Person owns no pet.

We have to test for the favoritePet
being null before performing the
(simple) calculation.-->

<Attribute name="favoritePetsName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<choose>
<type>

<javaclass name="String"/>
</type>
<when>

<!-- if this Person has no
favorite pet, then calculate the
name of the favorite pet as null. -->

<condition>
<equals>

<reference attribute="favoritePet"/>
<null/>

</equals>
</condition>
<value>

<null/>

196 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</value>
</when>
<otherwise>

<value>
<!-- get the name of the favorite pet -->
<reference attribute="name">

<reference attribute="favoritePet"/>
</reference>

</value>
</otherwise>

</choose>

</derivation>
</Attribute>

</Class>

</RuleSet>

Number:
A literal Number constant value.

A Number in CER is an arbitrarily-long decimal value, specified using a period
(“.”) as the decimal separator and without any thousands separator.

CER business calculations can often involve percentage values, e.g. "Deduct 10% of
the person's income". To help with the codification of such rules, CER allows a
Number to be specified as a percentage, by simply suffixing the number with %.
For example, the numbers 12.345% and 0.12345 will behave identically in
calculations (but the percentage version will display in percentage form).
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Number"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="NumberExampleRuleClass">

<Attribute name="aPositiveInteger">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A positive integer -->
<Number value="1"/>

</derivation>
</Attribute>

<Attribute name="aNegativeInteger">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A negative integer -->
<Number value="-2"/>

</derivation>
</Attribute>

<Attribute name="aDecimalNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A decimal number.

Cúram Express Rules Reference 197

Numbers are arbitrarily long/precise, use "." for
the decimal separator and have no thousands
separator.

-->
<Number value="-12345.6789"/>

</derivation>
</Attribute>

<Attribute name="aPercentage">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A percentage
(12.345% is equivalent to the number 0.12345) -->

<Number value="12.345%"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

periodlength:
Calculates the amount of time units between two dates.

One of the following time units must be specified:
v days;
v weeks;
v months; and
v years.

The periodlength expression must also specify whether the end date of the period
is inclusive or exclusive or the end date (the period is always inclusive of the start
date).

The calculation of the period length is always rounded down to the nearest integer.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_periodlength"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="PeriodLengthExampleClass">

<!-- NB 1970 was not a leap year -->
<Attribute name="firstDayOfJanuary1970">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<Date value="1970-01-01"/>
</derivation>

</Attribute>

<Attribute name="lastDayOfDecember1970">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<Date value="1970-12-31"/>
</derivation>

</Attribute>

198 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<Attribute name="firstDayOfJanuary1971">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<Date value="1971-01-01"/>
</derivation>

</Attribute>

<Attribute name="sameDay_LengthInDays">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- starts and ends on the same day = 1 day -->
<periodlength endDateInclusion="inclusive" unit="days">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="firstDayOfJanuary1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="sameDay_LengthInWeeks">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- starts and ends on the same day = 0 weeks-->
<periodlength endDateInclusion="exclusive" unit="weeks">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="firstDayOfJanuary1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="januaryToDecember_LengthInDays">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- 365 days -->
<periodlength endDateInclusion="inclusive" unit="days">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="lastDayOfDecember1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="januaryToDecember_LengthInYearsExclusive">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- 0 years (nearly 1 year, but just 1 day short) -->
<periodlength endDateInclusion="exclusive" unit="years">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="lastDayOfDecember1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="januaryToDecember_LengthInYearsInclusive">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- 1 year (exactly) -->

Cúram Express Rules Reference 199

<periodlength endDateInclusion="inclusive" unit="years">
<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="lastDayOfDecember1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="januaryToJanuary_LengthInYearsExclusive">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- 1 year (exactly) -->
<periodlength endDateInclusion="exclusive" unit="years">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="firstDayOfJanuary1971"/>

</periodlength>
</derivation>

</Attribute>

</Class>

</RuleSet>

property:
Obtains a property of a Java object.

The property expression specifies the name of the Java method to call, and:
v object

The Java object on which to operate; and
v arguments

Optionally, a list of arguments to pass to the Java method.

The property expression allows CER to leverage the power of Java classes without
having to replicate an arbitrary subset of methods as CER expressions. For
example, java.util.List contains a size method, and so CER contains no explicit
expression for calculating the counting the number of items in a list.

However, to comply with CER's principle of immutability, only Java methods
which do not alter the "value" of any object may be called. CER only allows a
"property" method to be called if the method is included on the "safe list" of
methods for the object's class (or one of its ancestor classes or interfaces).

A method is deemed safe if it is explicitly marked as such in the safe list. If it is
not present in the safe list, then the CER rule set validator will issue an error.

Tip: The explicit setting of safety as false is unnecessary but can be included for
documentation completeness, as is the case with the safe lists included with CER.

The safe list for a class is a properties file in the same package as the class, named
<classname>_CREOLE.properties.

CER includes safe lists for the following Java classes and interfaces:
v curam.creole.value.Timeline;
v java.lang.Object;
v java.lang.Number; and
v java.util.List.

200 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Safe list for curam.creole.value.Timeline methods.
Safe list for curam.creole.value.Timeline

safe
valueOn.safe=true

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_property"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<Attribute name="isMinor">

<type>
<javaclass name="curam.creole.value.Timeline">

<ruleclass name="Boolean"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Whether this person is a child. -->
<Attribute name="isAChild">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<property name="valueOn">
<object>

<reference attribute="isMinor"/>
</object>
<arguments>

<Date value="2000-01-01"/>
</arguments>

</property>
</derivation>

</Attribute>

</Class>

</RuleSet>

Safe list for java.lang.Object methods.
Safe list for java.lang.Object

safe
toString.safe=true

force equality to be evaluated using <equals>
equals.safe=false

not exposed, even though they’re "safe"
hashCode.safe=false
getClass.safe=false

Safe list for java.lang.Number methods.
Safe list for java.lang.Number

byteValue.safe=true
doubleValue.safe=true

Cúram Express Rules Reference 201

floatValue.safe=true
intValue.safe=true
longValue.safe=true
shortValue.safe=true

Safe list for java.util.List methods.
Safe list for java.util.List

contains.safe=true
containsAll.safe=true

get.safe=true

indexOf.safe=true
isEmpty.safe=true
lastIndexOf.safe=true
size.safe=true
subList.safe=true

not exposed
hashCode.safe=false
listIterator.safe=false
iterator.safe=false
toArray.safe=false

mutators - unsafe
add.safe=false
addAll.safe=false
clear.safe=false
remove.safe=false
removeAll.safe=false
retainAll.safe=false

For a description of some of the useful properties on the List Java interface, see
“Useful List Operations” on page 239.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_property"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<Attribute name="children">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Whether this person has any children.

Tests the isEmpty property of List. -->
<Attribute name="hasChildren">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<not>
<property name="isEmpty">

202 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<object>
<reference attribute="children"/>

</object>
</property>

</not>

</derivation>
</Attribute>

<!-- All this person’s children, excluding the first child.

Uses the subList property of List, passing in:
- (inclusive) from item at position "1" (denoting the

second
member in the list; lists in Java are zero-based)

- (exclusive) to item at position "size of list" (denoting
the position after the last item in the list)

-->
<Attribute name="secondAndSubsequentChildren">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<property name="subList">
<object>

<reference attribute="children"/>
</object>
<arguments>

<!-- The number must be converted to an integer
(as required by List.subList). -->

<property name="intValue">
<object>

<Number value="1"/>
</object>

</property>
<property name="size">

<object>
<reference attribute="children"/>

</object>
</property>

</arguments>
</property>

</derivation>
</Attribute>

</Class>

</RuleSet>

Important: Since Cúram V6, CER and the Dependency Manager supports the
storage of calculated attribute values on the database, together with automatic
recalculation of attribute values if their dependencies change.

If you change the implementation of a property method, CER and the Dependency
Manager will not automatically know to recalculate attribute values that were
calculated using the old version of your property method.

Once a property method has been used in a production environment for stored
attribute values, rather than changing the implementation you should instead
create a new property method (with the required new implementation), and
change your rule sets to use the new property method. When you publish your

Cúram Express Rules Reference 203

rule set changes to point to the new property method, CER will automatically
recalculate all instances of the affected attribute values.

rate:
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

readall:
Retrieves all external rule object instances of a rule class (i.e. those which were
created by client code). Internal rule object instances (i.e. those created from rules)
are not retrieved.

See “External and Internal Rule Objects” on page 32 for more details on the
creation of rule objects.

Since Cúram V6, readall can be used to retrieve instances of a rule class from a
different rule set, by setting the value of the optional ruleset XML attribute.

Since Cúram V6, the readall expression supports an optional match element which
causes the readall expression to only retrieve rule objects whose value for a
particular attribute matches that in the search criterion.

Important: Prior to Cúram V6, one way of retrieving rule objects that matched a
criterion was to wrap a readall within a “filter” on page 184 expression.

However, for CER Sessions that use a DatabaseDataStorage (see “CER Sessions” on
page 29), in general it will be more performant to use the readall / match syntax
introduced in Cúram V6. The new syntax will perform better:
v when the attribute containing the readall expression is first calculated; and
v when CER and the Dependency Manager identify that the attribute containing

the readall expression is out-of-date and needs to be recalculated (see “The
Dependency Manager” on page 75).

In situations where rule objects must be matched on more than one criteria, you
should use the readall / match syntax to match on the most selective attribute,
and then wrap the results in a “filter” on page 184 to filter down to the other
criteria.

Tip: If you only expect there to be a singleton instance of the rule class (perhaps
after filtering or matching), consider wrapping the expression in a “singleitem” on
page 215 expression.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_readall"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="socialSecurityNumber">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--

204 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Retrieve the one-and-only claim which will have been used to
seed the session
-->

<Attribute name="claim">
<type>

<ruleclass name="Claim"/>
</type>
<derivation>

<singleitem onEmpty="error" onMultiple="error">
<readall ruleclass="Claim"/>

</singleitem>
</derivation>

</Attribute>

<!--
Retrieve the benefit rule objects for this person (created from
client code, probably by querying external storage).

This implementation uses a <readall> with a nested <match> to
retrieve only the matching rule objects, and (depending on data
storage) will be more performant than the
"benefitsFilterReadall" implementation below.
-->

<Attribute name="benefitsReadallMatch">
<type>

<javaclass name="List">
<ruleclass name="Benefit"/>

</javaclass>
</type>
<derivation>

<readall ruleclass="Benefit">
<match retrievedattribute="socialSecurityNumber">

<reference attribute="socialSecurityNumber"/>
</match>

</readall>
</derivation>

</Attribute>

<!--
Retrieves the same rule objects as for "benefitsReadallMatch"
above, but (depending on data storage) may not be as performant.
-->
<Attribute name="benefitsFilterReadall">

<type>
<javaclass name="List">

<ruleclass name="Benefit"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<!-- retrieve all Benefit rule objects from external
storage -->

<readall ruleclass="Benefit"/>
</list>
<listitemexpression>

<equals>
<!-- match up the social security numbers on

the person rule object and the benefit
rule object -->

<reference attribute="socialSecurityNumber">
<current/>

</reference>

Cúram Express Rules Reference 205

<reference attribute="socialSecurityNumber"/>
</equals>

</listitemexpression>
</filter>

</derivation>
</Attribute>

<!--
Retrieves the person’s benefits of type "IncomeAssistance",
using a <match> to retrieve all the person’s benefits, and then
a <filter> to extract only the "Income Assistance" benefits from
the benefits for that person.

This implementation may be suitable when the
socialSecurityNumber is the most selective attribute for a
Benefit in the data storage (i.e. there are many Benefit rule
objects, but each socialSecurityNumber value is present on
relatively few Benefit rule objects).
-->
<Attribute name="incomeAssistanceBenefitsMatchSSNFilterType">

<type>
<javaclass name="List">

<ruleclass name="Benefit"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<!-- retrieve all Benefit rule objects for the Person
-->

<readall ruleclass="Benefit">
<match retrievedattribute="socialSecurityNumber">

<reference attribute="socialSecurityNumber"/>
</match>

</readall>
</list>
<listitemexpression>

<equals>
<!-- filter the Benefit rule objects for the Person

down to those of type "Income Assistance" only
-->

<reference attribute="type">
<current/>

</reference>
<Code table="BenefitType">

<!-- The value for Income Assistance -->
<String value="BT1"/>

</Code>
</equals>

</listitemexpression>
</filter>

</derivation>
</Attribute>

<!--
Retrieves the person’s benefits of type "IncomeAssistance",
using a <match> to retrieve all the "Income Assistance"
benefits, and then a <filter> to extract only the "Income
Assistance" benefits for this Person.

This implementation may be suitable when the type is the most
selective attribute for a Benefit in the data storage (i.e.
there are few Benefit rule objects of each type).
-->
<Attribute name="incomeAssistanceBenefitsMatchTypeFilterSSN">

<type>

206 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<javaclass name="List">
<ruleclass name="Benefit"/>

</javaclass>
</type>
<derivation>

<filter>
<list>

<!-- retrieve all Benefit rule objects of type "Income
Assistance" -->

<readall ruleclass="Benefit">
<match retrievedattribute="type">

<Code table="BenefitType">
<!-- The value for Income Assistance -->
<String value="BT1"/>

</Code>
</match>

</readall>
</list>
<listitemexpression>

<equals>
<!-- filter the Benefit rule objects of type "Income

Assistance" down to those for this Person only
-->

<reference attribute="socialSecurityNumber">
<current/>

</reference>
<reference attribute="socialSecurityNumber"/>

</equals>
</listitemexpression>

</filter>
</derivation>

</Attribute>

<!--
Retrieves the rule objects for Benefits whose amount is greater
than 100.

Because "greater than" is not an exact match predicate, a
<filter> must be used (<match> can only be used for an exact
match criterion).
-->
<Attribute name="highPaymentBenefits">

<type>
<javaclass name="List">

<ruleclass name="Benefit"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<!-- retrieve all Benefit rule objects for the Person
-->

<readall ruleclass="Benefit">
<match retrievedattribute="socialSecurityNumber">

<reference attribute="socialSecurityNumber"/>
</match>

</readall>
</list>
<listitemexpression>

<!-- filter the Benefit rule objects for the Person down
to those of amount greater than 100 only -->

<compare comparison=">">
<reference attribute="amount">

<current/>
</reference>
<Number value="100"/>

</compare>

Cúram Express Rules Reference 207

</listitemexpression>
</filter>

</derivation>
</Attribute>

</Class>

<Class name="Benefit">

<Attribute name="socialSecurityNumber">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="type">
<type>

<codetableentry table="BenefitType"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="amount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<!--
This rule set expects that the code creating the session also
creates a "bootstrap" single instance of this Claim rule
class.
-->
<Class name="Claim">

<Initialization>
<Attribute name="claimIdentifier">

<type>
<javaclass name="String"/>

</type>
</Attribute>
<Attribute name="claimDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
</Attribute>

</Initialization>
</Class>

</RuleSet>

reference:
Retrieves the value of an attribute from a rule object.

208 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The reference expression may optionally contain a child expression which
determines the rule object from which to obtain the attribute; if omitted, the rule
object containing the reference will be used.

The reference expression is the key to building rules which are reusable and
understandable. You can use a reference to a named attribute in place of any
expression. The CER rule set validator will issue an error if the type of the
referenced attribute does not match the type required by the expression.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_reference"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- A simple reference to another
attribute on this rule class -->

<Attribute name="ageNextYear">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="+">
<!-- This <reference> has no child element,

so the rule object is taken to be "this rule
object"-->

<reference attribute="age"/>
<Number value="1"/>

</arithmetic>
</derivation>

</Attribute>

<Attribute name="favoritePet">
<type>

<ruleclass name="Pet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Attribute name="name">
<type>

Cúram Express Rules Reference 209

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="species">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Household">

<!-- All the people in the household -->
<Attribute name="members">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- One special person is designated
as the "head" of the household -->

<Attribute name="headOfHousehold">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- A reference to an attribute on a
different rule object:

name OF favoritePet OF headOfHousehold

In a programming language, this might be
written back-to-front using a dereferencing
"dot" notation like this:

headOfHousehold.favoritePet.name

-->
<Attribute name="nameOfHeadOfHouseholdsFavoritePet">

<type>
<javaclass name="String"/>

</type>
<derivation>

<!-- The name... -->
<reference attribute="name">

<!-- ...of the favorite pet... -->
<reference attribute="favoritePet">

210 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<!-- ...of the head of household. -->
<!-- The inner-most reference must refer to

an attribute on this rule object. -->
<reference attribute="headOfHousehold"/>

</reference>
</reference>

</derivation>
</Attribute>

<!-- Identifies the dog owners in the household
by checking which people have a favorite
pet which is a dog. -->

<Attribute name="dogOwners">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<filter>
<list>

<!-- simple reference to the members
of the household -->

<reference attribute="members"/>
</list>
<listitemexpression>

<equals>
<String value="Dog"/>
<!-- A reference to an attribute on an item

in the list. -->

<reference attribute="species">
<reference attribute="favoritePet">

<current/>
</reference>

</reference>

</equals>

</listitemexpression>
</filter>

</derivation>
</Attribute>

</Class>

</RuleSet>

removeduplicates:
Creates a new list by removing any duplicate items from an existing list.

If any item in the original list occurs more than once, the first instance only is kept.
Otherwise, the ordering of items is preserved.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_removeduplicates"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The list of relationships where
this person is the "fromPerson". -->

<Attribute name="relationships">
<type>

<javaclass name="List">

Cúram Express Rules Reference 211

<ruleclass name="Relationship"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The people who are related to this person.

Any relative appears in this list only once,
even though one person can be
related to another in more than one way, e.g.
my grandparent can also be my legal guardian.-->

<Attribute name="uniqueRelatives">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<removeduplicates>
<reference attribute="allRelatives"/>

</removeduplicates>
</derivation>

</Attribute>

<Attribute name="allRelatives">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<!-- get the relatives of this person by forming a
list of the "toPerson" on the other end of each
relationship. -->

<dynamiclist>
<list>

<reference attribute="relationships"/>
</list>
<listitemexpression>

<reference attribute="toPerson">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</derivation>

</Attribute>

</Class>

<!-- A relationship from one person to another. -->
<Class name="Relationship">

<Attribute name="fromPerson">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="relationshipType">
<type>

<javaclass name="String"/>

212 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="toPerson">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

ResourceMessage:
Creates a localizable message (see “Localization Support” on page 7) from a
property resource.

Optionally, the property may specify placeholders for formatted arguments. The
support and syntax for formatting is described in the JavaDoc for MessageFormat.

warning: As mentioned in the JavaDoc, if you need to output a single quote or
apostrophe ('), you must specify two single quotes in the property text ('').

If you require to output XML or HTML, and do not require complex token
formatting, or the ability to change message text without changing rules, consider
using “XmlMessage” on page 233 instead.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ResourceMessage"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="gender">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMarried">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>

Cúram Express Rules Reference 213

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html

</derivation>
</Attribute>

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="income">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Returns a greeting which can be
output in the user’s locale -->

<Attribute name="simpleGreetingMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<ResourceMessage key="simpleGreeting"
resourceBundle="curam.creole.example.Messages"/>

</derivation>
</Attribute>

<!-- Returns a greeting which contains
the person’s title and surname.
The greeting and title are localized,
the surname is not (it is identical
in all locales). -->

<Attribute name="parameterizedGreetingMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- pass in arguments to
the message placeholders -->

<ResourceMessage key="parameterizedGreeting"
resourceBundle="curam.creole.example.Messages">
<!-- Title -->
<choose>

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<when>

<condition>
<equals>

<reference attribute="gender"/>
<String value="Male"/>

</equals>
</condition>
<value>

<ResourceMessage key="title.male"
resourceBundle="curam.creole.example.Messages"/>

</value>
</when>
<when>

<condition>
<reference attribute="isMarried"/>

214 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</condition>
<value>

<ResourceMessage key="title.female.married"
resourceBundle="curam.creole.example.Messages"/>

</value>
</when>
<otherwise>

<value>
<ResourceMessage key="title.female.single"

resourceBundle="curam.creole.example.Messages"/>
</value>

</otherwise>
</choose>

<!-- Surname -->
<reference attribute="surname"/>

</ResourceMessage>
</derivation>

</Attribute>

<!-- Formats a number to 2 decimal places,
with decimal point and thousands
separator in the user’s locale -->

<Attribute name="incomeStatementMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<ResourceMessage key="incomeStatement"
resourceBundle="curam.creole.example.Messages">
<reference attribute="income"/>

</ResourceMessage>
</derivation>

</Attribute>

</Class>

</RuleSet>

Example properties, English.
file curam/creole/example/Messages_en.properties

simpleGreeting=Hello
parameterizedGreeting=Hello, {0} {1}
title.male=Mr.
title.female.single=Miss
title.female.married=Mrs.
incomeStatement=Income: USD{0,number,#0.00}

Example properties, French.
file curam/creole/example/Messages_fr.properties

simpleGreeting=Bonjour
parameterizedGreeting=Bonjour, {0} {1}
title.male=M.
title.female.single=Mlle.
title.female.married=Mme.
incomeStatement=Revenue: EUR{0,number,#0.00}

singleitem:
Retrieves a single item from a list.

Cúram Express Rules Reference 215

The singleitem expression can be useful when it is expected that a list contains
only a single item, e.g. when filtering a list by criteria which should only pick out
a single item from the list.

The singleitem expression specifies:
v onEmpty

The behavior when the list is found to be empty:
– error

A runtime error occurs (use this option if the list is not expected to be empty);
or

– returnNull

The value null is returned.
v onMultiple

The behavior when the list is found to contain more than one item:
– error

A runtime error occurs (use this option if the list is not expected to contain
more than one item);

– returnNull

The value null is returned;
– returnFirst

The first item in the list is returned; or
– returnLast

The last item in the list is returned.

To retrieve an item from a specific position in a list, see get in “Useful List
Operations” on page 239.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_singleitem"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The first child born to this person -->
<Attribute name="firstBornChild">

<type>
<ruleclass name="Person"/>

216 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</type>
<derivation>

<!-- get the first child, if any
- if no children, return null -->

<singleitem onEmpty="returnNull" onMultiple="returnFirst">
<!-- sort the children in date-of-birth order -->
<sort>

<list alias="child">
<reference attribute="children"/>

</list>
<sortorder>

<sortitem direction="ascending">
<reference attribute="dateOfBirth">

<current alias="child"/>
</reference>

</sortitem>
</sortorder>

</sort>

</singleitem>
</derivation>

</Attribute>

<!-- Retrieve the single household information record
from external storage - there should always
be exactly one - anything else is an error. -->

<Attribute name="householdInformation">
<type>

<ruleclass name="HouseholdInformation"/>
</type>
<derivation>

<singleitem onEmpty="error" onMultiple="error">
<readall ruleclass="HouseholdInformation"/>

</singleitem>
</derivation>

</Attribute>

</Class>

<Class name="HouseholdInformation">

<Attribute name="householdContainsDisabledPerson">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

sort:
Creates a new list by sorting the members of an existing list according to a
specified sort order.

A sort expression specifies:
v list

the existing to sort (which will not be affected); and
v sortorder

The order in which to sort the list.

Cúram Express Rules Reference 217

The sortorder specifies one or more sortitem s, each of which specifies the item to
sort by and whether to sort in ascending or descending order.

The sortitem s are listed most-significant first; each sortitem is only evaluated if
two items being sorted are identical with regard to more significant sortitem s.

Within each sortitem, you can use “current” on page 174 to refer to the list item
being sorted. Typically each sortitem will refer to some attribute or calculation on
the “current” on page 174 list item.

If two (or more) items in the list are identical with regard to all the sortitem s,
then they are returned in the same relative order as the source list.

The behavior of the sort expression is similar to SQL's ORDER BY clause.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sort"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Arranges the members in order of age (oldest to youngest);
for members which are the same age, the members are
arranged in alphabetical order by first name. -->

<Attribute name="sortedMembers">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<sort>
<list>

<reference attribute="members"/>
</list>
<sortorder>

<sortitem direction="descending">
<!-- The age of the person in the list -->
<reference attribute="age">

<current/>
</reference>

</sortitem>
<!-- The first name of the person in the list -->
<sortitem direction="ascending">

<reference attribute="firstName">
<current/>

</reference>
</sortitem>

</sortorder>
</sort>

</derivation>
</Attribute>

218 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</Class>

<Class name="Person">

<Initialization>
<Attribute name="firstName">

<type>
<javaclass name="String"/>

</type>
</Attribute>
<Attribute name="age">

<type>
<javaclass name="Integer"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>

specified:
A marker expression to denote that the attribute's value is specified externally (e.g.
by retrieval from a database or population by test code), rather than calculated by
rules processing.

Typically, specified attributes denote information that comes directly from outside
the system, and other attributes use this external information to derive new
information.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_specified"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- This information cannot be calculated or derived -
it must be specified from an external source -->

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This information cannot be calculated or derived -
it must be specified from an external source -->

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Other attributes are likely to derive/calculation more
information based on the "specified" attributes above -->

</Class>
</RuleSet>

String:
A literal String constant value.

Cúram Express Rules Reference 219

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_String"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="StringExampleRuleClass">

<Attribute name="emptyString">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- An empty String -->
<String value=""/>

</derivation>
</Attribute>

<Attribute name="helloWorld">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- The String "Hello, World!" -->
<String value="Hello, World!"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

sublists:
Calculates all the sublists of the list supplied, and returns these sublists as a list of
lists.

For a list containing n elements, there are 2 n sublists, including the empty list and
the original list.

The order of the list items in each of the sublists will be identical to the ordering in
the original list.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sublists"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="Person"/>
</listof>
<members>

<create ruleclass="Person">
<String value="Mother"/>

</create>
<create ruleclass="Person">

<String value="Father"/>
</create>

220 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<create ruleclass="Person">
<String value="Child"/>

</create>
</members>

</fixedlist>
</derivation>

</Attribute>

<!-- All the different combinations of members of the household
-->

<Attribute name="memberCombinations">
<!-- Note that the type is list of lists of Persons -->
<type>

<javaclass name="List">
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</javaclass>
</type>
<derivation>

<sublists>
<reference attribute="members"/>

</sublists>
</derivation>

</Attribute>

</Class>

<Class name="Person">

<Initialization>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>

In this example rule set, the value of memberCombinations is calculated as list of
these 8 lists:
v an empty list (no household members);
v Mother;
v Father;
v Mother and Father;
v Child;
v Mother and Child;
v Father and Child; and
v Mother, Father and Child (the full original list).

sum:
Calculates the numerical sum of a list of Number values.

If the list is empty, this expression returns 0.

The list of Number values is typically provided by a “fixedlist” on page 186 or
“dynamiclist” on page 176.

Cúram Express Rules Reference 221

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sum"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="netWorth">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- Example of <sum> operating on a <fixedlist> -->
<!-- A person’s net worth is the sum of their

cash, savings and assets -->
<sum>

<fixedlist>
<listof>

<javaclass name="Number"/>
</listof>
<members>

<reference attribute="totalCash"/>
<reference attribute="totalSavings"/>
<reference attribute="totalAssets"/>

</members>
</fixedlist>

</sum>
</derivation>

</Attribute>

<Attribute name="totalAssets">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- Example of <sum> operating on a <dynamiclist> -->
<!-- The total value of a person’s assets is derived by

summing the value of each asset -->
<sum>

<dynamiclist>
<list>

<reference attribute="assets"/>
</list>
<listitemexpression>

<reference attribute="value">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</sum>

</derivation>
</Attribute>

<!-- The assets of that this person owns -->
<Attribute name="assets">

<type>
<javaclass name="List">

<ruleclass name="Asset"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- NB this example doesn’t show how
total cash/savings is derived -->

222 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<Attribute name="totalCash">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute name="totalSavings">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Asset">

<!-- The monetary value of the asset -->
<Attribute name="value">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

this:
A reference to the current Rule Object, analogous to the keyword this in Java.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_this"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The pets owned by this Person -->
<Attribute name="pets">

<type>
<javaclass name="List">

<ruleclass name="Pet"/>
</javaclass>

</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="Pet"/>
</listof>
<members>

<!-- Every Person has exactly two pets,
Skippy and Lassie -->

<create ruleclass="Pet">
<!-- set the owner to be THIS Person -->
<this/>
<String value="Skippy"/>
<String value="Kangaroo"/>

</create>
<create ruleclass="Pet">

Cúram Express Rules Reference 223

<!-- set the owner to be THIS Person -->
<this/>
<String value="Lassie"/>
<String value="Dog"/>

</create>
</members>

</fixedlist>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Initialization>
<Attribute name="owner">

<type>
<ruleclass name="Person"/>

</type>
</Attribute>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>
<Attribute name="species">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>

Timeline:
Creates a Timeline (see “Handling Data that Changes Over Time” on page 49) of a
given type, with values valid from specified dates.

A timeline must have a value from the start-of-time (the null date), and so to assist
with this, the Timeline expression contains an optional initialvalue element to
specify the value from the start-of-time. If not used, then the collection of
“Interval” on page 189 used must contain an interval with a null start date,
otherwise an error will occur if this expression is evaluated at runtime.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Timeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateTimelines">

<!-- This example uses <initialvalue> to set the value valid
from the start of time. -->

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="Number"/>

224 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</intervaltype>
<!-- Value from start of time -->
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- The remaining intervals -->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="Number"/>

</intervaltype>
<start>

<Date value="2004-12-01"/>
</start>
<value>

<Number value="12000"/>
</value>

</Interval>

</members>
</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

<!-- This example does not use <initialvalue>. -->
<Attribute name="aStringTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="String"/>
</javaclass>

</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="String"/>
</intervaltype>

<!-- The list of intervals must include one valid from the
null date (start of time), otherwise an error will
occur at runtime, if this expression is evaluated. -->

<intervals>
<fixedlist>

<listof>
<javaclass name="curam.creole.value.Interval">

Cúram Express Rules Reference 225

<javaclass name="String"/>
</javaclass>

</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="String"/>
</intervaltype>
<start>

<!-- "from the start of time" -->
<null/>

</start>
<value>

<String value="Start of time string"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="String"/>

</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<String value="2001-only String"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="String"/>

</intervaltype>
<start>

<Date value="2002-01-01"/>
</start>
<value>

<String value="2002-onwards String"/>
</value>

</Interval>
</members>

</fixedlist>
</intervals>

</Timeline>
</derivation>

</Attribute>
</Class>

</RuleSet>

timelineoperation:
Assembles a Timeline (see “Handling Data that Changes Over Time” on page 49)
from repeated calls to a child expression. Typically timelineoperation is used in
conjunction with “intervalvalue” on page 190, and together these two expressions
allow other expressions to operate on values from timelines as if they were
primitive values, and then have the resultant data reassembled into a Timeline.

Tip: For each of the Timelines which are used as input into your algorithm,
typically you should wrap the expression that returns the Timeline in an
“intervalvalue” on page 190, and then wrap the overall result in a
timelineoperation.

A brief description of how timelineoperation behaves at evaluation time is as
follows:

226 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v timelineoperation creates a new evaluation context to track the series of calls to
make to its child expression (typically the child expression will be invoked
several times, for different dates);

v timelineoperation invokes its single child expression with a context date of
null, signifying the start-of-time;

v during the evaluation of the child expression (and its dependents), then
whenever an “intervalvalue” on page 190 is encountered, then perform the
following actions:
– “intervalvalue” on page 190 evaluates its single child expression to obtain a

Timeline, and from this Timeline get the value on the date corresponding to
the current date in the timelineoperation 's evaluation context;

– “intervalvalue” on page 190 checks the other dates on which the Timeline
changes value, and for each of these dates add them to a queue of other dates
that the timelineoperation should operate on (in a subsequent invocation);

v when control returns to timelineoperation, a value will have been calculated for
a particular date, and additional dates identified on which the input timelines
change value. For each date, timelineoperation re-invokes the child expression
(on this date) until no more dates are in the queue.

The behavior described above means that the inner expressions never have to
know that they are part of processing involving timelines. Furthermore, processing
is efficient because expressions are only invoked for dates on which the input
timelines change value.

Note: If a timelineoperation operates on an expression which is not wrapped by
an “intervalvalue” on page 190, then the resultant Timeline will have a constant
value for all time.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_timelineoperation"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<!--
true during a person’s lifetime; false before date of birth,
and false again after date of death (if any)
-->

<Attribute name="isAliveTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--
The assets owned by the person, at some time or another. Each
asset’s value may vary over time.
-->

<Attribute name="ownedAssets">
<type>

<javaclass name="List">
<ruleclass name="Asset"/>

</javaclass>
</type>
<derivation>

Cúram Express Rules Reference 227

<specified/>
</derivation>

</Attribute>

<!--
The total value of the assets owned by the person (or by the
person’s estate, if the person has died).
-->

<Attribute name="totalAssetValueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<!--
Total the value of all the owned assets. The value of each
asset may change over time.
-->

<!--
<timelineoperation> will create a timeline from the series
of <sum> calculations performed within it.

Each execution of <sum> will calculate the total for a
particular day; <timelineoperation> will assemble these
daily totals into a timeline of numbers.
-->

<timelineoperation>

<sum>
<!--
For each owned asset, get its countable-value timeline.
-->

<dynamiclist>
<list>

<reference attribute="ownedAssets"/>
</list>
<listitemexpression>

<!--
Wrap the timeline returned by
countableValueTimeline, so that the <sum> thinks
that it is operating on a list of numbers, not a
list of timelines.
-->

<intervalvalue>
<reference attribute="countableValueTimeline">

<current/>
</reference>

</intervalvalue>
</listitemexpression>

</dynamiclist>

</sum>

</timelineoperation>

</derivation>
</Attribute>

<!--
The cut-off point for being entitled to benefit. Persons with
assets above this varying threshold do not qualify for benefit.

228 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

-->
<Attribute name="maximumAssetsThreshold">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<!--
In a real implementation, this value would tend to vary
over time (e.g. from a rate table).

However, for the sake of example, this implementation uses
a <timelineoperation> WITHOUT a nested <intervalvalue> to
create a Timeline which has a constant value for all time.

This use of <timelineoperation> can often be useful for
dummy implementations early on in rule set development.
-->

<timelineoperation>
<!--
Hard coded forever-constant value - to be replaced by a
varying value later in rules development.
-->

<Number value="10000"/>
</timelineoperation>

</derivation>
</Attribute>

<!--
The person qualified for benefit if (on any particular day)
the person is alive and the total value of the person’s assets
does not exceed the maximum asset threshold.
-->

<Attribute name="qualifiesForBenefitTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<timelineoperation>
<all>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<!--
operate on the Timelines as if they were primitive
values
-->

<intervalvalue>
<reference attribute="isAliveTimeline"/>

</intervalvalue>

<compare comparison="<=">
<intervalvalue>

<reference attribute="totalAssetValueTimeline"/>
</intervalvalue>
<intervalvalue>

<reference attribute="maximumAssetsThreshold"/>
</intervalvalue>

</compare>
</members>

Cúram Express Rules Reference 229

</fixedlist>

</all>
</timelineoperation>

</derivation>
</Attribute>

</Class>

<!--
An asset, owned by a person at some time or other.

Each asset is bought, and may subsequently be sold.

The value of an asset varies over time; the asset still has a
value even before or after it is owned by a Person; however,
the _countable_ value is zero outside of the period of
ownership.
-->

<Class name="Asset">
<Attribute name="boughtDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- will be null if the asset has not been sold -->
<Attribute name="soldDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isOwnedTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<existencetimeline>
<intervaltype>

<javaclass name="Boolean"/>
</intervaltype>
<intervalfromdate>

<reference attribute="boughtDate"/>
</intervalfromdate>
<intervaltodate>

<reference attribute="soldDate"/>
</intervaltodate>
<preExistenceValue>

<false/>
</preExistenceValue>
<existenceValue>

<true/>
</existenceValue>
<postExistenceValue>

<false/>

230 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</postExistenceValue>
</existencetimeline>

</derivation>
</Attribute>

<!--
the varying value of the asset, regardless of whether it is
owned by the person at the time
-->

<Attribute name="valueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--
The value which counts towards the person’s assets - i.e. the
value of the asset during the period when it is owned,
otherwise 0 when it is not owned.
-->

<Attribute name="countableValueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<!--
reassemble the outputs from each <choose> invocation into a
timeline
-->

<timelineoperation>
<choose>

<type>
<javaclass name="Number"/>

</type>
<when>

<condition>
<!--
operate on each of the intervals of constant
ownership
-->

<intervalvalue>
<reference attribute="isOwnedTimeline"/>

</intervalvalue>
</condition>
<value>

<!--
if on a particular date, the asset is owned, then
its countable value on that date is simply its
value
-->

<intervalvalue>
<reference attribute="valueTimeline"/>

</intervalvalue>
</value>

</when>
<otherwise>

<value>

Cúram Express Rules Reference 231

<!--
if on a particular date, the asset is owned, then
its countable value on that date is zero
-->

<Number value="0"/>
</value>

</otherwise>
</choose>

</timelineoperation>
</derivation>

</Attribute>

</Class>

</RuleSet>

Tip: If an inner expression returns a Timeline, and you forget to wrap that
expression in an “intervalvalue” on page 190, you will see CER validation errors
as in this example:
<!--

The value which counts towards the person’s assets - i.e. the
value of the asset during the period when it is owned,
otherwise 0 when it is not owned.
-->

<Attribute name="countableValueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<!--
reassemble the outputs from each <choose> invocation into a
timeline
-->

<timelineoperation>
<choose>

<type>
<javaclass name="Number"/>

</type>
<when>

<condition>
<!--
operate on each of the intervals of constant
ownership
-->

<!--
**** Forgot to wrap the Timeline returned
in <intervalvalue> ****
-->
<reference attribute="isOwnedTimeline"/>

</condition>
<value>

<!--
if on a particular date, the asset is owned, then
its countable value on that date is simply its
value
-->

<intervalvalue>
<reference attribute="valueTimeline"/>

</intervalvalue>
</value>

</when>
<otherwise>

232 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<value>
<!--
if on a particular date, the asset is owned, then
its countable value on that date is zero
-->

<Number value="0"/>
</value>

</otherwise>
</choose>

</timelineoperation>
</derivation>

</Attribute>

Example error.
ERROR ... Example_timelineoperation.xml(276, 19)

AbstractRuleItem:INVALID_CHILD_RETURN_TYPE: Child ’condition’ returns
’curam.creole.value.Timeline<? extends java.lang.Boolean>’,
but this item requires a ’java.lang.Boolean’.

true:
The Boolean constant value “true”.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_true"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="TrueExampleRuleClass">

<Attribute name="isCuramExpertRulesFantastic">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<true/>
</derivation>

</Attribute>

<Attribute name="didCookbookWinPulitzerPrize">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<true/>

</not>
</derivation>

</Attribute>

</Class>

</RuleSet>

XmlMessage:
Creates a localizable message (see “Localization Support” on page 7) from
free-form XML content.

The message created will be the literal XML content within the XmlMessage
element, with one exception: The content of any replace element will be set to the
expression it contains.

Cúram Express Rules Reference 233

The replace element as a simple token replacement mechanism; if you require
more complex token formatting, or the ability to change message text without
changing rules, consider using “ResourceMessage” on page 213 instead.

Note: Prior to Cúram V6, XmlMessage trimmed whitespace surrounding any
embedded XML characters. From Cúram V6 onwards, XmlMessage no longer trims
any whitespace and preserves the source format of the XML characters (removing
any XML comments).

If you require the pre-Cúram V6 trimming behavior of XmlMessage, then you must
set the application environment variable
curam.creole.XmlFormat.enableWhitespaceTrimming to the value true in your
development environment.

In a production environment, you should ensure that if the value of the
curam.creole.XmlFormat.enableWhitespaceTrimming environment variable is changed
dynamically, you take steps to ensure that any derived data in your system that
depends on rule attributes which use the XmlMessage expression must be forced to
recalculate all stored attribute value instances.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_XmlMessage"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="XmlMessageExampleRuleClass">

<Attribute name="emptyMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- contains no XML at all -->
<XmlMessage/>

</derivation>
</Attribute>

<Attribute name="simpleHtmlMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- Using XmlMessage can ensure that
XML elements are started and
ended correctly, e.g. and -->

<XmlMessage>The following text will appear in bold in a
browser: Some in bold text.

</XmlMessage>
</derivation>

</Attribute>

<Attribute name="tokenReplacementHtmlMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<XmlMessage><p/>This calculated number will appear in
italics and formatted according to locale preferences:<i>

<replace>
<arithmetic operation="+">

<Number value="1.23"/>
<Number value="3.45"/>

</arithmetic>
</replace>

234 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

</i>
<p/>And here’s a resource message: <replace>

<ResourceMessage key="simpleGreeting"
resourceBundle="curam.creole.example.Messages"/>

</replace>
</XmlMessage>

</derivation>
</Attribute>

</Class>

</RuleSet>

Annotations
Since Cúram V6, CER supports "annotations". An annotation is extra metadata
within a rule set which is available to clients of CER but does not affect the
behavior of CER calculations.

Clients of CER may make use of annotations to govern their behavior when
interacting with CER rule sets.

Annotations may be placed on these items in a CER rule set (although each
annotation may contain validation to limit where it is placed):
v a rule set (see “Rule Set” on page 146);
v a rule class (see “Rule Class” on page 148);
v a rule attribute (see “Attribute” on page 149); or
v an expression (see “Expressions” on page 150).

Each rule item may contain zero, one or many annotations. Each type of
annotation may appear at most once on any one rule item - for example, a rule set
may contain both a Label annotation and an EditorMetadata annotation, but
cannot contain more than one Label annotation.

Full Alphabetical Listing of Annotations
This section defines all the annotations included with the application.

Note: Some annotations are for business-specific derivations in the application.
Any such annotations are still included here but the reader is referred to other
Cúram guides which describe those annotations in their business context.

ActiveInEditSuccessionSetPopulation:
See the Cúram Advisor Configuration Guide.

Display:
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

DisplaySubscreen:
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

EditorMetadata:
Stores diagram information for a rule set. Maintained automatically by the CER
Editor.

This annotation may be specified on a rule set (see “Rule Set” on page 146) only.

Cúram Express Rules Reference 235

Indexed:
No longer used. Included for backward compatibility only.

Label

Provides a localized description of a rule set element:
v a rule set (see “Rule Set” on page 146);
v a rule class (see “Rule Class” on page 148);
v a rule attribute (see “Attribute” on page 149); or
v an expression (see “Expressions” on page 150).

The label contains an identifier (set by the CER Editor) and a description (entered
by the user).

When a CER rule set is saved or published, the values of the label annotations in a
rule are used to write a property resource (in the locale of the user) to the
application resource store. Conversely, when a rule set is displayed in the CER
Editor, the property resource for the user's locale is retrieved from the resource
store and used to populate the value of the label annotations in the rule set XML.
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Label"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule-set level description -->
<Label name="Example rule set for labels"

label-id="annotation1"/>
</Annotations>
<Class name="Person">

<Annotations>
<!-- Rule-class level description -->
<Label name="A Person" label-id="annotation2"/>

</Annotations>
<Attribute name="age">

<Annotations>
<!-- Attribute-class level description -->
<Label name="The current age of the person, in years"

label-id="annotation3"/>
</Annotations>
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression-level description -->
<Label name="This value comes directly from evidence"

label-id="annotation4"/>
</Annotations>

</specified>
</derivation>

</Attribute>

<Attribute name="ageNextBirthday">
<Annotations>

<!-- Attribute-class level description -->
<Label name="The age of the person at the person’s next

birthday, in years"
label-id="annotation5"/>

</Annotations>

236 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="+">
<Annotations>

<!-- Expression-level description -->
<Label name="Compute the person’s age at next birthday"

label-id="annotation6"/>
</Annotations>
<reference attribute="age">

<Annotations>
<!-- Expression-level description -->
<Label name="Get the person’s current age"

label-id="annotation7"/>
</Annotations>

</reference>
<Number value="1">

<Annotations>
<!-- Expression-level description -->
<Label name="The number to add to get the age next

birthday" label-id="annotation8"/>
</Annotations>

</Number>
</arithmetic>

</derivation>
</Attribute>

</Class>

</RuleSet>

Legislation

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

SuccessionSetPopulation

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

primary

Identifies the primary attribute on a rule class, as designated in the CER Editor.

This annotation may be specified on a rule class (see “Rule Class” on page 148)
only. The named attribute must be the exact name of an attribute declared on the
rule class (it cannot be used to name an attribute which is inherited but not
overridden).
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_primary"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<Annotations>

<!-- Declaration of the "primary" rule attribute for this rule
class, as shown in the CER Editor -->

<primary attribute="age"/>

Cúram Express Rules Reference 237

</Annotations>
<Attribute name="age">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

relatedActiveInEditSuccessionSet

See the Cúram Advisor Configuration Guide.

relatedEvidence

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

relatedSuccessionSet

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
guide.

tags

Associates arbitrary string tags with:
v a rule set (see “Rule Set” on page 146);
v a rule class (see “Rule Class” on page 148);
v a rule attribute (see “Attribute” on page 149); or
v an expression (see “Expressions” on page 150).
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_tags"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule-set level tags -->
<tags>

<tag value="A rule-set tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>
<Class name="Person">

<Annotations>
<!-- Rule-class level tags-->
<tags>

<tag value="A rule-class tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>
<Attribute name="age">

<Annotations>
<!-- Attribute-class level tags -->
<tags>

<tag value="A rule-attribute tag"/>

238 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<tag value="Another tag"/>
</tags>

</Annotations>
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression-level tags -->
<tags>

<tag value="An expression tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>

</specified>
</derivation>

</Attribute>

</Class>

</RuleSet>

Useful List Operations
The property expression allows the invocation of "safe" Java methods.

See “Property” on page 118 and “property” on page 200.

Rule sets often contain many instances of java.util.List.

The safe list of methods for java.util.List is included with CER:

Safe list for java.util.List methods.
Safe list for java.util.List

contains.safe=true
containsAll.safe=true

get.safe=true

indexOf.safe=true
isEmpty.safe=true
lastIndexOf.safe=true
size.safe=true
subList.safe=true

not exposed
hashCode.safe=false
listIterator.safe=false
iterator.safe=false
toArray.safe=false

mutators - unsafe
add.safe=false
addAll.safe=false
clear.safe=false
remove.safe=false
removeAll.safe=false
retainAll.safe=false

Cúram Express Rules Reference 239

While the description of these methods is available via the JavaDoc for
java.util.List, the most typically useful properties are included here for your
reference:
v isEmpty()

Returns true if this list contains no elements.
v size()

Returns the number of elements in this list.
v get(int index)

Returns the element at the specified position in this list. Note that because CER
passes round numeric values as instances of Number, you will need to use the
intValue to convert a Number to an integer.

v contains(Object o)

Returns true if this list contains the specified element.
<?xml version="1.0" encoding="UTF-8"?>

<RuleSet name="Example_UsefulListOperations"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<!-- Exactly one Person (in each household) will
be designated as the head of household -->
<Attribute name="isHeadOfHousehold">
<type>
<javaclass name="Boolean"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- The children of this person. -->
<Attribute name="children">
<type>
<javaclass name="List">
<ruleclass name="Person"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- Whether this person has any children.

Tests the isEmpty property of List. -->
<Attribute name="hasChildren">
<type>
<javaclass name="Boolean"/>
</type>
<derivation>
<not>
<property name="isEmpty">
<object>
<reference attribute="children"/>
</object>
</property>
</not>
</derivation>
</Attribute>

240 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

<Attribute name="numberOfChildren">
<type>
<javaclass name="Number"/>
</type>
<derivation>
<property name="size">
<object>
<reference attribute="children"/>
</object>
</property>
</derivation>
</Attribute>

<!-- This person’s second child, if any, otherwise null -->
<Attribute name="secondChild">
<type>
<ruleclass name="Person"/>
</type>
<derivation>
<!-- We have to check whether the person has two
or more children -->
<choose>
<type>
<ruleclass name="Person"/>
</type>
<when>
<condition>
<compare comparison=">=">
<reference attribute="numberOfChildren"/>
<Number value="2"/>
</compare>
</condition>
<value>
<!-- Use the "get" property to get the second item
in the list - denoted by index 1 (lists in
Java are zero-based) -->
<property name="get">
<object>
<reference attribute="children"/>
</object>
<arguments>
<!-- The number must be converted to an integer
(as required by List.subList). -->
<property name="intValue">
<object>
<Number value="1"/>
</object>
</property>

</arguments>
</property>
</value>
</when>
<otherwise>
<!-- This person has no second child -->
<value>
<null/>
</value>
</otherwise>
</choose>
</derivation>
</Attribute>

<Attribute name="isChildOfHeadOfHousehold">
<type>
<javaclass name="Boolean"/>
</type>

Cúram Express Rules Reference 241

<derivation>
<property name="contains">
<object>
<!-- The children of the head of household -->
<reference attribute="children">
<!-- retrieve the single Person rule object which
has isHeadOfHousehold equal to true-->
<singleitem onEmpty="error" onMultiple="error">
<readall ruleclass="Person">
<match retrievedattribute="isHeadOfHousehold">
<true/>
</match>
</readall>
</singleitem>
</reference>
</object>
<!-- check whether the list of the head of household’s
children contains THIS Person -->
<arguments>
<this/>
</arguments>
</property>
</derivation>
</Attribute>

</Class>

</RuleSet>

Using CER with the Datastore
The application includes integration code that can create CER rule objects from
entries in the application datastore. The DataStoreRuleObjectCreator is used by
the Universal Access Module to convert evidence gathered by an IEG script to CER
rule objects. This information describes how the DataStoreRuleObjectCreator
works.

The DataStoreRuleObjectCreator
The DataStoreRuleObjectCreator takes a Datastore record (typically a record
relating to a user or person), and navigates to all the descendant records of this
"root" record (typically containing all the person's gathered evidence).

It then proceeds to create rule objects by performing a straightforward "natural
mapping" between:
v the entity types and attributes in the Datastore schema; and
v the rule classes and rule attribute in the CER rule set.

The DataStoreRuleObjectCreator also takes special action for CER rule attributes
with certain names:
v parentEntity

If a rule class contains a rule attribute named parentEntity, then the
DataStoreRuleObjectCreator will set its value to be the rule object created from
the parent record in the Datastore (if any). CER will issue a runtime error if the
type of this rule attribute does not match the rule class of the parent entity's rule
object; and

v childEntities_<rule class name>

If a rule class contains any attributes named childEntities_ followed by the
name of a rule class, then the DataStoreRuleObjectCreator will set each such

242 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

attribute's value to be a list of the rule objects created from the child records of
that type in the Datastore (if any). CER will issue a runtime error if the type of
this rule attribute is not a list of the named rule class.

Example
The behavior of DataStoreRuleObjectCreator is best explained by walking through
an example. This example is based around the Universal Access Module.

An IEG script might capture income data for a household. The household can
contain any number of persons, and each person can have any number of income
details.

Here is a simplified view of the structure of the Datastore schema:
v Application

– Person (0..n)
- firstName (String)
- lastName (String
- Income (0..n)

v type (Code from the IncomeType code table)
v amount (Number)

A citizen (John) undertakes self-screening, and records evidence for his household
(just John and his wife Mary) and income details (John is unemployed, Mary has
two part-time jobs). John's evidence is stored as records in the Datastore:
v Application #1234

– Person #1235
- firstName: John
- lastName: Smith
- Income <no records>

– Person #1236
- firstName: Mary
- lastName: Smith
- Income #1238

v type: Part-time
v amount 30

The CER rule set configured to be used with this type of screening contains some
rule classes as follows (NB no program rule classes are shown):
<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="DataStoreMappingExample"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- NB no rule class for the CDS entity type "Application";
the attributes stored directly on an Application are
not required by rules, so no point creating a rule object
which won’t get used. -->

<!-- The name of this rule class matches that of a CDS entity
type -->

<Class name="Person">
<!-- The name of this rule attribute matches that of an

Cúram Express Rules Reference 243

attribute on the CDS entity type, and so its value will
be automatically specified by the
DataStoreRuleObjectRetriever. -->

<Attribute name="firstName">
<!-- The type of the rule attribute must agree with the

type of the CDS attribute type, otherwise CER will
issue a runtime error. -->

<type>
<javaclass name="String"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- NB no rule attribute for the CDS attribute for lastName.
-->

<!-- Rule attributes matching the "childEntities_<rule class
name>"

pattern will receive special treatment from the
DataStoreRuleObjectRetriever.

The DataStoreRuleObjectRetriever will specify the value of
this attribute to be all the rule objects created from the
child Income records which belong to this Person’s record
in the CDS. -->

<Attribute name="childEntities_Income">
<!-- The type must be a list of Income rule objects -->
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- The name of this rule class does not match any CDS entity
type,

so the DataStoreRuleObjectRetriever will not create any rule
objects for this rule class. -->

<Class name="Benefit">
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<Class name="Income">
<!-- A rule attribute named "parentEntity" will receive

special treatment from the
DataStoreRuleObjectRetriever.

The DataStoreRuleObjectRetriever will specify the value
of this attribute to be the rule object created from the
Person record which is the parent of this Income record
in the CDS. -->

<Attribute name="parentEntity">
<!-- The type must be a single Person rule object -->
<type>

244 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="type">
<type>

<!-- The type of this attribute must specify the correct
code table, matching the CDS domain definition. -->

<codetableentry table="IncomeType"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="amount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- This derivation will never be executed, as
the DataStoreRuleObjectRetriever will automatically
"specify" the value from that on the CDS record;
once a value is specified CER does not attempt to
calculate it.

In general, attributes which expect to be populated
by the DataStoreRuleObjectRetriever should be marked
as <specified/> to avoid any confusion between
stand-alone testing of your rule sets and testing
with the DataStoreRuleObjectRetriever.

-->
<Number value="123"/>

</derivation>
</Attribute>

<!-- This attribute is not present on the CDS entity type,
so will not be populated. This is exactly what we
want, because its value is derived from other
rule attributes in the normal CER way. -->

<Attribute name="isCountable">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<choose>
<type>

<javaclass name="Boolean"/>
</type>
<test>

<reference attribute="type"/>
</test>
<when>

<condition>
<Code table="IncomeType">

<String value="Full-time"/>
</Code>

</condition>
<value>

<true/>
</value>

</when>
<when>

<condition>

Cúram Express Rules Reference 245

<Code table="IncomeType">
<String value="Part-time"/>

</Code>
</condition>
<value>

<true/>
</value>

</when>
<otherwise>

<value>
<false/>

</value>
</otherwise>

</choose>
</derivation>

</Attribute>

<!-- This rule attribute is not calculated, nor
does it correspond to an attribute on the
CDS entity type.

If the value of this attribute is referenced
at runtime, CER will report a runtime error:
"Value must be specified before it is used
(it cannot be calculated)."

-->
<Attribute name="employerName">

<type>
<javaclass name="String"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

</RuleSet>

When John completes his self-screening, the Universal Access Module loads the
CER rule set above, and creates a CER session.

The Universal Access Module calls the DataStoreRuleObjectCreator, and specifies
the root Datastore record (Application #1234).

The DataStoreRuleObjectCreator retrieves all the descendant records of
Application #1234 and processes them as follows:
v Application #1234

Skipped, as there is no rule class named "Application" in the rule set;
v Person #1235

creates a rule object instance of the Person rule class, with:
– firstName

Specified to be "John";
– lastName

Skipped, as there is no rule attribute named "lastName" on the Person rule
class;

– childEntities_Income

Specified to be an empty list, as there are no Income records for Person record
#1235;

v Person #1236

246 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

creates a rule object instance of the Person rule class, with:
– firstName

Specified to be "Mary";
– lastName

Skipped;
– childEntities_Income

Specified to be a list containing Mary's two Income rule objects (created
below);

v Income #1237

creates a rule object instance of the Income rule class, with:
– parentEntity

Specified to be the Person rule object created (above) for Mary from Person
record #1236;

– type

Specified to be the code "Part-time";
– amount

Specified to be the number "25";
– (employerName)

Not specified, as there is no attribute named "employerName" on the
Datastore entity;

v Income #1238

creates a rule object instance of the Income rule class, with:
– parentEntity

Specified to be the Person rule object created (above) for Mary from Person
record #1236;

– type

Specified to be the code "Part-time"; and
– amount

Specified to be the number "30".

Lastly, the Universal Access Module asks the rule set its standard questions about
programs, eligibility and explanation; the rule classes for the programs (not shown
in the example above) access the rule objects (created by the
DataStoreRuleObjectCreator) when answering those questions.

For more information on the application Datastore and its schemas, see the
Creating Datastore Schemas guide.

Compliancy for CER
A description of how to develop CER rules in a compliant manner. Following these
considerations makes it easier to upgrade to future versions of the application.

CER's Public API
The CER infrastructure has a public API which you may invoke in your rule set
tests and application code. The examples in this cookbook show how to use many
features of the CER infrastructure public API. The application will not change or
remove anything in this public API without following the standards for handling
customer impact.

Cúram Express Rules Reference 247

Unless explicitly permitted in the JavaDoc, you must not provide your own
implementation of any CER Java interface nor subclass any CER implementation
Java class.

Identifying the API
The JavaDoc included with CER is the sole means of identifying which public
classes, interfaces and methods form the CER public API.

Outside the API
The CER infrastructure also contains some public classes, interfaces and methods,
which do not form part of the API.

Important: To be compliant, you must not create any dependency on any CER
class or interface, nor call any method, other than those described in the JavaDoc.

CER classes, interfaces and methods outside of the public API are subject to change
or removal without notice.

Unless explicitly permitted in the JavaDoc, you must not place any of your own
classes or interfaces in the curam.creole package or any of its sub-packages.

CER Expressions
Only the CER expressions listed in this cookbook are supported. See “Full
Alphabetical Listing of Expressions” on page 152 for supported expressions.

Note that the rule set schema included with CER also contains some unsupported
expressions. These expressions are experimental in nature and are subject to
change or removal without notice. Do not use any unsupported CER expressions
in your rule sets.

Rule Sets Included with the Application
Some components in the application may include CER rule sets which may have
their own compliancy requirements. These compliancy requirements for CER rule
sets included by the application components fall outside the scope of this
document.

See the documentation accompanying those components to understand whether
you are permitted to customize the CER rule set, and if so, what customization
restrictions apply.

The RootRuleSet included with CER must not be altered by customers.

Examples in this Guide
The example artifacts in this guide (rule sets, Java code and property files) are
subject to change or removal without notice.

You may freely copy these example artifacts for your own use; however, note that
no upgrade support is provided for these example artifacts.

CER's Database Tables
The CER infrastructure includes a number of database tables. In general, these
tables are internal to CER and the data on them may only be read or written via
CER's public API.

248 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

For more details on the read/write restrictions for these database tables, see the
following subsections.

Note: All CER Infrastructure database tables are prefixed with the word CREOLE;
however, the reverse is not true.

There are tables prefixed with CREOLE which are part of other application
components, and which are subject to their own compliancy statements. Only the
compliancy statements for CER Infrastructure database tables are described below.

CREOLERuleSet
This database table stores a row for each published CER rule set in the system.

Ordinarily read and write access to this database table is restricted to CER's public
API only; however, you are permitted to use the application's data manager to
populate this database table provided that the following criteria are met:
v The value of the name column must match the rule set name as defined within

the XML for the ruleSetDefinition column; and
v The value of the ruleSetVersion column must be null.

This is a sample entry from a compliant CREOLERuleSet.dmx file.
<?xml version="1.0" encoding="UTF-8"?>
<table name="CREOLERULESET">
<column name="creoleRuleSetID" type="id"/>
<column name="name" type="text"/>
<column name="ruleSetDefinition" type="blob"/>
<column name="versionNo" type="number"/>
<column name="ruleSetVersion" type="number"/>
<row> ... </row>
<row>
<attribute name="creoleRuleSetID">
<!-- Use some appropriate unique identifier -->
<value>99999</value>
</attribute>
<attribute name="name">
<!-- This name must match the <RuleSet name="...">
value in the rule set XML held in ruleSetDefinition
below -->
<value>MyRuleSet</value>
</attribute>
<attribute name="ruleSetDefinition">
<value>./path/to/MyRuleSet.xml</value>
</attribute>
<attribute name="ruleSetVersion">
<!-- Must be an empty <value/> element, signifying a NULL
database value -->
<value/>
</attribute>
<attribute name="versionNo">
<!-- initial optimistic lock versionNo value -->
<value>1</value>
</attribute>
</row>
<row> ... </row>
</table>

See the Working with Cúram Express Rules guide for steps to extract
CREOLERuleSet data from your application (and accompanying AppResource
data, if required).

Cúram Express Rules Reference 249

CREOLEMigrationControl
CREOLEMigrationControl is a single-row control table which is used to prevent
concurrent publication of CER rule sets.

The data on this table is internal to CER and may not be read or written by any
other component.

The single row on this table is populated via a DMX file included with the
application. Customers must not alter this DMX file nor create any other DMX files
which target the CREOLEMigrationControl table.

Other CER Infrastructure database tables
The remaining database tables which are included with the CER Infrastructure are:
v CREOLEAttributeAvailability;
v CREOLEAttributeInheritance;
v CREOLERuleAttribute;
v CREOLERuleAttributeValue;
v CREOLERuleClass;
v CREOLERuleClassInheritance;
v CREOLERuleObject;
v CREOLERuleSetDependency;
v CREOLERuleSetEditAction;
v CREOLERuleSetSnapshot; and
v CREOLEValueOverflow.

These CER Infrastructure database tables fall under this general compliancy
condition: the data on these database tables must not be read or written other than
through CER's public API. In particular, initial population of these database tables
via DMX files is not supported.

The Dependency Manager
The Dependency Manager is internal to Cúram and no access from custom code
nor any customization is supported.

All artefacts pertaining to the Dependency Manager are contained in the
curam.dependency code package and its sub-packages. Some artefacts in this code
package are contributed by CER and others by the core application. You must not
place any of your own classes or interfaces in the curam.dependency code package
or any of its sub-packages.

The following database tables are owned by the Dependency Manager:
v Dependency;
v PrecedentChangeSet;
v PrecedentChangeItem; and
v PrecedentChangeSetBatchCtrl.

These database tables must not be customized in any way, and the data on these
database tables must not be read or written other than by the Dependency
Manager itself.

Initial population of these database tables b y using DMX files is not supported,
with the exception of DMX files included with the application; moreover it is not

250 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

supported to customize or omit the population of these database tables by using
the DMX files included with the application.

Cúram Express Rules Reference 251

252 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 253

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

254 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 255

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

256 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Cúram Express Rules Reference
	Introduction
	Audience
	Related Reading
	Structure of this Reference Manual

	CER overview
	What Is CER?
	Rules Language
	Authoring and Testing Environment
	Runtime Environment

	What Are Its Benefits?
	How Can It Be Used?
	Guiding Principles

	CER Development and Testing Tools
	CER Rules Editor
	Localization Support
	Localization of calculated data
	Localization of CER rule artefact descriptions

	The Rule Set Validator
	The Rule Set Interpreter
	Read in the Rule Set
	Start a CER Session
	Create a New Rule Object
	Execute Rules

	CER Test Code Generator
	How to Generate Code

	Rule Set Coverage Tool
	CER Publication Area
	Schema and Catalog Generation
	RuleDoc
	A Simple Example
	A More Useful Example
	How to Generate RuleDoc

	SessionDoc
	Unused rule attributes
	CER Rule Set Consolidator
	Example

	Handling Data
	CER Sessions
	External and Internal Rule Objects
	External Rule Objects
	Example
	When to Use External Rule Objects

	Internal Rule Objects
	Example
	When to Use Internal Rule Objects

	Handling Data Types
	Supported Data Types
	Rule Classes
	Java Classes
	Code Tables

	Where to Specify Data Types

	Handling Data that Changes Over Time
	What Is Timeline Data?
	Examples of data that may be modeled as CER Timelines
	Examples of non-timeline data

	Comparing Timeline and Point-in-time Perspectives
	A point-in-time perspective
	A Timeline Perspective

	Constructing Timelines
	Constructing Timelines in Java Code
	Constructing Timelines in CER Rules

	Operating on Timelines
	Preserving change dates
	Date-shifting

	Testing Timeline Outputs
	Timeline Properties
	Example of Timeline Intervals

	Triggering Recalculation When Data Changes

	The Dependency Manager
	Dependency Manager Concepts
	Dependency Manager Functions
	Storage of Dependency Records
	Example
	No Understanding of Dependents or Precedents
	Dependency Storage is Optional
	Granularity of Dependencies

	Capture of Precedent Change Items
	Queue for Deferred Processing
	Queue for Batch Processing
	Example
	Lifecycle of a Precedent Change Set

	Identification of Potentially Affected Dependents
	Recalculation of Identified Dependents

	Dependency Manager Deferred Processing
	Setting the System Limit for Deferred Processing
	Error Handling in the Deferred Processing

	Dependency Manager Batch Processing
	Submit Precedent Change Set
	Perform Batch Recalculations From Precedent Change Set
	Complete Precedent Change Set
	Dependency Manager Batch Tooling

	Integration between CER and the Dependency Manager
	CER Utility to Identify Dependencies to Store
	Precedents Identified Directly by CER
	Precedents Identified by Rule Object Converters

	CER uses the Dependency Manager to store dependencies for CER-stored attribute values
	The Dependency Manager requests CER to recalculate any stored calculated attributes values

	Compliancy

	About the CER Editor
	CER Editor Global Menu
	CER Editor Global Menu
	CER Editor Search Tools
	CER Editor Search Criteria

	Business View
	Rules Outline View

	Technical View
	Class Outline View

	Diagram Canvas
	Drag and Drop
	Toggle to Show Detailed Diagrams
	Pan and Zoom Controls

	Tools and Template Palettes
	Business Palettes
	Data Types Palette
	Technical Palette
	Household Units Template
	Financial Units Template
	Food Assistance Units Template
	Decision Table Template

	Rule Element Pop-up Menus
	Rule Element Properties
	Collapsible Property and Validation Panels
	General properties for all rule elements
	Properties for Rule class
	Properties for Attribute

	Rule Element Wizards

	Rule Element Reference for CER Editor Palettes
	Introduction
	Palettes
	Collapsible Palettes

	Rule Element Reference for the Default and Extended Business Palettes
	Rule
	And Rule Group
	Or Rule Group
	Not
	Choose
	Compare
	When
	Arithmetic
	MIN
	MAX
	SUM
	Repeating Rule
	Filter
	Size
	Otherwise
	Legislation Change
	Era

	Rule Element Reference for Data Types Palette
	Boolean
	String
	Number
	Date
	Code Table
	Rate
	Frequency Pattern
	Resource Message
	Xml Message
	Null

	Rule Element Reference for Technical Logic Palette
	Create
	Search
	Fixed List
	Property
	Custom Expression
	Existence Timeline
	Timeline
	Interval
	CombineSuccessionSet
	Call
	Period Length
	ALL
	ANY
	This
	Sort
	Shared Rule Reference
	CONCAT
	Join Lists

	Rule Element Reference for Household Units Templates
	Household Composition
	Household Category

	Rule Element Reference for Financial Units Templates
	Financial Unit
	Financial Unit Category
	Financial Unit Member

	Rule Element Reference for Food Assistance Units Templates
	Food Assistance Unit
	Food Assistance Single Person Category
	Food Assistance Multi Person Category
	Meal Group Members
	Relatives
	Discard
	Member for household unit
	Optional Members
	Exceptions

	Rule Element Reference for Decision Table Templates
	Decision Table

	CER Best Practices
	The description Rule Attribute
	Getting a Rule Set Working Quickly
	Naming Rule Elements
	When to Use the Reference Expression
	Use RuleDoc
	Normalize Common Rules
	Remove Unused Rules
	Order of Declarations
	Order of Rule Classes within a Rule Set
	Order of Calculated Rule Attributes within a Rule Class
	Order of Initialized Attributes within a Rule Class
	Order of Boolean Conditions

	Creating Rule Objects
	Pass Rule Objects in Preference to Passing IDs
	Developing Static Methods
	Avoid Common Pitfalls in Tests
	Avoid JUnit's assertEquals
	Remember to Use .getValue()
	Remember to Specify All Values Required by the Calculations Being Tested
	Do Not Specify the Same Value More than Once
	Specify the Correct Type of Value for an Attribute
	Create all Rule Objects for a Session before Running getValue Calculations

	CER XML Dictionary
	Rule Set
	Include Statement
	Rule Class
	Initialized Attributes
	Calculated Attributes

	Attribute
	Expressions
	Boolean Logic
	Value Comparison
	Constants
	Conditional Logic
	List Aggregations
	List Transformations
	Localizable Messages
	Numerical Calculations
	References
	Creation
	Retrieval
	Java Callouts
	Markers
	Timelines
	Product Delivery Eligibility and Entitlement
	Full Alphabetical Listing of Expressions
	abstract
	all
	any
	arithmetic
	call
	choose
	Code
	combineSuccessionSets
	compare
	concat
	create
	current
	Date
	dynamiclist
	defaultDescription
	equals
	existencetimeline
	false
	filter
	fixedlist
	FrequencyPattern
	Interval
	intervalvalue
	joinlists
	legislationChange
	max
	min
	not
	null
	Number
	periodlength
	property
	rate
	readall
	reference
	removeduplicates
	ResourceMessage
	singleitem
	sort
	specified
	String
	sublists
	sum
	this
	Timeline
	timelineoperation
	true
	XmlMessage

	Annotations
	Full Alphabetical Listing of Annotations
	ActiveInEditSuccessionSetPopulation
	Display
	DisplaySubscreen
	EditorMetadata
	Indexed

	Useful List Operations
	Using CER with the Datastore
	The DataStoreRuleObjectCreator
	Example

	Compliancy for CER
	CER's Public API
	Identifying the API
	Outside the API

	CER Expressions
	Rule Sets Included with the Application
	Examples in this Guide
	CER's Database Tables
	CREOLERuleSet
	CREOLEMigrationControl
	Other CER Infrastructure database tables

	The Dependency Manager

	Notices
	Privacy Policy considerations
	Trademarks

